forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4831 lines
		
	
	
		
			185 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4831 lines
		
	
	
		
			185 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // These classes wrap the information about a call or function
 | |
| // definition used to handle ABI compliancy.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CGCall.h"
 | |
| #include "ABIInfo.h"
 | |
| #include "CGBlocks.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGCleanup.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "TargetInfo.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/Basic/CodeGenOptions.h"
 | |
| #include "clang/Basic/TargetBuiltins.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/CodeGen/CGFunctionInfo.h"
 | |
| #include "clang/CodeGen/SwiftCallingConv.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| /***/
 | |
| 
 | |
| unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
 | |
|   switch (CC) {
 | |
|   default: return llvm::CallingConv::C;
 | |
|   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
 | |
|   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
 | |
|   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
 | |
|   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
 | |
|   case CC_Win64: return llvm::CallingConv::Win64;
 | |
|   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
 | |
|   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
 | |
|   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
 | |
|   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
 | |
|   // TODO: Add support for __pascal to LLVM.
 | |
|   case CC_X86Pascal: return llvm::CallingConv::C;
 | |
|   // TODO: Add support for __vectorcall to LLVM.
 | |
|   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
 | |
|   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
 | |
|   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
 | |
|   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
 | |
|   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
 | |
|   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
 | |
|   case CC_Swift: return llvm::CallingConv::Swift;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
 | |
| /// qualification. Either or both of RD and MD may be null. A null RD indicates
 | |
| /// that there is no meaningful 'this' type, and a null MD can occur when
 | |
| /// calling a method pointer.
 | |
| CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
 | |
|                                          const CXXMethodDecl *MD) {
 | |
|   QualType RecTy;
 | |
|   if (RD)
 | |
|     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
 | |
|   else
 | |
|     RecTy = Context.VoidTy;
 | |
| 
 | |
|   if (MD)
 | |
|     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
 | |
|   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
 | |
| }
 | |
| 
 | |
| /// Returns the canonical formal type of the given C++ method.
 | |
| static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
 | |
|   return MD->getType()->getCanonicalTypeUnqualified()
 | |
|            .getAs<FunctionProtoType>();
 | |
| }
 | |
| 
 | |
| /// Returns the "extra-canonicalized" return type, which discards
 | |
| /// qualifiers on the return type.  Codegen doesn't care about them,
 | |
| /// and it makes ABI code a little easier to be able to assume that
 | |
| /// all parameter and return types are top-level unqualified.
 | |
| static CanQualType GetReturnType(QualType RetTy) {
 | |
|   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
 | |
| }
 | |
| 
 | |
| /// Arrange the argument and result information for a value of the given
 | |
| /// unprototyped freestanding function type.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
 | |
|   // When translating an unprototyped function type, always use a
 | |
|   // variadic type.
 | |
|   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
 | |
|                                  /*instanceMethod=*/false,
 | |
|                                  /*chainCall=*/false, None,
 | |
|                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
 | |
| }
 | |
| 
 | |
| static void addExtParameterInfosForCall(
 | |
|          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
 | |
|                                         const FunctionProtoType *proto,
 | |
|                                         unsigned prefixArgs,
 | |
|                                         unsigned totalArgs) {
 | |
|   assert(proto->hasExtParameterInfos());
 | |
|   assert(paramInfos.size() <= prefixArgs);
 | |
|   assert(proto->getNumParams() + prefixArgs <= totalArgs);
 | |
| 
 | |
|   paramInfos.reserve(totalArgs);
 | |
| 
 | |
|   // Add default infos for any prefix args that don't already have infos.
 | |
|   paramInfos.resize(prefixArgs);
 | |
| 
 | |
|   // Add infos for the prototype.
 | |
|   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
 | |
|     paramInfos.push_back(ParamInfo);
 | |
|     // pass_object_size params have no parameter info.
 | |
|     if (ParamInfo.hasPassObjectSize())
 | |
|       paramInfos.emplace_back();
 | |
|   }
 | |
| 
 | |
|   assert(paramInfos.size() <= totalArgs &&
 | |
|          "Did we forget to insert pass_object_size args?");
 | |
|   // Add default infos for the variadic and/or suffix arguments.
 | |
|   paramInfos.resize(totalArgs);
 | |
| }
 | |
| 
 | |
| /// Adds the formal parameters in FPT to the given prefix. If any parameter in
 | |
| /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
 | |
| static void appendParameterTypes(const CodeGenTypes &CGT,
 | |
|                                  SmallVectorImpl<CanQualType> &prefix,
 | |
|               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
 | |
|                                  CanQual<FunctionProtoType> FPT) {
 | |
|   // Fast path: don't touch param info if we don't need to.
 | |
|   if (!FPT->hasExtParameterInfos()) {
 | |
|     assert(paramInfos.empty() &&
 | |
|            "We have paramInfos, but the prototype doesn't?");
 | |
|     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned PrefixSize = prefix.size();
 | |
|   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
 | |
|   // parameters; the only thing that can change this is the presence of
 | |
|   // pass_object_size. So, we preallocate for the common case.
 | |
|   prefix.reserve(prefix.size() + FPT->getNumParams());
 | |
| 
 | |
|   auto ExtInfos = FPT->getExtParameterInfos();
 | |
|   assert(ExtInfos.size() == FPT->getNumParams());
 | |
|   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
 | |
|     prefix.push_back(FPT->getParamType(I));
 | |
|     if (ExtInfos[I].hasPassObjectSize())
 | |
|       prefix.push_back(CGT.getContext().getSizeType());
 | |
|   }
 | |
| 
 | |
|   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
 | |
|                               prefix.size());
 | |
| }
 | |
| 
 | |
| /// Arrange the LLVM function layout for a value of the given function
 | |
| /// type, on top of any implicit parameters already stored.
 | |
| static const CGFunctionInfo &
 | |
| arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
 | |
|                         SmallVectorImpl<CanQualType> &prefix,
 | |
|                         CanQual<FunctionProtoType> FTP) {
 | |
|   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
 | |
|   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
 | |
|   // FIXME: Kill copy.
 | |
|   appendParameterTypes(CGT, prefix, paramInfos, FTP);
 | |
|   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
 | |
| 
 | |
|   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
 | |
|                                      /*chainCall=*/false, prefix,
 | |
|                                      FTP->getExtInfo(), paramInfos,
 | |
|                                      Required);
 | |
| }
 | |
| 
 | |
| /// Arrange the argument and result information for a value of the
 | |
| /// given freestanding function type.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
 | |
|   SmallVector<CanQualType, 16> argTypes;
 | |
|   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
 | |
|                                    FTP);
 | |
| }
 | |
| 
 | |
| static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
 | |
|   // Set the appropriate calling convention for the Function.
 | |
|   if (D->hasAttr<StdCallAttr>())
 | |
|     return CC_X86StdCall;
 | |
| 
 | |
|   if (D->hasAttr<FastCallAttr>())
 | |
|     return CC_X86FastCall;
 | |
| 
 | |
|   if (D->hasAttr<RegCallAttr>())
 | |
|     return CC_X86RegCall;
 | |
| 
 | |
|   if (D->hasAttr<ThisCallAttr>())
 | |
|     return CC_X86ThisCall;
 | |
| 
 | |
|   if (D->hasAttr<VectorCallAttr>())
 | |
|     return CC_X86VectorCall;
 | |
| 
 | |
|   if (D->hasAttr<PascalAttr>())
 | |
|     return CC_X86Pascal;
 | |
| 
 | |
|   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
 | |
|     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
 | |
| 
 | |
|   if (D->hasAttr<AArch64VectorPcsAttr>())
 | |
|     return CC_AArch64VectorCall;
 | |
| 
 | |
|   if (D->hasAttr<IntelOclBiccAttr>())
 | |
|     return CC_IntelOclBicc;
 | |
| 
 | |
|   if (D->hasAttr<MSABIAttr>())
 | |
|     return IsWindows ? CC_C : CC_Win64;
 | |
| 
 | |
|   if (D->hasAttr<SysVABIAttr>())
 | |
|     return IsWindows ? CC_X86_64SysV : CC_C;
 | |
| 
 | |
|   if (D->hasAttr<PreserveMostAttr>())
 | |
|     return CC_PreserveMost;
 | |
| 
 | |
|   if (D->hasAttr<PreserveAllAttr>())
 | |
|     return CC_PreserveAll;
 | |
| 
 | |
|   return CC_C;
 | |
| }
 | |
| 
 | |
| /// Arrange the argument and result information for a call to an
 | |
| /// unknown C++ non-static member function of the given abstract type.
 | |
| /// (A null RD means we don't have any meaningful "this" argument type,
 | |
| ///  so fall back to a generic pointer type).
 | |
| /// The member function must be an ordinary function, i.e. not a
 | |
| /// constructor or destructor.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
 | |
|                                    const FunctionProtoType *FTP,
 | |
|                                    const CXXMethodDecl *MD) {
 | |
|   SmallVector<CanQualType, 16> argTypes;
 | |
| 
 | |
|   // Add the 'this' pointer.
 | |
|   argTypes.push_back(DeriveThisType(RD, MD));
 | |
| 
 | |
|   return ::arrangeLLVMFunctionInfo(
 | |
|       *this, true, argTypes,
 | |
|       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
 | |
| }
 | |
| 
 | |
| /// Set calling convention for CUDA/HIP kernel.
 | |
| static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
 | |
|                                            const FunctionDecl *FD) {
 | |
|   if (FD->hasAttr<CUDAGlobalAttr>()) {
 | |
|     const FunctionType *FT = FTy->getAs<FunctionType>();
 | |
|     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
 | |
|     FTy = FT->getCanonicalTypeUnqualified();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Arrange the argument and result information for a declaration or
 | |
| /// definition of the given C++ non-static member function.  The
 | |
| /// member function must be an ordinary function, i.e. not a
 | |
| /// constructor or destructor.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
 | |
|   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
 | |
|   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
 | |
| 
 | |
|   CanQualType FT = GetFormalType(MD).getAs<Type>();
 | |
|   setCUDAKernelCallingConvention(FT, CGM, MD);
 | |
|   auto prototype = FT.getAs<FunctionProtoType>();
 | |
| 
 | |
|   if (MD->isInstance()) {
 | |
|     // The abstract case is perfectly fine.
 | |
|     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
 | |
|     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
 | |
|   }
 | |
| 
 | |
|   return arrangeFreeFunctionType(prototype);
 | |
| }
 | |
| 
 | |
| bool CodeGenTypes::inheritingCtorHasParams(
 | |
|     const InheritedConstructor &Inherited, CXXCtorType Type) {
 | |
|   // Parameters are unnecessary if we're constructing a base class subobject
 | |
|   // and the inherited constructor lives in a virtual base.
 | |
|   return Type == Ctor_Complete ||
 | |
|          !Inherited.getShadowDecl()->constructsVirtualBase() ||
 | |
|          !Target.getCXXABI().hasConstructorVariants();
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
 | |
|   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
 | |
| 
 | |
|   SmallVector<CanQualType, 16> argTypes;
 | |
|   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
 | |
|   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
 | |
| 
 | |
|   bool PassParams = true;
 | |
| 
 | |
|   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
 | |
|     // A base class inheriting constructor doesn't get forwarded arguments
 | |
|     // needed to construct a virtual base (or base class thereof).
 | |
|     if (auto Inherited = CD->getInheritedConstructor())
 | |
|       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
 | |
|   }
 | |
| 
 | |
|   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
 | |
| 
 | |
|   // Add the formal parameters.
 | |
|   if (PassParams)
 | |
|     appendParameterTypes(*this, argTypes, paramInfos, FTP);
 | |
| 
 | |
|   CGCXXABI::AddedStructorArgs AddedArgs =
 | |
|       TheCXXABI.buildStructorSignature(GD, argTypes);
 | |
|   if (!paramInfos.empty()) {
 | |
|     // Note: prefix implies after the first param.
 | |
|     if (AddedArgs.Prefix)
 | |
|       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
 | |
|                         FunctionProtoType::ExtParameterInfo{});
 | |
|     if (AddedArgs.Suffix)
 | |
|       paramInfos.append(AddedArgs.Suffix,
 | |
|                         FunctionProtoType::ExtParameterInfo{});
 | |
|   }
 | |
| 
 | |
|   RequiredArgs required =
 | |
|       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
 | |
|                                       : RequiredArgs::All);
 | |
| 
 | |
|   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
 | |
|   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
 | |
|                                ? argTypes.front()
 | |
|                                : TheCXXABI.hasMostDerivedReturn(GD)
 | |
|                                      ? CGM.getContext().VoidPtrTy
 | |
|                                      : Context.VoidTy;
 | |
|   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
 | |
|                                  /*chainCall=*/false, argTypes, extInfo,
 | |
|                                  paramInfos, required);
 | |
| }
 | |
| 
 | |
| static SmallVector<CanQualType, 16>
 | |
| getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
 | |
|   SmallVector<CanQualType, 16> argTypes;
 | |
|   for (auto &arg : args)
 | |
|     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
 | |
|   return argTypes;
 | |
| }
 | |
| 
 | |
| static SmallVector<CanQualType, 16>
 | |
| getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
 | |
|   SmallVector<CanQualType, 16> argTypes;
 | |
|   for (auto &arg : args)
 | |
|     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
 | |
|   return argTypes;
 | |
| }
 | |
| 
 | |
| static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
 | |
| getExtParameterInfosForCall(const FunctionProtoType *proto,
 | |
|                             unsigned prefixArgs, unsigned totalArgs) {
 | |
|   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
 | |
|   if (proto->hasExtParameterInfos()) {
 | |
|     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /// Arrange a call to a C++ method, passing the given arguments.
 | |
| ///
 | |
| /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
 | |
| /// parameter.
 | |
| /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
 | |
| /// args.
 | |
| /// PassProtoArgs indicates whether `args` has args for the parameters in the
 | |
| /// given CXXConstructorDecl.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
 | |
|                                         const CXXConstructorDecl *D,
 | |
|                                         CXXCtorType CtorKind,
 | |
|                                         unsigned ExtraPrefixArgs,
 | |
|                                         unsigned ExtraSuffixArgs,
 | |
|                                         bool PassProtoArgs) {
 | |
|   // FIXME: Kill copy.
 | |
|   SmallVector<CanQualType, 16> ArgTypes;
 | |
|   for (const auto &Arg : args)
 | |
|     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
 | |
| 
 | |
|   // +1 for implicit this, which should always be args[0].
 | |
|   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
 | |
| 
 | |
|   CanQual<FunctionProtoType> FPT = GetFormalType(D);
 | |
|   RequiredArgs Required = PassProtoArgs
 | |
|                               ? RequiredArgs::forPrototypePlus(
 | |
|                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
 | |
|                               : RequiredArgs::All;
 | |
| 
 | |
|   GlobalDecl GD(D, CtorKind);
 | |
|   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
 | |
|                                ? ArgTypes.front()
 | |
|                                : TheCXXABI.hasMostDerivedReturn(GD)
 | |
|                                      ? CGM.getContext().VoidPtrTy
 | |
|                                      : Context.VoidTy;
 | |
| 
 | |
|   FunctionType::ExtInfo Info = FPT->getExtInfo();
 | |
|   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
 | |
|   // If the prototype args are elided, we should only have ABI-specific args,
 | |
|   // which never have param info.
 | |
|   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
 | |
|     // ABI-specific suffix arguments are treated the same as variadic arguments.
 | |
|     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
 | |
|                                 ArgTypes.size());
 | |
|   }
 | |
|   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
 | |
|                                  /*chainCall=*/false, ArgTypes, Info,
 | |
|                                  ParamInfos, Required);
 | |
| }
 | |
| 
 | |
| /// Arrange the argument and result information for the declaration or
 | |
| /// definition of the given function.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
 | |
|   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
 | |
|     if (MD->isInstance())
 | |
|       return arrangeCXXMethodDeclaration(MD);
 | |
| 
 | |
|   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
 | |
| 
 | |
|   assert(isa<FunctionType>(FTy));
 | |
|   setCUDAKernelCallingConvention(FTy, CGM, FD);
 | |
| 
 | |
|   // When declaring a function without a prototype, always use a
 | |
|   // non-variadic type.
 | |
|   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
 | |
|     return arrangeLLVMFunctionInfo(
 | |
|         noProto->getReturnType(), /*instanceMethod=*/false,
 | |
|         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
 | |
|   }
 | |
| 
 | |
|   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
 | |
| }
 | |
| 
 | |
| /// Arrange the argument and result information for the declaration or
 | |
| /// definition of an Objective-C method.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
 | |
|   // It happens that this is the same as a call with no optional
 | |
|   // arguments, except also using the formal 'self' type.
 | |
|   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
 | |
| }
 | |
| 
 | |
| /// Arrange the argument and result information for the function type
 | |
| /// through which to perform a send to the given Objective-C method,
 | |
| /// using the given receiver type.  The receiver type is not always
 | |
| /// the 'self' type of the method or even an Objective-C pointer type.
 | |
| /// This is *not* the right method for actually performing such a
 | |
| /// message send, due to the possibility of optional arguments.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
 | |
|                                               QualType receiverType) {
 | |
|   SmallVector<CanQualType, 16> argTys;
 | |
|   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
 | |
|   argTys.push_back(Context.getCanonicalParamType(receiverType));
 | |
|   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
 | |
|   // FIXME: Kill copy?
 | |
|   for (const auto *I : MD->parameters()) {
 | |
|     argTys.push_back(Context.getCanonicalParamType(I->getType()));
 | |
|     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
 | |
|         I->hasAttr<NoEscapeAttr>());
 | |
|     extParamInfos.push_back(extParamInfo);
 | |
|   }
 | |
| 
 | |
|   FunctionType::ExtInfo einfo;
 | |
|   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
 | |
|   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
 | |
| 
 | |
|   if (getContext().getLangOpts().ObjCAutoRefCount &&
 | |
|       MD->hasAttr<NSReturnsRetainedAttr>())
 | |
|     einfo = einfo.withProducesResult(true);
 | |
| 
 | |
|   RequiredArgs required =
 | |
|     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
 | |
| 
 | |
|   return arrangeLLVMFunctionInfo(
 | |
|       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
 | |
|       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
 | |
|                                                  const CallArgList &args) {
 | |
|   auto argTypes = getArgTypesForCall(Context, args);
 | |
|   FunctionType::ExtInfo einfo;
 | |
| 
 | |
|   return arrangeLLVMFunctionInfo(
 | |
|       GetReturnType(returnType), /*instanceMethod=*/false,
 | |
|       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
 | |
|   // FIXME: Do we need to handle ObjCMethodDecl?
 | |
|   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | |
| 
 | |
|   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
 | |
|       isa<CXXDestructorDecl>(GD.getDecl()))
 | |
|     return arrangeCXXStructorDeclaration(GD);
 | |
| 
 | |
|   return arrangeFunctionDeclaration(FD);
 | |
| }
 | |
| 
 | |
| /// Arrange a thunk that takes 'this' as the first parameter followed by
 | |
| /// varargs.  Return a void pointer, regardless of the actual return type.
 | |
| /// The body of the thunk will end in a musttail call to a function of the
 | |
| /// correct type, and the caller will bitcast the function to the correct
 | |
| /// prototype.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
 | |
|   assert(MD->isVirtual() && "only methods have thunks");
 | |
|   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
 | |
|   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
 | |
|   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
 | |
|                                  /*chainCall=*/false, ArgTys,
 | |
|                                  FTP->getExtInfo(), {}, RequiredArgs(1));
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
 | |
|                                    CXXCtorType CT) {
 | |
|   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
 | |
| 
 | |
|   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
 | |
|   SmallVector<CanQualType, 2> ArgTys;
 | |
|   const CXXRecordDecl *RD = CD->getParent();
 | |
|   ArgTys.push_back(DeriveThisType(RD, CD));
 | |
|   if (CT == Ctor_CopyingClosure)
 | |
|     ArgTys.push_back(*FTP->param_type_begin());
 | |
|   if (RD->getNumVBases() > 0)
 | |
|     ArgTys.push_back(Context.IntTy);
 | |
|   CallingConv CC = Context.getDefaultCallingConvention(
 | |
|       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
 | |
|   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
 | |
|                                  /*chainCall=*/false, ArgTys,
 | |
|                                  FunctionType::ExtInfo(CC), {},
 | |
|                                  RequiredArgs::All);
 | |
| }
 | |
| 
 | |
| /// Arrange a call as unto a free function, except possibly with an
 | |
| /// additional number of formal parameters considered required.
 | |
| static const CGFunctionInfo &
 | |
| arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
 | |
|                             CodeGenModule &CGM,
 | |
|                             const CallArgList &args,
 | |
|                             const FunctionType *fnType,
 | |
|                             unsigned numExtraRequiredArgs,
 | |
|                             bool chainCall) {
 | |
|   assert(args.size() >= numExtraRequiredArgs);
 | |
| 
 | |
|   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
 | |
| 
 | |
|   // In most cases, there are no optional arguments.
 | |
|   RequiredArgs required = RequiredArgs::All;
 | |
| 
 | |
|   // If we have a variadic prototype, the required arguments are the
 | |
|   // extra prefix plus the arguments in the prototype.
 | |
|   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
 | |
|     if (proto->isVariadic())
 | |
|       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
 | |
| 
 | |
|     if (proto->hasExtParameterInfos())
 | |
|       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
 | |
|                                   args.size());
 | |
| 
 | |
|   // If we don't have a prototype at all, but we're supposed to
 | |
|   // explicitly use the variadic convention for unprototyped calls,
 | |
|   // treat all of the arguments as required but preserve the nominal
 | |
|   // possibility of variadics.
 | |
|   } else if (CGM.getTargetCodeGenInfo()
 | |
|                 .isNoProtoCallVariadic(args,
 | |
|                                        cast<FunctionNoProtoType>(fnType))) {
 | |
|     required = RequiredArgs(args.size());
 | |
|   }
 | |
| 
 | |
|   // FIXME: Kill copy.
 | |
|   SmallVector<CanQualType, 16> argTypes;
 | |
|   for (const auto &arg : args)
 | |
|     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
 | |
|   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
 | |
|                                      /*instanceMethod=*/false, chainCall,
 | |
|                                      argTypes, fnType->getExtInfo(), paramInfos,
 | |
|                                      required);
 | |
| }
 | |
| 
 | |
| /// Figure out the rules for calling a function with the given formal
 | |
| /// type using the given arguments.  The arguments are necessary
 | |
| /// because the function might be unprototyped, in which case it's
 | |
| /// target-dependent in crazy ways.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
 | |
|                                       const FunctionType *fnType,
 | |
|                                       bool chainCall) {
 | |
|   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
 | |
|                                      chainCall ? 1 : 0, chainCall);
 | |
| }
 | |
| 
 | |
| /// A block function is essentially a free function with an
 | |
| /// extra implicit argument.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
 | |
|                                        const FunctionType *fnType) {
 | |
|   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
 | |
|                                      /*chainCall=*/false);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
 | |
|                                               const FunctionArgList ¶ms) {
 | |
|   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
 | |
|   auto argTypes = getArgTypesForDeclaration(Context, params);
 | |
| 
 | |
|   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
 | |
|                                  /*instanceMethod*/ false, /*chainCall*/ false,
 | |
|                                  argTypes, proto->getExtInfo(), paramInfos,
 | |
|                                  RequiredArgs::forPrototypePlus(proto, 1));
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
 | |
|                                          const CallArgList &args) {
 | |
|   // FIXME: Kill copy.
