forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			907 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			907 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Builder implementation for CGRecordLayout objects.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CGRecordLayout.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "CodeGenTypes.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/Basic/CodeGenOptions.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| namespace {
 | |
| /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
 | |
| /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
 | |
| /// detail some of the complexities and weirdnesses here.
 | |
| /// * LLVM does not have unions - Unions can, in theory be represented by any
 | |
| ///   llvm::Type with correct size.  We choose a field via a specific heuristic
 | |
| ///   and add padding if necessary.
 | |
| /// * LLVM does not have bitfields - Bitfields are collected into contiguous
 | |
| ///   runs and allocated as a single storage type for the run.  ASTRecordLayout
 | |
| ///   contains enough information to determine where the runs break.  Microsoft
 | |
| ///   and Itanium follow different rules and use different codepaths.
 | |
| /// * It is desired that, when possible, bitfields use the appropriate iN type
 | |
| ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
 | |
| ///   i24.  This isn't always possible because i24 has storage size of 32 bit
 | |
| ///   and if it is possible to use that extra byte of padding we must use
 | |
| ///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
 | |
| ///   C++ examples that require clipping:
 | |
| ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
 | |
| ///   struct A { int a : 24; }; // a must be clipped because a struct like B
 | |
| //    could exist: struct B : A { char b; }; // b goes at offset 3
 | |
| /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
 | |
| ///   fields.  The existing asserts suggest that LLVM assumes that *every* field
 | |
| ///   has an underlying storage type.  Therefore empty structures containing
 | |
| ///   zero sized subobjects such as empty records or zero sized arrays still get
 | |
| ///   a zero sized (empty struct) storage type.
 | |
| /// * Clang reads the complete type rather than the base type when generating
 | |
| ///   code to access fields.  Bitfields in tail position with tail padding may
 | |
| ///   be clipped in the base class but not the complete class (we may discover
 | |
| ///   that the tail padding is not used in the complete class.) However,
 | |
| ///   because LLVM reads from the complete type it can generate incorrect code
 | |
| ///   if we do not clip the tail padding off of the bitfield in the complete
 | |
| ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
 | |
| ///   The location of the clip is stored internally as a sentinel of type
 | |
| ///   SCISSOR.  If LLVM were updated to read base types (which it probably
 | |
| ///   should because locations of things such as VBases are bogus in the llvm
 | |
| ///   type anyway) then we could eliminate the SCISSOR.
 | |
| /// * Itanium allows nearly empty primary virtual bases.  These bases don't get
 | |
| ///   get their own storage because they're laid out as part of another base
 | |
| ///   or at the beginning of the structure.  Determining if a VBase actually
 | |
| ///   gets storage awkwardly involves a walk of all bases.
 | |
| /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
 | |
| struct CGRecordLowering {
 | |
|   // MemberInfo is a helper structure that contains information about a record
 | |
|   // member.  In additional to the standard member types, there exists a
 | |
|   // sentinel member type that ensures correct rounding.
 | |
|   struct MemberInfo {
 | |
|     CharUnits Offset;
 | |
|     enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
 | |
|     llvm::Type *Data;
 | |
|     union {
 | |
|       const FieldDecl *FD;
 | |
|       const CXXRecordDecl *RD;
 | |
|     };
 | |
|     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
 | |
|                const FieldDecl *FD = nullptr)
 | |
|       : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
 | |
|     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
 | |
|                const CXXRecordDecl *RD)
 | |
|       : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
 | |
|     // MemberInfos are sorted so we define a < operator.
 | |
|     bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
 | |
|   };
 | |
|   // The constructor.
 | |
|   CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
 | |
|   // Short helper routines.
 | |
|   /// Constructs a MemberInfo instance from an offset and llvm::Type *.
 | |
|   MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
 | |
|     return MemberInfo(Offset, MemberInfo::Field, Data);
 | |
|   }
 | |
| 
 | |
|   /// The Microsoft bitfield layout rule allocates discrete storage
 | |
|   /// units of the field's formal type and only combines adjacent
 | |
|   /// fields of the same formal type.  We want to emit a layout with
 | |
|   /// these discrete storage units instead of combining them into a
 | |
|   /// continuous run.
 | |
|   bool isDiscreteBitFieldABI() {
 | |
|     return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
 | |
|            D->isMsStruct(Context);
 | |
|   }
 | |
| 
 | |
|   /// The Itanium base layout rule allows virtual bases to overlap
 | |
|   /// other bases, which complicates layout in specific ways.
 | |
|   ///
 | |
|   /// Note specifically that the ms_struct attribute doesn't change this.
 | |
|   bool isOverlappingVBaseABI() {
 | |
|     return !Context.getTargetInfo().getCXXABI().isMicrosoft();
 | |
|   }
 | |
| 
 | |
|   /// Wraps llvm::Type::getIntNTy with some implicit arguments.
