forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2317 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2317 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code to emit Constant Expr nodes as LLVM code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGObjCRuntime.h"
 | |
| #include "CGRecordLayout.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "ConstantEmitter.h"
 | |
| #include "TargetInfo.h"
 | |
| #include "clang/AST/APValue.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Sequence.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            ConstantAggregateBuilder
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class ConstExprEmitter;
 | |
| 
 | |
| struct ConstantAggregateBuilderUtils {
 | |
|   CodeGenModule &CGM;
 | |
| 
 | |
|   ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
 | |
| 
 | |
|   CharUnits getAlignment(const llvm::Constant *C) const {
 | |
|     return CharUnits::fromQuantity(
 | |
|         CGM.getDataLayout().getABITypeAlignment(C->getType()));
 | |
|   }
 | |
| 
 | |
|   CharUnits getSize(llvm::Type *Ty) const {
 | |
|     return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
 | |
|   }
 | |
| 
 | |
|   CharUnits getSize(const llvm::Constant *C) const {
 | |
|     return getSize(C->getType());
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *getPadding(CharUnits PadSize) const {
 | |
|     llvm::Type *Ty = CGM.Int8Ty;
 | |
|     if (PadSize > CharUnits::One())
 | |
|       Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
 | |
|     return llvm::UndefValue::get(Ty);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *getZeroes(CharUnits ZeroSize) const {
 | |
|     llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity());
 | |
|     return llvm::ConstantAggregateZero::get(Ty);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Incremental builder for an llvm::Constant* holding a struct or array
 | |
| /// constant.
 | |
| class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
 | |
|   /// The elements of the constant. These two arrays must have the same size;
 | |
|   /// Offsets[i] describes the offset of Elems[i] within the constant. The
 | |
|   /// elements are kept in increasing offset order, and we ensure that there
 | |
|   /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
 | |
|   ///
 | |
|   /// This may contain explicit padding elements (in order to create a
 | |
|   /// natural layout), but need not. Gaps between elements are implicitly
 | |
|   /// considered to be filled with undef.
 | |
|   llvm::SmallVector<llvm::Constant*, 32> Elems;
 | |
|   llvm::SmallVector<CharUnits, 32> Offsets;
 | |
| 
 | |
|   /// The size of the constant (the maximum end offset of any added element).
 | |
|   /// May be larger than the end of Elems.back() if we split the last element
 | |
|   /// and removed some trailing undefs.
 | |
|   CharUnits Size = CharUnits::Zero();
 | |
| 
 | |
|   /// This is true only if laying out Elems in order as the elements of a
 | |
|   /// non-packed LLVM struct will give the correct layout.
 | |
|   bool NaturalLayout = true;
 | |
| 
 | |
|   bool split(size_t Index, CharUnits Hint);
 | |
|   Optional<size_t> splitAt(CharUnits Pos);
 | |
| 
 | |
|   static llvm::Constant *buildFrom(CodeGenModule &CGM,
 | |
|                                    ArrayRef<llvm::Constant *> Elems,
 | |
|                                    ArrayRef<CharUnits> Offsets,
 | |
|                                    CharUnits StartOffset, CharUnits Size,
 | |
|                                    bool NaturalLayout, llvm::Type *DesiredTy,
 | |
|                                    bool AllowOversized);
 | |
| 
 | |
| public:
 | |
|   ConstantAggregateBuilder(CodeGenModule &CGM)
 | |
|       : ConstantAggregateBuilderUtils(CGM) {}
 | |
| 
 | |
|   /// Update or overwrite the value starting at \p Offset with \c C.
 | |
|   ///
 | |
|   /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
 | |
|   ///        a constant that has already been added. This flag is only used to
 | |
|   ///        detect bugs.
 | |
|   bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
 | |
| 
 | |
|   /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
 | |
|   bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
 | |
| 
 | |
|   /// Attempt to condense the value starting at \p Offset to a constant of type
 | |
|   /// \p DesiredTy.
 | |
|   void condense(CharUnits Offset, llvm::Type *DesiredTy);
 | |
| 
 | |
|   /// Produce a constant representing the entire accumulated value, ideally of
 | |
|   /// the specified type. If \p AllowOversized, the constant might be larger
 | |
|   /// than implied by \p DesiredTy (eg, if there is a flexible array member).
 | |
|   /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
 | |
|   /// even if we can't represent it as that type.
 | |
|   llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
 | |
|     return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
 | |
|                      NaturalLayout, DesiredTy, AllowOversized);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<typename Container, typename Range = std::initializer_list<
 | |
|                                  typename Container::value_type>>
 | |
| static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
 | |
|   assert(BeginOff <= EndOff && "invalid replacement range");
 | |
|   llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
 | |
| }
 | |
| 
 | |
| bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
 | |
|                           bool AllowOverwrite) {
 | |
|   // Common case: appending to a layout.
 | |
|   if (Offset >= Size) {
 | |
|     CharUnits Align = getAlignment(C);
 | |
|     CharUnits AlignedSize = Size.alignTo(Align);
 | |
|     if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
 | |
|       NaturalLayout = false;
 | |
|     else if (AlignedSize < Offset) {
 | |
|       Elems.push_back(getPadding(Offset - Size));
 | |
|       Offsets.push_back(Size);
 | |
|     }
 | |
|     Elems.push_back(C);
 | |
|     Offsets.push_back(Offset);
 | |
|     Size = Offset + getSize(C);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Uncommon case: constant overlaps what we've already created.
 | |
|   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
 | |
|   if (!FirstElemToReplace)
 | |
|     return false;
 | |
| 
 | |
|   CharUnits CSize = getSize(C);
 | |
|   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
 | |
|   if (!LastElemToReplace)
 | |
|     return false;
 | |
| 
 | |
|   assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
 | |
|          "unexpectedly overwriting field");
 | |
| 
 | |
|   replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
 | |
|   replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
 | |
|   Size = std::max(Size, Offset + CSize);
 | |
|   NaturalLayout = false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
 | |
|                               bool AllowOverwrite) {
 | |
|   const ASTContext &Context = CGM.getContext();
 | |
|   const uint64_t CharWidth = CGM.getContext().getCharWidth();
 | |
| 
 | |
|   // Offset of where we want the first bit to go within the bits of the
 | |
|   // current char.
 | |
|   unsigned OffsetWithinChar = OffsetInBits % CharWidth;
 | |
| 
 | |
|   // We split bit-fields up into individual bytes. Walk over the bytes and
 | |
|   // update them.
 | |
|   for (CharUnits OffsetInChars =
 | |
|            Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
 | |
|        /**/; ++OffsetInChars) {
 | |
|     // Number of bits we want to fill in this char.
 | |
|     unsigned WantedBits =
 | |
|         std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
 | |
| 
 | |
|     // Get a char containing the bits we want in the right places. The other
 | |
|     // bits have unspecified values.
 | |
|     llvm::APInt BitsThisChar = Bits;
 | |
|     if (BitsThisChar.getBitWidth() < CharWidth)
 | |
|       BitsThisChar = BitsThisChar.zext(CharWidth);
 | |
|     if (CGM.getDataLayout().isBigEndian()) {
 | |
|       // Figure out how much to shift by. We may need to left-shift if we have
 | |
|       // less than one byte of Bits left.
 | |
|       int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
 | |
|       if (Shift > 0)
 | |
|         BitsThisChar.lshrInPlace(Shift);
 | |
|       else if (Shift < 0)
 | |
|         BitsThisChar = BitsThisChar.shl(-Shift);
 | |
|     } else {
 | |
|       BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
 | |
|     }
 | |
|     if (BitsThisChar.getBitWidth() > CharWidth)
 | |
|       BitsThisChar = BitsThisChar.trunc(CharWidth);
 | |
| 
 | |
|     if (WantedBits == CharWidth) {
 | |
|       // Got a full byte: just add it directly.
 | |
|       add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
 | |
|           OffsetInChars, AllowOverwrite);
 | |
|     } else {
 | |
|       // Partial byte: update the existing integer if there is one. If we
 | |
|       // can't split out a 1-CharUnit range to update, then we can't add
 | |
|       // these bits and fail the entire constant emission.
 | |
|       llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
 | |
|       if (!FirstElemToUpdate)
 | |
|         return false;
 | |
|       llvm::Optional<size_t> LastElemToUpdate =
 | |
|           splitAt(OffsetInChars + CharUnits::One());
 | |
|       if (!LastElemToUpdate)
 | |
|         return false;
 | |
|       assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
 | |
|              "should have at most one element covering one byte");
 | |
| 
 | |
|       // Figure out which bits we want and discard the rest.
 | |
|       llvm::APInt UpdateMask(CharWidth, 0);
 | |
|       if (CGM.getDataLayout().isBigEndian())
 | |
|         UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
 | |
|                            CharWidth - OffsetWithinChar);
 | |
|       else
 | |
|         UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
 | |
|       BitsThisChar &= UpdateMask;
 | |
| 
 | |
|       if (*FirstElemToUpdate == *LastElemToUpdate ||
 | |
|           Elems[*FirstElemToUpdate]->isNullValue() ||
 | |
|           isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
 | |
|         // All existing bits are either zero or undef.
 | |
|         add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
 | |
|             OffsetInChars, /*AllowOverwrite*/ true);
 | |
|       } else {
 | |
|         llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
 | |
|         // In order to perform a partial update, we need the existing bitwise
 | |
|         // value, which we can only extract for a constant int.
 | |
|         auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
 | |
|         if (!CI)
 | |
|           return false;
 | |
|         // Because this is a 1-CharUnit range, the constant occupying it must
 | |
|         // be exactly one CharUnit wide.
 | |
|         assert(CI->getBitWidth() == CharWidth && "splitAt failed");
 | |
|         assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
 | |
|                "unexpectedly overwriting bitfield");
 | |
|         BitsThisChar |= (CI->getValue() & ~UpdateMask);
 | |
|         ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Stop if we've added all the bits.
 | |
|     if (WantedBits == Bits.getBitWidth())
 | |
|       break;
 | |
| 
 | |
|     // Remove the consumed bits from Bits.
 | |
|     if (!CGM.getDataLayout().isBigEndian())
 | |
|       Bits.lshrInPlace(WantedBits);
 | |
|     Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
 | |
| 
 | |
|     // The remanining bits go at the start of the following bytes.