 | |
|   SmallVector<CanQualType, 16> argTypes;
 | |
|   for (const auto &Arg : args)
 | |
|     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
 | |
|   return arrangeLLVMFunctionInfo(
 | |
|       GetReturnType(resultType), /*instanceMethod=*/false,
 | |
|       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
 | |
|       /*paramInfos=*/ {}, RequiredArgs::All);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
 | |
|                                                 const FunctionArgList &args) {
 | |
|   auto argTypes = getArgTypesForDeclaration(Context, args);
 | |
| 
 | |
|   return arrangeLLVMFunctionInfo(
 | |
|       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
 | |
|       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
 | |
|                                               ArrayRef<CanQualType> argTypes) {
 | |
|   return arrangeLLVMFunctionInfo(
 | |
|       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
 | |
|       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
 | |
| }
 | |
| 
 | |
| /// Arrange a call to a C++ method, passing the given arguments.
 | |
| ///
 | |
| /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
 | |
| /// does not count `this`.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
 | |
|                                    const FunctionProtoType *proto,
 | |
|                                    RequiredArgs required,
 | |
|                                    unsigned numPrefixArgs) {
 | |
|   assert(numPrefixArgs + 1 <= args.size() &&
 | |
|          "Emitting a call with less args than the required prefix?");
 | |
|   // Add one to account for `this`. It's a bit awkward here, but we don't count
 | |
|   // `this` in similar places elsewhere.
 | |
|   auto paramInfos =
 | |
|     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
 | |
| 
 | |
|   // FIXME: Kill copy.
 | |
|   auto argTypes = getArgTypesForCall(Context, args);
 | |
| 
 | |
|   FunctionType::ExtInfo info = proto->getExtInfo();
 | |
|   return arrangeLLVMFunctionInfo(
 | |
|       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
 | |
|       /*chainCall=*/false, argTypes, info, paramInfos, required);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
 | |
|   return arrangeLLVMFunctionInfo(
 | |
|       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
 | |
|       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
 | |
|                           const CallArgList &args) {
 | |
|   assert(signature.arg_size() <= args.size());
 | |
|   if (signature.arg_size() == args.size())
 | |
|     return signature;
 | |
| 
 | |
|   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
 | |
|   auto sigParamInfos = signature.getExtParameterInfos();
 | |
|   if (!sigParamInfos.empty()) {
 | |
|     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
 | |
|     paramInfos.resize(args.size());
 | |
|   }
 | |
| 
 | |
|   auto argTypes = getArgTypesForCall(Context, args);
 | |
| 
 | |
|   assert(signature.getRequiredArgs().allowsOptionalArgs());
 | |
|   return arrangeLLVMFunctionInfo(signature.getReturnType(),
 | |
|                                  signature.isInstanceMethod(),
 | |
|                                  signature.isChainCall(),
 | |
|                                  argTypes,
 | |
|                                  signature.getExtInfo(),
 | |
|                                  paramInfos,
 | |
|                                  signature.getRequiredArgs());
 | |
| }
 | |
| 
 | |
| namespace clang {
 | |
| namespace CodeGen {
 | |
| void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
 | |
| }
 | |
| }
 | |
| 
 | |
| /// Arrange the argument and result information for an abstract value
 | |
| /// of a given function type.  This is the method which all of the
 | |
| /// above functions ultimately defer to.
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
 | |
|                                       bool instanceMethod,
 | |
|                                       bool chainCall,
 | |
|                                       ArrayRef<CanQualType> argTypes,
 | |
|                                       FunctionType::ExtInfo info,
 | |
|                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
 | |
|                                       RequiredArgs required) {
 | |
|   assert(llvm::all_of(argTypes,
 | |
|                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
 | |
| 
 | |
|   // Lookup or create unique function info.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
 | |
|                           required, resultType, argTypes);
 | |
| 
 | |
|   void *insertPos = nullptr;
 | |
|   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
 | |
|   if (FI)
 | |
|     return *FI;
 | |
| 
 | |
|   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
 | |
| 
 | |
|   // Construct the function info.  We co-allocate the ArgInfos.
 | |
|   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
 | |
|                               paramInfos, resultType, argTypes, required);
 | |
|   FunctionInfos.InsertNode(FI, insertPos);
 | |
| 
 | |
|   bool inserted = FunctionsBeingProcessed.insert(FI).second;
 | |
|   (void)inserted;
 | |
|   assert(inserted && "Recursively being processed?");
 | |
| 
 | |
|   // Compute ABI information.
 | |
|   if (CC == llvm::CallingConv::SPIR_KERNEL) {
 | |
|     // Force target independent argument handling for the host visible
 | |
|     // kernel functions.
 | |
|     computeSPIRKernelABIInfo(CGM, *FI);
 | |
|   } else if (info.getCC() == CC_Swift) {
 | |
|     swiftcall::computeABIInfo(CGM, *FI);
 | |
|   } else {
 | |
|     getABIInfo().computeInfo(*FI);
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the computed argument and return value info.  If any of
 | |
|   // them are direct or extend without a specified coerce type, specify the
 | |
|   // default now.
 | |
|   ABIArgInfo &retInfo = FI->getReturnInfo();
 | |
|   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
 | |
|     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
 | |
| 
 | |
|   for (auto &I : FI->arguments())
 | |
|     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
 | |
|       I.info.setCoerceToType(ConvertType(I.type));
 | |
| 
 | |
|   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
 | |
|   assert(erased && "Not in set?");
 | |
| 
 | |
|   return *FI;
 | |
| }
 | |
| 
 | |
| CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
 | |
|                                        bool instanceMethod,
 | |
|                                        bool chainCall,
 | |
|                                        const FunctionType::ExtInfo &info,
 | |
|                                        ArrayRef<ExtParameterInfo> paramInfos,
 | |
|                                        CanQualType resultType,
 | |
|                                        ArrayRef<CanQualType> argTypes,
 | |
|                                        RequiredArgs required) {
 | |
|   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
 | |
|   assert(!required.allowsOptionalArgs() ||
 | |
|          required.getNumRequiredArgs() <= argTypes.size());
 | |
| 
 | |
|   void *buffer =
 | |
|     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
 | |
|                                   argTypes.size() + 1, paramInfos.size()));
 | |
| 
 | |
|   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
 | |
|   FI->CallingConvention = llvmCC;
 | |
|   FI->EffectiveCallingConvention = llvmCC;
 | |
|   FI->ASTCallingConvention = info.getCC();
 | |
|   FI->InstanceMethod = instanceMethod;
 | |
|   FI->ChainCall = chainCall;
 | |
|   FI->NoReturn = info.getNoReturn();
 | |
|   FI->ReturnsRetained = info.getProducesResult();
 | |
|   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
 | |
|   FI->NoCfCheck = info.getNoCfCheck();
 | |
|   FI->Required = required;
 | |
|   FI->HasRegParm = info.getHasRegParm();
 | |
|   FI->RegParm = info.getRegParm();
 | |
|   FI->ArgStruct = nullptr;
 | |
|   FI->ArgStructAlign = 0;
 | |
|   FI->NumArgs = argTypes.size();
 | |
|   FI->HasExtParameterInfos = !paramInfos.empty();
 | |
|   FI->getArgsBuffer()[0].type = resultType;
 | |
|   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
 | |
|     FI->getArgsBuffer()[i + 1].type = argTypes[i];
 | |
|   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
 | |
|     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
 | |
|   return FI;
 | |
| }
 | |
| 
 | |
| /***/
 | |
| 
 | |
| namespace {
 | |
| // ABIArgInfo::Expand implementation.
 | |
| 
 | |
| // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
 | |
| struct TypeExpansion {
 | |
|   enum TypeExpansionKind {
 | |
|     // Elements of constant arrays are expanded recursively.
 | |
|     TEK_ConstantArray,
 | |
|     // Record fields are expanded recursively (but if record is a union, only
 | |
|     // the field with the largest size is expanded).
 | |
|     TEK_Record,
 | |
|     // For complex types, real and imaginary parts are expanded recursively.
 | |
|     TEK_Complex,
 | |
|     // All other types are not expandable.
 | |
|     TEK_None
 | |
|   };
 | |
| 
 | |
|   const TypeExpansionKind Kind;
 | |
| 
 | |
|   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
 | |
|   virtual ~TypeExpansion() {}
 | |
| };
 | |
| 
 | |
| struct ConstantArrayExpansion : TypeExpansion {
 | |
|   QualType EltTy;
 | |
|   uint64_t NumElts;
 | |
| 
 | |
|   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
 | |
|       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
 | |
|   static bool classof(const TypeExpansion *TE) {
 | |
|     return TE->Kind == TEK_ConstantArray;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct RecordExpansion : TypeExpansion {
 | |
|   SmallVector<const CXXBaseSpecifier *, 1> Bases;
 | |
| 
 | |
|   SmallVector<const FieldDecl *, 1> Fields;
 | |
| 
 | |
|   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
 | |
|                   SmallVector<const FieldDecl *, 1> &&Fields)
 | |
|       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
 | |
|         Fields(std::move(Fields)) {}
 | |
|   static bool classof(const TypeExpansion *TE) {
 | |
|     return TE->Kind == TEK_Record;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct ComplexExpansion : TypeExpansion {
 | |
|   QualType EltTy;
 | |
| 
 | |
|   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
 | |
|   static bool classof(const TypeExpansion *TE) {
 | |
|     return TE->Kind == TEK_Complex;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct NoExpansion : TypeExpansion {
 | |
|   NoExpansion() : TypeExpansion(TEK_None) {}
 | |
|   static bool classof(const TypeExpansion *TE) {
 | |
|     return TE->Kind == TEK_None;
 | |
|   }
 | |
| };
 | |
| }  // namespace
 | |
| 
 | |
| static std::unique_ptr<TypeExpansion>
 | |
| getTypeExpansion(QualType Ty, const ASTContext &Context) {
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
 | |
|     return std::make_unique<ConstantArrayExpansion>(
 | |
|         AT->getElementType(), AT->getSize().getZExtValue());
 | |
|   }
 | |
|   if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     SmallVector<const CXXBaseSpecifier *, 1> Bases;
 | |
|     SmallVector<const FieldDecl *, 1> Fields;
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     assert(!RD->hasFlexibleArrayMember() &&
 | |
|            "Cannot expand structure with flexible array.");
 | |
|     if (RD->isUnion()) {
 | |
|       // Unions can be here only in degenerative cases - all the fields are same
 | |
|       // after flattening. Thus we have to use the "largest" field.
 | |
|       const FieldDecl *LargestFD = nullptr;
 | |
|       CharUnits UnionSize = CharUnits::Zero();
 | |
| 
 | |
|       for (const auto *FD : RD->fields()) {
 | |
|         if (FD->isZeroLengthBitField(Context))
 | |
|           continue;
 | |
|         assert(!FD->isBitField() &&
 | |
|                "Cannot expand structure with bit-field members.");
 | |
|         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
 | |
|         if (UnionSize < FieldSize) {
 | |
|           UnionSize = FieldSize;
 | |
|           LargestFD = FD;
 | |
|         }
 | |
|       }
 | |
|       if (LargestFD)
 | |
|         Fields.push_back(LargestFD);
 | |
|     } else {
 | |
|       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|         assert(!CXXRD->isDynamicClass() &&
 | |
|                "cannot expand vtable pointers in dynamic classes");
 | |
|         for (const CXXBaseSpecifier &BS : CXXRD->bases())
 | |
|           Bases.push_back(&BS);
 | |
|       }
 | |
| 
 | |
|       for (const auto *FD : RD->fields()) {
 | |
|         if (FD->isZeroLengthBitField(Context))
 | |
|           continue;
 | |
|         assert(!FD->isBitField() &&
 | |
|                "Cannot expand structure with bit-field members.");
 | |
|         Fields.push_back(FD);
 | |
|       }
 | |
|     }
 | |
|     return std::make_unique<RecordExpansion>(std::move(Bases),
 | |
|                                               std::move(Fields));
 | |
|   }
 | |
|   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
 | |
|     return std::make_unique<ComplexExpansion>(CT->getElementType());
 | |
|   }
 | |
|   return std::make_unique<NoExpansion>();
 | |
| }
 | |
| 
 | |
| static int getExpansionSize(QualType Ty, const ASTContext &Context) {
 | |
|   auto Exp = getTypeExpansion(Ty, Context);
 | |
|   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
 | |
|     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
 | |
|   }
 | |
|   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
 | |
|     int Res = 0;
 | |
|     for (auto BS : RExp->Bases)
 | |
|       Res += getExpansionSize(BS->getType(), Context);
 | |
|     for (auto FD : RExp->Fields)
 | |
|       Res += getExpansionSize(FD->getType(), Context);
 | |
|     return Res;
 | |
|   }
 | |
|   if (isa<ComplexExpansion>(Exp.get()))
 | |
|     return 2;
 | |
|   assert(isa<NoExpansion>(Exp.get()));
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| void
 | |
| CodeGenTypes::getExpandedTypes(QualType Ty,
 | |
|                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
 | |
|   auto Exp = getTypeExpansion(Ty, Context);
 | |
|   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
 | |
|     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
 | |
|       getExpandedTypes(CAExp->EltTy, TI);
 | |
|     }
 | |
|   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
 | |
|     for (auto BS : RExp->Bases)
 | |
|       getExpandedTypes(BS->getType(), TI);
 | |
|     for (auto FD : RExp->Fields)
 | |
|       getExpandedTypes(FD->getType(), TI);
 | |
|   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
 | |
|     llvm::Type *EltTy = ConvertType(CExp->EltTy);
 | |
|     *TI++ = EltTy;
 | |
|     *TI++ = EltTy;
 | |
|   } else {
 | |
|     assert(isa<NoExpansion>(Exp.get()));
 | |
|     *TI++ = ConvertType(Ty);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void forConstantArrayExpansion(CodeGenFunction &CGF,
 | |
|                                       ConstantArrayExpansion *CAE,
 | |
|                                       Address BaseAddr,
 | |
|                                       llvm::function_ref<void(Address)> Fn) {
 | |
|   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
 | |
|   CharUnits EltAlign =
 | |
|     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
 | |
| 
 | |
|   for (int i = 0, n = CAE->NumElts; i < n; i++) {
 | |
|     llvm::Value *EltAddr =
 | |
|       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
 | |
|     Fn(Address(EltAddr, EltAlign));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::ExpandTypeFromArgs(
 | |
|     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
 | |
|   assert(LV.isSimple() &&
 | |
|          "Unexpected non-simple lvalue during struct expansion.");
 | |
| 
 | |
|   auto Exp = getTypeExpansion(Ty, getContext());
 | |
|   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
 | |
|     forConstantArrayExpansion(
 | |
|         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
 | |
|           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
 | |
|           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
 | |
|         });
 | |
|   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
 | |
|     Address This = LV.getAddress(*this);
 | |
|     for (const CXXBaseSpecifier *BS : RExp->Bases) {
 | |
|       // Perform a single step derived-to-base conversion.
 | |
|       Address Base =
 | |
|           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
 | |
|                                 /*NullCheckValue=*/false, SourceLocation());
 | |
|       LValue SubLV = MakeAddrLValue(Base, BS->getType());
 | |
| 
 | |
|       // Recurse onto bases.
 | |
|       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
 | |
|     }
 | |
|     for (auto FD : RExp->Fields) {
 | |
|       // FIXME: What are the right qualifiers here?
 | |
|       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
 | |
|       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
 | |
|     }
 | |
|   } else if (isa<ComplexExpansion>(Exp.get())) {
 | |
|     auto realValue = *AI++;
 | |
|     auto imagValue = *AI++;
 | |
|     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
 | |
|   } else {
 | |
|     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
 | |
|     // primitive store.
 | |
|     assert(isa<NoExpansion>(Exp.get()));
 | |
|     if (LV.isBitField())
 | |
|       EmitStoreThroughLValue(RValue::get(*AI++), LV);
 | |
|     else
 | |
|       EmitStoreOfScalar(*AI++, LV);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::ExpandTypeToArgs(
 | |
|     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
 | |
|     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
 | |
|   auto Exp = getTypeExpansion(Ty, getContext());
 | |
|   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
 | |
|     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
 | |
|                                    : Arg.getKnownRValue().getAggregateAddress();
 | |
|     forConstantArrayExpansion(
 | |
|         *this, CAExp, Addr, [&](Address EltAddr) {
 | |
|           CallArg EltArg = CallArg(
 | |
|               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
 | |
|               CAExp->EltTy);
 | |
|           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
 | |
|                            IRCallArgPos);
 | |
|         });
 | |
|   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
 | |
|     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
 | |
|                                    : Arg.getKnownRValue().getAggregateAddress();
 | |
|     for (const CXXBaseSpecifier *BS : RExp->Bases) {
 | |
|       // Perform a single step derived-to-base conversion.
 | |
|       Address Base =
 | |
|           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
 | |
|                                 /*NullCheckValue=*/false, SourceLocation());
 | |
|       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
 | |
| 
 | |
|       // Recurse onto bases.
 | |
|       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
 | |
|                        IRCallArgPos);
 | |
|     }
 | |
| 
 | |
|     LValue LV = MakeAddrLValue(This, Ty);
 | |
|     for (auto FD : RExp->Fields) {
 | |
|       CallArg FldArg =
 | |
|           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
 | |
|       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
 | |
|                        IRCallArgPos);
 | |
|     }
 | |
|   } else if (isa<ComplexExpansion>(Exp.get())) {
 | |
|     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
 | |
|     IRCallArgs[IRCallArgPos++] = CV.first;
 | |
|     IRCallArgs[IRCallArgPos++] = CV.second;
 | |
|   } else {
 | |
|     assert(isa<NoExpansion>(Exp.get()));
 | |
|     auto RV = Arg.getKnownRValue();
 | |
|     assert(RV.isScalar() &&
 | |
|            "Unexpected non-scalar rvalue during struct expansion.");
 | |
| 
 | |
|     // Insert a bitcast as needed.
 | |
|     llvm::Value *V = RV.getScalarVal();
 | |
|     if (IRCallArgPos < IRFuncTy->getNumParams() &&
 | |
|         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
 | |
|       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
 | |
| 
 | |
|     IRCallArgs[IRCallArgPos++] = V;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create a temporary allocation for the purposes of coercion.
 | |
| static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
 | |
|                                            CharUnits MinAlign) {
 | |
|   // Don't use an alignment that's worse than what LLVM would prefer.
 | |
|   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
 | |
|   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
 | |
| 
 | |
|   return CGF.CreateTempAlloca(Ty, Align);
 | |
| }
 | |
| 
 | |
| /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
 | |
| /// accessing some number of bytes out of it, try to gep into the struct to get
 | |
| /// at its inner goodness.  Dive as deep as possible without entering an element
 | |
| /// with an in-memory size smaller than DstSize.
 | |
| static Address
 | |
| EnterStructPointerForCoercedAccess(Address SrcPtr,
 | |
|                                    llvm::StructType *SrcSTy,
 | |
|                                    uint64_t DstSize, CodeGenFunction &CGF) {
 | |
|   // We can't dive into a zero-element struct.
 | |
|   if (SrcSTy->getNumElements() == 0) return SrcPtr;
 | |
| 
 | |
|   llvm::Type *FirstElt = SrcSTy->getElementType(0);
 | |
| 
 | |
|   // If the first elt is at least as large as what we're looking for, or if the
 | |
|   // first element is the same size as the whole struct, we can enter it. The
 | |
|   // comparison must be made on the store size and not the alloca size. Using
 | |
|   // the alloca size may overstate the size of the load.
 | |
|   uint64_t FirstEltSize =
 | |
|     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
 | |
|   if (FirstEltSize < DstSize &&
 | |
|       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
 | |
|     return SrcPtr;
 | |
| 
 | |
|   // GEP into the first element.
 | |
|   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
 | |
| 
 | |
|   // If the first element is a struct, recurse.
 | |
|   llvm::Type *SrcTy = SrcPtr.getElementType();
 | |
|   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
 | |
|     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
 | |
| 
 | |
|   return SrcPtr;
 | |
| }
 | |
| 
 | |
| /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
 | |
| /// are either integers or pointers.  This does a truncation of the value if it
 | |
| /// is too large or a zero extension if it is too small.
 | |
| ///
 | |
| /// This behaves as if the value were coerced through memory, so on big-endian
 | |
| /// targets the high bits are preserved in a truncation, while little-endian
 | |
| /// targets preserve the low bits.
 | |
| static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
 | |
|                                              llvm::Type *Ty,
 | |
|                                              CodeGenFunction &CGF) {
 | |
|   if (Val->getType() == Ty)
 | |
|     return Val;
 | |
| 
 | |
|   if (isa<llvm::PointerType>(Val->getType())) {
 | |
|     // If this is Pointer->Pointer avoid conversion to and from int.
 | |
|     if (isa<llvm::PointerType>(Ty))
 | |
|       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
 | |
| 
 | |
|     // Convert the pointer to an integer so we can play with its width.
 | |
|     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
 | |
|   }
 | |
| 
 | |
|   llvm::Type *DestIntTy = Ty;
 | |
|   if (isa<llvm::PointerType>(DestIntTy))
 | |
|     DestIntTy = CGF.IntPtrTy;
 | |
| 
 | |
|   if (Val->getType() != DestIntTy) {
 | |
|     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
 | |
|     if (DL.isBigEndian()) {
 | |
|       // Preserve the high bits on big-endian targets.
 | |
|       // That is what memory coercion does.
 | |
|       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
 | |
|       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
 | |
| 
 | |
|       if (SrcSize > DstSize) {
 | |
|         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
 | |
|         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
 | |
|       } else {
 | |
|         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
 | |
|         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
 | |
|       }
 | |
|     } else {
 | |
|       // Little-endian targets preserve the low bits. No shifts required.
 | |
|       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<llvm::PointerType>(Ty))
 | |
|     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
 | |
| /// a pointer to an object of type \arg Ty, known to be aligned to
 | |
| /// \arg SrcAlign bytes.
