forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			938 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			938 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements uninitialized values analysis for source-level CFGs.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Analysis/Analyses/UninitializedValues.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclBase.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/OperationKinds.h"
 | |
| #include "clang/AST/Stmt.h"
 | |
| #include "clang/AST/StmtObjC.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/AST/Type.h"
 | |
| #include "clang/Analysis/Analyses/PostOrderCFGView.h"
 | |
| #include "clang/Analysis/AnalysisDeclContext.h"
 | |
| #include "clang/Analysis/CFG.h"
 | |
| #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
 | |
| #include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
 | |
| #include "clang/Basic/LLVM.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/PackedVector.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| #define DEBUG_LOGGING 0
 | |
| 
 | |
| static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
 | |
|   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
 | |
|       !vd->isExceptionVariable() && !vd->isInitCapture() &&
 | |
|       !vd->isImplicit() && vd->getDeclContext() == dc) {
 | |
|     QualType ty = vd->getType();
 | |
|     return ty->isScalarType() || ty->isVectorType() || ty->isRecordType();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------====//
 | |
| // DeclToIndex: a mapping from Decls we track to value indices.
 | |
| //====------------------------------------------------------------------------//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class DeclToIndex {
 | |
|   llvm::DenseMap<const VarDecl *, unsigned> map;
 | |
| 
 | |
| public:
 | |
|   DeclToIndex() = default;
 | |
| 
 | |
|   /// Compute the actual mapping from declarations to bits.
 | |
|   void computeMap(const DeclContext &dc);
 | |
| 
 | |
|   /// Return the number of declarations in the map.
 | |
|   unsigned size() const { return map.size(); }
 | |
| 
 | |
|   /// Returns the bit vector index for a given declaration.
 | |
|   Optional<unsigned> getValueIndex(const VarDecl *d) const;
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| void DeclToIndex::computeMap(const DeclContext &dc) {
 | |
|   unsigned count = 0;
 | |
|   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
 | |
|                                                E(dc.decls_end());
 | |
|   for ( ; I != E; ++I) {
 | |
|     const VarDecl *vd = *I;
 | |
|     if (isTrackedVar(vd, &dc))
 | |
|       map[vd] = count++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
 | |
|   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
 | |
|   if (I == map.end())
 | |
|     return None;
 | |
|   return I->second;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------====//
 | |
| // CFGBlockValues: dataflow values for CFG blocks.
 | |
| //====------------------------------------------------------------------------//
 | |
| 
 | |
| // These values are defined in such a way that a merge can be done using
 | |
| // a bitwise OR.
 | |
| enum Value { Unknown = 0x0,         /* 00 */
 | |
|              Initialized = 0x1,     /* 01 */
 | |
|              Uninitialized = 0x2,   /* 10 */
 | |
|              MayUninitialized = 0x3 /* 11 */ };
 | |
| 
 | |
| static bool isUninitialized(const Value v) {
 | |
|   return v >= Uninitialized;
 | |
| }
 | |
| 
 | |
| static bool isAlwaysUninit(const Value v) {
 | |
|   return v == Uninitialized;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>;
 | |
| 
 | |
| class CFGBlockValues {
 | |
|   const CFG &cfg;
 | |
|   SmallVector<ValueVector, 8> vals;
 | |
|   ValueVector scratch;
 | |
|   DeclToIndex declToIndex;
 | |
| 
 | |
| public:
 | |
|   CFGBlockValues(const CFG &cfg);
 | |
| 
 | |
|   unsigned getNumEntries() const { return declToIndex.size(); }
 | |
| 
 | |
|   void computeSetOfDeclarations(const DeclContext &dc);
 | |
| 
 | |
|   ValueVector &getValueVector(const CFGBlock *block) {
 | |
|     return vals[block->getBlockID()];
 | |
