forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1146 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1146 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code dealing with C++ code generation of virtual tables.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CGCXXABI.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/Basic/CodeGenOptions.h"
 | |
| #include "clang/CodeGen/CGFunctionInfo.h"
 | |
| #include "clang/CodeGen/ConstantInitBuilder.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include <algorithm>
 | |
| #include <cstdio>
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
 | |
|     : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
 | |
| 
 | |
| llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
 | |
|                                               GlobalDecl GD) {
 | |
|   return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
 | |
|                                  /*DontDefer=*/true, /*IsThunk=*/true);
 | |
| }
 | |
| 
 | |
| static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
 | |
|                                llvm::Function *ThunkFn, bool ForVTable,
 | |
|                                GlobalDecl GD) {
 | |
|   CGM.setFunctionLinkage(GD, ThunkFn);
 | |
|   CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
 | |
|                                   !Thunk.Return.isEmpty());
 | |
| 
 | |
|   // Set the right visibility.
 | |
|   CGM.setGVProperties(ThunkFn, GD);
 | |
| 
 | |
|   if (!CGM.getCXXABI().exportThunk()) {
 | |
|     ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
 | |
|     ThunkFn->setDSOLocal(true);
 | |
|   }
 | |
| 
 | |
|   if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
 | |
|     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
 | |
|                     const ABIArgInfo &infoR, CanQualType typeR) {
 | |
|   return (infoL.getKind() == infoR.getKind() &&
 | |
|           (typeL == typeR ||
 | |
|            (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
 | |
|            (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
 | |
|                                       QualType ResultType, RValue RV,
 | |
|                                       const ThunkInfo &Thunk) {
 | |
|   // Emit the return adjustment.
 | |
|   bool NullCheckValue = !ResultType->isReferenceType();
 | |
| 
 | |
|   llvm::BasicBlock *AdjustNull = nullptr;
 | |
|   llvm::BasicBlock *AdjustNotNull = nullptr;
 | |
|   llvm::BasicBlock *AdjustEnd = nullptr;
 | |
| 
 | |
|   llvm::Value *ReturnValue = RV.getScalarVal();
 | |
| 
 | |
|   if (NullCheckValue) {
 | |
|     AdjustNull = CGF.createBasicBlock("adjust.null");
 | |
|     AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
 | |
|     AdjustEnd = CGF.createBasicBlock("adjust.end");
 | |
| 
 | |
|     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
 | |
|     CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
 | |
|     CGF.EmitBlock(AdjustNotNull);
 | |
|   }
 | |
| 
 | |
|   auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
 | |
|   auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
 | |
|   ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
 | |
|                                             Address(ReturnValue, ClassAlign),
 | |
|                                             Thunk.Return);
 | |
| 
 | |
|   if (NullCheckValue) {
 | |
|     CGF.Builder.CreateBr(AdjustEnd);
 | |
|     CGF.EmitBlock(AdjustNull);
 | |
|     CGF.Builder.CreateBr(AdjustEnd);
 | |
|     CGF.EmitBlock(AdjustEnd);
 | |
| 
 | |
|     llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
 | |
|     PHI->addIncoming(ReturnValue, AdjustNotNull);
 | |
|     PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
 | |
|                      AdjustNull);
 | |
|     ReturnValue = PHI;
 | |
|   }
 | |
| 
 | |
|   return RValue::get(ReturnValue);
 | |
| }
 | |
| 
 | |
| /// This function clones a function's DISubprogram node and enters it into
 | |
| /// a value map with the intent that the map can be utilized by the cloner
 | |
| /// to short-circuit Metadata node mapping.
 | |
| /// Furthermore, the function resolves any DILocalVariable nodes referenced
 | |
| /// by dbg.value intrinsics so they can be properly mapped during cloning.
 | |
| static void resolveTopLevelMetadata(llvm::Function *Fn,
 | |
|                                     llvm::ValueToValueMapTy &VMap) {
 | |
|   // Clone the DISubprogram node and put it into the Value map.
 | |
|   auto *DIS = Fn->getSubprogram();
 | |
|   if (!DIS)
 | |
|     return;
 | |
|   auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
 | |
|   VMap.MD()[DIS].reset(NewDIS);
 | |
| 
 | |
|   // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
 | |
|   // they are referencing.
 | |
|   for (auto &BB : Fn->getBasicBlockList()) {
 | |
|     for (auto &I : BB) {
 | |
|       if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
 | |
|         auto *DILocal = DII->getVariable();
 | |
|         if (!DILocal->isResolved())
 | |
|           DILocal->resolve();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This function does roughly the same thing as GenerateThunk, but in a
 | |
| // very different way, so that va_start and va_end work correctly.
 | |
| // FIXME: This function assumes "this" is the first non-sret LLVM argument of
 | |
| //        a function, and that there is an alloca built in the entry block
 | |
| //        for all accesses to "this".
 | |
| // FIXME: This function assumes there is only one "ret" statement per function.
 | |
| // FIXME: Cloning isn't correct in the presence of indirect goto!
 | |
| // FIXME: This implementation of thunks bloats codesize by duplicating the
 | |
| //        function definition.  There are alternatives:
 | |
| //        1. Add some sort of stub support to LLVM for cases where we can
 | |
| //           do a this adjustment, then a sibcall.
 | |
| //        2. We could transform the definition to take a va_list instead of an
 | |
| //           actual variable argument list, then have the thunks (including a
 | |
| //           no-op thunk for the regular definition) call va_start/va_end.
 | |
| //           There's a bit of per-call overhead for this solution, but it's
 | |
| //           better for codesize if the definition is long.