 | |
|     OffsetWithinChar = 0;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns a position within Elems and Offsets such that all elements
 | |
| /// before the returned index end before Pos and all elements at or after
 | |
| /// the returned index begin at or after Pos. Splits elements as necessary
 | |
| /// to ensure this. Returns None if we find something we can't split.
 | |
| Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
 | |
|   if (Pos >= Size)
 | |
|     return Offsets.size();
 | |
| 
 | |
|   while (true) {
 | |
|     auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
 | |
|     if (FirstAfterPos == Offsets.begin())
 | |
|       return 0;
 | |
| 
 | |
|     // If we already have an element starting at Pos, we're done.
 | |
|     size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
 | |
|     if (Offsets[LastAtOrBeforePosIndex] == Pos)
 | |
|       return LastAtOrBeforePosIndex;
 | |
| 
 | |
|     // We found an element starting before Pos. Check for overlap.
 | |
|     if (Offsets[LastAtOrBeforePosIndex] +
 | |
|         getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
 | |
|       return LastAtOrBeforePosIndex + 1;
 | |
| 
 | |
|     // Try to decompose it into smaller constants.
 | |
|     if (!split(LastAtOrBeforePosIndex, Pos))
 | |
|       return None;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Split the constant at index Index, if possible. Return true if we did.
 | |
| /// Hint indicates the location at which we'd like to split, but may be
 | |
| /// ignored.
 | |
| bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
 | |
|   NaturalLayout = false;
 | |
|   llvm::Constant *C = Elems[Index];
 | |
|   CharUnits Offset = Offsets[Index];
 | |
| 
 | |
|   if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
 | |
|     replace(Elems, Index, Index + 1,
 | |
|             llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
 | |
|                             [&](unsigned Op) { return CA->getOperand(Op); }));
 | |
|     if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
 | |
|       // Array or vector.
 | |
|       CharUnits ElemSize = getSize(Seq->getElementType());
 | |
|       replace(
 | |
|           Offsets, Index, Index + 1,
 | |
|           llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
 | |
|                           [&](unsigned Op) { return Offset + Op * ElemSize; }));
 | |
|     } else {
 | |
|       // Must be a struct.
 | |
|       auto *ST = cast<llvm::StructType>(CA->getType());
 | |
|       const llvm::StructLayout *Layout =
 | |
|           CGM.getDataLayout().getStructLayout(ST);
 | |
|       replace(Offsets, Index, Index + 1,
 | |
|               llvm::map_range(
 | |
|                   llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
 | |
|                     return Offset + CharUnits::fromQuantity(
 | |
|                                         Layout->getElementOffset(Op));
 | |
|                   }));
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
 | |
|     // FIXME: If possible, split into two ConstantDataSequentials at Hint.
 | |
|     CharUnits ElemSize = getSize(CDS->getElementType());
 | |
|     replace(Elems, Index, Index + 1,
 | |
|             llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
 | |
|                             [&](unsigned Elem) {
 | |
|                               return CDS->getElementAsConstant(Elem);
 | |
|                             }));
 | |
|     replace(Offsets, Index, Index + 1,
 | |
|             llvm::map_range(
 | |
|                 llvm::seq(0u, CDS->getNumElements()),
 | |
|                 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (isa<llvm::ConstantAggregateZero>(C)) {
 | |
|     CharUnits ElemSize = getSize(C);
 | |
|     assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
 | |
|     replace(Elems, Index, Index + 1,
 | |
|             {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
 | |
|     replace(Offsets, Index, Index + 1, {Offset, Hint});
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (isa<llvm::UndefValue>(C)) {
 | |
|     replace(Elems, Index, Index + 1, {});
 | |
|     replace(Offsets, Index, Index + 1, {});
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: We could split a ConstantInt if the need ever arose.
 | |
|   // We don't need to do this to handle bit-fields because we always eagerly
 | |
|   // split them into 1-byte chunks.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static llvm::Constant *
 | |
| EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
 | |
|                   llvm::Type *CommonElementType, unsigned ArrayBound,
 | |
|                   SmallVectorImpl<llvm::Constant *> &Elements,
 | |
|                   llvm::Constant *Filler);
 | |
| 
 | |
| llvm::Constant *ConstantAggregateBuilder::buildFrom(
 | |
|     CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
 | |
|     ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
 | |
|     bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
 | |
|   ConstantAggregateBuilderUtils Utils(CGM);
 | |
| 
 | |
|   if (Elems.empty())
 | |
|     return llvm::UndefValue::get(DesiredTy);
 | |
| 
 | |
|   auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
 | |
| 
 | |
|   // If we want an array type, see if all the elements are the same type and
 | |
|   // appropriately spaced.
 | |
|   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
 | |
|     assert(!AllowOversized && "oversized array emission not supported");
 | |
| 
 | |
|     bool CanEmitArray = true;
 | |
|     llvm::Type *CommonType = Elems[0]->getType();
 | |
|     llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
 | |
|     CharUnits ElemSize = Utils.getSize(ATy->getElementType());
 | |
|     SmallVector<llvm::Constant*, 32> ArrayElements;
 | |
|     for (size_t I = 0; I != Elems.size(); ++I) {
 | |
|       // Skip zeroes; we'll use a zero value as our array filler.
 | |
|       if (Elems[I]->isNullValue())
 | |
|         continue;
 | |
| 
 | |
|       // All remaining elements must be the same type.
 | |
|       if (Elems[I]->getType() != CommonType ||
 | |
|           Offset(I) % ElemSize != 0) {
 | |
|         CanEmitArray = false;
 | |
|         break;
 | |
|       }
 | |
|       ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
 | |
|       ArrayElements.back() = Elems[I];
 | |
|     }
 | |
| 
 | |
|     if (CanEmitArray) {
 | |
|       return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
 | |
|                                ArrayElements, Filler);
 | |
|     }
 | |
| 
 | |
|     // Can't emit as an array, carry on to emit as a struct.
 | |
|   }
 | |
| 
 | |
|   CharUnits DesiredSize = Utils.getSize(DesiredTy);
 | |
|   CharUnits Align = CharUnits::One();
 | |
|   for (llvm::Constant *C : Elems)
 | |
|     Align = std::max(Align, Utils.getAlignment(C));
 | |
|   CharUnits AlignedSize = Size.alignTo(Align);
 | |
| 
 | |
|   bool Packed = false;
 | |
|   ArrayRef<llvm::Constant*> UnpackedElems = Elems;
 | |
|   llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
 | |
|   if ((DesiredSize < AlignedSize && !AllowOversized) ||
 | |
|       DesiredSize.alignTo(Align) != DesiredSize) {
 | |
|     // The natural layout would be the wrong size; force use of a packed layout.
 | |
|     NaturalLayout = false;
 | |
|     Packed = true;
 | |
|   } else if (DesiredSize > AlignedSize) {
 | |
|     // The constant would be too small. Add padding to fix it.
 | |
|     UnpackedElemStorage.assign(Elems.begin(), Elems.end());
 | |
|     UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
 | |
|     UnpackedElems = UnpackedElemStorage;
 | |
|   }
 | |
| 
 | |
|   // If we don't have a natural layout, insert padding as necessary.
 | |
|   // As we go, double-check to see if we can actually just emit Elems
 | |
|   // as a non-packed struct and do so opportunistically if possible.
 | |
|   llvm::SmallVector<llvm::Constant*, 32> PackedElems;
 | |
|   if (!NaturalLayout) {
 | |
|     CharUnits SizeSoFar = CharUnits::Zero();
 | |
|     for (size_t I = 0; I != Elems.size(); ++I) {
 | |
|       CharUnits Align = Utils.getAlignment(Elems[I]);
 | |
|       CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
 | |
|       CharUnits DesiredOffset = Offset(I);
 | |
|       assert(DesiredOffset >= SizeSoFar && "elements out of order");
 | |
| 
 | |
|       if (DesiredOffset != NaturalOffset)
 | |
|         Packed = true;
 | |
|       if (DesiredOffset != SizeSoFar)
 | |
|         PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
 | |
|       PackedElems.push_back(Elems[I]);
 | |
|       SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
 | |
|     }
 | |
|     // If we're using the packed layout, pad it out to the desired size if
 | |
|     // necessary.
 | |
|     if (Packed) {
 | |
|       assert((SizeSoFar <= DesiredSize || AllowOversized) &&
 | |
|              "requested size is too small for contents");
 | |
|       if (SizeSoFar < DesiredSize)
 | |
|         PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
 | |
|       CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
 | |
| 
 | |
|   // Pick the type to use.  If the type is layout identical to the desired
 | |
|   // type then use it, otherwise use whatever the builder produced for us.
 | |
|   if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
 | |
|     if (DesiredSTy->isLayoutIdentical(STy))
 | |
|       STy = DesiredSTy;
 | |
|   }
 | |
| 
 | |
|   return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
 | |
| }
 | |
| 
 | |
| void ConstantAggregateBuilder::condense(CharUnits Offset,
 | |
|                                         llvm::Type *DesiredTy) {
 | |
|   CharUnits Size = getSize(DesiredTy);
 | |
| 
 | |
|   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
 | |
|   if (!FirstElemToReplace)
 | |
|     return;
 | |
|   size_t First = *FirstElemToReplace;
 | |
| 
 | |
|   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
 | |
|   if (!LastElemToReplace)
 | |
|     return;
 | |
|   size_t Last = *LastElemToReplace;
 | |
| 
 | |
|   size_t Length = Last - First;
 | |
|   if (Length == 0)
 | |
|     return;
 | |
| 
 | |
|   if (Length == 1 && Offsets[First] == Offset &&
 | |
|       getSize(Elems[First]) == Size) {
 | |
|     // Re-wrap single element structs if necessary. Otherwise, leave any single
 | |
|     // element constant of the right size alone even if it has the wrong type.
