forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2545 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2545 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code to emit Decl nodes as LLVM code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CGBlocks.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGCleanup.h"
 | |
| #include "CGDebugInfo.h"
 | |
| #include "CGOpenCLRuntime.h"
 | |
| #include "CGOpenMPRuntime.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "ConstantEmitter.h"
 | |
| #include "PatternInit.h"
 | |
| #include "TargetInfo.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclOpenMP.h"
 | |
| #include "clang/Basic/CodeGenOptions.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/CodeGen/CGFunctionInfo.h"
 | |
| #include "clang/Sema/Sema.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
 | |
|               "Clang max alignment greater than what LLVM supports?");
 | |
| 
 | |
| void CodeGenFunction::EmitDecl(const Decl &D) {
 | |
|   switch (D.getKind()) {
 | |
|   case Decl::BuiltinTemplate:
 | |
|   case Decl::TranslationUnit:
 | |
|   case Decl::ExternCContext:
 | |
|   case Decl::Namespace:
 | |
|   case Decl::UnresolvedUsingTypename:
 | |
|   case Decl::ClassTemplateSpecialization:
 | |
|   case Decl::ClassTemplatePartialSpecialization:
 | |
|   case Decl::VarTemplateSpecialization:
 | |
|   case Decl::VarTemplatePartialSpecialization:
 | |
|   case Decl::TemplateTypeParm:
 | |
|   case Decl::UnresolvedUsingValue:
 | |
|   case Decl::NonTypeTemplateParm:
 | |
|   case Decl::CXXDeductionGuide:
 | |
|   case Decl::CXXMethod:
 | |
|   case Decl::CXXConstructor:
 | |
|   case Decl::CXXDestructor:
 | |
|   case Decl::CXXConversion:
 | |
|   case Decl::Field:
 | |
|   case Decl::MSProperty:
 | |
|   case Decl::IndirectField:
 | |
|   case Decl::ObjCIvar:
 | |
|   case Decl::ObjCAtDefsField:
 | |
|   case Decl::ParmVar:
 | |
|   case Decl::ImplicitParam:
 | |
|   case Decl::ClassTemplate:
 | |
|   case Decl::VarTemplate:
 | |
|   case Decl::FunctionTemplate:
 | |
|   case Decl::TypeAliasTemplate:
 | |
|   case Decl::TemplateTemplateParm:
 | |
|   case Decl::ObjCMethod:
 | |
|   case Decl::ObjCCategory:
 | |
|   case Decl::ObjCProtocol:
 | |
|   case Decl::ObjCInterface:
 | |
|   case Decl::ObjCCategoryImpl:
 | |
|   case Decl::ObjCImplementation:
 | |
|   case Decl::ObjCProperty:
 | |
|   case Decl::ObjCCompatibleAlias:
 | |
|   case Decl::PragmaComment:
 | |
|   case Decl::PragmaDetectMismatch:
 | |
|   case Decl::AccessSpec:
 | |
|   case Decl::LinkageSpec:
 | |
|   case Decl::Export:
 | |
|   case Decl::ObjCPropertyImpl:
 | |
|   case Decl::FileScopeAsm:
 | |
|   case Decl::Friend:
 | |
|   case Decl::FriendTemplate:
 | |
|   case Decl::Block:
 | |
|   case Decl::Captured:
 | |
|   case Decl::ClassScopeFunctionSpecialization:
 | |
|   case Decl::UsingShadow:
 | |
|   case Decl::ConstructorUsingShadow:
 | |
|   case Decl::ObjCTypeParam:
 | |
|   case Decl::Binding:
 | |
|     llvm_unreachable("Declaration should not be in declstmts!");
 | |
|   case Decl::Function:  // void X();
 | |
|   case Decl::Record:    // struct/union/class X;
 | |
|   case Decl::Enum:      // enum X;
 | |
|   case Decl::EnumConstant: // enum ? { X = ? }
 | |
|   case Decl::CXXRecord: // struct/union/class X; [C++]
 | |
|   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
 | |
|   case Decl::Label:        // __label__ x;
 | |
|   case Decl::Import:
 | |
|   case Decl::OMPThreadPrivate:
 | |
|   case Decl::OMPAllocate:
 | |
|   case Decl::OMPCapturedExpr:
 | |
|   case Decl::OMPRequires:
 | |
|   case Decl::Empty:
 | |
|   case Decl::Concept:
 | |
|   case Decl::LifetimeExtendedTemporary:
 | |
|   case Decl::RequiresExprBody:
 | |
|     // None of these decls require codegen support.
 | |
|     return;
 | |
| 
 | |
|   case Decl::NamespaceAlias:
 | |
|     if (CGDebugInfo *DI = getDebugInfo())
 | |
|         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
 | |
|     return;
 | |
|   case Decl::Using:          // using X; [C++]
 | |
|     if (CGDebugInfo *DI = getDebugInfo())
 | |
|         DI->EmitUsingDecl(cast<UsingDecl>(D));
 | |
|     return;
 | |
|   case Decl::UsingPack:
 | |
|     for (auto *Using : cast<UsingPackDecl>(D).expansions())
 | |
|       EmitDecl(*Using);
 | |
|     return;
 | |
|   case Decl::UsingDirective: // using namespace X; [C++]
 | |
|     if (CGDebugInfo *DI = getDebugInfo())
 | |
|       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
 | |
|     return;
 | |
|   case Decl::Var:
 | |
|   case Decl::Decomposition: {
 | |
|     const VarDecl &VD = cast<VarDecl>(D);
 | |
|     assert(VD.isLocalVarDecl() &&
 | |
|            "Should not see file-scope variables inside a function!");
 | |
|     EmitVarDecl(VD);
 | |
|     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
 | |
|       for (auto *B : DD->bindings())
 | |
|         if (auto *HD = B->getHoldingVar())
 | |
|           EmitVarDecl(*HD);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Decl::OMPDeclareReduction:
 | |
|     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
 | |
| 
 | |
|   case Decl::OMPDeclareMapper:
 | |
|     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
 | |
| 
 | |
|   case Decl::Typedef:      // typedef int X;
 | |
|   case Decl::TypeAlias: {  // using X = int; [C++0x]
 | |
|     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
 | |
|     QualType Ty = TD.getUnderlyingType();
 | |
| 
 | |
|     if (Ty->isVariablyModifiedType())
 | |
|       EmitVariablyModifiedType(Ty);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitVarDecl - This method handles emission of any variable declaration
 | |
| /// inside a function, including static vars etc.
 | |
| void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
 | |
|   if (D.hasExternalStorage())
 | |
|     // Don't emit it now, allow it to be emitted lazily on its first use.
 | |
|     return;
 | |
| 
 | |
|   // Some function-scope variable does not have static storage but still
 | |
|   // needs to be emitted like a static variable, e.g. a function-scope
 | |
|   // variable in constant address space in OpenCL.
 | |
|   if (D.getStorageDuration() != SD_Automatic) {
 | |
|     // Static sampler variables translated to function calls.
 | |
|     if (D.getType()->isSamplerT())
 | |
|       return;
 | |
| 
 | |
|     llvm::GlobalValue::LinkageTypes Linkage =
 | |
|         CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
 | |
| 
 | |
|     // FIXME: We need to force the emission/use of a guard variable for
 | |
|     // some variables even if we can constant-evaluate them because
 | |
|     // we can't guarantee every translation unit will constant-evaluate them.
 | |
| 
 | |
|     return EmitStaticVarDecl(D, Linkage);
 | |
|   }
 | |
| 
 | |
|   if (D.getType().getAddressSpace() == LangAS::opencl_local)
 | |
|     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
 | |
| 
 | |
|   assert(D.hasLocalStorage());
 | |
|   return EmitAutoVarDecl(D);
 | |
| }
 | |
| 
 | |
| static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
 | |
|   if (CGM.getLangOpts().CPlusPlus)
 | |
|     return CGM.getMangledName(&D).str();
 | |
| 
 | |
|   // If this isn't C++, we don't need a mangled name, just a pretty one.
 | |
|   assert(!D.isExternallyVisible() && "name shouldn't matter");
 | |
|   std::string ContextName;
 | |
|   const DeclContext *DC = D.getDeclContext();
 | |
|   if (auto *CD = dyn_cast<CapturedDecl>(DC))
 | |
|     DC = cast<DeclContext>(CD->getNonClosureContext());
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
 | |
|     ContextName = std::string(CGM.getMangledName(FD));
 | |
|   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
 | |
|     ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
 | |
|   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
 | |
|     ContextName = OMD->getSelector().getAsString();
 | |
|   else
 | |
|     llvm_unreachable("Unknown context for static var decl");
 | |
| 
 | |
|   ContextName += "." + D.getNameAsString();
 | |
|   return ContextName;
 | |
| }
 | |
| 
 | |
| llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
 | |
|     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
 | |
|   // In general, we don't always emit static var decls once before we reference
 | |
|   // them. It is possible to reference them before emitting the function that
 | |
|   // contains them, and it is possible to emit the containing function multiple
 | |
|   // times.
 | |
|   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
 | |
|     return ExistingGV;
 | |
| 
 | |
|   QualType Ty = D.getType();
 | |
|   assert(Ty->isConstantSizeType() && "VLAs can't be static");
 | |
| 
 | |
|   // Use the label if the variable is renamed with the asm-label extension.
 | |
|   std::string Name;
 | |
|   if (D.hasAttr<AsmLabelAttr>())
 | |
|     Name = std::string(getMangledName(&D));
 | |
|   else
 | |
|     Name = getStaticDeclName(*this, D);
 | |
| 
 | |
|   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
 | |
|   LangAS AS = GetGlobalVarAddressSpace(&D);
 | |
|   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
 | |
| 
 | |
|   // OpenCL variables in local address space and CUDA shared
 | |
|   // variables cannot have an initializer.
 | |
|   llvm::Constant *Init = nullptr;
 | |
|   if (Ty.getAddressSpace() == LangAS::opencl_local ||
 | |
|       D.hasAttr<CUDASharedAttr>())
 | |
|     Init = llvm::UndefValue::get(LTy);
 | |
|   else
 | |
|     Init = EmitNullConstant(Ty);
 | |
| 
 | |
|   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
 | |
|       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
 | |
|       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
 | |
|   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
 | |
| 
 | |
|   if (supportsCOMDAT() && GV->isWeakForLinker())
 | |
|     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
 | |
| 
 | |
|   if (D.getTLSKind())
 | |
|     setTLSMode(GV, D);
 | |
| 
 | |
|   setGVProperties(GV, &D);
 | |
| 
 | |
|   // Make sure the result is of the correct type.
 | |
|   LangAS ExpectedAS = Ty.getAddressSpace();
 | |
|   llvm::Constant *Addr = GV;
 | |
|   if (AS != ExpectedAS) {
 | |
|     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
 | |
|         *this, GV, AS, ExpectedAS,
 | |
|         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
 | |
|   }
 | |
| 
 | |
|   setStaticLocalDeclAddress(&D, Addr);
 | |
| 
 | |
|   // Ensure that the static local gets initialized by making sure the parent
 | |
|   // function gets emitted eventually.
 | |
|   const Decl *DC = cast<Decl>(D.getDeclContext());
 | |
| 
 | |
|   // We can't name blocks or captured statements directly, so try to emit their
 | |
|   // parents.
 | |
|   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
 | |
|     DC = DC->getNonClosureContext();
 | |
|     // FIXME: Ensure that global blocks get emitted.
 | |
|     if (!DC)
 | |
|       return Addr;
 | |
|   }
 | |
| 
 | |
|   GlobalDecl GD;
 | |
|   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
 | |
|     GD = GlobalDecl(CD, Ctor_Base);
 | |
|   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
 | |
|     GD = GlobalDecl(DD, Dtor_Base);
 | |
|   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
 | |
|     GD = getGlobalDecl(FD);
 | |
|   else {
 | |
|     // Don't do anything for Obj-C method decls or global closures. We should
 | |
|     // never defer them.