 | |
| llvm::Function *
 | |
| CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
 | |
|                                       const CGFunctionInfo &FnInfo,
 | |
|                                       GlobalDecl GD, const ThunkInfo &Thunk) {
 | |
|   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | |
|   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
 | |
|   QualType ResultType = FPT->getReturnType();
 | |
| 
 | |
|   // Get the original function
 | |
|   assert(FnInfo.isVariadic());
 | |
|   llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
 | |
|   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
 | |
|   llvm::Function *BaseFn = cast<llvm::Function>(Callee);
 | |
| 
 | |
|   // Cloning can't work if we don't have a definition. The Microsoft ABI may
 | |
|   // require thunks when a definition is not available. Emit an error in these
 | |
|   // cases.
 | |
|   if (!MD->isDefined()) {
 | |
|     CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
 | |
|     return Fn;
 | |
|   }
 | |
|   assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
 | |
| 
 | |
|   // Clone to thunk.
 | |
|   llvm::ValueToValueMapTy VMap;
 | |
| 
 | |
|   // We are cloning a function while some Metadata nodes are still unresolved.
 | |
|   // Ensure that the value mapper does not encounter any of them.
 | |
|   resolveTopLevelMetadata(BaseFn, VMap);
 | |
|   llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
 | |
|   Fn->replaceAllUsesWith(NewFn);
 | |
|   NewFn->takeName(Fn);
 | |
|   Fn->eraseFromParent();
 | |
|   Fn = NewFn;
 | |
| 
 | |
|   // "Initialize" CGF (minimally).
 | |
|   CurFn = Fn;
 | |
| 
 | |
|   // Get the "this" value
 | |
|   llvm::Function::arg_iterator AI = Fn->arg_begin();
 | |
|   if (CGM.ReturnTypeUsesSRet(FnInfo))
 | |
|     ++AI;
 | |
| 
 | |
|   // Find the first store of "this", which will be to the alloca associated
 | |
|   // with "this".
 | |
|   Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
 | |
|   llvm::BasicBlock *EntryBB = &Fn->front();
 | |
|   llvm::BasicBlock::iterator ThisStore =
 | |
|       std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
 | |
|         return isa<llvm::StoreInst>(I) &&
 | |
|                I.getOperand(0) == ThisPtr.getPointer();
 | |
|       });
 | |
|   assert(ThisStore != EntryBB->end() &&
 | |
|          "Store of this should be in entry block?");
 | |
|   // Adjust "this", if necessary.
 | |
|   Builder.SetInsertPoint(&*ThisStore);
 | |
|   llvm::Value *AdjustedThisPtr =
 | |
|       CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
 | |
|   AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
 | |
|                                           ThisStore->getOperand(0)->getType());
 | |
|   ThisStore->setOperand(0, AdjustedThisPtr);
 | |
| 
 | |
|   if (!Thunk.Return.isEmpty()) {
 | |
|     // Fix up the returned value, if necessary.
 | |
|     for (llvm::BasicBlock &BB : *Fn) {
 | |
|       llvm::Instruction *T = BB.getTerminator();
 | |
|       if (isa<llvm::ReturnInst>(T)) {
 | |
|         RValue RV = RValue::get(T->getOperand(0));
 | |
|         T->eraseFromParent();
 | |
|         Builder.SetInsertPoint(&BB);
 | |
|         RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
 | |
|         Builder.CreateRet(RV.getScalarVal());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Fn;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
 | |
|                                  const CGFunctionInfo &FnInfo,
 | |
|                                  bool IsUnprototyped) {
 | |
|   assert(!CurGD.getDecl() && "CurGD was already set!");
 | |
|   CurGD = GD;
 | |
|   CurFuncIsThunk = true;
 | |
| 
 | |
|   // Build FunctionArgs.
 | |
|   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | |
|   QualType ThisType = MD->getThisType();
 | |
|   QualType ResultType;
 | |
|   if (IsUnprototyped)
 | |
|     ResultType = CGM.getContext().VoidTy;
 | |
|   else if (CGM.getCXXABI().HasThisReturn(GD))
 | |
|     ResultType = ThisType;
 | |
|   else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
 | |
|     ResultType = CGM.getContext().VoidPtrTy;
 | |
|   else
 | |
|     ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
 | |
|   FunctionArgList FunctionArgs;
 | |
| 
 | |
|   // Create the implicit 'this' parameter declaration.
 | |
|   CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
 | |
| 
 | |
|   // Add the rest of the parameters, if we have a prototype to work with.
 | |
|   if (!IsUnprototyped) {
 | |
|     FunctionArgs.append(MD->param_begin(), MD->param_end());
 | |
| 
 | |
|     if (isa<CXXDestructorDecl>(MD))
 | |
|       CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
 | |
|                                                 FunctionArgs);
 | |
|   }
 | |
| 
 | |
|   // Start defining the function.
 | |
|   auto NL = ApplyDebugLocation::CreateEmpty(*this);
 | |
|   StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
 | |
|                 MD->getLocation());
 | |
|   // Create a scope with an artificial location for the body of this function.
 | |
|   auto AL = ApplyDebugLocation::CreateArtificial(*this);
 | |
| 
 | |
|   // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
 | |
|   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
 | |
|   CXXThisValue = CXXABIThisValue;
 | |
|   CurCodeDecl = MD;
 | |
|   CurFuncDecl = MD;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::FinishThunk() {
 | |
|   // Clear these to restore the invariants expected by
 | |
|   // StartFunction/FinishFunction.
