forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			633 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			633 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // These classes implement wrappers around llvm::Value in order to
 | |
| // fully represent the range of values for C L- and R- values.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
 | |
| #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
 | |
| 
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "Address.h"
 | |
| #include "CodeGenTBAA.h"
 | |
| 
 | |
| namespace llvm {
 | |
|   class Constant;
 | |
|   class MDNode;
 | |
| }
 | |
| 
 | |
| namespace clang {
 | |
| namespace CodeGen {
 | |
|   class AggValueSlot;
 | |
|   class CodeGenFunction;
 | |
|   struct CGBitFieldInfo;
 | |
| 
 | |
| /// RValue - This trivial value class is used to represent the result of an
 | |
| /// expression that is evaluated.  It can be one of three things: either a
 | |
| /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
 | |
| /// address of an aggregate value in memory.
 | |
| class RValue {
 | |
|   enum Flavor { Scalar, Complex, Aggregate };
 | |
| 
 | |
|   // The shift to make to an aggregate's alignment to make it look
 | |
|   // like a pointer.
 | |
|   enum { AggAlignShift = 4 };
 | |
| 
 | |
|   // Stores first value and flavor.
 | |
|   llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
 | |
|   // Stores second value and volatility.
 | |
|   llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
 | |
| 
 | |
| public:
 | |
|   bool isScalar() const { return V1.getInt() == Scalar; }
 | |
|   bool isComplex() const { return V1.getInt() == Complex; }
 | |
|   bool isAggregate() const { return V1.getInt() == Aggregate; }
 | |
| 
 | |
|   bool isVolatileQualified() const { return V2.getInt(); }
 | |
| 
 | |
|   /// getScalarVal() - Return the Value* of this scalar value.
 | |
|   llvm::Value *getScalarVal() const {
 | |
|     assert(isScalar() && "Not a scalar!");
 | |
|     return V1.getPointer();
 | |
|   }
 | |
| 
 | |
|   /// getComplexVal - Return the real/imag components of this complex value.
 | |
|   ///
 | |
|   std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
 | |
|     return std::make_pair(V1.getPointer(), V2.getPointer());
 | |
|   }
 | |
| 
 | |
|   /// getAggregateAddr() - Return the Value* of the address of the aggregate.
 | |
|   Address getAggregateAddress() const {
 | |
|     assert(isAggregate() && "Not an aggregate!");
 | |
|     auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
 | |
|     return Address(V1.getPointer(), CharUnits::fromQuantity(align));
 | |
|   }
 | |
|   llvm::Value *getAggregatePointer() const {
 | |
|     assert(isAggregate() && "Not an aggregate!");
 | |
|     return V1.getPointer();
 | |
|   }
 | |
| 
 | |
|   static RValue getIgnored() {
 | |
|     // FIXME: should we make this a more explicit state?
 | |
|     return get(nullptr);
 | |
|   }
 | |
| 
 | |
|   static RValue get(llvm::Value *V) {
 | |
|     RValue ER;
 | |
|     ER.V1.setPointer(V);
 | |
|     ER.V1.setInt(Scalar);
 | |
|     ER.V2.setInt(false);
 | |
|     return ER;
 | |
|   }
 | |
|   static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
 | |
|     RValue ER;
 | |
|     ER.V1.setPointer(V1);
 | |
|     ER.V2.setPointer(V2);
 | |
|     ER.V1.setInt(Complex);
 | |
|     ER.V2.setInt(false);
 | |
|     return ER;
 | |
|   }
 | |
|   static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
 | |
|     return getComplex(C.first, C.second);
 | |
|   }
 | |
|   // FIXME: Aggregate rvalues need to retain information about whether they are
 | |
|   // volatile or not.  Remove default to find all places that probably get this
 | |
|   // wrong.
 | |
|   static RValue getAggregate(Address addr, bool isVolatile = false) {
 | |
|     RValue ER;
 | |
|     ER.V1.setPointer(addr.getPointer());
 | |
|     ER.V1.setInt(Aggregate);
 | |
| 
 | |
|     auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
 | |
|     ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
 | |
|     ER.V2.setInt(isVolatile);
 | |
|     return ER;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Does an ARC strong l-value have precise lifetime?