 | |
|     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
 | |
|   }
 | |
|   if (GD.getDecl()) {
 | |
|     // Disable emission of the parent function for the OpenMP device codegen.
 | |
|     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
 | |
|     (void)GetAddrOfGlobal(GD);
 | |
|   }
 | |
| 
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
 | |
| /// global variable that has already been created for it.  If the initializer
 | |
| /// has a different type than GV does, this may free GV and return a different
 | |
| /// one.  Otherwise it just returns GV.
 | |
| llvm::GlobalVariable *
 | |
| CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
 | |
|                                                llvm::GlobalVariable *GV) {
 | |
|   ConstantEmitter emitter(*this);
 | |
|   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
 | |
| 
 | |
|   // If constant emission failed, then this should be a C++ static
 | |
|   // initializer.
 | |
|   if (!Init) {
 | |
|     if (!getLangOpts().CPlusPlus)
 | |
|       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
 | |
|     else if (HaveInsertPoint()) {
 | |
|       // Since we have a static initializer, this global variable can't
 | |
|       // be constant.
 | |
|       GV->setConstant(false);
 | |
| 
 | |
|       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
 | |
|     }
 | |
|     return GV;
 | |
|   }
 | |
| 
 | |
|   // The initializer may differ in type from the global. Rewrite
 | |
|   // the global to match the initializer.  (We have to do this
 | |
|   // because some types, like unions, can't be completely represented
 | |
|   // in the LLVM type system.)
 | |
|   if (GV->getType()->getElementType() != Init->getType()) {
 | |
|     llvm::GlobalVariable *OldGV = GV;
 | |
| 
 | |
|     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
 | |
|                                   OldGV->isConstant(),
 | |
|                                   OldGV->getLinkage(), Init, "",
 | |
|                                   /*InsertBefore*/ OldGV,
 | |
|                                   OldGV->getThreadLocalMode(),
 | |
|                            CGM.getContext().getTargetAddressSpace(D.getType()));
 | |
|     GV->setVisibility(OldGV->getVisibility());
 | |
|     GV->setDSOLocal(OldGV->isDSOLocal());
 | |
|     GV->setComdat(OldGV->getComdat());
 | |
| 
 | |
|     // Steal the name of the old global
 | |
|     GV->takeName(OldGV);
 | |
| 
 | |
|     // Replace all uses of the old global with the new global
 | |
|     llvm::Constant *NewPtrForOldDecl =
 | |
|     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
 | |
|     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
 | |
| 
 | |
|     // Erase the old global, since it is no longer used.
 | |
|     OldGV->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
 | |
|   GV->setInitializer(Init);
 | |
| 
 | |
|   emitter.finalize(GV);
 | |
| 
 | |
|   if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
 | |
|       HaveInsertPoint()) {
 | |
|     // We have a constant initializer, but a nontrivial destructor. We still
 | |
|     // need to perform a guarded "initialization" in order to register the
 | |
|     // destructor.
 | |
|     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
 | |
|   }
 | |
| 
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
 | |
|                                       llvm::GlobalValue::LinkageTypes Linkage) {
 | |
|   // Check to see if we already have a global variable for this
 | |
|   // declaration.  This can happen when double-emitting function
 | |
|   // bodies, e.g. with complete and base constructors.
 | |
|   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
 | |
|   CharUnits alignment = getContext().getDeclAlign(&D);
 | |
| 
 | |
|   // Store into LocalDeclMap before generating initializer to handle
 | |
|   // circular references.
 | |
|   setAddrOfLocalVar(&D, Address(addr, alignment));
 | |
| 
 | |
|   // We can't have a VLA here, but we can have a pointer to a VLA,
 | |
|   // even though that doesn't really make any sense.
 | |
|   // Make sure to evaluate VLA bounds now so that we have them for later.
 | |
|   if (D.getType()->isVariablyModifiedType())
 | |
|     EmitVariablyModifiedType(D.getType());
 | |
| 
 | |
|   // Save the type in case adding the initializer forces a type change.
 | |
|   llvm::Type *expectedType = addr->getType();
 | |
| 
 | |
|   llvm::GlobalVariable *var =
 | |
|     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
 | |
| 
 | |
|   // CUDA's local and local static __shared__ variables should not
 | |
|   // have any non-empty initializers. This is ensured by Sema.
 | |
|   // Whatever initializer such variable may have when it gets here is
 | |
|   // a no-op and should not be emitted.
 | |
|   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
 | |
|                          D.hasAttr<CUDASharedAttr>();
 | |
|   // If this value has an initializer, emit it.
 | |
|   if (D.getInit() && !isCudaSharedVar)
 | |
|     var = AddInitializerToStaticVarDecl(D, var);
 | |
| 
 | |
|   var->setAlignment(alignment.getAsAlign());
 | |
| 
 | |
|   if (D.hasAttr<AnnotateAttr>())
 | |
|     CGM.AddGlobalAnnotations(&D, var);
 | |
| 
 | |
|   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
 | |
|     var->addAttribute("bss-section", SA->getName());
 | |
|   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
 | |
|     var->addAttribute("data-section", SA->getName());
 | |
|   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
 | |
|     var->addAttribute("rodata-section", SA->getName());
 | |
|   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
 | |
|     var->addAttribute("relro-section", SA->getName());
 | |
| 
 | |
|   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
 | |
|     var->setSection(SA->getName());
 | |
| 
 | |
|   if (D.hasAttr<UsedAttr>())
 | |
|     CGM.addUsedGlobal(var);
 | |
| 
 | |
|   // We may have to cast the constant because of the initializer
 | |
|   // mismatch above.
 | |
|   //
 | |
|   // FIXME: It is really dangerous to store this in the map; if anyone
 | |
|   // RAUW's the GV uses of this constant will be invalid.
 | |
|   llvm::Constant *castedAddr =
 | |
|     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
 | |
|   if (var != castedAddr)
 | |
|     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
 | |
|   CGM.setStaticLocalDeclAddress(&D, castedAddr);
 | |
| 
 | |
|   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
 | |
| 
 | |
|   // Emit global variable debug descriptor for static vars.
 | |
|   CGDebugInfo *DI = getDebugInfo();
 | |
|   if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
 | |
|     DI->setLocation(D.getLocation());
 | |
|     DI->EmitGlobalVariable(var, &D);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct DestroyObject final : EHScopeStack::Cleanup {
 | |
|     DestroyObject(Address addr, QualType type,
 | |
|                   CodeGenFunction::Destroyer *destroyer,
 | |
|                   bool useEHCleanupForArray)
 | |
|       : addr(addr), type(type), destroyer(destroyer),
 | |
|         useEHCleanupForArray(useEHCleanupForArray) {}
 | |
| 
 | |
|     Address addr;
 | |
|     QualType type;
 | |
|     CodeGenFunction::Destroyer *destroyer;
 | |
|     bool useEHCleanupForArray;
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       // Don't use an EH cleanup recursively from an EH cleanup.
 | |
|       bool useEHCleanupForArray =
 | |
|         flags.isForNormalCleanup() && this->useEHCleanupForArray;
 | |
| 
 | |
|       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template <class Derived>
 | |
|   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
 | |
|     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
 | |
|         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
 | |
| 
 | |
|     llvm::Value *NRVOFlag;
 | |
|     Address Loc;
 | |
|     QualType Ty;
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       // Along the exceptions path we always execute the dtor.
 | |
|       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
 | |
| 
 | |
|       llvm::BasicBlock *SkipDtorBB = nullptr;
 | |
|       if (NRVO) {
 | |
|         // If we exited via NRVO, we skip the destructor call.
 | |
|         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
 | |
|         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
 | |
|         llvm::Value *DidNRVO =
 | |
|           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
 | |
|         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
 | |
|         CGF.EmitBlock(RunDtorBB);
 | |
|       }
 | |
| 
 | |
|       static_cast<Derived *>(this)->emitDestructorCall(CGF);
 | |
| 
 | |
|       if (NRVO) CGF.EmitBlock(SkipDtorBB);
 | |
|     }
 | |
| 
 | |
|     virtual ~DestroyNRVOVariable() = default;
 | |
|   };
 | |
| 
 | |
|   struct DestroyNRVOVariableCXX final
 | |
|       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
 | |
|     DestroyNRVOVariableCXX(Address addr, QualType type,
 | |
|                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
 | |
|         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
 | |
|           Dtor(Dtor) {}
 | |
| 
 | |
|     const CXXDestructorDecl *Dtor;
 | |
| 
 | |
|     void emitDestructorCall(CodeGenFunction &CGF) {
 | |
|       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
 | |
|                                 /*ForVirtualBase=*/false,
 | |
|                                 /*Delegating=*/false, Loc, Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct DestroyNRVOVariableC final
 | |
|       : DestroyNRVOVariable<DestroyNRVOVariableC> {
 | |
|     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
 | |
|         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
 | |
| 
 | |
|     void emitDestructorCall(CodeGenFunction &CGF) {
 | |
|       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct CallStackRestore final : EHScopeStack::Cleanup {
 | |
|     Address Stack;
 | |
|     CallStackRestore(Address Stack) : Stack(Stack) {}
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
 | |
|       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
 | |
|       CGF.Builder.CreateCall(F, V);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
 | |
|     const VarDecl &Var;
 | |
|     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       // Compute the address of the local variable, in case it's a
 | |
|       // byref or something.
 | |
|       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
 | |
|                       Var.getType(), VK_LValue, SourceLocation());
 | |
|       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
 | |
|                                                 SourceLocation());
 | |
|       CGF.EmitExtendGCLifetime(value);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct CallCleanupFunction final : EHScopeStack::Cleanup {
 | |
|     llvm::Constant *CleanupFn;
 | |
|     const CGFunctionInfo &FnInfo;
 | |
|     const VarDecl &Var;
 | |
| 
 | |
|     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
 | |
|                         const VarDecl *Var)
 | |
|       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
 | |
|                       Var.getType(), VK_LValue, SourceLocation());
 | |
|       // Compute the address of the local variable, in case it's a byref
 | |
|       // or something.
 | |
|       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
 | |
| 
 | |
|       // In some cases, the type of the function argument will be different from
 | |
|       // the type of the pointer. An example of this is
 | |
|       // void f(void* arg);
 | |
|       // __attribute__((cleanup(f))) void *g;
 | |
|       //
 | |
|       // To fix this we insert a bitcast here.
 | |
|       QualType ArgTy = FnInfo.arg_begin()->type;
 | |
|       llvm::Value *Arg =
 | |
|         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
 | |
| 
 | |
|       CallArgList Args;
 | |
|       Args.add(RValue::get(Arg),
 | |
|                CGF.getContext().getPointerType(Var.getType()));
 | |
|       auto Callee = CGCallee::forDirect(CleanupFn);
 | |
|       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// EmitAutoVarWithLifetime - Does the setup required for an automatic
 | |
| /// variable with lifetime.
 | |
| static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
 | |
|                                     Address addr,
 | |
|                                     Qualifiers::ObjCLifetime lifetime) {
 | |
|   switch (lifetime) {
 | |
|   case Qualifiers::OCL_None:
 | |
|     llvm_unreachable("present but none");
 | |
| 
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     // nothing to do
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Strong: {
 | |
|     CodeGenFunction::Destroyer *destroyer =
 | |
|       (var.hasAttr<ObjCPreciseLifetimeAttr>()
 | |
|        ? CodeGenFunction::destroyARCStrongPrecise
 | |
|        : CodeGenFunction::destroyARCStrongImprecise);
 | |
| 
 | |
|     CleanupKind cleanupKind = CGF.getARCCleanupKind();
 | |
|     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
 | |
|                     cleanupKind & EHCleanup);
 | |
|     break;
 | |
|   }
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     // nothing to do
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Weak:
 | |
|     // __weak objects always get EH cleanups; otherwise, exceptions
 | |
|     // could cause really nasty crashes instead of mere leaks.