 | |
|   llvm::Type *getIntNType(uint64_t NumBits) {
 | |
|     return llvm::Type::getIntNTy(Types.getLLVMContext(),
 | |
|                                  (unsigned)llvm::alignTo(NumBits, 8));
 | |
|   }
 | |
|   /// Gets an llvm type of size NumBytes and alignment 1.
 | |
|   llvm::Type *getByteArrayType(CharUnits NumBytes) {
 | |
|     assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
 | |
|     llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
 | |
|     return NumBytes == CharUnits::One() ? Type :
 | |
|         (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
 | |
|   }
 | |
|   /// Gets the storage type for a field decl and handles storage
 | |
|   /// for itanium bitfields that are smaller than their declared type.
 | |
|   llvm::Type *getStorageType(const FieldDecl *FD) {
 | |
|     llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
 | |
|     if (!FD->isBitField()) return Type;
 | |
|     if (isDiscreteBitFieldABI()) return Type;
 | |
|     return getIntNType(std::min(FD->getBitWidthValue(Context),
 | |
|                              (unsigned)Context.toBits(getSize(Type))));
 | |
|   }
 | |
|   /// Gets the llvm Basesubobject type from a CXXRecordDecl.
 | |
|   llvm::Type *getStorageType(const CXXRecordDecl *RD) {
 | |
|     return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
 | |
|   }
 | |
|   CharUnits bitsToCharUnits(uint64_t BitOffset) {
 | |
|     return Context.toCharUnitsFromBits(BitOffset);
 | |
|   }
 | |
|   CharUnits getSize(llvm::Type *Type) {
 | |
|     return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
 | |
|   }
 | |
|   CharUnits getAlignment(llvm::Type *Type) {
 | |
|     return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
 | |
|   }
 | |
|   bool isZeroInitializable(const FieldDecl *FD) {
 | |
|     return Types.isZeroInitializable(FD->getType());
 | |
|   }
 | |
|   bool isZeroInitializable(const RecordDecl *RD) {
 | |
|     return Types.isZeroInitializable(RD);
 | |
|   }
 | |
|   void appendPaddingBytes(CharUnits Size) {
 | |
|     if (!Size.isZero())
 | |
|       FieldTypes.push_back(getByteArrayType(Size));
 | |
|   }
 | |
|   uint64_t getFieldBitOffset(const FieldDecl *FD) {
 | |
|     return Layout.getFieldOffset(FD->getFieldIndex());
 | |
|   }
 | |
|   // Layout routines.
 | |
|   void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
 | |
|                        llvm::Type *StorageType);
 | |
|   /// Lowers an ASTRecordLayout to a llvm type.
 | |
|   void lower(bool NonVirtualBaseType);
 | |
|   void lowerUnion();
 | |
|   void accumulateFields();
 | |
|   void accumulateBitFields(RecordDecl::field_iterator Field,
 | |
|                         RecordDecl::field_iterator FieldEnd);
 | |
|   void accumulateBases();
 | |
|   void accumulateVPtrs();
 | |
|   void accumulateVBases();
 | |
|   /// Recursively searches all of the bases to find out if a vbase is
 | |
|   /// not the primary vbase of some base class.
 | |
|   bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
 | |
|   void calculateZeroInit();
 | |
|   /// Lowers bitfield storage types to I8 arrays for bitfields with tail
 | |
|   /// padding that is or can potentially be used.
 | |
|   void clipTailPadding();
 | |
|   /// Determines if we need a packed llvm struct.
 | |
|   void determinePacked(bool NVBaseType);
 | |
|   /// Inserts padding everywhere it's needed.
 | |
|   void insertPadding();
 | |
|   /// Fills out the structures that are ultimately consumed.
 | |
|   void fillOutputFields();
 | |
|   // Input memoization fields.
 | |
|   CodeGenTypes &Types;
 | |
|   const ASTContext &Context;
 | |
|   const RecordDecl *D;
 | |
|   const CXXRecordDecl *RD;
 | |
|   const ASTRecordLayout &Layout;
 | |
|   const llvm::DataLayout &DataLayout;
 | |
|   // Helpful intermediate data-structures.
