forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			5972 lines
		
	
	
		
			225 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5972 lines
		
	
	
		
			225 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This coordinates the per-module state used while generating code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "CGBlocks.h"
 | 
						|
#include "CGCUDARuntime.h"
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CGCall.h"
 | 
						|
#include "CGDebugInfo.h"
 | 
						|
#include "CGObjCRuntime.h"
 | 
						|
#include "CGOpenCLRuntime.h"
 | 
						|
#include "CGOpenMPRuntime.h"
 | 
						|
#include "CGOpenMPRuntimeNVPTX.h"
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CodeGenPGO.h"
 | 
						|
#include "ConstantEmitter.h"
 | 
						|
#include "CoverageMappingGen.h"
 | 
						|
#include "TargetInfo.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/CharUnits.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/Mangle.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "clang/AST/RecursiveASTVisitor.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "clang/Basic/CharInfo.h"
 | 
						|
#include "clang/Basic/CodeGenOptions.h"
 | 
						|
#include "clang/Basic/Diagnostic.h"
 | 
						|
#include "clang/Basic/FileManager.h"
 | 
						|
#include "clang/Basic/Module.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Basic/Version.h"
 | 
						|
#include "clang/CodeGen/ConstantInitBuilder.h"
 | 
						|
#include "clang/Frontend/FrontendDiagnostic.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/ProfileSummary.h"
 | 
						|
#include "llvm/ProfileData/InstrProfReader.h"
 | 
						|
#include "llvm/Support/CodeGen.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/ConvertUTF.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MD5.h"
 | 
						|
#include "llvm/Support/TimeProfiler.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
static llvm::cl::opt<bool> LimitedCoverage(
 | 
						|
    "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
 | 
						|
    llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
 | 
						|
    llvm::cl::init(false));
 | 
						|
 | 
						|
static const char AnnotationSection[] = "llvm.metadata";
 | 
						|
 | 
						|
static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
 | 
						|
  switch (CGM.getTarget().getCXXABI().getKind()) {
 | 
						|
  case TargetCXXABI::Fuchsia:
 | 
						|
  case TargetCXXABI::GenericAArch64:
 | 
						|
  case TargetCXXABI::GenericARM:
 | 
						|
  case TargetCXXABI::iOS:
 | 
						|
  case TargetCXXABI::iOS64:
 | 
						|
  case TargetCXXABI::WatchOS:
 | 
						|
  case TargetCXXABI::GenericMIPS:
 | 
						|
  case TargetCXXABI::GenericItanium:
 | 
						|
  case TargetCXXABI::WebAssembly:
 | 
						|
  case TargetCXXABI::XL:
 | 
						|
    return CreateItaniumCXXABI(CGM);
 | 
						|
  case TargetCXXABI::Microsoft:
 | 
						|
    return CreateMicrosoftCXXABI(CGM);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("invalid C++ ABI kind");
 | 
						|
}
 | 
						|
 | 
						|
CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
 | 
						|
                             const PreprocessorOptions &PPO,
 | 
						|
                             const CodeGenOptions &CGO, llvm::Module &M,
 | 
						|
                             DiagnosticsEngine &diags,
 | 
						|
                             CoverageSourceInfo *CoverageInfo)
 | 
						|
    : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
 | 
						|
      PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
 | 
						|
      Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
 | 
						|
      VMContext(M.getContext()), Types(*this), VTables(*this),
 | 
						|
      SanitizerMD(new SanitizerMetadata(*this)) {
 | 
						|
 | 
						|
  // Initialize the type cache.
 | 
						|
  llvm::LLVMContext &LLVMContext = M.getContext();
 | 
						|
  VoidTy = llvm::Type::getVoidTy(LLVMContext);
 | 
						|
  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
 | 
						|
  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
 | 
						|
  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
 | 
						|
  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
 | 
						|
  HalfTy = llvm::Type::getHalfTy(LLVMContext);
 | 
						|
  FloatTy = llvm::Type::getFloatTy(LLVMContext);
 | 
						|
  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
 | 
						|
  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
 | 
						|
  PointerAlignInBytes =
 | 
						|
    C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
 | 
						|
  SizeSizeInBytes =
 | 
						|
    C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
 | 
						|
  IntAlignInBytes =
 | 
						|
    C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
 | 
						|
  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
 | 
						|
  IntPtrTy = llvm::IntegerType::get(LLVMContext,
 | 
						|
    C.getTargetInfo().getMaxPointerWidth());
 | 
						|
  Int8PtrTy = Int8Ty->getPointerTo(0);
 | 
						|
  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
 | 
						|
  AllocaInt8PtrTy = Int8Ty->getPointerTo(
 | 
						|
      M.getDataLayout().getAllocaAddrSpace());
 | 
						|
  ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
 | 
						|
 | 
						|
  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
 | 
						|
 | 
						|
  if (LangOpts.ObjC)
 | 
						|
    createObjCRuntime();
 | 
						|
  if (LangOpts.OpenCL)
 | 
						|
    createOpenCLRuntime();
 | 
						|
  if (LangOpts.OpenMP)
 | 
						|
    createOpenMPRuntime();
 | 
						|
  if (LangOpts.CUDA)
 | 
						|
    createCUDARuntime();
 | 
						|
 | 
						|
  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
 | 
						|
  if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
 | 
						|
      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
 | 
						|
    TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
 | 
						|
                               getCXXABI().getMangleContext()));
 | 
						|
 | 
						|
  // If debug info or coverage generation is enabled, create the CGDebugInfo
 | 
						|
  // object.
 | 
						|
  if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
 | 
						|
      CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
 | 
						|
    DebugInfo.reset(new CGDebugInfo(*this));
 | 
						|
 | 
						|
  Block.GlobalUniqueCount = 0;
 | 
						|
 | 
						|
  if (C.getLangOpts().ObjC)
 | 
						|
    ObjCData.reset(new ObjCEntrypoints());
 | 
						|
 | 
						|
  if (CodeGenOpts.hasProfileClangUse()) {
 | 
						|
    auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
 | 
						|
        CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
 | 
						|
    if (auto E = ReaderOrErr.takeError()) {
 | 
						|
      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
 | 
						|
                                              "Could not read profile %0: %1");
 | 
						|
      llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
 | 
						|
        getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
 | 
						|
                                  << EI.message();
 | 
						|
      });
 | 
						|
    } else
 | 
						|
      PGOReader = std::move(ReaderOrErr.get());
 | 
						|
  }
 | 
						|
 | 
						|
  // If coverage mapping generation is enabled, create the
 | 
						|
  // CoverageMappingModuleGen object.
 | 
						|
  if (CodeGenOpts.CoverageMapping)
 | 
						|
    CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
 | 
						|
}
 | 
						|
 | 
						|
CodeGenModule::~CodeGenModule() {}
 | 
						|
 | 
						|
void CodeGenModule::createObjCRuntime() {
 | 
						|
  // This is just isGNUFamily(), but we want to force implementors of
 | 
						|
  // new ABIs to decide how best to do this.
 | 
						|
  switch (LangOpts.ObjCRuntime.getKind()) {
 | 
						|
  case ObjCRuntime::GNUstep:
 | 
						|
  case ObjCRuntime::GCC:
 | 
						|
  case ObjCRuntime::ObjFW:
 | 
						|
    ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
 | 
						|
    return;
 | 
						|
 | 
						|
  case ObjCRuntime::FragileMacOSX:
 | 
						|
  case ObjCRuntime::MacOSX:
 | 
						|
  case ObjCRuntime::iOS:
 | 
						|
  case ObjCRuntime::WatchOS:
 | 
						|
    ObjCRuntime.reset(CreateMacObjCRuntime(*this));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad runtime kind");
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::createOpenCLRuntime() {
 | 
						|
  OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::createOpenMPRuntime() {
 | 
						|
  // Select a specialized code generation class based on the target, if any.
 | 
						|
  // If it does not exist use the default implementation.
 | 
						|
  switch (getTriple().getArch()) {
 | 
						|
  case llvm::Triple::nvptx:
 | 
						|
  case llvm::Triple::nvptx64:
 | 
						|
    assert(getLangOpts().OpenMPIsDevice &&
 | 
						|
           "OpenMP NVPTX is only prepared to deal with device code.");
 | 
						|
    OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    if (LangOpts.OpenMPSimd)
 | 
						|
      OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
 | 
						|
    else
 | 
						|
      OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // The OpenMP-IR-Builder should eventually replace the above runtime codegens
 | 
						|
  // but we are not there yet so they both reside in CGModule for now and the
 | 
						|
  // OpenMP-IR-Builder is opt-in only.
 | 
						|
  if (LangOpts.OpenMPIRBuilder) {
 | 
						|
    OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
 | 
						|
    OMPBuilder->initialize();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::createCUDARuntime() {
 | 
						|
  CUDARuntime.reset(CreateNVCUDARuntime(*this));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
 | 
						|
  Replacements[Name] = C;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::applyReplacements() {
 | 
						|
  for (auto &I : Replacements) {
 | 
						|
    StringRef MangledName = I.first();
 | 
						|
    llvm::Constant *Replacement = I.second;
 | 
						|
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | 
						|
    if (!Entry)
 | 
						|
      continue;
 | 
						|
    auto *OldF = cast<llvm::Function>(Entry);
 | 
						|
    auto *NewF = dyn_cast<llvm::Function>(Replacement);
 | 
						|
    if (!NewF) {
 | 
						|
      if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
 | 
						|
        NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
 | 
						|
      } else {
 | 
						|
        auto *CE = cast<llvm::ConstantExpr>(Replacement);
 | 
						|
        assert(CE->getOpcode() == llvm::Instruction::BitCast ||
 | 
						|
               CE->getOpcode() == llvm::Instruction::GetElementPtr);
 | 
						|
        NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace old with new, but keep the old order.
 | 
						|
    OldF->replaceAllUsesWith(Replacement);
 | 
						|
    if (NewF) {
 | 
						|
      NewF->removeFromParent();
 | 
						|
      OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
 | 
						|
                                                       NewF);
 | 
						|
    }
 | 
						|
    OldF->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
 | 
						|
  GlobalValReplacements.push_back(std::make_pair(GV, C));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::applyGlobalValReplacements() {
 | 
						|
  for (auto &I : GlobalValReplacements) {
 | 
						|
    llvm::GlobalValue *GV = I.first;
 | 
						|
    llvm::Constant *C = I.second;
 | 
						|
 | 
						|
    GV->replaceAllUsesWith(C);
 | 
						|
    GV->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This is only used in aliases that we created and we know they have a
 | 
						|
// linear structure.
 | 
						|
static const llvm::GlobalObject *getAliasedGlobal(
 | 
						|
    const llvm::GlobalIndirectSymbol &GIS) {
 | 
						|
  llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
 | 
						|
  const llvm::Constant *C = &GIS;
 | 
						|
  for (;;) {
 | 
						|
    C = C->stripPointerCasts();
 | 
						|
    if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
 | 
						|
      return GO;
 | 
						|
    // stripPointerCasts will not walk over weak aliases.
 | 
						|
    auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
 | 
						|
    if (!GIS2)
 | 
						|
      return nullptr;
 | 
						|
    if (!Visited.insert(GIS2).second)
 | 
						|
      return nullptr;
 | 
						|
    C = GIS2->getIndirectSymbol();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::checkAliases() {
 | 
						|
  // Check if the constructed aliases are well formed. It is really unfortunate
 | 
						|
  // that we have to do this in CodeGen, but we only construct mangled names
 | 
						|
  // and aliases during codegen.
 | 
						|
  bool Error = false;
 | 
						|
  DiagnosticsEngine &Diags = getDiags();
 | 
						|
  for (const GlobalDecl &GD : Aliases) {
 | 
						|
    const auto *D = cast<ValueDecl>(GD.getDecl());
 | 
						|
    SourceLocation Location;
 | 
						|
    bool IsIFunc = D->hasAttr<IFuncAttr>();
 | 
						|
    if (const Attr *A = D->getDefiningAttr())
 | 
						|
      Location = A->getLocation();
 | 
						|
    else
 | 
						|
      llvm_unreachable("Not an alias or ifunc?");
 | 
						|
    StringRef MangledName = getMangledName(GD);
 | 
						|
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | 
						|
    auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
 | 
						|
    const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
 | 
						|
    if (!GV) {
 | 
						|
      Error = true;
 | 
						|
      Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
 | 
						|
    } else if (GV->isDeclaration()) {
 | 
						|
      Error = true;
 | 
						|
      Diags.Report(Location, diag::err_alias_to_undefined)
 | 
						|
          << IsIFunc << IsIFunc;
 | 
						|
    } else if (IsIFunc) {
 | 
						|
      // Check resolver function type.
 | 
						|
      llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
 | 
						|
          GV->getType()->getPointerElementType());
 | 
						|
      assert(FTy);
 | 
						|
      if (!FTy->getReturnType()->isPointerTy())
 | 
						|
        Diags.Report(Location, diag::err_ifunc_resolver_return);
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::Constant *Aliasee = Alias->getIndirectSymbol();
 | 
						|
    llvm::GlobalValue *AliaseeGV;
 | 
						|
    if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
 | 
						|
      AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
 | 
						|
    else
 | 
						|
      AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
 | 
						|
 | 
						|
    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
 | 
						|
      StringRef AliasSection = SA->getName();
 | 
						|
      if (AliasSection != AliaseeGV->getSection())
 | 
						|
        Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
 | 
						|
            << AliasSection << IsIFunc << IsIFunc;
 | 
						|
    }
 | 
						|
 | 
						|
    // We have to handle alias to weak aliases in here. LLVM itself disallows
 | 
						|
    // this since the object semantics would not match the IL one. For
 | 
						|
    // compatibility with gcc we implement it by just pointing the alias
 | 
						|
    // to its aliasee's aliasee. We also warn, since the user is probably
 | 
						|
    // expecting the link to be weak.
 | 
						|
    if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
 | 
						|
      if (GA->isInterposable()) {
 | 
						|
        Diags.Report(Location, diag::warn_alias_to_weak_alias)
 | 
						|
            << GV->getName() << GA->getName() << IsIFunc;
 | 
						|
        Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
 | 
						|
            GA->getIndirectSymbol(), Alias->getType());
 | 
						|
        Alias->setIndirectSymbol(Aliasee);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!Error)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (const GlobalDecl &GD : Aliases) {
 | 
						|
    StringRef MangledName = getMangledName(GD);
 | 
						|
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | 
						|
    auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
 | 
						|
    Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
 | 
						|
    Alias->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::clear() {
 | 
						|
  DeferredDeclsToEmit.clear();
 | 
						|
  if (OpenMPRuntime)
 | 
						|
    OpenMPRuntime->clear();
 | 
						|
}
 | 
						|
 | 
						|
void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
 | 
						|
                                       StringRef MainFile) {
 | 
						|
  if (!hasDiagnostics())
 | 
						|
    return;
 | 
						|
  if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
 | 
						|
    if (MainFile.empty())
 | 
						|
      MainFile = "<stdin>";
 | 
						|
    Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
 | 
						|
  } else {
 | 
						|
    if (Mismatched > 0)
 | 
						|
      Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
 | 
						|
 | 
						|
    if (Missing > 0)
 | 
						|
      Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::Release() {
 | 
						|
  EmitDeferred();
 | 
						|
  EmitVTablesOpportunistically();
 | 
						|
  applyGlobalValReplacements();
 | 
						|
  applyReplacements();
 | 
						|
  checkAliases();
 | 
						|
  emitMultiVersionFunctions();
 | 
						|
  EmitCXXGlobalInitFunc();
 | 
						|
  EmitCXXGlobalDtorFunc();
 | 
						|
  registerGlobalDtorsWithAtExit();
 | 
						|
  EmitCXXThreadLocalInitFunc();
 | 
						|
  if (ObjCRuntime)
 | 
						|
    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
 | 
						|
      AddGlobalCtor(ObjCInitFunction);
 | 
						|
  if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
 | 
						|
      CUDARuntime) {
 | 
						|
    if (llvm::Function *CudaCtorFunction =
 | 
						|
            CUDARuntime->makeModuleCtorFunction())
 | 
						|
      AddGlobalCtor(CudaCtorFunction);
 | 
						|
  }
 | 
						|
  if (OpenMPRuntime) {
 | 
						|
    if (llvm::Function *OpenMPRequiresDirectiveRegFun =
 | 
						|
            OpenMPRuntime->emitRequiresDirectiveRegFun()) {
 | 
						|
      AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
 | 
						|
    }
 | 
						|
    OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
 | 
						|
    OpenMPRuntime->clear();
 | 
						|
  }
 | 
						|
  if (PGOReader) {
 | 
						|
    getModule().setProfileSummary(
 | 
						|
        PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
 | 
						|
        llvm::ProfileSummary::PSK_Instr);
 | 
						|
    if (PGOStats.hasDiagnostics())
 | 
						|
      PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
 | 
						|
  }
 | 
						|
  EmitCtorList(GlobalCtors, "llvm.global_ctors");
 | 
						|
  EmitCtorList(GlobalDtors, "llvm.global_dtors");
 | 
						|
  EmitGlobalAnnotations();
 | 
						|
  EmitStaticExternCAliases();
 | 
						|
  EmitDeferredUnusedCoverageMappings();
 | 
						|
  if (CoverageMapping)
 | 
						|
    CoverageMapping->emit();
 | 
						|
  if (CodeGenOpts.SanitizeCfiCrossDso) {
 | 
						|
    CodeGenFunction(*this).EmitCfiCheckFail();
 | 
						|
    CodeGenFunction(*this).EmitCfiCheckStub();
 | 
						|
  }
 | 
						|
  emitAtAvailableLinkGuard();
 | 
						|
  if (Context.getTargetInfo().getTriple().isWasm() &&
 | 
						|
      !Context.getTargetInfo().getTriple().isOSEmscripten()) {
 | 
						|
    EmitMainVoidAlias();
 | 
						|
  }
 | 
						|
  emitLLVMUsed();
 | 
						|
  if (SanStats)
 | 
						|
    SanStats->finish();
 | 
						|
 | 
						|
  if (CodeGenOpts.Autolink &&
 | 
						|
      (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
 | 
						|
    EmitModuleLinkOptions();
 | 
						|
  }
 | 
						|
 | 
						|
  // On ELF we pass the dependent library specifiers directly to the linker
 | 
						|
  // without manipulating them. This is in contrast to other platforms where
 | 
						|
  // they are mapped to a specific linker option by the compiler. This
 | 
						|
  // difference is a result of the greater variety of ELF linkers and the fact
 | 
						|
  // that ELF linkers tend to handle libraries in a more complicated fashion
 | 
						|
  // than on other platforms. This forces us to defer handling the dependent
 | 
						|
  // libs to the linker.
 | 
						|
  //
 | 
						|
  // CUDA/HIP device and host libraries are different. Currently there is no
 | 
						|
  // way to differentiate dependent libraries for host or device. Existing
 | 
						|
  // usage of #pragma comment(lib, *) is intended for host libraries on
 | 
						|
  // Windows. Therefore emit llvm.dependent-libraries only for host.
 | 
						|
  if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
 | 
						|
    auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
 | 
						|
    for (auto *MD : ELFDependentLibraries)
 | 
						|
      NMD->addOperand(MD);
 | 
						|
  }
 | 
						|
 | 
						|
  // Record mregparm value now so it is visible through rest of codegen.
 | 
						|
  if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
 | 
						|
    getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
 | 
						|
                              CodeGenOpts.NumRegisterParameters);
 | 
						|
 | 
						|
  if (CodeGenOpts.DwarfVersion) {
 | 
						|
    getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
 | 
						|
                              CodeGenOpts.DwarfVersion);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Context.getLangOpts().SemanticInterposition)
 | 
						|
    // Require various optimization to respect semantic interposition.
 | 
						|
    getModule().setSemanticInterposition(1);
 | 
						|
 | 
						|
  if (CodeGenOpts.EmitCodeView) {
 | 
						|
    // Indicate that we want CodeView in the metadata.
 | 
						|
    getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
 | 
						|
  }
 | 
						|
  if (CodeGenOpts.CodeViewGHash) {
 | 
						|
    getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
 | 
						|
  }
 | 
						|
  if (CodeGenOpts.ControlFlowGuard) {
 | 
						|
    // Function ID tables and checks for Control Flow Guard (cfguard=2).
 | 
						|
    getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
 | 
						|
  } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
 | 
						|
    // Function ID tables for Control Flow Guard (cfguard=1).
 | 
						|
    getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
 | 
						|
  }
 | 
						|
  if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
 | 
						|
    // We don't support LTO with 2 with different StrictVTablePointers
 | 
						|
    // FIXME: we could support it by stripping all the information introduced
 | 
						|
    // by StrictVTablePointers.
 | 
						|
 | 
						|
    getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
 | 
						|
 | 
						|
    llvm::Metadata *Ops[2] = {
 | 
						|
              llvm::MDString::get(VMContext, "StrictVTablePointers"),
 | 
						|
              llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
 | 
						|
                  llvm::Type::getInt32Ty(VMContext), 1))};
 | 
						|
 | 
						|
    getModule().addModuleFlag(llvm::Module::Require,
 | 
						|
                              "StrictVTablePointersRequirement",
 | 
						|
                              llvm::MDNode::get(VMContext, Ops));
 | 
						|
  }
 | 
						|
  if (DebugInfo)
 | 
						|
    // We support a single version in the linked module. The LLVM
 | 
						|
    // parser will drop debug info with a different version number
 | 
						|
    // (and warn about it, too).
 | 
						|
    getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
 | 
						|
                              llvm::DEBUG_METADATA_VERSION);
 | 
						|
 | 
						|
  // We need to record the widths of enums and wchar_t, so that we can generate
 | 
						|
  // the correct build attributes in the ARM backend. wchar_size is also used by
 | 
						|
  // TargetLibraryInfo.
 | 
						|
  uint64_t WCharWidth =
 | 
						|
      Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
 | 
						|
  getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
 | 
						|
 | 
						|
  llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
 | 
						|
  if (   Arch == llvm::Triple::arm
 | 
						|
      || Arch == llvm::Triple::armeb
 | 
						|
      || Arch == llvm::Triple::thumb
 | 
						|
      || Arch == llvm::Triple::thumbeb) {
 | 
						|
    // The minimum width of an enum in bytes
 | 
						|
    uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
 | 
						|
    getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
 | 
						|
    StringRef ABIStr = Target.getABI();
 | 
						|
    llvm::LLVMContext &Ctx = TheModule.getContext();
 | 
						|
    getModule().addModuleFlag(llvm::Module::Error, "target-abi",
 | 
						|
                              llvm::MDString::get(Ctx, ABIStr));
 | 
						|
  }
 | 
						|
 | 
						|
  if (CodeGenOpts.SanitizeCfiCrossDso) {
 | 
						|
    // Indicate that we want cross-DSO control flow integrity checks.