|   }
 | |
| 
 | |
|   void setAllScratchValues(Value V);
 | |
|   void mergeIntoScratch(ValueVector const &source, bool isFirst);
 | |
|   bool updateValueVectorWithScratch(const CFGBlock *block);
 | |
| 
 | |
|   bool hasNoDeclarations() const {
 | |
|     return declToIndex.size() == 0;
 | |
|   }
 | |
| 
 | |
|   void resetScratch();
 | |
| 
 | |
|   ValueVector::reference operator[](const VarDecl *vd);
 | |
| 
 | |
|   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
 | |
|                  const VarDecl *vd) {
 | |
|     const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
 | |
|     assert(idx.hasValue());
 | |
|     return getValueVector(block)[idx.getValue()];
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
 | |
| 
 | |
| void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
 | |
|   declToIndex.computeMap(dc);
 | |
|   unsigned decls = declToIndex.size();
 | |
|   scratch.resize(decls);
 | |
|   unsigned n = cfg.getNumBlockIDs();
 | |
|   if (!n)
 | |
|     return;
 | |
|   vals.resize(n);
 | |
|   for (auto &val : vals)
 | |
|     val.resize(decls);
 | |
| }
 | |
| 
 | |
| #if DEBUG_LOGGING
 | |
| static void printVector(const CFGBlock *block, ValueVector &bv,
 | |
|                         unsigned num) {
 | |
|   llvm::errs() << block->getBlockID() << " :";
 | |
|   for (const auto &i : bv)
 | |
|     llvm::errs() << ' ' << i;
 | |
|   llvm::errs() << " : " << num << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void CFGBlockValues::setAllScratchValues(Value V) {
 | |
|   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
 | |
|     scratch[I] = V;
 | |
| }
 | |
| 
 | |
| void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
 | |
|                                       bool isFirst) {
 | |
|   if (isFirst)
 | |
|     scratch = source;
 | |
|   else
 | |
|     scratch |= source;
 | |
| }
 | |
| 
 | |
| bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
 | |
|   ValueVector &dst = getValueVector(block);
 | |
|   bool changed = (dst != scratch);
 | |
|   if (changed)
 | |
|     dst = scratch;
 | |
| #if DEBUG_LOGGING
 | |
|   printVector(block, scratch, 0);
 | |
| #endif
 | |
|   return changed;
 | |
| }
 | |
| 
 | |
| void CFGBlockValues::resetScratch() {
 | |
|   scratch.reset();
 | |
| }
 | |
| 
 | |
| ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
 | |
|   const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
 | |
|   assert(idx.hasValue());
 | |
|   return scratch[idx.getValue()];
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------====//
 | |
| // Classification of DeclRefExprs as use or initialization.
 | |
| //====------------------------------------------------------------------------//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class FindVarResult {
 | |
|   const VarDecl *vd;
 | |
|   const DeclRefExpr *dr;
 | |
| 
 | |
| public:
 | |
|   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
 | |
| 
 | |
|   const DeclRefExpr *getDeclRefExpr() const { return dr; }
 | |
|   const VarDecl *getDecl() const { return vd; }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
 | |
|   while (Ex) {
 | |
|     Ex = Ex->IgnoreParenNoopCasts(C);
 | |
|     if (const auto *CE = dyn_cast<CastExpr>(Ex)) {
 | |
|       if (CE->getCastKind() == CK_LValueBitCast) {
 | |
|         Ex = CE->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return Ex;
 | |
| }
 | |
| 
 | |
| /// If E is an expression comprising a reference to a single variable, find that
 | |
| /// variable.
 | |
| static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
 | |
|   if (const auto *DRE =
 | |
|           dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
 | |
|     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
 | |
|       if (isTrackedVar(VD, DC))
 | |
|         return FindVarResult(VD, DRE);
 | |
|   return FindVarResult(nullptr, nullptr);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Classify each DeclRefExpr as an initialization or a use. Any
 | |
| /// DeclRefExpr which isn't explicitly classified will be assumed to have
 | |
| /// escaped the analysis and will be treated as an initialization.