 | |
|   CurCodeDecl = nullptr;
 | |
|   CurFuncDecl = nullptr;
 | |
| 
 | |
|   FinishFunction();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
 | |
|                                                 const ThunkInfo *Thunk,
 | |
|                                                 bool IsUnprototyped) {
 | |
|   assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
 | |
|          "Please use a new CGF for this thunk");
 | |
|   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
 | |
| 
 | |
|   // Adjust the 'this' pointer if necessary
 | |
|   llvm::Value *AdjustedThisPtr =
 | |
|     Thunk ? CGM.getCXXABI().performThisAdjustment(
 | |
|                           *this, LoadCXXThisAddress(), Thunk->This)
 | |
|           : LoadCXXThis();
 | |
| 
 | |
|   // If perfect forwarding is required a variadic method, a method using
 | |
|   // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
 | |
|   // thunk requires a return adjustment, since that is impossible with musttail.
 | |
|   if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
 | |
|     if (Thunk && !Thunk->Return.isEmpty()) {
 | |
|       if (IsUnprototyped)
 | |
|         CGM.ErrorUnsupported(
 | |
|             MD, "return-adjusting thunk with incomplete parameter type");
 | |
|       else if (CurFnInfo->isVariadic())
 | |
|         llvm_unreachable("shouldn't try to emit musttail return-adjusting "
 | |
|                          "thunks for variadic functions");
 | |
|       else
 | |
|         CGM.ErrorUnsupported(
 | |
|             MD, "non-trivial argument copy for return-adjusting thunk");
 | |
|     }
 | |
|     EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Start building CallArgs.
 | |
|   CallArgList CallArgs;
 | |
|   QualType ThisType = MD->getThisType();
 | |
|   CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
 | |
| 
 | |
|   if (isa<CXXDestructorDecl>(MD))
 | |
|     CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   unsigned PrefixArgs = CallArgs.size() - 1;
 | |
| #endif
 | |
|   // Add the rest of the arguments.
 | |
|   for (const ParmVarDecl *PD : MD->parameters())
 | |
|     EmitDelegateCallArg(CallArgs, PD, SourceLocation());
 | |
| 
 | |
|   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
 | |
|       CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
 | |
|   assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
 | |
|          CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
 | |
|          CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
 | |
|   assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
 | |
|          similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
 | |
|                  CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
 | |
|   assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
 | |
|   for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
 | |
|     assert(similar(CallFnInfo.arg_begin()[i].info,
 | |
|                    CallFnInfo.arg_begin()[i].type,
 | |
|                    CurFnInfo->arg_begin()[i].info,
 | |
|                    CurFnInfo->arg_begin()[i].type));
 | |
| #endif
 | |
| 
 | |
|   // Determine whether we have a return value slot to use.
 | |
|   QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
 | |
|                             ? ThisType
 | |
|                             : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
 | |
|                                   ? CGM.getContext().VoidPtrTy
 | |
|                                   : FPT->getReturnType();
 | |
|   ReturnValueSlot Slot;
 | |
|   if (!ResultType->isVoidType() &&
 | |
|       CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect)
 | |
|     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
 | |
| 
 | |
|   // Now emit our call.
 | |
|   llvm::CallBase *CallOrInvoke;
 | |
|   RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
 | |
|                        CallArgs, &CallOrInvoke);
 | |
| 
 | |
|   // Consider return adjustment if we have ThunkInfo.
 | |
|   if (Thunk && !Thunk->Return.isEmpty())
 | |
|     RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
 | |
|   else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
 | |
|     Call->setTailCallKind(llvm::CallInst::TCK_Tail);
 | |
| 
 | |
|   // Emit return.
 | |
|   if (!ResultType->isVoidType() && Slot.isNull())
 | |
|     CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
 | |
| 
 | |
|   // Disable the final ARC autorelease.
 | |
|   AutoreleaseResult = false;
 | |
| 
 | |
|   FinishThunk();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
 | |
|                                         llvm::Value *AdjustedThisPtr,
 | |
|                                         llvm::FunctionCallee Callee) {
 | |
|   // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
 | |
|   // to translate AST arguments into LLVM IR arguments.  For thunks, we know
 | |
|   // that the caller prototype more or less matches the callee prototype with
 | |
|   // the exception of 'this'.
 | |
|   SmallVector<llvm::Value *, 8> Args;
 | |
|   for (llvm::Argument &A : CurFn->args())
 | |
|     Args.push_back(&A);
 | |
| 
 | |
|   // Set the adjusted 'this' pointer.
 | |
|   const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
 | |
|   if (ThisAI.isDirect()) {
 | |
|     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
 | |
|     int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
 | |
|     llvm::Type *ThisType = Args[ThisArgNo]->getType();
 | |
|     if (ThisType != AdjustedThisPtr->getType())
 | |
|       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
 | |
|     Args[ThisArgNo] = AdjustedThisPtr;
 | |
|   } else {
 | |
|     assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
 | |
|     Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
 | |
|     llvm::Type *ThisType = ThisAddr.getElementType();
 | |
|     if (ThisType != AdjustedThisPtr->getType())
 | |
|       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
 | |
|     Builder.CreateStore(AdjustedThisPtr, ThisAddr);
 | |
|   }
 | |
| 
 | |
|   // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
 | |
|   // don't actually want to run them.
 | |
|   llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
 | |
|   Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
 | |
| 
 | |
|   // Apply the standard set of call attributes.
 | |
|   unsigned CallingConv;
 | |
|   llvm::AttributeList Attrs;
 | |
|   CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
 | |
|                              Attrs, CallingConv, /*AttrOnCallSite=*/true);
 | |
|   Call->setAttributes(Attrs);
 | |
|   Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
 | |
| 
 | |
|   if (Call->getType()->isVoidTy())
 | |
|     Builder.CreateRetVoid();
 | |
|   else
 | |
|     Builder.CreateRet(Call);
 | |
| 
 | |
|   // Finish the function to maintain CodeGenFunction invariants.
 | |
|   // FIXME: Don't emit unreachable code.