 | |
|     auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
 | |
|     if (STy && STy->getNumElements() == 1 &&
 | |
|         STy->getElementType(0) == Elems[First]->getType())
 | |
|       Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *Replacement = buildFrom(
 | |
|       CGM, makeArrayRef(Elems).slice(First, Length),
 | |
|       makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
 | |
|       /*known to have natural layout=*/false, DesiredTy, false);
 | |
|   replace(Elems, First, Last, {Replacement});
 | |
|   replace(Offsets, First, Last, {Offset});
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            ConstStructBuilder
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| class ConstStructBuilder {
 | |
|   CodeGenModule &CGM;
 | |
|   ConstantEmitter &Emitter;
 | |
|   ConstantAggregateBuilder &Builder;
 | |
|   CharUnits StartOffset;
 | |
| 
 | |
| public:
 | |
|   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
 | |
|                                      InitListExpr *ILE, QualType StructTy);
 | |
|   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
 | |
|                                      const APValue &Value, QualType ValTy);
 | |
|   static bool UpdateStruct(ConstantEmitter &Emitter,
 | |
|                            ConstantAggregateBuilder &Const, CharUnits Offset,
 | |
|                            InitListExpr *Updater);
 | |
| 
 | |
| private:
 | |
|   ConstStructBuilder(ConstantEmitter &Emitter,
 | |
|                      ConstantAggregateBuilder &Builder, CharUnits StartOffset)
 | |
|       : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
 | |
|         StartOffset(StartOffset) {}
 | |
| 
 | |
|   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
 | |
|                    llvm::Constant *InitExpr, bool AllowOverwrite = false);
 | |
| 
 | |
|   bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
 | |
|                    bool AllowOverwrite = false);
 | |
| 
 | |
|   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
 | |
|                       llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
 | |
| 
 | |
|   bool Build(InitListExpr *ILE, bool AllowOverwrite);
 | |
|   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
 | |
|              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
 | |
|   llvm::Constant *Finalize(QualType Ty);
 | |
| };
 | |
| 
 | |
| bool ConstStructBuilder::AppendField(
 | |
|     const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
 | |
|     bool AllowOverwrite) {
 | |
|   const ASTContext &Context = CGM.getContext();
 | |
| 
 | |
|   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
 | |
| 
 | |
|   return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
 | |
| }
 | |
| 
 | |
| bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
 | |
|                                      llvm::Constant *InitCst,
 | |
|                                      bool AllowOverwrite) {
 | |
|   return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
 | |
| }
 | |
| 
 | |
| bool ConstStructBuilder::AppendBitField(
 | |
|     const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
 | |
|     bool AllowOverwrite) {
 | |
|   uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext());
 | |
|   llvm::APInt FieldValue = CI->getValue();
 | |
| 
 | |
|   // Promote the size of FieldValue if necessary
 | |
|   // FIXME: This should never occur, but currently it can because initializer
 | |
|   // constants are cast to bool, and because clang is not enforcing bitfield
 | |
|   // width limits.
 | |
|   if (FieldSize > FieldValue.getBitWidth())
 | |
|     FieldValue = FieldValue.zext(FieldSize);
 | |
| 
 | |
|   // Truncate the size of FieldValue to the bit field size.
 | |
|   if (FieldSize < FieldValue.getBitWidth())
 | |
|     FieldValue = FieldValue.trunc(FieldSize);
 | |
| 
 | |
|   return Builder.addBits(FieldValue,
 | |
|                          CGM.getContext().toBits(StartOffset) + FieldOffset,
 | |
|                          AllowOverwrite);
 | |
| }
 | |
| 
 | |
| static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
 | |
|                                       ConstantAggregateBuilder &Const,
 | |
|                                       CharUnits Offset, QualType Type,
 | |
|                                       InitListExpr *Updater) {
 | |
|   if (Type->isRecordType())
 | |
|     return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
 | |
| 
 | |
|   auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
 | |
|   if (!CAT)
 | |
|     return false;
 | |
|   QualType ElemType = CAT->getElementType();
 | |
|   CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
 | |
|   llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
 | |
| 
 | |
|   llvm::Constant *FillC = nullptr;
 | |
|   if (Expr *Filler = Updater->getArrayFiller()) {
 | |
|     if (!isa<NoInitExpr>(Filler)) {
 | |
|       FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
 | |
|       if (!FillC)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned NumElementsToUpdate =
 | |
|       FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
 | |
|   for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
 | |
|     Expr *Init = nullptr;
 | |
|     if (I < Updater->getNumInits())
 | |
|       Init = Updater->getInit(I);
 | |
| 
 | |
|     if (!Init && FillC) {
 | |
|       if (!Const.add(FillC, Offset, true))
 | |
|         return false;
 | |
|     } else if (!Init || isa<NoInitExpr>(Init)) {
 | |
|       continue;
 | |
|     } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
 | |
|       if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
 | |
|                                      ChildILE))
 | |
|         return false;
 | |
|       // Attempt to reduce the array element to a single constant if necessary.
 | |
|       Const.condense(Offset, ElemTy);
 | |
|     } else {
 | |
|       llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
 | |
|       if (!Const.add(Val, Offset, true))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
 | |
|   RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
 | |
|   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
 | |
| 
 | |
|   unsigned FieldNo = -1;
 | |
|   unsigned ElementNo = 0;
 | |
| 
 | |
|   // Bail out if we have base classes. We could support these, but they only
 | |
|   // arise in C++1z where we will have already constant folded most interesting
 | |
|   // cases. FIXME: There are still a few more cases we can handle this way.
 | |
|   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|     if (CXXRD->getNumBases())
 | |
|       return false;
 | |
| 
 | |
|   for (FieldDecl *Field : RD->fields()) {
 | |
|     ++FieldNo;
 | |
| 
 | |
|     // If this is a union, skip all the fields that aren't being initialized.
 | |
|     if (RD->isUnion() &&
 | |
|         !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
 | |
|       continue;
 | |
| 
 | |
|     // Don't emit anonymous bitfields or zero-sized fields.
 | |
|     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
 | |
|       continue;
 | |
| 
 | |
|     // Get the initializer.  A struct can include fields without initializers,
 | |
|     // we just use explicit null values for them.
 | |
|     Expr *Init = nullptr;
 | |
|     if (ElementNo < ILE->getNumInits())
 | |
|       Init = ILE->getInit(ElementNo++);
 | |
|     if (Init && isa<NoInitExpr>(Init))
 | |
|       continue;
 | |
| 
 | |
|     // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
 | |
|     // represents additional overwriting of our current constant value, and not
 | |
|     // a new constant to emit independently.
 | |
|     if (AllowOverwrite &&
 | |
|         (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
 | |
|       if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
 | |
|         CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
 | |
|             Layout.getFieldOffset(FieldNo));
 | |
|         if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
 | |
|                                        Field->getType(), SubILE))
 | |
|           return false;
 | |
|         // If we split apart the field's value, try to collapse it down to a
 | |
|         // single value now.
 | |
|         Builder.condense(StartOffset + Offset,
 | |
|                          CGM.getTypes().ConvertTypeForMem(Field->getType()));
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     llvm::Constant *EltInit =
 | |
|         Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
 | |
|              : Emitter.emitNullForMemory(Field->getType());
 | |
|     if (!EltInit)
 | |
|       return false;
 | |
| 
 | |
|     if (!Field->isBitField()) {
 | |
|       // Handle non-bitfield members.
 | |
|       if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
 | |
|                        AllowOverwrite))
 | |
|         return false;
 | |
|       // After emitting a non-empty field with [[no_unique_address]], we may
 | |
|       // need to overwrite its tail padding.
 | |
|       if (Field->hasAttr<NoUniqueAddressAttr>())
 | |
|         AllowOverwrite = true;
 | |
|     } else {
 | |
|       // Otherwise we have a bitfield.
 | |
|       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
 | |
|         if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
 | |
|                             AllowOverwrite))
 | |
|           return false;
 | |
|       } else {
 | |
|         // We are trying to initialize a bitfield with a non-trivial constant,
 | |
|         // this must require run-time code.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct BaseInfo {
 | |
|   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
 | |
|     : Decl(Decl), Offset(Offset), Index(Index) {
 | |
|   }
 | |
| 
 | |
|   const CXXRecordDecl *Decl;
 | |
|   CharUnits Offset;
 | |
|   unsigned Index;
 | |
| 
 | |
|   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
 | |
| };
 | |
| }
 | |
| 
 | |
| bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
 | |
|                                bool IsPrimaryBase,
 | |
|                                const CXXRecordDecl *VTableClass,
 | |
|                                CharUnits Offset) {
 | |
|   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
 | |
| 
 | |
|   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|     // Add a vtable pointer, if we need one and it hasn't already been added.
 | |
|     if (CD->isDynamicClass() && !IsPrimaryBase) {
 | |
|       llvm::Constant *VTableAddressPoint =
 | |
|           CGM.getCXXABI().getVTableAddressPointForConstExpr(
 | |
|               BaseSubobject(CD, Offset), VTableClass);
 | |
|       if (!AppendBytes(Offset, VTableAddressPoint))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Accumulate and sort bases, in order to visit them in address order, which
 | |
|     // may not be the same as declaration order.
 | |
|     SmallVector<BaseInfo, 8> Bases;
 | |
|     Bases.reserve(CD->getNumBases());
 | |
|     unsigned BaseNo = 0;
 | |
|     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
 | |
|          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
 | |
|       assert(!Base->isVirtual() && "should not have virtual bases here");
 | |
|       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
 | |
|       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
 | |
|       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
 | |
|     }
 | |
|     llvm::stable_sort(Bases);
 | |
| 
 | |
|     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
 | |
|       BaseInfo &Base = Bases[I];
 | |
| 
 | |
|       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
 | |
|       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
 | |
|             VTableClass, Offset + Base.Offset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned FieldNo = 0;
 | |
|   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
 | |
| 
 | |
|   bool AllowOverwrite = false;
 | |
|   for (RecordDecl::field_iterator Field = RD->field_begin(),
 | |
|        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
 | |
|     // If this is a union, skip all the fields that aren't being initialized.
 | |
|     if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
 | |
|       continue;
 | |
| 
 | |
|     // Don't emit anonymous bitfields or zero-sized fields.
 | |
|     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
 | |
|       continue;
 | |
| 
 | |
|     // Emit the value of the initializer.
 | |
|     const APValue &FieldValue =
 | |
|       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
 | |
|     llvm::Constant *EltInit =
 | |
|       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
 | |
|     if (!EltInit)
 | |
|       return false;
 | |
| 
 | |
|     if (!Field->isBitField()) {
 | |
|       // Handle non-bitfield members.
 | |
|       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
 | |
|                        EltInit, AllowOverwrite))
 | |
|         return false;
 | |
|       // After emitting a non-empty field with [[no_unique_address]], we may
 | |
|       // need to overwrite its tail padding.