 | 
						|
    getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CodeGenOpts.WholeProgramVTables) {
 | 
						|
    // Indicate whether VFE was enabled for this module, so that the
 | 
						|
    // vcall_visibility metadata added under whole program vtables is handled
 | 
						|
    // appropriately in the optimizer.
 | 
						|
    getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
 | 
						|
                              CodeGenOpts.VirtualFunctionElimination);
 | 
						|
  }
 | 
						|
 | 
						|
  if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
 | 
						|
    getModule().addModuleFlag(llvm::Module::Override,
 | 
						|
                              "CFI Canonical Jump Tables",
 | 
						|
                              CodeGenOpts.SanitizeCfiCanonicalJumpTables);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CodeGenOpts.CFProtectionReturn &&
 | 
						|
      Target.checkCFProtectionReturnSupported(getDiags())) {
 | 
						|
    // Indicate that we want to instrument return control flow protection.
 | 
						|
    getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
 | 
						|
                              1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CodeGenOpts.CFProtectionBranch &&
 | 
						|
      Target.checkCFProtectionBranchSupported(getDiags())) {
 | 
						|
    // Indicate that we want to instrument branch control flow protection.
 | 
						|
    getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
 | 
						|
                              1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
 | 
						|
    // Indicate whether __nvvm_reflect should be configured to flush denormal
 | 
						|
    // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
 | 
						|
    // property.)
 | 
						|
    getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
 | 
						|
                              CodeGenOpts.FP32DenormalMode.Output !=
 | 
						|
                                  llvm::DenormalMode::IEEE);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit OpenCL specific module metadata: OpenCL/SPIR version.
 | 
						|
  if (LangOpts.OpenCL) {
 | 
						|
    EmitOpenCLMetadata();
 | 
						|
    // Emit SPIR version.
 | 
						|
    if (getTriple().isSPIR()) {
 | 
						|
      // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
 | 
						|
      // opencl.spir.version named metadata.
 | 
						|
      // C++ is backwards compatible with OpenCL v2.0.
 | 
						|
      auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
 | 
						|
      llvm::Metadata *SPIRVerElts[] = {
 | 
						|
          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
 | 
						|
              Int32Ty, Version / 100)),
 | 
						|
          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
 | 
						|
              Int32Ty, (Version / 100 > 1) ? 0 : 2))};
 | 
						|
      llvm::NamedMDNode *SPIRVerMD =
 | 
						|
          TheModule.getOrInsertNamedMetadata("opencl.spir.version");
 | 
						|
      llvm::LLVMContext &Ctx = TheModule.getContext();
 | 
						|
      SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
 | 
						|
    assert(PLevel < 3 && "Invalid PIC Level");
 | 
						|
    getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
 | 
						|
    if (Context.getLangOpts().PIE)
 | 
						|
      getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
 | 
						|
  }
 | 
						|
 | 
						|
  if (getCodeGenOpts().CodeModel.size() > 0) {
 | 
						|
    unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
 | 
						|
                  .Case("tiny", llvm::CodeModel::Tiny)
 | 
						|
                  .Case("small", llvm::CodeModel::Small)
 | 
						|
                  .Case("kernel", llvm::CodeModel::Kernel)
 | 
						|
                  .Case("medium", llvm::CodeModel::Medium)
 | 
						|
                  .Case("large", llvm::CodeModel::Large)
 | 
						|
                  .Default(~0u);
 | 
						|
    if (CM != ~0u) {
 | 
						|
      llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
 | 
						|
      getModule().setCodeModel(codeModel);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CodeGenOpts.NoPLT)
 | 
						|
    getModule().setRtLibUseGOT();
 | 
						|
 | 
						|
  SimplifyPersonality();
 | 
						|
 | 
						|
  if (getCodeGenOpts().EmitDeclMetadata)
 | 
						|
    EmitDeclMetadata();
 | 
						|
 | 
						|
  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
 | 
						|
    EmitCoverageFile();
 | 
						|
 | 
						|
  if (DebugInfo)
 | 
						|
    DebugInfo->finalize();
 | 
						|
 | 
						|
  if (getCodeGenOpts().EmitVersionIdentMetadata)
 | 
						|
    EmitVersionIdentMetadata();
 | 
						|
 | 
						|
  if (!getCodeGenOpts().RecordCommandLine.empty())
 | 
						|
    EmitCommandLineMetadata();
 | 
						|
 | 
						|
  EmitTargetMetadata();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitOpenCLMetadata() {
 | 
						|
  // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
 | 
						|
  // opencl.ocl.version named metadata node.
 | 
						|
  // C++ is backwards compatible with OpenCL v2.0.
 | 
						|
  // FIXME: We might need to add CXX version at some point too?
 | 
						|
  auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
 | 
						|
  llvm::Metadata *OCLVerElts[] = {
 | 
						|
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
 | 
						|
          Int32Ty, Version / 100)),
 | 
						|
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
 | 
						|
          Int32Ty, (Version % 100) / 10))};
 | 
						|
  llvm::NamedMDNode *OCLVerMD =
 | 
						|
      TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
 | 
						|
  llvm::LLVMContext &Ctx = TheModule.getContext();
 | 
						|
  OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
 | 
						|
  // Make sure that this type is translated.
 | 
						|
  Types.UpdateCompletedType(TD);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
 | 
						|
  // Make sure that this type is translated.
 | 
						|
  Types.RefreshTypeCacheForClass(RD);
 | 
						|
}
 | 
						|
 | 
						|
llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
 | 
						|
  if (!TBAA)
 | 
						|
    return nullptr;
 | 
						|
  return TBAA->getTypeInfo(QTy);
 | 
						|
}
 | 
						|
 | 
						|
TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
 | 
						|
  if (!TBAA)
 | 
						|
    return TBAAAccessInfo();
 | 
						|
  return TBAA->getAccessInfo(AccessType);
 | 
						|
}
 | 
						|
 | 
						|
TBAAAccessInfo
 | 
						|
CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
 | 
						|
  if (!TBAA)
 | 
						|
    return TBAAAccessInfo();
 | 
						|
  return TBAA->getVTablePtrAccessInfo(VTablePtrType);
 | 
						|
}
 | 
						|
 | 
						|
llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
 | 
						|
  if (!TBAA)
 | 
						|
    return nullptr;
 | 
						|
  return TBAA->getTBAAStructInfo(QTy);
 | 
						|
}
 | 
						|
 | 
						|
llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
 | 
						|
  if (!TBAA)
 | 
						|
    return nullptr;
 | 
						|
  return TBAA->getBaseTypeInfo(QTy);
 | 
						|
}
 | 
						|
 | 
						|
llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
 | 
						|
  if (!TBAA)
 | 
						|
    return nullptr;
 | 
						|
  return TBAA->getAccessTagInfo(Info);
 | 
						|
}
 | 
						|
 | 
						|
TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
 | 
						|
                                                   TBAAAccessInfo TargetInfo) {
 | 
						|
  if (!TBAA)
 | 
						|
    return TBAAAccessInfo();
 | 
						|
  return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
 | 
						|
}
 | 
						|
 | 
						|
TBAAAccessInfo
 | 
						|
CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
 | 
						|
                                                   TBAAAccessInfo InfoB) {
 | 
						|
  if (!TBAA)
 | 
						|
    return TBAAAccessInfo();
 | 
						|
  return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
 | 
						|
}
 | 
						|
 | 
						|
TBAAAccessInfo
 | 
						|
CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
 | 
						|
                                              TBAAAccessInfo SrcInfo) {
 | 
						|
  if (!TBAA)
 | 
						|
    return TBAAAccessInfo();
 | 
						|
  return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
 | 
						|
                                                TBAAAccessInfo TBAAInfo) {
 | 
						|
  if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
 | 
						|
    Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::DecorateInstructionWithInvariantGroup(
 | 
						|
    llvm::Instruction *I, const CXXRecordDecl *RD) {
 | 
						|
  I->setMetadata(llvm::LLVMContext::MD_invariant_group,
 | 
						|
                 llvm::MDNode::get(getLLVMContext(), {}));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::Error(SourceLocation loc, StringRef message) {
 | 
						|
  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
 | 
						|
  getDiags().Report(Context.getFullLoc(loc), diagID) << message;
 | 
						|
}
 | 
						|
 | 
						|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
 | 
						|
/// specified stmt yet.
 | 
						|
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
 | 
						|
  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
 | 
						|
                                               "cannot compile this %0 yet");
 | 
						|
  std::string Msg = Type;
 | 
						|
  getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
 | 
						|
      << Msg << S->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
 | 
						|
/// specified decl yet.
 | 
						|
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
 | 
						|
  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
 | 
						|
                                               "cannot compile this %0 yet");
 | 
						|
  std::string Msg = Type;
 | 
						|
  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
 | 
						|
}
 | 
						|
 | 
						|
llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
 | 
						|
  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
 | 
						|
                                        const NamedDecl *D) const {
 | 
						|
  if (GV->hasDLLImportStorageClass())
 | 
						|
    return;
 | 
						|
  // Internal definitions always have default visibility.
 | 
						|
  if (GV->hasLocalLinkage()) {
 | 
						|
    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!D)
 | 
						|
    return;
 | 
						|
  // Set visibility for definitions, and for declarations if requested globally
 | 
						|
  // or set explicitly.
 | 
						|
  LinkageInfo LV = D->getLinkageAndVisibility();
 | 
						|
  if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
 | 
						|
      !GV->isDeclarationForLinker())
 | 
						|
    GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
 | 
						|
                                 llvm::GlobalValue *GV) {
 | 
						|
  if (GV->hasLocalLinkage())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // DLLImport explicitly marks the GV as external.
 | 
						|
  if (GV->hasDLLImportStorageClass())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const llvm::Triple &TT = CGM.getTriple();
 | 
						|
  if (TT.isWindowsGNUEnvironment()) {
 | 
						|
    // In MinGW, variables without DLLImport can still be automatically
 | 
						|
    // imported from a DLL by the linker; don't mark variables that
 | 
						|
    // potentially could come from another DLL as DSO local.
 | 
						|
    if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
 | 
						|
        !GV->isThreadLocal())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
 | 
						|
  // remain unresolved in the link, they can be resolved to zero, which is
 | 
						|
  // outside the current DSO.
 | 
						|
  if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Every other GV is local on COFF.
 | 
						|
  // Make an exception for windows OS in the triple: Some firmware builds use
 | 
						|
  // *-win32-macho triples. This (accidentally?) produced windows relocations
 | 
						|
  // without GOT tables in older clang versions; Keep this behaviour.
 | 
						|
  // FIXME: even thread local variables?
 | 
						|
  if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Only handle COFF and ELF for now.
 | 
						|
  if (!TT.isOSBinFormatELF())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is not an executable, don't assume anything is local.
 | 
						|
  const auto &CGOpts = CGM.getCodeGenOpts();
 | 
						|
  llvm::Reloc::Model RM = CGOpts.RelocationModel;
 | 
						|
  const auto &LOpts = CGM.getLangOpts();
 | 
						|
  if (RM != llvm::Reloc::Static && !LOpts.PIE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A definition cannot be preempted from an executable.
 | 
						|
  if (!GV->isDeclarationForLinker())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Most PIC code sequences that assume that a symbol is local cannot produce a
 | 
						|
  // 0 if it turns out the symbol is undefined. While this is ABI and relocation
 | 
						|
  // depended, it seems worth it to handle it here.
 | 
						|
  if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // PPC has no copy relocations and cannot use a plt entry as a symbol address.
 | 
						|
  llvm::Triple::ArchType Arch = TT.getArch();
 | 
						|
  if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
 | 
						|
      Arch == llvm::Triple::ppc64le)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we can use copy relocations we can assume it is local.
 | 
						|
  if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
 | 
						|
    if (!Var->isThreadLocal() &&
 | 
						|
        (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // If we can use a plt entry as the symbol address we can assume it
 | 
						|
  // is local.
 | 
						|
  // FIXME: This should work for PIE, but the gold linker doesn't support it.
 | 
						|
  if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Otherwise don't assume it is local.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
 | 
						|
  GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
 | 
						|
                                          GlobalDecl GD) const {
 | 
						|
  const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
 | 
						|
  // C++ destructors have a few C++ ABI specific special cases.
 | 
						|
  if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
 | 
						|
    getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  setDLLImportDLLExport(GV, D);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
 | 
						|
                                          const NamedDecl *D) const {
 | 
						|
  if (D && D->isExternallyVisible()) {
 | 
						|
    if (D->hasAttr<DLLImportAttr>())
 | 
						|
      GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
 | 
						|
    else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
 | 
						|
      GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
 | 
						|
                                    GlobalDecl GD) const {
 | 
						|
  setDLLImportDLLExport(GV, GD);
 | 
						|
  setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
 | 
						|
                                    const NamedDecl *D) const {
 | 
						|
  setDLLImportDLLExport(GV, D);
 | 
						|
  setGVPropertiesAux(GV, D);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
 | 
						|
                                       const NamedDecl *D) const {
 | 
						|
  setGlobalVisibility(GV, D);
 | 
						|
  setDSOLocal(GV);
 | 
						|
  GV->setPartition(CodeGenOpts.SymbolPartition);
 | 
						|
}
 | 
						|
 | 
						|
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
 | 
						|
  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
 | 
						|
      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
 | 
						|
      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
 | 
						|
      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
 | 
						|
      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
 | 
						|
}
 | 
						|
 | 
						|
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
 | 
						|
    CodeGenOptions::TLSModel M) {
 | 
						|
  switch (M) {
 | 
						|
  case CodeGenOptions::GeneralDynamicTLSModel:
 | 
						|
    return llvm::GlobalVariable::GeneralDynamicTLSModel;
 | 
						|
  case CodeGenOptions::LocalDynamicTLSModel:
 | 
						|
    return llvm::GlobalVariable::LocalDynamicTLSModel;
 | 
						|
  case CodeGenOptions::InitialExecTLSModel:
 | 
						|
    return llvm::GlobalVariable::InitialExecTLSModel;
 | 
						|
  case CodeGenOptions::LocalExecTLSModel:
 | 
						|
    return llvm::GlobalVariable::LocalExecTLSModel;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid TLS model!");
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
 | 
						|
  assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
 | 
						|
 | 
						|
  llvm::GlobalValue::ThreadLocalMode TLM;
 | 
						|
  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
 | 
						|
 | 
						|
  // Override the TLS model if it is explicitly specified.
 | 
						|
  if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
 | 
						|
    TLM = GetLLVMTLSModel(Attr->getModel());
 | 
						|
  }
 | 
						|
 | 
						|
  GV->setThreadLocalMode(TLM);
 | 
						|
}
 | 
						|
 | 
						|
static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
 | 
						|
                                          StringRef Name) {
 | 
						|
  const TargetInfo &Target = CGM.getTarget();
 | 
						|
  return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
 | 
						|
}
 | 
						|
 | 
						|
static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
 | 
						|
                                                 const CPUSpecificAttr *Attr,
 | 
						|
                                                 unsigned CPUIndex,
 | 
						|
                                                 raw_ostream &Out) {
 | 
						|
  // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
 | 
						|
  // supported.
 | 
						|
  if (Attr)
 | 
						|
    Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
 | 
						|
  else if (CGM.getTarget().supportsIFunc())
 | 
						|
    Out << ".resolver";
 | 
						|
}
 | 
						|
 | 
						|
static void AppendTargetMangling(const CodeGenModule &CGM,
 | 
						|
                                 const TargetAttr *Attr, raw_ostream &Out) {
 | 
						|
  if (Attr->isDefaultVersion())
 | 
						|
    return;
 | 
						|
 | 
						|
  Out << '.';
 | 
						|
  const TargetInfo &Target = CGM.getTarget();
 | 
						|
  ParsedTargetAttr Info =
 | 
						|
      Attr->parse([&Target](StringRef LHS, StringRef RHS) {
 | 
						|
        // Multiversioning doesn't allow "no-${feature}", so we can
 | 
						|
        // only have "+" prefixes here.
 | 
						|
        assert(LHS.startswith("+") && RHS.startswith("+") &&
 | 
						|
               "Features should always have a prefix.");
 | 
						|
        return Target.multiVersionSortPriority(LHS.substr(1)) >
 | 
						|
               Target.multiVersionSortPriority(RHS.substr(1));
 | 
						|
      });
 | 
						|
 | 
						|
  bool IsFirst = true;
 | 
						|
 | 
						|
  if (!Info.Architecture.empty()) {
 | 
						|
    IsFirst = false;
 | 
						|
    Out << "arch_" << Info.Architecture;
 | 
						|
  }
 | 
						|
 | 
						|
  for (StringRef Feat : Info.Features) {
 | 
						|
    if (!IsFirst)
 | 
						|
      Out << '_';
 | 
						|
    IsFirst = false;
 | 
						|
    Out << Feat.substr(1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
 | 
						|
                                      const NamedDecl *ND,
 | 
						|
                                      bool OmitMultiVersionMangling = false) {
 | 
						|
  SmallString<256> Buffer;
 | 
						|
  llvm::raw_svector_ostream Out(Buffer);
 | 
						|
  MangleContext &MC = CGM.getCXXABI().getMangleContext();
 | 
						|
  if (MC.shouldMangleDeclName(ND))
 | 
						|
    MC.mangleName(GD.getWithDecl(ND), Out);
 | 
						|
  else {
 | 
						|
    IdentifierInfo *II = ND->getIdentifier();
 | 
						|
    assert(II && "Attempt to mangle unnamed decl.");
 | 
						|
    const auto *FD = dyn_cast<FunctionDecl>(ND);
 | 
						|
 | 
						|
    if (FD &&
 | 
						|
        FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
 | 
						|
      Out << "__regcall3__" << II->getName();
 | 
						|
    } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
 | 
						|
               GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
 | 
						|
      Out << "__device_stub__" << II->getName();
 | 
						|
    } else {
 | 
						|
      Out << II->getName();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
 | 
						|
    if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
 | 
						|
      switch (FD->getMultiVersionKind()) {
 | 
						|
      case MultiVersionKind::CPUDispatch:
 | 
						|
      case MultiVersionKind::CPUSpecific:
 | 
						|
        AppendCPUSpecificCPUDispatchMangling(CGM,
 | 
						|
                                             FD->getAttr<CPUSpecificAttr>(),
 | 
						|
                                             GD.getMultiVersionIndex(), Out);
 | 
						|
        break;
 | 
						|
      case MultiVersionKind::Target:
 | 
						|
        AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
 | 
						|
        break;
 | 
						|
      case MultiVersionKind::None:
 | 
						|
        llvm_unreachable("None multiversion type isn't valid here");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return std::string(Out.str());
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
 | 
						|
                                            const FunctionDecl *FD) {
 | 
						|
  if (!FD->isMultiVersion())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Get the name of what this would be without the 'target' attribute.  This
 | 
						|
  // allows us to lookup the version that was emitted when this wasn't a
 | 
						|
  // multiversion function.
 | 
						|
  std::string NonTargetName =
 | 
						|
      getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
 | 
						|
  GlobalDecl OtherGD;
 | 
						|
  if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
 | 
						|
    assert(OtherGD.getCanonicalDecl()
 | 
						|
               .getDecl()
 | 
						|
               ->getAsFunction()
 | 
						|
               ->isMultiVersion() &&
 | 
						|
           "Other GD should now be a multiversioned function");
 | 
						|
    // OtherFD is the version of this function that was mangled BEFORE
 | 
						|
    // becoming a MultiVersion function.  It potentially needs to be updated.
 | 
						|
    const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
 | 
						|
                                      .getDecl()
 | 
						|
                                      ->getAsFunction()
 | 
						|
                                      ->getMostRecentDecl();
 | 
						|
    std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
 | 
						|
    // This is so that if the initial version was already the 'default'
 | 
						|
    // version, we don't try to update it.
 | 
						|
    if (OtherName != NonTargetName) {
 | 
						|
      // Remove instead of erase, since others may have stored the StringRef
 | 
						|
      // to this.
 | 
						|
      const auto ExistingRecord = Manglings.find(NonTargetName);
 | 
						|
      if (ExistingRecord != std::end(Manglings))
 | 
						|
        Manglings.remove(&(*ExistingRecord));
 | 
						|
      auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
 | 
						|
      MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
 | 
						|
      if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
 | 
						|
        Entry->setName(OtherName);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
 | 
						|
  GlobalDecl CanonicalGD = GD.getCanonicalDecl();
 | 
						|
 | 
						|
  // Some ABIs don't have constructor variants.  Make sure that base and
 | 
						|
  // complete constructors get mangled the same.
 | 
						|
  if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
 | 
						|
    if (!getTarget().getCXXABI().hasConstructorVariants()) {
 | 
						|
      CXXCtorType OrigCtorType = GD.getCtorType();
 | 
						|
      assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
 | 
						|
      if (OrigCtorType == Ctor_Base)
 | 
						|
        CanonicalGD = GlobalDecl(CD, Ctor_Complete);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto FoundName = MangledDeclNames.find(CanonicalGD);
 | 
						|
  if (FoundName != MangledDeclNames.end())
 | 
						|
    return FoundName->second;
 | 
						|
 | 
						|
  // Keep the first result in the case of a mangling collision.
 | 
						|
  const auto *ND = cast<NamedDecl>(GD.getDecl());
 | 
						|
  std::string MangledName = getMangledNameImpl(*this, GD, ND);
 | 
						|
 | 
						|
  // Ensure either we have different ABIs between host and device compilations,
 | 
						|
  // says host compilation following MSVC ABI but device compilation follows
 | 
						|
  // Itanium C++ ABI or, if they follow the same ABI, kernel names after
 | 
						|
  // mangling should be the same after name stubbing. The later checking is
 | 
						|
  // very important as the device kernel name being mangled in host-compilation
 | 
						|
  // is used to resolve the device binaries to be executed. Inconsistent naming
 | 
						|
  // result in undefined behavior. Even though we cannot check that naming
 | 
						|
  // directly between host- and device-compilations, the host- and
 | 
						|
  // device-mangling in host compilation could help catching certain ones.