 | |
|   EmitBlock(createBasicBlock());
 | |
|   FinishFunction();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::generateThunk(llvm::Function *Fn,
 | |
|                                     const CGFunctionInfo &FnInfo, GlobalDecl GD,
 | |
|                                     const ThunkInfo &Thunk,
 | |
|                                     bool IsUnprototyped) {
 | |
|   StartThunk(Fn, GD, FnInfo, IsUnprototyped);
 | |
|   // Create a scope with an artificial location for the body of this function.
 | |
|   auto AL = ApplyDebugLocation::CreateArtificial(*this);
 | |
| 
 | |
|   // Get our callee. Use a placeholder type if this method is unprototyped so
 | |
|   // that CodeGenModule doesn't try to set attributes.
 | |
|   llvm::Type *Ty;
 | |
|   if (IsUnprototyped)
 | |
|     Ty = llvm::StructType::get(getLLVMContext());
 | |
|   else
 | |
|     Ty = CGM.getTypes().GetFunctionType(FnInfo);
 | |
| 
 | |
|   llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
 | |
| 
 | |
|   // Fix up the function type for an unprototyped musttail call.
 | |
|   if (IsUnprototyped)
 | |
|     Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());
 | |
| 
 | |
|   // Make the call and return the result.
 | |
|   EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
 | |
|                             &Thunk, IsUnprototyped);
 | |
| }
 | |
| 
 | |
| static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
 | |
|                                   bool IsUnprototyped, bool ForVTable) {
 | |
|   // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
 | |
|   // provide thunks for us.
 | |
|   if (CGM.getTarget().getCXXABI().isMicrosoft())
 | |
|     return true;
 | |
| 
 | |
|   // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
 | |
|   // definitions of the main method. Therefore, emitting thunks with the vtable
 | |
|   // is purely an optimization. Emit the thunk if optimizations are enabled and
 | |
|   // all of the parameter types are complete.
 | |
|   if (ForVTable)
 | |
|     return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
 | |
| 
 | |
|   // Always emit thunks along with the method definition.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
 | |
|                                                const ThunkInfo &TI,
 | |
|                                                bool ForVTable) {
 | |
|   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | |
| 
 | |
|   // First, get a declaration. Compute the mangled name. Don't worry about
 | |
|   // getting the function prototype right, since we may only need this
 | |
|   // declaration to fill in a vtable slot.
 | |
|   SmallString<256> Name;
 | |
|   MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
 | |
|   llvm::raw_svector_ostream Out(Name);
 | |
|   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
 | |
|     MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
 | |
|   else
 | |
|     MCtx.mangleThunk(MD, TI, Out);
 | |
|   llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
 | |
|   llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
 | |
| 
 | |
|   // If we don't need to emit a definition, return this declaration as is.
 | |
|   bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
 | |
|       MD->getType()->castAs<FunctionType>());
 | |
|   if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
 | |
|     return Thunk;
 | |
| 
 | |
|   // Arrange a function prototype appropriate for a function definition. In some
 | |
|   // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
 | |
|   const CGFunctionInfo &FnInfo =
 | |
|       IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
 | |
|                      : CGM.getTypes().arrangeGlobalDeclaration(GD);
 | |
|   llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
 | |
| 
 | |
|   // If the type of the underlying GlobalValue is wrong, we'll have to replace
 | |
|   // it. It should be a declaration.
 | |
|   llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
 | |
|   if (ThunkFn->getFunctionType() != ThunkFnTy) {
 | |
|     llvm::GlobalValue *OldThunkFn = ThunkFn;
 | |
| 
 | |
|     assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
 | |
| 
 | |
|     // Remove the name from the old thunk function and get a new thunk.
 | |
|     OldThunkFn->setName(StringRef());
 | |
|     ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
 | |
|                                      Name.str(), &CGM.getModule());
 | |
|     CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
 | |
| 
 | |
|     // If needed, replace the old thunk with a bitcast.
 | |
|     if (!OldThunkFn->use_empty()) {
 | |
|       llvm::Constant *NewPtrForOldDecl =
 | |
|           llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
 | |
|       OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
 | |
|     }
 | |
| 
 | |
|     // Remove the old thunk.
 | |
|     OldThunkFn->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
 | |
|   bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
 | |
| 
 | |
|   if (!ThunkFn->isDeclaration()) {
 | |
|     if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
 | |
|       // There is already a thunk emitted for this function, do nothing.
 | |
|       return ThunkFn;
 | |
|     }
 | |
| 
 | |
|     setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
 | |
|     return ThunkFn;
 | |
|   }
 | |
| 
 | |
|   // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
 | |
|   // that the return type is meaningless. These thunks can be used to call
 | |
|   // functions with differing return types, and the caller is required to cast
 | |
|   // the prototype appropriately to extract the correct value.
 | |
|   if (IsUnprototyped)
 | |
|     ThunkFn->addFnAttr("thunk");
 | |
| 
 | |
|   CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
 | |
| 
 | |
|   // Thunks for variadic methods are special because in general variadic
 | |
|   // arguments cannot be perferctly forwarded. In the general case, clang
 | |
|   // implements such thunks by cloning the original function body. However, for
 | |
|   // thunks with no return adjustment on targets that support musttail, we can
 | |
|   // use musttail to perfectly forward the variadic arguments.
 | |
|   bool ShouldCloneVarArgs = false;
 | |
|   if (!IsUnprototyped && ThunkFn->isVarArg()) {
 | |
|     ShouldCloneVarArgs = true;
 | |
|     if (TI.Return.isEmpty()) {
 | |
|       switch (CGM.getTriple().getArch()) {
 | |
|       case llvm::Triple::x86_64:
 | |
|       case llvm::Triple::x86:
 | |
|       case llvm::Triple::aarch64:
 | |
|         ShouldCloneVarArgs = false;
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ShouldCloneVarArgs) {
 | |
|     if (UseAvailableExternallyLinkage)
 | |
|       return ThunkFn;
 | |
|     ThunkFn =
 | |
|         CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
 | |
|   } else {
 | |
|     // Normal thunk body generation.