 | |
|       if (Field->hasAttr<NoUniqueAddressAttr>())
 | |
|         AllowOverwrite = true;
 | |
|     } else {
 | |
|       // Otherwise we have a bitfield.
 | |
|       if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
 | |
|                           cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
 | |
|   RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
 | |
|   llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
 | |
|   return Builder.build(ValTy, RD->hasFlexibleArrayMember());
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
 | |
|                                                 InitListExpr *ILE,
 | |
|                                                 QualType ValTy) {
 | |
|   ConstantAggregateBuilder Const(Emitter.CGM);
 | |
|   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
 | |
| 
 | |
|   if (!Builder.Build(ILE, /*AllowOverwrite*/false))
 | |
|     return nullptr;
 | |
| 
 | |
|   return Builder.Finalize(ValTy);
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
 | |
|                                                 const APValue &Val,
 | |
|                                                 QualType ValTy) {
 | |
|   ConstantAggregateBuilder Const(Emitter.CGM);
 | |
|   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
 | |
| 
 | |
|   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
 | |
|   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
 | |
|   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
 | |
|     return nullptr;
 | |
| 
 | |
|   return Builder.Finalize(ValTy);
 | |
| }
 | |
| 
 | |
| bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
 | |
|                                       ConstantAggregateBuilder &Const,
 | |
|                                       CharUnits Offset, InitListExpr *Updater) {
 | |
|   return ConstStructBuilder(Emitter, Const, Offset)
 | |
|       .Build(Updater, /*AllowOverwrite*/ true);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             ConstExprEmitter
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
 | |
|                                                     CodeGenFunction *CGF,
 | |
|                                               const CompoundLiteralExpr *E) {
 | |
|   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
 | |
|   if (llvm::GlobalVariable *Addr =
 | |
|           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
 | |
|     return ConstantAddress(Addr, Align);
 | |
| 
 | |
|   LangAS addressSpace = E->getType().getAddressSpace();
 | |
| 
 | |
|   ConstantEmitter emitter(CGM, CGF);
 | |
|   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
 | |
|                                                     addressSpace, E->getType());
 | |
|   if (!C) {
 | |
|     assert(!E->isFileScope() &&
 | |
|            "file-scope compound literal did not have constant initializer!");
 | |
|     return ConstantAddress::invalid();
 | |
|   }
 | |
| 
 | |
|   auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
 | |
|                                      CGM.isTypeConstant(E->getType(), true),
 | |
|                                      llvm::GlobalValue::InternalLinkage,
 | |
|                                      C, ".compoundliteral", nullptr,
 | |
|                                      llvm::GlobalVariable::NotThreadLocal,
 | |
|                     CGM.getContext().getTargetAddressSpace(addressSpace));
 | |
|   emitter.finalize(GV);
 | |
|   GV->setAlignment(Align.getAsAlign());
 | |
|   CGM.setAddrOfConstantCompoundLiteral(E, GV);
 | |
|   return ConstantAddress(GV, Align);
 | |
| }
 | |
| 
 | |
| static llvm::Constant *
 | |
| EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
 | |
|                   llvm::Type *CommonElementType, unsigned ArrayBound,
 | |
|                   SmallVectorImpl<llvm::Constant *> &Elements,
 | |
|                   llvm::Constant *Filler) {
 | |
|   // Figure out how long the initial prefix of non-zero elements is.
 | |
|   unsigned NonzeroLength = ArrayBound;
 | |
|   if (Elements.size() < NonzeroLength && Filler->isNullValue())
 | |
|     NonzeroLength = Elements.size();
 | |
|   if (NonzeroLength == Elements.size()) {
 | |
|     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
 | |
|       --NonzeroLength;
 | |
|   }
 | |
| 
 | |
|   if (NonzeroLength == 0)
 | |
|     return llvm::ConstantAggregateZero::get(DesiredType);
 | |
| 
 | |
|   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
 | |
|   unsigned TrailingZeroes = ArrayBound - NonzeroLength;
 | |
|   if (TrailingZeroes >= 8) {
 | |
|     assert(Elements.size() >= NonzeroLength &&
 | |
|            "missing initializer for non-zero element");
 | |
| 
 | |
|     // If all the elements had the same type up to the trailing zeroes, emit a
 | |
|     // struct of two arrays (the nonzero data and the zeroinitializer).
 | |
|     if (CommonElementType && NonzeroLength >= 8) {
 | |
|       llvm::Constant *Initial = llvm::ConstantArray::get(
 | |
|           llvm::ArrayType::get(CommonElementType, NonzeroLength),
 | |
|           makeArrayRef(Elements).take_front(NonzeroLength));
 | |
|       Elements.resize(2);
 | |
|       Elements[0] = Initial;
 | |
|     } else {
 | |
|       Elements.resize(NonzeroLength + 1);
 | |
|     }
 | |
| 
 | |
|     auto *FillerType =
 | |
|         CommonElementType ? CommonElementType : DesiredType->getElementType();
 | |
|     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
 | |
|     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
 | |
|     CommonElementType = nullptr;
 | |
|   } else if (Elements.size() != ArrayBound) {
 | |
|     // Otherwise pad to the right size with the filler if necessary.
 | |
|     Elements.resize(ArrayBound, Filler);
 | |
|     if (Filler->getType() != CommonElementType)
 | |
|       CommonElementType = nullptr;
 | |
|   }
 | |
| 
 | |
|   // If all elements have the same type, just emit an array constant.
 | |
|   if (CommonElementType)
 | |
|     return llvm::ConstantArray::get(
 | |
|         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
 | |
| 
 | |
|   // We have mixed types. Use a packed struct.
 | |
|   llvm::SmallVector<llvm::Type *, 16> Types;
 | |
|   Types.reserve(Elements.size());
 | |
|   for (llvm::Constant *Elt : Elements)
 | |
|     Types.push_back(Elt->getType());
 | |
|   llvm::StructType *SType =
 | |
|       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
 | |
|   return llvm::ConstantStruct::get(SType, Elements);
 | |
| }
 | |
| 
 | |
| // This class only needs to handle arrays, structs and unions. Outside C++11
 | |
| // mode, we don't currently constant fold those types.  All other types are
 | |
| // handled by constant folding.
 | |
| //
 | |
| // Constant folding is currently missing support for a few features supported
 | |
| // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
 | |
| class ConstExprEmitter :
 | |
|   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
 | |
|   CodeGenModule &CGM;
 | |
|   ConstantEmitter &Emitter;
 | |
|   llvm::LLVMContext &VMContext;
 | |
| public:
 | |
|   ConstExprEmitter(ConstantEmitter &emitter)
 | |
|     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                            Visitor Methods
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
 | |
|     return Visit(CE->getSubExpr(), T);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
 | |
|     return Visit(PE->getSubExpr(), T);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *
 | |
|   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
 | |
|                                     QualType T) {
 | |
|     return Visit(PE->getReplacement(), T);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
 | |
|                                             QualType T) {
 | |
|     return Visit(GE->getResultExpr(), T);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
 | |
|     return Visit(CE->getChosenSubExpr(), T);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
 | |
|     return Visit(E->getInitializer(), T);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
 | |
|     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
 | |
|       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
 | |
|     Expr *subExpr = E->getSubExpr();
 | |
| 
 | |
|     switch (E->getCastKind()) {
 | |
|     case CK_ToUnion: {
 | |
|       // GCC cast to union extension
 | |
|       assert(E->getType()->isUnionType() &&
 | |
|              "Destination type is not union type!");
 | |
| 
 | |
|       auto field = E->getTargetUnionField();
 | |
| 
 | |
|       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
 | |
|       if (!C) return nullptr;
 | |
| 
 | |
|       auto destTy = ConvertType(destType);
 | |
|       if (C->getType() == destTy) return C;
 | |
| 
 | |
|       // Build a struct with the union sub-element as the first member,
 | |
|       // and padded to the appropriate size.
 | |
|       SmallVector<llvm::Constant*, 2> Elts;
 | |
|       SmallVector<llvm::Type*, 2> Types;
 | |
|       Elts.push_back(C);
 | |
|       Types.push_back(C->getType());
 | |
|       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
 | |
|       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
 | |
| 
 | |
|       assert(CurSize <= TotalSize && "Union size mismatch!");
 | |
|       if (unsigned NumPadBytes = TotalSize - CurSize) {
 | |
|         llvm::Type *Ty = CGM.Int8Ty;
 | |
|         if (NumPadBytes > 1)
 | |
|           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
 | |
| 
 | |
|         Elts.push_back(llvm::UndefValue::get(Ty));
 | |
|         Types.push_back(Ty);
 | |
|       }
 | |
| 
 | |
|       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
 | |
|       return llvm::ConstantStruct::get(STy, Elts);
 | |
|     }
 | |
| 
 | |
|     case CK_AddressSpaceConversion: {
 | |
|       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
 | |
|       if (!C) return nullptr;
 | |
|       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
 | |
|       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
 | |
|       llvm::Type *destTy = ConvertType(E->getType());
 | |
|       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
 | |
|                                                              destAS, destTy);
 | |
|     }
 | |
| 
 | |
|     case CK_LValueToRValue:
 | |
|     case CK_AtomicToNonAtomic:
 | |
|     case CK_NonAtomicToAtomic:
 | |
|     case CK_NoOp:
 | |
|     case CK_ConstructorConversion:
 | |
|       return Visit(subExpr, destType);
 | |
| 
 | |
|     case CK_IntToOCLSampler:
 | |
|       llvm_unreachable("global sampler variables are not generated");
 | |
| 
 | |
|     case CK_Dependent: llvm_unreachable("saw dependent cast!");
 | |
| 
 | |
|     case CK_BuiltinFnToFnPtr:
 | |
|       llvm_unreachable("builtin functions are handled elsewhere");
 | |
| 
 | |
|     case CK_ReinterpretMemberPointer:
 | |
|     case CK_DerivedToBaseMemberPointer:
 | |
|     case CK_BaseToDerivedMemberPointer: {
 | |
|       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
 | |
|       if (!C) return nullptr;
 | |
|       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
 | |
|     }
 | |
| 
 | |
|     // These will never be supported.