 | 
						|
  assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
 | 
						|
         getLangOpts().CUDAIsDevice ||
 | 
						|
         (getContext().getAuxTargetInfo() &&
 | 
						|
          (getContext().getAuxTargetInfo()->getCXXABI() !=
 | 
						|
           getContext().getTargetInfo().getCXXABI())) ||
 | 
						|
         getCUDARuntime().getDeviceSideName(ND) ==
 | 
						|
             getMangledNameImpl(
 | 
						|
                 *this,
 | 
						|
                 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
 | 
						|
                 ND));
 | 
						|
 | 
						|
  auto Result = Manglings.insert(std::make_pair(MangledName, GD));
 | 
						|
  return MangledDeclNames[CanonicalGD] = Result.first->first();
 | 
						|
}
 | 
						|
 | 
						|
StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
 | 
						|
                                             const BlockDecl *BD) {
 | 
						|
  MangleContext &MangleCtx = getCXXABI().getMangleContext();
 | 
						|
  const Decl *D = GD.getDecl();
 | 
						|
 | 
						|
  SmallString<256> Buffer;
 | 
						|
  llvm::raw_svector_ostream Out(Buffer);
 | 
						|
  if (!D)
 | 
						|
    MangleCtx.mangleGlobalBlock(BD,
 | 
						|
      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
 | 
						|
  else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
 | 
						|
    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
 | 
						|
  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
 | 
						|
    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
 | 
						|
  else
 | 
						|
    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
 | 
						|
 | 
						|
  auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
 | 
						|
  return Result.first->first();
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
 | 
						|
  return getModule().getNamedValue(Name);
 | 
						|
}
 | 
						|
 | 
						|
/// AddGlobalCtor - Add a function to the list that will be called before
 | 
						|
/// main() runs.
 | 
						|
void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
 | 
						|
                                  llvm::Constant *AssociatedData) {
 | 
						|
  // FIXME: Type coercion of void()* types.
 | 
						|
  GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
 | 
						|
}
 | 
						|
 | 
						|
/// AddGlobalDtor - Add a function to the list that will be called
 | 
						|
/// when the module is unloaded.
 | 
						|
void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
 | 
						|
  if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
 | 
						|
    DtorsUsingAtExit[Priority].push_back(Dtor);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Type coercion of void()* types.
 | 
						|
  GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
 | 
						|
  if (Fns.empty()) return;
 | 
						|
 | 
						|
  // Ctor function type is void()*.
 | 
						|
  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
 | 
						|
  llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
 | 
						|
      TheModule.getDataLayout().getProgramAddressSpace());
 | 
						|
 | 
						|
  // Get the type of a ctor entry, { i32, void ()*, i8* }.
 | 
						|
  llvm::StructType *CtorStructTy = llvm::StructType::get(
 | 
						|
      Int32Ty, CtorPFTy, VoidPtrTy);
 | 
						|
 | 
						|
  // Construct the constructor and destructor arrays.
 | 
						|
  ConstantInitBuilder builder(*this);
 | 
						|
  auto ctors = builder.beginArray(CtorStructTy);
 | 
						|
  for (const auto &I : Fns) {
 | 
						|
    auto ctor = ctors.beginStruct(CtorStructTy);
 | 
						|
    ctor.addInt(Int32Ty, I.Priority);
 | 
						|
    ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
 | 
						|
    if (I.AssociatedData)
 | 
						|
      ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
 | 
						|
    else
 | 
						|
      ctor.addNullPointer(VoidPtrTy);
 | 
						|
    ctor.finishAndAddTo(ctors);
 | 
						|
  }
 | 
						|
 | 
						|
  auto list =
 | 
						|
    ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
 | 
						|
                                /*constant*/ false,
 | 
						|
                                llvm::GlobalValue::AppendingLinkage);
 | 
						|
 | 
						|
  // The LTO linker doesn't seem to like it when we set an alignment
 | 
						|
  // on appending variables.  Take it off as a workaround.
 | 
						|
  list->setAlignment(llvm::None);
 | 
						|
 | 
						|
  Fns.clear();
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalValue::LinkageTypes
 | 
						|
CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
 | 
						|
  const auto *D = cast<FunctionDecl>(GD.getDecl());
 | 
						|
 | 
						|
  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
 | 
						|
 | 
						|
  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
 | 
						|
    return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
 | 
						|
 | 
						|
  if (isa<CXXConstructorDecl>(D) &&
 | 
						|
      cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
 | 
						|
      Context.getTargetInfo().getCXXABI().isMicrosoft()) {
 | 
						|
    // Our approach to inheriting constructors is fundamentally different from
 | 
						|
    // that used by the MS ABI, so keep our inheriting constructor thunks
 | 
						|
    // internal rather than trying to pick an unambiguous mangling for them.
 | 
						|
    return llvm::GlobalValue::InternalLinkage;
 | 
						|
  }
 | 
						|
 | 
						|
  return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
 | 
						|
}
 | 
						|
 | 
						|
llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
 | 
						|
  llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
 | 
						|
  if (!MDS) return nullptr;
 | 
						|
 | 
						|
  return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
 | 
						|
                                              const CGFunctionInfo &Info,
 | 
						|
                                              llvm::Function *F) {
 | 
						|
  unsigned CallingConv;
 | 
						|
  llvm::AttributeList PAL;
 | 
						|
  ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
 | 
						|
  F->setAttributes(PAL);
 | 
						|
  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
 | 
						|
}
 | 
						|
 | 
						|
static void removeImageAccessQualifier(std::string& TyName) {
 | 
						|
  std::string ReadOnlyQual("__read_only");
 | 
						|
  std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
 | 
						|
  if (ReadOnlyPos != std::string::npos)
 | 
						|
    // "+ 1" for the space after access qualifier.
 | 
						|
    TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
 | 
						|
  else {
 | 
						|
    std::string WriteOnlyQual("__write_only");
 | 
						|
    std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
 | 
						|
    if (WriteOnlyPos != std::string::npos)
 | 
						|
      TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
 | 
						|
    else {
 | 
						|
      std::string ReadWriteQual("__read_write");
 | 
						|
      std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
 | 
						|
      if (ReadWritePos != std::string::npos)
 | 
						|
        TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Returns the address space id that should be produced to the
 | 
						|
// kernel_arg_addr_space metadata. This is always fixed to the ids
 | 
						|
// as specified in the SPIR 2.0 specification in order to differentiate
 | 
						|
// for example in clGetKernelArgInfo() implementation between the address
 | 
						|
// spaces with targets without unique mapping to the OpenCL address spaces
 | 
						|
// (basically all single AS CPUs).
 | 
						|
static unsigned ArgInfoAddressSpace(LangAS AS) {
 | 
						|
  switch (AS) {
 | 
						|
  case LangAS::opencl_global:   return 1;
 | 
						|
  case LangAS::opencl_constant: return 2;
 | 
						|
  case LangAS::opencl_local:    return 3;
 | 
						|
  case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
 | 
						|
  default:
 | 
						|
    return 0; // Assume private.
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
 | 
						|
                                         const FunctionDecl *FD,
 | 
						|
                                         CodeGenFunction *CGF) {
 | 
						|
  assert(((FD && CGF) || (!FD && !CGF)) &&
 | 
						|
         "Incorrect use - FD and CGF should either be both null or not!");
 | 
						|
  // Create MDNodes that represent the kernel arg metadata.
 | 
						|
  // Each MDNode is a list in the form of "key", N number of values which is
 | 
						|
  // the same number of values as their are kernel arguments.
 | 
						|
 | 
						|
  const PrintingPolicy &Policy = Context.getPrintingPolicy();
 | 
						|
 | 
						|
  // MDNode for the kernel argument address space qualifiers.
 | 
						|
  SmallVector<llvm::Metadata *, 8> addressQuals;
 | 
						|
 | 
						|
  // MDNode for the kernel argument access qualifiers (images only).
 | 
						|
  SmallVector<llvm::Metadata *, 8> accessQuals;
 | 
						|
 | 
						|
  // MDNode for the kernel argument type names.
 | 
						|
  SmallVector<llvm::Metadata *, 8> argTypeNames;
 | 
						|
 | 
						|
  // MDNode for the kernel argument base type names.
 | 
						|
  SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
 | 
						|
 | 
						|
  // MDNode for the kernel argument type qualifiers.
 | 
						|
  SmallVector<llvm::Metadata *, 8> argTypeQuals;
 | 
						|
 | 
						|
  // MDNode for the kernel argument names.
 | 
						|
  SmallVector<llvm::Metadata *, 8> argNames;
 | 
						|
 | 
						|
  if (FD && CGF)
 | 
						|
    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
 | 
						|
      const ParmVarDecl *parm = FD->getParamDecl(i);
 | 
						|
      QualType ty = parm->getType();
 | 
						|
      std::string typeQuals;
 | 
						|
 | 
						|
      if (ty->isPointerType()) {
 | 
						|
        QualType pointeeTy = ty->getPointeeType();
 | 
						|
 | 
						|
        // Get address qualifier.
 | 
						|
        addressQuals.push_back(
 | 
						|
            llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
 | 
						|
                ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
 | 
						|
 | 
						|
        // Get argument type name.
 | 
						|
        std::string typeName =
 | 
						|
            pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
 | 
						|
 | 
						|
        // Turn "unsigned type" to "utype"
 | 
						|
        std::string::size_type pos = typeName.find("unsigned");
 | 
						|
        if (pointeeTy.isCanonical() && pos != std::string::npos)
 | 
						|
          typeName.erase(pos + 1, 8);
 | 
						|
 | 
						|
        argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
 | 
						|
 | 
						|
        std::string baseTypeName =
 | 
						|
            pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
 | 
						|
                Policy) +
 | 
						|
            "*";
 | 
						|
 | 
						|
        // Turn "unsigned type" to "utype"
 | 
						|
        pos = baseTypeName.find("unsigned");
 | 
						|
        if (pos != std::string::npos)
 | 
						|
          baseTypeName.erase(pos + 1, 8);
 | 
						|
 | 
						|
        argBaseTypeNames.push_back(
 | 
						|
            llvm::MDString::get(VMContext, baseTypeName));
 | 
						|
 | 
						|
        // Get argument type qualifiers:
 | 
						|
        if (ty.isRestrictQualified())
 | 
						|
          typeQuals = "restrict";
 | 
						|
        if (pointeeTy.isConstQualified() ||
 | 
						|
            (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
 | 
						|
          typeQuals += typeQuals.empty() ? "const" : " const";
 | 
						|
        if (pointeeTy.isVolatileQualified())
 | 
						|
          typeQuals += typeQuals.empty() ? "volatile" : " volatile";
 | 
						|
      } else {
 | 
						|
        uint32_t AddrSpc = 0;
 | 
						|
        bool isPipe = ty->isPipeType();
 | 
						|
        if (ty->isImageType() || isPipe)
 | 
						|
          AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
 | 
						|
 | 
						|
        addressQuals.push_back(
 | 
						|
            llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
 | 
						|
 | 
						|
        // Get argument type name.
 | 
						|
        std::string typeName;
 | 
						|
        if (isPipe)
 | 
						|
          typeName = ty.getCanonicalType()
 | 
						|
                         ->castAs<PipeType>()
 | 
						|
                         ->getElementType()
 | 
						|
                         .getAsString(Policy);
 | 
						|
        else
 | 
						|
          typeName = ty.getUnqualifiedType().getAsString(Policy);
 | 
						|
 | 
						|
        // Turn "unsigned type" to "utype"
 | 
						|
        std::string::size_type pos = typeName.find("unsigned");
 | 
						|
        if (ty.isCanonical() && pos != std::string::npos)
 | 
						|
          typeName.erase(pos + 1, 8);
 | 
						|
 | 
						|
        std::string baseTypeName;
 | 
						|
        if (isPipe)
 | 
						|
          baseTypeName = ty.getCanonicalType()
 | 
						|
                             ->castAs<PipeType>()
 | 
						|
                             ->getElementType()
 | 
						|
                             .getCanonicalType()
 | 
						|
                             .getAsString(Policy);
 | 
						|
        else
 | 
						|
          baseTypeName =
 | 
						|
              ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
 | 
						|
 | 
						|
        // Remove access qualifiers on images
 | 
						|
        // (as they are inseparable from type in clang implementation,
 | 
						|
        // but OpenCL spec provides a special query to get access qualifier
 | 
						|
        // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
 | 
						|
        if (ty->isImageType()) {
 | 
						|
          removeImageAccessQualifier(typeName);
 | 
						|
          removeImageAccessQualifier(baseTypeName);
 | 
						|
        }
 | 
						|
 | 
						|
        argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
 | 
						|
 | 
						|
        // Turn "unsigned type" to "utype"
 | 
						|
        pos = baseTypeName.find("unsigned");
 | 
						|
        if (pos != std::string::npos)
 | 
						|
          baseTypeName.erase(pos + 1, 8);
 | 
						|
 | 
						|
        argBaseTypeNames.push_back(
 | 
						|
            llvm::MDString::get(VMContext, baseTypeName));
 | 
						|
 | 
						|
        if (isPipe)
 | 
						|
          typeQuals = "pipe";
 | 
						|
      }
 | 
						|
 | 
						|
      argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
 | 
						|
 | 
						|
      // Get image and pipe access qualifier:
 | 
						|
      if (ty->isImageType() || ty->isPipeType()) {
 | 
						|
        const Decl *PDecl = parm;
 | 
						|
        if (auto *TD = dyn_cast<TypedefType>(ty))
 | 
						|
          PDecl = TD->getDecl();
 | 
						|
        const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
 | 
						|
        if (A && A->isWriteOnly())
 | 
						|
          accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
 | 
						|
        else if (A && A->isReadWrite())
 | 
						|
          accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
 | 
						|
        else
 | 
						|
          accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
 | 
						|
      } else
 | 
						|
        accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
 | 
						|
 | 
						|
      // Get argument name.
 | 
						|
      argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
 | 
						|
    }
 | 
						|
 | 
						|
  Fn->setMetadata("kernel_arg_addr_space",
 | 
						|
                  llvm::MDNode::get(VMContext, addressQuals));
 | 
						|
  Fn->setMetadata("kernel_arg_access_qual",
 | 
						|
                  llvm::MDNode::get(VMContext, accessQuals));
 | 
						|
  Fn->setMetadata("kernel_arg_type",
 | 
						|
                  llvm::MDNode::get(VMContext, argTypeNames));
 | 
						|
  Fn->setMetadata("kernel_arg_base_type",
 | 
						|
                  llvm::MDNode::get(VMContext, argBaseTypeNames));
 | 
						|
  Fn->setMetadata("kernel_arg_type_qual",
 | 
						|
                  llvm::MDNode::get(VMContext, argTypeQuals));
 | 
						|
  if (getCodeGenOpts().EmitOpenCLArgMetadata)
 | 
						|
    Fn->setMetadata("kernel_arg_name",
 | 
						|
                    llvm::MDNode::get(VMContext, argNames));
 | 
						|
}
 | 
						|
 | 
						|
/// Determines whether the language options require us to model
 | 
						|
/// unwind exceptions.  We treat -fexceptions as mandating this
 | 
						|
/// except under the fragile ObjC ABI with only ObjC exceptions
 | 
						|
/// enabled.  This means, for example, that C with -fexceptions
 | 
						|
/// enables this.
 | 
						|
static bool hasUnwindExceptions(const LangOptions &LangOpts) {
 | 
						|
  // If exceptions are completely disabled, obviously this is false.
 | 
						|
  if (!LangOpts.Exceptions) return false;
 | 
						|
 | 
						|
  // If C++ exceptions are enabled, this is true.
 | 
						|
  if (LangOpts.CXXExceptions) return true;
 | 
						|
 | 
						|
  // If ObjC exceptions are enabled, this depends on the ABI.
 | 
						|
  if (LangOpts.ObjCExceptions) {
 | 
						|
    return LangOpts.ObjCRuntime.hasUnwindExceptions();
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
 | 
						|
                                                      const CXXMethodDecl *MD) {
 | 
						|
  // Check that the type metadata can ever actually be used by a call.
 | 
						|
  if (!CGM.getCodeGenOpts().LTOUnit ||
 | 
						|
      !CGM.HasHiddenLTOVisibility(MD->getParent()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only functions whose address can be taken with a member function pointer
 | 
						|
  // need this sort of type metadata.
 | 
						|
  return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
 | 
						|
         !isa<CXXDestructorDecl>(MD);
 | 
						|
}
 | 
						|
 | 
						|
std::vector<const CXXRecordDecl *>
 | 
						|
CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
 | 
						|
  llvm::SetVector<const CXXRecordDecl *> MostBases;
 | 
						|
 | 
						|
  std::function<void (const CXXRecordDecl *)> CollectMostBases;
 | 
						|
  CollectMostBases = [&](const CXXRecordDecl *RD) {
 | 
						|
    if (RD->getNumBases() == 0)
 | 
						|
      MostBases.insert(RD);
 | 
						|
    for (const CXXBaseSpecifier &B : RD->bases())
 | 
						|
      CollectMostBases(B.getType()->getAsCXXRecordDecl());
 | 
						|
  };
 | 
						|
  CollectMostBases(RD);
 | 
						|
  return MostBases.takeVector();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
 | 
						|
                                                           llvm::Function *F) {
 | 
						|
  llvm::AttrBuilder B;
 | 
						|
 | 
						|
  if (CodeGenOpts.UnwindTables)
 | 
						|
    B.addAttribute(llvm::Attribute::UWTable);
 | 
						|
 | 
						|
  if (CodeGenOpts.StackClashProtector)
 | 
						|
    B.addAttribute("probe-stack", "inline-asm");
 | 
						|
 | 
						|
  if (!hasUnwindExceptions(LangOpts))
 | 
						|
    B.addAttribute(llvm::Attribute::NoUnwind);
 | 
						|
 | 
						|
  if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
 | 
						|
    if (LangOpts.getStackProtector() == LangOptions::SSPOn)
 | 
						|
      B.addAttribute(llvm::Attribute::StackProtect);
 | 
						|
    else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
 | 
						|
      B.addAttribute(llvm::Attribute::StackProtectStrong);
 | 
						|
    else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
 | 
						|
      B.addAttribute(llvm::Attribute::StackProtectReq);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!D) {
 | 
						|
    // If we don't have a declaration to control inlining, the function isn't
 | 
						|
    // explicitly marked as alwaysinline for semantic reasons, and inlining is
 | 
						|
    // disabled, mark the function as noinline.
 | 
						|
    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
 | 
						|
        CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
 | 
						|
      B.addAttribute(llvm::Attribute::NoInline);
 | 
						|
 | 
						|
    F->addAttributes(llvm::AttributeList::FunctionIndex, B);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Track whether we need to add the optnone LLVM attribute,
 | 
						|
  // starting with the default for this optimization level.
 | 
						|
  bool ShouldAddOptNone =
 | 
						|
      !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
 | 
						|
  // We can't add optnone in the following cases, it won't pass the verifier.
 | 
						|
  ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
 | 
						|
  ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
 | 
						|
 | 
						|
  // Add optnone, but do so only if the function isn't always_inline.
 | 
						|
  if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
 | 
						|
      !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
 | 
						|
    B.addAttribute(llvm::Attribute::OptimizeNone);
 | 
						|
 | 
						|
    // OptimizeNone implies noinline; we should not be inlining such functions.
 | 
						|
    B.addAttribute(llvm::Attribute::NoInline);
 | 
						|
 | 
						|
    // We still need to handle naked functions even though optnone subsumes
 | 
						|
    // much of their semantics.
 | 
						|
    if (D->hasAttr<NakedAttr>())
 | 
						|
      B.addAttribute(llvm::Attribute::Naked);
 | 
						|
 | 
						|
    // OptimizeNone wins over OptimizeForSize and MinSize.
 | 
						|
    F->removeFnAttr(llvm::Attribute::OptimizeForSize);
 | 
						|
    F->removeFnAttr(llvm::Attribute::MinSize);
 | 
						|
  } else if (D->hasAttr<NakedAttr>()) {
 | 
						|
    // Naked implies noinline: we should not be inlining such functions.
 | 
						|
    B.addAttribute(llvm::Attribute::Naked);
 | 
						|
    B.addAttribute(llvm::Attribute::NoInline);
 | 
						|
  } else if (D->hasAttr<NoDuplicateAttr>()) {
 | 
						|
    B.addAttribute(llvm::Attribute::NoDuplicate);
 | 
						|
  } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
 | 
						|
    // Add noinline if the function isn't always_inline.
 | 
						|
    B.addAttribute(llvm::Attribute::NoInline);
 | 
						|
  } else if (D->hasAttr<AlwaysInlineAttr>() &&
 | 
						|
             !F->hasFnAttribute(llvm::Attribute::NoInline)) {
 | 
						|
    // (noinline wins over always_inline, and we can't specify both in IR)
 | 
						|
    B.addAttribute(llvm::Attribute::AlwaysInline);
 | 
						|
  } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
 | 
						|
    // If we're not inlining, then force everything that isn't always_inline to
 | 
						|
    // carry an explicit noinline attribute.
 | 
						|
    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
 | 
						|
      B.addAttribute(llvm::Attribute::NoInline);
 | 
						|
  } else {
 | 
						|
    // Otherwise, propagate the inline hint attribute and potentially use its
 | 
						|
    // absence to mark things as noinline.
 | 
						|
    if (auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
      // Search function and template pattern redeclarations for inline.
 | 
						|
      auto CheckForInline = [](const FunctionDecl *FD) {
 | 
						|
        auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
 | 
						|
          return Redecl->isInlineSpecified();
 | 
						|
        };
 | 
						|
        if (any_of(FD->redecls(), CheckRedeclForInline))
 | 
						|
          return true;
 | 
						|
        const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
 | 
						|
        if (!Pattern)
 | 
						|
          return false;
 | 
						|
        return any_of(Pattern->redecls(), CheckRedeclForInline);
 | 
						|
      };
 | 
						|
      if (CheckForInline(FD)) {
 | 
						|
        B.addAttribute(llvm::Attribute::InlineHint);
 | 
						|
      } else if (CodeGenOpts.getInlining() ==
 | 
						|
                     CodeGenOptions::OnlyHintInlining &&
 | 
						|
                 !FD->isInlined() &&
 | 
						|
                 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
 | 
						|
        B.addAttribute(llvm::Attribute::NoInline);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add other optimization related attributes if we are optimizing this
 | 
						|
  // function.
 | 
						|
  if (!D->hasAttr<OptimizeNoneAttr>()) {
 | 
						|
    if (D->hasAttr<ColdAttr>()) {
 | 
						|
      if (!ShouldAddOptNone)
 | 
						|
        B.addAttribute(llvm::Attribute::OptimizeForSize);
 | 
						|
      B.addAttribute(llvm::Attribute::Cold);
 | 
						|
    }
 | 
						|
 | 
						|
    if (D->hasAttr<MinSizeAttr>())
 | 
						|
      B.addAttribute(llvm::Attribute::MinSize);
 | 
						|
  }
 | 
						|
 | 
						|
  F->addAttributes(llvm::AttributeList::FunctionIndex, B);
 | 
						|
 | 
						|
  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
 | 
						|
  if (alignment)
 | 
						|
    F->setAlignment(llvm::Align(alignment));
 | 
						|
 | 
						|
  if (!D->hasAttr<AlignedAttr>())
 | 
						|
    if (LangOpts.FunctionAlignment)
 | 
						|
      F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
 | 
						|
 | 
						|
  // Some C++ ABIs require 2-byte alignment for member functions, in order to
 | 
						|
  // reserve a bit for differentiating between virtual and non-virtual member
 | 
						|
  // functions. If the current target's C++ ABI requires this and this is a
 | 
						|
  // member function, set its alignment accordingly.