 | |
|     CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
 | |
|   }
 | |
| 
 | |
|   setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
 | |
|   return ThunkFn;
 | |
| }
 | |
| 
 | |
| void CodeGenVTables::EmitThunks(GlobalDecl GD) {
 | |
|   const CXXMethodDecl *MD =
 | |
|     cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
 | |
| 
 | |
|   // We don't need to generate thunks for the base destructor.
 | |
|   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
 | |
|     return;
 | |
| 
 | |
|   const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
 | |
|       VTContext->getThunkInfo(GD);
 | |
| 
 | |
|   if (!ThunkInfoVector)
 | |
|     return;
 | |
| 
 | |
|   for (const ThunkInfo& Thunk : *ThunkInfoVector)
 | |
|     maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
 | |
| }
 | |
| 
 | |
| void CodeGenVTables::addVTableComponent(
 | |
|     ConstantArrayBuilder &builder, const VTableLayout &layout,
 | |
|     unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) {
 | |
|   auto &component = layout.vtable_components()[idx];
 | |
| 
 | |
|   auto addOffsetConstant = [&](CharUnits offset) {
 | |
|     builder.add(llvm::ConstantExpr::getIntToPtr(
 | |
|         llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
 | |
|         CGM.Int8PtrTy));
 | |
|   };
 | |
| 
 | |
|   switch (component.getKind()) {
 | |
|   case VTableComponent::CK_VCallOffset:
 | |
|     return addOffsetConstant(component.getVCallOffset());
 | |
| 
 | |
|   case VTableComponent::CK_VBaseOffset:
 | |
|     return addOffsetConstant(component.getVBaseOffset());
 | |
| 
 | |
|   case VTableComponent::CK_OffsetToTop:
 | |
|     return addOffsetConstant(component.getOffsetToTop());
 | |
| 
 | |
|   case VTableComponent::CK_RTTI:
 | |
|     return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy));
 | |
| 
 | |
|   case VTableComponent::CK_FunctionPointer:
 | |
|   case VTableComponent::CK_CompleteDtorPointer:
 | |
|   case VTableComponent::CK_DeletingDtorPointer: {
 | |
|     GlobalDecl GD;
 | |
| 
 | |
|     // Get the right global decl.
 | |
|     switch (component.getKind()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unexpected vtable component kind");
 | |
|     case VTableComponent::CK_FunctionPointer:
 | |
|       GD = component.getFunctionDecl();
 | |
|       break;
 | |
|     case VTableComponent::CK_CompleteDtorPointer:
 | |
|       GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete);
 | |
|       break;
 | |
|     case VTableComponent::CK_DeletingDtorPointer:
 | |
|       GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (CGM.getLangOpts().CUDA) {
 | |
|       // Emit NULL for methods we can't codegen on this
 | |
|       // side. Otherwise we'd end up with vtable with unresolved
 | |
|       // references.
 | |
|       const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | |
|       // OK on device side: functions w/ __device__ attribute
 | |
|       // OK on host side: anything except __device__-only functions.
 | |
|       bool CanEmitMethod =
 | |
|           CGM.getLangOpts().CUDAIsDevice
 | |
|               ? MD->hasAttr<CUDADeviceAttr>()
 | |
|               : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
 | |
|       if (!CanEmitMethod)
 | |
|         return builder.addNullPointer(CGM.Int8PtrTy);
 | |
|       // Method is acceptable, continue processing as usual.
 | |
|     }
 | |
| 
 | |
|     auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
 | |
|       // For NVPTX devices in OpenMP emit special functon as null pointers,
 | |
|       // otherwise linking ends up with unresolved references.
 | |
|       if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice &&
 | |
|           CGM.getTriple().isNVPTX())
 | |
|         return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
 | |
|       llvm::FunctionType *fnTy =
 | |
|           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
 | |
|       llvm::Constant *fn = cast<llvm::Constant>(
 | |
|           CGM.CreateRuntimeFunction(fnTy, name).getCallee());
 | |
|       if (auto f = dyn_cast<llvm::Function>(fn))
 | |
|         f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | |
|       return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy);
 | |
|     };
 | |
| 
 | |
|     llvm::Constant *fnPtr;
 | |
| 
 | |
|     // Pure virtual member functions.
 | |
|     if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
 | |
|       if (!PureVirtualFn)
 | |
|         PureVirtualFn =
 | |
|           getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
 | |
|       fnPtr = PureVirtualFn;
 | |
| 
 | |
|     // Deleted virtual member functions.
 | |
|     } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
 | |
|       if (!DeletedVirtualFn)
 | |
|         DeletedVirtualFn =
 | |
|           getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
 | |
|       fnPtr = DeletedVirtualFn;
 | |
| 
 | |
|     // Thunks.
 | |
|     } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
 | |
|                layout.vtable_thunks()[nextVTableThunkIndex].first == idx) {
 | |
|       auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
 | |
| 
 | |
|       nextVTableThunkIndex++;
 | |
|       fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
 | |
| 
 | |
|     // Otherwise we can use the method definition directly.