 | |
|     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
 | |
|                     CodeGenFunction::destroyARCWeak,
 | |
|                     /*useEHCleanup*/ true);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
 | |
|   if (const Expr *e = dyn_cast<Expr>(s)) {
 | |
|     // Skip the most common kinds of expressions that make
 | |
|     // hierarchy-walking expensive.
 | |
|     s = e = e->IgnoreParenCasts();
 | |
| 
 | |
|     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
 | |
|       return (ref->getDecl() == &var);
 | |
|     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
 | |
|       const BlockDecl *block = be->getBlockDecl();
 | |
|       for (const auto &I : block->captures()) {
 | |
|         if (I.getVariable() == &var)
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (const Stmt *SubStmt : s->children())
 | |
|     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
 | |
|     if (SubStmt && isAccessedBy(var, SubStmt))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
 | |
|   if (!decl) return false;
 | |
|   if (!isa<VarDecl>(decl)) return false;
 | |
|   const VarDecl *var = cast<VarDecl>(decl);
 | |
|   return isAccessedBy(*var, e);
 | |
| }
 | |
| 
 | |
| static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
 | |
|                                    const LValue &destLV, const Expr *init) {
 | |
|   bool needsCast = false;
 | |
| 
 | |
|   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
 | |
|     switch (castExpr->getCastKind()) {
 | |
|     // Look through casts that don't require representation changes.
 | |
|     case CK_NoOp:
 | |
|     case CK_BitCast:
 | |
|     case CK_BlockPointerToObjCPointerCast:
 | |
|       needsCast = true;
 | |
|       break;
 | |
| 
 | |
|     // If we find an l-value to r-value cast from a __weak variable,
 | |
|     // emit this operation as a copy or move.
 | |
|     case CK_LValueToRValue: {
 | |
|       const Expr *srcExpr = castExpr->getSubExpr();
 | |
|       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
 | |
|         return false;
 | |
| 
 | |
|       // Emit the source l-value.
 | |
|       LValue srcLV = CGF.EmitLValue(srcExpr);
 | |
| 
 | |
|       // Handle a formal type change to avoid asserting.
 | |
|       auto srcAddr = srcLV.getAddress(CGF);
 | |
|       if (needsCast) {
 | |
|         srcAddr = CGF.Builder.CreateElementBitCast(
 | |
|             srcAddr, destLV.getAddress(CGF).getElementType());
 | |
|       }
 | |
| 
 | |
|       // If it was an l-value, use objc_copyWeak.
 | |
|       if (srcExpr->getValueKind() == VK_LValue) {
 | |
|         CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
 | |
|       } else {
 | |
|         assert(srcExpr->getValueKind() == VK_XValue);
 | |
|         CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Stop at anything else.
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     init = castExpr->getSubExpr();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void drillIntoBlockVariable(CodeGenFunction &CGF,
 | |
|                                    LValue &lvalue,
 | |
|                                    const VarDecl *var) {
 | |
|   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
 | |
|                                            SourceLocation Loc) {
 | |
|   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
 | |
|     return;
 | |
| 
 | |
|   auto Nullability = LHS.getType()->getNullability(getContext());
 | |
|   if (!Nullability || *Nullability != NullabilityKind::NonNull)
 | |
|     return;
 | |
| 
 | |
|   // Check if the right hand side of the assignment is nonnull, if the left
 | |
|   // hand side must be nonnull.
 | |
|   SanitizerScope SanScope(this);
 | |
|   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
 | |
|   llvm::Constant *StaticData[] = {
 | |
|       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
 | |
|       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
 | |
|       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
 | |
|   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
 | |
|             SanitizerHandler::TypeMismatch, StaticData, RHS);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
 | |
|                                      LValue lvalue, bool capturedByInit) {
 | |
|   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
 | |
|   if (!lifetime) {
 | |
|     llvm::Value *value = EmitScalarExpr(init);
 | |
|     if (capturedByInit)
 | |
|       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
 | |
|     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
 | |
|     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
 | |
|     init = DIE->getExpr();
 | |
| 
 | |
|   // If we're emitting a value with lifetime, we have to do the
 | |
|   // initialization *before* we leave the cleanup scopes.
 | |
|   if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
 | |
|     enterFullExpression(fe);
 | |
|     init = fe->getSubExpr();
 | |
|   }
 | |
|   CodeGenFunction::RunCleanupsScope Scope(*this);
 | |
| 
 | |
|   // We have to maintain the illusion that the variable is
 | |
|   // zero-initialized.  If the variable might be accessed in its
 | |
|   // initializer, zero-initialize before running the initializer, then
 | |
|   // actually perform the initialization with an assign.
 | |
|   bool accessedByInit = false;
 | |
|   if (lifetime != Qualifiers::OCL_ExplicitNone)
 | |
|     accessedByInit = (capturedByInit || isAccessedBy(D, init));
 | |
|   if (accessedByInit) {
 | |
|     LValue tempLV = lvalue;
 | |
|     // Drill down to the __block object if necessary.
 | |
|     if (capturedByInit) {
 | |
|       // We can use a simple GEP for this because it can't have been
 | |
|       // moved yet.
 | |
|       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
 | |
|                                               cast<VarDecl>(D),
 | |
|                                               /*follow*/ false));
 | |
|     }
 | |
| 
 | |
|     auto ty =
 | |
|         cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
 | |
|     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
 | |
| 
 | |
|     // If __weak, we want to use a barrier under certain conditions.
 | |
|     if (lifetime == Qualifiers::OCL_Weak)
 | |
|       EmitARCInitWeak(tempLV.getAddress(*this), zero);
 | |
| 
 | |
|     // Otherwise just do a simple store.
 | |
|     else
 | |
|       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
 | |
|   }
 | |
| 
 | |
|   // Emit the initializer.
 | |
|   llvm::Value *value = nullptr;
 | |
| 
 | |
|   switch (lifetime) {
 | |
|   case Qualifiers::OCL_None:
 | |
|     llvm_unreachable("present but none");
 | |
| 
 | |
|   case Qualifiers::OCL_Strong: {
 | |
|     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
 | |
|       value = EmitARCRetainScalarExpr(init);
 | |
|       break;
 | |
|     }
 | |
|     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
 | |
|     // that we omit the retain, and causes non-autoreleased return values to be
 | |
|     // immediately released.
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
| 
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     value = EmitARCUnsafeUnretainedScalarExpr(init);
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Weak: {
 | |
|     // If it's not accessed by the initializer, try to emit the
 | |
|     // initialization with a copy or move.
 | |
|     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // No way to optimize a producing initializer into this.  It's not
 | |
|     // worth optimizing for, because the value will immediately
 | |
|     // disappear in the common case.
 | |
|     value = EmitScalarExpr(init);
 | |
| 
 | |
|     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
 | |
|     if (accessedByInit)
 | |
|       EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
 | |
|     else
 | |
|       EmitARCInitWeak(lvalue.getAddress(*this), value);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     value = EmitARCRetainAutoreleaseScalarExpr(init);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
 | |
| 
 | |
|   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
 | |
| 
 | |
|   // If the variable might have been accessed by its initializer, we
 | |
|   // might have to initialize with a barrier.  We have to do this for
 | |
|   // both __weak and __strong, but __weak got filtered out above.
 | |
|   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
 | |
|     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
 | |
|     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
 | |
|     EmitARCRelease(oldValue, ARCImpreciseLifetime);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
 | |
| }
 | |
| 
 | |
| /// Decide whether we can emit the non-zero parts of the specified initializer
 | |
| /// with equal or fewer than NumStores scalar stores.
 | |
| static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
 | |
|                                                unsigned &NumStores) {
 | |
|   // Zero and Undef never requires any extra stores.
 | |
|   if (isa<llvm::ConstantAggregateZero>(Init) ||
 | |
|       isa<llvm::ConstantPointerNull>(Init) ||
 | |
|       isa<llvm::UndefValue>(Init))
 | |
|     return true;
 | |
|   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
 | |
|       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
 | |
|       isa<llvm::ConstantExpr>(Init))
 | |
|     return Init->isNullValue() || NumStores--;
 | |
| 
 | |
|   // See if we can emit each element.
 | |
|   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
 | |
|     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
 | |
|       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
 | |
|       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (llvm::ConstantDataSequential *CDS =
 | |
|         dyn_cast<llvm::ConstantDataSequential>(Init)) {
 | |
|     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
 | |
|       llvm::Constant *Elt = CDS->getElementAsConstant(i);
 | |
|       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Anything else is hard and scary.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
 | |
| /// the scalar stores that would be required.
 | |
| static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
 | |
|                                         llvm::Constant *Init, Address Loc,
 | |
|                                         bool isVolatile, CGBuilderTy &Builder) {
 | |
|   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
 | |
|          "called emitStoresForInitAfterBZero for zero or undef value.");
 | |
| 
 | |
|   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
 | |
|       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
 | |
|       isa<llvm::ConstantExpr>(Init)) {
 | |
|     Builder.CreateStore(Init, Loc, isVolatile);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (llvm::ConstantDataSequential *CDS =
 | |
|           dyn_cast<llvm::ConstantDataSequential>(Init)) {
 | |
|     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
 | |
|       llvm::Constant *Elt = CDS->getElementAsConstant(i);
 | |
| 
 | |
|       // If necessary, get a pointer to the element and emit it.
 | |
|       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
 | |
|         emitStoresForInitAfterBZero(
 | |
|             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
 | |
|             Builder);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
 | |
|          "Unknown value type!");
 | |
| 
 | |
|   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
 | |
|     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
 | |
| 
 | |
|     // If necessary, get a pointer to the element and emit it.
 | |
|     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
 | |
|       emitStoresForInitAfterBZero(CGM, Elt,
 | |
|                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
 | |
|                                   isVolatile, Builder);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Decide whether we should use bzero plus some stores to initialize a local
 | |
| /// variable instead of using a memcpy from a constant global.  It is beneficial
 | |
| /// to use bzero if the global is all zeros, or mostly zeros and large.
 | |
| static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
 | |
|                                                  uint64_t GlobalSize) {
 | |
|   // If a global is all zeros, always use a bzero.
 | |
|   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
 | |
| 
 | |
|   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
 | |
|   // do it if it will require 6 or fewer scalar stores.
 | |
|   // TODO: Should budget depends on the size?  Avoiding a large global warrants
 | |
|   // plopping in more stores.
 | |
|   unsigned StoreBudget = 6;
 | |
|   uint64_t SizeLimit = 32;
 | |
| 
 | |
|   return GlobalSize > SizeLimit &&
 | |
|          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
 | |
| }
 | |
| 
 | |
| /// Decide whether we should use memset to initialize a local variable instead
 | |
| /// of using a memcpy from a constant global. Assumes we've already decided to
 | |
| /// not user bzero.
 | |
| /// FIXME We could be more clever, as we are for bzero above, and generate
 | |
| ///       memset followed by stores. It's unclear that's worth the effort.
 | |
| static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
 | |
|                                                 uint64_t GlobalSize,
 | |
|                                                 const llvm::DataLayout &DL) {
 | |
|   uint64_t SizeLimit = 32;
 | |
|   if (GlobalSize <= SizeLimit)
 | |
|     return nullptr;
 | |
|   return llvm::isBytewiseValue(Init, DL);
 | |
| }
 | |
| 
 | |
| /// Decide whether we want to split a constant structure or array store into a
 | |
| /// sequence of its fields' stores. This may cost us code size and compilation
 | |
| /// speed, but plays better with store optimizations.
 | |
| static bool shouldSplitConstantStore(CodeGenModule &CGM,
 | |
|                                      uint64_t GlobalByteSize) {
 | |
|   // Don't break things that occupy more than one cacheline.
 | |
|   uint64_t ByteSizeLimit = 64;
 | |
|   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
 | |
|     return false;
 | |
|   if (GlobalByteSize <= ByteSizeLimit)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| enum class IsPattern { No, Yes };
 | |
| 
 | |
| /// Generate a constant filled with either a pattern or zeroes.