 | |
| class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
 | |
| public:
 | |
|   enum Class {
 | |
|     Init,
 | |
|     Use,
 | |
|     SelfInit,
 | |
|     Ignore
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   const DeclContext *DC;
 | |
|   llvm::DenseMap<const DeclRefExpr *, Class> Classification;
 | |
| 
 | |
|   bool isTrackedVar(const VarDecl *VD) const {
 | |
|     return ::isTrackedVar(VD, DC);
 | |
|   }
 | |
| 
 | |
|   void classify(const Expr *E, Class C);
 | |
| 
 | |
| public:
 | |
|   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
 | |
| 
 | |
|   void VisitDeclStmt(DeclStmt *DS);
 | |
|   void VisitUnaryOperator(UnaryOperator *UO);
 | |
|   void VisitBinaryOperator(BinaryOperator *BO);
 | |
|   void VisitCallExpr(CallExpr *CE);
 | |
|   void VisitCastExpr(CastExpr *CE);
 | |
|   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
 | |
| 
 | |
|   void operator()(Stmt *S) { Visit(S); }
 | |
| 
 | |
|   Class get(const DeclRefExpr *DRE) const {
 | |
|     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
 | |
|         = Classification.find(DRE);
 | |
|     if (I != Classification.end())
 | |
|       return I->second;
 | |
| 
 | |
|     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
 | |
|     if (!VD || !isTrackedVar(VD))
 | |
|       return Ignore;
 | |
| 
 | |
|     return Init;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
 | |
|   if (VD->getType()->isRecordType())
 | |
|     return nullptr;
 | |
|   if (Expr *Init = VD->getInit()) {
 | |
|     const auto *DRE =
 | |
|         dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
 | |
|     if (DRE && DRE->getDecl() == VD)
 | |
|       return DRE;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void ClassifyRefs::classify(const Expr *E, Class C) {
 | |
|   // The result of a ?: could also be an lvalue.
 | |
|   E = E->IgnoreParens();
 | |
|   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
 | |
|     classify(CO->getTrueExpr(), C);
 | |
|     classify(CO->getFalseExpr(), C);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
 | |
|     classify(BCO->getFalseExpr(), C);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
 | |
|     classify(OVE->getSourceExpr(), C);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
 | |
|     if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
 | |
|       if (!VD->isStaticDataMember())
 | |
|         classify(ME->getBase(), C);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     switch (BO->getOpcode()) {
 | |
|     case BO_PtrMemD:
 | |
|     case BO_PtrMemI:
 | |
|       classify(BO->getLHS(), C);
 | |
|       return;
 | |
|     case BO_Comma:
 | |
|       classify(BO->getRHS(), C);
 | |
|       return;
 | |
|     default:
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   FindVarResult Var = findVar(E, DC);
 | |
|   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
 | |
|     Classification[DRE] = std::max(Classification[DRE], C);
 | |
| }
 | |
| 
 | |
| void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
 | |
|   for (auto *DI : DS->decls()) {
 | |
|     auto *VD = dyn_cast<VarDecl>(DI);
 | |
|     if (VD && isTrackedVar(VD))
 | |
|       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
 | |
|         Classification[DRE] = SelfInit;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
 | |
|   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
 | |
|   // is not a compound-assignment, we will treat it as initializing the variable
 | |
|   // when TransferFunctions visits it. A compound-assignment does not affect
 | |
|   // whether a variable is uninitialized, and there's no point counting it as a
 | |
|   // use.
 | |
|   if (BO->isCompoundAssignmentOp())
 | |
|     classify(BO->getLHS(), Use);
 | |
|   else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma)
 | |
|     classify(BO->getLHS(), Ignore);
 | |
| }
 | |
| 
 | |
| void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
 | |
|   // Increment and decrement are uses despite there being no lvalue-to-rvalue
 | |
|   // conversion.
 | |
|   if (UO->isIncrementDecrementOp())
 | |
|     classify(UO->getSubExpr(), Use);
 | |
| }
 | |
| 
 | |
| void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) {
 | |
|   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses()))
 | |
|     classify(cast<Expr>(S), Use);
 | |
| }
 | |
| 
 | |
| static bool isPointerToConst(const QualType &QT) {
 | |
|   return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified();
 | |
| }
 | |
| 
 | |
| void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
 | |
|   // Classify arguments to std::move as used.
 | |
|   if (CE->isCallToStdMove()) {
 | |
|     // RecordTypes are handled in SemaDeclCXX.cpp.
 | |
|     if (!CE->getArg(0)->getType()->isRecordType())
 | |
|       classify(CE->getArg(0), Use);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If a value is passed by const pointer or by const reference to a function,
 | |
|   // we should not assume that it is initialized by the call, and we
 | |
|   // conservatively do not assume that it is used.