 | 
						|
  if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
 | 
						|
    if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
 | 
						|
      F->setAlignment(llvm::Align(2));
 | 
						|
  }
 | 
						|
 | 
						|
  // In the cross-dso CFI mode with canonical jump tables, we want !type
 | 
						|
  // attributes on definitions only.
 | 
						|
  if (CodeGenOpts.SanitizeCfiCrossDso &&
 | 
						|
      CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
 | 
						|
    if (auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
      // Skip available_externally functions. They won't be codegen'ed in the
 | 
						|
      // current module anyway.
 | 
						|
      if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
 | 
						|
        CreateFunctionTypeMetadataForIcall(FD, F);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit type metadata on member functions for member function pointer checks.
 | 
						|
  // These are only ever necessary on definitions; we're guaranteed that the
 | 
						|
  // definition will be present in the LTO unit as a result of LTO visibility.
 | 
						|
  auto *MD = dyn_cast<CXXMethodDecl>(D);
 | 
						|
  if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
 | 
						|
    for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
 | 
						|
      llvm::Metadata *Id =
 | 
						|
          CreateMetadataIdentifierForType(Context.getMemberPointerType(
 | 
						|
              MD->getType(), Context.getRecordType(Base).getTypePtr()));
 | 
						|
      F->addTypeMetadata(0, Id);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
 | 
						|
  const Decl *D = GD.getDecl();
 | 
						|
  if (dyn_cast_or_null<NamedDecl>(D))
 | 
						|
    setGVProperties(GV, GD);
 | 
						|
  else
 | 
						|
    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
 | 
						|
 | 
						|
  if (D && D->hasAttr<UsedAttr>())
 | 
						|
    addUsedGlobal(GV);
 | 
						|
 | 
						|
  if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
 | 
						|
    const auto *VD = cast<VarDecl>(D);
 | 
						|
    if (VD->getType().isConstQualified() &&
 | 
						|
        VD->getStorageDuration() == SD_Static)
 | 
						|
      addUsedGlobal(GV);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
 | 
						|
                                                llvm::AttrBuilder &Attrs) {
 | 
						|
  // Add target-cpu and target-features attributes to functions. If
 | 
						|
  // we have a decl for the function and it has a target attribute then
 | 
						|
  // parse that and add it to the feature set.
 | 
						|
  StringRef TargetCPU = getTarget().getTargetOpts().CPU;
 | 
						|
  std::vector<std::string> Features;
 | 
						|
  const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
 | 
						|
  FD = FD ? FD->getMostRecentDecl() : FD;
 | 
						|
  const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
 | 
						|
  const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
 | 
						|
  bool AddedAttr = false;
 | 
						|
  if (TD || SD) {
 | 
						|
    llvm::StringMap<bool> FeatureMap;
 | 
						|
    getContext().getFunctionFeatureMap(FeatureMap, GD);
 | 
						|
 | 
						|
    // Produce the canonical string for this set of features.
 | 
						|
    for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
 | 
						|
      Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
 | 
						|
 | 
						|
    // Now add the target-cpu and target-features to the function.
 | 
						|
    // While we populated the feature map above, we still need to
 | 
						|
    // get and parse the target attribute so we can get the cpu for
 | 
						|
    // the function.
 | 
						|
    if (TD) {
 | 
						|
      ParsedTargetAttr ParsedAttr = TD->parse();
 | 
						|
      if (ParsedAttr.Architecture != "" &&
 | 
						|
          getTarget().isValidCPUName(ParsedAttr.Architecture))
 | 
						|
        TargetCPU = ParsedAttr.Architecture;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Otherwise just add the existing target cpu and target features to the
 | 
						|
    // function.
 | 
						|
    Features = getTarget().getTargetOpts().Features;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TargetCPU != "") {
 | 
						|
    Attrs.addAttribute("target-cpu", TargetCPU);
 | 
						|
    AddedAttr = true;
 | 
						|
  }
 | 
						|
  if (!Features.empty()) {
 | 
						|
    llvm::sort(Features);
 | 
						|
    Attrs.addAttribute("target-features", llvm::join(Features, ","));
 | 
						|
    AddedAttr = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return AddedAttr;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
 | 
						|
                                          llvm::GlobalObject *GO) {
 | 
						|
  const Decl *D = GD.getDecl();
 | 
						|
  SetCommonAttributes(GD, GO);
 | 
						|
 | 
						|
  if (D) {
 | 
						|
    if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
 | 
						|
      if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
 | 
						|
        GV->addAttribute("bss-section", SA->getName());
 | 
						|
      if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
 | 
						|
        GV->addAttribute("data-section", SA->getName());
 | 
						|
      if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
 | 
						|
        GV->addAttribute("rodata-section", SA->getName());
 | 
						|
      if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
 | 
						|
        GV->addAttribute("relro-section", SA->getName());
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *F = dyn_cast<llvm::Function>(GO)) {
 | 
						|
      if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
 | 
						|
        if (!D->getAttr<SectionAttr>())
 | 
						|
          F->addFnAttr("implicit-section-name", SA->getName());
 | 
						|
 | 
						|
      llvm::AttrBuilder Attrs;
 | 
						|
      if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
 | 
						|
        // We know that GetCPUAndFeaturesAttributes will always have the
 | 
						|
        // newest set, since it has the newest possible FunctionDecl, so the
 | 
						|
        // new ones should replace the old.
 | 
						|
        F->removeFnAttr("target-cpu");
 | 
						|
        F->removeFnAttr("target-features");
 | 
						|
        F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (const auto *CSA = D->getAttr<CodeSegAttr>())
 | 
						|
      GO->setSection(CSA->getName());
 | 
						|
    else if (const auto *SA = D->getAttr<SectionAttr>())
 | 
						|
      GO->setSection(SA->getName());
 | 
						|
  }
 | 
						|
 | 
						|
  getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
 | 
						|
                                                  llvm::Function *F,
 | 
						|
                                                  const CGFunctionInfo &FI) {
 | 
						|
  const Decl *D = GD.getDecl();
 | 
						|
  SetLLVMFunctionAttributes(GD, FI, F);
 | 
						|
  SetLLVMFunctionAttributesForDefinition(D, F);
 | 
						|
 | 
						|
  F->setLinkage(llvm::Function::InternalLinkage);
 | 
						|
 | 
						|
  setNonAliasAttributes(GD, F);
 | 
						|
}
 | 
						|
 | 
						|
static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
 | 
						|
  // Set linkage and visibility in case we never see a definition.
 | 
						|
  LinkageInfo LV = ND->getLinkageAndVisibility();
 | 
						|
  // Don't set internal linkage on declarations.
 | 
						|
  // "extern_weak" is overloaded in LLVM; we probably should have
 | 
						|
  // separate linkage types for this.
 | 
						|
  if (isExternallyVisible(LV.getLinkage()) &&
 | 
						|
      (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
 | 
						|
    GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
 | 
						|
                                                       llvm::Function *F) {
 | 
						|
  // Only if we are checking indirect calls.
 | 
						|
  if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Non-static class methods are handled via vtable or member function pointer
 | 
						|
  // checks elsewhere.
 | 
						|
  if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
 | 
						|
  F->addTypeMetadata(0, MD);
 | 
						|
  F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
 | 
						|
 | 
						|
  // Emit a hash-based bit set entry for cross-DSO calls.
 | 
						|
  if (CodeGenOpts.SanitizeCfiCrossDso)
 | 
						|
    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
 | 
						|
      F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
 | 
						|
                                          bool IsIncompleteFunction,
 | 
						|
                                          bool IsThunk) {
 | 
						|
 | 
						|
  if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
 | 
						|
    // If this is an intrinsic function, set the function's attributes
 | 
						|
    // to the intrinsic's attributes.
 | 
						|
    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const auto *FD = cast<FunctionDecl>(GD.getDecl());
 | 
						|
 | 
						|
  if (!IsIncompleteFunction)
 | 
						|
    SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
 | 
						|
 | 
						|
  // Add the Returned attribute for "this", except for iOS 5 and earlier
 | 
						|
  // where substantial code, including the libstdc++ dylib, was compiled with
 | 
						|
  // GCC and does not actually return "this".
 | 
						|
  if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
 | 
						|
      !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
 | 
						|
    assert(!F->arg_empty() &&
 | 
						|
           F->arg_begin()->getType()
 | 
						|
             ->canLosslesslyBitCastTo(F->getReturnType()) &&
 | 
						|
           "unexpected this return");
 | 
						|
    F->addAttribute(1, llvm::Attribute::Returned);
 | 
						|
  }
 | 
						|
 | 
						|
  // Only a few attributes are set on declarations; these may later be
 | 
						|
  // overridden by a definition.
 | 
						|
 | 
						|
  setLinkageForGV(F, FD);
 | 
						|
  setGVProperties(F, FD);
 | 
						|
 | 
						|
  // Setup target-specific attributes.
 | 
						|
  if (!IsIncompleteFunction && F->isDeclaration())
 | 
						|
    getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
 | 
						|
 | 
						|
  if (const auto *CSA = FD->getAttr<CodeSegAttr>())
 | 
						|
    F->setSection(CSA->getName());
 | 
						|
  else if (const auto *SA = FD->getAttr<SectionAttr>())
 | 
						|
     F->setSection(SA->getName());
 | 
						|
 | 
						|
  if (FD->isInlineBuiltinDeclaration()) {
 | 
						|
    F->addAttribute(llvm::AttributeList::FunctionIndex,
 | 
						|
                    llvm::Attribute::NoBuiltin);
 | 
						|
  }
 | 
						|
 | 
						|
  if (FD->isReplaceableGlobalAllocationFunction()) {
 | 
						|
    // A replaceable global allocation function does not act like a builtin by
 | 
						|
    // default, only if it is invoked by a new-expression or delete-expression.
 | 
						|
    F->addAttribute(llvm::AttributeList::FunctionIndex,
 | 
						|
                    llvm::Attribute::NoBuiltin);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
 | 
						|
    F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | 
						|
  else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
 | 
						|
    if (MD->isVirtual())
 | 
						|
      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | 
						|
 | 
						|
  // Don't emit entries for function declarations in the cross-DSO mode. This
 | 
						|
  // is handled with better precision by the receiving DSO. But if jump tables
 | 
						|
  // are non-canonical then we need type metadata in order to produce the local
 | 
						|
  // jump table.
 | 
						|
  if (!CodeGenOpts.SanitizeCfiCrossDso ||
 | 
						|
      !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
 | 
						|
    CreateFunctionTypeMetadataForIcall(FD, F);
 | 
						|
 | 
						|
  if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
 | 
						|
    getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
 | 
						|
 | 
						|
  if (const auto *CB = FD->getAttr<CallbackAttr>()) {
 | 
						|
    // Annotate the callback behavior as metadata:
 | 
						|
    //  - The callback callee (as argument number).
 | 
						|
    //  - The callback payloads (as argument numbers).
 | 
						|
    llvm::LLVMContext &Ctx = F->getContext();
 | 
						|
    llvm::MDBuilder MDB(Ctx);
 | 
						|
 | 
						|
    // The payload indices are all but the first one in the encoding. The first
 | 
						|
    // identifies the callback callee.
 | 
						|
    int CalleeIdx = *CB->encoding_begin();
 | 
						|
    ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
 | 
						|
    F->addMetadata(llvm::LLVMContext::MD_callback,
 | 
						|
                   *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
 | 
						|
                                               CalleeIdx, PayloadIndices,
 | 
						|
                                               /* VarArgsArePassed */ false)}));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV, bool SkipCheck) {
 | 
						|
  assert(SkipCheck || (!GV->isDeclaration() &&
 | 
						|
                       "Only globals with definition can force usage."));
 | 
						|
  LLVMUsed.emplace_back(GV);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
 | 
						|
  assert(!GV->isDeclaration() &&
 | 
						|
         "Only globals with definition can force usage.");
 | 
						|
  LLVMCompilerUsed.emplace_back(GV);
 | 
						|
}
 | 
						|
 | 
						|
static void emitUsed(CodeGenModule &CGM, StringRef Name,
 | 
						|
                     std::vector<llvm::WeakTrackingVH> &List) {
 | 
						|
  // Don't create llvm.used if there is no need.
 | 
						|
  if (List.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Convert List to what ConstantArray needs.
 | 
						|
  SmallVector<llvm::Constant*, 8> UsedArray;
 | 
						|
  UsedArray.resize(List.size());
 | 
						|
  for (unsigned i = 0, e = List.size(); i != e; ++i) {
 | 
						|
    UsedArray[i] =
 | 
						|
        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
 | 
						|
            cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  if (UsedArray.empty())
 | 
						|
    return;
 | 
						|
  llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
 | 
						|
 | 
						|
  auto *GV = new llvm::GlobalVariable(
 | 
						|
      CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
 | 
						|
      llvm::ConstantArray::get(ATy, UsedArray), Name);
 | 
						|
 | 
						|
  GV->setSection("llvm.metadata");
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::emitLLVMUsed() {
 | 
						|
  emitUsed(*this, "llvm.used", LLVMUsed);
 | 
						|
  emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
 | 
						|
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
 | 
						|
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
 | 
						|
  llvm::SmallString<32> Opt;
 | 
						|
  getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
 | 
						|
  if (Opt.empty())
 | 
						|
    return;
 | 
						|
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
 | 
						|
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::AddDependentLib(StringRef Lib) {
 | 
						|
  auto &C = getLLVMContext();
 | 
						|
  if (getTarget().getTriple().isOSBinFormatELF()) {
 | 
						|
      ELFDependentLibraries.push_back(
 | 
						|
        llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::SmallString<24> Opt;
 | 
						|
  getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
 | 
						|
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
 | 
						|
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
 | 
						|
}
 | 
						|
 | 
						|
/// Add link options implied by the given module, including modules
 | 
						|
/// it depends on, using a postorder walk.
 | 
						|
static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
 | 
						|
                                    SmallVectorImpl<llvm::MDNode *> &Metadata,
 | 
						|
                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
 | 
						|
  // Import this module's parent.
 | 
						|
  if (Mod->Parent && Visited.insert(Mod->Parent).second) {
 | 
						|
    addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
 | 
						|
  }
 | 
						|
 | 
						|
  // Import this module's dependencies.
 | 
						|
  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
 | 
						|
    if (Visited.insert(Mod->Imports[I - 1]).second)
 | 
						|
      addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add linker options to link against the libraries/frameworks
 | 
						|
  // described by this module.
 | 
						|
  llvm::LLVMContext &Context = CGM.getLLVMContext();
 | 
						|
  bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
 | 
						|
 | 
						|
  // For modules that use export_as for linking, use that module
 | 
						|
  // name instead.
 | 
						|
  if (Mod->UseExportAsModuleLinkName)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
 | 
						|
    // Link against a framework.  Frameworks are currently Darwin only, so we
 | 
						|
    // don't to ask TargetCodeGenInfo for the spelling of the linker option.
 | 
						|
    if (Mod->LinkLibraries[I-1].IsFramework) {
 | 
						|
      llvm::Metadata *Args[2] = {
 | 
						|
          llvm::MDString::get(Context, "-framework"),
 | 
						|
          llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
 | 
						|
 | 
						|
      Metadata.push_back(llvm::MDNode::get(Context, Args));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Link against a library.
 | 
						|
    if (IsELF) {
 | 
						|
      llvm::Metadata *Args[2] = {
 | 
						|
          llvm::MDString::get(Context, "lib"),
 | 
						|
          llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
 | 
						|
      };
 | 
						|
      Metadata.push_back(llvm::MDNode::get(Context, Args));
 | 
						|
    } else {
 | 
						|
      llvm::SmallString<24> Opt;
 | 
						|
      CGM.getTargetCodeGenInfo().getDependentLibraryOption(
 | 
						|
          Mod->LinkLibraries[I - 1].Library, Opt);
 | 
						|
      auto *OptString = llvm::MDString::get(Context, Opt);
 | 
						|
      Metadata.push_back(llvm::MDNode::get(Context, OptString));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitModuleLinkOptions() {
 | 
						|
  // Collect the set of all of the modules we want to visit to emit link
 | 
						|
  // options, which is essentially the imported modules and all of their
 | 
						|
  // non-explicit child modules.
 | 
						|
  llvm::SetVector<clang::Module *> LinkModules;
 | 
						|
  llvm::SmallPtrSet<clang::Module *, 16> Visited;
 | 
						|
  SmallVector<clang::Module *, 16> Stack;
 | 
						|
 | 
						|
  // Seed the stack with imported modules.
 | 
						|
  for (Module *M : ImportedModules) {
 | 
						|
    // Do not add any link flags when an implementation TU of a module imports
 | 
						|
    // a header of that same module.
 | 
						|
    if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
 | 
						|
        !getLangOpts().isCompilingModule())
 | 
						|
      continue;
 | 
						|
    if (Visited.insert(M).second)
 | 
						|
      Stack.push_back(M);
 | 
						|
  }
 | 
						|
 | 
						|
  // Find all of the modules to import, making a little effort to prune
 | 
						|
  // non-leaf modules.
 | 
						|
  while (!Stack.empty()) {
 | 
						|
    clang::Module *Mod = Stack.pop_back_val();
 | 
						|
 | 
						|
    bool AnyChildren = false;
 | 
						|
 | 
						|
    // Visit the submodules of this module.
 | 
						|
    for (const auto &SM : Mod->submodules()) {
 | 
						|
      // Skip explicit children; they need to be explicitly imported to be
 | 
						|
      // linked against.
 | 
						|
      if (SM->IsExplicit)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (Visited.insert(SM).second) {
 | 
						|
        Stack.push_back(SM);
 | 
						|
        AnyChildren = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We didn't find any children, so add this module to the list of
 | 
						|
    // modules to link against.
 | 
						|
    if (!AnyChildren) {
 | 
						|
      LinkModules.insert(Mod);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add link options for all of the imported modules in reverse topological
 | 
						|
  // order.  We don't do anything to try to order import link flags with respect
 | 
						|
  // to linker options inserted by things like #pragma comment().
 | 
						|
  SmallVector<llvm::MDNode *, 16> MetadataArgs;
 | 
						|
  Visited.clear();
 | 
						|
  for (Module *M : LinkModules)
 | 
						|
    if (Visited.insert(M).second)
 | 
						|
      addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
 | 
						|
  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
 | 
						|
  LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
 | 
						|
 | 
						|
  // Add the linker options metadata flag.
 | 
						|
  auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
 | 
						|
  for (auto *MD : LinkerOptionsMetadata)
 | 
						|
    NMD->addOperand(MD);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitDeferred() {
 | 
						|
  // Emit deferred declare target declarations.
 | 
						|
  if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
 | 
						|
    getOpenMPRuntime().emitDeferredTargetDecls();
 | 
						|
 | 
						|
  // Emit code for any potentially referenced deferred decls.  Since a
 | 
						|
  // previously unused static decl may become used during the generation of code
 | 
						|
  // for a static function, iterate until no changes are made.
 | 
						|
 | 
						|
  if (!DeferredVTables.empty()) {
 | 
						|
    EmitDeferredVTables();
 | 
						|
 | 
						|
    // Emitting a vtable doesn't directly cause more vtables to
 | 
						|
    // become deferred, although it can cause functions to be
 | 
						|
    // emitted that then need those vtables.
 | 
						|
    assert(DeferredVTables.empty());
 | 
						|
  }
 | 
						|
 | 
						|
  // Stop if we're out of both deferred vtables and deferred declarations.
 | 
						|
  if (DeferredDeclsToEmit.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
 | 
						|
  // work, it will not interfere with this.
 | 
						|
  std::vector<GlobalDecl> CurDeclsToEmit;
 | 
						|
  CurDeclsToEmit.swap(DeferredDeclsToEmit);
 | 
						|
 | 
						|
  for (GlobalDecl &D : CurDeclsToEmit) {
 | 
						|
    // We should call GetAddrOfGlobal with IsForDefinition set to true in order
 | 
						|
    // to get GlobalValue with exactly the type we need, not something that
 | 
						|
    // might had been created for another decl with the same mangled name but
 | 
						|
    // different type.
 | 
						|
    llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
 | 
						|
        GetAddrOfGlobal(D, ForDefinition));
 | 
						|
 | 
						|
    // In case of different address spaces, we may still get a cast, even with
 | 
						|
    // IsForDefinition equal to true. Query mangled names table to get
 | 
						|
    // GlobalValue.
 | 
						|
    if (!GV)
 | 
						|
      GV = GetGlobalValue(getMangledName(D));
 | 
						|
 | 
						|
    // Make sure GetGlobalValue returned non-null.
 | 
						|
    assert(GV);
 | 
						|
 | 
						|
    // Check to see if we've already emitted this.  This is necessary
 | 
						|
    // for a couple of reasons: first, decls can end up in the
 | 
						|
    // deferred-decls queue multiple times, and second, decls can end
 | 
						|
    // up with definitions in unusual ways (e.g. by an extern inline
 | 
						|
    // function acquiring a strong function redefinition).  Just
 | 
						|
    // ignore these cases.
 | 
						|
    if (!GV->isDeclaration())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this is OpenMP, check if it is legal to emit this global normally.
 | 
						|
    if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, emit the definition and move on to the next one.
 | 
						|
    EmitGlobalDefinition(D, GV);
 | 
						|
 | 
						|
    // If we found out that we need to emit more decls, do that recursively.
 | 
						|
    // This has the advantage that the decls are emitted in a DFS and related
 | 
						|
    // ones are close together, which is convenient for testing.
 | 
						|
    if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
 | 
						|
      EmitDeferred();
 | 
						|
      assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitVTablesOpportunistically() {
 | 
						|
  // Try to emit external vtables as available_externally if they have emitted
 | 
						|
  // all inlined virtual functions.  It runs after EmitDeferred() and therefore
 | 
						|
  // is not allowed to create new references to things that need to be emitted
 | 
						|
  // lazily. Note that it also uses fact that we eagerly emitting RTTI.
 | 
						|
 | 
						|
  assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
 | 
						|
         && "Only emit opportunistic vtables with optimizations");
 | 
						|
 | 
						|
  for (const CXXRecordDecl *RD : OpportunisticVTables) {
 | 
						|
    assert(getVTables().isVTableExternal(RD) &&
 | 
						|
           "This queue should only contain external vtables");
 | 
						|
    if (getCXXABI().canSpeculativelyEmitVTable(RD))
 | 
						|
      VTables.GenerateClassData(RD);
 | 
						|
  }
 | 
						|
  OpportunisticVTables.clear();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitGlobalAnnotations() {
 | 
						|
  if (Annotations.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Create a new global variable for the ConstantStruct in the Module.