 | |
| ///
 | |
| /// This safely handles the case when the src type is smaller than the
 | |
| /// destination type; in this situation the values of bits which not
 | |
| /// present in the src are undefined.
 | |
| static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
 | |
|                                       CodeGenFunction &CGF) {
 | |
|   llvm::Type *SrcTy = Src.getElementType();
 | |
| 
 | |
|   // If SrcTy and Ty are the same, just do a load.
 | |
|   if (SrcTy == Ty)
 | |
|     return CGF.Builder.CreateLoad(Src);
 | |
| 
 | |
|   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
 | |
| 
 | |
|   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
 | |
|     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
 | |
|     SrcTy = Src.getType()->getElementType();
 | |
|   }
 | |
| 
 | |
|   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
 | |
| 
 | |
|   // If the source and destination are integer or pointer types, just do an
 | |
|   // extension or truncation to the desired type.
 | |
|   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
 | |
|       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
 | |
|     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
 | |
|     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
 | |
|   }
 | |
| 
 | |
|   // If load is legal, just bitcast the src pointer.
 | |
|   if (SrcSize >= DstSize) {
 | |
|     // Generally SrcSize is never greater than DstSize, since this means we are
 | |
|     // losing bits. However, this can happen in cases where the structure has
 | |
|     // additional padding, for example due to a user specified alignment.
 | |
|     //
 | |
|     // FIXME: Assert that we aren't truncating non-padding bits when have access
 | |
|     // to that information.
 | |
|     Src = CGF.Builder.CreateBitCast(Src,
 | |
|                                     Ty->getPointerTo(Src.getAddressSpace()));
 | |
|     return CGF.Builder.CreateLoad(Src);
 | |
|   }
 | |
| 
 | |
|   // Otherwise do coercion through memory. This is stupid, but simple.
 | |
|   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
 | |
|   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
 | |
|   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
 | |
|   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
 | |
|       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
 | |
|       false);
 | |
|   return CGF.Builder.CreateLoad(Tmp);
 | |
| }
 | |
| 
 | |
| // Function to store a first-class aggregate into memory.  We prefer to
 | |
| // store the elements rather than the aggregate to be more friendly to
 | |
| // fast-isel.
 | |
| // FIXME: Do we need to recurse here?
 | |
| static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
 | |
|                           Address Dest, bool DestIsVolatile) {
 | |
|   // Prefer scalar stores to first-class aggregate stores.
 | |
|   if (llvm::StructType *STy =
 | |
|         dyn_cast<llvm::StructType>(Val->getType())) {
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
 | |
|       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
 | |
|       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
 | |
|     }
 | |
|   } else {
 | |
|     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
 | |
| /// where the source and destination may have different types.  The
 | |
| /// destination is known to be aligned to \arg DstAlign bytes.
 | |
| ///
 | |
| /// This safely handles the case when the src type is larger than the
 | |
| /// destination type; the upper bits of the src will be lost.
 | |
| static void CreateCoercedStore(llvm::Value *Src,
 | |
|                                Address Dst,
 | |
|                                bool DstIsVolatile,
 | |
|                                CodeGenFunction &CGF) {
 | |
|   llvm::Type *SrcTy = Src->getType();
 | |
|   llvm::Type *DstTy = Dst.getType()->getElementType();
 | |
|   if (SrcTy == DstTy) {
 | |
|     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
 | |
| 
 | |
|   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
 | |
|     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
 | |
|     DstTy = Dst.getType()->getElementType();
 | |
|   }
 | |
| 
 | |
|   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
 | |
|   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
 | |
|   if (SrcPtrTy && DstPtrTy &&
 | |
|       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
 | |
|     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
 | |
|     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the source and destination are integer or pointer types, just do an
 | |
|   // extension or truncation to the desired type.
 | |
|   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
 | |
|       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
 | |
|     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
 | |
|     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
 | |
| 
 | |
|   // If store is legal, just bitcast the src pointer.
 | |
|   if (SrcSize <= DstSize) {
 | |
|     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
 | |
|     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
 | |
|   } else {
 | |
|     // Otherwise do coercion through memory. This is stupid, but
 | |
|     // simple.
 | |
| 
 | |
|     // Generally SrcSize is never greater than DstSize, since this means we are
 | |
|     // losing bits. However, this can happen in cases where the structure has
 | |
|     // additional padding, for example due to a user specified alignment.
 | |
|     //
 | |
|     // FIXME: Assert that we aren't truncating non-padding bits when have access
 | |
|     // to that information.
 | |
|     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
 | |
|     CGF.Builder.CreateStore(Src, Tmp);
 | |
|     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
 | |
|     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
 | |
|     CGF.Builder.CreateMemCpy(DstCasted, Casted,
 | |
|         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
 | |
|         false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
 | |
|                                    const ABIArgInfo &info) {
 | |
|   if (unsigned offset = info.getDirectOffset()) {
 | |
|     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
 | |
|     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
 | |
|                                              CharUnits::fromQuantity(offset));
 | |
|     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
 | |
|   }
 | |
|   return addr;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Encapsulates information about the way function arguments from
 | |
| /// CGFunctionInfo should be passed to actual LLVM IR function.
 | |
| class ClangToLLVMArgMapping {
 | |
|   static const unsigned InvalidIndex = ~0U;
 | |
|   unsigned InallocaArgNo;
 | |
|   unsigned SRetArgNo;
 | |
|   unsigned TotalIRArgs;
 | |
| 
 | |
|   /// Arguments of LLVM IR function corresponding to single Clang argument.
 | |
|   struct IRArgs {
 | |
|     unsigned PaddingArgIndex;
 | |
|     // Argument is expanded to IR arguments at positions
 | |
|     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
 | |
|     unsigned FirstArgIndex;
 | |
|     unsigned NumberOfArgs;
 | |
| 
 | |
|     IRArgs()
 | |
|         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
 | |
|           NumberOfArgs(0) {}
 | |
|   };
 | |
| 
 | |
|   SmallVector<IRArgs, 8> ArgInfo;
 | |
| 
 | |
| public:
 | |
|   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
 | |
|                         bool OnlyRequiredArgs = false)
 | |
|       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
 | |
|         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
 | |
|     construct(Context, FI, OnlyRequiredArgs);
 | |
|   }
 | |
| 
 | |
|   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
 | |
|   unsigned getInallocaArgNo() const {
 | |
|     assert(hasInallocaArg());
 | |
|     return InallocaArgNo;
 | |
|   }
 | |
| 
 | |
|   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
 | |
|   unsigned getSRetArgNo() const {
 | |
|     assert(hasSRetArg());
 | |
|     return SRetArgNo;
 | |
|   }
 | |
| 
 | |
|   unsigned totalIRArgs() const { return TotalIRArgs; }
 | |
| 
 | |
|   bool hasPaddingArg(unsigned ArgNo) const {
 | |
|     assert(ArgNo < ArgInfo.size());
 | |
|     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
 | |
|   }
 | |
|   unsigned getPaddingArgNo(unsigned ArgNo) const {
 | |
|     assert(hasPaddingArg(ArgNo));
 | |
|     return ArgInfo[ArgNo].PaddingArgIndex;
 | |
|   }
 | |
| 
 | |
|   /// Returns index of first IR argument corresponding to ArgNo, and their
 | |
|   /// quantity.
 | |
|   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
 | |
|     assert(ArgNo < ArgInfo.size());
 | |
|     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
 | |
|                           ArgInfo[ArgNo].NumberOfArgs);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
 | |
|                  bool OnlyRequiredArgs);
 | |
| };
 | |
| 
 | |
| void ClangToLLVMArgMapping::construct(const ASTContext &Context,
 | |
|                                       const CGFunctionInfo &FI,
 | |
|                                       bool OnlyRequiredArgs) {
 | |
|   unsigned IRArgNo = 0;
 | |
|   bool SwapThisWithSRet = false;
 | |
|   const ABIArgInfo &RetAI = FI.getReturnInfo();
 | |
| 
 | |
|   if (RetAI.getKind() == ABIArgInfo::Indirect) {
 | |
|     SwapThisWithSRet = RetAI.isSRetAfterThis();
 | |
|     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
 | |
|   }
 | |
| 
 | |
|   unsigned ArgNo = 0;
 | |
|   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
 | |
|   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
 | |
|        ++I, ++ArgNo) {
 | |
|     assert(I != FI.arg_end());
 | |
|     QualType ArgType = I->type;
 | |
|     const ABIArgInfo &AI = I->info;
 | |
|     // Collect data about IR arguments corresponding to Clang argument ArgNo.
 | |
|     auto &IRArgs = ArgInfo[ArgNo];
 | |
| 
 | |
|     if (AI.getPaddingType())
 | |
|       IRArgs.PaddingArgIndex = IRArgNo++;
 | |
| 
 | |
|     switch (AI.getKind()) {
 | |
|     case ABIArgInfo::Extend:
 | |
|     case ABIArgInfo::Direct: {
 | |
|       // FIXME: handle sseregparm someday...
 | |
|       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
 | |
|       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
 | |
|         IRArgs.NumberOfArgs = STy->getNumElements();
 | |
|       } else {
 | |
|         IRArgs.NumberOfArgs = 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case ABIArgInfo::Indirect:
 | |
|       IRArgs.NumberOfArgs = 1;
 | |
|       break;
 | |
|     case ABIArgInfo::Ignore:
 | |
|     case ABIArgInfo::InAlloca:
 | |
|       // ignore and inalloca doesn't have matching LLVM parameters.
 | |
|       IRArgs.NumberOfArgs = 0;
 | |
|       break;
 | |
|     case ABIArgInfo::CoerceAndExpand:
 | |
|       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
 | |
|       break;
 | |
|     case ABIArgInfo::Expand:
 | |
|       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (IRArgs.NumberOfArgs > 0) {
 | |
|       IRArgs.FirstArgIndex = IRArgNo;
 | |
|       IRArgNo += IRArgs.NumberOfArgs;
 | |
|     }
 | |
| 
 | |
|     // Skip over the sret parameter when it comes second.  We already handled it
 | |
|     // above.
 | |
|     if (IRArgNo == 1 && SwapThisWithSRet)
 | |
|       IRArgNo++;
 | |
|   }
 | |
|   assert(ArgNo == ArgInfo.size());
 | |
| 
 | |
|   if (FI.usesInAlloca())
 | |
|     InallocaArgNo = IRArgNo++;
 | |
| 
 | |
|   TotalIRArgs = IRArgNo;
 | |
| }
 | |
| }  // namespace
 | |
| 
 | |
| /***/
 | |
| 
 | |
| bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
 | |
|   const auto &RI = FI.getReturnInfo();
 | |
|   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
 | |
| }
 | |
| 
 | |
| bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
 | |
|   return ReturnTypeUsesSRet(FI) &&
 | |
|          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
 | |
| }
 | |
| 
 | |
| bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
 | |
|   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
 | |
|     switch (BT->getKind()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case BuiltinType::Float:
 | |
|       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
 | |
|     case BuiltinType::Double:
 | |
|       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
 | |
|     case BuiltinType::LongDouble:
 | |
|       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
 | |
|   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
 | |
|     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
 | |
|       if (BT->getKind() == BuiltinType::LongDouble)
 | |
|         return getTarget().useObjCFP2RetForComplexLongDouble();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
 | |
|   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
 | |
|   return GetFunctionType(FI);
 | |
| }
 | |
| 
 | |
| llvm::FunctionType *
 | |
| CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
 | |
| 
 | |
|   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
 | |
|   (void)Inserted;
 | |
|   assert(Inserted && "Recursively being processed?");
 | |
| 
 | |
|   llvm::Type *resultType = nullptr;
 | |
|   const ABIArgInfo &retAI = FI.getReturnInfo();
 | |
|   switch (retAI.getKind()) {
 | |
|   case ABIArgInfo::Expand:
 | |
|     llvm_unreachable("Invalid ABI kind for return argument");
 | |
| 
 | |
|   case ABIArgInfo::Extend:
 | |
|   case ABIArgInfo::Direct:
 | |
|     resultType = retAI.getCoerceToType();
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::InAlloca:
 | |
|     if (retAI.getInAllocaSRet()) {
 | |
|       // sret things on win32 aren't void, they return the sret pointer.
 | |
|       QualType ret = FI.getReturnType();
 | |
|       llvm::Type *ty = ConvertType(ret);
 | |
|       unsigned addressSpace = Context.getTargetAddressSpace(ret);
 | |
|       resultType = llvm::PointerType::get(ty, addressSpace);
 | |
|     } else {
 | |
|       resultType = llvm::Type::getVoidTy(getLLVMContext());
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::Indirect:
 | |
|   case ABIArgInfo::Ignore:
 | |
|     resultType = llvm::Type::getVoidTy(getLLVMContext());
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::CoerceAndExpand:
 | |
|     resultType = retAI.getUnpaddedCoerceAndExpandType();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
 | |
|   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
 | |
| 
 | |
|   // Add type for sret argument.
 | |
|   if (IRFunctionArgs.hasSRetArg()) {
 | |
|     QualType Ret = FI.getReturnType();
 | |
|     llvm::Type *Ty = ConvertType(Ret);
 | |
|     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
 | |
|     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
 | |
|         llvm::PointerType::get(Ty, AddressSpace);
 | |
|   }
 | |
| 
 | |
|   // Add type for inalloca argument.
 | |
|   if (IRFunctionArgs.hasInallocaArg()) {
 | |
|     auto ArgStruct = FI.getArgStruct();
 | |
|     assert(ArgStruct);
 | |
|     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
 | |
|   }
 | |
| 
 | |
|   // Add in all of the required arguments.
 | |
|   unsigned ArgNo = 0;
 | |
|   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
 | |
|                                      ie = it + FI.getNumRequiredArgs();
 | |
|   for (; it != ie; ++it, ++ArgNo) {
 | |
|     const ABIArgInfo &ArgInfo = it->info;
 | |
| 
 | |
|     // Insert a padding type to ensure proper alignment.
 | |
|     if (IRFunctionArgs.hasPaddingArg(ArgNo))
 | |
|       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
 | |
|           ArgInfo.getPaddingType();
 | |
| 
 | |
|     unsigned FirstIRArg, NumIRArgs;
 | |
|     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
 | |
| 
 | |
|     switch (ArgInfo.getKind()) {
 | |
|     case ABIArgInfo::Ignore:
 | |
|     case ABIArgInfo::InAlloca:
 | |
|       assert(NumIRArgs == 0);
 | |
|       break;
 | |
| 
 | |
|     case ABIArgInfo::Indirect: {
 | |
|       assert(NumIRArgs == 1);
 | |
|       // indirect arguments are always on the stack, which is alloca addr space.
 | |
|       llvm::Type *LTy = ConvertTypeForMem(it->type);
 | |
|       ArgTypes[FirstIRArg] = LTy->getPointerTo(
 | |
|           CGM.getDataLayout().getAllocaAddrSpace());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Extend:
 | |
|     case ABIArgInfo::Direct: {
 | |
|       // Fast-isel and the optimizer generally like scalar values better than
 | |
|       // FCAs, so we flatten them if this is safe to do for this argument.
 | |
|       llvm::Type *argType = ArgInfo.getCoerceToType();
 | |
|       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
 | |
|       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
 | |
|         assert(NumIRArgs == st->getNumElements());
 | |
|         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
 | |
|           ArgTypes[FirstIRArg + i] = st->getElementType(i);
 | |
|       } else {
 | |
|         assert(NumIRArgs == 1);
 | |
|         ArgTypes[FirstIRArg] = argType;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::CoerceAndExpand: {
 | |
|       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
 | |
|       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
 | |
|         *ArgTypesIter++ = EltTy;
 | |
|       }
 | |
|       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Expand:
 | |
|       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
 | |
|       getExpandedTypes(it->type, ArgTypesIter);
 | |
|       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
 | |
|   assert(Erased && "Not in set?");
 | |
| 
 | |
|   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
 | |
| }
 | |
| 
 | |
| llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
 | |
|   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | |
|   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|   if (!isFuncTypeConvertible(FPT))
 | |
|     return llvm::StructType::get(getLLVMContext());
 | |
| 
 | |
|   return GetFunctionType(GD);
 | |
| }
 | |
| 
 | |
| static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
 | |
|                                                llvm::AttrBuilder &FuncAttrs,
 | |
|                                                const FunctionProtoType *FPT) {
 | |
|   if (!FPT)
 | |
|     return;
 | |
| 
 | |
|   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
 | |
|       FPT->isNothrow())
 | |
|     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
 | |
|                                                bool AttrOnCallSite,
 | |
|                                                llvm::AttrBuilder &FuncAttrs) {
 | |
|   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
 | |
|   if (!HasOptnone) {
 | |
|     if (CodeGenOpts.OptimizeSize)
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
 | |
|     if (CodeGenOpts.OptimizeSize == 2)
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
 | |
|   }
 | |
| 
 | |
|   if (CodeGenOpts.DisableRedZone)
 | |
|     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
 | |
|   if (CodeGenOpts.IndirectTlsSegRefs)
 | |
|     FuncAttrs.addAttribute("indirect-tls-seg-refs");
 | |
|   if (CodeGenOpts.NoImplicitFloat)
 | |
|     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
 | |
| 
 | |
|   if (AttrOnCallSite) {
 | |
|     // Attributes that should go on the call site only.
 | |
|     if (!CodeGenOpts.SimplifyLibCalls ||
 | |
|         CodeGenOpts.isNoBuiltinFunc(Name.data()))
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
 | |
|     if (!CodeGenOpts.TrapFuncName.empty())
 | |
|       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
 | |
|   } else {
 | |
|     StringRef FpKind;
 | |
|     switch (CodeGenOpts.getFramePointer()) {
 | |
|     case CodeGenOptions::FramePointerKind::None:
 | |
|       FpKind = "none";
 | |
|       break;
 | |
|     case CodeGenOptions::FramePointerKind::NonLeaf:
 | |
|       FpKind = "non-leaf";
 | |
|       break;
 | |
|     case CodeGenOptions::FramePointerKind::All:
 | |
|       FpKind = "all";
 | |
|       break;
 | |
|     }
 | |
|     FuncAttrs.addAttribute("frame-pointer", FpKind);
 | |
| 
 | |
|     FuncAttrs.addAttribute("less-precise-fpmad",
 | |
|                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
 | |
| 
 | |
|     if (CodeGenOpts.NullPointerIsValid)
 | |
|       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
 | |
| 
 | |
|     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
 | |
|       FuncAttrs.addAttribute("denormal-fp-math",
 | |
|                              CodeGenOpts.FPDenormalMode.str());
 | |
|     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
 | |
|       FuncAttrs.addAttribute(
 | |
|           "denormal-fp-math-f32",
 | |
|           CodeGenOpts.FP32DenormalMode.str());
 | |
|     }
 | |
| 
 | |
|     FuncAttrs.addAttribute("no-trapping-math",
 | |
|                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
 | |
| 
 | |
|     // Strict (compliant) code is the default, so only add this attribute to
 | |
|     // indicate that we are trying to workaround a problem case.
 | |
|     if (!CodeGenOpts.StrictFloatCastOverflow)
 | |
|       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
 | |
| 
 | |
|     // TODO: Are these all needed?
 | |
|     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
 | |
|     FuncAttrs.addAttribute("no-infs-fp-math",
 | |
|                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
 | |
|     FuncAttrs.addAttribute("no-nans-fp-math",
 | |
|                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
 | |
|     FuncAttrs.addAttribute("unsafe-fp-math",
 | |
|                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
 | |
|     FuncAttrs.addAttribute("use-soft-float",
 | |
|                            llvm::toStringRef(CodeGenOpts.SoftFloat));
 | |
|     FuncAttrs.addAttribute("stack-protector-buffer-size",
 | |
|                            llvm::utostr(CodeGenOpts.SSPBufferSize));
 | |
|     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
 | |
|                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
 | |
|     FuncAttrs.addAttribute(
 | |
|         "correctly-rounded-divide-sqrt-fp-math",
 | |
|         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
 | |
| 
 | |
|     // TODO: Reciprocal estimate codegen options should apply to instructions?
 | |
|     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
 | |
|     if (!Recips.empty())
 | |
|       FuncAttrs.addAttribute("reciprocal-estimates",
 | |
|                              llvm::join(Recips, ","));
 | |
| 
 | |
|     if (!CodeGenOpts.PreferVectorWidth.empty() &&
 | |
|         CodeGenOpts.PreferVectorWidth != "none")
 | |
|       FuncAttrs.addAttribute("prefer-vector-width",
 | |
|                              CodeGenOpts.PreferVectorWidth);
 | |
| 
 | |
|     if (CodeGenOpts.StackRealignment)
 | |
|       FuncAttrs.addAttribute("stackrealign");
 | |
|     if (CodeGenOpts.Backchain)
 | |
|       FuncAttrs.addAttribute("backchain");
 | |
| 
 | |
|     if (CodeGenOpts.SpeculativeLoadHardening)
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().assumeFunctionsAreConvergent()) {
 | |
|     // Conservatively, mark all functions and calls in CUDA and OpenCL as
 | |
|     // convergent (meaning, they may call an intrinsically convergent op, such
 | |
|     // as __syncthreads() / barrier(), and so can't have certain optimizations
 | |
|     // applied around them).  LLVM will remove this attribute where it safely
 | |
|     // can.
 | |
|     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
 | |
|     // Exceptions aren't supported in CUDA device code.
 | |
|     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | |
|   }
 | |
| 
 | |
|   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
 | |
|     StringRef Var, Value;
 | |
|     std::tie(Var, Value) = Attr.split('=');
 | |
|     FuncAttrs.addAttribute(Var, Value);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
 | |
|   llvm::AttrBuilder FuncAttrs;
 | |
|   ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(),
 | |
|                              /* AttrOnCallSite = */ false, FuncAttrs);
 | |
|   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
 | |
| }
 | |
| 
 | |
| static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
 | |
|                                    const LangOptions &LangOpts,
 | |
|                                    const NoBuiltinAttr *NBA = nullptr) {
 | |
|   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
 | |
|     SmallString<32> AttributeName;
 | |
|     AttributeName += "no-builtin-";
 | |
|     AttributeName += BuiltinName;
 | |
|     FuncAttrs.addAttribute(AttributeName);
 | |
|   };
 | |
| 
 | |
|   // First, handle the language options passed through -fno-builtin.
 | |
|   if (LangOpts.NoBuiltin) {
 | |
|     // -fno-builtin disables them all.
 | |
|     FuncAttrs.addAttribute("no-builtins");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Then, add attributes for builtins specified through -fno-builtin-<name>.
 | |
|   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
 | |
| 
 | |
|   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
 | |
|   // the source.
 | |
|   if (!NBA)
 | |
|     return;
 | |
| 
 | |
|   // If there is a wildcard in the builtin names specified through the
 | |
|   // attribute, disable them all.