 | |
| static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
 | |
|                                         llvm::Type *Ty) {
 | |
|   if (isPattern == IsPattern::Yes)
 | |
|     return initializationPatternFor(CGM, Ty);
 | |
|   else
 | |
|     return llvm::Constant::getNullValue(Ty);
 | |
| }
 | |
| 
 | |
| static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
 | |
|                                         llvm::Constant *constant);
 | |
| 
 | |
| /// Helper function for constWithPadding() to deal with padding in structures.
 | |
| static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
 | |
|                                               IsPattern isPattern,
 | |
|                                               llvm::StructType *STy,
 | |
|                                               llvm::Constant *constant) {
 | |
|   const llvm::DataLayout &DL = CGM.getDataLayout();
 | |
|   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
 | |
|   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
 | |
|   unsigned SizeSoFar = 0;
 | |
|   SmallVector<llvm::Constant *, 8> Values;
 | |
|   bool NestedIntact = true;
 | |
|   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
 | |
|     unsigned CurOff = Layout->getElementOffset(i);
 | |
|     if (SizeSoFar < CurOff) {
 | |
|       assert(!STy->isPacked());
 | |
|       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
 | |
|       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
 | |
|     }
 | |
|     llvm::Constant *CurOp;
 | |
|     if (constant->isZeroValue())
 | |
|       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
 | |
|     else
 | |
|       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
 | |
|     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
 | |
|     if (CurOp != NewOp)
 | |
|       NestedIntact = false;
 | |
|     Values.push_back(NewOp);
 | |
|     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
 | |
|   }
 | |
|   unsigned TotalSize = Layout->getSizeInBytes();
 | |
|   if (SizeSoFar < TotalSize) {
 | |
|     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
 | |
|     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
 | |
|   }
 | |
|   if (NestedIntact && Values.size() == STy->getNumElements())
 | |
|     return constant;
 | |
|   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
 | |
| }
 | |
| 
 | |
| /// Replace all padding bytes in a given constant with either a pattern byte or
 | |
| /// 0x00.
 | |
| static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
 | |
|                                         llvm::Constant *constant) {
 | |
|   llvm::Type *OrigTy = constant->getType();
 | |
|   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
 | |
|     return constStructWithPadding(CGM, isPattern, STy, constant);
 | |
|   if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) {
 | |
|     llvm::SmallVector<llvm::Constant *, 8> Values;
 | |
|     unsigned Size = STy->getNumElements();
 | |
|     if (!Size)
 | |
|       return constant;
 | |
|     llvm::Type *ElemTy = STy->getElementType();
 | |
|     bool ZeroInitializer = constant->isZeroValue();
 | |
|     llvm::Constant *OpValue, *PaddedOp;
 | |
|     if (ZeroInitializer) {
 | |
|       OpValue = llvm::Constant::getNullValue(ElemTy);
 | |
|       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
 | |
|     }
 | |
|     for (unsigned Op = 0; Op != Size; ++Op) {
 | |
|       if (!ZeroInitializer) {
 | |
|         OpValue = constant->getAggregateElement(Op);
 | |
|         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
 | |
|       }
 | |
|       Values.push_back(PaddedOp);
 | |
|     }
 | |
|     auto *NewElemTy = Values[0]->getType();
 | |
|     if (NewElemTy == ElemTy)
 | |
|       return constant;
 | |
|     if (OrigTy->isArrayTy()) {
 | |
|       auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size);
 | |
|       return llvm::ConstantArray::get(ArrayTy, Values);
 | |
|     } else {
 | |
|       return llvm::ConstantVector::get(Values);
 | |
|     }
 | |
|   }
 | |
|   return constant;
 | |
| }
 | |
| 
 | |
| Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
 | |
|                                                llvm::Constant *Constant,
 | |
|                                                CharUnits Align) {
 | |
|   auto FunctionName = [&](const DeclContext *DC) -> std::string {
 | |
|     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
 | |
|       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
 | |
|         return CC->getNameAsString();
 | |
|       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
 | |
|         return CD->getNameAsString();
 | |
|       return std::string(getMangledName(FD));
 | |
|     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
 | |
|       return OM->getNameAsString();
 | |
|     } else if (isa<BlockDecl>(DC)) {
 | |
|       return "<block>";
 | |
|     } else if (isa<CapturedDecl>(DC)) {
 | |
|       return "<captured>";
 | |
|     } else {
 | |
|       llvm_unreachable("expected a function or method");
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Form a simple per-variable cache of these values in case we find we
 | |
|   // want to reuse them.
 | |
|   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
 | |
|   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
 | |
|     auto *Ty = Constant->getType();
 | |
|     bool isConstant = true;
 | |
|     llvm::GlobalVariable *InsertBefore = nullptr;
 | |
|     unsigned AS =
 | |
|         getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
 | |
|     std::string Name;
 | |
|     if (D.hasGlobalStorage())
 | |
|       Name = getMangledName(&D).str() + ".const";
 | |
|     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
 | |
|       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
 | |
|     else
 | |
|       llvm_unreachable("local variable has no parent function or method");
 | |
|     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
 | |
|         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
 | |
|         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
 | |
|     GV->setAlignment(Align.getAsAlign());
 | |
|     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | |
|     CacheEntry = GV;
 | |
|   } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
 | |
|     CacheEntry->setAlignment(Align.getAsAlign());
 | |
|   }
 | |
| 
 | |
|   return Address(CacheEntry, Align);
 | |
| }
 | |
| 
 | |
| static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
 | |
|                                                 const VarDecl &D,
 | |
|                                                 CGBuilderTy &Builder,
 | |
|                                                 llvm::Constant *Constant,
 | |
|                                                 CharUnits Align) {
 | |
|   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
 | |
|   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
 | |
|                                                    SrcPtr.getAddressSpace());
 | |
|   if (SrcPtr.getType() != BP)
 | |
|     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
 | |
|   return SrcPtr;
 | |
| }
 | |
| 
 | |
| static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
 | |
|                                   Address Loc, bool isVolatile,
 | |
|                                   CGBuilderTy &Builder,
 | |
|                                   llvm::Constant *constant) {
 | |
|   auto *Ty = constant->getType();
 | |
|   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
 | |
|   if (!ConstantSize)
 | |
|     return;
 | |
| 
 | |
|   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
 | |
|                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
 | |
|   if (canDoSingleStore) {
 | |
|     Builder.CreateStore(constant, Loc, isVolatile);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
 | |
| 
 | |
|   // If the initializer is all or mostly the same, codegen with bzero / memset
 | |
|   // then do a few stores afterward.
 | |
|   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
 | |
|     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
 | |
|                          isVolatile);
 | |
| 
 | |
|     bool valueAlreadyCorrect =
 | |
|         constant->isNullValue() || isa<llvm::UndefValue>(constant);
 | |
|     if (!valueAlreadyCorrect) {
 | |
|       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
 | |
|       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the initializer is a repeated byte pattern, use memset.
 | |
|   llvm::Value *Pattern =
 | |
|       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
 | |
|   if (Pattern) {
 | |
|     uint64_t Value = 0x00;
 | |
|     if (!isa<llvm::UndefValue>(Pattern)) {
 | |
|       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
 | |
|       assert(AP.getBitWidth() <= 8);
 | |
|       Value = AP.getLimitedValue();
 | |
|     }
 | |
|     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
 | |
|                          isVolatile);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the initializer is small, use a handful of stores.
 | |
|   if (shouldSplitConstantStore(CGM, ConstantSize)) {
 | |
|     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
 | |
|       // FIXME: handle the case when STy != Loc.getElementType().
 | |
|       if (STy == Loc.getElementType()) {
 | |
|         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
 | |
|           Address EltPtr = Builder.CreateStructGEP(Loc, i);
 | |
|           emitStoresForConstant(
 | |
|               CGM, D, EltPtr, isVolatile, Builder,
 | |
|               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
|     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
 | |
|       // FIXME: handle the case when ATy != Loc.getElementType().
 | |
|       if (ATy == Loc.getElementType()) {
 | |
|         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
 | |
|           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
 | |
|           emitStoresForConstant(
 | |
|               CGM, D, EltPtr, isVolatile, Builder,
 | |
|               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Copy from a global.
 | |
|   Builder.CreateMemCpy(Loc,
 | |
|                        createUnnamedGlobalForMemcpyFrom(
 | |
|                            CGM, D, Builder, constant, Loc.getAlignment()),
 | |
|                        SizeVal, isVolatile);
 | |
| }
 | |
| 
 | |
| static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
 | |
|                                   Address Loc, bool isVolatile,
 | |
|                                   CGBuilderTy &Builder) {
 | |
|   llvm::Type *ElTy = Loc.getElementType();
 | |
|   llvm::Constant *constant =
 | |
|       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
 | |
|   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
 | |
| }
 | |
| 
 | |
| static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
 | |
|                                      Address Loc, bool isVolatile,
 | |
|                                      CGBuilderTy &Builder) {
 | |
|   llvm::Type *ElTy = Loc.getElementType();
 | |
|   llvm::Constant *constant = constWithPadding(
 | |
|       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
 | |
|   assert(!isa<llvm::UndefValue>(constant));
 | |
|   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
 | |
| }
 | |
| 
 | |
| static bool containsUndef(llvm::Constant *constant) {
 | |
|   auto *Ty = constant->getType();
 | |
|   if (isa<llvm::UndefValue>(constant))
 | |
|     return true;
 | |
|   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
 | |
|     for (llvm::Use &Op : constant->operands())
 | |
|       if (containsUndef(cast<llvm::Constant>(Op)))
 | |
|         return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
 | |
|                                     llvm::Constant *constant) {
 | |
|   auto *Ty = constant->getType();
 | |
|   if (isa<llvm::UndefValue>(constant))
 | |
|     return patternOrZeroFor(CGM, isPattern, Ty);
 | |
|   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
 | |
|     return constant;
 | |
|   if (!containsUndef(constant))
 | |
|     return constant;
 | |
|   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
 | |
|   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
 | |
|     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
 | |
|     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
 | |
|   }
 | |
|   if (Ty->isStructTy())
 | |
|     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
 | |
|   if (Ty->isArrayTy())
 | |
|     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
 | |
|   assert(Ty->isVectorTy());
 | |
|   return llvm::ConstantVector::get(Values);
 | |
| }
 | |
| 
 | |
| /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
 | |
| /// variable declaration with auto, register, or no storage class specifier.
 | |
| /// These turn into simple stack objects, or GlobalValues depending on target.
 | |
| void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
 | |
|   AutoVarEmission emission = EmitAutoVarAlloca(D);
 | |
|   EmitAutoVarInit(emission);
 | |
|   EmitAutoVarCleanups(emission);
 | |
| }
 | |
| 
 | |
| /// Emit a lifetime.begin marker if some criteria are satisfied.
 | |
| /// \return a pointer to the temporary size Value if a marker was emitted, null
 | |
| /// otherwise
 | |
| llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
 | |
|                                                 llvm::Value *Addr) {
 | |
|   if (!ShouldEmitLifetimeMarkers)
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(Addr->getType()->getPointerAddressSpace() ==
 | |
|              CGM.getDataLayout().getAllocaAddrSpace() &&
 | |
|          "Pointer should be in alloca address space");
 | |
|   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
 | |
|   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
 | |
|   llvm::CallInst *C =
 | |
|       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
 | |
|   C->setDoesNotThrow();
 | |
|   return SizeV;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
 | |
|   assert(Addr->getType()->getPointerAddressSpace() ==
 | |
|              CGM.getDataLayout().getAllocaAddrSpace() &&
 | |
|          "Pointer should be in alloca address space");
 | |
|   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
 | |
|   llvm::CallInst *C =
 | |
|       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
 | |
|   C->setDoesNotThrow();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
 | |
|     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
 | |
|   // For each dimension stores its QualType and corresponding
 | |
|   // size-expression Value.
 | |
|   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
 | |
|   SmallVector<IdentifierInfo *, 4> VLAExprNames;
 | |
| 
 | |
|   // Break down the array into individual dimensions.