 | |
|   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
 | |
|        I != E; ++I) {
 | |
|     if ((*I)->isGLValue()) {
 | |
|       if ((*I)->getType().isConstQualified())
 | |
|         classify((*I), Ignore);
 | |
|     } else if (isPointerToConst((*I)->getType())) {
 | |
|       const Expr *Ex = stripCasts(DC->getParentASTContext(), *I);
 | |
|       const auto *UO = dyn_cast<UnaryOperator>(Ex);
 | |
|       if (UO && UO->getOpcode() == UO_AddrOf)
 | |
|         Ex = UO->getSubExpr();
 | |
|       classify(Ex, Ignore);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
 | |
|   if (CE->getCastKind() == CK_LValueToRValue)
 | |
|     classify(CE->getSubExpr(), Use);
 | |
|   else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) {
 | |
|     if (CSE->getType()->isVoidType()) {
 | |
|       // Squelch any detected load of an uninitialized value if
 | |
|       // we cast it to void.
 | |
|       // e.g. (void) x;
 | |
|       classify(CSE->getSubExpr(), Ignore);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------====//
 | |
| // Transfer function for uninitialized values analysis.
 | |
| //====------------------------------------------------------------------------//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class TransferFunctions : public StmtVisitor<TransferFunctions> {
 | |
|   CFGBlockValues &vals;
 | |
|   const CFG &cfg;
 | |
|   const CFGBlock *block;
 | |
|   AnalysisDeclContext ∾
 | |
|   const ClassifyRefs &classification;
 | |
|   ObjCNoReturn objCNoRet;
 | |
|   UninitVariablesHandler &handler;
 | |
| 
 | |
| public:
 | |
|   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
 | |
|                     const CFGBlock *block, AnalysisDeclContext &ac,
 | |
|                     const ClassifyRefs &classification,
 | |
|                     UninitVariablesHandler &handler)
 | |
|       : vals(vals), cfg(cfg), block(block), ac(ac),
 | |
|         classification(classification), objCNoRet(ac.getASTContext()),
 | |
|         handler(handler) {}
 | |
| 
 | |
|   void reportUse(const Expr *ex, const VarDecl *vd);
 | |
| 
 | |
|   void VisitBinaryOperator(BinaryOperator *bo);
 | |
|   void VisitBlockExpr(BlockExpr *be);
 | |
|   void VisitCallExpr(CallExpr *ce);
 | |
|   void VisitDeclRefExpr(DeclRefExpr *dr);
 | |
|   void VisitDeclStmt(DeclStmt *ds);
 | |
|   void VisitGCCAsmStmt(GCCAsmStmt *as);
 | |
|   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
 | |
|   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
 | |
|   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
 | |
| 
 | |
|   bool isTrackedVar(const VarDecl *vd) {
 | |
|     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
 | |
|   }
 | |
| 
 | |
|   FindVarResult findVar(const Expr *ex) {
 | |
|     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
 | |
|   }
 | |
| 
 | |
|   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
 | |
|     UninitUse Use(ex, isAlwaysUninit(v));
 | |
| 
 | |
|     assert(isUninitialized(v));
 | |
|     if (Use.getKind() == UninitUse::Always)
 | |
|       return Use;
 | |
| 
 | |
|     // If an edge which leads unconditionally to this use did not initialize
 | |
|     // the variable, we can say something stronger than 'may be uninitialized':
 | |
|     // we can say 'either it's used uninitialized or you have dead code'.
 | |
|     //
 | |
|     // We track the number of successors of a node which have been visited, and
 | |
|     // visit a node once we have visited all of its successors. Only edges where
 | |
|     // the variable might still be uninitialized are followed. Since a variable
 | |
|     // can't transfer from being initialized to being uninitialized, this will
 | |
|     // trace out the subgraph which inevitably leads to the use and does not
 | |
|     // initialize the variable. We do not want to skip past loops, since their
 | |
|     // non-termination might be correlated with the initialization condition.
 | |
|     //
 | |
|     // For example:
 | |
|     //
 | |
|     //         void f(bool a, bool b) {
 | |
|     // block1:   int n;
 | |
|     //           if (a) {
 | |
|     // block2:     if (b)
 | |
|     // block3:       n = 1;
 | |
|     // block4:   } else if (b) {
 | |
|     // block5:     while (!a) {
 | |
|     // block6:       do_work(&a);
 | |
|     //               n = 2;
 | |
|     //             }
 | |
|     //           }
 | |
|     // block7:   if (a)
 | |
|     // block8:     g();
 | |
|     // block9:   return n;
 | |
|     //         }
 | |
|     //
 | |
|     // Starting from the maybe-uninitialized use in block 9:
 | |
|     //  * Block 7 is not visited because we have only visited one of its two
 | |
|     //    successors.