 | |
|     case CK_ObjCObjectLValueCast:
 | |
|     case CK_ARCProduceObject:
 | |
|     case CK_ARCConsumeObject:
 | |
|     case CK_ARCReclaimReturnedObject:
 | |
|     case CK_ARCExtendBlockObject:
 | |
|     case CK_CopyAndAutoreleaseBlockObject:
 | |
|       return nullptr;
 | |
| 
 | |
|     // These don't need to be handled here because Evaluate knows how to
 | |
|     // evaluate them in the cases where they can be folded.
 | |
|     case CK_BitCast:
 | |
|     case CK_ToVoid:
 | |
|     case CK_Dynamic:
 | |
|     case CK_LValueBitCast:
 | |
|     case CK_LValueToRValueBitCast:
 | |
|     case CK_NullToMemberPointer:
 | |
|     case CK_UserDefinedConversion:
 | |
|     case CK_CPointerToObjCPointerCast:
 | |
|     case CK_BlockPointerToObjCPointerCast:
 | |
|     case CK_AnyPointerToBlockPointerCast:
 | |
|     case CK_ArrayToPointerDecay:
 | |
|     case CK_FunctionToPointerDecay:
 | |
|     case CK_BaseToDerived:
 | |
|     case CK_DerivedToBase:
 | |
|     case CK_UncheckedDerivedToBase:
 | |
|     case CK_MemberPointerToBoolean:
 | |
|     case CK_VectorSplat:
 | |
|     case CK_FloatingRealToComplex:
 | |
|     case CK_FloatingComplexToReal:
 | |
|     case CK_FloatingComplexToBoolean:
 | |
|     case CK_FloatingComplexCast:
 | |
|     case CK_FloatingComplexToIntegralComplex:
 | |
|     case CK_IntegralRealToComplex:
 | |
|     case CK_IntegralComplexToReal:
 | |
|     case CK_IntegralComplexToBoolean:
 | |
|     case CK_IntegralComplexCast:
 | |
|     case CK_IntegralComplexToFloatingComplex:
 | |
|     case CK_PointerToIntegral:
 | |
|     case CK_PointerToBoolean:
 | |
|     case CK_NullToPointer:
 | |
|     case CK_IntegralCast:
 | |
|     case CK_BooleanToSignedIntegral:
 | |
|     case CK_IntegralToPointer:
 | |
|     case CK_IntegralToBoolean:
 | |
|     case CK_IntegralToFloating:
 | |
|     case CK_FloatingToIntegral:
 | |
|     case CK_FloatingToBoolean:
 | |
|     case CK_FloatingCast:
 | |
|     case CK_FixedPointCast:
 | |
|     case CK_FixedPointToBoolean:
 | |
|     case CK_FixedPointToIntegral:
 | |
|     case CK_IntegralToFixedPoint:
 | |
|     case CK_ZeroToOCLOpaqueType:
 | |
|       return nullptr;
 | |
|     }
 | |
|     llvm_unreachable("Invalid CastKind");
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
 | |
|     // No need for a DefaultInitExprScope: we don't handle 'this' in a
 | |
|     // constant expression.
 | |
|     return Visit(DIE->getExpr(), T);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
 | |
|     if (!E->cleanupsHaveSideEffects())
 | |
|       return Visit(E->getSubExpr(), T);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
 | |
|                                                 QualType T) {
 | |
|     return Visit(E->getSubExpr(), T);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
 | |
|     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
 | |
|     assert(CAT && "can't emit array init for non-constant-bound array");
 | |
|     unsigned NumInitElements = ILE->getNumInits();
 | |
|     unsigned NumElements = CAT->getSize().getZExtValue();
 | |
| 
 | |
|     // Initialising an array requires us to automatically
 | |
|     // initialise any elements that have not been initialised explicitly
 | |
|     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
 | |
| 
 | |
|     QualType EltType = CAT->getElementType();
 | |
| 
 | |
|     // Initialize remaining array elements.
 | |
|     llvm::Constant *fillC = nullptr;
 | |
|     if (Expr *filler = ILE->getArrayFiller()) {
 | |
|       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
 | |
|       if (!fillC)
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Copy initializer elements.
 | |
|     SmallVector<llvm::Constant*, 16> Elts;
 | |
|     if (fillC && fillC->isNullValue())
 | |
|       Elts.reserve(NumInitableElts + 1);
 | |
|     else
 | |
|       Elts.reserve(NumElements);
 | |
| 
 | |
|     llvm::Type *CommonElementType = nullptr;
 | |
|     for (unsigned i = 0; i < NumInitableElts; ++i) {
 | |
|       Expr *Init = ILE->getInit(i);
 | |
|       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
 | |
|       if (!C)
 | |
|         return nullptr;
 | |
|       if (i == 0)
 | |
|         CommonElementType = C->getType();
 | |
|       else if (C->getType() != CommonElementType)
 | |
|         CommonElementType = nullptr;
 | |
|       Elts.push_back(C);
 | |
|     }
 | |
| 
 | |
|     llvm::ArrayType *Desired =
 | |
|         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
 | |
|     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
 | |
|                              fillC);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
 | |
|     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
 | |
|                                              QualType T) {
 | |
|     return CGM.EmitNullConstant(T);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
 | |
|     if (ILE->isTransparent())
 | |
|       return Visit(ILE->getInit(0), T);
 | |
| 
 | |
|     if (ILE->getType()->isArrayType())
 | |
|       return EmitArrayInitialization(ILE, T);
 | |
| 
 | |
|     if (ILE->getType()->isRecordType())
 | |
|       return EmitRecordInitialization(ILE, T);
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
 | |
|                                                 QualType destType) {
 | |
|     auto C = Visit(E->getBase(), destType);
 | |
|     if (!C)
 | |
|       return nullptr;
 | |
| 
 | |
|     ConstantAggregateBuilder Const(CGM);
 | |
|     Const.add(C, CharUnits::Zero(), false);
 | |
| 
 | |
|     if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
 | |
|                                    E->getUpdater()))
 | |
|       return nullptr;
 | |
| 
 | |
|     llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
 | |
|     bool HasFlexibleArray = false;
 | |
|     if (auto *RT = destType->getAs<RecordType>())
 | |
|       HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
 | |
|     return Const.build(ValTy, HasFlexibleArray);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
 | |
|     if (!E->getConstructor()->isTrivial())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Only default and copy/move constructors can be trivial.
 | |
|     if (E->getNumArgs()) {
 | |
|       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
 | |
|       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
 | |
|              "trivial ctor has argument but isn't a copy/move ctor");
 | |
| 
 | |
|       Expr *Arg = E->getArg(0);
 | |
|       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
 | |
|              "argument to copy ctor is of wrong type");
 | |
| 
 | |
|       return Visit(Arg, Ty);
 | |
|     }
 | |
| 
 | |
|     return CGM.EmitNullConstant(Ty);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
 | |
|     // This is a string literal initializing an array in an initializer.
 | |
|     return CGM.GetConstantArrayFromStringLiteral(E);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
 | |
|     // This must be an @encode initializing an array in a static initializer.
 | |
|     // Don't emit it as the address of the string, emit the string data itself
 | |
|     // as an inline array.
 | |
|     std::string Str;
 | |
|     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
 | |
|     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
 | |
| 
 | |
|     // Resize the string to the right size, adding zeros at the end, or
 | |
|     // truncating as needed.
 | |
|     Str.resize(CAT->getSize().getZExtValue(), '\0');
 | |
|     return llvm::ConstantDataArray::getString(VMContext, Str, false);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
 | |
|     return Visit(E->getSubExpr(), T);
 | |
|   }
 | |
| 
 | |
|   // Utility methods
 | |
|   llvm::Type *ConvertType(QualType T) {
 | |
|     return CGM.getTypes().ConvertType(T);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // end anonymous namespace.
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
 | |
|                                                         AbstractState saved) {
 | |
|   Abstract = saved.OldValue;
 | |
| 
 | |
|   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
 | |
|          "created a placeholder while doing an abstract emission?");
 | |
| 
 | |
|   // No validation necessary for now.
 | |
|   // No cleanup to do for now.
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
 | |
|   auto state = pushAbstract();
 | |
|   auto C = tryEmitPrivateForVarInit(D);
 | |
|   return validateAndPopAbstract(C, state);
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
 | |
|   auto state = pushAbstract();
 | |
|   auto C = tryEmitPrivate(E, destType);
 | |
|   return validateAndPopAbstract(C, state);
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
 | |
|   auto state = pushAbstract();
 | |
|   auto C = tryEmitPrivate(value, destType);
 | |
|   return validateAndPopAbstract(C, state);
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
 | |
|   auto state = pushAbstract();
 | |
|   auto C = tryEmitPrivate(E, destType);
 | |
|   C = validateAndPopAbstract(C, state);
 | |
|   if (!C) {
 | |
|     CGM.Error(E->getExprLoc(),
 | |
|               "internal error: could not emit constant value \"abstractly\"");
 | |
|     C = CGM.EmitNullConstant(destType);
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
 | |
|                               QualType destType) {
 | |
|   auto state = pushAbstract();
 | |
|   auto C = tryEmitPrivate(value, destType);
 | |
|   C = validateAndPopAbstract(C, state);
 | |
|   if (!C) {
 | |
|     CGM.Error(loc,
 | |
|               "internal error: could not emit constant value \"abstractly\"");
 | |
|     C = CGM.EmitNullConstant(destType);
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
 | |
|   initializeNonAbstract(D.getType().getAddressSpace());
 | |
|   return markIfFailed(tryEmitPrivateForVarInit(D));
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
 | |
|                                                        LangAS destAddrSpace,
 | |
|                                                        QualType destType) {
 | |
|   initializeNonAbstract(destAddrSpace);
 | |
|   return markIfFailed(tryEmitPrivateForMemory(E, destType));
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
 | |
|                                                     LangAS destAddrSpace,
 | |
|                                                     QualType destType) {
 | |
|   initializeNonAbstract(destAddrSpace);
 | |
|   auto C = tryEmitPrivateForMemory(value, destType);
 | |
|   assert(C && "couldn't emit constant value non-abstractly?");
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
 | |
|   assert(!Abstract && "cannot get current address for abstract constant");
 | |
| 
 | |
| 
 | |
| 
 | |
|   // Make an obviously ill-formed global that should blow up compilation
 | |
|   // if it survives.