 | |
|   QualType Type1D = D.getType();
 | |
|   while (getContext().getAsVariableArrayType(Type1D)) {
 | |
|     auto VlaSize = getVLAElements1D(Type1D);
 | |
|     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
 | |
|       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
 | |
|     else {
 | |
|       // Generate a locally unique name for the size expression.
 | |
|       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
 | |
|       SmallString<12> Buffer;
 | |
|       StringRef NameRef = Name.toStringRef(Buffer);
 | |
|       auto &Ident = getContext().Idents.getOwn(NameRef);
 | |
|       VLAExprNames.push_back(&Ident);
 | |
|       auto SizeExprAddr =
 | |
|           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
 | |
|       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
 | |
|       Dimensions.emplace_back(SizeExprAddr.getPointer(),
 | |
|                               Type1D.getUnqualifiedType());
 | |
|     }
 | |
|     Type1D = VlaSize.Type;
 | |
|   }
 | |
| 
 | |
|   if (!EmitDebugInfo)
 | |
|     return;
 | |
| 
 | |
|   // Register each dimension's size-expression with a DILocalVariable,
 | |
|   // so that it can be used by CGDebugInfo when instantiating a DISubrange
 | |
|   // to describe this array.
 | |
|   unsigned NameIdx = 0;
 | |
|   for (auto &VlaSize : Dimensions) {
 | |
|     llvm::Metadata *MD;
 | |
|     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
 | |
|       MD = llvm::ConstantAsMetadata::get(C);
 | |
|     else {
 | |
|       // Create an artificial VarDecl to generate debug info for.
 | |
|       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
 | |
|       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
 | |
|       auto QT = getContext().getIntTypeForBitwidth(
 | |
|           VlaExprTy->getScalarSizeInBits(), false);
 | |
|       auto *ArtificialDecl = VarDecl::Create(
 | |
|           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
 | |
|           D.getLocation(), D.getLocation(), NameIdent, QT,
 | |
|           getContext().CreateTypeSourceInfo(QT), SC_Auto);
 | |
|       ArtificialDecl->setImplicit();
 | |
| 
 | |
|       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
 | |
|                                          Builder);
 | |
|     }
 | |
|     assert(MD && "No Size expression debug node created");
 | |
|     DI->registerVLASizeExpression(VlaSize.Type, MD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitAutoVarAlloca - Emit the alloca and debug information for a
 | |
| /// local variable.  Does not emit initialization or destruction.
 | |
| CodeGenFunction::AutoVarEmission
 | |
| CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
 | |
|   QualType Ty = D.getType();
 | |
|   assert(
 | |
|       Ty.getAddressSpace() == LangAS::Default ||
 | |
|       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
 | |
| 
 | |
|   AutoVarEmission emission(D);
 | |
| 
 | |
|   bool isEscapingByRef = D.isEscapingByref();
 | |
|   emission.IsEscapingByRef = isEscapingByRef;
 | |
| 
 | |
|   CharUnits alignment = getContext().getDeclAlign(&D);
 | |
| 
 | |
|   // If the type is variably-modified, emit all the VLA sizes for it.
 | |
|   if (Ty->isVariablyModifiedType())
 | |
|     EmitVariablyModifiedType(Ty);
 | |
| 
 | |
|   auto *DI = getDebugInfo();
 | |
|   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
 | |
| 
 | |
|   Address address = Address::invalid();
 | |
|   Address AllocaAddr = Address::invalid();
 | |
|   Address OpenMPLocalAddr =
 | |
|       getLangOpts().OpenMP
 | |
|           ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
 | |
|           : Address::invalid();
 | |
|   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
 | |
| 
 | |
|   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
 | |
|     address = OpenMPLocalAddr;
 | |
|   } else if (Ty->isConstantSizeType()) {
 | |
|     // If this value is an array or struct with a statically determinable
 | |
|     // constant initializer, there are optimizations we can do.
 | |
|     //
 | |
|     // TODO: We should constant-evaluate the initializer of any variable,
 | |
|     // as long as it is initialized by a constant expression. Currently,
 | |
|     // isConstantInitializer produces wrong answers for structs with
 | |
|     // reference or bitfield members, and a few other cases, and checking
 | |
|     // for POD-ness protects us from some of these.
 | |
|     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
 | |
|         (D.isConstexpr() ||
 | |
|          ((Ty.isPODType(getContext()) ||
 | |
|            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
 | |
|           D.getInit()->isConstantInitializer(getContext(), false)))) {
 | |
| 
 | |
|       // If the variable's a const type, and it's neither an NRVO
 | |
|       // candidate nor a __block variable and has no mutable members,
 | |
|       // emit it as a global instead.
 | |
|       // Exception is if a variable is located in non-constant address space
 | |
|       // in OpenCL.
 | |
|       if ((!getLangOpts().OpenCL ||
 | |
|            Ty.getAddressSpace() == LangAS::opencl_constant) &&
 | |
|           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
 | |
|            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
 | |
|         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
 | |
| 
 | |
|         // Signal this condition to later callbacks.
 | |
|         emission.Addr = Address::invalid();
 | |
|         assert(emission.wasEmittedAsGlobal());
 | |
|         return emission;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, tell the initialization code that we're in this case.
 | |
|       emission.IsConstantAggregate = true;
 | |
|     }
 | |
| 
 | |
|     // A normal fixed sized variable becomes an alloca in the entry block,
 | |
|     // unless:
 | |
|     // - it's an NRVO variable.
 | |
|     // - we are compiling OpenMP and it's an OpenMP local variable.
 | |
|     if (NRVO) {
 | |
|       // The named return value optimization: allocate this variable in the
 | |
|       // return slot, so that we can elide the copy when returning this
 | |
|       // variable (C++0x [class.copy]p34).
 | |
|       address = ReturnValue;
 | |
| 
 | |
|       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
 | |
|         const auto *RD = RecordTy->getDecl();
 | |
|         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
 | |
|         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
 | |
|             RD->isNonTrivialToPrimitiveDestroy()) {
 | |
|           // Create a flag that is used to indicate when the NRVO was applied
 | |
|           // to this variable. Set it to zero to indicate that NRVO was not
 | |
|           // applied.
 | |
|           llvm::Value *Zero = Builder.getFalse();
 | |
|           Address NRVOFlag =
 | |
|             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
 | |
|           EnsureInsertPoint();
 | |
|           Builder.CreateStore(Zero, NRVOFlag);
 | |
| 
 | |
|           // Record the NRVO flag for this variable.
 | |
|           NRVOFlags[&D] = NRVOFlag.getPointer();
 | |
|           emission.NRVOFlag = NRVOFlag.getPointer();
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       CharUnits allocaAlignment;
 | |
|       llvm::Type *allocaTy;
 | |
|       if (isEscapingByRef) {
 | |
|         auto &byrefInfo = getBlockByrefInfo(&D);
 | |
|         allocaTy = byrefInfo.Type;
 | |
|         allocaAlignment = byrefInfo.ByrefAlignment;
 | |
|       } else {
 | |
|         allocaTy = ConvertTypeForMem(Ty);
 | |
|         allocaAlignment = alignment;
 | |
|       }
 | |
| 
 | |
|       // Create the alloca.  Note that we set the name separately from
 | |
|       // building the instruction so that it's there even in no-asserts
 | |
|       // builds.
 | |
|       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
 | |
|                                  /*ArraySize=*/nullptr, &AllocaAddr);
 | |
| 
 | |
|       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
 | |
|       // the catch parameter starts in the catchpad instruction, and we can't
 | |
|       // insert code in those basic blocks.
 | |
|       bool IsMSCatchParam =
 | |
|           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
 | |
| 
 | |
|       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
 | |
|       // if we don't have a valid insertion point (?).
 | |
|       if (HaveInsertPoint() && !IsMSCatchParam) {
 | |
|         // If there's a jump into the lifetime of this variable, its lifetime
 | |
|         // gets broken up into several regions in IR, which requires more work
 | |
|         // to handle correctly. For now, just omit the intrinsics; this is a
 | |
|         // rare case, and it's better to just be conservatively correct.
 | |
|         // PR28267.
 | |
|         //
 | |
|         // We have to do this in all language modes if there's a jump past the
 | |
|         // declaration. We also have to do it in C if there's a jump to an
 | |
|         // earlier point in the current block because non-VLA lifetimes begin as
 | |
|         // soon as the containing block is entered, not when its variables
 | |
|         // actually come into scope; suppressing the lifetime annotations
 | |
|         // completely in this case is unnecessarily pessimistic, but again, this
 | |
|         // is rare.
 | |
|         if (!Bypasses.IsBypassed(&D) &&
 | |
|             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
 | |
|           llvm::TypeSize size =
 | |
|               CGM.getDataLayout().getTypeAllocSize(allocaTy);
 | |
|           emission.SizeForLifetimeMarkers =
 | |
|               size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer())
 | |
|                                 : EmitLifetimeStart(size.getFixedSize(),
 | |
|                                                     AllocaAddr.getPointer());
 | |
|         }
 | |
|       } else {
 | |
|         assert(!emission.useLifetimeMarkers());
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     EnsureInsertPoint();
 | |
| 
 | |
|     if (!DidCallStackSave) {
 | |
|       // Save the stack.
 | |
|       Address Stack =
 | |
|         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
 | |
| 
 | |
|       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
 | |
|       llvm::Value *V = Builder.CreateCall(F);
 | |
|       Builder.CreateStore(V, Stack);
 | |
| 
 | |
|       DidCallStackSave = true;
 | |
| 
 | |
|       // Push a cleanup block and restore the stack there.
 | |
|       // FIXME: in general circumstances, this should be an EH cleanup.
 | |
|       pushStackRestore(NormalCleanup, Stack);
 | |
|     }
 | |
| 
 | |
|     auto VlaSize = getVLASize(Ty);
 | |
|     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
 | |
| 
 | |
|     // Allocate memory for the array.
 | |
|     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
 | |
|                                &AllocaAddr);
 | |
| 
 | |
|     // If we have debug info enabled, properly describe the VLA dimensions for
 | |
|     // this type by registering the vla size expression for each of the
 | |
|     // dimensions.
 | |
|     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
 | |
|   }
 | |
| 
 | |
|   setAddrOfLocalVar(&D, address);
 | |
|   emission.Addr = address;
 | |
|   emission.AllocaAddr = AllocaAddr;
 | |
| 
 | |
|   // Emit debug info for local var declaration.
 | |
|   if (EmitDebugInfo && HaveInsertPoint()) {
 | |
|     Address DebugAddr = address;
 | |
|     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
 | |
|     DI->setLocation(D.getLocation());
 | |
| 
 | |
|     // If NRVO, use a pointer to the return address.
 | |
|     if (UsePointerValue)
 | |
|       DebugAddr = ReturnValuePointer;
 | |
| 
 | |
|     (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
 | |
|                                         UsePointerValue);
 | |
|   }
 | |
| 
 | |
|   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
 | |
|     EmitVarAnnotations(&D, address.getPointer());
 | |
| 
 | |
|   // Make sure we call @llvm.lifetime.end.
 | |
|   if (emission.useLifetimeMarkers())
 | |
|     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
 | |
|                                          emission.getOriginalAllocatedAddress(),
 | |
|                                          emission.getSizeForLifetimeMarkers());
 | |
| 
 | |
|   return emission;
 | |
| }
 | |
| 
 | |
| static bool isCapturedBy(const VarDecl &, const Expr *);
 | |
| 
 | |
| /// Determines whether the given __block variable is potentially
 | |
| /// captured by the given statement.
 | |
| static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
 | |
|   if (const Expr *E = dyn_cast<Expr>(S))
 | |
|     return isCapturedBy(Var, E);
 | |
|   for (const Stmt *SubStmt : S->children())
 | |
|     if (isCapturedBy(Var, SubStmt))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determines whether the given __block variable is potentially
 | |
| /// captured by the given expression.
 | |
| static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
 | |
|   // Skip the most common kinds of expressions that make
 | |
|   // hierarchy-walking expensive.
 | |
|   E = E->IgnoreParenCasts();
 | |
| 
 | |
|   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
 | |
|     const BlockDecl *Block = BE->getBlockDecl();
 | |
|     for (const auto &I : Block->captures()) {
 | |
|       if (I.getVariable() == &Var)
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // No need to walk into the subexpressions.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
 | |
|     const CompoundStmt *CS = SE->getSubStmt();
 | |
|     for (const auto *BI : CS->body())
 | |
|       if (const auto *BIE = dyn_cast<Expr>(BI)) {
 | |
|         if (isCapturedBy(Var, BIE))
 | |
|           return true;
 | |
|       }
 | |
|       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
 | |
|           // special case declarations
 | |
|           for (const auto *I : DS->decls()) {
 | |
|               if (const auto *VD = dyn_cast<VarDecl>((I))) {
 | |
|                 const Expr *Init = VD->getInit();
 | |
|                 if (Init && isCapturedBy(Var, Init))
 | |
|                   return true;
 | |
|               }
 | |
|           }
 | |
|       }
 | |
|       else
 | |
|         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
 | |
|         // Later, provide code to poke into statements for capture analysis.