 | |
|     //  * Block 8 is visited because we've visited its only successor.
 | |
|     // From block 8:
 | |
|     //  * Block 7 is visited because we've now visited both of its successors.
 | |
|     // From block 7:
 | |
|     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
 | |
|     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
 | |
|     //  * Block 3 is not visited because it initializes 'n'.
 | |
|     // Now the algorithm terminates, having visited blocks 7 and 8, and having
 | |
|     // found the frontier is blocks 2, 4, and 5.
 | |
|     //
 | |
|     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
 | |
|     // and 4), so we report that any time either of those edges is taken (in
 | |
|     // each case when 'b == false'), 'n' is used uninitialized.
 | |
|     SmallVector<const CFGBlock*, 32> Queue;
 | |
|     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
 | |
|     Queue.push_back(block);
 | |
|     // Specify that we've already visited all successors of the starting block.
 | |
|     // This has the dual purpose of ensuring we never add it to the queue, and
 | |
|     // of marking it as not being a candidate element of the frontier.
 | |
|     SuccsVisited[block->getBlockID()] = block->succ_size();
 | |
|     while (!Queue.empty()) {
 | |
|       const CFGBlock *B = Queue.pop_back_val();
 | |
| 
 | |
|       // If the use is always reached from the entry block, make a note of that.
 | |
|       if (B == &cfg.getEntry())
 | |
|         Use.setUninitAfterCall();
 | |
| 
 | |
|       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
 | |
|            I != E; ++I) {
 | |
|         const CFGBlock *Pred = *I;
 | |
|         if (!Pred)
 | |
|           continue;
 | |
| 
 | |
|         Value AtPredExit = vals.getValue(Pred, B, vd);
 | |
|         if (AtPredExit == Initialized)
 | |
|           // This block initializes the variable.
 | |
|           continue;
 | |
|         if (AtPredExit == MayUninitialized &&
 | |
|             vals.getValue(B, nullptr, vd) == Uninitialized) {
 | |
|           // This block declares the variable (uninitialized), and is reachable
 | |
|           // from a block that initializes the variable. We can't guarantee to
 | |
|           // give an earlier location for the diagnostic (and it appears that
 | |
|           // this code is intended to be reachable) so give a diagnostic here
 | |
|           // and go no further down this path.
 | |
|           Use.setUninitAfterDecl();
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         if (AtPredExit == MayUninitialized) {
 | |
|           // If the predecessor's terminator is an "asm goto" that initializes
 | |
|           // the variable, then it won't be counted as "initialized" on the
 | |
|           // non-fallthrough paths.
 | |
|           CFGTerminator term = Pred->getTerminator();
 | |
|           if (const auto *as = dyn_cast_or_null<GCCAsmStmt>(term.getStmt())) {
 | |
|             const CFGBlock *fallthrough = *Pred->succ_begin();
 | |
|             if (as->isAsmGoto() &&
 | |
|                 llvm::any_of(as->outputs(), [&](const Expr *output) {
 | |
|                     return vd == findVar(output).getDecl() &&
 | |
|                         llvm::any_of(as->labels(),
 | |
|                                      [&](const AddrLabelExpr *label) {
 | |
|                           return label->getLabel()->getStmt() == B->Label &&
 | |
|                               B != fallthrough;
 | |
|                         });
 | |
|                 })) {
 | |
|               Use.setUninitAfterDecl();
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         unsigned &SV = SuccsVisited[Pred->getBlockID()];
 | |
|         if (!SV) {
 | |
|           // When visiting the first successor of a block, mark all NULL
 | |
|           // successors as having been visited.
 | |
|           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
 | |
|                                              SE = Pred->succ_end();
 | |
|                SI != SE; ++SI)
 | |
|             if (!*SI)
 | |
|               ++SV;
 | |
|         }
 | |
| 
 | |
|         if (++SV == Pred->succ_size())
 | |
|           // All paths from this block lead to the use and don't initialize the
 | |
|           // variable.
 | |
|           Queue.push_back(Pred);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Scan the frontier, looking for blocks where the variable was
 | |
|     // uninitialized.