 | |
|   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
 | |
|                                          llvm::GlobalValue::PrivateLinkage,
 | |
|                                          /*init*/ nullptr,
 | |
|                                          /*name*/ "",
 | |
|                                          /*before*/ nullptr,
 | |
|                                          llvm::GlobalVariable::NotThreadLocal,
 | |
|                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
 | |
| 
 | |
|   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
 | |
| 
 | |
|   return global;
 | |
| }
 | |
| 
 | |
| void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
 | |
|                                            llvm::GlobalValue *placeholder) {
 | |
|   assert(!PlaceholderAddresses.empty());
 | |
|   assert(PlaceholderAddresses.back().first == nullptr);
 | |
|   assert(PlaceholderAddresses.back().second == placeholder);
 | |
|   PlaceholderAddresses.back().first = signal;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct ReplacePlaceholders {
 | |
|     CodeGenModule &CGM;
 | |
| 
 | |
|     /// The base address of the global.
 | |
|     llvm::Constant *Base;
 | |
|     llvm::Type *BaseValueTy = nullptr;
 | |
| 
 | |
|     /// The placeholder addresses that were registered during emission.
 | |
|     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
 | |
| 
 | |
|     /// The locations of the placeholder signals.
 | |
|     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
 | |
| 
 | |
|     /// The current index stack.  We use a simple unsigned stack because
 | |
|     /// we assume that placeholders will be relatively sparse in the
 | |
|     /// initializer, but we cache the index values we find just in case.
 | |
|     llvm::SmallVector<unsigned, 8> Indices;
 | |
|     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
 | |
| 
 | |
|     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
 | |
|                         ArrayRef<std::pair<llvm::Constant*,
 | |
|                                            llvm::GlobalVariable*>> addresses)
 | |
|         : CGM(CGM), Base(base),
 | |
|           PlaceholderAddresses(addresses.begin(), addresses.end()) {
 | |
|     }
 | |
| 
 | |
|     void replaceInInitializer(llvm::Constant *init) {
 | |
|       // Remember the type of the top-most initializer.
 | |
|       BaseValueTy = init->getType();
 | |
| 
 | |
|       // Initialize the stack.
 | |
|       Indices.push_back(0);
 | |
|       IndexValues.push_back(nullptr);
 | |
| 
 | |
|       // Recurse into the initializer.
 | |
|       findLocations(init);
 | |
| 
 | |
|       // Check invariants.
 | |
|       assert(IndexValues.size() == Indices.size() && "mismatch");
 | |
|       assert(Indices.size() == 1 && "didn't pop all indices");
 | |
| 
 | |
|       // Do the replacement; this basically invalidates 'init'.
 | |
|       assert(Locations.size() == PlaceholderAddresses.size() &&
 | |
|              "missed a placeholder?");
 | |
| 
 | |
|       // We're iterating over a hashtable, so this would be a source of
 | |
|       // non-determinism in compiler output *except* that we're just
 | |
|       // messing around with llvm::Constant structures, which never itself
 | |
|       // does anything that should be visible in compiler output.
 | |
|       for (auto &entry : Locations) {
 | |
|         assert(entry.first->getParent() == nullptr && "not a placeholder!");
 | |
|         entry.first->replaceAllUsesWith(entry.second);
 | |
|         entry.first->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void findLocations(llvm::Constant *init) {
 | |
|       // Recurse into aggregates.
 | |
|       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
 | |
|         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
 | |
|           Indices.push_back(i);
 | |
|           IndexValues.push_back(nullptr);
 | |
| 
 | |
|           findLocations(agg->getOperand(i));
 | |
| 
 | |
|           IndexValues.pop_back();
 | |
|           Indices.pop_back();
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, check for registered constants.
 | |
|       while (true) {
 | |
|         auto it = PlaceholderAddresses.find(init);
 | |
|         if (it != PlaceholderAddresses.end()) {
 | |
|           setLocation(it->second);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // Look through bitcasts or other expressions.
 | |
|         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
 | |
|           init = expr->getOperand(0);
 | |
|         } else {
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void setLocation(llvm::GlobalVariable *placeholder) {
 | |
|       assert(Locations.find(placeholder) == Locations.end() &&
 | |
|              "already found location for placeholder!");
 | |
| 
 | |
|       // Lazily fill in IndexValues with the values from Indices.
 | |
|       // We do this in reverse because we should always have a strict
 | |
|       // prefix of indices from the start.
 | |
|       assert(Indices.size() == IndexValues.size());
 | |
|       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
 | |
|         if (IndexValues[i]) {
 | |
| #ifndef NDEBUG
 | |
|           for (size_t j = 0; j != i + 1; ++j) {
 | |
|             assert(IndexValues[j] &&
 | |
|                    isa<llvm::ConstantInt>(IndexValues[j]) &&
 | |
|                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
 | |
|                      == Indices[j]);
 | |
|           }
 | |
| #endif
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
 | |
|       }
 | |
| 
 | |
|       // Form a GEP and then bitcast to the placeholder type so that the
 | |
|       // replacement will succeed.
 | |
|       llvm::Constant *location =
 | |
|         llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
 | |
|                                                      Base, IndexValues);
 | |
|       location = llvm::ConstantExpr::getBitCast(location,
 | |
|                                                 placeholder->getType());
 | |
| 
 | |
|       Locations.insert({placeholder, location});
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
 | |
|   assert(InitializedNonAbstract &&
 | |
|          "finalizing emitter that was used for abstract emission?");
 | |
|   assert(!Finalized && "finalizing emitter multiple times");
 | |
|   assert(global->getInitializer());
 | |
| 
 | |
|   // Note that we might also be Failed.
 | |
|   Finalized = true;
 | |
| 
 | |
|   if (!PlaceholderAddresses.empty()) {
 | |
|     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
 | |
|       .replaceInInitializer(global->getInitializer());
 | |
|     PlaceholderAddresses.clear(); // satisfy
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConstantEmitter::~ConstantEmitter() {
 | |
|   assert((!InitializedNonAbstract || Finalized || Failed) &&
 | |
|          "not finalized after being initialized for non-abstract emission");
 | |
|   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
 | |
| }
 | |
| 
 | |
| static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
 | |
|   if (auto AT = type->getAs<AtomicType>()) {
 | |
|     return CGM.getContext().getQualifiedType(AT->getValueType(),
 | |
|                                              type.getQualifiers());
 | |
|   }
 | |
|   return type;
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
 | |
|   // Make a quick check if variable can be default NULL initialized
 | |
|   // and avoid going through rest of code which may do, for c++11,
 | |
|   // initialization of memory to all NULLs.
 | |
|   if (!D.hasLocalStorage()) {
 | |
|     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
 | |
|     if (Ty->isRecordType())
 | |
|       if (const CXXConstructExpr *E =
 | |
|           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
 | |
|         const CXXConstructorDecl *CD = E->getConstructor();
 | |
|         if (CD->isTrivial() && CD->isDefaultConstructor())
 | |
|           return CGM.EmitNullConstant(D.getType());
 | |
|       }
 | |
|     InConstantContext = true;
 | |
|   }
 | |
| 
 | |
|   QualType destType = D.getType();
 | |
| 
 | |
|   // Try to emit the initializer.  Note that this can allow some things that
 | |
|   // are not allowed by tryEmitPrivateForMemory alone.
 | |
|   if (auto value = D.evaluateValue()) {
 | |
|     return tryEmitPrivateForMemory(*value, destType);
 | |
|   }
 | |
| 
 | |
|   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
 | |
|   // reference is a constant expression, and the reference binds to a temporary,
 | |
|   // then constant initialization is performed. ConstExprEmitter will
 | |
|   // incorrectly emit a prvalue constant in this case, and the calling code
 | |
|   // interprets that as the (pointer) value of the reference, rather than the
 | |
|   // desired value of the referee.
 | |
|   if (destType->isReferenceType())
 | |
|     return nullptr;
 | |
| 
 | |
|   const Expr *E = D.getInit();
 | |
|   assert(E && "No initializer to emit");
 | |
| 
 | |
|   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
 | |
|   auto C =
 | |
|     ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
 | |
|   return (C ? emitForMemory(C, destType) : nullptr);
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
 | |
|   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
 | |
|   auto C = tryEmitAbstract(E, nonMemoryDestType);
 | |
|   return (C ? emitForMemory(C, destType) : nullptr);
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
 | |
|                                           QualType destType) {
 | |
|   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
 | |
|   auto C = tryEmitAbstract(value, nonMemoryDestType);
 | |
|   return (C ? emitForMemory(C, destType) : nullptr);
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
 | |
|                                                          QualType destType) {
 | |
|   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
 | |
|   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
 | |
|   return (C ? emitForMemory(C, destType) : nullptr);
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
 | |
|                                                          QualType destType) {
 | |
|   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
 | |
|   auto C = tryEmitPrivate(value, nonMemoryDestType);
 | |
|   return (C ? emitForMemory(C, destType) : nullptr);
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
 | |
|                                                llvm::Constant *C,
 | |
|                                                QualType destType) {
 | |
|   // For an _Atomic-qualified constant, we may need to add tail padding.
 | |
|   if (auto AT = destType->getAs<AtomicType>()) {
 | |
|     QualType destValueType = AT->getValueType();
 | |
|     C = emitForMemory(CGM, C, destValueType);
 | |
| 
 | |
|     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
 | |
|     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
 | |
|     if (innerSize == outerSize)
 | |
|       return C;
 | |
| 
 | |
|     assert(innerSize < outerSize && "emitted over-large constant for atomic");
 | |
|     llvm::Constant *elts[] = {
 | |
|       C,
 | |
|       llvm::ConstantAggregateZero::get(
 | |
|           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
 | |
|     };
 | |
|     return llvm::ConstantStruct::getAnon(elts);
 | |
|   }
 | |
| 
 | |
|   // Zero-extend bool.
 | |
|   if (C->getType()->isIntegerTy(1)) {
 | |
|     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
 | |
|     return llvm::ConstantExpr::getZExt(C, boolTy);
 | |
|   }
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
 | |
|                                                 QualType destType) {
 | |
|   Expr::EvalResult Result;
 | |
| 
 | |
|   bool Success = false;
 | |
| 
 | |
|   if (destType->isReferenceType())
 | |
|     Success = E->EvaluateAsLValue(Result, CGM.getContext());
 | |
|   else
 | |
|     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
 | |
| 
 | |
|   llvm::Constant *C;
 | |
|   if (Success && !Result.HasSideEffects)
 | |
|     C = tryEmitPrivate(Result.Val, destType);
 | |
|   else
 | |
|     C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
 | |
|   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// A struct which can be used to peephole certain kinds of finalization
 | |
| /// that normally happen during l-value emission.
