forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2284 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2284 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
 | 
						||
//
 | 
						||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						||
// See https://llvm.org/LICENSE.txt for license information.
 | 
						||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						||
//
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
//
 | 
						||
// This contains code dealing with code generation of C++ expressions
 | 
						||
//
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
 | 
						||
#include "CGCUDARuntime.h"
 | 
						||
#include "CGCXXABI.h"
 | 
						||
#include "CGDebugInfo.h"
 | 
						||
#include "CGObjCRuntime.h"
 | 
						||
#include "CodeGenFunction.h"
 | 
						||
#include "ConstantEmitter.h"
 | 
						||
#include "TargetInfo.h"
 | 
						||
#include "clang/Basic/CodeGenOptions.h"
 | 
						||
#include "clang/CodeGen/CGFunctionInfo.h"
 | 
						||
#include "llvm/IR/Intrinsics.h"
 | 
						||
 | 
						||
using namespace clang;
 | 
						||
using namespace CodeGen;
 | 
						||
 | 
						||
namespace {
 | 
						||
struct MemberCallInfo {
 | 
						||
  RequiredArgs ReqArgs;
 | 
						||
  // Number of prefix arguments for the call. Ignores the `this` pointer.
 | 
						||
  unsigned PrefixSize;
 | 
						||
};
 | 
						||
}
 | 
						||
 | 
						||
static MemberCallInfo
 | 
						||
commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
 | 
						||
                                  llvm::Value *This, llvm::Value *ImplicitParam,
 | 
						||
                                  QualType ImplicitParamTy, const CallExpr *CE,
 | 
						||
                                  CallArgList &Args, CallArgList *RtlArgs) {
 | 
						||
  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
 | 
						||
         isa<CXXOperatorCallExpr>(CE));
 | 
						||
  assert(MD->isInstance() &&
 | 
						||
         "Trying to emit a member or operator call expr on a static method!");
 | 
						||
 | 
						||
  // Push the this ptr.
 | 
						||
  const CXXRecordDecl *RD =
 | 
						||
      CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
 | 
						||
  Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
 | 
						||
 | 
						||
  // If there is an implicit parameter (e.g. VTT), emit it.
 | 
						||
  if (ImplicitParam) {
 | 
						||
    Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
 | 
						||
  }
 | 
						||
 | 
						||
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
 | 
						||
  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
 | 
						||
  unsigned PrefixSize = Args.size() - 1;
 | 
						||
 | 
						||
  // And the rest of the call args.
 | 
						||
  if (RtlArgs) {
 | 
						||
    // Special case: if the caller emitted the arguments right-to-left already
 | 
						||
    // (prior to emitting the *this argument), we're done. This happens for
 | 
						||
    // assignment operators.
 | 
						||
    Args.addFrom(*RtlArgs);
 | 
						||
  } else if (CE) {
 | 
						||
    // Special case: skip first argument of CXXOperatorCall (it is "this").
 | 
						||
    unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
 | 
						||
    CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
 | 
						||
                     CE->getDirectCallee());
 | 
						||
  } else {
 | 
						||
    assert(
 | 
						||
        FPT->getNumParams() == 0 &&
 | 
						||
        "No CallExpr specified for function with non-zero number of arguments");
 | 
						||
  }
 | 
						||
  return {required, PrefixSize};
 | 
						||
}
 | 
						||
 | 
						||
RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
 | 
						||
    const CXXMethodDecl *MD, const CGCallee &Callee,
 | 
						||
    ReturnValueSlot ReturnValue,
 | 
						||
    llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
 | 
						||
    const CallExpr *CE, CallArgList *RtlArgs) {
 | 
						||
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
 | 
						||
  CallArgList Args;
 | 
						||
  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
 | 
						||
      *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
 | 
						||
  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
 | 
						||
      Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
 | 
						||
  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
 | 
						||
                  CE ? CE->getExprLoc() : SourceLocation());
 | 
						||
}
 | 
						||
 | 
						||
RValue CodeGenFunction::EmitCXXDestructorCall(
 | 
						||
    GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
 | 
						||
    llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
 | 
						||
  const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
 | 
						||
 | 
						||
  assert(!ThisTy.isNull());
 | 
						||
  assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
 | 
						||
         "Pointer/Object mixup");
 | 
						||
 | 
						||
  LangAS SrcAS = ThisTy.getAddressSpace();
 | 
						||
  LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
 | 
						||
  if (SrcAS != DstAS) {
 | 
						||
    QualType DstTy = DtorDecl->getThisType();
 | 
						||
    llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
 | 
						||
    This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
 | 
						||
                                                 NewType);
 | 
						||
  }
 | 
						||
 | 
						||
  CallArgList Args;
 | 
						||
  commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
 | 
						||
                                    ImplicitParamTy, CE, Args, nullptr);
 | 
						||
  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
 | 
						||
                  ReturnValueSlot(), Args);
 | 
						||
}
 | 
						||
 | 
						||
RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
 | 
						||
                                            const CXXPseudoDestructorExpr *E) {
 | 
						||
  QualType DestroyedType = E->getDestroyedType();
 | 
						||
  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
 | 
						||
    // Automatic Reference Counting:
 | 
						||
    //   If the pseudo-expression names a retainable object with weak or
 | 
						||
    //   strong lifetime, the object shall be released.
 | 
						||
    Expr *BaseExpr = E->getBase();
 | 
						||
    Address BaseValue = Address::invalid();
 | 
						||
    Qualifiers BaseQuals;
 | 
						||
 | 
						||
    // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
 | 
						||
    if (E->isArrow()) {
 | 
						||
      BaseValue = EmitPointerWithAlignment(BaseExpr);
 | 
						||
      const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
 | 
						||
      BaseQuals = PTy->getPointeeType().getQualifiers();
 | 
						||
    } else {
 | 
						||
      LValue BaseLV = EmitLValue(BaseExpr);
 | 
						||
      BaseValue = BaseLV.getAddress(*this);
 | 
						||
      QualType BaseTy = BaseExpr->getType();
 | 
						||
      BaseQuals = BaseTy.getQualifiers();
 | 
						||
    }
 | 
						||
 | 
						||
    switch (DestroyedType.getObjCLifetime()) {
 | 
						||
    case Qualifiers::OCL_None:
 | 
						||
    case Qualifiers::OCL_ExplicitNone:
 | 
						||
    case Qualifiers::OCL_Autoreleasing:
 | 
						||
      break;
 | 
						||
 | 
						||
    case Qualifiers::OCL_Strong:
 | 
						||
      EmitARCRelease(Builder.CreateLoad(BaseValue,
 | 
						||
                        DestroyedType.isVolatileQualified()),
 | 
						||
                     ARCPreciseLifetime);
 | 
						||
      break;
 | 
						||
 | 
						||
    case Qualifiers::OCL_Weak:
 | 
						||
      EmitARCDestroyWeak(BaseValue);
 | 
						||
      break;
 | 
						||
    }
 | 
						||
  } else {
 | 
						||
    // C++ [expr.pseudo]p1:
 | 
						||
    //   The result shall only be used as the operand for the function call
 | 
						||
    //   operator (), and the result of such a call has type void. The only
 | 
						||
    //   effect is the evaluation of the postfix-expression before the dot or
 | 
						||
    //   arrow.
 | 
						||
    EmitIgnoredExpr(E->getBase());
 | 
						||
  }
 | 
						||
 | 
						||
  return RValue::get(nullptr);
 | 
						||
}
 | 
						||
 | 
						||
static CXXRecordDecl *getCXXRecord(const Expr *E) {
 | 
						||
  QualType T = E->getType();
 | 
						||
  if (const PointerType *PTy = T->getAs<PointerType>())
 | 
						||
    T = PTy->getPointeeType();
 | 
						||
  const RecordType *Ty = T->castAs<RecordType>();
 | 
						||
  return cast<CXXRecordDecl>(Ty->getDecl());
 | 
						||
}
 | 
						||
 | 
						||
// Note: This function also emit constructor calls to support a MSVC
 | 
						||
// extensions allowing explicit constructor function call.
 | 
						||
RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
 | 
						||
                                              ReturnValueSlot ReturnValue) {
 | 
						||
  const Expr *callee = CE->getCallee()->IgnoreParens();
 | 
						||
 | 
						||
  if (isa<BinaryOperator>(callee))
 | 
						||
    return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
 | 
						||
 | 
						||
  const MemberExpr *ME = cast<MemberExpr>(callee);
 | 
						||
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
 | 
						||
 | 
						||
  if (MD->isStatic()) {
 | 
						||
    // The method is static, emit it as we would a regular call.
 | 
						||
    CGCallee callee =
 | 
						||
        CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
 | 
						||
    return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
 | 
						||
                    ReturnValue);
 | 
						||
  }
 | 
						||
 | 
						||
  bool HasQualifier = ME->hasQualifier();
 | 
						||
  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
 | 
						||
  bool IsArrow = ME->isArrow();
 | 
						||
  const Expr *Base = ME->getBase();
 | 
						||
 | 
						||
  return EmitCXXMemberOrOperatorMemberCallExpr(
 | 
						||
      CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
 | 
						||
}
 | 
						||
 | 
						||
RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
 | 
						||
    const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
 | 
						||
    bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
 | 
						||
    const Expr *Base) {
 | 
						||
  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
 | 
						||
 | 
						||
  // Compute the object pointer.
 | 
						||
  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
 | 
						||
 | 
						||
  const CXXMethodDecl *DevirtualizedMethod = nullptr;
 | 
						||
  if (CanUseVirtualCall &&
 | 
						||
      MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
 | 
						||
    const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
 | 
						||
    DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
 | 
						||
    assert(DevirtualizedMethod);
 | 
						||
    const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
 | 
						||
    const Expr *Inner = Base->ignoreParenBaseCasts();
 | 
						||
    if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
 | 
						||
        MD->getReturnType().getCanonicalType())
 | 
						||
      // If the return types are not the same, this might be a case where more
 | 
						||
      // code needs to run to compensate for it. For example, the derived
 | 
						||
      // method might return a type that inherits form from the return
 | 
						||
      // type of MD and has a prefix.
 | 
						||
      // For now we just avoid devirtualizing these covariant cases.
 | 
						||
      DevirtualizedMethod = nullptr;
 | 
						||
    else if (getCXXRecord(Inner) == DevirtualizedClass)
 | 
						||
      // If the class of the Inner expression is where the dynamic method
 | 
						||
      // is defined, build the this pointer from it.
 | 
						||
      Base = Inner;
 | 
						||
    else if (getCXXRecord(Base) != DevirtualizedClass) {
 | 
						||
      // If the method is defined in a class that is not the best dynamic
 | 
						||
      // one or the one of the full expression, we would have to build
 | 
						||
      // a derived-to-base cast to compute the correct this pointer, but
 | 
						||
      // we don't have support for that yet, so do a virtual call.
 | 
						||
      DevirtualizedMethod = nullptr;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  bool TrivialForCodegen =
 | 
						||
      MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
 | 
						||
  bool TrivialAssignment =
 | 
						||
      TrivialForCodegen &&
 | 
						||
      (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
 | 
						||
      !MD->getParent()->mayInsertExtraPadding();
 | 
						||
 | 
						||
  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
 | 
						||
  // operator before the LHS.
 | 
						||
  CallArgList RtlArgStorage;
 | 
						||
  CallArgList *RtlArgs = nullptr;
 | 
						||
  LValue TrivialAssignmentRHS;
 | 
						||
  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
 | 
						||
    if (OCE->isAssignmentOp()) {
 | 
						||
      if (TrivialAssignment) {
 | 
						||
        TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
 | 
						||
      } else {
 | 
						||
        RtlArgs = &RtlArgStorage;
 | 
						||
        EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
 | 
						||
                     drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
 | 
						||
                     /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  LValue This;
 | 
						||
  if (IsArrow) {
 | 
						||
    LValueBaseInfo BaseInfo;
 | 
						||
    TBAAAccessInfo TBAAInfo;
 | 
						||
    Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
 | 
						||
    This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
 | 
						||
  } else {
 | 
						||
    This = EmitLValue(Base);
 | 
						||
  }
 | 
						||
 | 
						||
  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
 | 
						||
    // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
 | 
						||
    // constructing a new complete object of type Ctor.
 | 
						||
    assert(!RtlArgs);
 | 
						||
    assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
 | 
						||
    CallArgList Args;
 | 
						||
    commonEmitCXXMemberOrOperatorCall(
 | 
						||
        *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr,
 | 
						||
        /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
 | 
						||
 | 
						||
    EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
 | 
						||
                           /*Delegating=*/false, This.getAddress(*this), Args,
 | 
						||
                           AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
 | 
						||
                           /*NewPointerIsChecked=*/false);
 | 
						||
    return RValue::get(nullptr);
 | 
						||
  }
 | 
						||
 | 
						||
  if (TrivialForCodegen) {
 | 
						||
    if (isa<CXXDestructorDecl>(MD))
 | 
						||
      return RValue::get(nullptr);
 | 
						||
 | 
						||
    if (TrivialAssignment) {
 | 
						||
      // We don't like to generate the trivial copy/move assignment operator
 | 
						||
      // when it isn't necessary; just produce the proper effect here.