 | |
|     for (const auto *Block : cfg) {
 | |
|       unsigned BlockID = Block->getBlockID();
 | |
|       const Stmt *Term = Block->getTerminatorStmt();
 | |
|       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
 | |
|           Term) {
 | |
|         // This block inevitably leads to the use. If we have an edge from here
 | |
|         // to a post-dominator block, and the variable is uninitialized on that
 | |
|         // edge, we have found a bug.
 | |
|         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
 | |
|              E = Block->succ_end(); I != E; ++I) {
 | |
|           const CFGBlock *Succ = *I;
 | |
|           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
 | |
|               vals.getValue(Block, Succ, vd) == Uninitialized) {
 | |
|             // Switch cases are a special case: report the label to the caller
 | |
|             // as the 'terminator', not the switch statement itself. Suppress
 | |
|             // situations where no label matched: we can't be sure that's
 | |
|             // possible.
 | |
|             if (isa<SwitchStmt>(Term)) {
 | |
|               const Stmt *Label = Succ->getLabel();
 | |
|               if (!Label || !isa<SwitchCase>(Label))
 | |
|                 // Might not be possible.
 | |
|                 continue;
 | |
|               UninitUse::Branch Branch;
 | |
|               Branch.Terminator = Label;
 | |
|               Branch.Output = 0; // Ignored.
 | |
|               Use.addUninitBranch(Branch);
 | |
|             } else {
 | |
|               UninitUse::Branch Branch;
 | |
|               Branch.Terminator = Term;
 | |
|               Branch.Output = I - Block->succ_begin();
 | |
|               Use.addUninitBranch(Branch);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Use;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
 | |
|   Value v = vals[vd];
 | |
|   if (isUninitialized(v))
 | |
|     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
 | |
| }
 | |
| 
 | |
| void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
 | |
|   // This represents an initialization of the 'element' value.
 | |
|   if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) {
 | |
|     const auto *VD = cast<VarDecl>(DS->getSingleDecl());
 | |
|     if (isTrackedVar(VD))
 | |
|       vals[VD] = Initialized;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TransferFunctions::VisitOMPExecutableDirective(
 | |
|     OMPExecutableDirective *ED) {
 | |
|   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) {
 | |
|     assert(S && "Expected non-null used-in-clause child.");
 | |
|     Visit(S);
 | |
|   }
 | |
|   if (!ED->isStandaloneDirective())
 | |
|     Visit(ED->getStructuredBlock());
 | |
| }
 | |
| 
 | |
| void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
 | |
|   const BlockDecl *bd = be->getBlockDecl();
 | |
|   for (const auto &I : bd->captures()) {
 | |
|     const VarDecl *vd = I.getVariable();
 | |
|     if (!isTrackedVar(vd))
 | |
|       continue;
 | |
|     if (I.isByRef()) {
 | |
|       vals[vd] = Initialized;
 | |
|       continue;
 | |
|     }
 | |
|     reportUse(be, vd);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TransferFunctions::VisitCallExpr(CallExpr *ce) {
 | |
|   if (Decl *Callee = ce->getCalleeDecl()) {
 | |
|     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
 | |
|       // After a call to a function like setjmp or vfork, any variable which is
 | |
|       // initialized anywhere within this function may now be initialized. For
 | |
|       // now, just assume such a call initializes all variables.  FIXME: Only
 | |
|       // mark variables as initialized if they have an initializer which is
 | |
|       // reachable from here.
 | |
|       vals.setAllScratchValues(Initialized);
 | |
|     }
 | |
|     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
 | |
|       // Functions labeled like "analyzer_noreturn" are often used to denote
 | |
|       // "panic" functions that in special debug situations can still return,
 | |
|       // but for the most part should not be treated as returning.  This is a
 | |
|       // useful annotation borrowed from the static analyzer that is useful for
 | |
|       // suppressing branch-specific false positives when we call one of these
 | |
|       // functions but keep pretending the path continues (when in reality the
 | |
|       // user doesn't care).