 | |
| struct ConstantLValue {
 | |
|   llvm::Constant *Value;
 | |
|   bool HasOffsetApplied;
 | |
| 
 | |
|   /*implicit*/ ConstantLValue(llvm::Constant *value,
 | |
|                               bool hasOffsetApplied = false)
 | |
|     : Value(value), HasOffsetApplied(hasOffsetApplied) {}
 | |
| 
 | |
|   /*implicit*/ ConstantLValue(ConstantAddress address)
 | |
|     : ConstantLValue(address.getPointer()) {}
 | |
| };
 | |
| 
 | |
| /// A helper class for emitting constant l-values.
 | |
| class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
 | |
|                                                       ConstantLValue> {
 | |
|   CodeGenModule &CGM;
 | |
|   ConstantEmitter &Emitter;
 | |
|   const APValue &Value;
 | |
|   QualType DestType;
 | |
| 
 | |
|   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
 | |
|   friend StmtVisitorBase;
 | |
| 
 | |
| public:
 | |
|   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
 | |
|                         QualType destType)
 | |
|     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
 | |
| 
 | |
|   llvm::Constant *tryEmit();
 | |
| 
 | |
| private:
 | |
|   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
 | |
|   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
 | |
| 
 | |
|   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
 | |
|   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
 | |
|   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
 | |
|   ConstantLValue VisitStringLiteral(const StringLiteral *E);
 | |
|   ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
 | |
|   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
 | |
|   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
 | |
|   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
 | |
|   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
 | |
|   ConstantLValue VisitCallExpr(const CallExpr *E);
 | |
|   ConstantLValue VisitBlockExpr(const BlockExpr *E);
 | |
|   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
 | |
|   ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
 | |
|   ConstantLValue VisitMaterializeTemporaryExpr(
 | |
|                                          const MaterializeTemporaryExpr *E);
 | |
| 
 | |
|   bool hasNonZeroOffset() const {
 | |
|     return !Value.getLValueOffset().isZero();
 | |
|   }
 | |
| 
 | |
|   /// Return the value offset.
 | |
|   llvm::Constant *getOffset() {
 | |
|     return llvm::ConstantInt::get(CGM.Int64Ty,
 | |
|                                   Value.getLValueOffset().getQuantity());
 | |
|   }
 | |
| 
 | |
|   /// Apply the value offset to the given constant.
 | |
|   llvm::Constant *applyOffset(llvm::Constant *C) {
 | |
|     if (!hasNonZeroOffset())
 | |
|       return C;
 | |
| 
 | |
|     llvm::Type *origPtrTy = C->getType();
 | |
|     unsigned AS = origPtrTy->getPointerAddressSpace();
 | |
|     llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
 | |
|     C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
 | |
|     C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
 | |
|     C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
 | |
|     return C;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantLValueEmitter::tryEmit() {
 | |
|   const APValue::LValueBase &base = Value.getLValueBase();
 | |
| 
 | |
|   // The destination type should be a pointer or reference
 | |
|   // type, but it might also be a cast thereof.
 | |
|   //
 | |
|   // FIXME: the chain of casts required should be reflected in the APValue.
 | |
|   // We need this in order to correctly handle things like a ptrtoint of a
 | |
|   // non-zero null pointer and addrspace casts that aren't trivially
 | |
|   // represented in LLVM IR.
 | |
|   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
 | |
|   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
 | |
| 
 | |
|   // If there's no base at all, this is a null or absolute pointer,
 | |
|   // possibly cast back to an integer type.
 | |
|   if (!base) {
 | |
|     return tryEmitAbsolute(destTy);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, try to emit the base.
 | |
|   ConstantLValue result = tryEmitBase(base);
 | |
| 
 | |
|   // If that failed, we're done.
 | |
|   llvm::Constant *value = result.Value;
 | |
|   if (!value) return nullptr;
 | |
| 
 | |
|   // Apply the offset if necessary and not already done.
 | |
|   if (!result.HasOffsetApplied) {
 | |
|     value = applyOffset(value);
 | |
|   }
 | |
| 
 | |
|   // Convert to the appropriate type; this could be an lvalue for
 | |
|   // an integer.  FIXME: performAddrSpaceCast
 | |
|   if (isa<llvm::PointerType>(destTy))
 | |
|     return llvm::ConstantExpr::getPointerCast(value, destTy);
 | |
| 
 | |
|   return llvm::ConstantExpr::getPtrToInt(value, destTy);
 | |
| }
 | |
| 
 | |
| /// Try to emit an absolute l-value, such as a null pointer or an integer
 | |
| /// bitcast to pointer type.
 | |
| llvm::Constant *
 | |
| ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
 | |
|   // If we're producing a pointer, this is easy.
 | |
|   auto destPtrTy = cast<llvm::PointerType>(destTy);
 | |
|   if (Value.isNullPointer()) {
 | |
|     // FIXME: integer offsets from non-zero null pointers.
 | |
|     return CGM.getNullPointer(destPtrTy, DestType);
 | |
|   }
 | |
| 
 | |
|   // Convert the integer to a pointer-sized integer before converting it
 | |
|   // to a pointer.
 | |
|   // FIXME: signedness depends on the original integer type.
 | |
|   auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
 | |
|   llvm::Constant *C;
 | |
|   C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
 | |
|                                          /*isSigned*/ false);
 | |
|   C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
 | |
|   // Handle values.
 | |
|   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
 | |
|     if (D->hasAttr<WeakRefAttr>())
 | |
|       return CGM.GetWeakRefReference(D).getPointer();
 | |
| 
 | |
|     if (auto FD = dyn_cast<FunctionDecl>(D))
 | |
|       return CGM.GetAddrOfFunction(FD);
 | |
| 
 | |
|     if (auto VD = dyn_cast<VarDecl>(D)) {
 | |
|       // We can never refer to a variable with local storage.
 | |
|       if (!VD->hasLocalStorage()) {
 | |
|         if (VD->isFileVarDecl() || VD->hasExternalStorage())
 | |
|           return CGM.GetAddrOfGlobalVar(VD);
 | |
| 
 | |
|         if (VD->isLocalVarDecl()) {
 | |
|           return CGM.getOrCreateStaticVarDecl(
 | |
|               *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Handle typeid(T).
 | |
|   if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
 | |
|     llvm::Type *StdTypeInfoPtrTy =
 | |
|         CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
 | |
|     llvm::Constant *TypeInfo =
 | |
|         CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
 | |
|     if (TypeInfo->getType() != StdTypeInfoPtrTy)
 | |
|       TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
 | |
|     return TypeInfo;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it must be an expression.
 | |
|   return Visit(base.get<const Expr*>());
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
 | |
|   return Visit(E->getSubExpr());
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
 | |
|   return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
 | |
|   return CGM.GetAddrOfConstantStringFromLiteral(E);
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
 | |
|   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
 | |
| }
 | |
| 
 | |
| static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
 | |
|                                                     QualType T,
 | |
|                                                     CodeGenModule &CGM) {
 | |
|   auto C = CGM.getObjCRuntime().GenerateConstantString(S);
 | |
|   return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
 | |
|   return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
 | |
|   assert(E->isExpressibleAsConstantInitializer() &&
 | |
|          "this boxed expression can't be emitted as a compile-time constant");
 | |
|   auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
 | |
|   return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
 | |
|   return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
 | |
|   assert(Emitter.CGF && "Invalid address of label expression outside function");
 | |
|   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
 | |
|   Ptr = llvm::ConstantExpr::getBitCast(Ptr,
 | |
|                                    CGM.getTypes().ConvertType(E->getType()));
 | |
|   return Ptr;
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
 | |
|   unsigned builtin = E->getBuiltinCallee();
 | |
|   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
 | |
|       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
 | |
|   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
 | |
|     return CGM.getObjCRuntime().GenerateConstantString(literal);
 | |
|   } else {
 | |
|     // FIXME: need to deal with UCN conversion issues.
 | |
|     return CGM.GetAddrOfConstantCFString(literal);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
 | |
|   StringRef functionName;
 | |
|   if (auto CGF = Emitter.CGF)
 | |
|     functionName = CGF->CurFn->getName();
 | |
|   else
 | |
|     functionName = "global";
 | |
| 
 | |
|   return CGM.GetAddrOfGlobalBlock(E, functionName);
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
 | |
|   QualType T;
 | |
|   if (E->isTypeOperand())
 | |
|     T = E->getTypeOperand(CGM.getContext());
 | |
|   else
 | |
|     T = E->getExprOperand()->getType();
 | |
|   return CGM.GetAddrOfRTTIDescriptor(T);
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
 | |
|   return CGM.GetAddrOfUuidDescriptor(E);
 | |
| }
 | |
| 
 | |
| ConstantLValue
 | |
| ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
 | |
|                                             const MaterializeTemporaryExpr *E) {
 | |
|   assert(E->getStorageDuration() == SD_Static);
 | |
|   SmallVector<const Expr *, 2> CommaLHSs;
 | |
|   SmallVector<SubobjectAdjustment, 2> Adjustments;
 | |
|   const Expr *Inner =
 | |
|       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
 | |
|   return CGM.GetAddrOfGlobalTemporary(E, Inner);
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
 | |
|                                                 QualType DestType) {
 | |
|   switch (Value.getKind()) {
 | |
|   case APValue::None:
 | |
|   case APValue::Indeterminate:
 | |
|     // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
 | |
|     return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
 | |
|   case APValue::LValue:
 | |
|     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
 | |
|   case APValue::Int:
 | |
|     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
 | |
|   case APValue::FixedPoint:
 | |
|     return llvm::ConstantInt::get(CGM.getLLVMContext(),
 | |
|                                   Value.getFixedPoint().getValue());
 | |
|   case APValue::ComplexInt: {
 | |
|     llvm::Constant *Complex[2];
 | |
| 
 | |
|     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
 | |
|                                         Value.getComplexIntReal());
 | |
|     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
 | |
|                                         Value.getComplexIntImag());
 | |
| 
 | |
|     // FIXME: the target may want to specify that this is packed.