 | |
|   if (llvm::is_contained(NBA->builtinNames(), "*")) {
 | |
|     FuncAttrs.addAttribute("no-builtins");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // And last, add the rest of the builtin names.
 | |
|   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::ConstructAttributeList(
 | |
|     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
 | |
|     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
 | |
|   llvm::AttrBuilder FuncAttrs;
 | |
|   llvm::AttrBuilder RetAttrs;
 | |
| 
 | |
|   CallingConv = FI.getEffectiveCallingConvention();
 | |
|   if (FI.isNoReturn())
 | |
|     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
 | |
| 
 | |
|   // If we have information about the function prototype, we can learn
 | |
|   // attributes from there.
 | |
|   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
 | |
|                                      CalleeInfo.getCalleeFunctionProtoType());
 | |
| 
 | |
|   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
 | |
| 
 | |
|   bool HasOptnone = false;
 | |
|   // The NoBuiltinAttr attached to a TargetDecl (only allowed on FunctionDecls).
 | |
|   const NoBuiltinAttr *NBA = nullptr;
 | |
|   // FIXME: handle sseregparm someday...
 | |
|   if (TargetDecl) {
 | |
|     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
 | |
|     if (TargetDecl->hasAttr<NoThrowAttr>())
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | |
|     if (TargetDecl->hasAttr<NoReturnAttr>())
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
 | |
|     if (TargetDecl->hasAttr<ColdAttr>())
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::Cold);
 | |
|     if (TargetDecl->hasAttr<NoDuplicateAttr>())
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
 | |
|     if (TargetDecl->hasAttr<ConvergentAttr>())
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
 | |
| 
 | |
|     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
 | |
|       AddAttributesFromFunctionProtoType(
 | |
|           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
 | |
|       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
 | |
|         // A sane operator new returns a non-aliasing pointer.
 | |
|         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
 | |
|         if (getCodeGenOpts().AssumeSaneOperatorNew &&
 | |
|             (Kind == OO_New || Kind == OO_Array_New))
 | |
|           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
 | |
|       }
 | |
|       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
 | |
|       const bool IsVirtualCall = MD && MD->isVirtual();
 | |
|       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
 | |
|       // virtual function. These attributes are not inherited by overloads.
 | |
|       if (!(AttrOnCallSite && IsVirtualCall)) {
 | |
|         if (Fn->isNoReturn())
 | |
|           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
 | |
|         NBA = Fn->getAttr<NoBuiltinAttr>();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
 | |
|     if (TargetDecl->hasAttr<ConstAttr>()) {
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | |
|     } else if (TargetDecl->hasAttr<PureAttr>()) {
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | |
|     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | |
|     }
 | |
|     if (TargetDecl->hasAttr<RestrictAttr>())
 | |
|       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
 | |
|     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
 | |
|         !CodeGenOpts.NullPointerIsValid)
 | |
|       RetAttrs.addAttribute(llvm::Attribute::NonNull);
 | |
|     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
 | |
|       FuncAttrs.addAttribute("no_caller_saved_registers");
 | |
|     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
 | |
| 
 | |
|     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
 | |
|     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
 | |
|       Optional<unsigned> NumElemsParam;
 | |
|       if (AllocSize->getNumElemsParam().isValid())
 | |
|         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
 | |
|       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
 | |
|                                  NumElemsParam);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Attach "no-builtins" attributes to:
 | |
|   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
 | |
|   // * definitions: "no-builtins" or "no-builtin-<name>" only.
 | |
|   // The attributes can come from:
 | |
|   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
 | |
|   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
 | |
|   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
 | |
| 
 | |
|   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
 | |
| 
 | |
|   // This must run after constructing the default function attribute list
 | |
|   // to ensure that the speculative load hardening attribute is removed
 | |
|   // in the case where the -mspeculative-load-hardening flag was passed.
 | |
|   if (TargetDecl) {
 | |
|     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
 | |
|       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
 | |
|     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
 | |
|       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
 | |
|   }
 | |
| 
 | |
|   if (CodeGenOpts.EnableSegmentedStacks &&
 | |
|       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
 | |
|     FuncAttrs.addAttribute("split-stack");
 | |
| 
 | |
|   // Add NonLazyBind attribute to function declarations when -fno-plt
 | |
|   // is used.
 | |
|   if (TargetDecl && CodeGenOpts.NoPLT) {
 | |
|     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
 | |
|       if (!Fn->isDefined() && !AttrOnCallSite) {
 | |
|         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
 | |
|     if (getLangOpts().OpenCLVersion <= 120) {
 | |
|       // OpenCL v1.2 Work groups are always uniform
 | |
|       FuncAttrs.addAttribute("uniform-work-group-size", "true");
 | |
|     } else {
 | |
|       // OpenCL v2.0 Work groups may be whether uniform or not.
 | |
|       // '-cl-uniform-work-group-size' compile option gets a hint
 | |
|       // to the compiler that the global work-size be a multiple of
 | |
|       // the work-group size specified to clEnqueueNDRangeKernel
 | |
|       // (i.e. work groups are uniform).
 | |
|       FuncAttrs.addAttribute("uniform-work-group-size",
 | |
|                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!AttrOnCallSite) {
 | |
|     bool DisableTailCalls = false;
 | |
| 
 | |
|     if (CodeGenOpts.DisableTailCalls)
 | |
|       DisableTailCalls = true;
 | |
|     else if (TargetDecl) {
 | |
|       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
 | |
|           TargetDecl->hasAttr<AnyX86InterruptAttr>())
 | |
|         DisableTailCalls = true;
 | |
|       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
 | |
|         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
 | |
|           if (!BD->doesNotEscape())
 | |
|             DisableTailCalls = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     FuncAttrs.addAttribute("disable-tail-calls",
 | |
|                            llvm::toStringRef(DisableTailCalls));
 | |
|     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
 | |
|   }
 | |
| 
 | |
|   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
 | |
| 
 | |
|   QualType RetTy = FI.getReturnType();
 | |
|   const ABIArgInfo &RetAI = FI.getReturnInfo();
 | |
|   switch (RetAI.getKind()) {
 | |
|   case ABIArgInfo::Extend:
 | |
|     if (RetAI.isSignExt())
 | |
|       RetAttrs.addAttribute(llvm::Attribute::SExt);
 | |
|     else
 | |
|       RetAttrs.addAttribute(llvm::Attribute::ZExt);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ABIArgInfo::Direct:
 | |
|     if (RetAI.getInReg())
 | |
|       RetAttrs.addAttribute(llvm::Attribute::InReg);
 | |
|     break;
 | |
|   case ABIArgInfo::Ignore:
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::InAlloca:
 | |
|   case ABIArgInfo::Indirect: {
 | |
|     // inalloca and sret disable readnone and readonly
 | |
|     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
 | |
|       .removeAttribute(llvm::Attribute::ReadNone);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ABIArgInfo::CoerceAndExpand:
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::Expand:
 | |
|     llvm_unreachable("Invalid ABI kind for return argument");
 | |
|   }
 | |
| 
 | |
|   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
 | |
|     QualType PTy = RefTy->getPointeeType();
 | |
|     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
 | |
|       RetAttrs.addDereferenceableAttr(
 | |
|           getMinimumObjectSize(PTy).getQuantity());
 | |
|     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
 | |
|              !CodeGenOpts.NullPointerIsValid)
 | |
|       RetAttrs.addAttribute(llvm::Attribute::NonNull);
 | |
|   }
 | |
| 
 | |
|   bool hasUsedSRet = false;
 | |
|   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
 | |
| 
 | |
|   // Attach attributes to sret.
 | |
|   if (IRFunctionArgs.hasSRetArg()) {
 | |
|     llvm::AttrBuilder SRETAttrs;
 | |
|     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
 | |
|     hasUsedSRet = true;
 | |
|     if (RetAI.getInReg())
 | |
|       SRETAttrs.addAttribute(llvm::Attribute::InReg);
 | |
|     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
 | |
|         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
 | |
|   }
 | |
| 
 | |
|   // Attach attributes to inalloca argument.
 | |
|   if (IRFunctionArgs.hasInallocaArg()) {
 | |
|     llvm::AttrBuilder Attrs;
 | |
|     Attrs.addAttribute(llvm::Attribute::InAlloca);
 | |
|     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
 | |
|         llvm::AttributeSet::get(getLLVMContext(), Attrs);
 | |
|   }
 | |
| 
 | |
|   unsigned ArgNo = 0;
 | |
|   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
 | |
|                                           E = FI.arg_end();
 | |
|        I != E; ++I, ++ArgNo) {
 | |
|     QualType ParamType = I->type;
 | |
|     const ABIArgInfo &AI = I->info;
 | |
|     llvm::AttrBuilder Attrs;
 | |
| 
 | |
|     // Add attribute for padding argument, if necessary.
 | |
|     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
 | |
|       if (AI.getPaddingInReg()) {
 | |
|         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
 | |
|             llvm::AttributeSet::get(
 | |
|                 getLLVMContext(),
 | |
|                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
 | |
|     // have the corresponding parameter variable.  It doesn't make
 | |
|     // sense to do it here because parameters are so messed up.
 | |
|     switch (AI.getKind()) {
 | |
|     case ABIArgInfo::Extend:
 | |
|       if (AI.isSignExt())
 | |
|         Attrs.addAttribute(llvm::Attribute::SExt);
 | |
|       else
 | |
|         Attrs.addAttribute(llvm::Attribute::ZExt);
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case ABIArgInfo::Direct:
 | |
|       if (ArgNo == 0 && FI.isChainCall())
 | |
|         Attrs.addAttribute(llvm::Attribute::Nest);
 | |
|       else if (AI.getInReg())
 | |
|         Attrs.addAttribute(llvm::Attribute::InReg);
 | |
|       break;
 | |
| 
 | |
|     case ABIArgInfo::Indirect: {
 | |
|       if (AI.getInReg())
 | |
|         Attrs.addAttribute(llvm::Attribute::InReg);
 | |
| 
 | |
|       if (AI.getIndirectByVal())
 | |
|         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
 | |
| 
 | |
|       CharUnits Align = AI.getIndirectAlign();
 | |
| 
 | |
|       // In a byval argument, it is important that the required
 | |
|       // alignment of the type is honored, as LLVM might be creating a
 | |
|       // *new* stack object, and needs to know what alignment to give
 | |
|       // it. (Sometimes it can deduce a sensible alignment on its own,
 | |
|       // but not if clang decides it must emit a packed struct, or the
 | |
|       // user specifies increased alignment requirements.)
 | |
|       //
 | |
|       // This is different from indirect *not* byval, where the object
 | |
|       // exists already, and the align attribute is purely
 | |
|       // informative.
 | |
|       assert(!Align.isZero());
 | |
| 
 | |
|       // For now, only add this when we have a byval argument.
 | |
|       // TODO: be less lazy about updating test cases.
 | |
|       if (AI.getIndirectByVal())
 | |
|         Attrs.addAlignmentAttr(Align.getQuantity());
 | |
| 
 | |
|       // byval disables readnone and readonly.
 | |
|       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
 | |
|         .removeAttribute(llvm::Attribute::ReadNone);
 | |
|       break;
 | |
|     }
 | |
|     case ABIArgInfo::Ignore:
 | |
|     case ABIArgInfo::Expand:
 | |
|     case ABIArgInfo::CoerceAndExpand:
 | |
|       break;
 | |
| 
 | |
|     case ABIArgInfo::InAlloca:
 | |
|       // inalloca disables readnone and readonly.
 | |
|       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
 | |
|           .removeAttribute(llvm::Attribute::ReadNone);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
 | |
|       QualType PTy = RefTy->getPointeeType();
 | |
|       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
 | |
|         Attrs.addDereferenceableAttr(
 | |
|             getMinimumObjectSize(PTy).getQuantity());
 | |
|       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
 | |
|                !CodeGenOpts.NullPointerIsValid)
 | |
|         Attrs.addAttribute(llvm::Attribute::NonNull);
 | |
|     }
 | |
| 
 | |
|     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
 | |
|     case ParameterABI::Ordinary:
 | |
|       break;
 | |
| 
 | |
|     case ParameterABI::SwiftIndirectResult: {
 | |
|       // Add 'sret' if we haven't already used it for something, but
 | |
|       // only if the result is void.
 | |
|       if (!hasUsedSRet && RetTy->isVoidType()) {
 | |
|         Attrs.addAttribute(llvm::Attribute::StructRet);
 | |
|         hasUsedSRet = true;
 | |
|       }
 | |
| 
 | |
|       // Add 'noalias' in either case.
 | |
|       Attrs.addAttribute(llvm::Attribute::NoAlias);
 | |
| 
 | |
|       // Add 'dereferenceable' and 'alignment'.
 | |
|       auto PTy = ParamType->getPointeeType();
 | |
|       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
 | |
|         auto info = getContext().getTypeInfoInChars(PTy);
 | |
|         Attrs.addDereferenceableAttr(info.first.getQuantity());
 | |
|         Attrs.addAttribute(llvm::Attribute::getWithAlignment(
 | |
|             getLLVMContext(), info.second.getAsAlign()));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ParameterABI::SwiftErrorResult:
 | |
|       Attrs.addAttribute(llvm::Attribute::SwiftError);
 | |
|       break;
 | |
| 
 | |
|     case ParameterABI::SwiftContext:
 | |
|       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
 | |
|       Attrs.addAttribute(llvm::Attribute::NoCapture);
 | |
| 
 | |
|     if (Attrs.hasAttributes()) {
 | |
|       unsigned FirstIRArg, NumIRArgs;
 | |
|       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
 | |
|       for (unsigned i = 0; i < NumIRArgs; i++)
 | |
|         ArgAttrs[FirstIRArg + i] =
 | |
|             llvm::AttributeSet::get(getLLVMContext(), Attrs);
 | |
|     }
 | |
|   }
 | |
|   assert(ArgNo == FI.arg_size());
 | |
| 
 | |
|   AttrList = llvm::AttributeList::get(
 | |
|       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
 | |
|       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
 | |
| }
 | |
| 
 | |
| /// An argument came in as a promoted argument; demote it back to its
 | |
| /// declared type.
 | |
| static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
 | |
|                                          const VarDecl *var,
 | |
|                                          llvm::Value *value) {
 | |
|   llvm::Type *varType = CGF.ConvertType(var->getType());
 | |
| 
 | |
|   // This can happen with promotions that actually don't change the
 | |
|   // underlying type, like the enum promotions.
 | |
|   if (value->getType() == varType) return value;
 | |
| 
 | |
|   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
 | |
|          && "unexpected promotion type");
 | |
| 
 | |
|   if (isa<llvm::IntegerType>(varType))
 | |
|     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
 | |
| 
 | |
|   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
 | |
| }
 | |
| 
 | |
| /// Returns the attribute (either parameter attribute, or function
 | |
| /// attribute), which declares argument ArgNo to be non-null.
 | |
| static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
 | |
|                                          QualType ArgType, unsigned ArgNo) {
 | |
|   // FIXME: __attribute__((nonnull)) can also be applied to:
 | |
|   //   - references to pointers, where the pointee is known to be
 | |
|   //     nonnull (apparently a Clang extension)
 | |
|   //   - transparent unions containing pointers
 | |
|   // In the former case, LLVM IR cannot represent the constraint. In
 | |
|   // the latter case, we have no guarantee that the transparent union
 | |
|   // is in fact passed as a pointer.
 | |
|   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
 | |
|     return nullptr;
 | |
|   // First, check attribute on parameter itself.
 | |
|   if (PVD) {
 | |
|     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
 | |
|       return ParmNNAttr;
 | |
|   }
 | |
|   // Check function attributes.
 | |
|   if (!FD)
 | |
|     return nullptr;
 | |
|   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
 | |
|     if (NNAttr->isNonNull(ArgNo))
 | |
|       return NNAttr;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
 | |
|     Address Temp;
 | |
|     Address Arg;
 | |
|     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
 | |
|       CGF.Builder.CreateStore(errorValue, Arg);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
 | |
|                                          llvm::Function *Fn,
 | |
|                                          const FunctionArgList &Args) {
 | |
|   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
 | |
|     // Naked functions don't have prologues.
 | |
|     return;
 | |
| 
 | |
|   // If this is an implicit-return-zero function, go ahead and
 | |
|   // initialize the return value.  TODO: it might be nice to have
 | |
|   // a more general mechanism for this that didn't require synthesized
 | |
|   // return statements.
 | |
|   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
 | |
|     if (FD->hasImplicitReturnZero()) {
 | |
|       QualType RetTy = FD->getReturnType().getUnqualifiedType();
 | |
|       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
 | |
|       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
 | |
|       Builder.CreateStore(Zero, ReturnValue);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: We no longer need the types from FunctionArgList; lift up and
 | |
|   // simplify.
 | |
| 
 | |
|   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
 | |
|   // Flattened function arguments.
 | |
|   SmallVector<llvm::Value *, 16> FnArgs;
 | |
|   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
 | |
|   for (auto &Arg : Fn->args()) {
 | |
|     FnArgs.push_back(&Arg);
 | |
|   }
 | |
|   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
 | |
| 
 | |
|   // If we're using inalloca, all the memory arguments are GEPs off of the last
 | |
|   // parameter, which is a pointer to the complete memory area.
 | |
|   Address ArgStruct = Address::invalid();
 | |
|   if (IRFunctionArgs.hasInallocaArg()) {
 | |
|     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
 | |
|                         FI.getArgStructAlignment());
 | |
| 
 | |
|     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
 | |
|   }
 | |
| 
 | |
|   // Name the struct return parameter.
 | |
|   if (IRFunctionArgs.hasSRetArg()) {
 | |
|     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
 | |
|     AI->setName("agg.result");
 | |
|     AI->addAttr(llvm::Attribute::NoAlias);
 | |
|   }
 | |
| 
 | |
|   // Track if we received the parameter as a pointer (indirect, byval, or
 | |
|   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
 | |
|   // into a local alloca for us.
 | |
|   SmallVector<ParamValue, 16> ArgVals;
 | |
|   ArgVals.reserve(Args.size());
 | |
| 
 | |
|   // Create a pointer value for every parameter declaration.  This usually
 | |
|   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
 | |
|   // any cleanups or do anything that might unwind.  We do that separately, so
 | |
|   // we can push the cleanups in the correct order for the ABI.
 | |
|   assert(FI.arg_size() == Args.size() &&
 | |
|          "Mismatch between function signature & arguments.");
 | |
|   unsigned ArgNo = 0;
 | |
|   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
 | |
|   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
 | |
|        i != e; ++i, ++info_it, ++ArgNo) {
 | |
|     const VarDecl *Arg = *i;
 | |
|     const ABIArgInfo &ArgI = info_it->info;
 | |
| 
 | |
|     bool isPromoted =
 | |
|       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
 | |
|     // We are converting from ABIArgInfo type to VarDecl type directly, unless
 | |
|     // the parameter is promoted. In this case we convert to
 | |
|     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
 | |
|     QualType Ty = isPromoted ? info_it->type : Arg->getType();
 | |
|     assert(hasScalarEvaluationKind(Ty) ==
 | |
|            hasScalarEvaluationKind(Arg->getType()));
 | |
| 
 | |
|     unsigned FirstIRArg, NumIRArgs;
 | |
|     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
 | |
| 
 | |
|     switch (ArgI.getKind()) {
 | |
|     case ABIArgInfo::InAlloca: {
 | |
|       assert(NumIRArgs == 0);
 | |
|       auto FieldIndex = ArgI.getInAllocaFieldIndex();
 | |
|       Address V =
 | |
|           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
 | |
|       if (ArgI.getInAllocaIndirect())
 | |
|         V = Address(Builder.CreateLoad(V),
 | |
|                     getContext().getTypeAlignInChars(Ty));
 | |
|       ArgVals.push_back(ParamValue::forIndirect(V));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Indirect: {
 | |
|       assert(NumIRArgs == 1);
 | |
|       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
 | |
| 
 | |
|       if (!hasScalarEvaluationKind(Ty)) {
 | |
|         // Aggregates and complex variables are accessed by reference.  All we
 | |
|         // need to do is realign the value, if requested.
 | |
|         Address V = ParamAddr;
 | |
|         if (ArgI.getIndirectRealign()) {
 | |
|           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
 | |
| 
 | |
|           // Copy from the incoming argument pointer to the temporary with the
 | |
|           // appropriate alignment.
 | |
|           //
 | |
|           // FIXME: We should have a common utility for generating an aggregate
 | |
|           // copy.
 | |
|           CharUnits Size = getContext().getTypeSizeInChars(Ty);
 | |
|           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
 | |
|           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
 | |
|           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
 | |
|           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
 | |
|           V = AlignedTemp;
 | |
|         }
 | |
|         ArgVals.push_back(ParamValue::forIndirect(V));
 | |
|       } else {
 | |
|         // Load scalar value from indirect argument.
 | |
|         llvm::Value *V =
 | |
|             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
 | |
| 
 | |
|         if (isPromoted)
 | |
|           V = emitArgumentDemotion(*this, Arg, V);
 | |
|         ArgVals.push_back(ParamValue::forDirect(V));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Extend:
 | |
|     case ABIArgInfo::Direct: {
 | |
| 
 | |
|       // If we have the trivial case, handle it with no muss and fuss.
 | |
|       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
 | |
|           ArgI.getCoerceToType() == ConvertType(Ty) &&
 | |
|           ArgI.getDirectOffset() == 0) {
 | |
|         assert(NumIRArgs == 1);
 | |
|         llvm::Value *V = FnArgs[FirstIRArg];
 | |
|         auto AI = cast<llvm::Argument>(V);
 | |
| 
 | |
|         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
 | |
|           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
 | |
|                              PVD->getFunctionScopeIndex()) &&
 | |
|               !CGM.getCodeGenOpts().NullPointerIsValid)
 | |
|             AI->addAttr(llvm::Attribute::NonNull);
 | |
| 
 | |
|           QualType OTy = PVD->getOriginalType();
 | |
|           if (const auto *ArrTy =
 | |
|               getContext().getAsConstantArrayType(OTy)) {
 | |
|             // A C99 array parameter declaration with the static keyword also
 | |
|             // indicates dereferenceability, and if the size is constant we can
 | |
|             // use the dereferenceable attribute (which requires the size in
 | |
|             // bytes).
 | |
|             if (ArrTy->getSizeModifier() == ArrayType::Static) {
 | |
|               QualType ETy = ArrTy->getElementType();
 | |
|               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
 | |
|               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
 | |
|                   ArrSize) {
 | |
|                 llvm::AttrBuilder Attrs;
 | |
|                 Attrs.addDereferenceableAttr(
 | |
|                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
 | |
|                 AI->addAttrs(Attrs);
 | |
|               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
 | |
|                          !CGM.getCodeGenOpts().NullPointerIsValid) {
 | |
|                 AI->addAttr(llvm::Attribute::NonNull);
 | |
|               }
 | |
|             }
 | |
|           } else if (const auto *ArrTy =
 | |
|                      getContext().getAsVariableArrayType(OTy)) {
 | |
|             // For C99 VLAs with the static keyword, we don't know the size so
 | |
|             // we can't use the dereferenceable attribute, but in addrspace(0)
 | |
|             // we know that it must be nonnull.