 | |
|     } else {
 | |
|       llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
 | |
|       fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
 | |
|     }
 | |
| 
 | |
|     fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy);
 | |
|     builder.add(fnPtr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case VTableComponent::CK_UnusedFunctionPointer:
 | |
|     return builder.addNullPointer(CGM.Int8PtrTy);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unexpected vtable component kind");
 | |
| }
 | |
| 
 | |
| llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
 | |
|   SmallVector<llvm::Type *, 4> tys;
 | |
|   for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) {
 | |
|     tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i)));
 | |
|   }
 | |
| 
 | |
|   return llvm::StructType::get(CGM.getLLVMContext(), tys);
 | |
| }
 | |
| 
 | |
| void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
 | |
|                                              const VTableLayout &layout,
 | |
|                                              llvm::Constant *rtti) {
 | |
|   unsigned nextVTableThunkIndex = 0;
 | |
|   for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) {
 | |
|     auto vtableElem = builder.beginArray(CGM.Int8PtrTy);
 | |
|     size_t thisIndex = layout.getVTableOffset(i);
 | |
|     size_t nextIndex = thisIndex + layout.getVTableSize(i);
 | |
|     for (unsigned i = thisIndex; i != nextIndex; ++i) {
 | |
|       addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex);
 | |
|     }
 | |
|     vtableElem.finishAndAddTo(builder);
 | |
|   }
 | |
| }
 | |
| 
 | |
| llvm::GlobalVariable *
 | |
| CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
 | |
|                                       const BaseSubobject &Base,
 | |
|                                       bool BaseIsVirtual,
 | |
|                                    llvm::GlobalVariable::LinkageTypes Linkage,
 | |
|                                       VTableAddressPointsMapTy& AddressPoints) {
 | |
|   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
 | |
|     DI->completeClassData(Base.getBase());
 | |
| 
 | |
|   std::unique_ptr<VTableLayout> VTLayout(
 | |
|       getItaniumVTableContext().createConstructionVTableLayout(
 | |
|           Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
 | |
| 
 | |
|   // Add the address points.
 | |
|   AddressPoints = VTLayout->getAddressPoints();
 | |
| 
 | |
|   // Get the mangled construction vtable name.
 | |
|   SmallString<256> OutName;
 | |
|   llvm::raw_svector_ostream Out(OutName);
 | |
|   cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
 | |
|       .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
 | |
|                            Base.getBase(), Out);
 | |
|   StringRef Name = OutName.str();
 | |
| 
 | |
|   llvm::Type *VTType = getVTableType(*VTLayout);
 | |
| 
 | |
|   // Construction vtable symbols are not part of the Itanium ABI, so we cannot
 | |
|   // guarantee that they actually will be available externally. Instead, when
 | |
|   // emitting an available_externally VTT, we provide references to an internal
 | |
|   // linkage construction vtable. The ABI only requires complete-object vtables
 | |
|   // to be the same for all instances of a type, not construction vtables.
 | |
|   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
 | |
|     Linkage = llvm::GlobalVariable::InternalLinkage;
 | |
| 
 | |
|   unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType);
 | |
| 
 | |
|   // Create the variable that will hold the construction vtable.
 | |
|   llvm::GlobalVariable *VTable =
 | |
|       CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
 | |
| 
 | |
|   // V-tables are always unnamed_addr.
 | |
|   VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | |
| 
 | |
|   llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
 | |
|       CGM.getContext().getTagDeclType(Base.getBase()));
 | |
| 
 | |
|   // Create and set the initializer.
 | |
|   ConstantInitBuilder builder(CGM);
 | |
|   auto components = builder.beginStruct();
 | |
|   createVTableInitializer(components, *VTLayout, RTTI);
 | |
|   components.finishAndSetAsInitializer(VTable);
 | |
| 
 | |
|   // Set properties only after the initializer has been set to ensure that the
 | |
|   // GV is treated as definition and not declaration.
 | |
|   assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
 | |
|   CGM.setGVProperties(VTable, RD);
 | |
| 
 | |
|   CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
 | |
| 
 | |
|   return VTable;
 | |
| }
 | |
| 
 | |
| static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
 | |
|                                                 const CXXRecordDecl *RD) {
 | |
|   return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
 | |
|          CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
 | |
| }
 | |
| 
 | |
| /// Compute the required linkage of the vtable for the given class.
 | |
| ///
 | |
| /// Note that we only call this at the end of the translation unit.
 | |
| llvm::GlobalVariable::LinkageTypes
 | |
| CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
 | |
|   if (!RD->isExternallyVisible())
 | |
|     return llvm::GlobalVariable::InternalLinkage;
 | |
| 
 | |
|   // We're at the end of the translation unit, so the current key
 | |
|   // function is fully correct.
 | |
|   const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
 | |
|   if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
 | |
|     // If this class has a key function, use that to determine the
 | |
|     // linkage of the vtable.
 | |
|     const FunctionDecl *def = nullptr;
 | |
|     if (keyFunction->hasBody(def))
 | |
|       keyFunction = cast<CXXMethodDecl>(def);
 | |
| 
 | |
|     switch (keyFunction->getTemplateSpecializationKind()) {
 | |
|       case TSK_Undeclared:
 | |
|       case TSK_ExplicitSpecialization:
 | |
|         assert((def || CodeGenOpts.OptimizationLevel > 0 ||
 | |
|                 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) &&
 | |
|                "Shouldn't query vtable linkage without key function, "
 | |
|                "optimizations, or debug info");
 | |
|         if (!def && CodeGenOpts.OptimizationLevel > 0)
 | |
|           return llvm::GlobalVariable::AvailableExternallyLinkage;
 | |
| 
 | |
|         if (keyFunction->isInlined())
 | |
|           return !Context.getLangOpts().AppleKext ?
 | |
|                    llvm::GlobalVariable::LinkOnceODRLinkage :
 | |
|                    llvm::Function::InternalLinkage;
 | |
| 
 | |
|         return llvm::GlobalVariable::ExternalLinkage;
 | |
| 
 | |
|       case TSK_ImplicitInstantiation:
 | |
|         return !Context.getLangOpts().AppleKext ?