 | |
| enum ARCPreciseLifetime_t {
 | |
|   ARCImpreciseLifetime, ARCPreciseLifetime
 | |
| };
 | |
| 
 | |
| /// The source of the alignment of an l-value; an expression of
 | |
| /// confidence in the alignment actually matching the estimate.
 | |
| enum class AlignmentSource {
 | |
|   /// The l-value was an access to a declared entity or something
 | |
|   /// equivalently strong, like the address of an array allocated by a
 | |
|   /// language runtime.
 | |
|   Decl,
 | |
| 
 | |
|   /// The l-value was considered opaque, so the alignment was
 | |
|   /// determined from a type, but that type was an explicitly-aligned
 | |
|   /// typedef.
 | |
|   AttributedType,
 | |
| 
 | |
|   /// The l-value was considered opaque, so the alignment was
 | |
|   /// determined from a type.
 | |
|   Type
 | |
| };
 | |
| 
 | |
| /// Given that the base address has the given alignment source, what's
 | |
| /// our confidence in the alignment of the field?
 | |
| static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
 | |
|   // For now, we don't distinguish fields of opaque pointers from
 | |
|   // top-level declarations, but maybe we should.
 | |
|   return AlignmentSource::Decl;
 | |
| }
 | |
| 
 | |
| class LValueBaseInfo {
 | |
|   AlignmentSource AlignSource;
 | |
| 
 | |
| public:
 | |
|   explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
 | |
|     : AlignSource(Source) {}
 | |
|   AlignmentSource getAlignmentSource() const { return AlignSource; }
 | |
|   void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }
 | |
| 
 | |
|   void mergeForCast(const LValueBaseInfo &Info) {
 | |
|     setAlignmentSource(Info.getAlignmentSource());
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// LValue - This represents an lvalue references.  Because C/C++ allow
 | |
| /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
 | |
| /// bitrange.
 | |
| class LValue {
 | |
|   enum {
 | |
|     Simple,       // This is a normal l-value, use getAddress().
 | |
|     VectorElt,    // This is a vector element l-value (V[i]), use getVector*
 | |
|     BitField,     // This is a bitfield l-value, use getBitfield*.
 | |
|     ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
 | |
|     GlobalReg     // This is a register l-value, use getGlobalReg()
 | |
|   } LVType;
 | |
| 
 | |
|   llvm::Value *V;
 | |
| 
 | |
|   union {
 | |
|     // Index into a vector subscript: V[i]
 | |
|     llvm::Value *VectorIdx;
 | |
| 
 | |
|     // ExtVector element subset: V.xyx
 | |
|     llvm::Constant *VectorElts;
 | |
| 
 | |
|     // BitField start bit and size
 | |
|     const CGBitFieldInfo *BitFieldInfo;
 | |
|   };
 | |
| 
 | |
|   QualType Type;
 | |
| 
 | |
|   // 'const' is unused here
 | |
|   Qualifiers Quals;
 | |
| 
 | |
|   // The alignment to use when accessing this lvalue.  (For vector elements,
 | |
|   // this is the alignment of the whole vector.)
 | |
|   unsigned Alignment;
 | |
| 
 | |
|   // objective-c's ivar
 | |
|   bool Ivar:1;
 | |
| 
 | |
|   // objective-c's ivar is an array
 | |
|   bool ObjIsArray:1;
 | |
| 
 | |
|   // LValue is non-gc'able for any reason, including being a parameter or local
 | |
|   // variable.
 | |
|   bool NonGC: 1;
 | |
| 
 | |
|   // Lvalue is a global reference of an objective-c object
 | |
|   bool GlobalObjCRef : 1;
 | |
| 
 | |
|   // Lvalue is a thread local reference
 | |
|   bool ThreadLocalRef : 1;
 | |
| 
 | |
|   // Lvalue has ARC imprecise lifetime.  We store this inverted to try
 | |
|   // to make the default bitfield pattern all-zeroes.
 | |
|   bool ImpreciseLifetime : 1;
 | |
| 
 | |
|   // This flag shows if a nontemporal load/stores should be used when accessing
 | |
|   // this lvalue.