 | |
|             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
 | |
|                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
 | |
|                 !CGM.getCodeGenOpts().NullPointerIsValid)
 | |
|               AI->addAttr(llvm::Attribute::NonNull);
 | |
|           }
 | |
| 
 | |
|           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
 | |
|           if (!AVAttr)
 | |
|             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
 | |
|               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
 | |
|           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
 | |
|             // If alignment-assumption sanitizer is enabled, we do *not* add
 | |
|             // alignment attribute here, but emit normal alignment assumption,
 | |
|             // so the UBSAN check could function.
 | |
|             llvm::Value *AlignmentValue =
 | |
|               EmitScalarExpr(AVAttr->getAlignment());
 | |
|             llvm::ConstantInt *AlignmentCI =
 | |
|               cast<llvm::ConstantInt>(AlignmentValue);
 | |
|             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(llvm::MaybeAlign(
 | |
|                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))));
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (Arg->getType().isRestrictQualified())
 | |
|           AI->addAttr(llvm::Attribute::NoAlias);
 | |
| 
 | |
|         // LLVM expects swifterror parameters to be used in very restricted
 | |
|         // ways.  Copy the value into a less-restricted temporary.
 | |
|         if (FI.getExtParameterInfo(ArgNo).getABI()
 | |
|               == ParameterABI::SwiftErrorResult) {
 | |
|           QualType pointeeTy = Ty->getPointeeType();
 | |
|           assert(pointeeTy->isPointerType());
 | |
|           Address temp =
 | |
|             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
 | |
|           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
 | |
|           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
 | |
|           Builder.CreateStore(incomingErrorValue, temp);
 | |
|           V = temp.getPointer();
 | |
| 
 | |
|           // Push a cleanup to copy the value back at the end of the function.
 | |
|           // The convention does not guarantee that the value will be written
 | |
|           // back if the function exits with an unwind exception.
 | |
|           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
 | |
|         }
 | |
| 
 | |
|         // Ensure the argument is the correct type.
 | |
|         if (V->getType() != ArgI.getCoerceToType())
 | |
|           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
 | |
| 
 | |
|         if (isPromoted)
 | |
|           V = emitArgumentDemotion(*this, Arg, V);
 | |
| 
 | |
|         // Because of merging of function types from multiple decls it is
 | |
|         // possible for the type of an argument to not match the corresponding
 | |
|         // type in the function type. Since we are codegening the callee
 | |
|         // in here, add a cast to the argument type.
 | |
|         llvm::Type *LTy = ConvertType(Arg->getType());
 | |
|         if (V->getType() != LTy)
 | |
|           V = Builder.CreateBitCast(V, LTy);
 | |
| 
 | |
|         ArgVals.push_back(ParamValue::forDirect(V));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
 | |
|                                      Arg->getName());
 | |
| 
 | |
|       // Pointer to store into.
 | |
|       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
 | |
| 
 | |
|       // Fast-isel and the optimizer generally like scalar values better than
 | |
|       // FCAs, so we flatten them if this is safe to do for this argument.
 | |
|       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
 | |
|       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
 | |
|           STy->getNumElements() > 1) {
 | |
|         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
 | |
|         llvm::Type *DstTy = Ptr.getElementType();
 | |
|         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
 | |
| 
 | |
|         Address AddrToStoreInto = Address::invalid();
 | |
|         if (SrcSize <= DstSize) {
 | |
|           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
 | |
|         } else {
 | |
|           AddrToStoreInto =
 | |
|             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
 | |
|         }
 | |
| 
 | |
|         assert(STy->getNumElements() == NumIRArgs);
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|           auto AI = FnArgs[FirstIRArg + i];
 | |
|           AI->setName(Arg->getName() + ".coerce" + Twine(i));
 | |
|           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
 | |
|           Builder.CreateStore(AI, EltPtr);
 | |
|         }
 | |
| 
 | |
|         if (SrcSize > DstSize) {
 | |
|           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
 | |
|         }
 | |
| 
 | |
|       } else {
 | |
|         // Simple case, just do a coerced store of the argument into the alloca.
 | |
|         assert(NumIRArgs == 1);
 | |
|         auto AI = FnArgs[FirstIRArg];
 | |
|         AI->setName(Arg->getName() + ".coerce");
 | |
|         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
 | |
|       }
 | |
| 
 | |
|       // Match to what EmitParmDecl is expecting for this type.
 | |
|       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
 | |
|         llvm::Value *V =
 | |
|             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
 | |
|         if (isPromoted)
 | |
|           V = emitArgumentDemotion(*this, Arg, V);
 | |
|         ArgVals.push_back(ParamValue::forDirect(V));
 | |
|       } else {
 | |
|         ArgVals.push_back(ParamValue::forIndirect(Alloca));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::CoerceAndExpand: {
 | |
|       // Reconstruct into a temporary.
 | |
|       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
 | |
|       ArgVals.push_back(ParamValue::forIndirect(alloca));
 | |
| 
 | |
|       auto coercionType = ArgI.getCoerceAndExpandType();
 | |
|       alloca = Builder.CreateElementBitCast(alloca, coercionType);
 | |
| 
 | |
|       unsigned argIndex = FirstIRArg;
 | |
|       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
 | |
|         llvm::Type *eltType = coercionType->getElementType(i);
 | |
|         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
 | |
|           continue;
 | |
| 
 | |
|         auto eltAddr = Builder.CreateStructGEP(alloca, i);
 | |
|         auto elt = FnArgs[argIndex++];
 | |
|         Builder.CreateStore(elt, eltAddr);
 | |
|       }
 | |
|       assert(argIndex == FirstIRArg + NumIRArgs);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Expand: {
 | |
|       // If this structure was expanded into multiple arguments then
 | |
|       // we need to create a temporary and reconstruct it from the
 | |
|       // arguments.
 | |
|       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
 | |
|       LValue LV = MakeAddrLValue(Alloca, Ty);
 | |
|       ArgVals.push_back(ParamValue::forIndirect(Alloca));
 | |
| 
 | |
|       auto FnArgIter = FnArgs.begin() + FirstIRArg;
 | |
|       ExpandTypeFromArgs(Ty, LV, FnArgIter);
 | |
|       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
 | |
|       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
 | |
|         auto AI = FnArgs[FirstIRArg + i];
 | |
|         AI->setName(Arg->getName() + "." + Twine(i));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Ignore:
 | |
|       assert(NumIRArgs == 0);
 | |
|       // Initialize the local variable appropriately.
 | |
|       if (!hasScalarEvaluationKind(Ty)) {
 | |
|         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
 | |
|       } else {
 | |
|         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
 | |
|         ArgVals.push_back(ParamValue::forDirect(U));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
 | |
|     for (int I = Args.size() - 1; I >= 0; --I)
 | |
|       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
 | |
|   } else {
 | |
|     for (unsigned I = 0, E = Args.size(); I != E; ++I)
 | |
|       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void eraseUnusedBitCasts(llvm::Instruction *insn) {
 | |
|   while (insn->use_empty()) {
 | |
|     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
 | |
|     if (!bitcast) return;
 | |
| 
 | |
|     // This is "safe" because we would have used a ConstantExpr otherwise.
 | |
|     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
 | |
|     bitcast->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Try to emit a fused autorelease of a return result.
 | |
| static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
 | |
|                                                     llvm::Value *result) {
 | |
|   // We must be immediately followed the cast.
 | |
|   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
 | |
|   if (BB->empty()) return nullptr;
 | |
|   if (&BB->back() != result) return nullptr;
 | |
| 
 | |
|   llvm::Type *resultType = result->getType();
 | |
| 
 | |
|   // result is in a BasicBlock and is therefore an Instruction.
 | |
|   llvm::Instruction *generator = cast<llvm::Instruction>(result);
 | |
| 
 | |
|   SmallVector<llvm::Instruction *, 4> InstsToKill;
 | |
| 
 | |
|   // Look for:
 | |
|   //  %generator = bitcast %type1* %generator2 to %type2*
 | |
|   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
 | |
|     // We would have emitted this as a constant if the operand weren't
 | |
|     // an Instruction.
 | |
|     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
 | |
| 
 | |
|     // Require the generator to be immediately followed by the cast.
 | |
|     if (generator->getNextNode() != bitcast)
 | |
|       return nullptr;
 | |
| 
 | |
|     InstsToKill.push_back(bitcast);
 | |
|   }
 | |
| 
 | |
|   // Look for:
 | |
|   //   %generator = call i8* @objc_retain(i8* %originalResult)
 | |
|   // or
 | |
|   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
 | |
|   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
 | |
|   if (!call) return nullptr;
 | |
| 
 | |
|   bool doRetainAutorelease;
 | |
| 
 | |
|   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
 | |
|     doRetainAutorelease = true;
 | |
|   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
 | |
|                                           .objc_retainAutoreleasedReturnValue) {
 | |
|     doRetainAutorelease = false;
 | |
| 
 | |
|     // If we emitted an assembly marker for this call (and the
 | |
|     // ARCEntrypoints field should have been set if so), go looking
 | |
|     // for that call.  If we can't find it, we can't do this
 | |
|     // optimization.  But it should always be the immediately previous
 | |
|     // instruction, unless we needed bitcasts around the call.
 | |
|     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
 | |
|       llvm::Instruction *prev = call->getPrevNode();
 | |
|       assert(prev);
 | |
|       if (isa<llvm::BitCastInst>(prev)) {
 | |
|         prev = prev->getPrevNode();
 | |
|         assert(prev);
 | |
|       }
 | |
|       assert(isa<llvm::CallInst>(prev));
 | |
|       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
 | |
|                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
 | |
|       InstsToKill.push_back(prev);
 | |
|     }
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   result = call->getArgOperand(0);
 | |
|   InstsToKill.push_back(call);
 | |
| 
 | |
|   // Keep killing bitcasts, for sanity.  Note that we no longer care
 | |
|   // about precise ordering as long as there's exactly one use.
 | |
|   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
 | |
|     if (!bitcast->hasOneUse()) break;
 | |
|     InstsToKill.push_back(bitcast);
 | |
|     result = bitcast->getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // Delete all the unnecessary instructions, from latest to earliest.
 | |
|   for (auto *I : InstsToKill)
 | |
|     I->eraseFromParent();
 | |
| 
 | |
|   // Do the fused retain/autorelease if we were asked to.
 | |
|   if (doRetainAutorelease)
 | |
|     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
 | |
| 
 | |
|   // Cast back to the result type.
 | |
|   return CGF.Builder.CreateBitCast(result, resultType);
 | |
| }
 | |
| 
 | |
| /// If this is a +1 of the value of an immutable 'self', remove it.
 | |
| static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
 | |
|                                           llvm::Value *result) {
 | |
|   // This is only applicable to a method with an immutable 'self'.
 | |
|   const ObjCMethodDecl *method =
 | |
|     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
 | |
|   if (!method) return nullptr;
 | |
|   const VarDecl *self = method->getSelfDecl();
 | |
|   if (!self->getType().isConstQualified()) return nullptr;
 | |
| 
 | |
|   // Look for a retain call.
 | |
|   llvm::CallInst *retainCall =
 | |
|     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
 | |
|   if (!retainCall ||
 | |
|       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look for an ordinary load of 'self'.
 | |
|   llvm::Value *retainedValue = retainCall->getArgOperand(0);
 | |
|   llvm::LoadInst *load =
 | |
|     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
 | |
|   if (!load || load->isAtomic() || load->isVolatile() ||
 | |
|       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Okay!  Burn it all down.  This relies for correctness on the
 | |
|   // assumption that the retain is emitted as part of the return and
 | |
|   // that thereafter everything is used "linearly".
 | |
|   llvm::Type *resultType = result->getType();
 | |
|   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
 | |
|   assert(retainCall->use_empty());
 | |
|   retainCall->eraseFromParent();
 | |
|   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
 | |
| 
 | |
|   return CGF.Builder.CreateBitCast(load, resultType);
 | |
| }
 | |
| 
 | |
| /// Emit an ARC autorelease of the result of a function.
 | |
| ///
 | |
| /// \return the value to actually return from the function
 | |
| static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
 | |
|                                             llvm::Value *result) {
 | |
|   // If we're returning 'self', kill the initial retain.  This is a
 | |
|   // heuristic attempt to "encourage correctness" in the really unfortunate
 | |
|   // case where we have a return of self during a dealloc and we desperately
 | |
|   // need to avoid the possible autorelease.
 | |
|   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
 | |
|     return self;
 | |
| 
 | |
|   // At -O0, try to emit a fused retain/autorelease.
 | |
|   if (CGF.shouldUseFusedARCCalls())
 | |
|     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
 | |
|       return fused;
 | |
| 
 | |
|   return CGF.EmitARCAutoreleaseReturnValue(result);
 | |
| }
 | |
| 
 | |
| /// Heuristically search for a dominating store to the return-value slot.
 | |
| static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
 | |
|   // Check if a User is a store which pointerOperand is the ReturnValue.
 | |
|   // We are looking for stores to the ReturnValue, not for stores of the
 | |
|   // ReturnValue to some other location.
 | |
|   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
 | |
|     auto *SI = dyn_cast<llvm::StoreInst>(U);
 | |
|     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
 | |
|       return nullptr;
 | |
|     // These aren't actually possible for non-coerced returns, and we
 | |
|     // only care about non-coerced returns on this code path.
 | |
|     assert(!SI->isAtomic() && !SI->isVolatile());
 | |
|     return SI;
 | |
|   };
 | |
|   // If there are multiple uses of the return-value slot, just check
 | |
|   // for something immediately preceding the IP.  Sometimes this can
 | |
|   // happen with how we generate implicit-returns; it can also happen
 | |
|   // with noreturn cleanups.
 | |
|   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
 | |
|     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
 | |
|     if (IP->empty()) return nullptr;
 | |
|     llvm::Instruction *I = &IP->back();
 | |
| 
 | |
|     // Skip lifetime markers
 | |
|     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
 | |
|                                             IE = IP->rend();
 | |
|          II != IE; ++II) {
 | |
|       if (llvm::IntrinsicInst *Intrinsic =
 | |
|               dyn_cast<llvm::IntrinsicInst>(&*II)) {
 | |
|         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
 | |
|           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
 | |
|           ++II;
 | |
|           if (II == IE)
 | |
|             break;
 | |
|           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
 | |
|             continue;
 | |
|         }
 | |
|       }
 | |
|       I = &*II;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     return GetStoreIfValid(I);
 | |
|   }
 | |
| 
 | |
|   llvm::StoreInst *store =
 | |
|       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
 | |
|   if (!store) return nullptr;
 | |
| 
 | |
|   // Now do a first-and-dirty dominance check: just walk up the
 | |
|   // single-predecessors chain from the current insertion point.
 | |
|   llvm::BasicBlock *StoreBB = store->getParent();
 | |
|   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
 | |
|   while (IP != StoreBB) {
 | |
|     if (!(IP = IP->getSinglePredecessor()))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Okay, the store's basic block dominates the insertion point; we
 | |
|   // can do our thing.
 | |
|   return store;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
 | |
|                                          bool EmitRetDbgLoc,
 | |
|                                          SourceLocation EndLoc) {
 | |
|   if (FI.isNoReturn()) {
 | |
|     // Noreturn functions don't return.
 | |
|     EmitUnreachable(EndLoc);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
 | |
|     // Naked functions don't have epilogues.
 | |
|     Builder.CreateUnreachable();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Functions with no result always return void.
 | |
|   if (!ReturnValue.isValid()) {
 | |
|     Builder.CreateRetVoid();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm::DebugLoc RetDbgLoc;
 | |
|   llvm::Value *RV = nullptr;
 | |
|   QualType RetTy = FI.getReturnType();
 | |
|   const ABIArgInfo &RetAI = FI.getReturnInfo();
 | |
| 
 | |
|   switch (RetAI.getKind()) {
 | |
|   case ABIArgInfo::InAlloca:
 | |
|     // Aggregrates get evaluated directly into the destination.  Sometimes we
 | |
|     // need to return the sret value in a register, though.
 | |
|     assert(hasAggregateEvaluationKind(RetTy));
 | |
|     if (RetAI.getInAllocaSRet()) {
 | |
|       llvm::Function::arg_iterator EI = CurFn->arg_end();
 | |
|       --EI;
 | |
|       llvm::Value *ArgStruct = &*EI;
 | |
|       llvm::Value *SRet = Builder.CreateStructGEP(
 | |
|           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
 | |
|       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::Indirect: {
 | |
|     auto AI = CurFn->arg_begin();
 | |
|     if (RetAI.isSRetAfterThis())
 | |
|       ++AI;
 | |
|     switch (getEvaluationKind(RetTy)) {
 | |
|     case TEK_Complex: {
 | |
|       ComplexPairTy RT =
 | |
|         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
 | |
|       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
 | |
|                          /*isInit*/ true);
 | |
|       break;
 | |
|     }
 | |
|     case TEK_Aggregate:
 | |
|       // Do nothing; aggregrates get evaluated directly into the destination.
 | |
|       break;
 | |
|     case TEK_Scalar:
 | |
|       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
 | |
|                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
 | |
|                         /*isInit*/ true);
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ABIArgInfo::Extend:
 | |
|   case ABIArgInfo::Direct:
 | |
|     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
 | |
|         RetAI.getDirectOffset() == 0) {
 | |
|       // The internal return value temp always will have pointer-to-return-type
 | |
|       // type, just do a load.
 | |
| 
 | |
|       // If there is a dominating store to ReturnValue, we can elide
 | |
|       // the load, zap the store, and usually zap the alloca.
 | |
|       if (llvm::StoreInst *SI =
 | |
|               findDominatingStoreToReturnValue(*this)) {
 | |
|         // Reuse the debug location from the store unless there is
 | |
|         // cleanup code to be emitted between the store and return
 | |
|         // instruction.
 | |
|         if (EmitRetDbgLoc && !AutoreleaseResult)
 | |
|           RetDbgLoc = SI->getDebugLoc();
 | |
|         // Get the stored value and nuke the now-dead store.
 | |
|         RV = SI->getValueOperand();
 | |
|         SI->eraseFromParent();
 | |
| 
 | |
|       // Otherwise, we have to do a simple load.
 | |
|       } else {
 | |
|         RV = Builder.CreateLoad(ReturnValue);
 | |
|       }
 | |
|     } else {
 | |
|       // If the value is offset in memory, apply the offset now.
 | |
|       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
 | |
| 
 | |
|       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
 | |
|     }
 | |
| 
 | |
|     // In ARC, end functions that return a retainable type with a call
 | |
|     // to objc_autoreleaseReturnValue.
 | |
|     if (AutoreleaseResult) {
 | |
| #ifndef NDEBUG
 | |
|       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
 | |
|       // been stripped of the typedefs, so we cannot use RetTy here. Get the
 | |
|       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
 | |
|       // CurCodeDecl or BlockInfo.
 | |
|       QualType RT;
 | |
| 
 | |
|       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
 | |
|         RT = FD->getReturnType();
 | |
|       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
 | |
|         RT = MD->getReturnType();
 | |
|       else if (isa<BlockDecl>(CurCodeDecl))
 | |
|         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
 | |
|       else
 | |
|         llvm_unreachable("Unexpected function/method type");
 | |
| 
 | |
|       assert(getLangOpts().ObjCAutoRefCount &&
 | |
|              !FI.isReturnsRetained() &&
 | |
|              RT->isObjCRetainableType());
 | |
| #endif
 | |
|       RV = emitAutoreleaseOfResult(*this, RV);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::Ignore:
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::CoerceAndExpand: {
 | |
|     auto coercionType = RetAI.getCoerceAndExpandType();
 | |
| 
 | |
|     // Load all of the coerced elements out into results.
 | |
|     llvm::SmallVector<llvm::Value*, 4> results;
 | |
|     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
 | |
|     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
 | |
|       auto coercedEltType = coercionType->getElementType(i);
 | |
|       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
 | |
|         continue;
 | |
| 
 | |
|       auto eltAddr = Builder.CreateStructGEP(addr, i);
 | |
|       auto elt = Builder.CreateLoad(eltAddr);
 | |
|       results.push_back(elt);
 | |
|     }
 | |
| 
 | |
|     // If we have one result, it's the single direct result type.
 | |
|     if (results.size() == 1) {
 | |
|       RV = results[0];
 | |
| 
 | |
|     // Otherwise, we need to make a first-class aggregate.
 | |
|     } else {
 | |
|       // Construct a return type that lacks padding elements.
 | |
|       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
 | |
| 
 | |
|       RV = llvm::UndefValue::get(returnType);
 | |
|       for (unsigned i = 0, e = results.size(); i != e; ++i) {
 | |
|         RV = Builder.CreateInsertValue(RV, results[i], i);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ABIArgInfo::Expand:
 | |
|     llvm_unreachable("Invalid ABI kind for return argument");
 | |
|   }
 | |
| 
 | |
|   llvm::Instruction *Ret;
 | |
|   if (RV) {
 | |
|     EmitReturnValueCheck(RV);
 | |
|     Ret = Builder.CreateRet(RV);
 | |
|   } else {
 | |
|     Ret = Builder.CreateRetVoid();
 | |
|   }
 | |
| 
 | |
|   if (RetDbgLoc)
 | |
|     Ret->setDebugLoc(std::move(RetDbgLoc));
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
 | |
|   // A current decl may not be available when emitting vtable thunks.
 | |
|   if (!CurCodeDecl)
 | |
|     return;
 | |
| 
 | |
|   // If the return block isn't reachable, neither is this check, so don't emit
 | |
|   // it.
 | |
|   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
 | |
|     return;
 | |
| 
 | |
|   ReturnsNonNullAttr *RetNNAttr = nullptr;
 | |
|   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
 | |
|     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
 | |
| 
 | |
|   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
 | |
|     return;
 | |
| 
 | |
|   // Prefer the returns_nonnull attribute if it's present.
 | |
|   SourceLocation AttrLoc;
 | |
|   SanitizerMask CheckKind;
 | |
|   SanitizerHandler Handler;
 | |
|   if (RetNNAttr) {
 | |
|     assert(!requiresReturnValueNullabilityCheck() &&
 | |
|            "Cannot check nullability and the nonnull attribute");
 | |
|     AttrLoc = RetNNAttr->getLocation();
 | |
|     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
 | |
|     Handler = SanitizerHandler::NonnullReturn;
 | |
|   } else {
 | |
|     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
 | |
|       if (auto *TSI = DD->getTypeSourceInfo())
 | |
|         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
 | |
|           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
 | |
|     CheckKind = SanitizerKind::NullabilityReturn;
 | |
|     Handler = SanitizerHandler::NullabilityReturn;
 | |
|   }
 | |
| 
 | |
|   SanitizerScope SanScope(this);
 | |
| 
 | |
|   // Make sure the "return" source location is valid. If we're checking a
 | |
|   // nullability annotation, make sure the preconditions for the check are met.