 | 
						||
      // It's important that we use the result of EmitLValue here rather than
 | 
						||
      // emitting call arguments, in order to preserve TBAA information from
 | 
						||
      // the RHS.
 | 
						||
      LValue RHS = isa<CXXOperatorCallExpr>(CE)
 | 
						||
                       ? TrivialAssignmentRHS
 | 
						||
                       : EmitLValue(*CE->arg_begin());
 | 
						||
      EmitAggregateAssign(This, RHS, CE->getType());
 | 
						||
      return RValue::get(This.getPointer(*this));
 | 
						||
    }
 | 
						||
 | 
						||
    assert(MD->getParent()->mayInsertExtraPadding() &&
 | 
						||
           "unknown trivial member function");
 | 
						||
  }
 | 
						||
 | 
						||
  // Compute the function type we're calling.
 | 
						||
  const CXXMethodDecl *CalleeDecl =
 | 
						||
      DevirtualizedMethod ? DevirtualizedMethod : MD;
 | 
						||
  const CGFunctionInfo *FInfo = nullptr;
 | 
						||
  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
 | 
						||
    FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
 | 
						||
        GlobalDecl(Dtor, Dtor_Complete));
 | 
						||
  else
 | 
						||
    FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
 | 
						||
 | 
						||
  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
 | 
						||
 | 
						||
  // C++11 [class.mfct.non-static]p2:
 | 
						||
  //   If a non-static member function of a class X is called for an object that
 | 
						||
  //   is not of type X, or of a type derived from X, the behavior is undefined.
 | 
						||
  SourceLocation CallLoc;
 | 
						||
  ASTContext &C = getContext();
 | 
						||
  if (CE)
 | 
						||
    CallLoc = CE->getExprLoc();
 | 
						||
 | 
						||
  SanitizerSet SkippedChecks;
 | 
						||
  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
 | 
						||
    auto *IOA = CMCE->getImplicitObjectArgument();
 | 
						||
    bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
 | 
						||
    if (IsImplicitObjectCXXThis)
 | 
						||
      SkippedChecks.set(SanitizerKind::Alignment, true);
 | 
						||
    if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
 | 
						||
      SkippedChecks.set(SanitizerKind::Null, true);
 | 
						||
  }
 | 
						||
  EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
 | 
						||
                This.getPointer(*this),
 | 
						||
                C.getRecordType(CalleeDecl->getParent()),
 | 
						||
                /*Alignment=*/CharUnits::Zero(), SkippedChecks);
 | 
						||
 | 
						||
  // C++ [class.virtual]p12:
 | 
						||
  //   Explicit qualification with the scope operator (5.1) suppresses the
 | 
						||
  //   virtual call mechanism.
 | 
						||
  //
 | 
						||
  // We also don't emit a virtual call if the base expression has a record type
 | 
						||
  // because then we know what the type is.
 | 
						||
  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
 | 
						||
 | 
						||
  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
 | 
						||
    assert(CE->arg_begin() == CE->arg_end() &&
 | 
						||
           "Destructor shouldn't have explicit parameters");
 | 
						||
    assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
 | 
						||
    if (UseVirtualCall) {
 | 
						||
      CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
 | 
						||
                                                This.getAddress(*this),
 | 
						||
                                                cast<CXXMemberCallExpr>(CE));
 | 
						||
    } else {
 | 
						||
      GlobalDecl GD(Dtor, Dtor_Complete);
 | 
						||
      CGCallee Callee;
 | 
						||
      if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
 | 
						||
        Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
 | 
						||
      else if (!DevirtualizedMethod)
 | 
						||
        Callee =
 | 
						||
            CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
 | 
						||
      else {
 | 
						||
        Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
 | 
						||
      }
 | 
						||
 | 
						||
      QualType ThisTy =
 | 
						||
          IsArrow ? Base->getType()->getPointeeType() : Base->getType();
 | 
						||
      EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
 | 
						||
                            /*ImplicitParam=*/nullptr,
 | 
						||
                            /*ImplicitParamTy=*/QualType(), nullptr);
 | 
						||
    }
 | 
						||
    return RValue::get(nullptr);
 | 
						||
  }
 | 
						||
 | 
						||
  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
 | 
						||
  // 'CalleeDecl' instead.
 | 
						||
 | 
						||
  CGCallee Callee;
 | 
						||
  if (UseVirtualCall) {
 | 
						||
    Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
 | 
						||
  } else {
 | 
						||
    if (SanOpts.has(SanitizerKind::CFINVCall) &&
 | 
						||
        MD->getParent()->isDynamicClass()) {
 | 
						||
      llvm::Value *VTable;
 | 
						||
      const CXXRecordDecl *RD;
 | 
						||
      std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
 | 
						||
          *this, This.getAddress(*this), CalleeDecl->getParent());
 | 
						||
      EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
 | 
						||
    }
 | 
						||
 | 
						||
    if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
 | 
						||
      Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
 | 
						||
    else if (!DevirtualizedMethod)
 | 
						||
      Callee =
 | 
						||
          CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
 | 
						||
    else {
 | 
						||
      Callee =
 | 
						||
          CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
 | 
						||
                              GlobalDecl(DevirtualizedMethod));
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  if (MD->isVirtual()) {
 | 
						||
    Address NewThisAddr =
 | 
						||
        CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
 | 
						||
            *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
 | 
						||
    This.setAddress(NewThisAddr);
 | 
						||
  }
 | 
						||
 | 
						||
  return EmitCXXMemberOrOperatorCall(
 | 
						||
      CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
 | 
						||
      /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
 | 
						||
}
 | 
						||
 | 
						||
RValue
 | 
						||
CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
 | 
						||
                                              ReturnValueSlot ReturnValue) {
 | 
						||
  const BinaryOperator *BO =
 | 
						||
      cast<BinaryOperator>(E->getCallee()->IgnoreParens());
 | 
						||
  const Expr *BaseExpr = BO->getLHS();
 | 
						||
  const Expr *MemFnExpr = BO->getRHS();
 | 
						||
 | 
						||
  const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
 | 
						||
  const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
 | 
						||
  const auto *RD =
 | 
						||
      cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
 | 
						||
 | 
						||
  // Emit the 'this' pointer.
 | 
						||
  Address This = Address::invalid();
 | 
						||
  if (BO->getOpcode() == BO_PtrMemI)
 | 
						||
    This = EmitPointerWithAlignment(BaseExpr);
 | 
						||
  else
 | 
						||
    This = EmitLValue(BaseExpr).getAddress(*this);
 | 
						||
 | 
						||
  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
 | 
						||
                QualType(MPT->getClass(), 0));
 | 
						||
 | 
						||
  // Get the member function pointer.
 | 
						||
  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
 | 
						||
 | 
						||
  // Ask the ABI to load the callee.  Note that This is modified.
 | 
						||
  llvm::Value *ThisPtrForCall = nullptr;
 | 
						||
  CGCallee Callee =
 | 
						||
    CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
 | 
						||
                                             ThisPtrForCall, MemFnPtr, MPT);
 | 
						||
 | 
						||
  CallArgList Args;
 | 
						||
 | 
						||
  QualType ThisType =
 | 
						||
    getContext().getPointerType(getContext().getTagDeclType(RD));
 | 
						||
 | 
						||
  // Push the this ptr.
 | 
						||
  Args.add(RValue::get(ThisPtrForCall), ThisType);
 | 
						||
 | 
						||
  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
 | 
						||
 | 
						||
  // And the rest of the call args
 | 
						||
  EmitCallArgs(Args, FPT, E->arguments());
 | 
						||
  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
 | 
						||
                                                      /*PrefixSize=*/0),
 | 
						||
                  Callee, ReturnValue, Args, nullptr, E->getExprLoc());
 | 
						||
}
 | 
						||
 | 
						||
RValue
 | 
						||
CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
 | 
						||
                                               const CXXMethodDecl *MD,
 | 
						||
                                               ReturnValueSlot ReturnValue) {
 | 
						||
  assert(MD->isInstance() &&
 | 
						||
         "Trying to emit a member call expr on a static method!");
 | 
						||
  return EmitCXXMemberOrOperatorMemberCallExpr(
 | 
						||
      E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
 | 
						||
      /*IsArrow=*/false, E->getArg(0));
 | 
						||
}
 | 
						||
 | 
						||
RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
 | 
						||
                                               ReturnValueSlot ReturnValue) {
 | 
						||
  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
 | 
						||
}
 | 
						||
 | 
						||
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
 | 
						||
                                            Address DestPtr,
 | 
						||
                                            const CXXRecordDecl *Base) {
 | 
						||
  if (Base->isEmpty())
 | 
						||
    return;
 | 
						||
 | 
						||
  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
 | 
						||
 | 
						||
  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
 | 
						||
  CharUnits NVSize = Layout.getNonVirtualSize();
 | 
						||
 | 
						||
  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
 | 
						||
  // present, they are initialized by the most derived class before calling the
 | 
						||
  // constructor.
 | 
						||
  SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
 | 
						||
  Stores.emplace_back(CharUnits::Zero(), NVSize);
 | 
						||
 | 
						||
  // Each store is split by the existence of a vbptr.
 | 
						||
  CharUnits VBPtrWidth = CGF.getPointerSize();
 | 
						||
  std::vector<CharUnits> VBPtrOffsets =
 | 
						||
      CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
 | 
						||
  for (CharUnits VBPtrOffset : VBPtrOffsets) {
 | 
						||
    // Stop before we hit any virtual base pointers located in virtual bases.
 | 
						||
    if (VBPtrOffset >= NVSize)
 | 
						||
      break;
 | 
						||
    std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
 | 
						||
    CharUnits LastStoreOffset = LastStore.first;
 | 
						||
    CharUnits LastStoreSize = LastStore.second;
 | 
						||
 | 
						||
    CharUnits SplitBeforeOffset = LastStoreOffset;
 | 
						||
    CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
 | 
						||
    assert(!SplitBeforeSize.isNegative() && "negative store size!");
 | 
						||
    if (!SplitBeforeSize.isZero())
 | 
						||
      Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
 | 
						||
 | 
						||
    CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
 | 
						||
    CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
 | 
						||
    assert(!SplitAfterSize.isNegative() && "negative store size!");
 | 
						||
    if (!SplitAfterSize.isZero())
 | 
						||
      Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
 | 
						||
  }
 | 
						||
 | 
						||
  // If the type contains a pointer to data member we can't memset it to zero.
 | 
						||
  // Instead, create a null constant and copy it to the destination.
 | 
						||
  // TODO: there are other patterns besides zero that we can usefully memset,
 | 
						||
  // like -1, which happens to be the pattern used by member-pointers.
 | 
						||
  // TODO: isZeroInitializable can be over-conservative in the case where a
 | 
						||
  // virtual base contains a member pointer.
 | 
						||
  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
 | 
						||
  if (!NullConstantForBase->isNullValue()) {
 | 
						||
    llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
 | 
						||
        CGF.CGM.getModule(), NullConstantForBase->getType(),
 | 
						||
        /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
 | 
						||
        NullConstantForBase, Twine());
 | 
						||
 | 
						||
    CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
 | 
						||
                               DestPtr.getAlignment());
 | 
						||
    NullVariable->setAlignment(Align.getAsAlign());
 | 
						||
 | 
						||
    Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
 | 
						||
 | 
						||
    // Get and call the appropriate llvm.memcpy overload.
 | 
						||
    for (std::pair<CharUnits, CharUnits> Store : Stores) {
 | 
						||
      CharUnits StoreOffset = Store.first;
 | 
						||
      CharUnits StoreSize = Store.second;
 | 
						||
      llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
 | 
						||
      CGF.Builder.CreateMemCpy(
 | 
						||
          CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
 | 
						||
          CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
 | 
						||
          StoreSizeVal);
 | 
						||
    }
 | 
						||
 | 
						||
  // Otherwise, just memset the whole thing to zero.  This is legal
 | 
						||
  // because in LLVM, all default initializers (other than the ones we just
 | 
						||
  // handled above) are guaranteed to have a bit pattern of all zeros.
 | 
						||
  } else {
 | 
						||
    for (std::pair<CharUnits, CharUnits> Store : Stores) {
 | 
						||
      CharUnits StoreOffset = Store.first;
 | 
						||
      CharUnits StoreSize = Store.second;
 | 
						||
      llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
 | 
						||
      CGF.Builder.CreateMemSet(
 | 
						||
          CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
 | 
						||
          CGF.Builder.getInt8(0), StoreSizeVal);
 | 
						||
    }
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
void
 | 
						||
CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
 | 
						||
                                      AggValueSlot Dest) {
 | 
						||
  assert(!Dest.isIgnored() && "Must have a destination!");
 | 
						||
  const CXXConstructorDecl *CD = E->getConstructor();
 | 
						||
 | 
						||
  // If we require zero initialization before (or instead of) calling the
 | 
						||
  // constructor, as can be the case with a non-user-provided default
 | 
						||
  // constructor, emit the zero initialization now, unless destination is
 | 
						||
  // already zeroed.