 | |
|   bool Nontemporal : 1;
 | |
| 
 | |
|   LValueBaseInfo BaseInfo;
 | |
|   TBAAAccessInfo TBAAInfo;
 | |
| 
 | |
|   Expr *BaseIvarExp;
 | |
| 
 | |
| private:
 | |
|   void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
 | |
|                   LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
 | |
|     assert((!Alignment.isZero() || Type->isIncompleteType()) &&
 | |
|            "initializing l-value with zero alignment!");
 | |
|     this->Type = Type;
 | |
|     this->Quals = Quals;
 | |
|     const unsigned MaxAlign = 1U << 31;
 | |
|     this->Alignment = Alignment.getQuantity() <= MaxAlign
 | |
|                           ? Alignment.getQuantity()
 | |
|                           : MaxAlign;
 | |
|     assert(this->Alignment == Alignment.getQuantity() &&
 | |
|            "Alignment exceeds allowed max!");
 | |
|     this->BaseInfo = BaseInfo;
 | |
|     this->TBAAInfo = TBAAInfo;
 | |
| 
 | |
|     // Initialize Objective-C flags.
 | |
|     this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
 | |
|     this->ImpreciseLifetime = false;
 | |
|     this->Nontemporal = false;
 | |
|     this->ThreadLocalRef = false;
 | |
|     this->BaseIvarExp = nullptr;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   bool isSimple() const { return LVType == Simple; }
 | |
|   bool isVectorElt() const { return LVType == VectorElt; }
 | |
|   bool isBitField() const { return LVType == BitField; }
 | |
|   bool isExtVectorElt() const { return LVType == ExtVectorElt; }
 | |
|   bool isGlobalReg() const { return LVType == GlobalReg; }
 | |
| 
 | |
|   bool isVolatileQualified() const { return Quals.hasVolatile(); }
 | |
|   bool isRestrictQualified() const { return Quals.hasRestrict(); }
 | |
|   unsigned getVRQualifiers() const {
 | |
|     return Quals.getCVRQualifiers() & ~Qualifiers::Const;
 | |
|   }
 | |
| 
 | |
|   QualType getType() const { return Type; }
 | |
| 
 | |
|   Qualifiers::ObjCLifetime getObjCLifetime() const {
 | |
|     return Quals.getObjCLifetime();
 | |
|   }
 | |
| 
 | |
|   bool isObjCIvar() const { return Ivar; }
 | |
|   void setObjCIvar(bool Value) { Ivar = Value; }
 | |
| 
 | |
|   bool isObjCArray() const { return ObjIsArray; }
 | |
|   void setObjCArray(bool Value) { ObjIsArray = Value; }
 | |
| 
 | |
|   bool isNonGC () const { return NonGC; }
 | |
|   void setNonGC(bool Value) { NonGC = Value; }
 | |
| 
 | |
|   bool isGlobalObjCRef() const { return GlobalObjCRef; }
 | |
|   void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
 | |
| 
 | |
|   bool isThreadLocalRef() const { return ThreadLocalRef; }
 | |
|   void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
 | |
| 
 | |
|   ARCPreciseLifetime_t isARCPreciseLifetime() const {
 | |
|     return ARCPreciseLifetime_t(!ImpreciseLifetime);
 | |
|   }
 | |
|   void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
 | |
|     ImpreciseLifetime = (value == ARCImpreciseLifetime);
 | |
|   }
 | |
|   bool isNontemporal() const { return Nontemporal; }
 | |
|   void setNontemporal(bool Value) { Nontemporal = Value; }
 | |
| 
 | |
|   bool isObjCWeak() const {
 | |
|     return Quals.getObjCGCAttr() == Qualifiers::Weak;
 | |
|   }
 | |
|   bool isObjCStrong() const {
 | |
|     return Quals.getObjCGCAttr() == Qualifiers::Strong;
 | |
|   }
 | |
| 
 | |
|   bool isVolatile() const {
 | |
|     return Quals.hasVolatile();
 | |
|   }
 | |
| 
 | |
|   Expr *getBaseIvarExp() const { return BaseIvarExp; }
 | |
|   void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
 | |
| 
 | |
|   TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
 | |
|   void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }
 | |
| 
 | |
|   const Qualifiers &getQuals() const { return Quals; }
 | |
|   Qualifiers &getQuals() { return Quals; }
 | |
| 
 | |
|   LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
 | |
| 
 | |
|   CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
 | |
|   void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
 | |
| 
 | |
|   LValueBaseInfo getBaseInfo() const { return BaseInfo; }
 | |
|   void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }
 | |
| 
 | |
|   // simple lvalue
 | |
|   llvm::Value *getPointer(CodeGenFunction &CGF) const {
 | |
|     assert(isSimple());
 | |
|     return V;
 | |
|   }
 | |
|   Address getAddress(CodeGenFunction &CGF) const {
 | |
|     return Address(getPointer(CGF), getAlignment());
 | |
|   }
 | |
|   void setAddress(Address address) {
 | |
|     assert(isSimple());
 | |
|     V = address.getPointer();
 | |
|     Alignment = address.getAlignment().getQuantity();
 | |
|   }
 | |
| 
 | |
|   // vector elt lvalue
 | |
|   Address getVectorAddress() const {
 | |
|     return Address(getVectorPointer(), getAlignment());
 | |
|   }
 | |
|   llvm::Value *getVectorPointer() const { assert(isVectorElt()); return V; }
 | |
|   llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
 | |
| 
 | |
|   // extended vector elements.