 | |
|   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
 | |
|   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
 | |
|   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
 | |
|   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
 | |
|   if (requiresReturnValueNullabilityCheck())
 | |
|     CanNullCheck =
 | |
|         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
 | |
|   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
 | |
|   EmitBlock(Check);
 | |
| 
 | |
|   // Now do the null check.
 | |
|   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
 | |
|   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
 | |
|   llvm::Value *DynamicData[] = {SLocPtr};
 | |
|   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
 | |
| 
 | |
|   EmitBlock(NoCheck);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // The return location should not be used after the check has been emitted.
 | |
|   ReturnLocation = Address::invalid();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
 | |
|   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
 | |
|   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
 | |
| }
 | |
| 
 | |
| static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
 | |
|                                           QualType Ty) {
 | |
|   // FIXME: Generate IR in one pass, rather than going back and fixing up these
 | |
|   // placeholders.
 | |
|   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
 | |
|   llvm::Type *IRPtrTy = IRTy->getPointerTo();
 | |
|   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
 | |
| 
 | |
|   // FIXME: When we generate this IR in one pass, we shouldn't need
 | |
|   // this win32-specific alignment hack.
 | |
|   CharUnits Align = CharUnits::fromQuantity(4);
 | |
|   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
 | |
| 
 | |
|   return AggValueSlot::forAddr(Address(Placeholder, Align),
 | |
|                                Ty.getQualifiers(),
 | |
|                                AggValueSlot::IsNotDestructed,
 | |
|                                AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                                AggValueSlot::IsNotAliased,
 | |
|                                AggValueSlot::DoesNotOverlap);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
 | |
|                                           const VarDecl *param,
 | |
|                                           SourceLocation loc) {
 | |
|   // StartFunction converted the ABI-lowered parameter(s) into a
 | |
|   // local alloca.  We need to turn that into an r-value suitable
 | |
|   // for EmitCall.
 | |
|   Address local = GetAddrOfLocalVar(param);
 | |
| 
 | |
|   QualType type = param->getType();
 | |
| 
 | |
|   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
 | |
|     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
 | |
|   }
 | |
| 
 | |
|   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
 | |
|   // but the argument needs to be the original pointer.
 | |
|   if (type->isReferenceType()) {
 | |
|     args.add(RValue::get(Builder.CreateLoad(local)), type);
 | |
| 
 | |
|   // In ARC, move out of consumed arguments so that the release cleanup
 | |
|   // entered by StartFunction doesn't cause an over-release.  This isn't
 | |
|   // optimal -O0 code generation, but it should get cleaned up when
 | |
|   // optimization is enabled.  This also assumes that delegate calls are
 | |
|   // performed exactly once for a set of arguments, but that should be safe.
 | |
|   } else if (getLangOpts().ObjCAutoRefCount &&
 | |
|              param->hasAttr<NSConsumedAttr>() &&
 | |
|              type->isObjCRetainableType()) {
 | |
|     llvm::Value *ptr = Builder.CreateLoad(local);
 | |
|     auto null =
 | |
|       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
 | |
|     Builder.CreateStore(null, local);
 | |
|     args.add(RValue::get(ptr), type);
 | |
| 
 | |
|   // For the most part, we just need to load the alloca, except that
 | |
|   // aggregate r-values are actually pointers to temporaries.
 | |
|   } else {
 | |
|     args.add(convertTempToRValue(local, type, loc), type);
 | |
|   }
 | |
| 
 | |
|   // Deactivate the cleanup for the callee-destructed param that was pushed.
 | |
|   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
 | |
|       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
 | |
|       param->needsDestruction(getContext())) {
 | |
|     EHScopeStack::stable_iterator cleanup =
 | |
|         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
 | |
|     assert(cleanup.isValid() &&
 | |
|            "cleanup for callee-destructed param not recorded");
 | |
|     // This unreachable is a temporary marker which will be removed later.
 | |
|     llvm::Instruction *isActive = Builder.CreateUnreachable();
 | |
|     args.addArgCleanupDeactivation(cleanup, isActive);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isProvablyNull(llvm::Value *addr) {
 | |
|   return isa<llvm::ConstantPointerNull>(addr);
 | |
| }
 | |
| 
 | |
| /// Emit the actual writing-back of a writeback.
 | |
| static void emitWriteback(CodeGenFunction &CGF,
 | |
|                           const CallArgList::Writeback &writeback) {
 | |
|   const LValue &srcLV = writeback.Source;
 | |
|   Address srcAddr = srcLV.getAddress(CGF);
 | |
|   assert(!isProvablyNull(srcAddr.getPointer()) &&
 | |
|          "shouldn't have writeback for provably null argument");
 | |
| 
 | |
|   llvm::BasicBlock *contBB = nullptr;
 | |
| 
 | |
|   // If the argument wasn't provably non-null, we need to null check
 | |
|   // before doing the store.
 | |
|   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
 | |
|                                               CGF.CGM.getDataLayout());
 | |
|   if (!provablyNonNull) {
 | |
|     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
 | |
|     contBB = CGF.createBasicBlock("icr.done");
 | |
| 
 | |
|     llvm::Value *isNull =
 | |
|       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
 | |
|     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
 | |
|     CGF.EmitBlock(writebackBB);
 | |
|   }
 | |
| 
 | |
|   // Load the value to writeback.
 | |
|   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
 | |
| 
 | |
|   // Cast it back, in case we're writing an id to a Foo* or something.
 | |
|   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
 | |
|                                     "icr.writeback-cast");
 | |
| 
 | |
|   // Perform the writeback.
 | |
| 
 | |
|   // If we have a "to use" value, it's something we need to emit a use
 | |
|   // of.  This has to be carefully threaded in: if it's done after the
 | |
|   // release it's potentially undefined behavior (and the optimizer
 | |
|   // will ignore it), and if it happens before the retain then the
 | |
|   // optimizer could move the release there.
 | |
|   if (writeback.ToUse) {
 | |
|     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
 | |
| 
 | |
|     // Retain the new value.  No need to block-copy here:  the block's
 | |
|     // being passed up the stack.
 | |
|     value = CGF.EmitARCRetainNonBlock(value);
 | |
| 
 | |
|     // Emit the intrinsic use here.
 | |
|     CGF.EmitARCIntrinsicUse(writeback.ToUse);
 | |
| 
 | |
|     // Load the old value (primitively).
 | |
|     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
 | |
| 
 | |
|     // Put the new value in place (primitively).
 | |
|     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
 | |
| 
 | |
|     // Release the old value.
 | |
|     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
 | |
| 
 | |
|   // Otherwise, we can just do a normal lvalue store.
 | |
|   } else {
 | |
|     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
 | |
|   }
 | |
| 
 | |
|   // Jump to the continuation block.
 | |
|   if (!provablyNonNull)
 | |
|     CGF.EmitBlock(contBB);
 | |
| }
 | |
| 
 | |
| static void emitWritebacks(CodeGenFunction &CGF,
 | |
|                            const CallArgList &args) {
 | |
|   for (const auto &I : args.writebacks())
 | |
|     emitWriteback(CGF, I);
 | |
| }
 | |
| 
 | |
| static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
 | |
|                                             const CallArgList &CallArgs) {
 | |
|   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
 | |
|     CallArgs.getCleanupsToDeactivate();
 | |
|   // Iterate in reverse to increase the likelihood of popping the cleanup.
 | |
|   for (const auto &I : llvm::reverse(Cleanups)) {
 | |
|     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
 | |
|     I.IsActiveIP->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
 | |
|   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
 | |
|     if (uop->getOpcode() == UO_AddrOf)
 | |
|       return uop->getSubExpr();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Emit an argument that's being passed call-by-writeback.  That is,
 | |
| /// we are passing the address of an __autoreleased temporary; it
 | |
| /// might be copy-initialized with the current value of the given
 | |
| /// address, but it will definitely be copied out of after the call.
 | |
| static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
 | |
|                              const ObjCIndirectCopyRestoreExpr *CRE) {
 | |
|   LValue srcLV;
 | |
| 
 | |
|   // Make an optimistic effort to emit the address as an l-value.
 | |
|   // This can fail if the argument expression is more complicated.
 | |
|   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
 | |
|     srcLV = CGF.EmitLValue(lvExpr);
 | |
| 
 | |
|   // Otherwise, just emit it as a scalar.
 | |
|   } else {
 | |
|     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
 | |
| 
 | |
|     QualType srcAddrType =
 | |
|       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
 | |
|     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
 | |
|   }
 | |
|   Address srcAddr = srcLV.getAddress(CGF);
 | |
| 
 | |
|   // The dest and src types don't necessarily match in LLVM terms
 | |
|   // because of the crazy ObjC compatibility rules.
 | |
| 
 | |
|   llvm::PointerType *destType =
 | |
|     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
 | |
| 
 | |
|   // If the address is a constant null, just pass the appropriate null.
 | |
|   if (isProvablyNull(srcAddr.getPointer())) {
 | |
|     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
 | |
|              CRE->getType());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Create the temporary.
 | |
|   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
 | |
|                                       CGF.getPointerAlign(),
 | |
|                                       "icr.temp");
 | |
|   // Loading an l-value can introduce a cleanup if the l-value is __weak,
 | |
|   // and that cleanup will be conditional if we can't prove that the l-value
 | |
|   // isn't null, so we need to register a dominating point so that the cleanups
 | |
|   // system will make valid IR.
 | |
|   CodeGenFunction::ConditionalEvaluation condEval(CGF);
 | |
| 
 | |
|   // Zero-initialize it if we're not doing a copy-initialization.
 | |
|   bool shouldCopy = CRE->shouldCopy();
 | |
|   if (!shouldCopy) {
 | |
|     llvm::Value *null =
 | |
|       llvm::ConstantPointerNull::get(
 | |
|         cast<llvm::PointerType>(destType->getElementType()));
 | |
|     CGF.Builder.CreateStore(null, temp);
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *contBB = nullptr;
 | |
|   llvm::BasicBlock *originBB = nullptr;
 | |
| 
 | |
|   // If the address is *not* known to be non-null, we need to switch.
 | |
|   llvm::Value *finalArgument;
 | |
| 
 | |
|   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
 | |
|                                               CGF.CGM.getDataLayout());
 | |
|   if (provablyNonNull) {
 | |
|     finalArgument = temp.getPointer();
 | |
|   } else {
 | |
|     llvm::Value *isNull =
 | |
|       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
 | |
| 
 | |
|     finalArgument = CGF.Builder.CreateSelect(isNull,
 | |
|                                    llvm::ConstantPointerNull::get(destType),
 | |
|                                              temp.getPointer(), "icr.argument");
 | |
| 
 | |
|     // If we need to copy, then the load has to be conditional, which
 | |
|     // means we need control flow.
 | |
|     if (shouldCopy) {
 | |
|       originBB = CGF.Builder.GetInsertBlock();
 | |
|       contBB = CGF.createBasicBlock("icr.cont");
 | |
|       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
 | |
|       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
 | |
|       CGF.EmitBlock(copyBB);
 | |
|       condEval.begin(CGF);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm::Value *valueToUse = nullptr;
 | |
| 
 | |
|   // Perform a copy if necessary.
 | |
|   if (shouldCopy) {
 | |
|     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
 | |
|     assert(srcRV.isScalar());
 | |
| 
 | |
|     llvm::Value *src = srcRV.getScalarVal();
 | |
|     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
 | |
|                                     "icr.cast");
 | |
| 
 | |
|     // Use an ordinary store, not a store-to-lvalue.
 | |
|     CGF.Builder.CreateStore(src, temp);
 | |
| 
 | |
|     // If optimization is enabled, and the value was held in a
 | |
|     // __strong variable, we need to tell the optimizer that this
 | |
|     // value has to stay alive until we're doing the store back.
 | |
|     // This is because the temporary is effectively unretained,
 | |
|     // and so otherwise we can violate the high-level semantics.
 | |
|     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
 | |
|         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
 | |
|       valueToUse = src;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finish the control flow if we needed it.
 | |
|   if (shouldCopy && !provablyNonNull) {
 | |
|     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
 | |
|     CGF.EmitBlock(contBB);
 | |
| 
 | |
|     // Make a phi for the value to intrinsically use.
 | |
|     if (valueToUse) {
 | |
|       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
 | |
|                                                       "icr.to-use");
 | |
|       phiToUse->addIncoming(valueToUse, copyBB);
 | |
|       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
 | |
|                             originBB);
 | |
|       valueToUse = phiToUse;
 | |
|     }
 | |
| 
 | |
|     condEval.end(CGF);
 | |
|   }
 | |
| 
 | |
|   args.addWriteback(srcLV, temp, valueToUse);
 | |
|   args.add(RValue::get(finalArgument), CRE->getType());
 | |
| }
 | |
| 
 | |
| void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
 | |
|   assert(!StackBase);
 | |
| 
 | |
|   // Save the stack.
 | |
|   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
 | |
|   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
 | |
| }
 | |
| 
 | |
| void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
 | |
|   if (StackBase) {
 | |
|     // Restore the stack after the call.
 | |
|     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
 | |
|     CGF.Builder.CreateCall(F, StackBase);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
 | |
|                                           SourceLocation ArgLoc,
 | |
|                                           AbstractCallee AC,
 | |
|                                           unsigned ParmNum) {
 | |
|   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
 | |
|                          SanOpts.has(SanitizerKind::NullabilityArg)))
 | |
|     return;
 | |
| 
 | |
|   // The param decl may be missing in a variadic function.
 | |
|   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
 | |
|   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
 | |
| 
 | |
|   // Prefer the nonnull attribute if it's present.
 | |
|   const NonNullAttr *NNAttr = nullptr;
 | |
|   if (SanOpts.has(SanitizerKind::NonnullAttribute))
 | |
|     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
 | |
| 
 | |
|   bool CanCheckNullability = false;
 | |
|   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
 | |
|     auto Nullability = PVD->getType()->getNullability(getContext());
 | |
|     CanCheckNullability = Nullability &&
 | |
|                           *Nullability == NullabilityKind::NonNull &&
 | |
|                           PVD->getTypeSourceInfo();
 | |
|   }
 | |
| 
 | |
|   if (!NNAttr && !CanCheckNullability)
 | |
|     return;
 | |
| 
 | |
|   SourceLocation AttrLoc;
 | |
|   SanitizerMask CheckKind;
 | |
|   SanitizerHandler Handler;
 | |
|   if (NNAttr) {
 | |
|     AttrLoc = NNAttr->getLocation();
 | |
|     CheckKind = SanitizerKind::NonnullAttribute;
 | |
|     Handler = SanitizerHandler::NonnullArg;
 | |
|   } else {
 | |
|     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
 | |
|     CheckKind = SanitizerKind::NullabilityArg;
 | |
|     Handler = SanitizerHandler::NullabilityArg;
 | |
|   }
 | |
| 
 | |
|   SanitizerScope SanScope(this);
 | |
|   assert(RV.isScalar());
 | |
|   llvm::Value *V = RV.getScalarVal();
 | |
|   llvm::Value *Cond =
 | |
|       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
 | |
|   llvm::Constant *StaticData[] = {
 | |
|       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
 | |
|       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
 | |
|   };
 | |
|   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCallArgs(
 | |
|     CallArgList &Args, ArrayRef<QualType> ArgTypes,
 | |
|     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
 | |
|     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
 | |
|   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
 | |
| 
 | |
|   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
 | |
|   // because arguments are destroyed left to right in the callee. As a special
 | |
|   // case, there are certain language constructs that require left-to-right
 | |
|   // evaluation, and in those cases we consider the evaluation order requirement
 | |
|   // to trump the "destruction order is reverse construction order" guarantee.
 | |
|   bool LeftToRight =
 | |
|       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
 | |
|           ? Order == EvaluationOrder::ForceLeftToRight
 | |
|           : Order != EvaluationOrder::ForceRightToLeft;
 | |
| 
 | |
|   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
 | |
|                                          RValue EmittedArg) {
 | |
|     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
 | |
|       return;
 | |
|     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
 | |
|     if (PS == nullptr)
 | |
|       return;
 | |
| 
 | |
|     const auto &Context = getContext();
 | |
|     auto SizeTy = Context.getSizeType();
 | |
|     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
 | |
|     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
 | |
|     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
 | |
|                                                      EmittedArg.getScalarVal(),
 | |
|                                                      PS->isDynamic());
 | |
|     Args.add(RValue::get(V), SizeTy);
 | |
|     // If we're emitting args in reverse, be sure to do so with
 | |
|     // pass_object_size, as well.
 | |
|     if (!LeftToRight)
 | |
|       std::swap(Args.back(), *(&Args.back() - 1));
 | |
|   };
 | |
| 
 | |
|   // Insert a stack save if we're going to need any inalloca args.
 | |
|   bool HasInAllocaArgs = false;
 | |
|   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
 | |
|     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
 | |
|          I != E && !HasInAllocaArgs; ++I)
 | |
|       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
 | |
|     if (HasInAllocaArgs) {
 | |
|       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
 | |
|       Args.allocateArgumentMemory(*this);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Evaluate each argument in the appropriate order.
 | |
|   size_t CallArgsStart = Args.size();
 | |
|   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
 | |
|     unsigned Idx = LeftToRight ? I : E - I - 1;
 | |
|     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
 | |
|     unsigned InitialArgSize = Args.size();
 | |
|     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
 | |
|     // the argument and parameter match or the objc method is parameterized.
 | |
|     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
 | |
|             getContext().hasSameUnqualifiedType((*Arg)->getType(),
 | |
|                                                 ArgTypes[Idx]) ||
 | |
|             (isa<ObjCMethodDecl>(AC.getDecl()) &&
 | |
|              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
 | |
|            "Argument and parameter types don't match");
 | |
|     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
 | |
|     // In particular, we depend on it being the last arg in Args, and the
 | |
|     // objectsize bits depend on there only being one arg if !LeftToRight.
 | |
|     assert(InitialArgSize + 1 == Args.size() &&
 | |
|            "The code below depends on only adding one arg per EmitCallArg");
 | |
|     (void)InitialArgSize;
 | |
|     // Since pointer argument are never emitted as LValue, it is safe to emit
 | |
|     // non-null argument check for r-value only.
 | |
|     if (!Args.back().hasLValue()) {
 | |
|       RValue RVArg = Args.back().getKnownRValue();
 | |
|       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
 | |
|                           ParamsToSkip + Idx);
 | |
|       // @llvm.objectsize should never have side-effects and shouldn't need
 | |
|       // destruction/cleanups, so we can safely "emit" it after its arg,
 | |
|       // regardless of right-to-leftness
 | |
|       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!LeftToRight) {
 | |
|     // Un-reverse the arguments we just evaluated so they match up with the LLVM
 | |
|     // IR function.
 | |
|     std::reverse(Args.begin() + CallArgsStart, Args.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
 | |
|   DestroyUnpassedArg(Address Addr, QualType Ty)
 | |
|       : Addr(Addr), Ty(Ty) {}
 | |
| 
 | |
|   Address Addr;
 | |
|   QualType Ty;
 | |
| 
 | |
|   void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|     QualType::DestructionKind DtorKind = Ty.isDestructedType();
 | |
|     if (DtorKind == QualType::DK_cxx_destructor) {
 | |
|       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
 | |
|       assert(!Dtor->isTrivial());
 | |
|       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
 | |
|                                 /*Delegating=*/false, Addr, Ty);
 | |
|     } else {
 | |
|       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct DisableDebugLocationUpdates {
 | |
|   CodeGenFunction &CGF;
 | |
|   bool disabledDebugInfo;
 | |
|   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
 | |
|     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
 | |
|       CGF.disableDebugInfo();
 | |
|   }
 | |
|   ~DisableDebugLocationUpdates() {
 | |
|     if (disabledDebugInfo)
 | |
|       CGF.enableDebugInfo();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| RValue CallArg::getRValue(CodeGenFunction &CGF) const {
 | |
|   if (!HasLV)
 | |
|     return RV;
 | |
|   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
 | |
|   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
 | |
|                         LV.isVolatile());
 | |
|   IsUsed = true;
 | |
|   return RValue::getAggregate(Copy.getAddress(CGF));
 | |
| }
 | |
| 
 | |
| void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
 | |
|   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
 | |
|   if (!HasLV && RV.isScalar())
 | |
|     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
 | |
|   else if (!HasLV && RV.isComplex())
 | |
|     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
 | |
|   else {
 | |
|     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
 | |
|     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
 | |
|     // We assume that call args are never copied into subobjects.
 | |
|     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
 | |
|                           HasLV ? LV.isVolatileQualified()
 | |
|                                 : RV.isVolatileQualified());
 | |
|   }
 | |
|   IsUsed = true;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
 | |
|                                   QualType type) {
 | |
|   DisableDebugLocationUpdates Dis(*this, E);
 | |
|   if (const ObjCIndirectCopyRestoreExpr *CRE
 | |
|         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
 | |
|     assert(getLangOpts().ObjCAutoRefCount);
 | |
|     return emitWritebackArg(*this, args, CRE);
 | |
|   }
 | |
| 
 | |
|   assert(type->isReferenceType() == E->isGLValue() &&
 | |
|          "reference binding to unmaterialized r-value!");
 | |
| 
 | |
|   if (E->isGLValue()) {
 | |
|     assert(E->getObjectKind() == OK_Ordinary);
 | |
|     return args.add(EmitReferenceBindingToExpr(E), type);
 | |
|   }
 | |
| 
 | |
|   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
 | |
| 
 | |
|   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
 | |
|   // However, we still have to push an EH-only cleanup in case we unwind before
 | |
|   // we make it to the call.
 | |
|   if (HasAggregateEvalKind &&
 | |
|       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
 | |
|     // If we're using inalloca, use the argument memory.  Otherwise, use a
 | |
|     // temporary.