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   for (const Stmt *SubStmt : E->children())
 | |
|     if (isCapturedBy(Var, SubStmt))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determine whether the given initializer is trivial in the sense
 | |
| /// that it requires no code to be generated.
 | |
| bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
 | |
|   if (!Init)
 | |
|     return true;
 | |
| 
 | |
|   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
 | |
|     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
 | |
|       if (Constructor->isTrivial() &&
 | |
|           Constructor->isDefaultConstructor() &&
 | |
|           !Construct->requiresZeroInitialization())
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
 | |
|                                                       const VarDecl &D,
 | |
|                                                       Address Loc) {
 | |
|   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
 | |
|   CharUnits Size = getContext().getTypeSizeInChars(type);
 | |
|   bool isVolatile = type.isVolatileQualified();
 | |
|   if (!Size.isZero()) {
 | |
|     switch (trivialAutoVarInit) {
 | |
|     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
 | |
|       llvm_unreachable("Uninitialized handled by caller");
 | |
|     case LangOptions::TrivialAutoVarInitKind::Zero:
 | |
|       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
 | |
|       break;
 | |
|     case LangOptions::TrivialAutoVarInitKind::Pattern:
 | |
|       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
 | |
|       break;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
 | |
|   // them, so emit a memcpy with the VLA size to initialize each element.
 | |
|   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
 | |
|   // will catch that code, but there exists code which generates zero-sized
 | |
|   // VLAs. Be nice and initialize whatever they requested.
 | |
|   const auto *VlaType = getContext().getAsVariableArrayType(type);
 | |
|   if (!VlaType)
 | |
|     return;
 | |
|   auto VlaSize = getVLASize(VlaType);
 | |
|   auto SizeVal = VlaSize.NumElts;
 | |
|   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
 | |
|   switch (trivialAutoVarInit) {
 | |
|   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
 | |
|     llvm_unreachable("Uninitialized handled by caller");
 | |
| 
 | |
|   case LangOptions::TrivialAutoVarInitKind::Zero:
 | |
|     if (!EltSize.isOne())
 | |
|       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
 | |
|     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
 | |
|                          isVolatile);
 | |
|     break;
 | |
| 
 | |
|   case LangOptions::TrivialAutoVarInitKind::Pattern: {
 | |
|     llvm::Type *ElTy = Loc.getElementType();
 | |
|     llvm::Constant *Constant = constWithPadding(
 | |
|         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
 | |
|     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
 | |
|     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
 | |
|     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
 | |
|     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
 | |
|     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
 | |
|         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
 | |
|         "vla.iszerosized");
 | |
|     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
 | |
|     EmitBlock(SetupBB);
 | |
|     if (!EltSize.isOne())
 | |
|       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
 | |
|     llvm::Value *BaseSizeInChars =
 | |
|         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
 | |
|     Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
 | |
|     llvm::Value *End =
 | |
|         Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
 | |
|     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
 | |
|     EmitBlock(LoopBB);
 | |
|     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
 | |
|     Cur->addIncoming(Begin.getPointer(), OriginBB);
 | |
|     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
 | |
|     Builder.CreateMemCpy(Address(Cur, CurAlign),
 | |
|                          createUnnamedGlobalForMemcpyFrom(
 | |
|                              CGM, D, Builder, Constant, ConstantAlign),
 | |
|                          BaseSizeInChars, isVolatile);
 | |
|     llvm::Value *Next =
 | |
|         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
 | |
|     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
 | |
|     Builder.CreateCondBr(Done, ContBB, LoopBB);
 | |
|     Cur->addIncoming(Next, LoopBB);
 | |
|     EmitBlock(ContBB);
 | |
|   } break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
 | |
|   assert(emission.Variable && "emission was not valid!");
 | |
| 
 | |
|   // If this was emitted as a global constant, we're done.
 | |
|   if (emission.wasEmittedAsGlobal()) return;
 | |
| 
 | |
|   const VarDecl &D = *emission.Variable;
 | |
|   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
 | |
|   QualType type = D.getType();
 | |
| 
 | |
|   // If this local has an initializer, emit it now.
 | |
|   const Expr *Init = D.getInit();
 | |
| 
 | |
|   // If we are at an unreachable point, we don't need to emit the initializer
 | |
|   // unless it contains a label.
 | |
|   if (!HaveInsertPoint()) {
 | |
|     if (!Init || !ContainsLabel(Init)) return;
 | |
|     EnsureInsertPoint();
 | |
|   }
 | |
| 
 | |
|   // Initialize the structure of a __block variable.
 | |
|   if (emission.IsEscapingByRef)
 | |
|     emitByrefStructureInit(emission);
 | |
| 
 | |
|   // Initialize the variable here if it doesn't have a initializer and it is a
 | |
|   // C struct that is non-trivial to initialize or an array containing such a
 | |
|   // struct.
 | |
|   if (!Init &&
 | |
|       type.isNonTrivialToPrimitiveDefaultInitialize() ==
 | |
|           QualType::PDIK_Struct) {
 | |
|     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
 | |
|     if (emission.IsEscapingByRef)
 | |
|       drillIntoBlockVariable(*this, Dst, &D);
 | |
|     defaultInitNonTrivialCStructVar(Dst);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check whether this is a byref variable that's potentially
 | |
|   // captured and moved by its own initializer.  If so, we'll need to
 | |
|   // emit the initializer first, then copy into the variable.
 | |
|   bool capturedByInit =
 | |
|       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
 | |
| 
 | |
|   bool locIsByrefHeader = !capturedByInit;
 | |
|   const Address Loc =
 | |
|       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
 | |
| 
 | |
|   // Note: constexpr already initializes everything correctly.
 | |
|   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
 | |
|       (D.isConstexpr()
 | |
|            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
 | |
|            : (D.getAttr<UninitializedAttr>()
 | |
|                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
 | |
|                   : getContext().getLangOpts().getTrivialAutoVarInit()));
 | |
| 
 | |
|   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
 | |
|     if (trivialAutoVarInit ==
 | |
|         LangOptions::TrivialAutoVarInitKind::Uninitialized)
 | |
|       return;
 | |
| 
 | |
|     // Only initialize a __block's storage: we always initialize the header.
 | |
|     if (emission.IsEscapingByRef && !locIsByrefHeader)
 | |
|       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
 | |
| 
 | |
|     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
 | |
|   };
 | |
| 
 | |
|   if (isTrivialInitializer(Init))
 | |
|     return initializeWhatIsTechnicallyUninitialized(Loc);
 | |
| 
 | |
|   llvm::Constant *constant = nullptr;
 | |
|   if (emission.IsConstantAggregate ||
 | |
|       D.mightBeUsableInConstantExpressions(getContext())) {
 | |
|     assert(!capturedByInit && "constant init contains a capturing block?");
 | |
|     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
 | |
|     if (constant && !constant->isZeroValue() &&
 | |
|         (trivialAutoVarInit !=
 | |
|          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
 | |
|       IsPattern isPattern =
 | |
|           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
 | |
|               ? IsPattern::Yes
 | |
|               : IsPattern::No;
 | |
|       // C guarantees that brace-init with fewer initializers than members in
 | |
|       // the aggregate will initialize the rest of the aggregate as-if it were
 | |
|       // static initialization. In turn static initialization guarantees that
 | |
|       // padding is initialized to zero bits. We could instead pattern-init if D
 | |
|       // has any ImplicitValueInitExpr, but that seems to be unintuitive
 | |
|       // behavior.
 | |
|       constant = constWithPadding(CGM, IsPattern::No,
 | |
|                                   replaceUndef(CGM, isPattern, constant));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!constant) {
 | |
|     initializeWhatIsTechnicallyUninitialized(Loc);
 | |
|     LValue lv = MakeAddrLValue(Loc, type);
 | |
|     lv.setNonGC(true);
 | |
|     return EmitExprAsInit(Init, &D, lv, capturedByInit);
 | |
|   }
 | |
| 
 | |
|   if (!emission.IsConstantAggregate) {
 | |
|     // For simple scalar/complex initialization, store the value directly.
 | |
|     LValue lv = MakeAddrLValue(Loc, type);
 | |
|     lv.setNonGC(true);
 | |
|     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
 | |
|   }
 | |
| 
 | |
|   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
 | |
|   emitStoresForConstant(
 | |
|       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
 | |
|       type.isVolatileQualified(), Builder, constant);
 | |
| }
 | |
| 
 | |
| /// Emit an expression as an initializer for an object (variable, field, etc.)
 | |
| /// at the given location.  The expression is not necessarily the normal
 | |
| /// initializer for the object, and the address is not necessarily
 | |
| /// its normal location.
 | |
| ///
 | |
| /// \param init the initializing expression
 | |
| /// \param D the object to act as if we're initializing
 | |
| /// \param loc the address to initialize; its type is a pointer
 | |
| ///   to the LLVM mapping of the object's type
 | |
| /// \param alignment the alignment of the address
 | |
| /// \param capturedByInit true if \p D is a __block variable
 | |
| ///   whose address is potentially changed by the initializer
 | |
| void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
 | |
|                                      LValue lvalue, bool capturedByInit) {
 | |
|   QualType type = D->getType();
 | |
| 
 | |
|   if (type->isReferenceType()) {
 | |
|     RValue rvalue = EmitReferenceBindingToExpr(init);
 | |
|     if (capturedByInit)
 | |
|       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
 | |
|     EmitStoreThroughLValue(rvalue, lvalue, true);
 | |
|     return;
 | |
|   }
 | |
|   switch (getEvaluationKind(type)) {
 | |
|   case TEK_Scalar:
 | |
|     EmitScalarInit(init, D, lvalue, capturedByInit);
 | |
|     return;
 | |
|   case TEK_Complex: {
 | |
|     ComplexPairTy complex = EmitComplexExpr(init);
 | |
|     if (capturedByInit)
 | |
|       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
 | |
|     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
 | |
|     return;
 | |
|   }
 | |
|   case TEK_Aggregate:
 | |
|     if (type->isAtomicType()) {
 | |
|       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
 | |
|     } else {
 | |
|       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
 | |
|       if (isa<VarDecl>(D))
 | |
|         Overlap = AggValueSlot::DoesNotOverlap;
 | |
|       else if (auto *FD = dyn_cast<FieldDecl>(D))
 | |
|         Overlap = getOverlapForFieldInit(FD);
 | |
|       // TODO: how can we delay here if D is captured by its initializer?
 | |
|       EmitAggExpr(init, AggValueSlot::forLValue(
 | |
|                             lvalue, *this, AggValueSlot::IsDestructed,
 | |
|                             AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                             AggValueSlot::IsNotAliased, Overlap));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| /// Enter a destroy cleanup for the given local variable.
 | |
| void CodeGenFunction::emitAutoVarTypeCleanup(
 | |
|                             const CodeGenFunction::AutoVarEmission &emission,
 | |
|                             QualType::DestructionKind dtorKind) {
 | |
|   assert(dtorKind != QualType::DK_none);
 | |
| 
 | |
|   // Note that for __block variables, we want to destroy the
 | |
|   // original stack object, not the possibly forwarded object.