 | |
|   Address getExtVectorAddress() const {
 | |
|     return Address(getExtVectorPointer(), getAlignment());
 | |
|   }
 | |
|   llvm::Value *getExtVectorPointer() const {
 | |
|     assert(isExtVectorElt());
 | |
|     return V;
 | |
|   }
 | |
|   llvm::Constant *getExtVectorElts() const {
 | |
|     assert(isExtVectorElt());
 | |
|     return VectorElts;
 | |
|   }
 | |
| 
 | |
|   // bitfield lvalue
 | |
|   Address getBitFieldAddress() const {
 | |
|     return Address(getBitFieldPointer(), getAlignment());
 | |
|   }
 | |
|   llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
 | |
|   const CGBitFieldInfo &getBitFieldInfo() const {
 | |
|     assert(isBitField());
 | |
|     return *BitFieldInfo;
 | |
|   }
 | |
| 
 | |
|   // global register lvalue
 | |
|   llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
 | |
| 
 | |
|   static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
 | |
|                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
 | |
|     Qualifiers qs = type.getQualifiers();
 | |
|     qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
 | |
| 
 | |
|     LValue R;
 | |
|     R.LVType = Simple;
 | |
|     assert(address.getPointer()->getType()->isPointerTy());
 | |
|     R.V = address.getPointer();
 | |
|     R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
 | |
|                               QualType type, LValueBaseInfo BaseInfo,
 | |
|                               TBAAAccessInfo TBAAInfo) {
 | |
|     LValue R;
 | |
|     R.LVType = VectorElt;
 | |
|     R.V = vecAddress.getPointer();
 | |
|     R.VectorIdx = Idx;
 | |
|     R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
 | |
|                  BaseInfo, TBAAInfo);
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
 | |
|                                  QualType type, LValueBaseInfo BaseInfo,
 | |
|                                  TBAAAccessInfo TBAAInfo) {
 | |
|     LValue R;
 | |
|     R.LVType = ExtVectorElt;
 | |
|     R.V = vecAddress.getPointer();
 | |
|     R.VectorElts = Elts;
 | |
|     R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
 | |
|                  BaseInfo, TBAAInfo);
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   /// Create a new object to represent a bit-field access.
 | |
|   ///
 | |
|   /// \param Addr - The base address of the bit-field sequence this
 | |
|   /// bit-field refers to.
 | |
|   /// \param Info - The information describing how to perform the bit-field
 | |
|   /// access.
 | |
|   static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
 | |
|                              QualType type, LValueBaseInfo BaseInfo,
 | |
|                              TBAAAccessInfo TBAAInfo) {
 | |
|     LValue R;
 | |
|     R.LVType = BitField;
 | |
|     R.V = Addr.getPointer();
 | |
|     R.BitFieldInfo = &Info;
 | |
|     R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
 | |
|                  TBAAInfo);
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   static LValue MakeGlobalReg(Address Reg, QualType type) {
 | |
|     LValue R;
 | |
|     R.LVType = GlobalReg;
 | |
|     R.V = Reg.getPointer();
 | |
|     R.Initialize(type, type.getQualifiers(), Reg.getAlignment(),
 | |
|                  LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   RValue asAggregateRValue(CodeGenFunction &CGF) const {
 | |
|     return RValue::getAggregate(getAddress(CGF), isVolatileQualified());
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// An aggregate value slot.