 | 
						||
  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
 | 
						||
    switch (E->getConstructionKind()) {
 | 
						||
    case CXXConstructExpr::CK_Delegating:
 | 
						||
    case CXXConstructExpr::CK_Complete:
 | 
						||
      EmitNullInitialization(Dest.getAddress(), E->getType());
 | 
						||
      break;
 | 
						||
    case CXXConstructExpr::CK_VirtualBase:
 | 
						||
    case CXXConstructExpr::CK_NonVirtualBase:
 | 
						||
      EmitNullBaseClassInitialization(*this, Dest.getAddress(),
 | 
						||
                                      CD->getParent());
 | 
						||
      break;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // If this is a call to a trivial default constructor, do nothing.
 | 
						||
  if (CD->isTrivial() && CD->isDefaultConstructor())
 | 
						||
    return;
 | 
						||
 | 
						||
  // Elide the constructor if we're constructing from a temporary.
 | 
						||
  // The temporary check is required because Sema sets this on NRVO
 | 
						||
  // returns.
 | 
						||
  if (getLangOpts().ElideConstructors && E->isElidable()) {
 | 
						||
    assert(getContext().hasSameUnqualifiedType(E->getType(),
 | 
						||
                                               E->getArg(0)->getType()));
 | 
						||
    if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
 | 
						||
      EmitAggExpr(E->getArg(0), Dest);
 | 
						||
      return;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  if (const ArrayType *arrayType
 | 
						||
        = getContext().getAsArrayType(E->getType())) {
 | 
						||
    EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
 | 
						||
                               Dest.isSanitizerChecked());
 | 
						||
  } else {
 | 
						||
    CXXCtorType Type = Ctor_Complete;
 | 
						||
    bool ForVirtualBase = false;
 | 
						||
    bool Delegating = false;
 | 
						||
 | 
						||
    switch (E->getConstructionKind()) {
 | 
						||
     case CXXConstructExpr::CK_Delegating:
 | 
						||
      // We should be emitting a constructor; GlobalDecl will assert this
 | 
						||
      Type = CurGD.getCtorType();
 | 
						||
      Delegating = true;
 | 
						||
      break;
 | 
						||
 | 
						||
     case CXXConstructExpr::CK_Complete:
 | 
						||
      Type = Ctor_Complete;
 | 
						||
      break;
 | 
						||
 | 
						||
     case CXXConstructExpr::CK_VirtualBase:
 | 
						||
      ForVirtualBase = true;
 | 
						||
      LLVM_FALLTHROUGH;
 | 
						||
 | 
						||
     case CXXConstructExpr::CK_NonVirtualBase:
 | 
						||
      Type = Ctor_Base;
 | 
						||
     }
 | 
						||
 | 
						||
     // Call the constructor.
 | 
						||
     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
 | 
						||
                                                 const Expr *Exp) {
 | 
						||
  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
 | 
						||
    Exp = E->getSubExpr();
 | 
						||
  assert(isa<CXXConstructExpr>(Exp) &&
 | 
						||
         "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
 | 
						||
  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
 | 
						||
  const CXXConstructorDecl *CD = E->getConstructor();
 | 
						||
  RunCleanupsScope Scope(*this);
 | 
						||
 | 
						||
  // If we require zero initialization before (or instead of) calling the
 | 
						||
  // constructor, as can be the case with a non-user-provided default
 | 
						||
  // constructor, emit the zero initialization now.
 | 
						||
  // FIXME. Do I still need this for a copy ctor synthesis?
 | 
						||
  if (E->requiresZeroInitialization())
 | 
						||
    EmitNullInitialization(Dest, E->getType());
 | 
						||
 | 
						||
  assert(!getContext().getAsConstantArrayType(E->getType())
 | 
						||
         && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
 | 
						||
  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
 | 
						||
}
 | 
						||
 | 
						||
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
 | 
						||
                                        const CXXNewExpr *E) {
 | 
						||
  if (!E->isArray())
 | 
						||
    return CharUnits::Zero();
 | 
						||
 | 
						||
  // No cookie is required if the operator new[] being used is the
 | 
						||
  // reserved placement operator new[].
 | 
						||
  if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
 | 
						||
    return CharUnits::Zero();
 | 
						||
 | 
						||
  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
 | 
						||
}
 | 
						||
 | 
						||
static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
 | 
						||
                                        const CXXNewExpr *e,
 | 
						||
                                        unsigned minElements,
 | 
						||
                                        llvm::Value *&numElements,
 | 
						||
                                        llvm::Value *&sizeWithoutCookie) {
 | 
						||
  QualType type = e->getAllocatedType();
 | 
						||
 | 
						||
  if (!e->isArray()) {
 | 
						||
    CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
 | 
						||
    sizeWithoutCookie
 | 
						||
      = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
 | 
						||
    return sizeWithoutCookie;
 | 
						||
  }
 | 
						||
 | 
						||
  // The width of size_t.
 | 
						||
  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
 | 
						||
 | 
						||
  // Figure out the cookie size.
 | 
						||
  llvm::APInt cookieSize(sizeWidth,
 | 
						||
                         CalculateCookiePadding(CGF, e).getQuantity());
 | 
						||
 | 
						||
  // Emit the array size expression.
 | 
						||
  // We multiply the size of all dimensions for NumElements.
 | 
						||
  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
 | 
						||
  numElements =
 | 
						||
    ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
 | 
						||
  if (!numElements)
 | 
						||
    numElements = CGF.EmitScalarExpr(*e->getArraySize());
 | 
						||
  assert(isa<llvm::IntegerType>(numElements->getType()));
 | 
						||
 | 
						||
  // The number of elements can be have an arbitrary integer type;
 | 
						||
  // essentially, we need to multiply it by a constant factor, add a
 | 
						||
  // cookie size, and verify that the result is representable as a
 | 
						||
  // size_t.  That's just a gloss, though, and it's wrong in one
 | 
						||
  // important way: if the count is negative, it's an error even if
 | 
						||
  // the cookie size would bring the total size >= 0.
 | 
						||
  bool isSigned
 | 
						||
    = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
 | 
						||
  llvm::IntegerType *numElementsType
 | 
						||
    = cast<llvm::IntegerType>(numElements->getType());
 | 
						||
  unsigned numElementsWidth = numElementsType->getBitWidth();
 | 
						||
 | 
						||
  // Compute the constant factor.
 | 
						||
  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
 | 
						||
  while (const ConstantArrayType *CAT
 | 
						||
             = CGF.getContext().getAsConstantArrayType(type)) {
 | 
						||
    type = CAT->getElementType();
 | 
						||
    arraySizeMultiplier *= CAT->getSize();
 | 
						||
  }
 | 
						||
 | 
						||
  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
 | 
						||
  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
 | 
						||
  typeSizeMultiplier *= arraySizeMultiplier;
 | 
						||
 | 
						||
  // This will be a size_t.
 | 
						||
  llvm::Value *size;
 | 
						||
 | 
						||
  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
 | 
						||
  // Don't bloat the -O0 code.
 | 
						||
  if (llvm::ConstantInt *numElementsC =
 | 
						||
        dyn_cast<llvm::ConstantInt>(numElements)) {
 | 
						||
    const llvm::APInt &count = numElementsC->getValue();
 | 
						||
 | 
						||
    bool hasAnyOverflow = false;
 | 
						||
 | 
						||
    // If 'count' was a negative number, it's an overflow.
 | 
						||
    if (isSigned && count.isNegative())
 | 
						||
      hasAnyOverflow = true;
 | 
						||
 | 
						||
    // We want to do all this arithmetic in size_t.  If numElements is
 | 
						||
    // wider than that, check whether it's already too big, and if so,
 | 
						||
    // overflow.
 | 
						||
    else if (numElementsWidth > sizeWidth &&
 | 
						||
             numElementsWidth - sizeWidth > count.countLeadingZeros())
 | 
						||
      hasAnyOverflow = true;
 | 
						||
 | 
						||
    // Okay, compute a count at the right width.
 | 
						||
    llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
 | 
						||
 | 
						||
    // If there is a brace-initializer, we cannot allocate fewer elements than
 | 
						||
    // there are initializers. If we do, that's treated like an overflow.
 | 
						||
    if (adjustedCount.ult(minElements))
 | 
						||
      hasAnyOverflow = true;
 | 
						||
 | 
						||
    // Scale numElements by that.  This might overflow, but we don't
 | 
						||
    // care because it only overflows if allocationSize does, too, and
 | 
						||
    // if that overflows then we shouldn't use this.
 | 
						||
    numElements = llvm::ConstantInt::get(CGF.SizeTy,
 | 
						||
                                         adjustedCount * arraySizeMultiplier);
 | 
						||
 | 
						||
    // Compute the size before cookie, and track whether it overflowed.
 | 
						||
    bool overflow;
 | 
						||
    llvm::APInt allocationSize
 | 
						||
      = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
 | 
						||
    hasAnyOverflow |= overflow;
 | 
						||
 | 
						||
    // Add in the cookie, and check whether it's overflowed.
 | 
						||
    if (cookieSize != 0) {
 | 
						||
      // Save the current size without a cookie.  This shouldn't be
 | 
						||
      // used if there was overflow.
 | 
						||
      sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
 | 
						||
 | 
						||
      allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
 | 
						||
      hasAnyOverflow |= overflow;
 | 
						||
    }
 | 
						||
 | 
						||
    // On overflow, produce a -1 so operator new will fail.
 | 
						||
    if (hasAnyOverflow) {
 | 
						||
      size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
 | 
						||
    } else {
 | 
						||
      size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
 | 
						||
    }
 | 
						||
 | 
						||
  // Otherwise, we might need to use the overflow intrinsics.
 | 
						||
  } else {
 | 
						||
    // There are up to five conditions we need to test for:
 | 
						||
    // 1) if isSigned, we need to check whether numElements is negative;
 | 
						||
    // 2) if numElementsWidth > sizeWidth, we need to check whether
 | 
						||
    //   numElements is larger than something representable in size_t;
 | 
						||
    // 3) if minElements > 0, we need to check whether numElements is smaller
 | 
						||
    //    than that.
 | 
						||
    // 4) we need to compute
 | 
						||
    //      sizeWithoutCookie := numElements * typeSizeMultiplier
 | 
						||
    //    and check whether it overflows; and
 | 
						||
    // 5) if we need a cookie, we need to compute
 | 
						||
    //      size := sizeWithoutCookie + cookieSize
 | 
						||
    //    and check whether it overflows.
 | 
						||
 | 
						||
    llvm::Value *hasOverflow = nullptr;
 | 
						||
 | 
						||
    // If numElementsWidth > sizeWidth, then one way or another, we're
 | 
						||
    // going to have to do a comparison for (2), and this happens to
 | 
						||
    // take care of (1), too.
 | 
						||
    if (numElementsWidth > sizeWidth) {
 | 
						||
      llvm::APInt threshold(numElementsWidth, 1);
 | 
						||
      threshold <<= sizeWidth;
 | 
						||
 | 
						||
      llvm::Value *thresholdV
 | 
						||
        = llvm::ConstantInt::get(numElementsType, threshold);
 | 
						||
 | 
						||
      hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
 | 
						||
      numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
 | 
						||
 | 
						||
    // Otherwise, if we're signed, we want to sext up to size_t.
 | 
						||
    } else if (isSigned) {
 | 
						||
      if (numElementsWidth < sizeWidth)
 | 
						||
        numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
 | 
						||
 | 
						||
      // If there's a non-1 type size multiplier, then we can do the
 | 
						||
      // signedness check at the same time as we do the multiply
 | 
						||
      // because a negative number times anything will cause an
 | 
						||
      // unsigned overflow.  Otherwise, we have to do it here. But at least
 | 
						||
      // in this case, we can subsume the >= minElements check.
 | 
						||
      if (typeSizeMultiplier == 1)
 | 
						||
        hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
 | 
						||
                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
 | 
						||
 | 
						||
    // Otherwise, zext up to size_t if necessary.
 | 
						||
    } else if (numElementsWidth < sizeWidth) {
 | 
						||
      numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
 | 
						||
    }
 | 
						||
 | 
						||
    assert(numElements->getType() == CGF.SizeTy);
 | 
						||
 | 
						||
    if (minElements) {
 | 
						||
      // Don't allow allocation of fewer elements than we have initializers.
 | 
						||
      if (!hasOverflow) {
 | 
						||
        hasOverflow = CGF.Builder.CreateICmpULT(numElements,
 | 
						||
                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
 | 
						||
      } else if (numElementsWidth > sizeWidth) {
 | 
						||
        // The other existing overflow subsumes this check.