 | 
						|
  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
 | 
						|
    Annotations[0]->getType(), Annotations.size()), Annotations);
 | 
						|
  auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
 | 
						|
                                      llvm::GlobalValue::AppendingLinkage,
 | 
						|
                                      Array, "llvm.global.annotations");
 | 
						|
  gv->setSection(AnnotationSection);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
 | 
						|
  llvm::Constant *&AStr = AnnotationStrings[Str];
 | 
						|
  if (AStr)
 | 
						|
    return AStr;
 | 
						|
 | 
						|
  // Not found yet, create a new global.
 | 
						|
  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
 | 
						|
  auto *gv =
 | 
						|
      new llvm::GlobalVariable(getModule(), s->getType(), true,
 | 
						|
                               llvm::GlobalValue::PrivateLinkage, s, ".str");
 | 
						|
  gv->setSection(AnnotationSection);
 | 
						|
  gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | 
						|
  AStr = gv;
 | 
						|
  return gv;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
 | 
						|
  SourceManager &SM = getContext().getSourceManager();
 | 
						|
  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
 | 
						|
  if (PLoc.isValid())
 | 
						|
    return EmitAnnotationString(PLoc.getFilename());
 | 
						|
  return EmitAnnotationString(SM.getBufferName(Loc));
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
 | 
						|
  SourceManager &SM = getContext().getSourceManager();
 | 
						|
  PresumedLoc PLoc = SM.getPresumedLoc(L);
 | 
						|
  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
 | 
						|
    SM.getExpansionLineNumber(L);
 | 
						|
  return llvm::ConstantInt::get(Int32Ty, LineNo);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
 | 
						|
                                                const AnnotateAttr *AA,
 | 
						|
                                                SourceLocation L) {
 | 
						|
  // Get the globals for file name, annotation, and the line number.
 | 
						|
  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
 | 
						|
                 *UnitGV = EmitAnnotationUnit(L),
 | 
						|
                 *LineNoCst = EmitAnnotationLineNo(L);
 | 
						|
 | 
						|
  llvm::Constant *ASZeroGV = GV;
 | 
						|
  if (GV->getAddressSpace() != 0) {
 | 
						|
    ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
 | 
						|
                   GV, GV->getValueType()->getPointerTo(0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the ConstantStruct for the global annotation.
 | 
						|
  llvm::Constant *Fields[4] = {
 | 
						|
    llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
 | 
						|
    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
 | 
						|
    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
 | 
						|
    LineNoCst
 | 
						|
  };
 | 
						|
  return llvm::ConstantStruct::getAnon(Fields);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
 | 
						|
                                         llvm::GlobalValue *GV) {
 | 
						|
  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
 | 
						|
  // Get the struct elements for these annotations.
 | 
						|
  for (const auto *I : D->specific_attrs<AnnotateAttr>())
 | 
						|
    Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
 | 
						|
                                           llvm::Function *Fn,
 | 
						|
                                           SourceLocation Loc) const {
 | 
						|
  const auto &SanitizerBL = getContext().getSanitizerBlacklist();
 | 
						|
  // Blacklist by function name.
 | 
						|
  if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
 | 
						|
    return true;
 | 
						|
  // Blacklist by location.
 | 
						|
  if (Loc.isValid())
 | 
						|
    return SanitizerBL.isBlacklistedLocation(Kind, Loc);
 | 
						|
  // If location is unknown, this may be a compiler-generated function. Assume
 | 
						|
  // it's located in the main file.
 | 
						|
  auto &SM = Context.getSourceManager();
 | 
						|
  if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
 | 
						|
    return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
 | 
						|
                                           SourceLocation Loc, QualType Ty,
 | 
						|
                                           StringRef Category) const {
 | 
						|
  // For now globals can be blacklisted only in ASan and KASan.
 | 
						|
  const SanitizerMask EnabledAsanMask =
 | 
						|
      LangOpts.Sanitize.Mask &
 | 
						|
      (SanitizerKind::Address | SanitizerKind::KernelAddress |
 | 
						|
       SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
 | 
						|
       SanitizerKind::MemTag);
 | 
						|
  if (!EnabledAsanMask)
 | 
						|
    return false;
 | 
						|
  const auto &SanitizerBL = getContext().getSanitizerBlacklist();
 | 
						|
  if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
 | 
						|
    return true;
 | 
						|
  if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
 | 
						|
    return true;
 | 
						|
  // Check global type.
 | 
						|
  if (!Ty.isNull()) {
 | 
						|
    // Drill down the array types: if global variable of a fixed type is
 | 
						|
    // blacklisted, we also don't instrument arrays of them.
 | 
						|
    while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
 | 
						|
      Ty = AT->getElementType();
 | 
						|
    Ty = Ty.getCanonicalType().getUnqualifiedType();
 | 
						|
    // We allow to blacklist only record types (classes, structs etc.)
 | 
						|
    if (Ty->isRecordType()) {
 | 
						|
      std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
 | 
						|
      if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
 | 
						|
                                   StringRef Category) const {
 | 
						|
  const auto &XRayFilter = getContext().getXRayFilter();
 | 
						|
  using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
 | 
						|
  auto Attr = ImbueAttr::NONE;
 | 
						|
  if (Loc.isValid())
 | 
						|
    Attr = XRayFilter.shouldImbueLocation(Loc, Category);
 | 
						|
  if (Attr == ImbueAttr::NONE)
 | 
						|
    Attr = XRayFilter.shouldImbueFunction(Fn->getName());
 | 
						|
  switch (Attr) {
 | 
						|
  case ImbueAttr::NONE:
 | 
						|
    return false;
 | 
						|
  case ImbueAttr::ALWAYS:
 | 
						|
    Fn->addFnAttr("function-instrument", "xray-always");
 | 
						|
    break;
 | 
						|
  case ImbueAttr::ALWAYS_ARG1:
 | 
						|
    Fn->addFnAttr("function-instrument", "xray-always");
 | 
						|
    Fn->addFnAttr("xray-log-args", "1");
 | 
						|
    break;
 | 
						|
  case ImbueAttr::NEVER:
 | 
						|
    Fn->addFnAttr("function-instrument", "xray-never");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
 | 
						|
  // Never defer when EmitAllDecls is specified.
 | 
						|
  if (LangOpts.EmitAllDecls)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (CodeGenOpts.KeepStaticConsts) {
 | 
						|
    const auto *VD = dyn_cast<VarDecl>(Global);
 | 
						|
    if (VD && VD->getType().isConstQualified() &&
 | 
						|
        VD->getStorageDuration() == SD_Static)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return getContext().DeclMustBeEmitted(Global);
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
 | 
						|
    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | 
						|
      // Implicit template instantiations may change linkage if they are later
 | 
						|
      // explicitly instantiated, so they should not be emitted eagerly.
 | 
						|
      return false;
 | 
						|
    // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
 | 
						|
    // not emit them eagerly unless we sure that the function must be emitted on
 | 
						|
    // the host.
 | 
						|
    if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
 | 
						|
        !LangOpts.OpenMPIsDevice &&
 | 
						|
        !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
 | 
						|
        !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  if (const auto *VD = dyn_cast<VarDecl>(Global))
 | 
						|
    if (Context.getInlineVariableDefinitionKind(VD) ==
 | 
						|
        ASTContext::InlineVariableDefinitionKind::WeakUnknown)
 | 
						|
      // A definition of an inline constexpr static data member may change
 | 
						|
      // linkage later if it's redeclared outside the class.
 | 
						|
      return false;
 | 
						|
  // If OpenMP is enabled and threadprivates must be generated like TLS, delay
 | 
						|
  // codegen for global variables, because they may be marked as threadprivate.
 | 
						|
  if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
 | 
						|
      getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
 | 
						|
      !isTypeConstant(Global->getType(), false) &&
 | 
						|
      !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
 | 
						|
    const CXXUuidofExpr* E) {
 | 
						|
  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
 | 
						|
  // well-formed.
 | 
						|
  StringRef Uuid = E->getUuidStr();
 | 
						|
  std::string Name = "_GUID_" + Uuid.lower();
 | 
						|
  std::replace(Name.begin(), Name.end(), '-', '_');
 | 
						|
 | 
						|
  // The UUID descriptor should be pointer aligned.
 | 
						|
  CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
 | 
						|
 | 
						|
  // Look for an existing global.
 | 
						|
  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
 | 
						|
    return ConstantAddress(GV, Alignment);
 | 
						|
 | 
						|
  llvm::Constant *Init = EmitUuidofInitializer(Uuid);
 | 
						|
  assert(Init && "failed to initialize as constant");
 | 
						|
 | 
						|
  auto *GV = new llvm::GlobalVariable(
 | 
						|
      getModule(), Init->getType(),
 | 
						|
      /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
 | 
						|
  if (supportsCOMDAT())
 | 
						|
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
 | 
						|
  setDSOLocal(GV);
 | 
						|
  return ConstantAddress(GV, Alignment);
 | 
						|
}
 | 
						|
 | 
						|
ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
 | 
						|
  const AliasAttr *AA = VD->getAttr<AliasAttr>();
 | 
						|
  assert(AA && "No alias?");
 | 
						|
 | 
						|
  CharUnits Alignment = getContext().getDeclAlign(VD);
 | 
						|
  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
 | 
						|
 | 
						|
  // See if there is already something with the target's name in the module.
 | 
						|
  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
 | 
						|
  if (Entry) {
 | 
						|
    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
 | 
						|
    auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
 | 
						|
    return ConstantAddress(Ptr, Alignment);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *Aliasee;
 | 
						|
  if (isa<llvm::FunctionType>(DeclTy))
 | 
						|
    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
 | 
						|
                                      GlobalDecl(cast<FunctionDecl>(VD)),
 | 
						|
                                      /*ForVTable=*/false);
 | 
						|
  else
 | 
						|
    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
 | 
						|
                                    llvm::PointerType::getUnqual(DeclTy),
 | 
						|
                                    nullptr);
 | 
						|
 | 
						|
  auto *F = cast<llvm::GlobalValue>(Aliasee);
 | 
						|
  F->setLinkage(llvm::Function::ExternalWeakLinkage);
 | 
						|
  WeakRefReferences.insert(F);
 | 
						|
 | 
						|
  return ConstantAddress(Aliasee, Alignment);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitGlobal(GlobalDecl GD) {
 | 
						|
  const auto *Global = cast<ValueDecl>(GD.getDecl());
 | 
						|
 | 
						|
  // Weak references don't produce any output by themselves.
 | 
						|
  if (Global->hasAttr<WeakRefAttr>())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is an alias definition (which otherwise looks like a declaration)
 | 
						|
  // emit it now.
 | 
						|
  if (Global->hasAttr<AliasAttr>())
 | 
						|
    return EmitAliasDefinition(GD);
 | 
						|
 | 
						|
  // IFunc like an alias whose value is resolved at runtime by calling resolver.
 | 
						|
  if (Global->hasAttr<IFuncAttr>())
 | 
						|
    return emitIFuncDefinition(GD);
 | 
						|
 | 
						|
  // If this is a cpu_dispatch multiversion function, emit the resolver.
 | 
						|
  if (Global->hasAttr<CPUDispatchAttr>())
 | 
						|
    return emitCPUDispatchDefinition(GD);
 | 
						|
 | 
						|
  // If this is CUDA, be selective about which declarations we emit.
 | 
						|
  if (LangOpts.CUDA) {
 | 
						|
    if (LangOpts.CUDAIsDevice) {
 | 
						|
      if (!Global->hasAttr<CUDADeviceAttr>() &&
 | 
						|
          !Global->hasAttr<CUDAGlobalAttr>() &&
 | 
						|
          !Global->hasAttr<CUDAConstantAttr>() &&
 | 
						|
          !Global->hasAttr<CUDASharedAttr>() &&
 | 
						|
          !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
 | 
						|
        return;
 | 
						|
    } else {
 | 
						|
      // We need to emit host-side 'shadows' for all global
 | 
						|
      // device-side variables because the CUDA runtime needs their
 | 
						|
      // size and host-side address in order to provide access to
 | 
						|
      // their device-side incarnations.
 | 
						|
 | 
						|
      // So device-only functions are the only things we skip.
 | 
						|
      if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
 | 
						|
          Global->hasAttr<CUDADeviceAttr>())
 | 
						|
        return;
 | 
						|
 | 
						|
      assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
 | 
						|
             "Expected Variable or Function");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (LangOpts.OpenMP) {
 | 
						|
    // If this is OpenMP, check if it is legal to emit this global normally.
 | 
						|
    if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
 | 
						|
      return;
 | 
						|
    if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
 | 
						|
      if (MustBeEmitted(Global))
 | 
						|
        EmitOMPDeclareReduction(DRD);
 | 
						|
      return;
 | 
						|
    } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
 | 
						|
      if (MustBeEmitted(Global))
 | 
						|
        EmitOMPDeclareMapper(DMD);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ignore declarations, they will be emitted on their first use.
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
 | 
						|
    // Forward declarations are emitted lazily on first use.
 | 
						|
    if (!FD->doesThisDeclarationHaveABody()) {
 | 
						|
      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
 | 
						|
        return;
 | 
						|
 | 
						|
      StringRef MangledName = getMangledName(GD);
 | 
						|
 | 
						|
      // Compute the function info and LLVM type.
 | 
						|
      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
 | 
						|
      llvm::Type *Ty = getTypes().GetFunctionType(FI);
 | 
						|
 | 
						|
      GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
 | 
						|
                              /*DontDefer=*/false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    const auto *VD = cast<VarDecl>(Global);
 | 
						|
    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
 | 
						|
    if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
 | 
						|
        !Context.isMSStaticDataMemberInlineDefinition(VD)) {
 | 
						|
      if (LangOpts.OpenMP) {
 | 
						|
        // Emit declaration of the must-be-emitted declare target variable.
 | 
						|
        if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
 | 
						|
                OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
 | 
						|
          bool UnifiedMemoryEnabled =
 | 
						|
              getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
 | 
						|
          if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
 | 
						|
              !UnifiedMemoryEnabled) {
 | 
						|
            (void)GetAddrOfGlobalVar(VD);
 | 
						|
          } else {
 | 
						|
            assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
 | 
						|
                    (*Res == OMPDeclareTargetDeclAttr::MT_To &&
 | 
						|
                     UnifiedMemoryEnabled)) &&
 | 
						|
                   "Link clause or to clause with unified memory expected.");
 | 
						|
            (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
 | 
						|
          }
 | 
						|
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If this declaration may have caused an inline variable definition to
 | 
						|
      // change linkage, make sure that it's emitted.
 | 
						|
      if (Context.getInlineVariableDefinitionKind(VD) ==
 | 
						|
          ASTContext::InlineVariableDefinitionKind::Strong)
 | 
						|
        GetAddrOfGlobalVar(VD);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Defer code generation to first use when possible, e.g. if this is an inline
 | 
						|
  // function. If the global must always be emitted, do it eagerly if possible
 | 
						|
  // to benefit from cache locality.
 | 
						|
  if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
 | 
						|
    // Emit the definition if it can't be deferred.
 | 
						|
    EmitGlobalDefinition(GD);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
    // Check if this must be emitted as declare variant.
 | 
						|
  if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
 | 
						|
      OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we're deferring emission of a C++ variable with an
 | 
						|
  // initializer, remember the order in which it appeared in the file.
 | 
						|
  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
 | 
						|
      cast<VarDecl>(Global)->hasInit()) {
 | 
						|
    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
 | 
						|
    CXXGlobalInits.push_back(nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef MangledName = getMangledName(GD);
 | 
						|
  if (GetGlobalValue(MangledName) != nullptr) {
 | 
						|
    // The value has already been used and should therefore be emitted.
 | 
						|
    addDeferredDeclToEmit(GD);
 | 
						|
  } else if (MustBeEmitted(Global)) {
 | 
						|
    // The value must be emitted, but cannot be emitted eagerly.
 | 
						|
    assert(!MayBeEmittedEagerly(Global));
 | 
						|
    addDeferredDeclToEmit(GD);
 | 
						|
  } else {
 | 
						|
    // Otherwise, remember that we saw a deferred decl with this name.  The
 | 
						|
    // first use of the mangled name will cause it to move into
 | 
						|
    // DeferredDeclsToEmit.
 | 
						|
    DeferredDecls[MangledName] = GD;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Check if T is a class type with a destructor that's not dllimport.
 | 
						|
static bool HasNonDllImportDtor(QualType T) {
 | 
						|
  if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
 | 
						|
    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
 | 
						|
      if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct FunctionIsDirectlyRecursive
 | 
						|
      : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
 | 
						|
    const StringRef Name;
 | 
						|
    const Builtin::Context &BI;
 | 
						|
    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
 | 
						|
        : Name(N), BI(C) {}
 | 
						|
 | 
						|
    bool VisitCallExpr(const CallExpr *E) {
 | 
						|
      const FunctionDecl *FD = E->getDirectCallee();
 | 
						|
      if (!FD)
 | 
						|
        return false;
 | 
						|
      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
 | 
						|
      if (Attr && Name == Attr->getLabel())
 | 
						|
        return true;
 | 
						|
      unsigned BuiltinID = FD->getBuiltinID();
 | 
						|
      if (!BuiltinID || !BI.isLibFunction(BuiltinID))
 | 
						|
        return false;
 | 
						|
      StringRef BuiltinName = BI.getName(BuiltinID);
 | 
						|
      if (BuiltinName.startswith("__builtin_") &&
 | 
						|
          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitStmt(const Stmt *S) {
 | 
						|
      for (const Stmt *Child : S->children())
 | 
						|
        if (Child && this->Visit(Child))
 | 
						|
          return true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // Make sure we're not referencing non-imported vars or functions.
 | 
						|
  struct DLLImportFunctionVisitor
 | 
						|
      : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
 | 
						|
    bool SafeToInline = true;
 | 
						|
 | 
						|
    bool shouldVisitImplicitCode() const { return true; }
 | 
						|
 | 
						|
    bool VisitVarDecl(VarDecl *VD) {
 | 
						|
      if (VD->getTLSKind()) {
 | 
						|
        // A thread-local variable cannot be imported.
 | 
						|
        SafeToInline = false;
 | 
						|
        return SafeToInline;
 | 
						|
      }
 | 
						|
 | 
						|
      // A variable definition might imply a destructor call.
 | 
						|
      if (VD->isThisDeclarationADefinition())
 | 
						|
        SafeToInline = !HasNonDllImportDtor(VD->getType());
 | 
						|
 | 
						|
      return SafeToInline;
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
 | 
						|
      if (const auto *D = E->getTemporary()->getDestructor())
 | 
						|
        SafeToInline = D->hasAttr<DLLImportAttr>();
 | 
						|
      return SafeToInline;
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitDeclRefExpr(DeclRefExpr *E) {
 | 
						|
      ValueDecl *VD = E->getDecl();
 | 
						|
      if (isa<FunctionDecl>(VD))
 | 
						|
        SafeToInline = VD->hasAttr<DLLImportAttr>();
 | 
						|
      else if (VarDecl *V = dyn_cast<VarDecl>(VD))
 | 
						|
        SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
 | 
						|
      return SafeToInline;
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitCXXConstructExpr(CXXConstructExpr *E) {
 | 
						|
      SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
 | 
						|
      return SafeToInline;
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
 | 
						|
      CXXMethodDecl *M = E->getMethodDecl();
 | 
						|
      if (!M) {
 | 
						|
        // Call through a pointer to member function. This is safe to inline.
 | 
						|
        SafeToInline = true;
 | 
						|
      } else {
 | 
						|
        SafeToInline = M->hasAttr<DLLImportAttr>();
 | 
						|
      }
 | 
						|
      return SafeToInline;
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
 | 
						|
      SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
 | 
						|
      return SafeToInline;
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitCXXNewExpr(CXXNewExpr *E) {
 | 
						|
      SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
 | 
						|
      return SafeToInline;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
// isTriviallyRecursive - Check if this function calls another
 | 
						|
// decl that, because of the asm attribute or the other decl being a builtin,
 | 
						|
// ends up pointing to itself.
 | 
						|
bool
 | 
						|
CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
 | 
						|
  StringRef Name;
 | 
						|
  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
 | 
						|
    // asm labels are a special kind of mangling we have to support.
 | 
						|
    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
 | 
						|
    if (!Attr)
 | 
						|
      return false;
 | 
						|
    Name = Attr->getLabel();
 | 
						|
  } else {
 | 
						|
    Name = FD->getName();
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
 | 
						|
  const Stmt *Body = FD->getBody();
 | 
						|
  return Body ? Walker.Visit(Body) : false;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
 | 
						|
  if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
 | 
						|
    return true;
 | 
						|
  const auto *F = cast<FunctionDecl>(GD.getDecl());
 | 
						|
  if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (F->hasAttr<DLLImportAttr>()) {
 | 
						|
    // Check whether it would be safe to inline this dllimport function.
 | 
						|
    DLLImportFunctionVisitor Visitor;
 | 
						|
    Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
 | 
						|
    if (!Visitor.SafeToInline)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
 | 
						|
      // Implicit destructor invocations aren't captured in the AST, so the
 | 
						|
      // check above can't see them. Check for them manually here.
 | 
						|
      for (const Decl *Member : Dtor->getParent()->decls())
 | 
						|
        if (isa<FieldDecl>(Member))
 | 
						|
          if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
 | 
						|
            return false;
 | 
						|
      for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
 | 
						|
        if (HasNonDllImportDtor(B.getType()))
 | 
						|
          return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // PR9614. Avoid cases where the source code is lying to us. An available
 | 
						|
  // externally function should have an equivalent function somewhere else,
 | 
						|
  // but a function that calls itself is clearly not equivalent to the real
 | 
						|
  // implementation.
 | 
						|
  // This happens in glibc's btowc and in some configure checks.
 | 
						|
  return !isTriviallyRecursive(F);
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
 | 
						|
  return CodeGenOpts.OptimizationLevel > 0;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
 | 
						|
                                                       llvm::GlobalValue *GV) {
 | 
						|
  const auto *FD = cast<FunctionDecl>(GD.getDecl());
 | 
						|
 | 
						|
  if (FD->isCPUSpecificMultiVersion()) {
 | 
						|
    auto *Spec = FD->getAttr<CPUSpecificAttr>();
 | 
						|
    for (unsigned I = 0; I < Spec->cpus_size(); ++I)
 | 
						|
      EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
 | 
						|
    // Requires multiple emits.
 | 
						|
  } else
 | 
						|
    EmitGlobalFunctionDefinition(GD, GV);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
 | 
						|
    GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
 | 
						|
  assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
 | 
						|
         OpenMPRuntime && "Expected OpenMP device mode.");
 | 
						|
  const auto *D = cast<FunctionDecl>(OldGD.getDecl());
 | 
						|
 | 
						|
  // Compute the function info and LLVM type.
 | 
						|
  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
 | 
						|
  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
 | 
						|
 | 
						|
  // Get or create the prototype for the function.