 | |
|   std::vector<MemberInfo> Members;
 | |
|   // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
 | |
|   SmallVector<llvm::Type *, 16> FieldTypes;
 | |
|   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
 | |
|   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
 | |
|   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
 | |
|   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
 | |
|   bool IsZeroInitializable : 1;
 | |
|   bool IsZeroInitializableAsBase : 1;
 | |
|   bool Packed : 1;
 | |
| private:
 | |
|   CGRecordLowering(const CGRecordLowering &) = delete;
 | |
|   void operator =(const CGRecordLowering &) = delete;
 | |
| };
 | |
| } // namespace {
 | |
| 
 | |
| CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
 | |
|                                    bool Packed)
 | |
|     : Types(Types), Context(Types.getContext()), D(D),
 | |
|       RD(dyn_cast<CXXRecordDecl>(D)),
 | |
|       Layout(Types.getContext().getASTRecordLayout(D)),
 | |
|       DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
 | |
|       IsZeroInitializableAsBase(true), Packed(Packed) {}
 | |
| 
 | |
| void CGRecordLowering::setBitFieldInfo(
 | |
|     const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
 | |
|   CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
 | |
|   Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
 | |
|   Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
 | |
|   Info.Size = FD->getBitWidthValue(Context);
 | |
|   Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
 | |
|   Info.StorageOffset = StartOffset;
 | |
|   if (Info.Size > Info.StorageSize)
 | |
|     Info.Size = Info.StorageSize;
 | |
|   // Reverse the bit offsets for big endian machines. Because we represent
 | |
|   // a bitfield as a single large integer load, we can imagine the bits
 | |
|   // counting from the most-significant-bit instead of the
 | |
|   // least-significant-bit.
 | |
|   if (DataLayout.isBigEndian())
 | |
|     Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::lower(bool NVBaseType) {
 | |
|   // The lowering process implemented in this function takes a variety of
 | |
|   // carefully ordered phases.
 | |
|   // 1) Store all members (fields and bases) in a list and sort them by offset.
 | |
|   // 2) Add a 1-byte capstone member at the Size of the structure.
 | |
|   // 3) Clip bitfield storages members if their tail padding is or might be
 | |
|   //    used by another field or base.  The clipping process uses the capstone
 | |
|   //    by treating it as another object that occurs after the record.
 | |
|   // 4) Determine if the llvm-struct requires packing.  It's important that this
 | |
|   //    phase occur after clipping, because clipping changes the llvm type.
 | |
|   //    This phase reads the offset of the capstone when determining packedness
 | |
|   //    and updates the alignment of the capstone to be equal of the alignment
 | |
|   //    of the record after doing so.
 | |
|   // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
 | |
|   //    have been computed and needs to know the alignment of the record in
 | |
|   //    order to understand if explicit tail padding is needed.
 | |
|   // 6) Remove the capstone, we don't need it anymore.
 | |
|   // 7) Determine if this record can be zero-initialized.  This phase could have
 | |
|   //    been placed anywhere after phase 1.
 | |
|   // 8) Format the complete list of members in a way that can be consumed by
 | |
|   //    CodeGenTypes::ComputeRecordLayout.
 | |
|   CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
 | |
|   if (D->isUnion())
 | |
|     return lowerUnion();
 | |
|   accumulateFields();
 | |
|   // RD implies C++.
 | |
|   if (RD) {
 | |
|     accumulateVPtrs();
 | |
|     accumulateBases();
 | |
|     if (Members.empty())
 | |
|       return appendPaddingBytes(Size);
 | |
|     if (!NVBaseType)
 | |
|       accumulateVBases();
 | |
|   }
 | |
|   llvm::stable_sort(Members);
 | |
|   Members.push_back(StorageInfo(Size, getIntNType(8)));
 | |
|   clipTailPadding();
 | |
|   determinePacked(NVBaseType);
 | |
|   insertPadding();
 | |
|   Members.pop_back();
 | |
|   calculateZeroInit();
 | |
|   fillOutputFields();
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::lowerUnion() {
 | |
|   CharUnits LayoutSize = Layout.getSize();
 | |
|   llvm::Type *StorageType = nullptr;
 | |
|   bool SeenNamedMember = false;
 | |
|   // Iterate through the fields setting bitFieldInfo and the Fields array. Also
 | |
|   // locate the "most appropriate" storage type.  The heuristic for finding the
 | |
|   // storage type isn't necessary, the first (non-0-length-bitfield) field's
 | |
|   // type would work fine and be simpler but would be different than what we've
 | |
|   // been doing and cause lit tests to change.
 | |
|   for (const auto *Field : D->fields()) {
 | |
|     if (Field->isBitField()) {
 | |
|       if (Field->isZeroLengthBitField(Context))
 | |
|         continue;
 | |
|       llvm::Type *FieldType = getStorageType(Field);
 | |
|       if (LayoutSize < getSize(FieldType))
 | |
|         FieldType = getByteArrayType(LayoutSize);
 | |
|       setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
 | |
|     }
 | |
|     Fields[Field->getCanonicalDecl()] = 0;
 | |
|     llvm::Type *FieldType = getStorageType(Field);
 | |
|     // Compute zero-initializable status.
 | |
|     // This union might not be zero initialized: it may contain a pointer to
 | |
|     // data member which might have some exotic initialization sequence.
 | |
|     // If this is the case, then we aught not to try and come up with a "better"
 | |
|     // type, it might not be very easy to come up with a Constant which
 | |
|     // correctly initializes it.