 | 
						||
        // We do an unsigned comparison, since any signed value < -1 is
 | 
						||
        // taken care of either above or below.
 | 
						||
        hasOverflow = CGF.Builder.CreateOr(hasOverflow,
 | 
						||
                          CGF.Builder.CreateICmpULT(numElements,
 | 
						||
                              llvm::ConstantInt::get(CGF.SizeTy, minElements)));
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    size = numElements;
 | 
						||
 | 
						||
    // Multiply by the type size if necessary.  This multiplier
 | 
						||
    // includes all the factors for nested arrays.
 | 
						||
    //
 | 
						||
    // This step also causes numElements to be scaled up by the
 | 
						||
    // nested-array factor if necessary.  Overflow on this computation
 | 
						||
    // can be ignored because the result shouldn't be used if
 | 
						||
    // allocation fails.
 | 
						||
    if (typeSizeMultiplier != 1) {
 | 
						||
      llvm::Function *umul_with_overflow
 | 
						||
        = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
 | 
						||
 | 
						||
      llvm::Value *tsmV =
 | 
						||
        llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
 | 
						||
      llvm::Value *result =
 | 
						||
          CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
 | 
						||
 | 
						||
      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
 | 
						||
      if (hasOverflow)
 | 
						||
        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
 | 
						||
      else
 | 
						||
        hasOverflow = overflowed;
 | 
						||
 | 
						||
      size = CGF.Builder.CreateExtractValue(result, 0);
 | 
						||
 | 
						||
      // Also scale up numElements by the array size multiplier.
 | 
						||
      if (arraySizeMultiplier != 1) {
 | 
						||
        // If the base element type size is 1, then we can re-use the
 | 
						||
        // multiply we just did.
 | 
						||
        if (typeSize.isOne()) {
 | 
						||
          assert(arraySizeMultiplier == typeSizeMultiplier);
 | 
						||
          numElements = size;
 | 
						||
 | 
						||
        // Otherwise we need a separate multiply.
 | 
						||
        } else {
 | 
						||
          llvm::Value *asmV =
 | 
						||
            llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
 | 
						||
          numElements = CGF.Builder.CreateMul(numElements, asmV);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    } else {
 | 
						||
      // numElements doesn't need to be scaled.
 | 
						||
      assert(arraySizeMultiplier == 1);
 | 
						||
    }
 | 
						||
 | 
						||
    // Add in the cookie size if necessary.
 | 
						||
    if (cookieSize != 0) {
 | 
						||
      sizeWithoutCookie = size;
 | 
						||
 | 
						||
      llvm::Function *uadd_with_overflow
 | 
						||
        = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
 | 
						||
 | 
						||
      llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
 | 
						||
      llvm::Value *result =
 | 
						||
          CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
 | 
						||
 | 
						||
      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
 | 
						||
      if (hasOverflow)
 | 
						||
        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
 | 
						||
      else
 | 
						||
        hasOverflow = overflowed;
 | 
						||
 | 
						||
      size = CGF.Builder.CreateExtractValue(result, 0);
 | 
						||
    }
 | 
						||
 | 
						||
    // If we had any possibility of dynamic overflow, make a select to
 | 
						||
    // overwrite 'size' with an all-ones value, which should cause
 | 
						||
    // operator new to throw.
 | 
						||
    if (hasOverflow)
 | 
						||
      size = CGF.Builder.CreateSelect(hasOverflow,
 | 
						||
                                 llvm::Constant::getAllOnesValue(CGF.SizeTy),
 | 
						||
                                      size);
 | 
						||
  }
 | 
						||
 | 
						||
  if (cookieSize == 0)
 | 
						||
    sizeWithoutCookie = size;
 | 
						||
  else
 | 
						||
    assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
 | 
						||
 | 
						||
  return size;
 | 
						||
}
 | 
						||
 | 
						||
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
 | 
						||
                                    QualType AllocType, Address NewPtr,
 | 
						||
                                    AggValueSlot::Overlap_t MayOverlap) {
 | 
						||
  // FIXME: Refactor with EmitExprAsInit.
 | 
						||
  switch (CGF.getEvaluationKind(AllocType)) {
 | 
						||
  case TEK_Scalar:
 | 
						||
    CGF.EmitScalarInit(Init, nullptr,
 | 
						||
                       CGF.MakeAddrLValue(NewPtr, AllocType), false);
 | 
						||
    return;
 | 
						||
  case TEK_Complex:
 | 
						||
    CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
 | 
						||
                                  /*isInit*/ true);
 | 
						||
    return;
 | 
						||
  case TEK_Aggregate: {
 | 
						||
    AggValueSlot Slot
 | 
						||
      = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
 | 
						||
                              AggValueSlot::IsDestructed,
 | 
						||
                              AggValueSlot::DoesNotNeedGCBarriers,
 | 
						||
                              AggValueSlot::IsNotAliased,
 | 
						||
                              MayOverlap, AggValueSlot::IsNotZeroed,
 | 
						||
                              AggValueSlot::IsSanitizerChecked);
 | 
						||
    CGF.EmitAggExpr(Init, Slot);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
  }
 | 
						||
  llvm_unreachable("bad evaluation kind");
 | 
						||
}
 | 
						||
 | 
						||
void CodeGenFunction::EmitNewArrayInitializer(
 | 
						||
    const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
 | 
						||
    Address BeginPtr, llvm::Value *NumElements,
 | 
						||
    llvm::Value *AllocSizeWithoutCookie) {
 | 
						||
  // If we have a type with trivial initialization and no initializer,
 | 
						||
  // there's nothing to do.
 | 
						||
  if (!E->hasInitializer())
 | 
						||
    return;
 | 
						||
 | 
						||
  Address CurPtr = BeginPtr;
 | 
						||
 | 
						||
  unsigned InitListElements = 0;
 | 
						||
 | 
						||
  const Expr *Init = E->getInitializer();
 | 
						||
  Address EndOfInit = Address::invalid();
 | 
						||
  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
 | 
						||
  EHScopeStack::stable_iterator Cleanup;
 | 
						||
  llvm::Instruction *CleanupDominator = nullptr;
 | 
						||
 | 
						||
  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
 | 
						||
  CharUnits ElementAlign =
 | 
						||
    BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
 | 
						||
 | 
						||
  // Attempt to perform zero-initialization using memset.
 | 
						||
  auto TryMemsetInitialization = [&]() -> bool {
 | 
						||
    // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
 | 
						||
    // we can initialize with a memset to -1.
 | 
						||
    if (!CGM.getTypes().isZeroInitializable(ElementType))
 | 
						||
      return false;
 | 
						||
 | 
						||
    // Optimization: since zero initialization will just set the memory
 | 
						||
    // to all zeroes, generate a single memset to do it in one shot.
 | 
						||
 | 
						||
    // Subtract out the size of any elements we've already initialized.
 | 
						||
    auto *RemainingSize = AllocSizeWithoutCookie;
 | 
						||
    if (InitListElements) {
 | 
						||
      // We know this can't overflow; we check this when doing the allocation.
 | 
						||
      auto *InitializedSize = llvm::ConstantInt::get(
 | 
						||
          RemainingSize->getType(),
 | 
						||
          getContext().getTypeSizeInChars(ElementType).getQuantity() *
 | 
						||
              InitListElements);
 | 
						||
      RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
 | 
						||
    }
 | 
						||
 | 
						||
    // Create the memset.
 | 
						||
    Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
 | 
						||
    return true;
 | 
						||
  };
 | 
						||
 | 
						||
  // If the initializer is an initializer list, first do the explicit elements.
 | 
						||
  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
 | 
						||
    // Initializing from a (braced) string literal is a special case; the init
 | 
						||
    // list element does not initialize a (single) array element.
 | 
						||
    if (ILE->isStringLiteralInit()) {
 | 
						||
      // Initialize the initial portion of length equal to that of the string
 | 
						||
      // literal. The allocation must be for at least this much; we emitted a
 | 
						||
      // check for that earlier.
 | 
						||
      AggValueSlot Slot =
 | 
						||
          AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
 | 
						||
                                AggValueSlot::IsDestructed,
 | 
						||
                                AggValueSlot::DoesNotNeedGCBarriers,
 | 
						||
                                AggValueSlot::IsNotAliased,
 | 
						||
                                AggValueSlot::DoesNotOverlap,
 | 
						||
                                AggValueSlot::IsNotZeroed,
 | 
						||
                                AggValueSlot::IsSanitizerChecked);
 | 
						||
      EmitAggExpr(ILE->getInit(0), Slot);
 | 
						||
 | 
						||
      // Move past these elements.
 | 
						||
      InitListElements =
 | 
						||
          cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
 | 
						||
              ->getSize().getZExtValue();
 | 
						||
      CurPtr =
 | 
						||
          Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
 | 
						||
                                            Builder.getSize(InitListElements),
 | 
						||
                                            "string.init.end"),
 | 
						||
                  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
 | 
						||
                                                          ElementSize));
 | 
						||
 | 
						||
      // Zero out the rest, if any remain.
 | 
						||
      llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
 | 
						||
      if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
 | 
						||
        bool OK = TryMemsetInitialization();
 | 
						||
        (void)OK;
 | 
						||
        assert(OK && "couldn't memset character type?");
 | 
						||
      }
 | 
						||
      return;
 | 
						||
    }
 | 
						||
 | 
						||
    InitListElements = ILE->getNumInits();
 | 
						||
 | 
						||
    // If this is a multi-dimensional array new, we will initialize multiple
 | 
						||
    // elements with each init list element.
 | 
						||
    QualType AllocType = E->getAllocatedType();
 | 
						||
    if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
 | 
						||
            AllocType->getAsArrayTypeUnsafe())) {
 | 
						||
      ElementTy = ConvertTypeForMem(AllocType);
 | 
						||
      CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
 | 
						||
      InitListElements *= getContext().getConstantArrayElementCount(CAT);
 | 
						||
    }
 | 
						||
 | 
						||
    // Enter a partial-destruction Cleanup if necessary.
 | 
						||
    if (needsEHCleanup(DtorKind)) {
 | 
						||
      // In principle we could tell the Cleanup where we are more
 | 
						||
      // directly, but the control flow can get so varied here that it
 | 
						||
      // would actually be quite complex.  Therefore we go through an
 | 
						||
      // alloca.
 | 
						||
      EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
 | 
						||
                                   "array.init.end");
 | 
						||
      CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
 | 
						||
      pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
 | 
						||
                                       ElementType, ElementAlign,
 | 
						||
                                       getDestroyer(DtorKind));
 | 
						||
      Cleanup = EHStack.stable_begin();
 | 
						||
    }
 | 
						||
 | 
						||
    CharUnits StartAlign = CurPtr.getAlignment();
 | 
						||
    for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
 | 
						||
      // Tell the cleanup that it needs to destroy up to this
 | 
						||
      // element.  TODO: some of these stores can be trivially
 | 
						||
      // observed to be unnecessary.
 | 
						||
      if (EndOfInit.isValid()) {
 | 
						||
        auto FinishedPtr =
 | 
						||
          Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
 | 
						||
        Builder.CreateStore(FinishedPtr, EndOfInit);
 | 
						||
      }
 | 
						||
      // FIXME: If the last initializer is an incomplete initializer list for
 | 
						||
      // an array, and we have an array filler, we can fold together the two
 | 
						||
      // initialization loops.
 | 
						||
      StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
 | 
						||
                              ILE->getInit(i)->getType(), CurPtr,
 | 
						||
                              AggValueSlot::DoesNotOverlap);
 | 
						||
      CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
 | 
						||
                                                 Builder.getSize(1),
 | 
						||
                                                 "array.exp.next"),
 | 
						||
                       StartAlign.alignmentAtOffset((i + 1) * ElementSize));
 | 
						||
    }
 | 
						||
 | 
						||
    // The remaining elements are filled with the array filler expression.
 | 
						||
    Init = ILE->getArrayFiller();
 | 
						||
 | 
						||
    // Extract the initializer for the individual array elements by pulling
 | 
						||
    // out the array filler from all the nested initializer lists. This avoids
 | 
						||
    // generating a nested loop for the initialization.
 | 
						||
    while (Init && Init->getType()->isConstantArrayType()) {
 | 
						||
      auto *SubILE = dyn_cast<InitListExpr>(Init);
 | 
						||
      if (!SubILE)
 | 
						||
        break;
 | 
						||
      assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
 | 
						||
      Init = SubILE->getArrayFiller();
 | 
						||
    }
 | 
						||
 | 
						||
    // Switch back to initializing one base element at a time.
 | 
						||
    CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
 | 
						||
  }
 | 
						||
 | 
						||
  // If all elements have already been initialized, skip any further
 | 
						||
  // initialization.
 | 
						||
  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
 | 
						||
  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
 | 
						||
    // If there was a Cleanup, deactivate it.