 | 
						|
  if (!GV || (GV->getType()->getElementType() != Ty)) {
 | 
						|
    GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
 | 
						|
        getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
 | 
						|
        /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
 | 
						|
        ForDefinition));
 | 
						|
    SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
 | 
						|
                          /*IsIncompleteFunction=*/false,
 | 
						|
                          /*IsThunk=*/false);
 | 
						|
  }
 | 
						|
  // We need to set linkage and visibility on the function before
 | 
						|
  // generating code for it because various parts of IR generation
 | 
						|
  // want to propagate this information down (e.g. to local static
 | 
						|
  // declarations).
 | 
						|
  auto *Fn = cast<llvm::Function>(GV);
 | 
						|
  setFunctionLinkage(OldGD, Fn);
 | 
						|
 | 
						|
  // FIXME: this is redundant with part of
 | 
						|
  // setFunctionDefinitionAttributes
 | 
						|
  setGVProperties(Fn, OldGD);
 | 
						|
 | 
						|
  MaybeHandleStaticInExternC(D, Fn);
 | 
						|
 | 
						|
  maybeSetTrivialComdat(*D, *Fn);
 | 
						|
 | 
						|
  CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
 | 
						|
 | 
						|
  setNonAliasAttributes(OldGD, Fn);
 | 
						|
  SetLLVMFunctionAttributesForDefinition(D, Fn);
 | 
						|
 | 
						|
  if (D->hasAttr<AnnotateAttr>())
 | 
						|
    AddGlobalAnnotations(D, Fn);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
 | 
						|
  const auto *D = cast<ValueDecl>(GD.getDecl());
 | 
						|
 | 
						|
  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
 | 
						|
                                 Context.getSourceManager(),
 | 
						|
                                 "Generating code for declaration");
 | 
						|
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    // At -O0, don't generate IR for functions with available_externally
 | 
						|
    // linkage.
 | 
						|
    if (!shouldEmitFunction(GD))
 | 
						|
      return;
 | 
						|
 | 
						|
    llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
 | 
						|
      std::string Name;
 | 
						|
      llvm::raw_string_ostream OS(Name);
 | 
						|
      FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
 | 
						|
                               /*Qualified=*/true);
 | 
						|
      return Name;
 | 
						|
    });
 | 
						|
 | 
						|
    if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
      // Make sure to emit the definition(s) before we emit the thunks.
 | 
						|
      // This is necessary for the generation of certain thunks.
 | 
						|
      if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
 | 
						|
        ABI->emitCXXStructor(GD);
 | 
						|
      else if (FD->isMultiVersion())
 | 
						|
        EmitMultiVersionFunctionDefinition(GD, GV);
 | 
						|
      else
 | 
						|
        EmitGlobalFunctionDefinition(GD, GV);
 | 
						|
 | 
						|
      if (Method->isVirtual())
 | 
						|
        getVTables().EmitThunks(GD);
 | 
						|
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FD->isMultiVersion())
 | 
						|
      return EmitMultiVersionFunctionDefinition(GD, GV);
 | 
						|
    return EmitGlobalFunctionDefinition(GD, GV);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *VD = dyn_cast<VarDecl>(D))
 | 
						|
    return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
 | 
						|
 | 
						|
  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
 | 
						|
}
 | 
						|
 | 
						|
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
 | 
						|
                                                      llvm::Function *NewFn);
 | 
						|
 | 
						|
static unsigned
 | 
						|
TargetMVPriority(const TargetInfo &TI,
 | 
						|
                 const CodeGenFunction::MultiVersionResolverOption &RO) {
 | 
						|
  unsigned Priority = 0;
 | 
						|
  for (StringRef Feat : RO.Conditions.Features)
 | 
						|
    Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
 | 
						|
 | 
						|
  if (!RO.Conditions.Architecture.empty())
 | 
						|
    Priority = std::max(
 | 
						|
        Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
 | 
						|
  return Priority;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::emitMultiVersionFunctions() {
 | 
						|
  for (GlobalDecl GD : MultiVersionFuncs) {
 | 
						|
    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
 | 
						|
    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | 
						|
    getContext().forEachMultiversionedFunctionVersion(
 | 
						|
        FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
 | 
						|
          GlobalDecl CurGD{
 | 
						|
              (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
 | 
						|
          StringRef MangledName = getMangledName(CurGD);
 | 
						|
          llvm::Constant *Func = GetGlobalValue(MangledName);
 | 
						|
          if (!Func) {
 | 
						|
            if (CurFD->isDefined()) {
 | 
						|
              EmitGlobalFunctionDefinition(CurGD, nullptr);
 | 
						|
              Func = GetGlobalValue(MangledName);
 | 
						|
            } else {
 | 
						|
              const CGFunctionInfo &FI =
 | 
						|
                  getTypes().arrangeGlobalDeclaration(GD);
 | 
						|
              llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
 | 
						|
              Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
 | 
						|
                                       /*DontDefer=*/false, ForDefinition);
 | 
						|
            }
 | 
						|
            assert(Func && "This should have just been created");
 | 
						|
          }
 | 
						|
 | 
						|
          const auto *TA = CurFD->getAttr<TargetAttr>();
 | 
						|
          llvm::SmallVector<StringRef, 8> Feats;
 | 
						|
          TA->getAddedFeatures(Feats);
 | 
						|
 | 
						|
          Options.emplace_back(cast<llvm::Function>(Func),
 | 
						|
                               TA->getArchitecture(), Feats);
 | 
						|
        });
 | 
						|
 | 
						|
    llvm::Function *ResolverFunc;
 | 
						|
    const TargetInfo &TI = getTarget();
 | 
						|
 | 
						|
    if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
 | 
						|
      ResolverFunc = cast<llvm::Function>(
 | 
						|
          GetGlobalValue((getMangledName(GD) + ".resolver").str()));
 | 
						|
      ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
 | 
						|
    } else {
 | 
						|
      ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
 | 
						|
    }
 | 
						|
 | 
						|
    if (supportsCOMDAT())
 | 
						|
      ResolverFunc->setComdat(
 | 
						|
          getModule().getOrInsertComdat(ResolverFunc->getName()));
 | 
						|
 | 
						|
    llvm::stable_sort(
 | 
						|
        Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
 | 
						|
                       const CodeGenFunction::MultiVersionResolverOption &RHS) {
 | 
						|
          return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
 | 
						|
        });
 | 
						|
    CodeGenFunction CGF(*this);
 | 
						|
    CGF.EmitMultiVersionResolver(ResolverFunc, Options);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
 | 
						|
  const auto *FD = cast<FunctionDecl>(GD.getDecl());
 | 
						|
  assert(FD && "Not a FunctionDecl?");
 | 
						|
  const auto *DD = FD->getAttr<CPUDispatchAttr>();
 | 
						|
  assert(DD && "Not a cpu_dispatch Function?");
 | 
						|
  llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
 | 
						|
 | 
						|
  if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
 | 
						|
    const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
 | 
						|
    DeclTy = getTypes().GetFunctionType(FInfo);
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef ResolverName = getMangledName(GD);
 | 
						|
 | 
						|
  llvm::Type *ResolverType;
 | 
						|
  GlobalDecl ResolverGD;
 | 
						|
  if (getTarget().supportsIFunc())
 | 
						|
    ResolverType = llvm::FunctionType::get(
 | 
						|
        llvm::PointerType::get(DeclTy,
 | 
						|
                               Context.getTargetAddressSpace(FD->getType())),
 | 
						|
        false);
 | 
						|
  else {
 | 
						|
    ResolverType = DeclTy;
 | 
						|
    ResolverGD = GD;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
 | 
						|
      ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
 | 
						|
  ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
 | 
						|
  if (supportsCOMDAT())
 | 
						|
    ResolverFunc->setComdat(
 | 
						|
        getModule().getOrInsertComdat(ResolverFunc->getName()));
 | 
						|
 | 
						|
  SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
 | 
						|
  const TargetInfo &Target = getTarget();
 | 
						|
  unsigned Index = 0;
 | 
						|
  for (const IdentifierInfo *II : DD->cpus()) {
 | 
						|
    // Get the name of the target function so we can look it up/create it.
 | 
						|
    std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
 | 
						|
                              getCPUSpecificMangling(*this, II->getName());
 | 
						|
 | 
						|
    llvm::Constant *Func = GetGlobalValue(MangledName);
 | 
						|
 | 
						|
    if (!Func) {
 | 
						|
      GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
 | 
						|
      if (ExistingDecl.getDecl() &&
 | 
						|
          ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
 | 
						|
        EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
 | 
						|
        Func = GetGlobalValue(MangledName);
 | 
						|
      } else {
 | 
						|
        if (!ExistingDecl.getDecl())
 | 
						|
          ExistingDecl = GD.getWithMultiVersionIndex(Index);
 | 
						|
 | 
						|
      Func = GetOrCreateLLVMFunction(
 | 
						|
          MangledName, DeclTy, ExistingDecl,
 | 
						|
          /*ForVTable=*/false, /*DontDefer=*/true,
 | 
						|
          /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::SmallVector<StringRef, 32> Features;
 | 
						|
    Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
 | 
						|
    llvm::transform(Features, Features.begin(),
 | 
						|
                    [](StringRef Str) { return Str.substr(1); });
 | 
						|
    Features.erase(std::remove_if(
 | 
						|
        Features.begin(), Features.end(), [&Target](StringRef Feat) {
 | 
						|
          return !Target.validateCpuSupports(Feat);
 | 
						|
        }), Features.end());
 | 
						|
    Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
 | 
						|
    ++Index;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::sort(
 | 
						|
      Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
 | 
						|
                  const CodeGenFunction::MultiVersionResolverOption &RHS) {
 | 
						|
        return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
 | 
						|
               CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
 | 
						|
      });
 | 
						|
 | 
						|
  // If the list contains multiple 'default' versions, such as when it contains
 | 
						|
  // 'pentium' and 'generic', don't emit the call to the generic one (since we
 | 
						|
  // always run on at least a 'pentium'). We do this by deleting the 'least
 | 
						|
  // advanced' (read, lowest mangling letter).
 | 
						|
  while (Options.size() > 1 &&
 | 
						|
         CodeGenFunction::GetX86CpuSupportsMask(
 | 
						|
             (Options.end() - 2)->Conditions.Features) == 0) {
 | 
						|
    StringRef LHSName = (Options.end() - 2)->Function->getName();
 | 
						|
    StringRef RHSName = (Options.end() - 1)->Function->getName();
 | 
						|
    if (LHSName.compare(RHSName) < 0)
 | 
						|
      Options.erase(Options.end() - 2);
 | 
						|
    else
 | 
						|
      Options.erase(Options.end() - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  CodeGenFunction CGF(*this);
 | 
						|
  CGF.EmitMultiVersionResolver(ResolverFunc, Options);
 | 
						|
 | 
						|
  if (getTarget().supportsIFunc()) {
 | 
						|
    std::string AliasName = getMangledNameImpl(
 | 
						|
        *this, GD, FD, /*OmitMultiVersionMangling=*/true);
 | 
						|
    llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
 | 
						|
    if (!AliasFunc) {
 | 
						|
      auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
 | 
						|
          AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
 | 
						|
          /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
 | 
						|
      auto *GA = llvm::GlobalAlias::create(
 | 
						|
         DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
 | 
						|
      GA->setLinkage(llvm::Function::WeakODRLinkage);
 | 
						|
      SetCommonAttributes(GD, GA);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If a dispatcher for the specified mangled name is not in the module, create
 | 
						|
/// and return an llvm Function with the specified type.
 | 
						|
llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
 | 
						|
    GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
 | 
						|
  std::string MangledName =
 | 
						|
      getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
 | 
						|
 | 
						|
  // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
 | 
						|
  // a separate resolver).
 | 
						|
  std::string ResolverName = MangledName;
 | 
						|
  if (getTarget().supportsIFunc())
 | 
						|
    ResolverName += ".ifunc";
 | 
						|
  else if (FD->isTargetMultiVersion())
 | 
						|
    ResolverName += ".resolver";
 | 
						|
 | 
						|
  // If this already exists, just return that one.
 | 
						|
  if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
 | 
						|
    return ResolverGV;
 | 
						|
 | 
						|
  // Since this is the first time we've created this IFunc, make sure
 | 
						|
  // that we put this multiversioned function into the list to be
 | 
						|
  // replaced later if necessary (target multiversioning only).
 | 
						|
  if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
 | 
						|
    MultiVersionFuncs.push_back(GD);
 | 
						|
 | 
						|
  if (getTarget().supportsIFunc()) {
 | 
						|
    llvm::Type *ResolverType = llvm::FunctionType::get(
 | 
						|
        llvm::PointerType::get(
 | 
						|
            DeclTy, getContext().getTargetAddressSpace(FD->getType())),
 | 
						|
        false);
 | 
						|
    llvm::Constant *Resolver = GetOrCreateLLVMFunction(
 | 
						|
        MangledName + ".resolver", ResolverType, GlobalDecl{},
 | 
						|
        /*ForVTable=*/false);
 | 
						|
    llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
 | 
						|
        DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
 | 
						|
    GIF->setName(ResolverName);
 | 
						|
    SetCommonAttributes(FD, GIF);
 | 
						|
 | 
						|
    return GIF;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *Resolver = GetOrCreateLLVMFunction(
 | 
						|
      ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
 | 
						|
  assert(isa<llvm::GlobalValue>(Resolver) &&
 | 
						|
         "Resolver should be created for the first time");
 | 
						|
  SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
 | 
						|
  return Resolver;
 | 
						|
}
 | 
						|
 | 
						|
/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
 | 
						|
/// module, create and return an llvm Function with the specified type. If there
 | 
						|
/// is something in the module with the specified name, return it potentially
 | 
						|
/// bitcasted to the right type.
 | 
						|
///
 | 
						|
/// If D is non-null, it specifies a decl that correspond to this.  This is used
 | 
						|
/// to set the attributes on the function when it is first created.
 | 
						|
llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
 | 
						|
    StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
 | 
						|
    bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
 | 
						|
    ForDefinition_t IsForDefinition) {
 | 
						|
  const Decl *D = GD.getDecl();
 | 
						|
 | 
						|
  // Any attempts to use a MultiVersion function should result in retrieving
 | 
						|
  // the iFunc instead. Name Mangling will handle the rest of the changes.
 | 
						|
  if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
 | 
						|
    // For the device mark the function as one that should be emitted.
 | 
						|
    if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
 | 
						|
        !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
 | 
						|
        !DontDefer && !IsForDefinition) {
 | 
						|
      if (const FunctionDecl *FDDef = FD->getDefinition()) {
 | 
						|
        GlobalDecl GDDef;
 | 
						|
        if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
 | 
						|
          GDDef = GlobalDecl(CD, GD.getCtorType());
 | 
						|
        else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
 | 
						|
          GDDef = GlobalDecl(DD, GD.getDtorType());
 | 
						|
        else
 | 
						|
          GDDef = GlobalDecl(FDDef);
 | 
						|
        EmitGlobal(GDDef);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Check if this must be emitted as declare variant and emit reference to
 | 
						|
    // the the declare variant function.
 | 
						|
    if (LangOpts.OpenMP && OpenMPRuntime)
 | 
						|
      (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
 | 
						|
 | 
						|
    if (FD->isMultiVersion()) {
 | 
						|
      if (FD->hasAttr<TargetAttr>())
 | 
						|
        UpdateMultiVersionNames(GD, FD);
 | 
						|
      if (!IsForDefinition)
 | 
						|
        return GetOrCreateMultiVersionResolver(GD, Ty, FD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Lookup the entry, lazily creating it if necessary.
 | 
						|
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | 
						|
  if (Entry) {
 | 
						|
    if (WeakRefReferences.erase(Entry)) {
 | 
						|
      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
 | 
						|
      if (FD && !FD->hasAttr<WeakAttr>())
 | 
						|
        Entry->setLinkage(llvm::Function::ExternalLinkage);
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle dropped DLL attributes.
 | 
						|
    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
 | 
						|
      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
 | 
						|
      setDSOLocal(Entry);
 | 
						|
    }
 | 
						|
 | 
						|
    // If there are two attempts to define the same mangled name, issue an
 | 
						|
    // error.
 | 
						|
    if (IsForDefinition && !Entry->isDeclaration()) {
 | 
						|
      GlobalDecl OtherGD;
 | 
						|
      // Check that GD is not yet in DiagnosedConflictingDefinitions is required
 | 
						|
      // to make sure that we issue an error only once.
 | 
						|
      if (lookupRepresentativeDecl(MangledName, OtherGD) &&
 | 
						|
          (GD.getCanonicalDecl().getDecl() !=
 | 
						|
           OtherGD.getCanonicalDecl().getDecl()) &&
 | 
						|
          DiagnosedConflictingDefinitions.insert(GD).second) {
 | 
						|
        getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
 | 
						|
            << MangledName;
 | 
						|
        getDiags().Report(OtherGD.getDecl()->getLocation(),
 | 
						|
                          diag::note_previous_definition);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
 | 
						|
        (Entry->getType()->getElementType() == Ty)) {
 | 
						|
      return Entry;
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure the result is of the correct type.
 | 
						|
    // (If function is requested for a definition, we always need to create a new
 | 
						|
    // function, not just return a bitcast.)
 | 
						|
    if (!IsForDefinition)
 | 
						|
      return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
 | 
						|
  }
 | 
						|
 | 
						|
  // This function doesn't have a complete type (for example, the return
 | 
						|
  // type is an incomplete struct). Use a fake type instead, and make
 | 
						|
  // sure not to try to set attributes.
 | 
						|
  bool IsIncompleteFunction = false;
 | 
						|
 | 
						|
  llvm::FunctionType *FTy;
 | 
						|
  if (isa<llvm::FunctionType>(Ty)) {
 | 
						|
    FTy = cast<llvm::FunctionType>(Ty);
 | 
						|
  } else {
 | 
						|
    FTy = llvm::FunctionType::get(VoidTy, false);
 | 
						|
    IsIncompleteFunction = true;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Function *F =
 | 
						|
      llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
 | 
						|
                             Entry ? StringRef() : MangledName, &getModule());
 | 
						|
 | 
						|
  // If we already created a function with the same mangled name (but different
 | 
						|
  // type) before, take its name and add it to the list of functions to be
 | 
						|
  // replaced with F at the end of CodeGen.
 | 
						|
  //
 | 
						|
  // This happens if there is a prototype for a function (e.g. "int f()") and
 | 
						|
  // then a definition of a different type (e.g. "int f(int x)").
 | 
						|
  if (Entry) {
 | 
						|
    F->takeName(Entry);
 | 
						|
 | 
						|
    // This might be an implementation of a function without a prototype, in
 | 
						|
    // which case, try to do special replacement of calls which match the new
 | 
						|
    // prototype.  The really key thing here is that we also potentially drop
 | 
						|
    // arguments from the call site so as to make a direct call, which makes the
 | 
						|
    // inliner happier and suppresses a number of optimizer warnings (!) about
 | 
						|
    // dropping arguments.
 | 
						|
    if (!Entry->use_empty()) {
 | 
						|
      ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
 | 
						|
      Entry->removeDeadConstantUsers();
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
 | 
						|
        F, Entry->getType()->getElementType()->getPointerTo());
 | 
						|
    addGlobalValReplacement(Entry, BC);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(F->getName() == MangledName && "name was uniqued!");
 | 
						|
  if (D)
 | 
						|
    SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
 | 
						|
  if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
 | 
						|
    llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
 | 
						|
    F->addAttributes(llvm::AttributeList::FunctionIndex, B);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!DontDefer) {
 | 
						|
    // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
 | 
						|
    // each other bottoming out with the base dtor.  Therefore we emit non-base
 | 
						|
    // dtors on usage, even if there is no dtor definition in the TU.
 | 
						|
    if (D && isa<CXXDestructorDecl>(D) &&
 | 
						|
        getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
 | 
						|
                                           GD.getDtorType()))
 | 
						|
      addDeferredDeclToEmit(GD);
 | 
						|
 | 
						|
    // This is the first use or definition of a mangled name.  If there is a
 | 
						|
    // deferred decl with this name, remember that we need to emit it at the end
 | 
						|
    // of the file.
 | 
						|
    auto DDI = DeferredDecls.find(MangledName);
 | 
						|
    if (DDI != DeferredDecls.end()) {
 | 
						|
      // Move the potentially referenced deferred decl to the
 | 
						|
      // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
 | 
						|
      // don't need it anymore).
 | 
						|
      addDeferredDeclToEmit(DDI->second);
 | 
						|
      DeferredDecls.erase(DDI);
 | 
						|
 | 
						|
      // Otherwise, there are cases we have to worry about where we're
 | 
						|
      // using a declaration for which we must emit a definition but where
 | 
						|
      // we might not find a top-level definition:
 | 
						|
      //   - member functions defined inline in their classes
 | 
						|
      //   - friend functions defined inline in some class
 | 
						|
      //   - special member functions with implicit definitions
 | 
						|
      // If we ever change our AST traversal to walk into class methods,
 | 
						|
      // this will be unnecessary.
 | 
						|
      //
 | 
						|
      // We also don't emit a definition for a function if it's going to be an
 | 
						|
      // entry in a vtable, unless it's already marked as used.
 | 
						|
    } else if (getLangOpts().CPlusPlus && D) {
 | 
						|
      // Look for a declaration that's lexically in a record.
 | 
						|
      for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
 | 
						|
           FD = FD->getPreviousDecl()) {
 | 
						|
        if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
 | 
						|
          if (FD->doesThisDeclarationHaveABody()) {
 | 
						|
            addDeferredDeclToEmit(GD.getWithDecl(FD));
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure the result is of the requested type.
 | 
						|
  if (!IsIncompleteFunction) {
 | 
						|
    assert(F->getType()->getElementType() == Ty);
 | 
						|
    return F;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
 | 
						|
  return llvm::ConstantExpr::getBitCast(F, PTy);
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddrOfFunction - Return the address of the given function.  If Ty is
 | 
						|
/// non-null, then this function will use the specified type if it has to
 | 
						|
/// create it (this occurs when we see a definition of the function).
 | 
						|
llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
 | 
						|
                                                 llvm::Type *Ty,
 | 
						|
                                                 bool ForVTable,
 | 
						|
                                                 bool DontDefer,
 | 
						|
                                              ForDefinition_t IsForDefinition) {
 | 
						|
  // If there was no specific requested type, just convert it now.
 | 
						|
  if (!Ty) {
 | 
						|
    const auto *FD = cast<FunctionDecl>(GD.getDecl());
 | 
						|
    Ty = getTypes().ConvertType(FD->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Devirtualized destructor calls may come through here instead of via
 | 
						|
  // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
 | 
						|
  // of the complete destructor when necessary.