 | |
|     if (!SeenNamedMember) {
 | |
|       SeenNamedMember = Field->getIdentifier();
 | |
|       if (!SeenNamedMember)
 | |
|         if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
 | |
|           SeenNamedMember = FieldRD->findFirstNamedDataMember();
 | |
|       if (SeenNamedMember && !isZeroInitializable(Field)) {
 | |
|         IsZeroInitializable = IsZeroInitializableAsBase = false;
 | |
|         StorageType = FieldType;
 | |
|       }
 | |
|     }
 | |
|     // Because our union isn't zero initializable, we won't be getting a better
 | |
|     // storage type.
 | |
|     if (!IsZeroInitializable)
 | |
|       continue;
 | |
|     // Conditionally update our storage type if we've got a new "better" one.
 | |
|     if (!StorageType ||
 | |
|         getAlignment(FieldType) >  getAlignment(StorageType) ||
 | |
|         (getAlignment(FieldType) == getAlignment(StorageType) &&
 | |
|         getSize(FieldType) > getSize(StorageType)))
 | |
|       StorageType = FieldType;
 | |
|   }
 | |
|   // If we have no storage type just pad to the appropriate size and return.
 | |
|   if (!StorageType)
 | |
|     return appendPaddingBytes(LayoutSize);
 | |
|   // If our storage size was bigger than our required size (can happen in the
 | |
|   // case of packed bitfields on Itanium) then just use an I8 array.
 | |
|   if (LayoutSize < getSize(StorageType))
 | |
|     StorageType = getByteArrayType(LayoutSize);
 | |
|   FieldTypes.push_back(StorageType);
 | |
|   appendPaddingBytes(LayoutSize - getSize(StorageType));
 | |
|   // Set packed if we need it.
 | |
|   if (LayoutSize % getAlignment(StorageType))
 | |
|     Packed = true;
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::accumulateFields() {
 | |
|   for (RecordDecl::field_iterator Field = D->field_begin(),
 | |
|                                   FieldEnd = D->field_end();
 | |
|     Field != FieldEnd;) {
 | |
|     if (Field->isBitField()) {
 | |
|       RecordDecl::field_iterator Start = Field;
 | |
|       // Iterate to gather the list of bitfields.
 | |
|       for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
 | |
|       accumulateBitFields(Start, Field);
 | |
|     } else if (!Field->isZeroSize(Context)) {
 | |
|       Members.push_back(MemberInfo(
 | |
|           bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
 | |
|           getStorageType(*Field), *Field));
 | |
|       ++Field;
 | |
|     } else {
 | |
|       ++Field;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
 | |
|                                       RecordDecl::field_iterator FieldEnd) {
 | |
|   // Run stores the first element of the current run of bitfields.  FieldEnd is
 | |
|   // used as a special value to note that we don't have a current run.  A
 | |
|   // bitfield run is a contiguous collection of bitfields that can be stored in
 | |
|   // the same storage block.  Zero-sized bitfields and bitfields that would
 | |
|   // cross an alignment boundary break a run and start a new one.
 | |
|   RecordDecl::field_iterator Run = FieldEnd;
 | |
|   // Tail is the offset of the first bit off the end of the current run.  It's
 | |
|   // used to determine if the ASTRecordLayout is treating these two bitfields as
 | |
|   // contiguous.  StartBitOffset is offset of the beginning of the Run.
 | |
|   uint64_t StartBitOffset, Tail = 0;
 | |
|   if (isDiscreteBitFieldABI()) {
 | |
|     for (; Field != FieldEnd; ++Field) {
 | |
|       uint64_t BitOffset = getFieldBitOffset(*Field);
 | |
|       // Zero-width bitfields end runs.
 | |
|       if (Field->isZeroLengthBitField(Context)) {
 | |
|         Run = FieldEnd;
 | |
|         continue;
 | |
|       }
 | |
|       llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
 | |
|       // If we don't have a run yet, or don't live within the previous run's
 | |
|       // allocated storage then we allocate some storage and start a new run.
 | |
|       if (Run == FieldEnd || BitOffset >= Tail) {
 | |
|         Run = Field;
 | |
|         StartBitOffset = BitOffset;
 | |
|         Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
 | |
|         // Add the storage member to the record.  This must be added to the
 | |
|         // record before the bitfield members so that it gets laid out before
 | |
|         // the bitfields it contains get laid out.
 | |
|         Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
 | |
|       }
 | |
|       // Bitfields get the offset of their storage but come afterward and remain
 | |
|       // there after a stable sort.
 | |
|       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
 | |
|                                    MemberInfo::Field, nullptr, *Field));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check if OffsetInRecord is better as a single field run. When OffsetInRecord
 | |
|   // has legal integer width, and its bitfield offset is naturally aligned, it
 | |
|   // is better to make the bitfield a separate storage component so as it can be
 | |
|   // accessed directly with lower cost.