 | 
						||
    if (CleanupDominator)
 | 
						||
      DeactivateCleanupBlock(Cleanup, CleanupDominator);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  assert(Init && "have trailing elements to initialize but no initializer");
 | 
						||
 | 
						||
  // If this is a constructor call, try to optimize it out, and failing that
 | 
						||
  // emit a single loop to initialize all remaining elements.
 | 
						||
  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
 | 
						||
    CXXConstructorDecl *Ctor = CCE->getConstructor();
 | 
						||
    if (Ctor->isTrivial()) {
 | 
						||
      // If new expression did not specify value-initialization, then there
 | 
						||
      // is no initialization.
 | 
						||
      if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
 | 
						||
        return;
 | 
						||
 | 
						||
      if (TryMemsetInitialization())
 | 
						||
        return;
 | 
						||
    }
 | 
						||
 | 
						||
    // Store the new Cleanup position for irregular Cleanups.
 | 
						||
    //
 | 
						||
    // FIXME: Share this cleanup with the constructor call emission rather than
 | 
						||
    // having it create a cleanup of its own.
 | 
						||
    if (EndOfInit.isValid())
 | 
						||
      Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
 | 
						||
 | 
						||
    // Emit a constructor call loop to initialize the remaining elements.
 | 
						||
    if (InitListElements)
 | 
						||
      NumElements = Builder.CreateSub(
 | 
						||
          NumElements,
 | 
						||
          llvm::ConstantInt::get(NumElements->getType(), InitListElements));
 | 
						||
    EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
 | 
						||
                               /*NewPointerIsChecked*/true,
 | 
						||
                               CCE->requiresZeroInitialization());
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // If this is value-initialization, we can usually use memset.
 | 
						||
  ImplicitValueInitExpr IVIE(ElementType);
 | 
						||
  if (isa<ImplicitValueInitExpr>(Init)) {
 | 
						||
    if (TryMemsetInitialization())
 | 
						||
      return;
 | 
						||
 | 
						||
    // Switch to an ImplicitValueInitExpr for the element type. This handles
 | 
						||
    // only one case: multidimensional array new of pointers to members. In
 | 
						||
    // all other cases, we already have an initializer for the array element.
 | 
						||
    Init = &IVIE;
 | 
						||
  }
 | 
						||
 | 
						||
  // At this point we should have found an initializer for the individual
 | 
						||
  // elements of the array.
 | 
						||
  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
 | 
						||
         "got wrong type of element to initialize");
 | 
						||
 | 
						||
  // If we have an empty initializer list, we can usually use memset.
 | 
						||
  if (auto *ILE = dyn_cast<InitListExpr>(Init))
 | 
						||
    if (ILE->getNumInits() == 0 && TryMemsetInitialization())
 | 
						||
      return;
 | 
						||
 | 
						||
  // If we have a struct whose every field is value-initialized, we can
 | 
						||
  // usually use memset.
 | 
						||
  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
 | 
						||
    if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
 | 
						||
      if (RType->getDecl()->isStruct()) {
 | 
						||
        unsigned NumElements = 0;
 | 
						||
        if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
 | 
						||
          NumElements = CXXRD->getNumBases();
 | 
						||
        for (auto *Field : RType->getDecl()->fields())
 | 
						||
          if (!Field->isUnnamedBitfield())
 | 
						||
            ++NumElements;
 | 
						||
        // FIXME: Recurse into nested InitListExprs.
 | 
						||
        if (ILE->getNumInits() == NumElements)
 | 
						||
          for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
 | 
						||
            if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
 | 
						||
              --NumElements;
 | 
						||
        if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
 | 
						||
          return;
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // Create the loop blocks.
 | 
						||
  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
 | 
						||
  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
 | 
						||
  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
 | 
						||
 | 
						||
  // Find the end of the array, hoisted out of the loop.
 | 
						||
  llvm::Value *EndPtr =
 | 
						||
    Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
 | 
						||
 | 
						||
  // If the number of elements isn't constant, we have to now check if there is
 | 
						||
  // anything left to initialize.
 | 
						||
  if (!ConstNum) {
 | 
						||
    llvm::Value *IsEmpty =
 | 
						||
      Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
 | 
						||
    Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
 | 
						||
  }
 | 
						||
 | 
						||
  // Enter the loop.
 | 
						||
  EmitBlock(LoopBB);
 | 
						||
 | 
						||
  // Set up the current-element phi.
 | 
						||
  llvm::PHINode *CurPtrPhi =
 | 
						||
    Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
 | 
						||
  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
 | 
						||
 | 
						||
  CurPtr = Address(CurPtrPhi, ElementAlign);
 | 
						||
 | 
						||
  // Store the new Cleanup position for irregular Cleanups.
 | 
						||
  if (EndOfInit.isValid())
 | 
						||
    Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
 | 
						||
 | 
						||
  // Enter a partial-destruction Cleanup if necessary.
 | 
						||
  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
 | 
						||
    pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
 | 
						||
                                   ElementType, ElementAlign,
 | 
						||
                                   getDestroyer(DtorKind));
 | 
						||
    Cleanup = EHStack.stable_begin();
 | 
						||
    CleanupDominator = Builder.CreateUnreachable();
 | 
						||
  }
 | 
						||
 | 
						||
  // Emit the initializer into this element.
 | 
						||
  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
 | 
						||
                          AggValueSlot::DoesNotOverlap);
 | 
						||
 | 
						||
  // Leave the Cleanup if we entered one.
 | 
						||
  if (CleanupDominator) {
 | 
						||
    DeactivateCleanupBlock(Cleanup, CleanupDominator);
 | 
						||
    CleanupDominator->eraseFromParent();
 | 
						||
  }
 | 
						||
 | 
						||
  // Advance to the next element by adjusting the pointer type as necessary.
 | 
						||
  llvm::Value *NextPtr =
 | 
						||
    Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
 | 
						||
                                       "array.next");
 | 
						||
 | 
						||
  // Check whether we've gotten to the end of the array and, if so,
 | 
						||
  // exit the loop.
 | 
						||
  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
 | 
						||
  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
 | 
						||
  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
 | 
						||
 | 
						||
  EmitBlock(ContBB);
 | 
						||
}
 | 
						||
 | 
						||
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
 | 
						||
                               QualType ElementType, llvm::Type *ElementTy,
 | 
						||
                               Address NewPtr, llvm::Value *NumElements,
 | 
						||
                               llvm::Value *AllocSizeWithoutCookie) {
 | 
						||
  ApplyDebugLocation DL(CGF, E);
 | 
						||
  if (E->isArray())
 | 
						||
    CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
 | 
						||
                                AllocSizeWithoutCookie);
 | 
						||
  else if (const Expr *Init = E->getInitializer())
 | 
						||
    StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
 | 
						||
                            AggValueSlot::DoesNotOverlap);
 | 
						||
}
 | 
						||
 | 
						||
/// Emit a call to an operator new or operator delete function, as implicitly
 | 
						||
/// created by new-expressions and delete-expressions.
 | 
						||
static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
 | 
						||
                                const FunctionDecl *CalleeDecl,
 | 
						||
                                const FunctionProtoType *CalleeType,
 | 
						||
                                const CallArgList &Args) {
 | 
						||
  llvm::CallBase *CallOrInvoke;
 | 
						||
  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
 | 
						||
  CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
 | 
						||
  RValue RV =
 | 
						||
      CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
 | 
						||
                       Args, CalleeType, /*ChainCall=*/false),
 | 
						||
                   Callee, ReturnValueSlot(), Args, &CallOrInvoke);
 | 
						||
 | 
						||
  /// C++1y [expr.new]p10:
 | 
						||
  ///   [In a new-expression,] an implementation is allowed to omit a call
 | 
						||
  ///   to a replaceable global allocation function.
 | 
						||
  ///
 | 
						||
  /// We model such elidable calls with the 'builtin' attribute.
 | 
						||
  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
 | 
						||
  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
 | 
						||
      Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
 | 
						||
    CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
 | 
						||
                               llvm::Attribute::Builtin);
 | 
						||
  }
 | 
						||
 | 
						||
  return RV;
 | 
						||
}
 | 
						||
 | 
						||
RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
 | 
						||
                                                 const CallExpr *TheCall,
 | 
						||
                                                 bool IsDelete) {
 | 
						||
  CallArgList Args;
 | 
						||
  EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
 | 
						||
  // Find the allocation or deallocation function that we're calling.
 | 
						||
  ASTContext &Ctx = getContext();
 | 
						||
  DeclarationName Name = Ctx.DeclarationNames
 | 
						||
      .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
 | 
						||
 | 
						||
  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
 | 
						||
    if (auto *FD = dyn_cast<FunctionDecl>(Decl))
 | 
						||
      if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
 | 
						||
        return EmitNewDeleteCall(*this, FD, Type, Args);
 | 
						||
  llvm_unreachable("predeclared global operator new/delete is missing");
 | 
						||
}
 | 
						||
 | 
						||
namespace {
 | 
						||
/// The parameters to pass to a usual operator delete.
 | 
						||
struct UsualDeleteParams {
 | 
						||
  bool DestroyingDelete = false;
 | 
						||
  bool Size = false;
 | 
						||
  bool Alignment = false;
 | 
						||
};
 | 
						||
}
 | 
						||
 | 
						||
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
 | 
						||
  UsualDeleteParams Params;
 | 
						||
 | 
						||
  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
 | 
						||
  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
 | 
						||
 | 
						||
  // The first argument is always a void*.
 | 
						||
  ++AI;
 | 
						||
 | 
						||
  // The next parameter may be a std::destroying_delete_t.
 | 
						||
  if (FD->isDestroyingOperatorDelete()) {
 | 
						||
    Params.DestroyingDelete = true;
 | 
						||
    assert(AI != AE);
 | 
						||
    ++AI;
 | 
						||
  }
 | 
						||
 | 
						||
  // Figure out what other parameters we should be implicitly passing.
 | 
						||
  if (AI != AE && (*AI)->isIntegerType()) {
 | 
						||
    Params.Size = true;
 | 
						||
    ++AI;
 | 
						||
  }
 | 
						||
 | 
						||
  if (AI != AE && (*AI)->isAlignValT()) {
 | 
						||
    Params.Alignment = true;
 | 
						||
    ++AI;
 | 
						||
  }
 | 
						||
 | 
						||
  assert(AI == AE && "unexpected usual deallocation function parameter");
 | 
						||
  return Params;
 | 
						||
}
 | 
						||
 | 
						||
namespace {
 | 
						||
  /// A cleanup to call the given 'operator delete' function upon abnormal
 | 
						||
  /// exit from a new expression. Templated on a traits type that deals with
 | 
						||
  /// ensuring that the arguments dominate the cleanup if necessary.
 | 
						||
  template<typename Traits>
 | 
						||
  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
 | 
						||
    /// Type used to hold llvm::Value*s.
 | 
						||
    typedef typename Traits::ValueTy ValueTy;
 | 
						||
    /// Type used to hold RValues.
 | 
						||
    typedef typename Traits::RValueTy RValueTy;
 | 
						||
    struct PlacementArg {
 | 
						||
      RValueTy ArgValue;
 | 
						||
      QualType ArgType;
 | 
						||
    };
 | 
						||
 | 
						||
    unsigned NumPlacementArgs : 31;
 | 
						||
    unsigned PassAlignmentToPlacementDelete : 1;
 | 
						||
    const FunctionDecl *OperatorDelete;
 | 
						||
    ValueTy Ptr;
 | 
						||
    ValueTy AllocSize;
 | 
						||
    CharUnits AllocAlign;
 | 
						||
 | 
						||
    PlacementArg *getPlacementArgs() {
 | 
						||
      return reinterpret_cast<PlacementArg *>(this + 1);
 | 
						||
    }
 | 
						||
 | 
						||
  public:
 | 
						||
    static size_t getExtraSize(size_t NumPlacementArgs) {
 | 
						||
      return NumPlacementArgs * sizeof(PlacementArg);
 | 
						||
    }
 | 
						||
 | 
						||
    CallDeleteDuringNew(size_t NumPlacementArgs,
 | 
						||
                        const FunctionDecl *OperatorDelete, ValueTy Ptr,
 | 
						||
                        ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
 | 
						||
                        CharUnits AllocAlign)
 | 
						||
      : NumPlacementArgs(NumPlacementArgs),
 | 
						||
        PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
 | 
						||
        OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
 | 
						||
        AllocAlign(AllocAlign) {}
 | 
						||
 | 
						||
    void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
 | 
						||
      assert(I < NumPlacementArgs && "index out of range");
 | 
						||
      getPlacementArgs()[I] = {Arg, Type};
 | 
						||
    }
 | 
						||
 | 
						||
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						||
      const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
 | 
						||
      CallArgList DeleteArgs;
 | 
						||
 | 
						||
      // The first argument is always a void* (or C* for a destroying operator
 | 
						||
      // delete for class type C).
 | 
						||
      DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
 | 
						||
 | 
						||
      // Figure out what other parameters we should be implicitly passing.