 | 
						|
  if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
 | 
						|
    if (getTarget().getCXXABI().isMicrosoft() &&
 | 
						|
        GD.getDtorType() == Dtor_Complete &&
 | 
						|
        DD->getParent()->getNumVBases() == 0)
 | 
						|
      GD = GlobalDecl(DD, Dtor_Base);
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef MangledName = getMangledName(GD);
 | 
						|
  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
 | 
						|
                                 /*IsThunk=*/false, llvm::AttributeList(),
 | 
						|
                                 IsForDefinition);
 | 
						|
}
 | 
						|
 | 
						|
static const FunctionDecl *
 | 
						|
GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
 | 
						|
  TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
 | 
						|
  DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
 | 
						|
 | 
						|
  IdentifierInfo &CII = C.Idents.get(Name);
 | 
						|
  for (const auto &Result : DC->lookup(&CII))
 | 
						|
    if (const auto FD = dyn_cast<FunctionDecl>(Result))
 | 
						|
      return FD;
 | 
						|
 | 
						|
  if (!C.getLangOpts().CPlusPlus)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Demangle the premangled name from getTerminateFn()
 | 
						|
  IdentifierInfo &CXXII =
 | 
						|
      (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
 | 
						|
          ? C.Idents.get("terminate")
 | 
						|
          : C.Idents.get(Name);
 | 
						|
 | 
						|
  for (const auto &N : {"__cxxabiv1", "std"}) {
 | 
						|
    IdentifierInfo &NS = C.Idents.get(N);
 | 
						|
    for (const auto &Result : DC->lookup(&NS)) {
 | 
						|
      NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
 | 
						|
      if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
 | 
						|
        for (const auto &Result : LSD->lookup(&NS))
 | 
						|
          if ((ND = dyn_cast<NamespaceDecl>(Result)))
 | 
						|
            break;
 | 
						|
 | 
						|
      if (ND)
 | 
						|
        for (const auto &Result : ND->lookup(&CXXII))
 | 
						|
          if (const auto *FD = dyn_cast<FunctionDecl>(Result))
 | 
						|
            return FD;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateRuntimeFunction - Create a new runtime function with the specified
 | 
						|
/// type and name.
 | 
						|
llvm::FunctionCallee
 | 
						|
CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
 | 
						|
                                     llvm::AttributeList ExtraAttrs, bool Local,
 | 
						|
                                     bool AssumeConvergent) {
 | 
						|
  if (AssumeConvergent) {
 | 
						|
    ExtraAttrs =
 | 
						|
        ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
 | 
						|
                                llvm::Attribute::Convergent);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *C =
 | 
						|
      GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
 | 
						|
                              /*DontDefer=*/false, /*IsThunk=*/false,
 | 
						|
                              ExtraAttrs);
 | 
						|
 | 
						|
  if (auto *F = dyn_cast<llvm::Function>(C)) {
 | 
						|
    if (F->empty()) {
 | 
						|
      F->setCallingConv(getRuntimeCC());
 | 
						|
 | 
						|
      // In Windows Itanium environments, try to mark runtime functions
 | 
						|
      // dllimport. For Mingw and MSVC, don't. We don't really know if the user
 | 
						|
      // will link their standard library statically or dynamically. Marking
 | 
						|
      // functions imported when they are not imported can cause linker errors
 | 
						|
      // and warnings.
 | 
						|
      if (!Local && getTriple().isWindowsItaniumEnvironment() &&
 | 
						|
          !getCodeGenOpts().LTOVisibilityPublicStd) {
 | 
						|
        const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
 | 
						|
        if (!FD || FD->hasAttr<DLLImportAttr>()) {
 | 
						|
          F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
 | 
						|
          F->setLinkage(llvm::GlobalValue::ExternalLinkage);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      setDSOLocal(F);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return {FTy, C};
 | 
						|
}
 | 
						|
 | 
						|
/// isTypeConstant - Determine whether an object of this type can be emitted
 | 
						|
/// as a constant.
 | 
						|
///
 | 
						|
/// If ExcludeCtor is true, the duration when the object's constructor runs
 | 
						|
/// will not be considered. The caller will need to verify that the object is
 | 
						|
/// not written to during its construction.
 | 
						|
bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
 | 
						|
  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Context.getLangOpts().CPlusPlus) {
 | 
						|
    if (const CXXRecordDecl *Record
 | 
						|
          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
 | 
						|
      return ExcludeCtor && !Record->hasMutableFields() &&
 | 
						|
             Record->hasTrivialDestructor();
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
 | 
						|
/// create and return an llvm GlobalVariable with the specified type.  If there
 | 
						|
/// is something in the module with the specified name, return it potentially
 | 
						|
/// bitcasted to the right type.
 | 
						|
///
 | 
						|
/// If D is non-null, it specifies a decl that correspond to this.  This is used
 | 
						|
/// to set the attributes on the global when it is first created.
 | 
						|
///
 | 
						|
/// If IsForDefinition is true, it is guaranteed that an actual global with
 | 
						|
/// type Ty will be returned, not conversion of a variable with the same
 | 
						|
/// mangled name but some other type.
 | 
						|
llvm::Constant *
 | 
						|
CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
 | 
						|
                                     llvm::PointerType *Ty,
 | 
						|
                                     const VarDecl *D,
 | 
						|
                                     ForDefinition_t IsForDefinition) {
 | 
						|
  // Lookup the entry, lazily creating it if necessary.
 | 
						|
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | 
						|
  if (Entry) {
 | 
						|
    if (WeakRefReferences.erase(Entry)) {
 | 
						|
      if (D && !D->hasAttr<WeakAttr>())
 | 
						|
        Entry->setLinkage(llvm::Function::ExternalLinkage);
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle dropped DLL attributes.
 | 
						|
    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
 | 
						|
      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
 | 
						|
 | 
						|
    if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
 | 
						|
      getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
 | 
						|
 | 
						|
    if (Entry->getType() == Ty)
 | 
						|
      return Entry;
 | 
						|
 | 
						|
    // If there are two attempts to define the same mangled name, issue an
 | 
						|
    // error.
 | 
						|
    if (IsForDefinition && !Entry->isDeclaration()) {
 | 
						|
      GlobalDecl OtherGD;
 | 
						|
      const VarDecl *OtherD;
 | 
						|
 | 
						|
      // Check that D is not yet in DiagnosedConflictingDefinitions is required
 | 
						|
      // to make sure that we issue an error only once.
 | 
						|
      if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
 | 
						|
          (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
 | 
						|
          (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
 | 
						|
          OtherD->hasInit() &&
 | 
						|
          DiagnosedConflictingDefinitions.insert(D).second) {
 | 
						|
        getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
 | 
						|
            << MangledName;
 | 
						|
        getDiags().Report(OtherGD.getDecl()->getLocation(),
 | 
						|
                          diag::note_previous_definition);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure the result is of the correct type.
 | 
						|
    if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
 | 
						|
      return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
 | 
						|
 | 
						|
    // (If global is requested for a definition, we always need to create a new
 | 
						|
    // global, not just return a bitcast.)
 | 
						|
    if (!IsForDefinition)
 | 
						|
      return llvm::ConstantExpr::getBitCast(Entry, Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  auto AddrSpace = GetGlobalVarAddressSpace(D);
 | 
						|
  auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
 | 
						|
 | 
						|
  auto *GV = new llvm::GlobalVariable(
 | 
						|
      getModule(), Ty->getElementType(), false,
 | 
						|
      llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
 | 
						|
      llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
 | 
						|
 | 
						|
  // If we already created a global with the same mangled name (but different
 | 
						|
  // type) before, take its name and remove it from its parent.
 | 
						|
  if (Entry) {
 | 
						|
    GV->takeName(Entry);
 | 
						|
 | 
						|
    if (!Entry->use_empty()) {
 | 
						|
      llvm::Constant *NewPtrForOldDecl =
 | 
						|
          llvm::ConstantExpr::getBitCast(GV, Entry->getType());
 | 
						|
      Entry->replaceAllUsesWith(NewPtrForOldDecl);
 | 
						|
    }
 | 
						|
 | 
						|
    Entry->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // This is the first use or definition of a mangled name.  If there is a
 | 
						|
  // deferred decl with this name, remember that we need to emit it at the end
 | 
						|
  // of the file.
 | 
						|
  auto DDI = DeferredDecls.find(MangledName);
 | 
						|
  if (DDI != DeferredDecls.end()) {
 | 
						|
    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
 | 
						|
    // list, and remove it from DeferredDecls (since we don't need it anymore).
 | 
						|
    addDeferredDeclToEmit(DDI->second);
 | 
						|
    DeferredDecls.erase(DDI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle things which are present even on external declarations.
 | 
						|
  if (D) {
 | 
						|
    if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
 | 
						|
      getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
 | 
						|
 | 
						|
    // FIXME: This code is overly simple and should be merged with other global
 | 
						|
    // handling.
 | 
						|
    GV->setConstant(isTypeConstant(D->getType(), false));
 | 
						|
 | 
						|
    GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
 | 
						|
 | 
						|
    setLinkageForGV(GV, D);
 | 
						|
 | 
						|
    if (D->getTLSKind()) {
 | 
						|
      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
 | 
						|
        CXXThreadLocals.push_back(D);
 | 
						|
      setTLSMode(GV, *D);
 | 
						|
    }
 | 
						|
 | 
						|
    setGVProperties(GV, D);
 | 
						|
 | 
						|
    // If required by the ABI, treat declarations of static data members with
 | 
						|
    // inline initializers as definitions.
 | 
						|
    if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
 | 
						|
      EmitGlobalVarDefinition(D);
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit section information for extern variables.
 | 
						|
    if (D->hasExternalStorage()) {
 | 
						|
      if (const SectionAttr *SA = D->getAttr<SectionAttr>())
 | 
						|
        GV->setSection(SA->getName());
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle XCore specific ABI requirements.
 | 
						|
    if (getTriple().getArch() == llvm::Triple::xcore &&
 | 
						|
        D->getLanguageLinkage() == CLanguageLinkage &&
 | 
						|
        D->getType().isConstant(Context) &&
 | 
						|
        isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
 | 
						|
      GV->setSection(".cp.rodata");
 | 
						|
 | 
						|
    // Check if we a have a const declaration with an initializer, we may be
 | 
						|
    // able to emit it as available_externally to expose it's value to the
 | 
						|
    // optimizer.
 | 
						|
    if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
 | 
						|
        D->getType().isConstQualified() && !GV->hasInitializer() &&
 | 
						|
        !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
 | 
						|
      const auto *Record =
 | 
						|
          Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
 | 
						|
      bool HasMutableFields = Record && Record->hasMutableFields();
 | 
						|
      if (!HasMutableFields) {
 | 
						|
        const VarDecl *InitDecl;
 | 
						|
        const Expr *InitExpr = D->getAnyInitializer(InitDecl);
 | 
						|
        if (InitExpr) {
 | 
						|
          ConstantEmitter emitter(*this);
 | 
						|
          llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
 | 
						|
          if (Init) {
 | 
						|
            auto *InitType = Init->getType();
 | 
						|
            if (GV->getType()->getElementType() != InitType) {
 | 
						|
              // The type of the initializer does not match the definition.
 | 
						|
              // This happens when an initializer has a different type from
 | 
						|
              // the type of the global (because of padding at the end of a
 | 
						|
              // structure for instance).
 | 
						|
              GV->setName(StringRef());
 | 
						|
              // Make a new global with the correct type, this is now guaranteed
 | 
						|
              // to work.
 | 
						|
              auto *NewGV = cast<llvm::GlobalVariable>(
 | 
						|
                  GetAddrOfGlobalVar(D, InitType, IsForDefinition)
 | 
						|
                      ->stripPointerCasts());
 | 
						|
 | 
						|
              // Erase the old global, since it is no longer used.
 | 
						|
              GV->eraseFromParent();
 | 
						|
              GV = NewGV;
 | 
						|
            } else {
 | 
						|
              GV->setInitializer(Init);
 | 
						|
              GV->setConstant(true);
 | 
						|
              GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
 | 
						|
            }
 | 
						|
            emitter.finalize(GV);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (GV->isDeclaration())
 | 
						|
    getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
 | 
						|
 | 
						|
  LangAS ExpectedAS =
 | 
						|
      D ? D->getType().getAddressSpace()
 | 
						|
        : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
 | 
						|
  assert(getContext().getTargetAddressSpace(ExpectedAS) ==
 | 
						|
         Ty->getPointerAddressSpace());
 | 
						|
  if (AddrSpace != ExpectedAS)
 | 
						|
    return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
 | 
						|
                                                       ExpectedAS, Ty);
 | 
						|
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
 | 
						|
                               ForDefinition_t IsForDefinition) {
 | 
						|
  const Decl *D = GD.getDecl();
 | 
						|
  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
 | 
						|
    return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
 | 
						|
                                /*DontDefer=*/false, IsForDefinition);
 | 
						|
  else if (isa<CXXMethodDecl>(D)) {
 | 
						|
    auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
 | 
						|
        cast<CXXMethodDecl>(D));
 | 
						|
    auto Ty = getTypes().GetFunctionType(*FInfo);
 | 
						|
    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
 | 
						|
                             IsForDefinition);
 | 
						|
  } else if (isa<FunctionDecl>(D)) {
 | 
						|
    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
 | 
						|
    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
 | 
						|
    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
 | 
						|
                             IsForDefinition);
 | 
						|
  } else
 | 
						|
    return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
 | 
						|
                              IsForDefinition);
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
 | 
						|
    StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
 | 
						|
    unsigned Alignment) {
 | 
						|
  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
 | 
						|
  llvm::GlobalVariable *OldGV = nullptr;
 | 
						|
 | 
						|
  if (GV) {
 | 
						|
    // Check if the variable has the right type.
 | 
						|
    if (GV->getType()->getElementType() == Ty)
 | 
						|
      return GV;
 | 
						|
 | 
						|
    // Because C++ name mangling, the only way we can end up with an already
 | 
						|
    // existing global with the same name is if it has been declared extern "C".
 | 
						|
    assert(GV->isDeclaration() && "Declaration has wrong type!");
 | 
						|
    OldGV = GV;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a new variable.
 | 
						|
  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
 | 
						|
                                Linkage, nullptr, Name);
 | 
						|
 | 
						|
  if (OldGV) {
 | 
						|
    // Replace occurrences of the old variable if needed.
 | 
						|
    GV->takeName(OldGV);
 | 
						|
 | 
						|
    if (!OldGV->use_empty()) {
 | 
						|
      llvm::Constant *NewPtrForOldDecl =
 | 
						|
      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
 | 
						|
      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
 | 
						|
    }
 | 
						|
 | 
						|
    OldGV->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  if (supportsCOMDAT() && GV->isWeakForLinker() &&
 | 
						|
      !GV->hasAvailableExternallyLinkage())
 | 
						|
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
 | 
						|
 | 
						|
  GV->setAlignment(llvm::MaybeAlign(Alignment));
 | 
						|
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
 | 
						|
/// given global variable.  If Ty is non-null and if the global doesn't exist,
 | 
						|
/// then it will be created with the specified type instead of whatever the
 | 
						|
/// normal requested type would be. If IsForDefinition is true, it is guaranteed
 | 
						|
/// that an actual global with type Ty will be returned, not conversion of a
 | 
						|
/// variable with the same mangled name but some other type.
 | 
						|
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
 | 
						|
                                                  llvm::Type *Ty,
 | 
						|
                                           ForDefinition_t IsForDefinition) {
 | 
						|
  assert(D->hasGlobalStorage() && "Not a global variable");
 | 
						|
  QualType ASTTy = D->getType();
 | 
						|
  if (!Ty)
 | 
						|
    Ty = getTypes().ConvertTypeForMem(ASTTy);
 | 
						|
 | 
						|
  llvm::PointerType *PTy =
 | 
						|
    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
 | 
						|
 | 
						|
  StringRef MangledName = getMangledName(D);
 | 
						|
  return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
 | 
						|
}
 | 
						|
 | 
						|
/// CreateRuntimeVariable - Create a new runtime global variable with the
 | 
						|
/// specified type and name.
 | 
						|
llvm::Constant *
 | 
						|
CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
 | 
						|
                                     StringRef Name) {
 | 
						|
  auto PtrTy =
 | 
						|
      getContext().getLangOpts().OpenCL
 | 
						|
          ? llvm::PointerType::get(
 | 
						|
                Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
 | 
						|
          : llvm::PointerType::getUnqual(Ty);
 | 
						|
  auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
 | 
						|
  setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
 | 
						|
  assert(!D->getInit() && "Cannot emit definite definitions here!");
 | 
						|
 | 
						|
  StringRef MangledName = getMangledName(D);
 | 
						|
  llvm::GlobalValue *GV = GetGlobalValue(MangledName);
 | 
						|
 | 
						|
  // We already have a definition, not declaration, with the same mangled name.
 | 
						|
  // Emitting of declaration is not required (and actually overwrites emitted
 | 
						|
  // definition).
 | 
						|
  if (GV && !GV->isDeclaration())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we have not seen a reference to this variable yet, place it into the
 | 
						|
  // deferred declarations table to be emitted if needed later.
 | 
						|
  if (!MustBeEmitted(D) && !GV) {
 | 
						|
      DeferredDecls[MangledName] = D;
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The tentative definition is the only definition.
 | 
						|
  EmitGlobalVarDefinition(D);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
 | 
						|
  EmitExternalVarDeclaration(D);
 | 
						|
}
 | 
						|
 | 
						|
CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
 | 
						|
  return Context.toCharUnitsFromBits(
 | 
						|
      getDataLayout().getTypeStoreSizeInBits(Ty));
 | 
						|
}
 | 
						|
 | 
						|
LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
 | 
						|
  LangAS AddrSpace = LangAS::Default;
 | 
						|
  if (LangOpts.OpenCL) {
 | 
						|
    AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
 | 
						|
    assert(AddrSpace == LangAS::opencl_global ||
 | 
						|
           AddrSpace == LangAS::opencl_constant ||
 | 
						|
           AddrSpace == LangAS::opencl_local ||
 | 
						|
           AddrSpace >= LangAS::FirstTargetAddressSpace);
 | 
						|
    return AddrSpace;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
 | 
						|
    if (D && D->hasAttr<CUDAConstantAttr>())
 | 
						|
      return LangAS::cuda_constant;
 | 
						|
    else if (D && D->hasAttr<CUDASharedAttr>())
 | 
						|
      return LangAS::cuda_shared;
 | 
						|
    else if (D && D->hasAttr<CUDADeviceAttr>())
 | 
						|
      return LangAS::cuda_device;
 | 
						|
    else if (D && D->getType().isConstQualified())
 | 
						|
      return LangAS::cuda_constant;
 | 
						|
    else
 | 
						|
      return LangAS::cuda_device;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LangOpts.OpenMP) {
 | 
						|
    LangAS AS;
 | 
						|
    if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
 | 
						|
      return AS;
 | 
						|
  }
 | 
						|
  return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
 | 
						|
}
 | 
						|
 | 
						|
LangAS CodeGenModule::getStringLiteralAddressSpace() const {
 | 
						|
  // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
 | 
						|
  if (LangOpts.OpenCL)
 | 
						|
    return LangAS::opencl_constant;
 | 
						|
  if (auto AS = getTarget().getConstantAddressSpace())
 | 
						|
    return AS.getValue();
 | 
						|
  return LangAS::Default;
 | 
						|
}
 | 
						|
 | 
						|
// In address space agnostic languages, string literals are in default address
 | 
						|
// space in AST. However, certain targets (e.g. amdgcn) request them to be
 | 
						|
// emitted in constant address space in LLVM IR. To be consistent with other
 | 
						|
// parts of AST, string literal global variables in constant address space
 | 
						|
// need to be casted to default address space before being put into address
 | 
						|
// map and referenced by other part of CodeGen.
 | 
						|
// In OpenCL, string literals are in constant address space in AST, therefore
 | 
						|
// they should not be casted to default address space.
 | 
						|
static llvm::Constant *
 | 
						|
castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
 | 
						|
                                       llvm::GlobalVariable *GV) {
 | 
						|
  llvm::Constant *Cast = GV;
 | 
						|
  if (!CGM.getLangOpts().OpenCL) {
 | 
						|
    if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
 | 
						|
      if (AS != LangAS::Default)
 | 
						|
        Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
 | 
						|
            CGM, GV, AS.getValue(), LangAS::Default,
 | 
						|
            GV->getValueType()->getPointerTo(
 | 
						|
                CGM.getContext().getTargetAddressSpace(LangAS::Default)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Cast;
 | 
						|
}
 | 
						|
 | 
						|
template<typename SomeDecl>
 | 
						|
void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
 | 
						|
                                               llvm::GlobalValue *GV) {
 | 
						|
  if (!getLangOpts().CPlusPlus)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Must have 'used' attribute, or else inline assembly can't rely on
 | 
						|
  // the name existing.
 | 
						|
  if (!D->template hasAttr<UsedAttr>())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Must have internal linkage and an ordinary name.
 | 
						|
  if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Must be in an extern "C" context. Entities declared directly within
 | 
						|
  // a record are not extern "C" even if the record is in such a context.
 | 
						|
  const SomeDecl *First = D->getFirstDecl();
 | 
						|
  if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
 | 
						|
    return;
 | 
						|
 | 
						|
  // OK, this is an internal linkage entity inside an extern "C" linkage
 | 
						|
  // specification. Make a note of that so we can give it the "expected"
 | 
						|
  // mangled name if nothing else is using that name.
 | 
						|
  std::pair<StaticExternCMap::iterator, bool> R =
 | 
						|
      StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
 | 
						|
 | 
						|
  // If we have multiple internal linkage entities with the same name
 | 
						|
  // in extern "C" regions, none of them gets that name.
 | 
						|
  if (!R.second)
 | 
						|
    R.first->second = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
 | 
						|
  if (!CGM.supportsCOMDAT())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
 | 
						|
  // them being "merged" by the COMDAT Folding linker optimization.
 | 
						|
  if (D.hasAttr<CUDAGlobalAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (D.hasAttr<SelectAnyAttr>())
 | 
						|
    return true;
 | 
						|
 | 
						|
  GVALinkage Linkage;
 | 
						|
  if (auto *VD = dyn_cast<VarDecl>(&D))
 | 
						|
    Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
 | 
						|
  else
 | 
						|
    Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
 | 
						|
 | 
						|
  switch (Linkage) {
 | 
						|
  case GVA_Internal:
 | 
						|
  case GVA_AvailableExternally:
 | 
						|
  case GVA_StrongExternal:
 | 
						|
    return false;
 | 
						|
  case GVA_DiscardableODR:
 | 
						|
  case GVA_StrongODR:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  llvm_unreachable("No such linkage");
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
 | 
						|
                                          llvm::GlobalObject &GO) {
 | 
						|
  if (!shouldBeInCOMDAT(*this, D))
 | 
						|
    return;
 | 
						|
  GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
 | 
						|
}
 | 
						|
 | 
						|
/// Pass IsTentative as true if you want to create a tentative definition.