 | |
|   auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
 | |
|                                       uint64_t StartBitOffset) {
 | |
|     if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
 | |
|       return false;
 | |
|     if (!DataLayout.isLegalInteger(OffsetInRecord))
 | |
|       return false;
 | |
|     // Make sure StartBitOffset is natually aligned if it is treated as an
 | |
|     // IType integer.
 | |
|      if (StartBitOffset %
 | |
|             Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
 | |
|         0)
 | |
|       return false;
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // The start field is better as a single field run.
 | |
|   bool StartFieldAsSingleRun = false;
 | |
|   for (;;) {
 | |
|     // Check to see if we need to start a new run.
 | |
|     if (Run == FieldEnd) {
 | |
|       // If we're out of fields, return.
 | |
|       if (Field == FieldEnd)
 | |
|         break;
 | |
|       // Any non-zero-length bitfield can start a new run.
 | |
|       if (!Field->isZeroLengthBitField(Context)) {
 | |
|         Run = Field;
 | |
|         StartBitOffset = getFieldBitOffset(*Field);
 | |
|         Tail = StartBitOffset + Field->getBitWidthValue(Context);
 | |
|         StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
 | |
|                                                          StartBitOffset);
 | |
|       }
 | |
|       ++Field;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If the start field of a new run is better as a single run, or
 | |
|     // if current field (or consecutive fields) is better as a single run, or
 | |
|     // if current field has zero width bitfield and either
 | |
|     // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
 | |
|     // true, or
 | |
|     // if the offset of current field is inconsistent with the offset of
 | |
|     // previous field plus its offset,
 | |
|     // skip the block below and go ahead to emit the storage.
 | |
|     // Otherwise, try to add bitfields to the run.
 | |
|     if (!StartFieldAsSingleRun && Field != FieldEnd &&
 | |
|         !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
 | |
|         (!Field->isZeroLengthBitField(Context) ||
 | |
|          (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
 | |
|           !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
 | |
|         Tail == getFieldBitOffset(*Field)) {
 | |
|       Tail += Field->getBitWidthValue(Context);
 | |
|       ++Field;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We've hit a break-point in the run and need to emit a storage field.
 | |
|     llvm::Type *Type = getIntNType(Tail - StartBitOffset);
 | |
|     // Add the storage member to the record and set the bitfield info for all of
 | |
|     // the bitfields in the run.  Bitfields get the offset of their storage but
 | |
|     // come afterward and remain there after a stable sort.
 | |
|     Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
 | |
|     for (; Run != Field; ++Run)
 | |
|       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
 | |
|                                    MemberInfo::Field, nullptr, *Run));
 | |
|     Run = FieldEnd;
 | |
|     StartFieldAsSingleRun = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::accumulateBases() {
 | |
|   // If we've got a primary virtual base, we need to add it with the bases.
 | |
|   if (Layout.isPrimaryBaseVirtual()) {
 | |
|     const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
 | |
|     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
 | |
|                                  getStorageType(BaseDecl), BaseDecl));
 | |
|   }
 | |
|   // Accumulate the non-virtual bases.
 | |
|   for (const auto &Base : RD->bases()) {
 | |
|     if (Base.isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     // Bases can be zero-sized even if not technically empty if they
 | |
|     // contain only a trailing array member.
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
|     if (!BaseDecl->isEmpty() &&
 | |
|         !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
 | |
|       Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
 | |
|           MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::accumulateVPtrs() {
 | |
|   if (Layout.hasOwnVFPtr())
 | |
|     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
 | |
|         llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
 | |
|             getPointerTo()->getPointerTo()));
 | |
|   if (Layout.hasOwnVBPtr())
 | |
|     Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
 | |
|         llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::accumulateVBases() {
 | |
|   CharUnits ScissorOffset = Layout.getNonVirtualSize();
 | |
|   // In the itanium ABI, it's possible to place a vbase at a dsize that is
 | |
|   // smaller than the nvsize.  Here we check to see if such a base is placed
 | |
|   // before the nvsize and set the scissor offset to that, instead of the
 | |
|   // nvsize.
 | |
|   if (isOverlappingVBaseABI())
 | |
|     for (const auto &Base : RD->vbases()) {
 | |
|       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
|       if (BaseDecl->isEmpty())
 | |
|         continue;
 | |
|       // If the vbase is a primary virtual base of some base, then it doesn't
 | |
|       // get its own storage location but instead lives inside of that base.
 | |
|       if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
 | |
|         continue;
 | |
|       ScissorOffset = std::min(ScissorOffset,
 | |
|                                Layout.getVBaseClassOffset(BaseDecl));
 | |
|     }
 | |
|   Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
 | |
|                                RD));
 | |
|   for (const auto &Base : RD->vbases()) {
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
|     if (BaseDecl->isEmpty())
 | |
|       continue;
 | |
|     CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
 | |
|     // If the vbase is a primary virtual base of some base, then it doesn't
 | |
|     // get its own storage location but instead lives inside of that base.