 | 
						||
      UsualDeleteParams Params;
 | 
						||
      if (NumPlacementArgs) {
 | 
						||
        // A placement deallocation function is implicitly passed an alignment
 | 
						||
        // if the placement allocation function was, but is never passed a size.
 | 
						||
        Params.Alignment = PassAlignmentToPlacementDelete;
 | 
						||
      } else {
 | 
						||
        // For a non-placement new-expression, 'operator delete' can take a
 | 
						||
        // size and/or an alignment if it has the right parameters.
 | 
						||
        Params = getUsualDeleteParams(OperatorDelete);
 | 
						||
      }
 | 
						||
 | 
						||
      assert(!Params.DestroyingDelete &&
 | 
						||
             "should not call destroying delete in a new-expression");
 | 
						||
 | 
						||
      // The second argument can be a std::size_t (for non-placement delete).
 | 
						||
      if (Params.Size)
 | 
						||
        DeleteArgs.add(Traits::get(CGF, AllocSize),
 | 
						||
                       CGF.getContext().getSizeType());
 | 
						||
 | 
						||
      // The next (second or third) argument can be a std::align_val_t, which
 | 
						||
      // is an enum whose underlying type is std::size_t.
 | 
						||
      // FIXME: Use the right type as the parameter type. Note that in a call
 | 
						||
      // to operator delete(size_t, ...), we may not have it available.
 | 
						||
      if (Params.Alignment)
 | 
						||
        DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
 | 
						||
                           CGF.SizeTy, AllocAlign.getQuantity())),
 | 
						||
                       CGF.getContext().getSizeType());
 | 
						||
 | 
						||
      // Pass the rest of the arguments, which must match exactly.
 | 
						||
      for (unsigned I = 0; I != NumPlacementArgs; ++I) {
 | 
						||
        auto Arg = getPlacementArgs()[I];
 | 
						||
        DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
 | 
						||
      }
 | 
						||
 | 
						||
      // Call 'operator delete'.
 | 
						||
      EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
 | 
						||
    }
 | 
						||
  };
 | 
						||
}
 | 
						||
 | 
						||
/// Enter a cleanup to call 'operator delete' if the initializer in a
 | 
						||
/// new-expression throws.
 | 
						||
static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
 | 
						||
                                  const CXXNewExpr *E,
 | 
						||
                                  Address NewPtr,
 | 
						||
                                  llvm::Value *AllocSize,
 | 
						||
                                  CharUnits AllocAlign,
 | 
						||
                                  const CallArgList &NewArgs) {
 | 
						||
  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
 | 
						||
 | 
						||
  // If we're not inside a conditional branch, then the cleanup will
 | 
						||
  // dominate and we can do the easier (and more efficient) thing.
 | 
						||
  if (!CGF.isInConditionalBranch()) {
 | 
						||
    struct DirectCleanupTraits {
 | 
						||
      typedef llvm::Value *ValueTy;
 | 
						||
      typedef RValue RValueTy;
 | 
						||
      static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
 | 
						||
      static RValue get(CodeGenFunction &, RValueTy V) { return V; }
 | 
						||
    };
 | 
						||
 | 
						||
    typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
 | 
						||
 | 
						||
    DirectCleanup *Cleanup = CGF.EHStack
 | 
						||
      .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
 | 
						||
                                           E->getNumPlacementArgs(),
 | 
						||
                                           E->getOperatorDelete(),
 | 
						||
                                           NewPtr.getPointer(),
 | 
						||
                                           AllocSize,
 | 
						||
                                           E->passAlignment(),
 | 
						||
                                           AllocAlign);
 | 
						||
    for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
 | 
						||
      auto &Arg = NewArgs[I + NumNonPlacementArgs];
 | 
						||
      Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
 | 
						||
    }
 | 
						||
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // Otherwise, we need to save all this stuff.
 | 
						||
  DominatingValue<RValue>::saved_type SavedNewPtr =
 | 
						||
    DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
 | 
						||
  DominatingValue<RValue>::saved_type SavedAllocSize =
 | 
						||
    DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
 | 
						||
 | 
						||
  struct ConditionalCleanupTraits {
 | 
						||
    typedef DominatingValue<RValue>::saved_type ValueTy;
 | 
						||
    typedef DominatingValue<RValue>::saved_type RValueTy;
 | 
						||
    static RValue get(CodeGenFunction &CGF, ValueTy V) {
 | 
						||
      return V.restore(CGF);
 | 
						||
    }
 | 
						||
  };
 | 
						||
  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
 | 
						||
 | 
						||
  ConditionalCleanup *Cleanup = CGF.EHStack
 | 
						||
    .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
 | 
						||
                                              E->getNumPlacementArgs(),
 | 
						||
                                              E->getOperatorDelete(),
 | 
						||
                                              SavedNewPtr,
 | 
						||
                                              SavedAllocSize,
 | 
						||
                                              E->passAlignment(),
 | 
						||
                                              AllocAlign);
 | 
						||
  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
 | 
						||
    auto &Arg = NewArgs[I + NumNonPlacementArgs];
 | 
						||
    Cleanup->setPlacementArg(
 | 
						||
        I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
 | 
						||
  }
 | 
						||
 | 
						||
  CGF.initFullExprCleanup();
 | 
						||
}
 | 
						||
 | 
						||
llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
 | 
						||
  // The element type being allocated.
 | 
						||
  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
 | 
						||
 | 
						||
  // 1. Build a call to the allocation function.
 | 
						||
  FunctionDecl *allocator = E->getOperatorNew();
 | 
						||
 | 
						||
  // If there is a brace-initializer, cannot allocate fewer elements than inits.
 | 
						||
  unsigned minElements = 0;
 | 
						||
  if (E->isArray() && E->hasInitializer()) {
 | 
						||
    const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
 | 
						||
    if (ILE && ILE->isStringLiteralInit())
 | 
						||
      minElements =
 | 
						||
          cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
 | 
						||
              ->getSize().getZExtValue();
 | 
						||
    else if (ILE)
 | 
						||
      minElements = ILE->getNumInits();
 | 
						||
  }
 | 
						||
 | 
						||
  llvm::Value *numElements = nullptr;
 | 
						||
  llvm::Value *allocSizeWithoutCookie = nullptr;
 | 
						||
  llvm::Value *allocSize =
 | 
						||
    EmitCXXNewAllocSize(*this, E, minElements, numElements,
 | 
						||
                        allocSizeWithoutCookie);
 | 
						||
  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
 | 
						||
 | 
						||
  // Emit the allocation call.  If the allocator is a global placement
 | 
						||
  // operator, just "inline" it directly.
 | 
						||
  Address allocation = Address::invalid();
 | 
						||
  CallArgList allocatorArgs;
 | 
						||
  if (allocator->isReservedGlobalPlacementOperator()) {
 | 
						||
    assert(E->getNumPlacementArgs() == 1);
 | 
						||
    const Expr *arg = *E->placement_arguments().begin();
 | 
						||
 | 
						||
    LValueBaseInfo BaseInfo;
 | 
						||
    allocation = EmitPointerWithAlignment(arg, &BaseInfo);
 | 
						||
 | 
						||
    // The pointer expression will, in many cases, be an opaque void*.
 | 
						||
    // In these cases, discard the computed alignment and use the
 | 
						||
    // formal alignment of the allocated type.
 | 
						||
    if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
 | 
						||
      allocation = Address(allocation.getPointer(), allocAlign);
 | 
						||
 | 
						||
    // Set up allocatorArgs for the call to operator delete if it's not
 | 
						||
    // the reserved global operator.
 | 
						||
    if (E->getOperatorDelete() &&
 | 
						||
        !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
 | 
						||
      allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
 | 
						||
      allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
 | 
						||
    }
 | 
						||
 | 
						||
  } else {
 | 
						||
    const FunctionProtoType *allocatorType =
 | 
						||
      allocator->getType()->castAs<FunctionProtoType>();
 | 
						||
    unsigned ParamsToSkip = 0;
 | 
						||
 | 
						||
    // The allocation size is the first argument.
 | 
						||
    QualType sizeType = getContext().getSizeType();
 | 
						||
    allocatorArgs.add(RValue::get(allocSize), sizeType);
 | 
						||
    ++ParamsToSkip;
 | 
						||
 | 
						||
    if (allocSize != allocSizeWithoutCookie) {
 | 
						||
      CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
 | 
						||
      allocAlign = std::max(allocAlign, cookieAlign);
 | 
						||
    }
 | 
						||
 | 
						||
    // The allocation alignment may be passed as the second argument.
 | 
						||
    if (E->passAlignment()) {
 | 
						||
      QualType AlignValT = sizeType;
 | 
						||
      if (allocatorType->getNumParams() > 1) {
 | 
						||
        AlignValT = allocatorType->getParamType(1);
 | 
						||
        assert(getContext().hasSameUnqualifiedType(
 | 
						||
                   AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
 | 
						||
                   sizeType) &&
 | 
						||
               "wrong type for alignment parameter");
 | 
						||
        ++ParamsToSkip;
 | 
						||
      } else {
 | 
						||
        // Corner case, passing alignment to 'operator new(size_t, ...)'.
 | 
						||
        assert(allocator->isVariadic() && "can't pass alignment to allocator");
 | 
						||
      }
 | 
						||
      allocatorArgs.add(
 | 
						||
          RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
 | 
						||
          AlignValT);
 | 
						||
    }
 | 
						||
 | 
						||
    // FIXME: Why do we not pass a CalleeDecl here?
 | 
						||
    EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
 | 
						||
                 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
 | 
						||
 | 
						||
    RValue RV =
 | 
						||
      EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
 | 
						||
 | 
						||
    // If this was a call to a global replaceable allocation function that does
 | 
						||
    // not take an alignment argument, the allocator is known to produce
 | 
						||
    // storage that's suitably aligned for any object that fits, up to a known
 | 
						||
    // threshold. Otherwise assume it's suitably aligned for the allocated type.
 | 
						||
    CharUnits allocationAlign = allocAlign;
 | 
						||
    if (!E->passAlignment() &&
 | 
						||
        allocator->isReplaceableGlobalAllocationFunction()) {
 | 
						||
      unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
 | 
						||
          Target.getNewAlign(), getContext().getTypeSize(allocType)));
 | 
						||
      allocationAlign = std::max(
 | 
						||
          allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
 | 
						||
    }
 | 
						||
 | 
						||
    allocation = Address(RV.getScalarVal(), allocationAlign);
 | 
						||
  }
 | 
						||
 | 
						||
  // Emit a null check on the allocation result if the allocation
 | 
						||
  // function is allowed to return null (because it has a non-throwing
 | 
						||
  // exception spec or is the reserved placement new) and we have an
 | 
						||
  // interesting initializer will be running sanitizers on the initialization.
 | 
						||
  bool nullCheck = E->shouldNullCheckAllocation() &&
 | 
						||
                   (!allocType.isPODType(getContext()) || E->hasInitializer() ||
 | 
						||
                    sanitizePerformTypeCheck());
 | 
						||
 | 
						||
  llvm::BasicBlock *nullCheckBB = nullptr;
 | 
						||
  llvm::BasicBlock *contBB = nullptr;
 | 
						||
 | 
						||
  // The null-check means that the initializer is conditionally
 | 
						||
  // evaluated.
 | 
						||
  ConditionalEvaluation conditional(*this);
 | 
						||
 | 
						||
  if (nullCheck) {
 | 
						||
    conditional.begin(*this);
 | 
						||
 | 
						||
    nullCheckBB = Builder.GetInsertBlock();
 | 
						||
    llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
 | 
						||
    contBB = createBasicBlock("new.cont");
 | 
						||
 | 
						||
    llvm::Value *isNull =
 | 
						||
      Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
 | 
						||
    Builder.CreateCondBr(isNull, contBB, notNullBB);
 | 
						||
    EmitBlock(notNullBB);
 | 
						||
  }
 | 
						||
 | 
						||
  // If there's an operator delete, enter a cleanup to call it if an
 | 
						||
  // exception is thrown.
 | 
						||
  EHScopeStack::stable_iterator operatorDeleteCleanup;
 | 
						||
  llvm::Instruction *cleanupDominator = nullptr;
 | 
						||
  if (E->getOperatorDelete() &&
 | 
						||
      !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
 | 
						||
    EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
 | 
						||
                          allocatorArgs);
 | 
						||
    operatorDeleteCleanup = EHStack.stable_begin();
 | 
						||
    cleanupDominator = Builder.CreateUnreachable();
 | 
						||
  }
 | 
						||
 | 
						||
  assert((allocSize == allocSizeWithoutCookie) ==
 | 
						||
         CalculateCookiePadding(*this, E).isZero());
 | 
						||
  if (allocSize != allocSizeWithoutCookie) {
 | 
						||
    assert(E->isArray());
 | 
						||
    allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
 | 
						||
                                                       numElements,
 | 
						||
                                                       E, allocType);
 | 
						||
  }
 | 
						||
 | 
						||
  llvm::Type *elementTy = ConvertTypeForMem(allocType);
 | 
						||
  Address result = Builder.CreateElementBitCast(allocation, elementTy);
 | 
						||
 | 
						||
  // Passing pointer through launder.invariant.group to avoid propagation of
 | 
						||
  // vptrs information which may be included in previous type.