 | |
|   Address addr = emission.getObjectAddress(*this);
 | |
| 
 | |
|   const VarDecl *var = emission.Variable;
 | |
|   QualType type = var->getType();
 | |
| 
 | |
|   CleanupKind cleanupKind = NormalAndEHCleanup;
 | |
|   CodeGenFunction::Destroyer *destroyer = nullptr;
 | |
| 
 | |
|   switch (dtorKind) {
 | |
|   case QualType::DK_none:
 | |
|     llvm_unreachable("no cleanup for trivially-destructible variable");
 | |
| 
 | |
|   case QualType::DK_cxx_destructor:
 | |
|     // If there's an NRVO flag on the emission, we need a different
 | |
|     // cleanup.
 | |
|     if (emission.NRVOFlag) {
 | |
|       assert(!type->isArrayType());
 | |
|       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
 | |
|       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
 | |
|                                                   emission.NRVOFlag);
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case QualType::DK_objc_strong_lifetime:
 | |
|     // Suppress cleanups for pseudo-strong variables.
 | |
|     if (var->isARCPseudoStrong()) return;
 | |
| 
 | |
|     // Otherwise, consider whether to use an EH cleanup or not.
 | |
|     cleanupKind = getARCCleanupKind();
 | |
| 
 | |
|     // Use the imprecise destroyer by default.
 | |
|     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
 | |
|       destroyer = CodeGenFunction::destroyARCStrongImprecise;
 | |
|     break;
 | |
| 
 | |
|   case QualType::DK_objc_weak_lifetime:
 | |
|     break;
 | |
| 
 | |
|   case QualType::DK_nontrivial_c_struct:
 | |
|     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
 | |
|     if (emission.NRVOFlag) {
 | |
|       assert(!type->isArrayType());
 | |
|       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
 | |
|                                                 emission.NRVOFlag, type);
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If we haven't chosen a more specific destroyer, use the default.
 | |
|   if (!destroyer) destroyer = getDestroyer(dtorKind);
 | |
| 
 | |
|   // Use an EH cleanup in array destructors iff the destructor itself
 | |
|   // is being pushed as an EH cleanup.
 | |
|   bool useEHCleanup = (cleanupKind & EHCleanup);
 | |
|   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
 | |
|                                      useEHCleanup);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
 | |
|   assert(emission.Variable && "emission was not valid!");
 | |
| 
 | |
|   // If this was emitted as a global constant, we're done.
 | |
|   if (emission.wasEmittedAsGlobal()) return;
 | |
| 
 | |
|   // If we don't have an insertion point, we're done.  Sema prevents
 | |
|   // us from jumping into any of these scopes anyway.
 | |
|   if (!HaveInsertPoint()) return;
 | |
| 
 | |
|   const VarDecl &D = *emission.Variable;
 | |
| 
 | |
|   // Check the type for a cleanup.
 | |
|   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
 | |
|     emitAutoVarTypeCleanup(emission, dtorKind);
 | |
| 
 | |
|   // In GC mode, honor objc_precise_lifetime.
 | |
|   if (getLangOpts().getGC() != LangOptions::NonGC &&
 | |
|       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
 | |
|     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
 | |
|   }
 | |
| 
 | |
|   // Handle the cleanup attribute.
 | |
|   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
 | |
|     const FunctionDecl *FD = CA->getFunctionDecl();
 | |
| 
 | |
|     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
 | |
|     assert(F && "Could not find function!");
 | |
| 
 | |
|     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
 | |
|     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
 | |
|   }
 | |
| 
 | |
|   // If this is a block variable, call _Block_object_destroy
 | |
|   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
 | |
|   // mode.
 | |
|   if (emission.IsEscapingByRef &&
 | |
|       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
 | |
|     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
 | |
|     if (emission.Variable->getType().isObjCGCWeak())
 | |
|       Flags |= BLOCK_FIELD_IS_WEAK;
 | |
|     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
 | |
|                       /*LoadBlockVarAddr*/ false,
 | |
|                       cxxDestructorCanThrow(emission.Variable->getType()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| CodeGenFunction::Destroyer *
 | |
| CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
 | |
|   switch (kind) {
 | |
|   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
 | |
|   case QualType::DK_cxx_destructor:
 | |
|     return destroyCXXObject;
 | |
|   case QualType::DK_objc_strong_lifetime:
 | |
|     return destroyARCStrongPrecise;
 | |
|   case QualType::DK_objc_weak_lifetime:
 | |
|     return destroyARCWeak;
 | |
|   case QualType::DK_nontrivial_c_struct:
 | |
|     return destroyNonTrivialCStruct;
 | |
|   }
 | |
|   llvm_unreachable("Unknown DestructionKind");
 | |
| }
 | |
| 
 | |
| /// pushEHDestroy - Push the standard destructor for the given type as
 | |
| /// an EH-only cleanup.
 | |
| void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
 | |
|                                     Address addr, QualType type) {
 | |
|   assert(dtorKind && "cannot push destructor for trivial type");
 | |
|   assert(needsEHCleanup(dtorKind));
 | |
| 
 | |
|   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
 | |
| }
 | |
| 
 | |
| /// pushDestroy - Push the standard destructor for the given type as
 | |
| /// at least a normal cleanup.
 | |
| void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
 | |
|                                   Address addr, QualType type) {
 | |
|   assert(dtorKind && "cannot push destructor for trivial type");
 | |
| 
 | |
|   CleanupKind cleanupKind = getCleanupKind(dtorKind);
 | |
|   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
 | |
|               cleanupKind & EHCleanup);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
 | |
|                                   QualType type, Destroyer *destroyer,
 | |
|                                   bool useEHCleanupForArray) {
 | |
|   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
 | |
|                                      destroyer, useEHCleanupForArray);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
 | |
|   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::pushLifetimeExtendedDestroy(
 | |
|     CleanupKind cleanupKind, Address addr, QualType type,
 | |
|     Destroyer *destroyer, bool useEHCleanupForArray) {
 | |
|   // Push an EH-only cleanup for the object now.
 | |
|   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
 | |
|   // around in case a temporary's destructor throws an exception.
 | |
|   if (cleanupKind & EHCleanup)
 | |
|     EHStack.pushCleanup<DestroyObject>(
 | |
|         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
 | |
|         destroyer, useEHCleanupForArray);
 | |
| 
 | |
|   // Remember that we need to push a full cleanup for the object at the
 | |
|   // end of the full-expression.
 | |
|   pushCleanupAfterFullExpr<DestroyObject>(
 | |
|       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
 | |
| }
 | |
| 
 | |
| /// emitDestroy - Immediately perform the destruction of the given
 | |
| /// object.
 | |
| ///
 | |
| /// \param addr - the address of the object; a type*
 | |
| /// \param type - the type of the object; if an array type, all
 | |
| ///   objects are destroyed in reverse order
 | |
| /// \param destroyer - the function to call to destroy individual
 | |
| ///   elements
 | |
| /// \param useEHCleanupForArray - whether an EH cleanup should be
 | |
| ///   used when destroying array elements, in case one of the
 | |
| ///   destructions throws an exception
 | |
| void CodeGenFunction::emitDestroy(Address addr, QualType type,
 | |
|                                   Destroyer *destroyer,
 | |
|                                   bool useEHCleanupForArray) {
 | |
|   const ArrayType *arrayType = getContext().getAsArrayType(type);
 | |
|   if (!arrayType)
 | |
|     return destroyer(*this, addr, type);
 | |
| 
 | |
|   llvm::Value *length = emitArrayLength(arrayType, type, addr);
 | |
| 
 | |
|   CharUnits elementAlign =
 | |
|     addr.getAlignment()
 | |
|         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
 | |
| 
 | |
|   // Normally we have to check whether the array is zero-length.
 | |
|   bool checkZeroLength = true;
 | |
| 
 | |
|   // But if the array length is constant, we can suppress that.
 | |
|   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
 | |
|     // ...and if it's constant zero, we can just skip the entire thing.
 | |
|     if (constLength->isZero()) return;
 | |
|     checkZeroLength = false;
 | |
|   }
 | |
| 
 | |
|   llvm::Value *begin = addr.getPointer();
 | |
|   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
 | |
|   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
 | |
|                    checkZeroLength, useEHCleanupForArray);
 | |
| }
 | |
| 
 | |
| /// emitArrayDestroy - Destroys all the elements of the given array,
 | |
| /// beginning from last to first.  The array cannot be zero-length.
 | |
| ///
 | |
| /// \param begin - a type* denoting the first element of the array
 | |
| /// \param end - a type* denoting one past the end of the array
 | |
| /// \param elementType - the element type of the array
 | |
| /// \param destroyer - the function to call to destroy elements
 | |
| /// \param useEHCleanup - whether to push an EH cleanup to destroy
 | |
| ///   the remaining elements in case the destruction of a single
 | |
| ///   element throws
 | |
| void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
 | |
|                                        llvm::Value *end,
 | |
|                                        QualType elementType,
 | |
|                                        CharUnits elementAlign,
 | |
|                                        Destroyer *destroyer,
 | |
|                                        bool checkZeroLength,
 | |
|                                        bool useEHCleanup) {
 | |
|   assert(!elementType->isArrayType());
 | |
| 
 | |
|   // The basic structure here is a do-while loop, because we don't
 | |
|   // need to check for the zero-element case.
 | |
|   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
 | |
|   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
 | |
| 
 | |
|   if (checkZeroLength) {
 | |
|     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
 | |
|                                                 "arraydestroy.isempty");
 | |
|     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
 | |
|   }
 | |
| 
 | |
|   // Enter the loop body, making that address the current address.
 | |
|   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
 | |
|   EmitBlock(bodyBB);
 | |
|   llvm::PHINode *elementPast =
 | |
|     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
 | |
|   elementPast->addIncoming(end, entryBB);
 | |
| 
 | |
|   // Shift the address back by one element.
 | |
|   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
 | |
|   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
 | |
|                                                    "arraydestroy.element");
 | |
| 
 | |
|   if (useEHCleanup)
 | |
|     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
 | |
|                                    destroyer);
 | |
| 
 | |
|   // Perform the actual destruction there.
 | |
|   destroyer(*this, Address(element, elementAlign), elementType);
 | |
| 
 | |
|   if (useEHCleanup)
 | |
|     PopCleanupBlock();
 | |
| 
 | |
|   // Check whether we've reached the end.
 | |
|   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
 | |
|   Builder.CreateCondBr(done, doneBB, bodyBB);
 | |
|   elementPast->addIncoming(element, Builder.GetInsertBlock());
 | |
| 
 | |
|   // Done.
 | |
|   EmitBlock(doneBB);
 | |
| }
 | |
| 
 | |
| /// Perform partial array destruction as if in an EH cleanup.  Unlike
 | |
| /// emitArrayDestroy, the element type here may still be an array type.
 | |
| static void emitPartialArrayDestroy(CodeGenFunction &CGF,
 | |
|                                     llvm::Value *begin, llvm::Value *end,
 | |
|                                     QualType type, CharUnits elementAlign,
 | |
|                                     CodeGenFunction::Destroyer *destroyer) {
 | |
|   // If the element type is itself an array, drill down.
 | |
|   unsigned arrayDepth = 0;
 | |
|   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
 | |
|     // VLAs don't require a GEP index to walk into.
 | |
|     if (!isa<VariableArrayType>(arrayType))
 | |
|       arrayDepth++;
 | |
|     type = arrayType->getElementType();
 | |
|   }
 | |
| 
 | |
|   if (arrayDepth) {
 | |
|     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
 | |
| 
 | |
|     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
 | |
|     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
 | |
|     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
 | |
|   }
 | |
| 
 | |
|   // Destroy the array.  We don't ever need an EH cleanup because we
 | |
|   // assume that we're in an EH cleanup ourselves, so a throwing
 | |
|   // destructor causes an immediate terminate.