 | |
|     if (isOverlappingVBaseABI() &&
 | |
|         Context.isNearlyEmpty(BaseDecl) &&
 | |
|         !hasOwnStorage(RD, BaseDecl)) {
 | |
|       Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
 | |
|                                    BaseDecl));
 | |
|       continue;
 | |
|     }
 | |
|     // If we've got a vtordisp, add it as a storage type.
 | |
|     if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
 | |
|       Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
 | |
|                                     getIntNType(32)));
 | |
|     Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
 | |
|                                  getStorageType(BaseDecl), BaseDecl));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
 | |
|                                      const CXXRecordDecl *Query) {
 | |
|   const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
 | |
|   if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
 | |
|     return false;
 | |
|   for (const auto &Base : Decl->bases())
 | |
|     if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::calculateZeroInit() {
 | |
|   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
 | |
|                                                MemberEnd = Members.end();
 | |
|        IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
 | |
|     if (Member->Kind == MemberInfo::Field) {
 | |
|       if (!Member->FD || isZeroInitializable(Member->FD))
 | |
|         continue;
 | |
|       IsZeroInitializable = IsZeroInitializableAsBase = false;
 | |
|     } else if (Member->Kind == MemberInfo::Base ||
 | |
|                Member->Kind == MemberInfo::VBase) {
 | |
|       if (isZeroInitializable(Member->RD))
 | |
|         continue;
 | |
|       IsZeroInitializable = false;
 | |
|       if (Member->Kind == MemberInfo::Base)
 | |
|         IsZeroInitializableAsBase = false;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::clipTailPadding() {
 | |
|   std::vector<MemberInfo>::iterator Prior = Members.begin();
 | |
|   CharUnits Tail = getSize(Prior->Data);
 | |
|   for (std::vector<MemberInfo>::iterator Member = Prior + 1,
 | |
|                                          MemberEnd = Members.end();
 | |
|        Member != MemberEnd; ++Member) {
 | |
|     // Only members with data and the scissor can cut into tail padding.
 | |
|     if (!Member->Data && Member->Kind != MemberInfo::Scissor)
 | |
|       continue;
 | |
|     if (Member->Offset < Tail) {
 | |
|       assert(Prior->Kind == MemberInfo::Field &&
 | |
|              "Only storage fields have tail padding!");
 | |
|       if (!Prior->FD || Prior->FD->isBitField())
 | |
|         Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
 | |
|             cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
 | |
|       else {
 | |
|         assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
 | |
|                "should not have reused this field's tail padding");
 | |
|         Prior->Data = getByteArrayType(
 | |
|             Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).first);
 | |
|       }
 | |
|     }
 | |
|     if (Member->Data)
 | |
|       Prior = Member;
 | |
|     Tail = Prior->Offset + getSize(Prior->Data);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::determinePacked(bool NVBaseType) {
 | |
|   if (Packed)
 | |
|     return;
 | |
|   CharUnits Alignment = CharUnits::One();
 | |
|   CharUnits NVAlignment = CharUnits::One();
 | |
|   CharUnits NVSize =
 | |
|       !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
 | |
|   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
 | |
|                                                MemberEnd = Members.end();
 | |
|        Member != MemberEnd; ++Member) {
 | |
|     if (!Member->Data)
 | |
|       continue;
 | |
|     // If any member falls at an offset that it not a multiple of its alignment,
 | |
|     // then the entire record must be packed.
 | |
|     if (Member->Offset % getAlignment(Member->Data))
 | |
|       Packed = true;
 | |
|     if (Member->Offset < NVSize)
 | |
|       NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
 | |
|     Alignment = std::max(Alignment, getAlignment(Member->Data));
 | |
|   }
 | |
|   // If the size of the record (the capstone's offset) is not a multiple of the
 | |
|   // record's alignment, it must be packed.
 | |
|   if (Members.back().Offset % Alignment)
 | |
|     Packed = true;
 | |
|   // If the non-virtual sub-object is not a multiple of the non-virtual
 | |
|   // sub-object's alignment, it must be packed.  We cannot have a packed
 | |
|   // non-virtual sub-object and an unpacked complete object or vise versa.
 | |
|   if (NVSize % NVAlignment)
 | |
|     Packed = true;
 | |
|   // Update the alignment of the sentinel.
 | |
|   if (!Packed)
 | |
|     Members.back().Data = getIntNType(Context.toBits(Alignment));
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::insertPadding() {
 | |
|   std::vector<std::pair<CharUnits, CharUnits> > Padding;
 | |
|   CharUnits Size = CharUnits::Zero();
 | |
|   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
 | |
|                                                MemberEnd = Members.end();
 | |
|        Member != MemberEnd; ++Member) {
 | |
|     if (!Member->Data)
 | |
|       continue;
 | |
|     CharUnits Offset = Member->Offset;
 | |
|     assert(Offset >= Size);
 | |
|     // Insert padding if we need to.