 | |
|                  llvm::GlobalVariable::LinkOnceODRLinkage :
 | |
|                  llvm::Function::InternalLinkage;
 | |
| 
 | |
|       case TSK_ExplicitInstantiationDefinition:
 | |
|         return !Context.getLangOpts().AppleKext ?
 | |
|                  llvm::GlobalVariable::WeakODRLinkage :
 | |
|                  llvm::Function::InternalLinkage;
 | |
| 
 | |
|       case TSK_ExplicitInstantiationDeclaration:
 | |
|         llvm_unreachable("Should not have been asked to emit this");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // -fapple-kext mode does not support weak linkage, so we must use
 | |
|   // internal linkage.
 | |
|   if (Context.getLangOpts().AppleKext)
 | |
|     return llvm::Function::InternalLinkage;
 | |
| 
 | |
|   llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
 | |
|       llvm::GlobalValue::LinkOnceODRLinkage;
 | |
|   llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
 | |
|       llvm::GlobalValue::WeakODRLinkage;
 | |
|   if (RD->hasAttr<DLLExportAttr>()) {
 | |
|     // Cannot discard exported vtables.
 | |
|     DiscardableODRLinkage = NonDiscardableODRLinkage;
 | |
|   } else if (RD->hasAttr<DLLImportAttr>()) {
 | |
|     // Imported vtables are available externally.
 | |
|     DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
 | |
|     NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
 | |
|   }
 | |
| 
 | |
|   switch (RD->getTemplateSpecializationKind()) {
 | |
|     case TSK_Undeclared:
 | |
|     case TSK_ExplicitSpecialization:
 | |
|     case TSK_ImplicitInstantiation:
 | |
|       return DiscardableODRLinkage;
 | |
| 
 | |
|     case TSK_ExplicitInstantiationDeclaration:
 | |
|       // Explicit instantiations in MSVC do not provide vtables, so we must emit
 | |
|       // our own.
 | |
|       if (getTarget().getCXXABI().isMicrosoft())
 | |
|         return DiscardableODRLinkage;
 | |
|       return shouldEmitAvailableExternallyVTable(*this, RD)
 | |
|                  ? llvm::GlobalVariable::AvailableExternallyLinkage
 | |
|                  : llvm::GlobalVariable::ExternalLinkage;
 | |
| 
 | |
|     case TSK_ExplicitInstantiationDefinition:
 | |
|       return NonDiscardableODRLinkage;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid TemplateSpecializationKind!");
 | |
| }
 | |
| 
 | |
| /// This is a callback from Sema to tell us that a particular vtable is
 | |
| /// required to be emitted in this translation unit.
 | |
| ///
 | |
| /// This is only called for vtables that _must_ be emitted (mainly due to key
 | |
| /// functions).  For weak vtables, CodeGen tracks when they are needed and
 | |
| /// emits them as-needed.
 | |
| void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
 | |
|   VTables.GenerateClassData(theClass);
 | |
| }
 | |
| 
 | |
| void
 | |
| CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
 | |
|   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
 | |
|     DI->completeClassData(RD);
 | |
| 
 | |
|   if (RD->getNumVBases())
 | |
|     CGM.getCXXABI().emitVirtualInheritanceTables(RD);
 | |
| 
 | |
|   CGM.getCXXABI().emitVTableDefinitions(*this, RD);
 | |
| }
 | |
| 
 | |
| /// At this point in the translation unit, does it appear that can we
 | |
| /// rely on the vtable being defined elsewhere in the program?
 | |
| ///
 | |
| /// The response is really only definitive when called at the end of
 | |
| /// the translation unit.
 | |
| ///
 | |
| /// The only semantic restriction here is that the object file should
 | |
| /// not contain a vtable definition when that vtable is defined
 | |
| /// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
 | |
| /// vtables when unnecessary.
 | |
| bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
 | |
|   assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
 | |
| 
 | |
|   // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
 | |
|   // emit them even if there is an explicit template instantiation.
 | |
|   if (CGM.getTarget().getCXXABI().isMicrosoft())
 | |
|     return false;
 | |
| 
 | |
|   // If we have an explicit instantiation declaration (and not a
 | |
|   // definition), the vtable is defined elsewhere.
 | |
|   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
 | |
|   if (TSK == TSK_ExplicitInstantiationDeclaration)
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise, if the class is an instantiated template, the
 | |
|   // vtable must be defined here.
 | |
|   if (TSK == TSK_ImplicitInstantiation ||
 | |
|       TSK == TSK_ExplicitInstantiationDefinition)
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, if the class doesn't have a key function (possibly
 | |
|   // anymore), the vtable must be defined here.
 | |
|   const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
 | |
|   if (!keyFunction)
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, if we don't have a definition of the key function, the
 | |
|   // vtable must be defined somewhere else.
 | |
|   return !keyFunction->hasBody();
 | |
| }
 | |
| 
 | |
| /// Given that we're currently at the end of the translation unit, and
 | |
| /// we've emitted a reference to the vtable for this class, should
 | |
| /// we define that vtable?
 | |
| static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
 | |
|                                                    const CXXRecordDecl *RD) {
 | |
|   // If vtable is internal then it has to be done.
 | |
|   if (!CGM.getVTables().isVTableExternal(RD))
 | |
|     return true;
 | |
| 
 | |
|   // If it's external then maybe we will need it as available_externally.
 | |
|   return shouldEmitAvailableExternallyVTable(CGM, RD);
 | |
| }
 | |
| 
 | |
| /// Given that at some point we emitted a reference to one or more
 | |
| /// vtables, and that we are now at the end of the translation unit,
 | |
| /// decide whether we should emit them.
 | |
| void CodeGenModule::EmitDeferredVTables() {
 | |
| #ifndef NDEBUG
 | |
|   // Remember the size of DeferredVTables, because we're going to assume
 | |
|   // that this entire operation doesn't modify it.