 | 
						||
  // To not break LTO with different optimizations levels, we do it regardless
 | 
						||
  // of optimization level.
 | 
						||
  if (CGM.getCodeGenOpts().StrictVTablePointers &&
 | 
						||
      allocator->isReservedGlobalPlacementOperator())
 | 
						||
    result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
 | 
						||
                     result.getAlignment());
 | 
						||
 | 
						||
  // Emit sanitizer checks for pointer value now, so that in the case of an
 | 
						||
  // array it was checked only once and not at each constructor call. We may
 | 
						||
  // have already checked that the pointer is non-null.
 | 
						||
  // FIXME: If we have an array cookie and a potentially-throwing allocator,
 | 
						||
  // we'll null check the wrong pointer here.
 | 
						||
  SanitizerSet SkippedChecks;
 | 
						||
  SkippedChecks.set(SanitizerKind::Null, nullCheck);
 | 
						||
  EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
 | 
						||
                E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
 | 
						||
                result.getPointer(), allocType, result.getAlignment(),
 | 
						||
                SkippedChecks, numElements);
 | 
						||
 | 
						||
  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
 | 
						||
                     allocSizeWithoutCookie);
 | 
						||
  if (E->isArray()) {
 | 
						||
    // NewPtr is a pointer to the base element type.  If we're
 | 
						||
    // allocating an array of arrays, we'll need to cast back to the
 | 
						||
    // array pointer type.
 | 
						||
    llvm::Type *resultType = ConvertTypeForMem(E->getType());
 | 
						||
    if (result.getType() != resultType)
 | 
						||
      result = Builder.CreateBitCast(result, resultType);
 | 
						||
  }
 | 
						||
 | 
						||
  // Deactivate the 'operator delete' cleanup if we finished
 | 
						||
  // initialization.
 | 
						||
  if (operatorDeleteCleanup.isValid()) {
 | 
						||
    DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
 | 
						||
    cleanupDominator->eraseFromParent();
 | 
						||
  }
 | 
						||
 | 
						||
  llvm::Value *resultPtr = result.getPointer();
 | 
						||
  if (nullCheck) {
 | 
						||
    conditional.end(*this);
 | 
						||
 | 
						||
    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
 | 
						||
    EmitBlock(contBB);
 | 
						||
 | 
						||
    llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
 | 
						||
    PHI->addIncoming(resultPtr, notNullBB);
 | 
						||
    PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
 | 
						||
                     nullCheckBB);
 | 
						||
 | 
						||
    resultPtr = PHI;
 | 
						||
  }
 | 
						||
 | 
						||
  return resultPtr;
 | 
						||
}
 | 
						||
 | 
						||
void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
 | 
						||
                                     llvm::Value *Ptr, QualType DeleteTy,
 | 
						||
                                     llvm::Value *NumElements,
 | 
						||
                                     CharUnits CookieSize) {
 | 
						||
  assert((!NumElements && CookieSize.isZero()) ||
 | 
						||
         DeleteFD->getOverloadedOperator() == OO_Array_Delete);
 | 
						||
 | 
						||
  const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
 | 
						||
  CallArgList DeleteArgs;
 | 
						||
 | 
						||
  auto Params = getUsualDeleteParams(DeleteFD);
 | 
						||
  auto ParamTypeIt = DeleteFTy->param_type_begin();
 | 
						||
 | 
						||
  // Pass the pointer itself.
 | 
						||
  QualType ArgTy = *ParamTypeIt++;
 | 
						||
  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
 | 
						||
  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
 | 
						||
 | 
						||
  // Pass the std::destroying_delete tag if present.
 | 
						||
  if (Params.DestroyingDelete) {
 | 
						||
    QualType DDTag = *ParamTypeIt++;
 | 
						||
    // Just pass an 'undef'. We expect the tag type to be an empty struct.
 | 
						||
    auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
 | 
						||
    DeleteArgs.add(RValue::get(V), DDTag);
 | 
						||
  }
 | 
						||
 | 
						||
  // Pass the size if the delete function has a size_t parameter.
 | 
						||
  if (Params.Size) {
 | 
						||
    QualType SizeType = *ParamTypeIt++;
 | 
						||
    CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
 | 
						||
    llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
 | 
						||
                                               DeleteTypeSize.getQuantity());
 | 
						||
 | 
						||
    // For array new, multiply by the number of elements.
 | 
						||
    if (NumElements)
 | 
						||
      Size = Builder.CreateMul(Size, NumElements);
 | 
						||
 | 
						||
    // If there is a cookie, add the cookie size.
 | 
						||
    if (!CookieSize.isZero())
 | 
						||
      Size = Builder.CreateAdd(
 | 
						||
          Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
 | 
						||
 | 
						||
    DeleteArgs.add(RValue::get(Size), SizeType);
 | 
						||
  }
 | 
						||
 | 
						||
  // Pass the alignment if the delete function has an align_val_t parameter.
 | 
						||
  if (Params.Alignment) {
 | 
						||
    QualType AlignValType = *ParamTypeIt++;
 | 
						||
    CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
 | 
						||
        getContext().getTypeAlignIfKnown(DeleteTy));
 | 
						||
    llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
 | 
						||
                                                DeleteTypeAlign.getQuantity());
 | 
						||
    DeleteArgs.add(RValue::get(Align), AlignValType);
 | 
						||
  }
 | 
						||
 | 
						||
  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
 | 
						||
         "unknown parameter to usual delete function");
 | 
						||
 | 
						||
  // Emit the call to delete.
 | 
						||
  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
 | 
						||
}
 | 
						||
 | 
						||
namespace {
 | 
						||
  /// Calls the given 'operator delete' on a single object.
 | 
						||
  struct CallObjectDelete final : EHScopeStack::Cleanup {
 | 
						||
    llvm::Value *Ptr;
 | 
						||
    const FunctionDecl *OperatorDelete;
 | 
						||
    QualType ElementType;
 | 
						||
 | 
						||
    CallObjectDelete(llvm::Value *Ptr,
 | 
						||
                     const FunctionDecl *OperatorDelete,
 | 
						||
                     QualType ElementType)
 | 
						||
      : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
 | 
						||
 | 
						||
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						||
      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
 | 
						||
    }
 | 
						||
  };
 | 
						||
}
 | 
						||
 | 
						||
void
 | 
						||
CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
 | 
						||
                                             llvm::Value *CompletePtr,
 | 
						||
                                             QualType ElementType) {
 | 
						||
  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
 | 
						||
                                        OperatorDelete, ElementType);
 | 
						||
}
 | 
						||
 | 
						||
/// Emit the code for deleting a single object with a destroying operator
 | 
						||
/// delete. If the element type has a non-virtual destructor, Ptr has already
 | 
						||
/// been converted to the type of the parameter of 'operator delete'. Otherwise
 | 
						||
/// Ptr points to an object of the static type.
 | 
						||
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
 | 
						||
                                       const CXXDeleteExpr *DE, Address Ptr,
 | 
						||
                                       QualType ElementType) {
 | 
						||
  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
 | 
						||
  if (Dtor && Dtor->isVirtual())
 | 
						||
    CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
 | 
						||
                                                Dtor);
 | 
						||
  else
 | 
						||
    CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
 | 
						||
}
 | 
						||
 | 
						||
/// Emit the code for deleting a single object.
 | 
						||
static void EmitObjectDelete(CodeGenFunction &CGF,
 | 
						||
                             const CXXDeleteExpr *DE,
 | 
						||
                             Address Ptr,
 | 
						||
                             QualType ElementType) {
 | 
						||
  // C++11 [expr.delete]p3:
 | 
						||
  //   If the static type of the object to be deleted is different from its
 | 
						||
  //   dynamic type, the static type shall be a base class of the dynamic type
 | 
						||
  //   of the object to be deleted and the static type shall have a virtual
 | 
						||
  //   destructor or the behavior is undefined.
 | 
						||
  CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
 | 
						||
                    DE->getExprLoc(), Ptr.getPointer(),
 | 
						||
                    ElementType);
 | 
						||
 | 
						||
  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
 | 
						||
  assert(!OperatorDelete->isDestroyingOperatorDelete());
 | 
						||
 | 
						||
  // Find the destructor for the type, if applicable.  If the
 | 
						||
  // destructor is virtual, we'll just emit the vcall and return.
 | 
						||
  const CXXDestructorDecl *Dtor = nullptr;
 | 
						||
  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
 | 
						||
    CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						||
    if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
 | 
						||
      Dtor = RD->getDestructor();
 | 
						||
 | 
						||
      if (Dtor->isVirtual()) {
 | 
						||
        bool UseVirtualCall = true;
 | 
						||
        const Expr *Base = DE->getArgument();
 | 
						||
        if (auto *DevirtualizedDtor =
 | 
						||
                dyn_cast_or_null<const CXXDestructorDecl>(
 | 
						||
                    Dtor->getDevirtualizedMethod(
 | 
						||
                        Base, CGF.CGM.getLangOpts().AppleKext))) {
 | 
						||
          UseVirtualCall = false;
 | 
						||
          const CXXRecordDecl *DevirtualizedClass =
 | 
						||
              DevirtualizedDtor->getParent();
 | 
						||
          if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
 | 
						||
            // Devirtualized to the class of the base type (the type of the
 | 
						||
            // whole expression).
 | 
						||
            Dtor = DevirtualizedDtor;
 | 
						||
          } else {
 | 
						||
            // Devirtualized to some other type. Would need to cast the this
 | 
						||
            // pointer to that type but we don't have support for that yet, so
 | 
						||
            // do a virtual call. FIXME: handle the case where it is
 | 
						||
            // devirtualized to the derived type (the type of the inner
 | 
						||
            // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
 | 
						||
            UseVirtualCall = true;
 | 
						||
          }
 | 
						||
        }
 | 
						||
        if (UseVirtualCall) {
 | 
						||
          CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
 | 
						||
                                                      Dtor);
 | 
						||
          return;
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // Make sure that we call delete even if the dtor throws.
 | 
						||
  // This doesn't have to a conditional cleanup because we're going
 | 
						||
  // to pop it off in a second.
 | 
						||
  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
 | 
						||
                                            Ptr.getPointer(),
 | 
						||
                                            OperatorDelete, ElementType);
 | 
						||
 | 
						||
  if (Dtor)
 | 
						||
    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
 | 
						||
                              /*ForVirtualBase=*/false,
 | 
						||
                              /*Delegating=*/false,
 | 
						||
                              Ptr, ElementType);
 | 
						||
  else if (auto Lifetime = ElementType.getObjCLifetime()) {
 | 
						||
    switch (Lifetime) {
 | 
						||
    case Qualifiers::OCL_None:
 | 
						||
    case Qualifiers::OCL_ExplicitNone:
 | 
						||
    case Qualifiers::OCL_Autoreleasing:
 | 
						||
      break;
 | 
						||
 | 
						||
    case Qualifiers::OCL_Strong:
 | 
						||
      CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
 | 
						||
      break;
 | 
						||
 | 
						||
    case Qualifiers::OCL_Weak:
 | 
						||
      CGF.EmitARCDestroyWeak(Ptr);
 | 
						||
      break;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  CGF.PopCleanupBlock();
 | 
						||
}
 | 
						||
 | 
						||
namespace {
 | 
						||
  /// Calls the given 'operator delete' on an array of objects.
 | 
						||
  struct CallArrayDelete final : EHScopeStack::Cleanup {
 | 
						||
    llvm::Value *Ptr;
 | 
						||
    const FunctionDecl *OperatorDelete;
 | 
						||
    llvm::Value *NumElements;
 | 
						||
    QualType ElementType;
 | 
						||
    CharUnits CookieSize;
 | 
						||
 | 
						||
    CallArrayDelete(llvm::Value *Ptr,
 | 
						||
                    const FunctionDecl *OperatorDelete,
 | 
						||
                    llvm::Value *NumElements,
 | 
						||
                    QualType ElementType,
 | 
						||
                    CharUnits CookieSize)
 | 
						||
      : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
 | 
						||
        ElementType(ElementType), CookieSize(CookieSize) {}
 | 
						||
 | 
						||
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						||
      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
 | 
						||
                         CookieSize);
 | 
						||
    }
 | 
						||
  };
 | 
						||
}
 | 
						||
 | 
						||
/// Emit the code for deleting an array of objects.
 | 
						||
static void EmitArrayDelete(CodeGenFunction &CGF,
 | 
						||
                            const CXXDeleteExpr *E,
 | 
						||
                            Address deletedPtr,
 | 
						||
                            QualType elementType) {
 | 
						||
  llvm::Value *numElements = nullptr;
 | 
						||
  llvm::Value *allocatedPtr = nullptr;
 | 
						||
  CharUnits cookieSize;
 | 
						||
  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
 | 
						||
                                      numElements, allocatedPtr, cookieSize);
 | 
						||
 | 
						||
  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
 | 
						||
 | 
						||
  // Make sure that we call delete even if one of the dtors throws.