 | |
|     AggValueSlot Slot;
 | |
|     if (args.isUsingInAlloca())
 | |
|       Slot = createPlaceholderSlot(*this, type);
 | |
|     else
 | |
|       Slot = CreateAggTemp(type, "agg.tmp");
 | |
| 
 | |
|     bool DestroyedInCallee = true, NeedsEHCleanup = true;
 | |
|     if (const auto *RD = type->getAsCXXRecordDecl())
 | |
|       DestroyedInCallee = RD->hasNonTrivialDestructor();
 | |
|     else
 | |
|       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
 | |
| 
 | |
|     if (DestroyedInCallee)
 | |
|       Slot.setExternallyDestructed();
 | |
| 
 | |
|     EmitAggExpr(E, Slot);
 | |
|     RValue RV = Slot.asRValue();
 | |
|     args.add(RV, type);
 | |
| 
 | |
|     if (DestroyedInCallee && NeedsEHCleanup) {
 | |
|       // Create a no-op GEP between the placeholder and the cleanup so we can
 | |
|       // RAUW it successfully.  It also serves as a marker of the first
 | |
|       // instruction where the cleanup is active.
 | |
|       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
 | |
|                                               type);
 | |
|       // This unreachable is a temporary marker which will be removed later.
 | |
|       llvm::Instruction *IsActive = Builder.CreateUnreachable();
 | |
|       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
 | |
|       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
 | |
|     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
 | |
|     assert(L.isSimple());
 | |
|     args.addUncopiedAggregate(L, type);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   args.add(EmitAnyExprToTemp(E), type);
 | |
| }
 | |
| 
 | |
| QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
 | |
|   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
 | |
|   // implicitly widens null pointer constants that are arguments to varargs
 | |
|   // functions to pointer-sized ints.
 | |
|   if (!getTarget().getTriple().isOSWindows())
 | |
|     return Arg->getType();
 | |
| 
 | |
|   if (Arg->getType()->isIntegerType() &&
 | |
|       getContext().getTypeSize(Arg->getType()) <
 | |
|           getContext().getTargetInfo().getPointerWidth(0) &&
 | |
|       Arg->isNullPointerConstant(getContext(),
 | |
|                                  Expr::NPC_ValueDependentIsNotNull)) {
 | |
|     return getContext().getIntPtrType();
 | |
|   }
 | |
| 
 | |
|   return Arg->getType();
 | |
| }
 | |
| 
 | |
| // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
 | |
| // optimizer it can aggressively ignore unwind edges.
 | |
| void
 | |
| CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
 | |
|   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
 | |
|       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
 | |
|     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
 | |
|                       CGM.getNoObjCARCExceptionsMetadata());
 | |
| }
 | |
| 
 | |
| /// Emits a call to the given no-arguments nounwind runtime function.
 | |
| llvm::CallInst *
 | |
| CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
 | |
|                                          const llvm::Twine &name) {
 | |
|   return EmitNounwindRuntimeCall(callee, None, name);
 | |
| }
 | |
| 
 | |
| /// Emits a call to the given nounwind runtime function.
 | |
| llvm::CallInst *
 | |
| CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
 | |
|                                          ArrayRef<llvm::Value *> args,
 | |
|                                          const llvm::Twine &name) {
 | |
|   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
 | |
|   call->setDoesNotThrow();
 | |
|   return call;
 | |
| }
 | |
| 
 | |
| /// Emits a simple call (never an invoke) to the given no-arguments
 | |
| /// runtime function.
 | |
| llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
 | |
|                                                  const llvm::Twine &name) {
 | |
|   return EmitRuntimeCall(callee, None, name);
 | |
| }
 | |
| 
 | |
| // Calls which may throw must have operand bundles indicating which funclet
 | |
| // they are nested within.
 | |
| SmallVector<llvm::OperandBundleDef, 1>
 | |
| CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
 | |
|   SmallVector<llvm::OperandBundleDef, 1> BundleList;
 | |
|   // There is no need for a funclet operand bundle if we aren't inside a
 | |
|   // funclet.
 | |
|   if (!CurrentFuncletPad)
 | |
|     return BundleList;
 | |
| 
 | |
|   // Skip intrinsics which cannot throw.
 | |
|   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
 | |
|   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
 | |
|     return BundleList;
 | |
| 
 | |
|   BundleList.emplace_back("funclet", CurrentFuncletPad);
 | |
|   return BundleList;
 | |
| }
 | |
| 
 | |
| /// Emits a simple call (never an invoke) to the given runtime function.
 | |
| llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
 | |
|                                                  ArrayRef<llvm::Value *> args,
 | |
|                                                  const llvm::Twine &name) {
 | |
|   llvm::CallInst *call = Builder.CreateCall(
 | |
|       callee, args, getBundlesForFunclet(callee.getCallee()), name);
 | |
|   call->setCallingConv(getRuntimeCC());
 | |
|   return call;
 | |
| }
 | |
| 
 | |
| /// Emits a call or invoke to the given noreturn runtime function.
 | |
| void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
 | |
|     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
 | |
|   SmallVector<llvm::OperandBundleDef, 1> BundleList =
 | |
|       getBundlesForFunclet(callee.getCallee());
 | |
| 
 | |
|   if (getInvokeDest()) {
 | |
|     llvm::InvokeInst *invoke =
 | |
|       Builder.CreateInvoke(callee,
 | |
|                            getUnreachableBlock(),
 | |
|                            getInvokeDest(),
 | |
|                            args,
 | |
|                            BundleList);
 | |
|     invoke->setDoesNotReturn();
 | |
|     invoke->setCallingConv(getRuntimeCC());
 | |
|   } else {
 | |
|     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
 | |
|     call->setDoesNotReturn();
 | |
|     call->setCallingConv(getRuntimeCC());
 | |
|     Builder.CreateUnreachable();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Emits a call or invoke instruction to the given nullary runtime function.
 | |
| llvm::CallBase *
 | |
| CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
 | |
|                                          const Twine &name) {
 | |
|   return EmitRuntimeCallOrInvoke(callee, None, name);
 | |
| }
 | |
| 
 | |
| /// Emits a call or invoke instruction to the given runtime function.
 | |
| llvm::CallBase *
 | |
| CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
 | |
|                                          ArrayRef<llvm::Value *> args,
 | |
|                                          const Twine &name) {
 | |
|   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
 | |
|   call->setCallingConv(getRuntimeCC());
 | |
|   return call;
 | |
| }
 | |
| 
 | |
| /// Emits a call or invoke instruction to the given function, depending
 | |
| /// on the current state of the EH stack.
 | |
| llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
 | |
|                                                   ArrayRef<llvm::Value *> Args,
 | |
|                                                   const Twine &Name) {
 | |
|   llvm::BasicBlock *InvokeDest = getInvokeDest();
 | |
|   SmallVector<llvm::OperandBundleDef, 1> BundleList =
 | |
|       getBundlesForFunclet(Callee.getCallee());
 | |
| 
 | |
|   llvm::CallBase *Inst;
 | |
|   if (!InvokeDest)
 | |
|     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
 | |
|   else {
 | |
|     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
 | |
|     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
 | |
|                                 Name);
 | |
|     EmitBlock(ContBB);
 | |
|   }
 | |
| 
 | |
|   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
 | |
|   // optimizer it can aggressively ignore unwind edges.
 | |
|   if (CGM.getLangOpts().ObjCAutoRefCount)
 | |
|     AddObjCARCExceptionMetadata(Inst);
 | |
| 
 | |
|   return Inst;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
 | |
|                                                   llvm::Value *New) {
 | |
|   DeferredReplacements.push_back(std::make_pair(Old, New));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Specify given \p NewAlign as the alignment of return value attribute. If
 | |
| /// such attribute already exists, re-set it to the maximal one of two options.
 | |
| LLVM_NODISCARD llvm::AttributeList
 | |
| maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
 | |
|                                 const llvm::AttributeList &Attrs,
 | |
|                                 llvm::Align NewAlign) {
 | |
|   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
 | |
|   if (CurAlign >= NewAlign)
 | |
|     return Attrs;
 | |
|   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
 | |
|   return Attrs
 | |
|       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
 | |
|                        llvm::Attribute::AttrKind::Alignment)
 | |
|       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
 | |
| }
 | |
| 
 | |
| template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
 | |
| protected:
 | |
|   CodeGenFunction &CGF;
 | |
| 
 | |
|   /// We do nothing if this is, or becomes, nullptr.
 | |
|   const AlignedAttrTy *AA = nullptr;
 | |
| 
 | |
|   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
 | |
|   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
 | |
| 
 | |
|   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
 | |
|       : CGF(CGF_) {
 | |
|     if (!FuncDecl)
 | |
|       return;
 | |
|     AA = FuncDecl->getAttr<AlignedAttrTy>();
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// If we can, materialize the alignment as an attribute on return value.
 | |
|   LLVM_NODISCARD llvm::AttributeList
 | |
|   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
 | |
|     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
 | |
|       return Attrs;
 | |
|     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
 | |
|     if (!AlignmentCI)
 | |
|       return Attrs;
 | |
|     // We may legitimately have non-power-of-2 alignment here.
 | |
|     // If so, this is UB land, emit it via `@llvm.assume` instead.
 | |
|     if (!AlignmentCI->getValue().isPowerOf2())
 | |
|       return Attrs;
 | |
|     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
 | |
|         CGF.getLLVMContext(), Attrs,
 | |
|         llvm::Align(
 | |
|             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
 | |
|     AA = nullptr; // We're done. Disallow doing anything else.
 | |
|     return NewAttrs;
 | |
|   }
 | |
| 
 | |
|   /// Emit alignment assumption.
 | |
|   /// This is a general fallback that we take if either there is an offset,
 | |
|   /// or the alignment is variable or we are sanitizing for alignment.
 | |
|   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
 | |
|     if (!AA)
 | |
|       return;
 | |
|     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
 | |
|                                 AA->getLocation(), Alignment, OffsetCI);
 | |
|     AA = nullptr; // We're done. Disallow doing anything else.
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Helper data structure to emit `AssumeAlignedAttr`.
 | |
| class AssumeAlignedAttrEmitter final
 | |
|     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
 | |
| public:
 | |
|   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
 | |
|       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
 | |
|     if (!AA)
 | |
|       return;
 | |
|     // It is guaranteed that the alignment/offset are constants.
 | |
|     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
 | |
|     if (Expr *Offset = AA->getOffset()) {
 | |
|       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
 | |
|       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
 | |
|         OffsetCI = nullptr;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Helper data structure to emit `AllocAlignAttr`.
 | |
| class AllocAlignAttrEmitter final
 | |
|     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
 | |
| public:
 | |
|   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
 | |
|                         const CallArgList &CallArgs)
 | |
|       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
 | |
|     if (!AA)
 | |
|       return;
 | |
|     // Alignment may or may not be a constant, and that is okay.
 | |
|     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
 | |
|                     .getRValue(CGF)
 | |
|                     .getScalarVal();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
 | |
|                                  const CGCallee &Callee,
 | |
|                                  ReturnValueSlot ReturnValue,
 | |
|                                  const CallArgList &CallArgs,
 | |
|                                  llvm::CallBase **callOrInvoke,
 | |
|                                  SourceLocation Loc) {
 | |
|   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
 | |
| 
 | |
|   assert(Callee.isOrdinary() || Callee.isVirtual());
 | |
| 
 | |
|   // Handle struct-return functions by passing a pointer to the
 | |
|   // location that we would like to return into.
 | |
|   QualType RetTy = CallInfo.getReturnType();
 | |
|   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
 | |
| 
 | |
|   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
 | |
| 
 | |
|   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
 | |
|   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
 | |
|     // We can only guarantee that a function is called from the correct
 | |
|     // context/function based on the appropriate target attributes,
 | |
|     // so only check in the case where we have both always_inline and target
 | |
|     // since otherwise we could be making a conditional call after a check for
 | |
|     // the proper cpu features (and it won't cause code generation issues due to
 | |
|     // function based code generation).
 | |
|     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
 | |
|         TargetDecl->hasAttr<TargetAttr>())
 | |
|       checkTargetFeatures(Loc, FD);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
 | |
|     // For an inalloca varargs function, we don't expect CallInfo to match the
 | |
|     // function pointer's type, because the inalloca struct a will have extra
 | |
|     // fields in it for the varargs parameters.  Code later in this function
 | |
|     // bitcasts the function pointer to the type derived from CallInfo.
 | |
|     //
 | |
|     // In other cases, we assert that the types match up (until pointers stop
 | |
|     // having pointee types).
 | |
|     llvm::Type *TypeFromVal;
 | |
|     if (Callee.isVirtual())
 | |
|       TypeFromVal = Callee.getVirtualFunctionType();
 | |
|     else
 | |
|       TypeFromVal =
 | |
|           Callee.getFunctionPointer()->getType()->getPointerElementType();
 | |
|     assert(IRFuncTy == TypeFromVal);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // 1. Set up the arguments.
 | |
| 
 | |
|   // If we're using inalloca, insert the allocation after the stack save.
 | |
|   // FIXME: Do this earlier rather than hacking it in here!
 | |
|   Address ArgMemory = Address::invalid();
 | |
|   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
 | |
|     const llvm::DataLayout &DL = CGM.getDataLayout();
 | |
|     llvm::Instruction *IP = CallArgs.getStackBase();
 | |
|     llvm::AllocaInst *AI;
 | |
|     if (IP) {
 | |
|       IP = IP->getNextNode();
 | |
|       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
 | |
|                                 "argmem", IP);
 | |
|     } else {
 | |
|       AI = CreateTempAlloca(ArgStruct, "argmem");
 | |
|     }
 | |
|     auto Align = CallInfo.getArgStructAlignment();
 | |
|     AI->setAlignment(Align.getAsAlign());
 | |
|     AI->setUsedWithInAlloca(true);
 | |
|     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
 | |
|     ArgMemory = Address(AI, Align);
 | |
|   }
 | |
| 
 | |
|   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
 | |
|   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
 | |
| 
 | |
|   // If the call returns a temporary with struct return, create a temporary
 | |
|   // alloca to hold the result, unless one is given to us.
 | |
|   Address SRetPtr = Address::invalid();
 | |
|   Address SRetAlloca = Address::invalid();
 | |
|   llvm::Value *UnusedReturnSizePtr = nullptr;
 | |
|   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
 | |
|     if (!ReturnValue.isNull()) {
 | |
|       SRetPtr = ReturnValue.getValue();
 | |
|     } else {
 | |
|       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
 | |
|       if (HaveInsertPoint() && ReturnValue.isUnused()) {
 | |
|         uint64_t size =
 | |
|             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
 | |
|         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
 | |
|       }
 | |
|     }
 | |
|     if (IRFunctionArgs.hasSRetArg()) {
 | |
|       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
 | |
|     } else if (RetAI.isInAlloca()) {
 | |
|       Address Addr =
 | |
|           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
 | |
|       Builder.CreateStore(SRetPtr.getPointer(), Addr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Address swiftErrorTemp = Address::invalid();
 | |
|   Address swiftErrorArg = Address::invalid();
 | |
| 
 | |
|   // When passing arguments using temporary allocas, we need to add the
 | |
|   // appropriate lifetime markers. This vector keeps track of all the lifetime
 | |
|   // markers that need to be ended right after the call.
 | |
|   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
 | |
| 
 | |
|   // Translate all of the arguments as necessary to match the IR lowering.
 | |
|   assert(CallInfo.arg_size() == CallArgs.size() &&
 | |
|          "Mismatch between function signature & arguments.");
 | |
|   unsigned ArgNo = 0;
 | |
|   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
 | |
|   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
 | |
|        I != E; ++I, ++info_it, ++ArgNo) {
 | |
|     const ABIArgInfo &ArgInfo = info_it->info;
 | |
| 
 | |
|     // Insert a padding argument to ensure proper alignment.
 | |
|     if (IRFunctionArgs.hasPaddingArg(ArgNo))
 | |
|       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
 | |
|           llvm::UndefValue::get(ArgInfo.getPaddingType());
 | |
| 
 | |
|     unsigned FirstIRArg, NumIRArgs;
 | |
|     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
 | |
| 
 | |
|     switch (ArgInfo.getKind()) {
 | |
|     case ABIArgInfo::InAlloca: {
 | |
|       assert(NumIRArgs == 0);
 | |
|       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
 | |
|       if (I->isAggregate()) {
 | |
|         Address Addr = I->hasLValue()
 | |
|                            ? I->getKnownLValue().getAddress(*this)
 | |
|                            : I->getKnownRValue().getAggregateAddress();
 | |
|         llvm::Instruction *Placeholder =
 | |
|             cast<llvm::Instruction>(Addr.getPointer());
 | |
| 
 | |
|         if (!ArgInfo.getInAllocaIndirect()) {
 | |
|           // Replace the placeholder with the appropriate argument slot GEP.
 | |
|           CGBuilderTy::InsertPoint IP = Builder.saveIP();
 | |
|           Builder.SetInsertPoint(Placeholder);
 | |
|           Addr = Builder.CreateStructGEP(ArgMemory,
 | |
|                                          ArgInfo.getInAllocaFieldIndex());
 | |
|           Builder.restoreIP(IP);
 | |
|         } else {
 | |
|           // For indirect things such as overaligned structs, replace the
 | |
|           // placeholder with a regular aggregate temporary alloca. Store the
 | |
|           // address of this alloca into the struct.
 | |
|           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
 | |
|           Address ArgSlot = Builder.CreateStructGEP(
 | |
|               ArgMemory, ArgInfo.getInAllocaFieldIndex());
 | |
|           Builder.CreateStore(Addr.getPointer(), ArgSlot);
 | |
|         }
 | |
|         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
 | |
|       } else if (ArgInfo.getInAllocaIndirect()) {
 | |
|         // Make a temporary alloca and store the address of it into the argument
 | |
|         // struct.
 | |
|         Address Addr = CreateMemTempWithoutCast(
 | |
|             I->Ty, getContext().getTypeAlignInChars(I->Ty),
 | |
|             "indirect-arg-temp");
 | |
|         I->copyInto(*this, Addr);
 | |
|         Address ArgSlot =
 | |
|             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
 | |
|         Builder.CreateStore(Addr.getPointer(), ArgSlot);
 | |
|       } else {
 | |
|         // Store the RValue into the argument struct.
 | |
|         Address Addr =
 | |
|             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
 | |
|         unsigned AS = Addr.getType()->getPointerAddressSpace();
 | |
|         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
 | |
|         // There are some cases where a trivial bitcast is not avoidable.  The
 | |
|         // definition of a type later in a translation unit may change it's type
 | |
|         // from {}* to (%struct.foo*)*.
 | |
|         if (Addr.getType() != MemType)
 | |
|           Addr = Builder.CreateBitCast(Addr, MemType);
 | |
|         I->copyInto(*this, Addr);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Indirect: {
 | |
|       assert(NumIRArgs == 1);
 | |
|       if (!I->isAggregate()) {
 | |
|         // Make a temporary alloca to pass the argument.
 | |
|         Address Addr = CreateMemTempWithoutCast(
 | |
|             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
 | |
|         IRCallArgs[FirstIRArg] = Addr.getPointer();
 | |
| 
 | |
|         I->copyInto(*this, Addr);
 | |
|       } else {
 | |
|         // We want to avoid creating an unnecessary temporary+copy here;
 | |
|         // however, we need one in three cases:
 | |
|         // 1. If the argument is not byval, and we are required to copy the
 | |
|         //    source.  (This case doesn't occur on any common architecture.)
 | |
|         // 2. If the argument is byval, RV is not sufficiently aligned, and
 | |
|         //    we cannot force it to be sufficiently aligned.
 | |
|         // 3. If the argument is byval, but RV is not located in default
 | |
|         //    or alloca address space.
 | |
|         Address Addr = I->hasLValue()
 | |
|                            ? I->getKnownLValue().getAddress(*this)
 | |
|                            : I->getKnownRValue().getAggregateAddress();
 | |
|         llvm::Value *V = Addr.getPointer();
 | |
|         CharUnits Align = ArgInfo.getIndirectAlign();
 | |
|         const llvm::DataLayout *TD = &CGM.getDataLayout();
 | |
| 
 | |
|         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
 | |
|                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
 | |
|                     TD->getAllocaAddrSpace()) &&
 | |
|                "indirect argument must be in alloca address space");
 | |
| 
 | |
|         bool NeedCopy = false;
 | |
| 
 | |
|         if (Addr.getAlignment() < Align &&
 | |
|             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
 | |
|                 Align.getQuantity()) {
 | |
|           NeedCopy = true;
 | |
|         } else if (I->hasLValue()) {
 | |
|           auto LV = I->getKnownLValue();
 | |
|           auto AS = LV.getAddressSpace();
 | |
| 
 | |
|           if (!ArgInfo.getIndirectByVal() ||
 | |
|               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
 | |
|             NeedCopy = true;
 | |
|           }
 | |
|           if (!getLangOpts().OpenCL) {
 | |
|             if ((ArgInfo.getIndirectByVal() &&
 | |
|                 (AS != LangAS::Default &&
 | |
|                  AS != CGM.getASTAllocaAddressSpace()))) {
 | |
|               NeedCopy = true;
 | |
|             }
 | |
|           }
 | |
|           // For OpenCL even if RV is located in default or alloca address space
 | |
|           // we don't want to perform address space cast for it.
 | |
|           else if ((ArgInfo.getIndirectByVal() &&
 | |
|                     Addr.getType()->getAddressSpace() != IRFuncTy->
 | |
|                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
 | |
|             NeedCopy = true;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (NeedCopy) {
 | |
|           // Create an aligned temporary, and copy to it.
 | |
|           Address AI = CreateMemTempWithoutCast(
 | |
|               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
 | |
|           IRCallArgs[FirstIRArg] = AI.getPointer();
 | |
| 
 | |
|           // Emit lifetime markers for the temporary alloca.
 | |
|           uint64_t ByvalTempElementSize =
 | |
|               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
 | |
|           llvm::Value *LifetimeSize =
 | |
|               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
 | |
| 
 | |
|           // Add cleanup code to emit the end lifetime marker after the call.
 | |
|           if (LifetimeSize) // In case we disabled lifetime markers.
 | |
|             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
 | |
| 
 | |
|           // Generate the copy.
 | |
|           I->copyInto(*this, AI);
 | |
|         } else {
 | |
|           // Skip the extra memcpy call.
 | |
|           auto *T = V->getType()->getPointerElementType()->getPointerTo(
 | |
|               CGM.getDataLayout().getAllocaAddrSpace());
 | |
|           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
 | |
|               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
 | |
|               true);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Ignore:
 | |
|       assert(NumIRArgs == 0);
 | |
|       break;
 | |
| 
 | |
|     case ABIArgInfo::Extend:
 | |
|     case ABIArgInfo::Direct: {
 | |
|       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
 | |
|           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
 | |
|           ArgInfo.getDirectOffset() == 0) {
 | |
|         assert(NumIRArgs == 1);
 | |
|         llvm::Value *V;
 | |
|         if (!I->isAggregate())
 | |
|           V = I->getKnownRValue().getScalarVal();
 | |
|         else
 | |
|           V = Builder.CreateLoad(
 | |
|               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
 | |
|                              : I->getKnownRValue().getAggregateAddress());
 | |
| 
 | |
|         // Implement swifterror by copying into a new swifterror argument.