 | |
|     if (Offset !=
 | |
|         Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
 | |
|       Padding.push_back(std::make_pair(Size, Offset - Size));
 | |
|     Size = Offset + getSize(Member->Data);
 | |
|   }
 | |
|   if (Padding.empty())
 | |
|     return;
 | |
|   // Add the padding to the Members list and sort it.
 | |
|   for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
 | |
|         Pad = Padding.begin(), PadEnd = Padding.end();
 | |
|         Pad != PadEnd; ++Pad)
 | |
|     Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
 | |
|   llvm::stable_sort(Members);
 | |
| }
 | |
| 
 | |
| void CGRecordLowering::fillOutputFields() {
 | |
|   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
 | |
|                                                MemberEnd = Members.end();
 | |
|        Member != MemberEnd; ++Member) {
 | |
|     if (Member->Data)
 | |
|       FieldTypes.push_back(Member->Data);
 | |
|     if (Member->Kind == MemberInfo::Field) {
 | |
|       if (Member->FD)
 | |
|         Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
 | |
|       // A field without storage must be a bitfield.
 | |
|       if (!Member->Data)
 | |
|         setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
 | |
|     } else if (Member->Kind == MemberInfo::Base)
 | |
|       NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
 | |
|     else if (Member->Kind == MemberInfo::VBase)
 | |
|       VirtualBases[Member->RD] = FieldTypes.size() - 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
 | |
|                                         const FieldDecl *FD,
 | |
|                                         uint64_t Offset, uint64_t Size,
 | |
|                                         uint64_t StorageSize,
 | |
|                                         CharUnits StorageOffset) {
 | |
|   // This function is vestigial from CGRecordLayoutBuilder days but is still
 | |
|   // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
 | |
|   // when addressed will allow for the removal of this function.
 | |
|   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
 | |
|   CharUnits TypeSizeInBytes =
 | |
|     CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
 | |
|   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
 | |
| 
 | |
|   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
 | |
| 
 | |
|   if (Size > TypeSizeInBits) {
 | |
|     // We have a wide bit-field. The extra bits are only used for padding, so
 | |
|     // if we have a bitfield of type T, with size N:
 | |
|     //
 | |
|     // T t : N;
 | |
|     //
 | |
|     // We can just assume that it's:
 | |
|     //
 | |
|     // T t : sizeof(T);
 | |
|     //
 | |
|     Size = TypeSizeInBits;
 | |
|   }
 | |
| 
 | |
|   // Reverse the bit offsets for big endian machines. Because we represent
 | |
|   // a bitfield as a single large integer load, we can imagine the bits
 | |
|   // counting from the most-significant-bit instead of the
 | |
|   // least-significant-bit.
 | |
|   if (Types.getDataLayout().isBigEndian()) {
 | |
|     Offset = StorageSize - (Offset + Size);
 | |
|   }
 | |
| 
 | |
|   return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
 | |
| }
 | |
| 
 | |
| CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
 | |
|                                                   llvm::StructType *Ty) {
 | |
|   CGRecordLowering Builder(*this, D, /*Packed=*/false);
 | |
| 
 | |
|   Builder.lower(/*NonVirtualBaseType=*/false);
 | |
| 
 | |
|   // If we're in C++, compute the base subobject type.
 | |
|   llvm::StructType *BaseTy = nullptr;
 | |
|   if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
 | |
|     BaseTy = Ty;
 | |
|     if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
 | |
|       CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
 | |
|       BaseBuilder.lower(/*NonVirtualBaseType=*/true);
 | |
|       BaseTy = llvm::StructType::create(
 | |
|           getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
 | |
|       addRecordTypeName(D, BaseTy, ".base");
 | |
|       // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
 | |
|       // on both of them with the same index.
 | |
|       assert(Builder.Packed == BaseBuilder.Packed &&
 | |
|              "Non-virtual and complete types must agree on packedness");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fill in the struct *after* computing the base type.  Filling in the body
 | |
|   // signifies that the type is no longer opaque and record layout is complete,
 | |
|   // but we may need to recursively layout D while laying D out as a base type.
 | |
|   Ty->setBody(Builder.FieldTypes, Builder.Packed);
 | |
| 
 | |
|   CGRecordLayout *RL =
 | |
|     new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
 | |
|                         Builder.IsZeroInitializableAsBase);
 | |
| 
 | |
|   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
 | |
|   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
 | |
| 
 | |
|   // Add all the field numbers.
 | |
|   RL->FieldInfo.swap(Builder.Fields);
 | |
| 
 | |
|   // Add bitfield info.
 | |
|   RL->BitFields.swap(Builder.BitFields);
 | |
| 
 | |
|   // Dump the layout, if requested.