 | |
|   size_t savedSize = DeferredVTables.size();
 | |
| #endif
 | |
| 
 | |
|   for (const CXXRecordDecl *RD : DeferredVTables)
 | |
|     if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
 | |
|       VTables.GenerateClassData(RD);
 | |
|     else if (shouldOpportunisticallyEmitVTables())
 | |
|       OpportunisticVTables.push_back(RD);
 | |
| 
 | |
|   assert(savedSize == DeferredVTables.size() &&
 | |
|          "deferred extra vtables during vtable emission?");
 | |
|   DeferredVTables.clear();
 | |
| }
 | |
| 
 | |
| bool CodeGenModule::HasLTOVisibilityPublicStd(const CXXRecordDecl *RD) {
 | |
|   if (!getCodeGenOpts().LTOVisibilityPublicStd)
 | |
|     return false;
 | |
| 
 | |
|   const DeclContext *DC = RD;
 | |
|   while (1) {
 | |
|     auto *D = cast<Decl>(DC);
 | |
|     DC = DC->getParent();
 | |
|     if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
 | |
|       if (auto *ND = dyn_cast<NamespaceDecl>(D))
 | |
|         if (const IdentifierInfo *II = ND->getIdentifier())
 | |
|           if (II->isStr("std") || II->isStr("stdext"))
 | |
|             return true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
 | |
|   LinkageInfo LV = RD->getLinkageAndVisibility();
 | |
|   if (!isExternallyVisible(LV.getLinkage()))
 | |
|     return true;
 | |
| 
 | |
|   if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
 | |
|     return false;
 | |
| 
 | |
|   if (getTriple().isOSBinFormatCOFF()) {
 | |
|     if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
 | |
|       return false;
 | |
|   } else {
 | |
|     if (LV.getVisibility() != HiddenVisibility)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return !HasLTOVisibilityPublicStd(RD);
 | |
| }
 | |
| 
 | |
| llvm::GlobalObject::VCallVisibility
 | |
| CodeGenModule::GetVCallVisibilityLevel(const CXXRecordDecl *RD) {
 | |
|   LinkageInfo LV = RD->getLinkageAndVisibility();
 | |
|   llvm::GlobalObject::VCallVisibility TypeVis;
 | |
|   if (!isExternallyVisible(LV.getLinkage()))
 | |
|     TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
 | |
|   else if (HasHiddenLTOVisibility(RD))
 | |
|     TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
 | |
|   else
 | |
|     TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
 | |
| 
 | |
|   for (auto B : RD->bases())
 | |
|     if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
 | |
|       TypeVis = std::min(TypeVis,
 | |
|                     GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl()));
 | |
| 
 | |
|   for (auto B : RD->vbases())
 | |
|     if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
 | |
|       TypeVis = std::min(TypeVis,
 | |
|                     GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl()));
 | |
| 
 | |
|   return TypeVis;
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
 | |
|                                            llvm::GlobalVariable *VTable,
 | |
|                                            const VTableLayout &VTLayout) {
 | |
|   if (!getCodeGenOpts().LTOUnit)
 | |
|     return;
 | |
| 
 | |
|   CharUnits PointerWidth =
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
 | |
| 
 | |
|   typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint;
 | |
|   std::vector<AddressPoint> AddressPoints;
 | |
|   for (auto &&AP : VTLayout.getAddressPoints())
 | |
|     AddressPoints.push_back(std::make_pair(
 | |
|         AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) +
 | |
|                                 AP.second.AddressPointIndex));
 | |
| 
 | |
|   // Sort the address points for determinism.
 | |
|   llvm::sort(AddressPoints, [this](const AddressPoint &AP1,
 | |
|                                    const AddressPoint &AP2) {
 | |
|     if (&AP1 == &AP2)
 | |
|       return false;
 | |
| 
 | |
|     std::string S1;
 | |
|     llvm::raw_string_ostream O1(S1);
 | |
|     getCXXABI().getMangleContext().mangleTypeName(
 | |
|         QualType(AP1.first->getTypeForDecl(), 0), O1);
 | |
|     O1.flush();
 | |
| 
 | |
|     std::string S2;
 | |
|     llvm::raw_string_ostream O2(S2);
 | |
|     getCXXABI().getMangleContext().mangleTypeName(
 | |
|         QualType(AP2.first->getTypeForDecl(), 0), O2);
 | |
|     O2.flush();
 | |
| 
 | |
|     if (S1 < S2)
 | |
|       return true;
 | |
|     if (S1 != S2)
 | |
|       return false;
 | |
| 
 | |
|     return AP1.second < AP2.second;
 | |
|   });
 | |
| 
 | |
|   ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
 | |
|   for (auto AP : AddressPoints) {
 | |
|     // Create type metadata for the address point.
 | |
|     AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first);
 | |
| 
 | |
|     // The class associated with each address point could also potentially be
 | |
|     // used for indirect calls via a member function pointer, so we need to
 | |
|     // annotate the address of each function pointer with the appropriate member
 | |
|     // function pointer type.
 | |
|     for (unsigned I = 0; I != Comps.size(); ++I) {
 | |
|       if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
 | |
|         continue;
 | |
|       llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
 | |
|           Context.getMemberPointerType(
 | |
|               Comps[I].getFunctionDecl()->getType(),
 | |
|               Context.getRecordType(AP.first).getTypePtr()));
 | |
|       VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (getCodeGenOpts().VirtualFunctionElimination ||
 | |
|       getCodeGenOpts().WholeProgramVTables) {
 | |
|     llvm::GlobalObject::VCallVisibility TypeVis = GetVCallVisibilityLevel(RD);
 | |
|     if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
 | |
|       VTable->setVCallVisibilityMetadata(TypeVis);
 | |
|   }
 | |
| }
 |