 | 
						||
  const FunctionDecl *operatorDelete = E->getOperatorDelete();
 | 
						||
  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
 | 
						||
                                           allocatedPtr, operatorDelete,
 | 
						||
                                           numElements, elementType,
 | 
						||
                                           cookieSize);
 | 
						||
 | 
						||
  // Destroy the elements.
 | 
						||
  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
 | 
						||
    assert(numElements && "no element count for a type with a destructor!");
 | 
						||
 | 
						||
    CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
 | 
						||
    CharUnits elementAlign =
 | 
						||
      deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
 | 
						||
 | 
						||
    llvm::Value *arrayBegin = deletedPtr.getPointer();
 | 
						||
    llvm::Value *arrayEnd =
 | 
						||
      CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
 | 
						||
 | 
						||
    // Note that it is legal to allocate a zero-length array, and we
 | 
						||
    // can never fold the check away because the length should always
 | 
						||
    // come from a cookie.
 | 
						||
    CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
 | 
						||
                         CGF.getDestroyer(dtorKind),
 | 
						||
                         /*checkZeroLength*/ true,
 | 
						||
                         CGF.needsEHCleanup(dtorKind));
 | 
						||
  }
 | 
						||
 | 
						||
  // Pop the cleanup block.
 | 
						||
  CGF.PopCleanupBlock();
 | 
						||
}
 | 
						||
 | 
						||
void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
 | 
						||
  const Expr *Arg = E->getArgument();
 | 
						||
  Address Ptr = EmitPointerWithAlignment(Arg);
 | 
						||
 | 
						||
  // Null check the pointer.
 | 
						||
  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
 | 
						||
  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
 | 
						||
 | 
						||
  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
 | 
						||
 | 
						||
  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
 | 
						||
  EmitBlock(DeleteNotNull);
 | 
						||
 | 
						||
  QualType DeleteTy = E->getDestroyedType();
 | 
						||
 | 
						||
  // A destroying operator delete overrides the entire operation of the
 | 
						||
  // delete expression.
 | 
						||
  if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
 | 
						||
    EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
 | 
						||
    EmitBlock(DeleteEnd);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // We might be deleting a pointer to array.  If so, GEP down to the
 | 
						||
  // first non-array element.
 | 
						||
  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
 | 
						||
  if (DeleteTy->isConstantArrayType()) {
 | 
						||
    llvm::Value *Zero = Builder.getInt32(0);
 | 
						||
    SmallVector<llvm::Value*,8> GEP;
 | 
						||
 | 
						||
    GEP.push_back(Zero); // point at the outermost array
 | 
						||
 | 
						||
    // For each layer of array type we're pointing at:
 | 
						||
    while (const ConstantArrayType *Arr
 | 
						||
             = getContext().getAsConstantArrayType(DeleteTy)) {
 | 
						||
      // 1. Unpeel the array type.
 | 
						||
      DeleteTy = Arr->getElementType();
 | 
						||
 | 
						||
      // 2. GEP to the first element of the array.
 | 
						||
      GEP.push_back(Zero);
 | 
						||
    }
 | 
						||
 | 
						||
    Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
 | 
						||
                  Ptr.getAlignment());
 | 
						||
  }
 | 
						||
 | 
						||
  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
 | 
						||
 | 
						||
  if (E->isArrayForm()) {
 | 
						||
    EmitArrayDelete(*this, E, Ptr, DeleteTy);
 | 
						||
  } else {
 | 
						||
    EmitObjectDelete(*this, E, Ptr, DeleteTy);
 | 
						||
  }
 | 
						||
 | 
						||
  EmitBlock(DeleteEnd);
 | 
						||
}
 | 
						||
 | 
						||
static bool isGLValueFromPointerDeref(const Expr *E) {
 | 
						||
  E = E->IgnoreParens();
 | 
						||
 | 
						||
  if (const auto *CE = dyn_cast<CastExpr>(E)) {
 | 
						||
    if (!CE->getSubExpr()->isGLValue())
 | 
						||
      return false;
 | 
						||
    return isGLValueFromPointerDeref(CE->getSubExpr());
 | 
						||
  }
 | 
						||
 | 
						||
  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
 | 
						||
    return isGLValueFromPointerDeref(OVE->getSourceExpr());
 | 
						||
 | 
						||
  if (const auto *BO = dyn_cast<BinaryOperator>(E))
 | 
						||
    if (BO->getOpcode() == BO_Comma)
 | 
						||
      return isGLValueFromPointerDeref(BO->getRHS());
 | 
						||
 | 
						||
  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
 | 
						||
    return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
 | 
						||
           isGLValueFromPointerDeref(ACO->getFalseExpr());
 | 
						||
 | 
						||
  // C++11 [expr.sub]p1:
 | 
						||
  //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
 | 
						||
  if (isa<ArraySubscriptExpr>(E))
 | 
						||
    return true;
 | 
						||
 | 
						||
  if (const auto *UO = dyn_cast<UnaryOperator>(E))
 | 
						||
    if (UO->getOpcode() == UO_Deref)
 | 
						||
      return true;
 | 
						||
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
 | 
						||
                                         llvm::Type *StdTypeInfoPtrTy) {
 | 
						||
  // Get the vtable pointer.
 | 
						||
  Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
 | 
						||
 | 
						||
  QualType SrcRecordTy = E->getType();
 | 
						||
 | 
						||
  // C++ [class.cdtor]p4:
 | 
						||
  //   If the operand of typeid refers to the object under construction or
 | 
						||
  //   destruction and the static type of the operand is neither the constructor
 | 
						||
  //   or destructor’s class nor one of its bases, the behavior is undefined.
 | 
						||
  CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
 | 
						||
                    ThisPtr.getPointer(), SrcRecordTy);
 | 
						||
 | 
						||
  // C++ [expr.typeid]p2:
 | 
						||
  //   If the glvalue expression is obtained by applying the unary * operator to
 | 
						||
  //   a pointer and the pointer is a null pointer value, the typeid expression
 | 
						||
  //   throws the std::bad_typeid exception.
 | 
						||
  //
 | 
						||
  // However, this paragraph's intent is not clear.  We choose a very generous
 | 
						||
  // interpretation which implores us to consider comma operators, conditional
 | 
						||
  // operators, parentheses and other such constructs.
 | 
						||
  if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
 | 
						||
          isGLValueFromPointerDeref(E), SrcRecordTy)) {
 | 
						||
    llvm::BasicBlock *BadTypeidBlock =
 | 
						||
        CGF.createBasicBlock("typeid.bad_typeid");
 | 
						||
    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
 | 
						||
 | 
						||
    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
 | 
						||
    CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
 | 
						||
 | 
						||
    CGF.EmitBlock(BadTypeidBlock);
 | 
						||
    CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
 | 
						||
    CGF.EmitBlock(EndBlock);
 | 
						||
  }
 | 
						||
 | 
						||
  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
 | 
						||
                                        StdTypeInfoPtrTy);
 | 
						||
}
 | 
						||
 | 
						||
llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
 | 
						||
  llvm::Type *StdTypeInfoPtrTy =
 | 
						||
    ConvertType(E->getType())->getPointerTo();
 | 
						||
 | 
						||
  if (E->isTypeOperand()) {
 | 
						||
    llvm::Constant *TypeInfo =
 | 
						||
        CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
 | 
						||
    return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
 | 
						||
  }
 | 
						||
 | 
						||
  // C++ [expr.typeid]p2:
 | 
						||
  //   When typeid is applied to a glvalue expression whose type is a
 | 
						||
  //   polymorphic class type, the result refers to a std::type_info object
 | 
						||
  //   representing the type of the most derived object (that is, the dynamic
 | 
						||
  //   type) to which the glvalue refers.
 | 
						||
  if (E->isPotentiallyEvaluated())
 | 
						||
    return EmitTypeidFromVTable(*this, E->getExprOperand(),
 | 
						||
                                StdTypeInfoPtrTy);
 | 
						||
 | 
						||
  QualType OperandTy = E->getExprOperand()->getType();
 | 
						||
  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
 | 
						||
                               StdTypeInfoPtrTy);
 | 
						||
}
 | 
						||
 | 
						||
static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
 | 
						||
                                          QualType DestTy) {
 | 
						||
  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
 | 
						||
  if (DestTy->isPointerType())
 | 
						||
    return llvm::Constant::getNullValue(DestLTy);
 | 
						||
 | 
						||
  /// C++ [expr.dynamic.cast]p9:
 | 
						||
  ///   A failed cast to reference type throws std::bad_cast
 | 
						||
  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
 | 
						||
    return nullptr;
 | 
						||
 | 
						||
  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
 | 
						||
  return llvm::UndefValue::get(DestLTy);
 | 
						||
}
 | 
						||
 | 
						||
llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
 | 
						||
                                              const CXXDynamicCastExpr *DCE) {
 | 
						||
  CGM.EmitExplicitCastExprType(DCE, this);
 | 
						||
  QualType DestTy = DCE->getTypeAsWritten();
 | 
						||
 | 
						||
  QualType SrcTy = DCE->getSubExpr()->getType();
 | 
						||
 | 
						||
  // C++ [expr.dynamic.cast]p7:
 | 
						||
  //   If T is "pointer to cv void," then the result is a pointer to the most
 | 
						||
  //   derived object pointed to by v.
 | 
						||
  const PointerType *DestPTy = DestTy->getAs<PointerType>();
 | 
						||
 | 
						||
  bool isDynamicCastToVoid;
 | 
						||
  QualType SrcRecordTy;
 | 
						||
  QualType DestRecordTy;
 | 
						||
  if (DestPTy) {
 | 
						||
    isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
 | 
						||
    SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
 | 
						||
    DestRecordTy = DestPTy->getPointeeType();
 | 
						||
  } else {
 | 
						||
    isDynamicCastToVoid = false;
 | 
						||
    SrcRecordTy = SrcTy;
 | 
						||
    DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
 | 
						||
  }
 | 
						||
 | 
						||
  // C++ [class.cdtor]p5:
 | 
						||
  //   If the operand of the dynamic_cast refers to the object under
 | 
						||
  //   construction or destruction and the static type of the operand is not a
 | 
						||
  //   pointer to or object of the constructor or destructor’s own class or one
 | 
						||
  //   of its bases, the dynamic_cast results in undefined behavior.
 | 
						||
  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
 | 
						||
                SrcRecordTy);
 | 
						||
 | 
						||
  if (DCE->isAlwaysNull())
 | 
						||
    if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
 | 
						||
      return T;
 | 
						||
 | 
						||
  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
 | 
						||
 | 
						||
  // C++ [expr.dynamic.cast]p4:
 | 
						||
  //   If the value of v is a null pointer value in the pointer case, the result
 | 
						||
  //   is the null pointer value of type T.
 | 
						||
  bool ShouldNullCheckSrcValue =
 | 
						||
      CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
 | 
						||
                                                         SrcRecordTy);
 | 
						||
 | 
						||
  llvm::BasicBlock *CastNull = nullptr;
 | 
						||
  llvm::BasicBlock *CastNotNull = nullptr;
 | 
						||
  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
 | 
						||
 | 
						||
  if (ShouldNullCheckSrcValue) {
 | 
						||
    CastNull = createBasicBlock("dynamic_cast.null");
 | 
						||
    CastNotNull = createBasicBlock("dynamic_cast.notnull");
 | 
						||
 | 
						||
    llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
 | 
						||
    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
 | 
						||
    EmitBlock(CastNotNull);
 | 
						||
  }
 | 
						||
 | 
						||
  llvm::Value *Value;
 | 
						||
  if (isDynamicCastToVoid) {
 | 
						||
    Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
 | 
						||
                                                  DestTy);
 | 
						||
  } else {
 | 
						||
    assert(DestRecordTy->isRecordType() &&
 | 
						||
           "destination type must be a record type!");
 | 
						||
    Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
 | 
						||
                                                DestTy, DestRecordTy, CastEnd);
 | 
						||
    CastNotNull = Builder.GetInsertBlock();
 | 
						||
  }
 | 
						||
 | 
						||
  if (ShouldNullCheckSrcValue) {
 | 
						||
    EmitBranch(CastEnd);
 | 
						||
 | 
						||
    EmitBlock(CastNull);
 | 
						||
    EmitBranch(CastEnd);
 | 
						||
  }
 | 
						||
 | 
						||
  EmitBlock(CastEnd);
 | 
						||
 | 
						||
  if (ShouldNullCheckSrcValue) {
 | 
						||
    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
 | 
						||
    PHI->addIncoming(Value, CastNotNull);
 | 
						||
    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
 | 
						||
 | 
						||
    Value = PHI;
 | 
						||
  }
 | 
						||
 | 
						||
  return Value;
 | 
						||
}
 |