 | |
| class AggValueSlot {
 | |
|   /// The address.
 | |
|   llvm::Value *Addr;
 | |
| 
 | |
|   // Qualifiers
 | |
|   Qualifiers Quals;
 | |
| 
 | |
|   unsigned Alignment;
 | |
| 
 | |
|   /// DestructedFlag - This is set to true if some external code is
 | |
|   /// responsible for setting up a destructor for the slot.  Otherwise
 | |
|   /// the code which constructs it should push the appropriate cleanup.
 | |
|   bool DestructedFlag : 1;
 | |
| 
 | |
|   /// ObjCGCFlag - This is set to true if writing to the memory in the
 | |
|   /// slot might require calling an appropriate Objective-C GC
 | |
|   /// barrier.  The exact interaction here is unnecessarily mysterious.
 | |
|   bool ObjCGCFlag : 1;
 | |
| 
 | |
|   /// ZeroedFlag - This is set to true if the memory in the slot is
 | |
|   /// known to be zero before the assignment into it.  This means that
 | |
|   /// zero fields don't need to be set.
 | |
|   bool ZeroedFlag : 1;
 | |
| 
 | |
|   /// AliasedFlag - This is set to true if the slot might be aliased
 | |
|   /// and it's not undefined behavior to access it through such an
 | |
|   /// alias.  Note that it's always undefined behavior to access a C++
 | |
|   /// object that's under construction through an alias derived from
 | |
|   /// outside the construction process.
 | |
|   ///
 | |
|   /// This flag controls whether calls that produce the aggregate
 | |
|   /// value may be evaluated directly into the slot, or whether they
 | |
|   /// must be evaluated into an unaliased temporary and then memcpy'ed
 | |
|   /// over.  Since it's invalid in general to memcpy a non-POD C++
 | |
|   /// object, it's important that this flag never be set when
 | |
|   /// evaluating an expression which constructs such an object.
 | |
|   bool AliasedFlag : 1;
 | |
| 
 | |
|   /// This is set to true if the tail padding of this slot might overlap
 | |
|   /// another object that may have already been initialized (and whose
 | |
|   /// value must be preserved by this initialization). If so, we may only
 | |
|   /// store up to the dsize of the type. Otherwise we can widen stores to
 | |
|   /// the size of the type.
 | |
|   bool OverlapFlag : 1;
 | |
| 
 | |
|   /// If is set to true, sanitizer checks are already generated for this address
 | |
|   /// or not required. For instance, if this address represents an object
 | |
|   /// created in 'new' expression, sanitizer checks for memory is made as a part
 | |
|   /// of 'operator new' emission and object constructor should not generate
 | |
|   /// them.
 | |
|   bool SanitizerCheckedFlag : 1;
 | |
| 
 | |
| public:
 | |
|   enum IsAliased_t { IsNotAliased, IsAliased };
 | |
|   enum IsDestructed_t { IsNotDestructed, IsDestructed };
 | |
|   enum IsZeroed_t { IsNotZeroed, IsZeroed };
 | |
|   enum Overlap_t { DoesNotOverlap, MayOverlap };
 | |
|   enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
 | |
|   enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };
 | |
| 
 | |
|   /// ignored - Returns an aggregate value slot indicating that the
 | |
|   /// aggregate value is being ignored.
 | |
|   static AggValueSlot ignored() {
 | |
|     return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
 | |
|                    DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
 | |
|   }
 | |
| 
 | |
|   /// forAddr - Make a slot for an aggregate value.
 | |
|   ///
 | |
|   /// \param quals - The qualifiers that dictate how the slot should
 | |
|   /// be initialied. Only 'volatile' and the Objective-C lifetime
 | |
|   /// qualifiers matter.