 | |
|         // We'll write back in the normal path out of the call.
 | |
|         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
 | |
|               == ParameterABI::SwiftErrorResult) {
 | |
|           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
 | |
| 
 | |
|           QualType pointeeTy = I->Ty->getPointeeType();
 | |
|           swiftErrorArg =
 | |
|             Address(V, getContext().getTypeAlignInChars(pointeeTy));
 | |
| 
 | |
|           swiftErrorTemp =
 | |
|             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
 | |
|           V = swiftErrorTemp.getPointer();
 | |
|           cast<llvm::AllocaInst>(V)->setSwiftError(true);
 | |
| 
 | |
|           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
 | |
|           Builder.CreateStore(errorValue, swiftErrorTemp);
 | |
|         }
 | |
| 
 | |
|         // We might have to widen integers, but we should never truncate.
 | |
|         if (ArgInfo.getCoerceToType() != V->getType() &&
 | |
|             V->getType()->isIntegerTy())
 | |
|           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
 | |
| 
 | |
|         // If the argument doesn't match, perform a bitcast to coerce it.  This
 | |
|         // can happen due to trivial type mismatches.
 | |
|         if (FirstIRArg < IRFuncTy->getNumParams() &&
 | |
|             V->getType() != IRFuncTy->getParamType(FirstIRArg))
 | |
|           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
 | |
| 
 | |
|         IRCallArgs[FirstIRArg] = V;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // FIXME: Avoid the conversion through memory if possible.
 | |
|       Address Src = Address::invalid();
 | |
|       if (!I->isAggregate()) {
 | |
|         Src = CreateMemTemp(I->Ty, "coerce");
 | |
|         I->copyInto(*this, Src);
 | |
|       } else {
 | |
|         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
 | |
|                              : I->getKnownRValue().getAggregateAddress();
 | |
|       }
 | |
| 
 | |
|       // If the value is offset in memory, apply the offset now.
 | |
|       Src = emitAddressAtOffset(*this, Src, ArgInfo);
 | |
| 
 | |
|       // Fast-isel and the optimizer generally like scalar values better than
 | |
|       // FCAs, so we flatten them if this is safe to do for this argument.
 | |
|       llvm::StructType *STy =
 | |
|             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
 | |
|       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
 | |
|         llvm::Type *SrcTy = Src.getType()->getElementType();
 | |
|         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
 | |
|         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
 | |
| 
 | |
|         // If the source type is smaller than the destination type of the
 | |
|         // coerce-to logic, copy the source value into a temp alloca the size
 | |
|         // of the destination type to allow loading all of it. The bits past
 | |
|         // the source value are left undef.
 | |
|         if (SrcSize < DstSize) {
 | |
|           Address TempAlloca
 | |
|             = CreateTempAlloca(STy, Src.getAlignment(),
 | |
|                                Src.getName() + ".coerce");
 | |
|           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
 | |
|           Src = TempAlloca;
 | |
|         } else {
 | |
|           Src = Builder.CreateBitCast(Src,
 | |
|                                       STy->getPointerTo(Src.getAddressSpace()));
 | |
|         }
 | |
| 
 | |
|         assert(NumIRArgs == STy->getNumElements());
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|           Address EltPtr = Builder.CreateStructGEP(Src, i);
 | |
|           llvm::Value *LI = Builder.CreateLoad(EltPtr);
 | |
|           IRCallArgs[FirstIRArg + i] = LI;
 | |
|         }
 | |
|       } else {
 | |
|         // In the simple case, just pass the coerced loaded value.
 | |
|         assert(NumIRArgs == 1);
 | |
|         IRCallArgs[FirstIRArg] =
 | |
|           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::CoerceAndExpand: {
 | |
|       auto coercionType = ArgInfo.getCoerceAndExpandType();
 | |
|       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
 | |
| 
 | |
|       llvm::Value *tempSize = nullptr;
 | |
|       Address addr = Address::invalid();
 | |
|       Address AllocaAddr = Address::invalid();
 | |
|       if (I->isAggregate()) {
 | |
|         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
 | |
|                               : I->getKnownRValue().getAggregateAddress();
 | |
| 
 | |
|       } else {
 | |
|         RValue RV = I->getKnownRValue();
 | |
|         assert(RV.isScalar()); // complex should always just be direct
 | |
| 
 | |
|         llvm::Type *scalarType = RV.getScalarVal()->getType();
 | |
|         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
 | |
|         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
 | |
| 
 | |
|         // Materialize to a temporary.
 | |
|         addr = CreateTempAlloca(
 | |
|             RV.getScalarVal()->getType(),
 | |
|             CharUnits::fromQuantity(std::max(
 | |
|                 (unsigned)layout->getAlignment().value(), scalarAlign)),
 | |
|             "tmp",
 | |
|             /*ArraySize=*/nullptr, &AllocaAddr);
 | |
|         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
 | |
| 
 | |
|         Builder.CreateStore(RV.getScalarVal(), addr);
 | |
|       }
 | |
| 
 | |
|       addr = Builder.CreateElementBitCast(addr, coercionType);
 | |
| 
 | |
|       unsigned IRArgPos = FirstIRArg;
 | |
|       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
 | |
|         llvm::Type *eltType = coercionType->getElementType(i);
 | |
|         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
 | |
|         Address eltAddr = Builder.CreateStructGEP(addr, i);
 | |
|         llvm::Value *elt = Builder.CreateLoad(eltAddr);
 | |
|         IRCallArgs[IRArgPos++] = elt;
 | |
|       }
 | |
|       assert(IRArgPos == FirstIRArg + NumIRArgs);
 | |
| 
 | |
|       if (tempSize) {
 | |
|         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Expand:
 | |
|       unsigned IRArgPos = FirstIRArg;
 | |
|       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
 | |
|       assert(IRArgPos == FirstIRArg + NumIRArgs);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
 | |
|   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
 | |
| 
 | |
|   // If we're using inalloca, set up that argument.
 | |
|   if (ArgMemory.isValid()) {
 | |
|     llvm::Value *Arg = ArgMemory.getPointer();
 | |
|     if (CallInfo.isVariadic()) {
 | |
|       // When passing non-POD arguments by value to variadic functions, we will
 | |
|       // end up with a variadic prototype and an inalloca call site.  In such
 | |
|       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
 | |
|       // the callee.
 | |
|       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
 | |
|       CalleePtr =
 | |
|           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
 | |
|     } else {
 | |
|       llvm::Type *LastParamTy =
 | |
|           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
 | |
|       if (Arg->getType() != LastParamTy) {
 | |
| #ifndef NDEBUG
 | |
|         // Assert that these structs have equivalent element types.
 | |
|         llvm::StructType *FullTy = CallInfo.getArgStruct();
 | |
|         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
 | |
|             cast<llvm::PointerType>(LastParamTy)->getElementType());
 | |
|         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
 | |
|         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
 | |
|                                                 DE = DeclaredTy->element_end(),
 | |
|                                                 FI = FullTy->element_begin();
 | |
|              DI != DE; ++DI, ++FI)
 | |
|           assert(*DI == *FI);
 | |
| #endif
 | |
|         Arg = Builder.CreateBitCast(Arg, LastParamTy);
 | |
|       }
 | |
|     }
 | |
|     assert(IRFunctionArgs.hasInallocaArg());
 | |
|     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
 | |
|   }
 | |
| 
 | |
|   // 2. Prepare the function pointer.
 | |
| 
 | |
|   // If the callee is a bitcast of a non-variadic function to have a
 | |
|   // variadic function pointer type, check to see if we can remove the
 | |
|   // bitcast.  This comes up with unprototyped functions.
 | |
|   //
 | |
|   // This makes the IR nicer, but more importantly it ensures that we
 | |
|   // can inline the function at -O0 if it is marked always_inline.
 | |
|   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
 | |
|                                    llvm::Value *Ptr) -> llvm::Function * {
 | |
|     if (!CalleeFT->isVarArg())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Get underlying value if it's a bitcast
 | |
|     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
 | |
|       if (CE->getOpcode() == llvm::Instruction::BitCast)
 | |
|         Ptr = CE->getOperand(0);
 | |
|     }
 | |
| 
 | |
|     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
 | |
|     if (!OrigFn)
 | |
|       return nullptr;
 | |
| 
 | |
|     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
 | |
| 
 | |
|     // If the original type is variadic, or if any of the component types
 | |
|     // disagree, we cannot remove the cast.
 | |
|     if (OrigFT->isVarArg() ||
 | |
|         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
 | |
|         OrigFT->getReturnType() != CalleeFT->getReturnType())
 | |
|       return nullptr;
 | |
| 
 | |
|     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
 | |
|       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
 | |
|         return nullptr;
 | |
| 
 | |
|     return OrigFn;
 | |
|   };
 | |
| 
 | |
|   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
 | |
|     CalleePtr = OrigFn;
 | |
|     IRFuncTy = OrigFn->getFunctionType();
 | |
|   }
 | |
| 
 | |
|   // 3. Perform the actual call.
 | |
| 
 | |
|   // Deactivate any cleanups that we're supposed to do immediately before
 | |
|   // the call.
 | |
|   if (!CallArgs.getCleanupsToDeactivate().empty())
 | |
|     deactivateArgCleanupsBeforeCall(*this, CallArgs);
 | |
| 
 | |
|   // Assert that the arguments we computed match up.  The IR verifier
 | |
|   // will catch this, but this is a common enough source of problems
 | |
|   // during IRGen changes that it's way better for debugging to catch
 | |
|   // it ourselves here.
 | |
| #ifndef NDEBUG
 | |
|   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
 | |
|   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
 | |
|     // Inalloca argument can have different type.
 | |
|     if (IRFunctionArgs.hasInallocaArg() &&
 | |
|         i == IRFunctionArgs.getInallocaArgNo())
 | |
|       continue;
 | |
|     if (i < IRFuncTy->getNumParams())
 | |
|       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Update the largest vector width if any arguments have vector types.
 | |
|   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
 | |
|     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
 | |
|       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
 | |
|                                    VT->getPrimitiveSizeInBits().getFixedSize());
 | |
|   }
 | |
| 
 | |
|   // Compute the calling convention and attributes.
 | |
|   unsigned CallingConv;
 | |
|   llvm::AttributeList Attrs;
 | |
|   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
 | |
|                              Callee.getAbstractInfo(), Attrs, CallingConv,
 | |
|                              /*AttrOnCallSite=*/true);
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
 | |
|     if (FD->usesFPIntrin())
 | |
|       // All calls within a strictfp function are marked strictfp
 | |
|       Attrs =
 | |
|         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
 | |
|                            llvm::Attribute::StrictFP);
 | |
| 
 | |
|   // Apply some call-site-specific attributes.
 | |
|   // TODO: work this into building the attribute set.
 | |
| 
 | |
|   // Apply always_inline to all calls within flatten functions.
 | |
|   // FIXME: should this really take priority over __try, below?
 | |
|   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
 | |
|       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
 | |
|     Attrs =
 | |
|         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
 | |
|                            llvm::Attribute::AlwaysInline);
 | |
|   }
 | |
| 
 | |
|   // Disable inlining inside SEH __try blocks.
 | |
|   if (isSEHTryScope()) {
 | |
|     Attrs =
 | |
|         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
 | |
|                            llvm::Attribute::NoInline);
 | |
|   }
 | |
| 
 | |
|   // Decide whether to use a call or an invoke.
 | |
|   bool CannotThrow;
 | |
|   if (currentFunctionUsesSEHTry()) {
 | |
|     // SEH cares about asynchronous exceptions, so everything can "throw."
 | |
|     CannotThrow = false;
 | |
|   } else if (isCleanupPadScope() &&
 | |
|              EHPersonality::get(*this).isMSVCXXPersonality()) {
 | |
|     // The MSVC++ personality will implicitly terminate the program if an
 | |
|     // exception is thrown during a cleanup outside of a try/catch.
 | |
|     // We don't need to model anything in IR to get this behavior.
 | |
|     CannotThrow = true;
 | |
|   } else {
 | |
|     // Otherwise, nounwind call sites will never throw.
 | |
|     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
 | |
|                                      llvm::Attribute::NoUnwind);
 | |
|   }
 | |
| 
 | |
|   // If we made a temporary, be sure to clean up after ourselves. Note that we
 | |
|   // can't depend on being inside of an ExprWithCleanups, so we need to manually
 | |
|   // pop this cleanup later on. Being eager about this is OK, since this
 | |
|   // temporary is 'invisible' outside of the callee.
 | |
|   if (UnusedReturnSizePtr)
 | |
|     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
 | |
|                                          UnusedReturnSizePtr);
 | |
| 
 | |
|   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
 | |
| 
 | |
|   SmallVector<llvm::OperandBundleDef, 1> BundleList =
 | |
|       getBundlesForFunclet(CalleePtr);
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
 | |
|     if (FD->usesFPIntrin())
 | |
|       // All calls within a strictfp function are marked strictfp
 | |
|       Attrs =
 | |
|         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
 | |
|                            llvm::Attribute::StrictFP);
 | |
| 
 | |
|   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
 | |
|   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
 | |
| 
 | |
|   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
 | |
|   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
 | |
| 
 | |
|   // Emit the actual call/invoke instruction.
 | |
|   llvm::CallBase *CI;
 | |
|   if (!InvokeDest) {
 | |
|     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
 | |
|   } else {
 | |
|     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
 | |
|     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
 | |
|                               BundleList);
 | |
|     EmitBlock(Cont);
 | |
|   }
 | |
|   if (callOrInvoke)
 | |
|     *callOrInvoke = CI;
 | |
| 
 | |
|   // If this is within a function that has the guard(nocf) attribute and is an
 | |
|   // indirect call, add the "guard_nocf" attribute to this call to indicate that
 | |
|   // Control Flow Guard checks should not be added, even if the call is inlined.
 | |
|   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
 | |
|     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
 | |
|       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
 | |
|         Attrs = Attrs.addAttribute(
 | |
|             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Apply the attributes and calling convention.
 | |
|   CI->setAttributes(Attrs);
 | |
|   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
 | |
| 
 | |
|   // Apply various metadata.
 | |
| 
 | |
|   if (!CI->getType()->isVoidTy())
 | |
|     CI->setName("call");
 | |
| 
 | |
|   // Update largest vector width from the return type.
 | |
|   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
 | |
|     LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
 | |
|                                   VT->getPrimitiveSizeInBits().getFixedSize());
 | |
| 
 | |
|   // Insert instrumentation or attach profile metadata at indirect call sites.
 | |
|   // For more details, see the comment before the definition of
 | |
|   // IPVK_IndirectCallTarget in InstrProfData.inc.
 | |
|   if (!CI->getCalledFunction())
 | |
|     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
 | |
|                      CI, CalleePtr);
 | |
| 
 | |
|   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
 | |
|   // optimizer it can aggressively ignore unwind edges.
 | |
|   if (CGM.getLangOpts().ObjCAutoRefCount)
 | |
|     AddObjCARCExceptionMetadata(CI);
 | |
| 
 | |
|   // Suppress tail calls if requested.
 | |
|   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
 | |
|     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
 | |
|       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
 | |
|   }
 | |
| 
 | |
|   // Add metadata for calls to MSAllocator functions
 | |
|   if (getDebugInfo() && TargetDecl &&
 | |
|       TargetDecl->hasAttr<MSAllocatorAttr>())
 | |
|     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
 | |
| 
 | |
|   // 4. Finish the call.
 | |
| 
 | |
|   // If the call doesn't return, finish the basic block and clear the
 | |
|   // insertion point; this allows the rest of IRGen to discard
 | |
|   // unreachable code.
 | |
|   if (CI->doesNotReturn()) {
 | |
|     if (UnusedReturnSizePtr)
 | |
|       PopCleanupBlock();
 | |
| 
 | |
|     // Strip away the noreturn attribute to better diagnose unreachable UB.
 | |
|     if (SanOpts.has(SanitizerKind::Unreachable)) {
 | |
|       // Also remove from function since CallBase::hasFnAttr additionally checks
 | |
|       // attributes of the called function.
 | |
|       if (auto *F = CI->getCalledFunction())
 | |
|         F->removeFnAttr(llvm::Attribute::NoReturn);
 | |
|       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
 | |
|                           llvm::Attribute::NoReturn);
 | |
| 
 | |
|       // Avoid incompatibility with ASan which relies on the `noreturn`
 | |
|       // attribute to insert handler calls.
 | |
|       if (SanOpts.hasOneOf(SanitizerKind::Address |
 | |
|                            SanitizerKind::KernelAddress)) {
 | |
|         SanitizerScope SanScope(this);
 | |
|         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
 | |
|         Builder.SetInsertPoint(CI);
 | |
|         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
 | |
|         llvm::FunctionCallee Fn =
 | |
|             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
 | |
|         EmitNounwindRuntimeCall(Fn);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     EmitUnreachable(Loc);
 | |
|     Builder.ClearInsertionPoint();
 | |
| 
 | |
|     // FIXME: For now, emit a dummy basic block because expr emitters in
 | |
|     // generally are not ready to handle emitting expressions at unreachable
 | |
|     // points.
 | |
|     EnsureInsertPoint();
 | |
| 
 | |
|     // Return a reasonable RValue.
 | |
|     return GetUndefRValue(RetTy);
 | |
|   }
 | |
| 
 | |
|   // Perform the swifterror writeback.
 | |
|   if (swiftErrorTemp.isValid()) {
 | |
|     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
 | |
|     Builder.CreateStore(errorResult, swiftErrorArg);
 | |
|   }
 | |
| 
 | |
|   // Emit any call-associated writebacks immediately.  Arguably this
 | |
|   // should happen after any return-value munging.
 | |
|   if (CallArgs.hasWritebacks())
 | |
|     emitWritebacks(*this, CallArgs);
 | |
| 
 | |
|   // The stack cleanup for inalloca arguments has to run out of the normal
 | |
|   // lexical order, so deactivate it and run it manually here.
 | |
|   CallArgs.freeArgumentMemory(*this);
 | |
| 
 | |
|   // Extract the return value.
 | |
|   RValue Ret = [&] {
 | |
|     switch (RetAI.getKind()) {
 | |
|     case ABIArgInfo::CoerceAndExpand: {
 | |
|       auto coercionType = RetAI.getCoerceAndExpandType();
 | |
| 
 | |
|       Address addr = SRetPtr;
 | |
|       addr = Builder.CreateElementBitCast(addr, coercionType);
 | |
| 
 | |
|       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
 | |
|       bool requiresExtract = isa<llvm::StructType>(CI->getType());
 | |
| 
 | |
|       unsigned unpaddedIndex = 0;
 | |
|       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
 | |
|         llvm::Type *eltType = coercionType->getElementType(i);
 | |
|         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
 | |
|         Address eltAddr = Builder.CreateStructGEP(addr, i);
 | |
|         llvm::Value *elt = CI;
 | |
|         if (requiresExtract)
 | |
|           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
 | |
|         else
 | |
|           assert(unpaddedIndex == 0);
 | |
|         Builder.CreateStore(elt, eltAddr);
 | |
|       }
 | |
|       // FALLTHROUGH
 | |
|       LLVM_FALLTHROUGH;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::InAlloca:
 | |
|     case ABIArgInfo::Indirect: {
 | |
|       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
 | |
|       if (UnusedReturnSizePtr)
 | |
|         PopCleanupBlock();
 | |
|       return ret;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Ignore:
 | |
|       // If we are ignoring an argument that had a result, make sure to
 | |
|       // construct the appropriate return value for our caller.
 | |
|       return GetUndefRValue(RetTy);
 | |
| 
 | |
|     case ABIArgInfo::Extend:
 | |
|     case ABIArgInfo::Direct: {
 | |
|       llvm::Type *RetIRTy = ConvertType(RetTy);
 | |
|       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
 | |
|         switch (getEvaluationKind(RetTy)) {
 | |
|         case TEK_Complex: {
 | |
|           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
 | |
|           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
 | |
|           return RValue::getComplex(std::make_pair(Real, Imag));
 | |
|         }
 | |
|         case TEK_Aggregate: {
 | |
|           Address DestPtr = ReturnValue.getValue();
 | |
|           bool DestIsVolatile = ReturnValue.isVolatile();
 | |
| 
 | |
|           if (!DestPtr.isValid()) {
 | |
|             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
 | |
|             DestIsVolatile = false;
 | |
|           }
 | |
|           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
 | |
|           return RValue::getAggregate(DestPtr);
 | |
|         }
 | |
|         case TEK_Scalar: {
 | |
|           // If the argument doesn't match, perform a bitcast to coerce it.  This
 | |
|           // can happen due to trivial type mismatches.
 | |
|           llvm::Value *V = CI;
 | |
|           if (V->getType() != RetIRTy)
 | |
|             V = Builder.CreateBitCast(V, RetIRTy);
 | |
|           return RValue::get(V);
 | |
|         }
 | |
|         }
 | |
|         llvm_unreachable("bad evaluation kind");
 | |
|       }
 | |
| 
 | |
|       Address DestPtr = ReturnValue.getValue();
 | |
|       bool DestIsVolatile = ReturnValue.isVolatile();
 | |
| 
 | |
|       if (!DestPtr.isValid()) {
 | |
|         DestPtr = CreateMemTemp(RetTy, "coerce");
 | |
|         DestIsVolatile = false;
 | |
|       }
 | |
| 
 | |
|       // If the value is offset in memory, apply the offset now.
 | |
|       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
 | |
|       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
 | |
| 
 | |
|       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Expand:
 | |
|       llvm_unreachable("Invalid ABI kind for return argument");
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("Unhandled ABIArgInfo::Kind");
 | |
|   } ();
 | |
| 
 | |
|   // Emit the assume_aligned check on the return value.
 | |
|   if (Ret.isScalar() && TargetDecl) {
 | |
|     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
 | |
|     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
 | |
|   }
 | |
| 
 | |
|   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
 | |
|   // we can't use the full cleanup mechanism.
 | |
|   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
 | |
|     LifetimeEnd.Emit(*this, /*Flags=*/{});
 | |
| 
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
 | |
|   if (isVirtual()) {
 | |
|     const CallExpr *CE = getVirtualCallExpr();
 | |
|     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
 | |
|         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
 | |
|         CE ? CE->getBeginLoc() : SourceLocation());
 | |
|   }
 | |
| 
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| /* VarArg handling */
 | |
| 
 | |
| Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
 | |
|   VAListAddr = VE->isMicrosoftABI()
 | |
|                  ? EmitMSVAListRef(VE->getSubExpr())
 | |
|                  : EmitVAListRef(VE->getSubExpr());
 | |
|   QualType Ty = VE->getType();
 | |
|   if (VE->isMicrosoftABI())
 | |
|     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
 | |
|   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
 | |
| }
 |