 | |
|     llvm::StructType *STy =
 | |
|         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
 | |
|     return llvm::ConstantStruct::get(STy, Complex);
 | |
|   }
 | |
|   case APValue::Float: {
 | |
|     const llvm::APFloat &Init = Value.getFloat();
 | |
|     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
 | |
|         !CGM.getContext().getLangOpts().NativeHalfType &&
 | |
|         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
 | |
|       return llvm::ConstantInt::get(CGM.getLLVMContext(),
 | |
|                                     Init.bitcastToAPInt());
 | |
|     else
 | |
|       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
 | |
|   }
 | |
|   case APValue::ComplexFloat: {
 | |
|     llvm::Constant *Complex[2];
 | |
| 
 | |
|     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
 | |
|                                        Value.getComplexFloatReal());
 | |
|     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
 | |
|                                        Value.getComplexFloatImag());
 | |
| 
 | |
|     // FIXME: the target may want to specify that this is packed.
 | |
|     llvm::StructType *STy =
 | |
|         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
 | |
|     return llvm::ConstantStruct::get(STy, Complex);
 | |
|   }
 | |
|   case APValue::Vector: {
 | |
|     unsigned NumElts = Value.getVectorLength();
 | |
|     SmallVector<llvm::Constant *, 4> Inits(NumElts);
 | |
| 
 | |
|     for (unsigned I = 0; I != NumElts; ++I) {
 | |
|       const APValue &Elt = Value.getVectorElt(I);
 | |
|       if (Elt.isInt())
 | |
|         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
 | |
|       else if (Elt.isFloat())
 | |
|         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
 | |
|       else
 | |
|         llvm_unreachable("unsupported vector element type");
 | |
|     }
 | |
|     return llvm::ConstantVector::get(Inits);
 | |
|   }
 | |
|   case APValue::AddrLabelDiff: {
 | |
|     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
 | |
|     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
 | |
|     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
 | |
|     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
 | |
|     if (!LHS || !RHS) return nullptr;
 | |
| 
 | |
|     // Compute difference
 | |
|     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
 | |
|     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
 | |
|     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
 | |
|     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
 | |
| 
 | |
|     // LLVM is a bit sensitive about the exact format of the
 | |
|     // address-of-label difference; make sure to truncate after
 | |
|     // the subtraction.
 | |
|     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
 | |
|   }
 | |
|   case APValue::Struct:
 | |
|   case APValue::Union:
 | |
|     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
 | |
|   case APValue::Array: {
 | |
|     const ConstantArrayType *CAT =
 | |
|         CGM.getContext().getAsConstantArrayType(DestType);
 | |
|     unsigned NumElements = Value.getArraySize();
 | |
|     unsigned NumInitElts = Value.getArrayInitializedElts();
 | |
| 
 | |
|     // Emit array filler, if there is one.
 | |
|     llvm::Constant *Filler = nullptr;
 | |
|     if (Value.hasArrayFiller()) {
 | |
|       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
 | |
|                                         CAT->getElementType());
 | |
|       if (!Filler)
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Emit initializer elements.
 | |
|     SmallVector<llvm::Constant*, 16> Elts;
 | |
|     if (Filler && Filler->isNullValue())
 | |
|       Elts.reserve(NumInitElts + 1);
 | |
|     else
 | |
|       Elts.reserve(NumElements);
 | |
| 
 | |
|     llvm::Type *CommonElementType = nullptr;
 | |
|     for (unsigned I = 0; I < NumInitElts; ++I) {
 | |
|       llvm::Constant *C = tryEmitPrivateForMemory(
 | |
|           Value.getArrayInitializedElt(I), CAT->getElementType());
 | |
|       if (!C) return nullptr;
 | |
| 
 | |
|       if (I == 0)
 | |
|         CommonElementType = C->getType();
 | |
|       else if (C->getType() != CommonElementType)
 | |
|         CommonElementType = nullptr;
 | |
|       Elts.push_back(C);
 | |
|     }
 | |
| 
 | |
|     // This means that the array type is probably "IncompleteType" or some
 | |
|     // type that is not ConstantArray.
 | |
|     if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
 | |
|       const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
 | |
|       CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
 | |
|       llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
 | |
|                                                     NumElements);
 | |
|       return llvm::ConstantAggregateZero::get(AType);
 | |
|     }
 | |
| 
 | |
|     llvm::ArrayType *Desired =
 | |
|         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
 | |
|     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
 | |
|                              Filler);
 | |
|   }
 | |
|   case APValue::MemberPointer:
 | |
|     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
 | |
|   }
 | |
|   llvm_unreachable("Unknown APValue kind");
 | |
| }
 | |
| 
 | |
| llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
 | |
|     const CompoundLiteralExpr *E) {
 | |
|   return EmittedCompoundLiterals.lookup(E);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::setAddrOfConstantCompoundLiteral(
 | |
|     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
 | |
|   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
 | |
|   (void)Ok;
 | |
|   assert(Ok && "CLE has already been emitted!");
 | |
| }
 | |
| 
 | |
| ConstantAddress
 | |
| CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
 | |
|   assert(E->isFileScope() && "not a file-scope compound literal expr");
 | |
|   return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
 | |
|   // Member pointer constants always have a very particular form.
 | |
|   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
 | |
|   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
 | |
| 
 | |
|   // A member function pointer.
 | |
|   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
 | |
|     return getCXXABI().EmitMemberFunctionPointer(method);
 | |
| 
 | |
|   // Otherwise, a member data pointer.
 | |
|   uint64_t fieldOffset = getContext().getFieldOffset(decl);
 | |
|   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
 | |
|   return getCXXABI().EmitMemberDataPointer(type, chars);
 | |
| }
 | |
| 
 | |
| static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
 | |
|                                                llvm::Type *baseType,
 | |
|                                                const CXXRecordDecl *base);
 | |
| 
 | |
| static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
 | |
|                                         const RecordDecl *record,
 | |
|                                         bool asCompleteObject) {
 | |
|   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
 | |
|   llvm::StructType *structure =
 | |
|     (asCompleteObject ? layout.getLLVMType()
 | |
|                       : layout.getBaseSubobjectLLVMType());
 | |
| 
 | |
|   unsigned numElements = structure->getNumElements();
 | |
|   std::vector<llvm::Constant *> elements(numElements);
 | |
| 
 | |
|   auto CXXR = dyn_cast<CXXRecordDecl>(record);
 | |
|   // Fill in all the bases.
 | |
|   if (CXXR) {
 | |
|     for (const auto &I : CXXR->bases()) {
 | |
|       if (I.isVirtual()) {
 | |
|         // Ignore virtual bases; if we're laying out for a complete
 | |
|         // object, we'll lay these out later.
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       const CXXRecordDecl *base =
 | |
|         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
 | |
| 
 | |
|       // Ignore empty bases.
 | |
|       if (base->isEmpty() ||
 | |
|           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
 | |
|               .isZero())
 | |
|         continue;
 | |
| 
 | |
|       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
 | |
|       llvm::Type *baseType = structure->getElementType(fieldIndex);
 | |
|       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fill in all the fields.
 | |
|   for (const auto *Field : record->fields()) {
 | |
|     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
 | |
|     // will fill in later.)
 | |
|     if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
 | |
|       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
 | |
|       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
 | |
|     }
 | |
| 
 | |
|     // For unions, stop after the first named field.
 | |
|     if (record->isUnion()) {
 | |
|       if (Field->getIdentifier())
 | |
|         break;
 | |
|       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
 | |
|         if (FieldRD->findFirstNamedDataMember())
 | |
|           break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fill in the virtual bases, if we're working with the complete object.
 | |
|   if (CXXR && asCompleteObject) {
 | |
|     for (const auto &I : CXXR->vbases()) {
 | |
|       const CXXRecordDecl *base =
 | |
|         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
 | |
| 
 | |
|       // Ignore empty bases.
 | |
|       if (base->isEmpty())
 | |
|         continue;
 | |
| 
 | |
|       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
 | |
| 
 | |
|       // We might have already laid this field out.
 | |
|       if (elements[fieldIndex]) continue;
 | |
| 
 | |
|       llvm::Type *baseType = structure->getElementType(fieldIndex);
 | |
|       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now go through all other fields and zero them out.
 | |
|   for (unsigned i = 0; i != numElements; ++i) {
 | |
|     if (!elements[i])
 | |
|       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
 | |
|   }
 | |
| 
 | |
|   return llvm::ConstantStruct::get(structure, elements);
 | |
| }
 | |
| 
 | |
| /// Emit the null constant for a base subobject.
 | |
| static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
 | |
|                                                llvm::Type *baseType,
 | |
|                                                const CXXRecordDecl *base) {
 | |
|   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
 | |
| 
 | |
|   // Just zero out bases that don't have any pointer to data members.
 | |
|   if (baseLayout.isZeroInitializableAsBase())
 | |
|     return llvm::Constant::getNullValue(baseType);
 | |
| 
 | |
|   // Otherwise, we can just use its null constant.
 | |
|   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
 | |
| }
 | |
| 
 | |
| llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
 | |
|                                                    QualType T) {
 | |
|   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
 | |
| }
 | |
| 
 | |
| llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
 | |
|   if (T->getAs<PointerType>())
 | |
|     return getNullPointer(
 | |
|         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
 | |
| 
 | |
|   if (getTypes().isZeroInitializable(T))
 | |
|     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
 | |
| 
 | |
|   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
 | |
|     llvm::ArrayType *ATy =
 | |
|       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
 | |
| 
 | |
|     QualType ElementTy = CAT->getElementType();
 | |
| 
 | |
|     llvm::Constant *Element =
 | |
|       ConstantEmitter::emitNullForMemory(*this, ElementTy);
 | |
|     unsigned NumElements = CAT->getSize().getZExtValue();
 | |
|     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
 | |
|     return llvm::ConstantArray::get(ATy, Array);
 | |
|   }
 | |
| 
 | |
|   if (const RecordType *RT = T->getAs<RecordType>())
 | |
|     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
 | |
| 
 | |
|   assert(T->isMemberDataPointerType() &&
 | |
|          "Should only see pointers to data members here!");
 | |
| 
 | |
|   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
 | |
|   return ::EmitNullConstant(*this, Record, false);
 | |
| }
 |