 | |
|   ///
 | |
|   /// \param isDestructed - true if something else is responsible
 | |
|   ///   for calling destructors on this object
 | |
|   /// \param needsGC - true if the slot is potentially located
 | |
|   ///   somewhere that ObjC GC calls should be emitted for
 | |
|   static AggValueSlot forAddr(Address addr,
 | |
|                               Qualifiers quals,
 | |
|                               IsDestructed_t isDestructed,
 | |
|                               NeedsGCBarriers_t needsGC,
 | |
|                               IsAliased_t isAliased,
 | |
|                               Overlap_t mayOverlap,
 | |
|                               IsZeroed_t isZeroed = IsNotZeroed,
 | |
|                        IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
 | |
|     AggValueSlot AV;
 | |
|     if (addr.isValid()) {
 | |
|       AV.Addr = addr.getPointer();
 | |
|       AV.Alignment = addr.getAlignment().getQuantity();
 | |
|     } else {
 | |
|       AV.Addr = nullptr;
 | |
|       AV.Alignment = 0;
 | |
|     }
 | |
|     AV.Quals = quals;
 | |
|     AV.DestructedFlag = isDestructed;
 | |
|     AV.ObjCGCFlag = needsGC;
 | |
|     AV.ZeroedFlag = isZeroed;
 | |
|     AV.AliasedFlag = isAliased;
 | |
|     AV.OverlapFlag = mayOverlap;
 | |
|     AV.SanitizerCheckedFlag = isChecked;
 | |
|     return AV;
 | |
|   }
 | |
| 
 | |
|   static AggValueSlot
 | |
|   forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed,
 | |
|             NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
 | |
|             Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
 | |
|             IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
 | |
|     return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC,
 | |
|                    isAliased, mayOverlap, isZeroed, isChecked);
 | |
|   }
 | |
| 
 | |
|   IsDestructed_t isExternallyDestructed() const {
 | |
|     return IsDestructed_t(DestructedFlag);
 | |
|   }
 | |
|   void setExternallyDestructed(bool destructed = true) {
 | |
|     DestructedFlag = destructed;
 | |
|   }
 | |
| 
 | |
|   Qualifiers getQualifiers() const { return Quals; }
 | |
| 
 | |
|   bool isVolatile() const {
 | |
|     return Quals.hasVolatile();
 | |
|   }
 | |
| 
 | |
|   void setVolatile(bool flag) {
 | |
|     if (flag)
 | |
|       Quals.addVolatile();
 | |
|     else
 | |
|       Quals.removeVolatile();
 | |
|   }
 | |
| 
 | |
|   Qualifiers::ObjCLifetime getObjCLifetime() const {
 | |
|     return Quals.getObjCLifetime();
 | |
|   }
 | |
| 
 | |
|   NeedsGCBarriers_t requiresGCollection() const {
 | |
|     return NeedsGCBarriers_t(ObjCGCFlag);
 | |
|   }
 | |
| 
 | |
|   llvm::Value *getPointer() const {
 | |
|     return Addr;
 | |
|   }
 | |
| 
 | |
|   Address getAddress() const {
 | |
|     return Address(Addr, getAlignment());
 | |
|   }
 | |
| 
 | |
|   bool isIgnored() const {
 | |
|     return Addr == nullptr;
 | |
|   }
 | |
| 
 | |
|   CharUnits getAlignment() const {
 | |
|     return CharUnits::fromQuantity(Alignment);
 | |
|   }
 | |
| 
 | |
|   IsAliased_t isPotentiallyAliased() const {
 | |
|     return IsAliased_t(AliasedFlag);
 | |
|   }
 | |
| 
 | |
|   Overlap_t mayOverlap() const {
 | |
|     return Overlap_t(OverlapFlag);
 | |
|   }
 | |
| 
 | |
|   bool isSanitizerChecked() const {
 | |
|     return SanitizerCheckedFlag;
 | |
|   }
 | |
| 
 | |
|   RValue asRValue() const {
 | |
|     if (isIgnored()) {
 | |
|       return RValue::getIgnored();
 | |
|     } else {
 | |
|       return RValue::getAggregate(getAddress(), isVolatile());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void setZeroed(bool V = true) { ZeroedFlag = V; }
 | |
|   IsZeroed_t isZeroed() const {
 | |
|     return IsZeroed_t(ZeroedFlag);
 | |
|   }
 | |
| 
 | |
|   /// Get the preferred size to use when storing a value to this slot. This
 | |
|   /// is the type size unless that might overlap another object, in which
 | |
|   /// case it's the dsize.
 | |
|   CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
 | |
|     return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).first
 | |
|                         : Ctx.getTypeSizeInChars(Type);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // end namespace CodeGen
 | |
| }  // end namespace clang
 | |
| 
 | |
| #endif
 |