 | |
|       vals.setAllScratchValues(Unknown);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
 | |
|   switch (classification.get(dr)) {
 | |
|   case ClassifyRefs::Ignore:
 | |
|     break;
 | |
|   case ClassifyRefs::Use:
 | |
|     reportUse(dr, cast<VarDecl>(dr->getDecl()));
 | |
|     break;
 | |
|   case ClassifyRefs::Init:
 | |
|     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
 | |
|     break;
 | |
|   case ClassifyRefs::SelfInit:
 | |
|       handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
 | |
|   if (BO->getOpcode() == BO_Assign) {
 | |
|     FindVarResult Var = findVar(BO->getLHS());
 | |
|     if (const VarDecl *VD = Var.getDecl())
 | |
|       vals[VD] = Initialized;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
 | |
|   for (auto *DI : DS->decls()) {
 | |
|     auto *VD = dyn_cast<VarDecl>(DI);
 | |
|     if (VD && isTrackedVar(VD)) {
 | |
|       if (getSelfInitExpr(VD)) {
 | |
|         // If the initializer consists solely of a reference to itself, we
 | |
|         // explicitly mark the variable as uninitialized. This allows code
 | |
|         // like the following:
 | |
|         //
 | |
|         //   int x = x;
 | |
|         //
 | |
|         // to deliberately leave a variable uninitialized. Different analysis
 | |
|         // clients can detect this pattern and adjust their reporting
 | |
|         // appropriately, but we need to continue to analyze subsequent uses
 | |
|         // of the variable.
 | |
|         vals[VD] = Uninitialized;
 | |
|       } else if (VD->getInit()) {
 | |
|         // Treat the new variable as initialized.
 | |
|         vals[VD] = Initialized;
 | |
|       } else {
 | |
|         // No initializer: the variable is now uninitialized. This matters
 | |
|         // for cases like:
 | |
|         //   while (...) {
 | |
|         //     int n;
 | |
|         //     use(n);
 | |
|         //     n = 0;
 | |
|         //   }
 | |
|         // FIXME: Mark the variable as uninitialized whenever its scope is
 | |
|         // left, since its scope could be re-entered by a jump over the
 | |
|         // declaration.
 | |
|         vals[VD] = Uninitialized;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TransferFunctions::VisitGCCAsmStmt(GCCAsmStmt *as) {
 | |
|   // An "asm goto" statement is a terminator that may initialize some variables.
 | |
|   if (!as->isAsmGoto())
 | |
|     return;
 | |
| 
 | |
|   for (const Expr *o : as->outputs())
 | |
|     if (const VarDecl *VD = findVar(o).getDecl())
 | |
|       if (vals[VD] != Initialized)
 | |
|         // If the variable isn't initialized by the time we get here, then we
 | |
|         // mark it as potentially uninitialized for those cases where it's used
 | |
|         // on an indirect path, where it's not guaranteed to be defined.
 | |
|         vals[VD] = MayUninitialized;
 | |
| }
 | |
| 
 | |
| void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
 | |
|   // If the Objective-C message expression is an implicit no-return that
 | |
|   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
 | |
|   if (objCNoRet.isImplicitNoReturn(ME)) {
 | |
|     vals.setAllScratchValues(Unknown);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------====//
 | |
| // High-level "driver" logic for uninitialized values analysis.
 | |
| //====------------------------------------------------------------------------//
 | |
| 
 | |
| static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
 | |
|                        AnalysisDeclContext &ac, CFGBlockValues &vals,
 | |
|                        const ClassifyRefs &classification,
 | |
|                        llvm::BitVector &wasAnalyzed,
 | |
|                        UninitVariablesHandler &handler) {
 | |
|   wasAnalyzed[block->getBlockID()] = true;
 | |
|   vals.resetScratch();
 | |
|   // Merge in values of predecessor blocks.
 | |
|   bool isFirst = true;
 | |
|   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
 | |
|        E = block->pred_end(); I != E; ++I) {
 | |
|     const CFGBlock *pred = *I;
 | |
|     if (!pred)
 | |
|       continue;
 | |
|     if (wasAnalyzed[pred->getBlockID()]) {
 | |
|       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
 | |
|       isFirst = false;
 | |
|     }
 | |
|   }
 | |
|   // Apply the transfer function.