 | |
|   if (getContext().getLangOpts().DumpRecordLayouts) {
 | |
|     llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
 | |
|     llvm::outs() << "Record: ";
 | |
|     D->dump(llvm::outs());
 | |
|     llvm::outs() << "\nLayout: ";
 | |
|     RL->print(llvm::outs());
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Verify that the computed LLVM struct size matches the AST layout size.
 | |
|   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
 | |
| 
 | |
|   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
 | |
|   assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
 | |
|          "Type size mismatch!");
 | |
| 
 | |
|   if (BaseTy) {
 | |
|     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
 | |
| 
 | |
|     uint64_t AlignedNonVirtualTypeSizeInBits =
 | |
|       getContext().toBits(NonVirtualSize);
 | |
| 
 | |
|     assert(AlignedNonVirtualTypeSizeInBits ==
 | |
|            getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
 | |
|            "Type size mismatch!");
 | |
|   }
 | |
| 
 | |
|   // Verify that the LLVM and AST field offsets agree.
 | |
|   llvm::StructType *ST = RL->getLLVMType();
 | |
|   const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
 | |
| 
 | |
|   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
 | |
|   RecordDecl::field_iterator it = D->field_begin();
 | |
|   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
 | |
|     const FieldDecl *FD = *it;
 | |
| 
 | |
|     // Ignore zero-sized fields.
 | |
|     if (FD->isZeroSize(getContext()))
 | |
|       continue;
 | |
| 
 | |
|     // For non-bit-fields, just check that the LLVM struct offset matches the
 | |
|     // AST offset.
 | |
|     if (!FD->isBitField()) {
 | |
|       unsigned FieldNo = RL->getLLVMFieldNo(FD);
 | |
|       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
 | |
|              "Invalid field offset!");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Ignore unnamed bit-fields.
 | |
|     if (!FD->getDeclName())
 | |
|       continue;
 | |
| 
 | |
|     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
 | |
|     llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
 | |
| 
 | |
|     // Unions have overlapping elements dictating their layout, but for
 | |
|     // non-unions we can verify that this section of the layout is the exact
 | |
|     // expected size.
 | |
|     if (D->isUnion()) {
 | |
|       // For unions we verify that the start is zero and the size
 | |
|       // is in-bounds. However, on BE systems, the offset may be non-zero, but
 | |
|       // the size + offset should match the storage size in that case as it
 | |
|       // "starts" at the back.
 | |
|       if (getDataLayout().isBigEndian())
 | |
|         assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
 | |
|                Info.StorageSize &&
 | |
|                "Big endian union bitfield does not end at the back");
 | |
|       else
 | |
|         assert(Info.Offset == 0 &&
 | |
|                "Little endian union bitfield with a non-zero offset");
 | |
|       assert(Info.StorageSize <= SL->getSizeInBits() &&
 | |
|              "Union not large enough for bitfield storage");
 | |
|     } else {
 | |
|       assert(Info.StorageSize ==
 | |
|              getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
 | |
|              "Storage size does not match the element type size");
 | |
|     }
 | |
|     assert(Info.Size > 0 && "Empty bitfield!");
 | |
|     assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
 | |
|            "Bitfield outside of its allocated storage");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return RL;
 | |
| }
 | |
| 
 | |
| void CGRecordLayout::print(raw_ostream &OS) const {
 | |
|   OS << "<CGRecordLayout\n";
 | |
|   OS << "  LLVMType:" << *CompleteObjectType << "\n";
 | |
|   if (BaseSubobjectType)
 | |
|     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
 | |
|   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
 | |
|   OS << "  BitFields:[\n";
 | |
| 
 | |
|   // Print bit-field infos in declaration order.
 | |
|   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
 | |
|   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
 | |
|          it = BitFields.begin(), ie = BitFields.end();
 | |
|        it != ie; ++it) {
 | |
|     const RecordDecl *RD = it->first->getParent();
 | |
|     unsigned Index = 0;
 | |
|     for (RecordDecl::field_iterator
 | |
|            it2 = RD->field_begin(); *it2 != it->first; ++it2)
 | |
|       ++Index;
 | |
|     BFIs.push_back(std::make_pair(Index, &it->second));
 | |
|   }
 | |
|   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
 | |
|   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
 | |
|     OS.indent(4);
 | |
|     BFIs[i].second->print(OS);
 | |
|     OS << "\n";
 | |
|   }
 | |
| 
 | |
|   OS << "]>\n";
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
 | |
|   print(llvm::errs());
 | |
| }
 | |
| 
 | |
| void CGBitFieldInfo::print(raw_ostream &OS) const {
 | |
|   OS << "<CGBitFieldInfo"
 | |
|      << " Offset:" << Offset
 | |
|      << " Size:" << Size
 | |
|      << " IsSigned:" << IsSigned
 | |
|      << " StorageSize:" << StorageSize
 | |
|      << " StorageOffset:" << StorageOffset.getQuantity() << ">";
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
 | |
|   print(llvm::errs());
 | |
| }
 |