 | |
|   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
 | |
|                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// RegularPartialArrayDestroy - a cleanup which performs a partial
 | |
|   /// array destroy where the end pointer is regularly determined and
 | |
|   /// does not need to be loaded from a local.
 | |
|   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
 | |
|     llvm::Value *ArrayBegin;
 | |
|     llvm::Value *ArrayEnd;
 | |
|     QualType ElementType;
 | |
|     CodeGenFunction::Destroyer *Destroyer;
 | |
|     CharUnits ElementAlign;
 | |
|   public:
 | |
|     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
 | |
|                                QualType elementType, CharUnits elementAlign,
 | |
|                                CodeGenFunction::Destroyer *destroyer)
 | |
|       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
 | |
|         ElementType(elementType), Destroyer(destroyer),
 | |
|         ElementAlign(elementAlign) {}
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
 | |
|                               ElementType, ElementAlign, Destroyer);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// IrregularPartialArrayDestroy - a cleanup which performs a
 | |
|   /// partial array destroy where the end pointer is irregularly
 | |
|   /// determined and must be loaded from a local.
 | |
|   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
 | |
|     llvm::Value *ArrayBegin;
 | |
|     Address ArrayEndPointer;
 | |
|     QualType ElementType;
 | |
|     CodeGenFunction::Destroyer *Destroyer;
 | |
|     CharUnits ElementAlign;
 | |
|   public:
 | |
|     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
 | |
|                                  Address arrayEndPointer,
 | |
|                                  QualType elementType,
 | |
|                                  CharUnits elementAlign,
 | |
|                                  CodeGenFunction::Destroyer *destroyer)
 | |
|       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
 | |
|         ElementType(elementType), Destroyer(destroyer),
 | |
|         ElementAlign(elementAlign) {}
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
 | |
|       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
 | |
|                               ElementType, ElementAlign, Destroyer);
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
 | |
| /// already-constructed elements of the given array.  The cleanup
 | |
| /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
 | |
| ///
 | |
| /// \param elementType - the immediate element type of the array;
 | |
| ///   possibly still an array type
 | |
| void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
 | |
|                                                        Address arrayEndPointer,
 | |
|                                                        QualType elementType,
 | |
|                                                        CharUnits elementAlign,
 | |
|                                                        Destroyer *destroyer) {
 | |
|   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
 | |
|                                                     arrayBegin, arrayEndPointer,
 | |
|                                                     elementType, elementAlign,
 | |
|                                                     destroyer);
 | |
| }
 | |
| 
 | |
| /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
 | |
| /// already-constructed elements of the given array.  The cleanup
 | |
| /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
 | |
| ///
 | |
| /// \param elementType - the immediate element type of the array;
 | |
| ///   possibly still an array type
 | |
| void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
 | |
|                                                      llvm::Value *arrayEnd,
 | |
|                                                      QualType elementType,
 | |
|                                                      CharUnits elementAlign,
 | |
|                                                      Destroyer *destroyer) {
 | |
|   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
 | |
|                                                   arrayBegin, arrayEnd,
 | |
|                                                   elementType, elementAlign,
 | |
|                                                   destroyer);
 | |
| }
 | |
| 
 | |
| /// Lazily declare the @llvm.lifetime.start intrinsic.
 | |
| llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
 | |
|   if (LifetimeStartFn)
 | |
|     return LifetimeStartFn;
 | |
|   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
 | |
|     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
 | |
|   return LifetimeStartFn;
 | |
| }
 | |
| 
 | |
| /// Lazily declare the @llvm.lifetime.end intrinsic.
 | |
| llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
 | |
|   if (LifetimeEndFn)
 | |
|     return LifetimeEndFn;
 | |
|   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
 | |
|     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
 | |
|   return LifetimeEndFn;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// A cleanup to perform a release of an object at the end of a
 | |
|   /// function.  This is used to balance out the incoming +1 of a
 | |
|   /// ns_consumed argument when we can't reasonably do that just by
 | |
|   /// not doing the initial retain for a __block argument.
 | |
|   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
 | |
|     ConsumeARCParameter(llvm::Value *param,
 | |
|                         ARCPreciseLifetime_t precise)
 | |
|       : Param(param), Precise(precise) {}
 | |
| 
 | |
|     llvm::Value *Param;
 | |
|     ARCPreciseLifetime_t Precise;
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       CGF.EmitARCRelease(Param, Precise);
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Emit an alloca (or GlobalValue depending on target)
 | |
| /// for the specified parameter and set up LocalDeclMap.
 | |
| void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
 | |
|                                    unsigned ArgNo) {
 | |
|   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
 | |
|   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
 | |
|          "Invalid argument to EmitParmDecl");
 | |
| 
 | |
|   Arg.getAnyValue()->setName(D.getName());
 | |
| 
 | |
|   QualType Ty = D.getType();
 | |
| 
 | |
|   // Use better IR generation for certain implicit parameters.
 | |
|   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
 | |
|     // The only implicit argument a block has is its literal.
 | |
|     // This may be passed as an inalloca'ed value on Windows x86.
 | |
|     if (BlockInfo) {
 | |
|       llvm::Value *V = Arg.isIndirect()
 | |
|                            ? Builder.CreateLoad(Arg.getIndirectAddress())
 | |
|                            : Arg.getDirectValue();
 | |
|       setBlockContextParameter(IPD, ArgNo, V);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Address DeclPtr = Address::invalid();
 | |
|   bool DoStore = false;
 | |
|   bool IsScalar = hasScalarEvaluationKind(Ty);
 | |
|   // If we already have a pointer to the argument, reuse the input pointer.
 | |
|   if (Arg.isIndirect()) {
 | |
|     DeclPtr = Arg.getIndirectAddress();
 | |
|     // If we have a prettier pointer type at this point, bitcast to that.
 | |
|     unsigned AS = DeclPtr.getType()->getAddressSpace();
 | |
|     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
 | |
|     if (DeclPtr.getType() != IRTy)
 | |
|       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
 | |
|     // Indirect argument is in alloca address space, which may be different
 | |
|     // from the default address space.
 | |
|     auto AllocaAS = CGM.getASTAllocaAddressSpace();
 | |
|     auto *V = DeclPtr.getPointer();
 | |
|     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
 | |
|     auto DestLangAS =
 | |
|         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
 | |
|     if (SrcLangAS != DestLangAS) {
 | |
|       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
 | |
|              CGM.getDataLayout().getAllocaAddrSpace());
 | |
|       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
 | |
|       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
 | |
|       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
 | |
|                             *this, V, SrcLangAS, DestLangAS, T, true),
 | |
|                         DeclPtr.getAlignment());
 | |
|     }
 | |
| 
 | |
|     // Push a destructor cleanup for this parameter if the ABI requires it.
 | |
|     // Don't push a cleanup in a thunk for a method that will also emit a
 | |
|     // cleanup.
 | |
|     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
 | |
|         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
 | |
|       if (QualType::DestructionKind DtorKind =
 | |
|               D.needsDestruction(getContext())) {
 | |
|         assert((DtorKind == QualType::DK_cxx_destructor ||
 | |
|                 DtorKind == QualType::DK_nontrivial_c_struct) &&
 | |
|                "unexpected destructor type");
 | |
|         pushDestroy(DtorKind, DeclPtr, Ty);
 | |
|         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
 | |
|             EHStack.stable_begin();
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // Check if the parameter address is controlled by OpenMP runtime.
 | |
|     Address OpenMPLocalAddr =
 | |
|         getLangOpts().OpenMP
 | |
|             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
 | |
|             : Address::invalid();
 | |
|     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
 | |
|       DeclPtr = OpenMPLocalAddr;
 | |
|     } else {
 | |
|       // Otherwise, create a temporary to hold the value.
 | |
|       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
 | |
|                               D.getName() + ".addr");
 | |
|     }
 | |
|     DoStore = true;
 | |
|   }
 | |
| 
 | |
|   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
 | |
| 
 | |
|   LValue lv = MakeAddrLValue(DeclPtr, Ty);
 | |
|   if (IsScalar) {
 | |
|     Qualifiers qs = Ty.getQualifiers();
 | |
|     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
 | |
|       // We honor __attribute__((ns_consumed)) for types with lifetime.
 | |
|       // For __strong, it's handled by just skipping the initial retain;
 | |
|       // otherwise we have to balance out the initial +1 with an extra
 | |
|       // cleanup to do the release at the end of the function.
 | |
|       bool isConsumed = D.hasAttr<NSConsumedAttr>();
 | |
| 
 | |
|       // If a parameter is pseudo-strong then we can omit the implicit retain.
 | |
|       if (D.isARCPseudoStrong()) {
 | |
|         assert(lt == Qualifiers::OCL_Strong &&
 | |
|                "pseudo-strong variable isn't strong?");
 | |
|         assert(qs.hasConst() && "pseudo-strong variable should be const!");
 | |
|         lt = Qualifiers::OCL_ExplicitNone;
 | |
|       }
 | |
| 
 | |
|       // Load objects passed indirectly.
 | |
|       if (Arg.isIndirect() && !ArgVal)
 | |
|         ArgVal = Builder.CreateLoad(DeclPtr);
 | |
| 
 | |
|       if (lt == Qualifiers::OCL_Strong) {
 | |
|         if (!isConsumed) {
 | |
|           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
 | |
|             // use objc_storeStrong(&dest, value) for retaining the
 | |
|             // object. But first, store a null into 'dest' because
 | |
|             // objc_storeStrong attempts to release its old value.
 | |
|             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
 | |
|             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
 | |
|             EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
 | |
|             DoStore = false;
 | |
|           }
 | |
|           else
 | |
|           // Don't use objc_retainBlock for block pointers, because we
 | |
|           // don't want to Block_copy something just because we got it
 | |
|           // as a parameter.
 | |
|             ArgVal = EmitARCRetainNonBlock(ArgVal);
 | |
|         }
 | |
|       } else {
 | |
|         // Push the cleanup for a consumed parameter.
 | |
|         if (isConsumed) {
 | |
|           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
 | |
|                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
 | |
|           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
 | |
|                                                    precise);
 | |
|         }
 | |
| 
 | |
|         if (lt == Qualifiers::OCL_Weak) {
 | |
|           EmitARCInitWeak(DeclPtr, ArgVal);
 | |
|           DoStore = false; // The weak init is a store, no need to do two.
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Enter the cleanup scope.
 | |
|       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Store the initial value into the alloca.
 | |
|   if (DoStore)
 | |
|     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
 | |
| 
 | |
|   setAddrOfLocalVar(&D, DeclPtr);
 | |
| 
 | |
|   // Emit debug info for param declarations in non-thunk functions.
 | |
|   if (CGDebugInfo *DI = getDebugInfo()) {
 | |
|     if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
 | |
|       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (D.hasAttr<AnnotateAttr>())
 | |
|     EmitVarAnnotations(&D, DeclPtr.getPointer());
 | |
| 
 | |
|   // We can only check return value nullability if all arguments to the
 | |
|   // function satisfy their nullability preconditions. This makes it necessary
 | |
|   // to emit null checks for args in the function body itself.
 | |
|   if (requiresReturnValueNullabilityCheck()) {
 | |
|     auto Nullability = Ty->getNullability(getContext());
 | |
|     if (Nullability && *Nullability == NullabilityKind::NonNull) {
 | |
|       SanitizerScope SanScope(this);
 | |
|       RetValNullabilityPrecondition =
 | |
|           Builder.CreateAnd(RetValNullabilityPrecondition,
 | |
|                             Builder.CreateIsNotNull(Arg.getAnyValue()));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
 | |
|                                             CodeGenFunction *CGF) {
 | |
|   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
 | |
|     return;
 | |
|   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
 | |
|                                          CodeGenFunction *CGF) {
 | |
|   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
 | |
|       (!LangOpts.EmitAllDecls && !D->isUsed()))
 | |
|     return;
 | |
|   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
 | |
|   getOpenMPRuntime().processRequiresDirective(D);
 | |
| }
 |