 | |
|   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
 | |
|   for (const auto &I : *block) {
 | |
|     if (Optional<CFGStmt> cs = I.getAs<CFGStmt>())
 | |
|       tf.Visit(const_cast<Stmt *>(cs->getStmt()));
 | |
|   }
 | |
|   CFGTerminator terminator = block->getTerminator();
 | |
|   if (auto *as = dyn_cast_or_null<GCCAsmStmt>(terminator.getStmt()))
 | |
|     if (as->isAsmGoto())
 | |
|       tf.Visit(as);
 | |
|   return vals.updateValueVectorWithScratch(block);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// PruneBlocksHandler is a special UninitVariablesHandler that is used
 | |
| /// to detect when a CFGBlock has any *potential* use of an uninitialized
 | |
| /// variable.  It is mainly used to prune out work during the final
 | |
| /// reporting pass.
 | |
| struct PruneBlocksHandler : public UninitVariablesHandler {
 | |
|   /// Records if a CFGBlock had a potential use of an uninitialized variable.
 | |
|   llvm::BitVector hadUse;
 | |
| 
 | |
|   /// Records if any CFGBlock had a potential use of an uninitialized variable.
 | |
|   bool hadAnyUse = false;
 | |
| 
 | |
|   /// The current block to scribble use information.
 | |
|   unsigned currentBlock = 0;
 | |
| 
 | |
|   PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {}
 | |
| 
 | |
|   ~PruneBlocksHandler() override = default;
 | |
| 
 | |
|   void handleUseOfUninitVariable(const VarDecl *vd,
 | |
|                                  const UninitUse &use) override {
 | |
|     hadUse[currentBlock] = true;
 | |
|     hadAnyUse = true;
 | |
|   }
 | |
| 
 | |
|   /// Called when the uninitialized variable analysis detects the
 | |
|   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
 | |
|   /// are handled by handleUseOfUninitVariable.
 | |
|   void handleSelfInit(const VarDecl *vd) override {
 | |
|     hadUse[currentBlock] = true;
 | |
|     hadAnyUse = true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| void clang::runUninitializedVariablesAnalysis(
 | |
|     const DeclContext &dc,
 | |
|     const CFG &cfg,
 | |
|     AnalysisDeclContext &ac,
 | |
|     UninitVariablesHandler &handler,
 | |
|     UninitVariablesAnalysisStats &stats) {
 | |
|   CFGBlockValues vals(cfg);
 | |
|   vals.computeSetOfDeclarations(dc);
 | |
|   if (vals.hasNoDeclarations())
 | |
|     return;
 | |
| 
 | |
|   stats.NumVariablesAnalyzed = vals.getNumEntries();
 | |
| 
 | |
|   // Precompute which expressions are uses and which are initializations.
 | |
|   ClassifyRefs classification(ac);
 | |
|   cfg.VisitBlockStmts(classification);
 | |
| 
 | |
|   // Mark all variables uninitialized at the entry.
 | |
|   const CFGBlock &entry = cfg.getEntry();
 | |
|   ValueVector &vec = vals.getValueVector(&entry);
 | |
|   const unsigned n = vals.getNumEntries();
 | |
|   for (unsigned j = 0; j < n; ++j) {
 | |
|     vec[j] = Uninitialized;
 | |
|   }
 | |
| 
 | |
|   // Proceed with the workist.
 | |
|   ForwardDataflowWorklist worklist(cfg, ac);
 | |
|   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
 | |
|   worklist.enqueueSuccessors(&cfg.getEntry());
 | |
|   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
 | |
|   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
 | |
|   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
 | |
| 
 | |
|   while (const CFGBlock *block = worklist.dequeue()) {
 | |
|     PBH.currentBlock = block->getBlockID();
 | |
| 
 | |
|     // Did the block change?
 | |
|     bool changed = runOnBlock(block, cfg, ac, vals,
 | |
|                               classification, wasAnalyzed, PBH);
 | |
|     ++stats.NumBlockVisits;
 | |
|     if (changed || !previouslyVisited[block->getBlockID()])
 | |
|       worklist.enqueueSuccessors(block);
 | |
|     previouslyVisited[block->getBlockID()] = true;
 | |
|   }
 | |
| 
 | |
|   if (!PBH.hadAnyUse)
 | |
|     return;
 | |
| 
 | |
|   // Run through the blocks one more time, and report uninitialized variables.
 | |
|   for (const auto *block : cfg)
 | |
|     if (PBH.hadUse[block->getBlockID()]) {
 | |
|       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
 | |
|       ++stats.NumBlockVisits;
 | |
|     }
 | |
| }
 | |
| 
 | |
| UninitVariablesHandler::~UninitVariablesHandler() = default;
 |