 | 
						|
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
 | 
						|
                                            bool IsTentative) {
 | 
						|
  // OpenCL global variables of sampler type are translated to function calls,
 | 
						|
  // therefore no need to be translated.
 | 
						|
  QualType ASTTy = D->getType();
 | 
						|
  if (getLangOpts().OpenCL && ASTTy->isSamplerT())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is OpenMP device, check if it is legal to emit this global
 | 
						|
  // normally.
 | 
						|
  if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
 | 
						|
      OpenMPRuntime->emitTargetGlobalVariable(D))
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::Constant *Init = nullptr;
 | 
						|
  bool NeedsGlobalCtor = false;
 | 
						|
  bool NeedsGlobalDtor =
 | 
						|
      D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
 | 
						|
 | 
						|
  const VarDecl *InitDecl;
 | 
						|
  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
 | 
						|
 | 
						|
  Optional<ConstantEmitter> emitter;
 | 
						|
 | 
						|
  // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
 | 
						|
  // as part of their declaration."  Sema has already checked for
 | 
						|
  // error cases, so we just need to set Init to UndefValue.
 | 
						|
  bool IsCUDASharedVar =
 | 
						|
      getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
 | 
						|
  // Shadows of initialized device-side global variables are also left
 | 
						|
  // undefined.
 | 
						|
  bool IsCUDAShadowVar =
 | 
						|
      !getLangOpts().CUDAIsDevice &&
 | 
						|
      (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
 | 
						|
       D->hasAttr<CUDASharedAttr>());
 | 
						|
  // HIP pinned shadow of initialized host-side global variables are also
 | 
						|
  // left undefined.
 | 
						|
  bool IsHIPPinnedShadowVar =
 | 
						|
      getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
 | 
						|
  if (getLangOpts().CUDA &&
 | 
						|
      (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
 | 
						|
    Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
 | 
						|
  else if (!InitExpr) {
 | 
						|
    // This is a tentative definition; tentative definitions are
 | 
						|
    // implicitly initialized with { 0 }.
 | 
						|
    //
 | 
						|
    // Note that tentative definitions are only emitted at the end of
 | 
						|
    // a translation unit, so they should never have incomplete
 | 
						|
    // type. In addition, EmitTentativeDefinition makes sure that we
 | 
						|
    // never attempt to emit a tentative definition if a real one
 | 
						|
    // exists. A use may still exists, however, so we still may need
 | 
						|
    // to do a RAUW.
 | 
						|
    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
 | 
						|
    Init = EmitNullConstant(D->getType());
 | 
						|
  } else {
 | 
						|
    initializedGlobalDecl = GlobalDecl(D);
 | 
						|
    emitter.emplace(*this);
 | 
						|
    Init = emitter->tryEmitForInitializer(*InitDecl);
 | 
						|
 | 
						|
    if (!Init) {
 | 
						|
      QualType T = InitExpr->getType();
 | 
						|
      if (D->getType()->isReferenceType())
 | 
						|
        T = D->getType();
 | 
						|
 | 
						|
      if (getLangOpts().CPlusPlus) {
 | 
						|
        Init = EmitNullConstant(T);
 | 
						|
        NeedsGlobalCtor = true;
 | 
						|
      } else {
 | 
						|
        ErrorUnsupported(D, "static initializer");
 | 
						|
        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // We don't need an initializer, so remove the entry for the delayed
 | 
						|
      // initializer position (just in case this entry was delayed) if we
 | 
						|
      // also don't need to register a destructor.
 | 
						|
      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
 | 
						|
        DelayedCXXInitPosition.erase(D);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Type* InitType = Init->getType();
 | 
						|
  llvm::Constant *Entry =
 | 
						|
      GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
 | 
						|
 | 
						|
  // Strip off pointer casts if we got them.
 | 
						|
  Entry = Entry->stripPointerCasts();
 | 
						|
 | 
						|
  // Entry is now either a Function or GlobalVariable.
 | 
						|
  auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
 | 
						|
 | 
						|
  // We have a definition after a declaration with the wrong type.
 | 
						|
  // We must make a new GlobalVariable* and update everything that used OldGV
 | 
						|
  // (a declaration or tentative definition) with the new GlobalVariable*
 | 
						|
  // (which will be a definition).
 | 
						|
  //
 | 
						|
  // This happens if there is a prototype for a global (e.g.
 | 
						|
  // "extern int x[];") and then a definition of a different type (e.g.
 | 
						|
  // "int x[10];"). This also happens when an initializer has a different type
 | 
						|
  // from the type of the global (this happens with unions).
 | 
						|
  if (!GV || GV->getType()->getElementType() != InitType ||
 | 
						|
      GV->getType()->getAddressSpace() !=
 | 
						|
          getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
 | 
						|
 | 
						|
    // Move the old entry aside so that we'll create a new one.
 | 
						|
    Entry->setName(StringRef());
 | 
						|
 | 
						|
    // Make a new global with the correct type, this is now guaranteed to work.
 | 
						|
    GV = cast<llvm::GlobalVariable>(
 | 
						|
        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
 | 
						|
            ->stripPointerCasts());
 | 
						|
 | 
						|
    // Replace all uses of the old global with the new global
 | 
						|
    llvm::Constant *NewPtrForOldDecl =
 | 
						|
        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
 | 
						|
    Entry->replaceAllUsesWith(NewPtrForOldDecl);
 | 
						|
 | 
						|
    // Erase the old global, since it is no longer used.
 | 
						|
    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  MaybeHandleStaticInExternC(D, GV);
 | 
						|
 | 
						|
  if (D->hasAttr<AnnotateAttr>())
 | 
						|
    AddGlobalAnnotations(D, GV);
 | 
						|
 | 
						|
  // Set the llvm linkage type as appropriate.
 | 
						|
  llvm::GlobalValue::LinkageTypes Linkage =
 | 
						|
      getLLVMLinkageVarDefinition(D, GV->isConstant());
 | 
						|
 | 
						|
  // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
 | 
						|
  // the device. [...]"
 | 
						|
  // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
 | 
						|
  // __device__, declares a variable that: [...]
 | 
						|
  // Is accessible from all the threads within the grid and from the host
 | 
						|
  // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
 | 
						|
  // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
 | 
						|
  if (GV && LangOpts.CUDA) {
 | 
						|
    if (LangOpts.CUDAIsDevice) {
 | 
						|
      if (Linkage != llvm::GlobalValue::InternalLinkage &&
 | 
						|
          (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
 | 
						|
        GV->setExternallyInitialized(true);
 | 
						|
    } else {
 | 
						|
      // Host-side shadows of external declarations of device-side
 | 
						|
      // global variables become internal definitions. These have to
 | 
						|
      // be internal in order to prevent name conflicts with global
 | 
						|
      // host variables with the same name in a different TUs.
 | 
						|
      if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
 | 
						|
          D->hasAttr<HIPPinnedShadowAttr>()) {
 | 
						|
        Linkage = llvm::GlobalValue::InternalLinkage;
 | 
						|
 | 
						|
        // Shadow variables and their properties must be registered
 | 
						|
        // with CUDA runtime.
 | 
						|
        unsigned Flags = 0;
 | 
						|
        if (!D->hasDefinition())
 | 
						|
          Flags |= CGCUDARuntime::ExternDeviceVar;
 | 
						|
        if (D->hasAttr<CUDAConstantAttr>())
 | 
						|
          Flags |= CGCUDARuntime::ConstantDeviceVar;
 | 
						|
        // Extern global variables will be registered in the TU where they are
 | 
						|
        // defined.
 | 
						|
        if (!D->hasExternalStorage())
 | 
						|
          getCUDARuntime().registerDeviceVar(D, *GV, Flags);
 | 
						|
      } else if (D->hasAttr<CUDASharedAttr>())
 | 
						|
        // __shared__ variables are odd. Shadows do get created, but
 | 
						|
        // they are not registered with the CUDA runtime, so they
 | 
						|
        // can't really be used to access their device-side
 | 
						|
        // counterparts. It's not clear yet whether it's nvcc's bug or
 | 
						|
        // a feature, but we've got to do the same for compatibility.
 | 
						|
        Linkage = llvm::GlobalValue::InternalLinkage;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // HIPPinnedShadowVar should remain in the final code object irrespective of
 | 
						|
  // whether it is used or not within the code. Add it to used list, so that
 | 
						|
  // it will not get eliminated when it is unused. Also, it is an extern var
 | 
						|
  // within device code, and it should *not* get initialized within device code.
 | 
						|
  if (IsHIPPinnedShadowVar)
 | 
						|
    addUsedGlobal(GV, /*SkipCheck=*/true);
 | 
						|
  else
 | 
						|
    GV->setInitializer(Init);
 | 
						|
 | 
						|
  if (emitter)
 | 
						|
    emitter->finalize(GV);
 | 
						|
 | 
						|
  // If it is safe to mark the global 'constant', do so now.
 | 
						|
  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
 | 
						|
                  isTypeConstant(D->getType(), true));
 | 
						|
 | 
						|
  // If it is in a read-only section, mark it 'constant'.
 | 
						|
  if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
 | 
						|
    const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
 | 
						|
    if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
 | 
						|
      GV->setConstant(true);
 | 
						|
  }
 | 
						|
 | 
						|
  GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
 | 
						|
 | 
						|
  // On Darwin, if the normal linkage of a C++ thread_local variable is
 | 
						|
  // LinkOnce or Weak, we keep the normal linkage to prevent multiple
 | 
						|
  // copies within a linkage unit; otherwise, the backing variable has
 | 
						|
  // internal linkage and all accesses should just be calls to the
 | 
						|
  // Itanium-specified entry point, which has the normal linkage of the
 | 
						|
  // variable. This is to preserve the ability to change the implementation
 | 
						|
  // behind the scenes.
 | 
						|
  if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
 | 
						|
      Context.getTargetInfo().getTriple().isOSDarwin() &&
 | 
						|
      !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
 | 
						|
      !llvm::GlobalVariable::isWeakLinkage(Linkage))
 | 
						|
    Linkage = llvm::GlobalValue::InternalLinkage;
 | 
						|
 | 
						|
  GV->setLinkage(Linkage);
 | 
						|
  if (D->hasAttr<DLLImportAttr>())
 | 
						|
    GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
 | 
						|
  else if (D->hasAttr<DLLExportAttr>())
 | 
						|
    GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
 | 
						|
  else
 | 
						|
    GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
 | 
						|
 | 
						|
  if (Linkage == llvm::GlobalVariable::CommonLinkage) {
 | 
						|
    // common vars aren't constant even if declared const.
 | 
						|
    GV->setConstant(false);
 | 
						|
    // Tentative definition of global variables may be initialized with
 | 
						|
    // non-zero null pointers. In this case they should have weak linkage
 | 
						|
    // since common linkage must have zero initializer and must not have
 | 
						|
    // explicit section therefore cannot have non-zero initial value.
 | 
						|
    if (!GV->getInitializer()->isNullValue())
 | 
						|
      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
 | 
						|
  }
 | 
						|
 | 
						|
  setNonAliasAttributes(D, GV);
 | 
						|
 | 
						|
  if (D->getTLSKind() && !GV->isThreadLocal()) {
 | 
						|
    if (D->getTLSKind() == VarDecl::TLS_Dynamic)
 | 
						|
      CXXThreadLocals.push_back(D);
 | 
						|
    setTLSMode(GV, *D);
 | 
						|
  }
 | 
						|
 | 
						|
  maybeSetTrivialComdat(*D, *GV);
 | 
						|
 | 
						|
  // Emit the initializer function if necessary.
 | 
						|
  if (NeedsGlobalCtor || NeedsGlobalDtor)
 | 
						|
    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
 | 
						|
 | 
						|
  SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
 | 
						|
 | 
						|
  // Emit global variable debug information.
 | 
						|
  if (CGDebugInfo *DI = getModuleDebugInfo())
 | 
						|
    if (getCodeGenOpts().hasReducedDebugInfo())
 | 
						|
      DI->EmitGlobalVariable(GV, D);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
 | 
						|
  if (CGDebugInfo *DI = getModuleDebugInfo())
 | 
						|
    if (getCodeGenOpts().hasReducedDebugInfo()) {
 | 
						|
      QualType ASTTy = D->getType();
 | 
						|
      llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
 | 
						|
      llvm::PointerType *PTy =
 | 
						|
          llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
 | 
						|
      llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
 | 
						|
      DI->EmitExternalVariable(
 | 
						|
          cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool isVarDeclStrongDefinition(const ASTContext &Context,
 | 
						|
                                      CodeGenModule &CGM, const VarDecl *D,
 | 
						|
                                      bool NoCommon) {
 | 
						|
  // Don't give variables common linkage if -fno-common was specified unless it
 | 
						|
  // was overridden by a NoCommon attribute.
 | 
						|
  if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C11 6.9.2/2:
 | 
						|
  //   A declaration of an identifier for an object that has file scope without
 | 
						|
  //   an initializer, and without a storage-class specifier or with the
 | 
						|
  //   storage-class specifier static, constitutes a tentative definition.
 | 
						|
  if (D->getInit() || D->hasExternalStorage())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // A variable cannot be both common and exist in a section.
 | 
						|
  if (D->hasAttr<SectionAttr>())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // A variable cannot be both common and exist in a section.
 | 
						|
  // We don't try to determine which is the right section in the front-end.
 | 
						|
  // If no specialized section name is applicable, it will resort to default.
 | 
						|
  if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
 | 
						|
      D->hasAttr<PragmaClangDataSectionAttr>() ||
 | 
						|
      D->hasAttr<PragmaClangRelroSectionAttr>() ||
 | 
						|
      D->hasAttr<PragmaClangRodataSectionAttr>())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Thread local vars aren't considered common linkage.
 | 
						|
  if (D->getTLSKind())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Tentative definitions marked with WeakImportAttr are true definitions.
 | 
						|
  if (D->hasAttr<WeakImportAttr>())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // A variable cannot be both common and exist in a comdat.
 | 
						|
  if (shouldBeInCOMDAT(CGM, *D))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Declarations with a required alignment do not have common linkage in MSVC
 | 
						|
  // mode.
 | 
						|
  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
 | 
						|
    if (D->hasAttr<AlignedAttr>())
 | 
						|
      return true;
 | 
						|
    QualType VarType = D->getType();
 | 
						|
    if (Context.isAlignmentRequired(VarType))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (const auto *RT = VarType->getAs<RecordType>()) {
 | 
						|
      const RecordDecl *RD = RT->getDecl();
 | 
						|
      for (const FieldDecl *FD : RD->fields()) {
 | 
						|
        if (FD->isBitField())
 | 
						|
          continue;
 | 
						|
        if (FD->hasAttr<AlignedAttr>())
 | 
						|
          return true;
 | 
						|
        if (Context.isAlignmentRequired(FD->getType()))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
 | 
						|
  // common symbols, so symbols with greater alignment requirements cannot be
 | 
						|
  // common.
 | 
						|
  // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
 | 
						|
  // alignments for common symbols via the aligncomm directive, so this
 | 
						|
  // restriction only applies to MSVC environments.
 | 
						|
  if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
 | 
						|
      Context.getTypeAlignIfKnown(D->getType()) >
 | 
						|
          Context.toBits(CharUnits::fromQuantity(32)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
 | 
						|
    const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
 | 
						|
  if (Linkage == GVA_Internal)
 | 
						|
    return llvm::Function::InternalLinkage;
 | 
						|
 | 
						|
  if (D->hasAttr<WeakAttr>()) {
 | 
						|
    if (IsConstantVariable)
 | 
						|
      return llvm::GlobalVariable::WeakODRLinkage;
 | 
						|
    else
 | 
						|
      return llvm::GlobalVariable::WeakAnyLinkage;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *FD = D->getAsFunction())
 | 
						|
    if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
 | 
						|
      return llvm::GlobalVariable::LinkOnceAnyLinkage;
 | 
						|
 | 
						|
  // We are guaranteed to have a strong definition somewhere else,
 | 
						|
  // so we can use available_externally linkage.
 | 
						|
  if (Linkage == GVA_AvailableExternally)
 | 
						|
    return llvm::GlobalValue::AvailableExternallyLinkage;
 | 
						|
 | 
						|
  // Note that Apple's kernel linker doesn't support symbol
 | 
						|
  // coalescing, so we need to avoid linkonce and weak linkages there.
 | 
						|
  // Normally, this means we just map to internal, but for explicit
 | 
						|
  // instantiations we'll map to external.
 | 
						|
 | 
						|
  // In C++, the compiler has to emit a definition in every translation unit
 | 
						|
  // that references the function.  We should use linkonce_odr because
 | 
						|
  // a) if all references in this translation unit are optimized away, we
 | 
						|
  // don't need to codegen it.  b) if the function persists, it needs to be
 | 
						|
  // merged with other definitions. c) C++ has the ODR, so we know the
 | 
						|
  // definition is dependable.
 | 
						|
  if (Linkage == GVA_DiscardableODR)
 | 
						|
    return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
 | 
						|
                                            : llvm::Function::InternalLinkage;
 | 
						|
 | 
						|
  // An explicit instantiation of a template has weak linkage, since
 | 
						|
  // explicit instantiations can occur in multiple translation units
 | 
						|
  // and must all be equivalent. However, we are not allowed to
 | 
						|
  // throw away these explicit instantiations.
 | 
						|
  //
 | 
						|
  // We don't currently support CUDA device code spread out across multiple TUs,
 | 
						|
  // so say that CUDA templates are either external (for kernels) or internal.
 | 
						|
  // This lets llvm perform aggressive inter-procedural optimizations.
 | 
						|
  if (Linkage == GVA_StrongODR) {
 | 
						|
    if (Context.getLangOpts().AppleKext)
 | 
						|
      return llvm::Function::ExternalLinkage;
 | 
						|
    if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
 | 
						|
      return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
 | 
						|
                                          : llvm::Function::InternalLinkage;
 | 
						|
    return llvm::Function::WeakODRLinkage;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ doesn't have tentative definitions and thus cannot have common
 | 
						|
  // linkage.
 | 
						|
  if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
 | 
						|
      !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
 | 
						|
                                 CodeGenOpts.NoCommon))
 | 
						|
    return llvm::GlobalVariable::CommonLinkage;
 | 
						|
 | 
						|
  // selectany symbols are externally visible, so use weak instead of
 | 
						|
  // linkonce.  MSVC optimizes away references to const selectany globals, so
 | 
						|
  // all definitions should be the same and ODR linkage should be used.
 | 
						|
  // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
 | 
						|
  if (D->hasAttr<SelectAnyAttr>())
 | 
						|
    return llvm::GlobalVariable::WeakODRLinkage;
 | 
						|
 | 
						|
  // Otherwise, we have strong external linkage.
 | 
						|
  assert(Linkage == GVA_StrongExternal);
 | 
						|
  return llvm::GlobalVariable::ExternalLinkage;
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
 | 
						|
    const VarDecl *VD, bool IsConstant) {
 | 
						|
  GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
 | 
						|
  return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
 | 
						|
}
 | 
						|
 | 
						|
/// Replace the uses of a function that was declared with a non-proto type.
 | 
						|
/// We want to silently drop extra arguments from call sites
 | 
						|
static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
 | 
						|
                                          llvm::Function *newFn) {
 | 
						|
  // Fast path.
 | 
						|
  if (old->use_empty()) return;
 | 
						|
 | 
						|
  llvm::Type *newRetTy = newFn->getReturnType();
 | 
						|
  SmallVector<llvm::Value*, 4> newArgs;
 | 
						|
  SmallVector<llvm::OperandBundleDef, 1> newBundles;
 | 
						|
 | 
						|
  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
 | 
						|
         ui != ue; ) {
 | 
						|
    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
 | 
						|
    llvm::User *user = use->getUser();
 | 
						|
 | 
						|
    // Recognize and replace uses of bitcasts.  Most calls to
 | 
						|
    // unprototyped functions will use bitcasts.
 | 
						|
    if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
 | 
						|
      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
 | 
						|
        replaceUsesOfNonProtoConstant(bitcast, newFn);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Recognize calls to the function.
 | 
						|
    llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
 | 
						|
    if (!callSite) continue;
 | 
						|
    if (!callSite->isCallee(&*use))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the return types don't match exactly, then we can't
 | 
						|
    // transform this call unless it's dead.
 | 
						|
    if (callSite->getType() != newRetTy && !callSite->use_empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Get the call site's attribute list.
 | 
						|
    SmallVector<llvm::AttributeSet, 8> newArgAttrs;
 | 
						|
    llvm::AttributeList oldAttrs = callSite->getAttributes();
 | 
						|
 | 
						|
    // If the function was passed too few arguments, don't transform.
 | 
						|
    unsigned newNumArgs = newFn->arg_size();
 | 
						|
    if (callSite->arg_size() < newNumArgs)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If extra arguments were passed, we silently drop them.
 | 
						|
    // If any of the types mismatch, we don't transform.
 | 
						|
    unsigned argNo = 0;
 | 
						|
    bool dontTransform = false;
 | 
						|
    for (llvm::Argument &A : newFn->args()) {
 | 
						|
      if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
 | 
						|
        dontTransform = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add any parameter attributes.
 | 
						|
      newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
 | 
						|
      argNo++;
 | 
						|
    }
 | 
						|
    if (dontTransform)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Okay, we can transform this.  Create the new call instruction and copy
 | 
						|
    // over the required information.
 | 
						|
    newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
 | 
						|
 | 
						|
    // Copy over any operand bundles.
 | 
						|
    callSite->getOperandBundlesAsDefs(newBundles);
 | 
						|
 | 
						|
    llvm::CallBase *newCall;
 | 
						|
    if (dyn_cast<llvm::CallInst>(callSite)) {
 | 
						|
      newCall =
 | 
						|
          llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
 | 
						|
    } else {
 | 
						|
      auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
 | 
						|
      newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
 | 
						|
                                         oldInvoke->getUnwindDest(), newArgs,
 | 
						|
                                         newBundles, "", callSite);
 | 
						|
    }
 | 
						|
    newArgs.clear(); // for the next iteration
 | 
						|
 | 
						|
    if (!newCall->getType()->isVoidTy())
 | 
						|
      newCall->takeName(callSite);
 | 
						|
    newCall->setAttributes(llvm::AttributeList::get(
 | 
						|
        newFn->getContext(), oldAttrs.getFnAttributes(),
 | 
						|
        oldAttrs.getRetAttributes(), newArgAttrs));
 | 
						|
    newCall->setCallingConv(callSite->getCallingConv());
 | 
						|
 | 
						|
    // Finally, remove the old call, replacing any uses with the new one.
 | 
						|
    if (!callSite->use_empty())
 | 
						|
      callSite->replaceAllUsesWith(newCall);
 | 
						|
 | 
						|
    // Copy debug location attached to CI.
 | 
						|
    if (callSite->getDebugLoc())
 | 
						|
      newCall->setDebugLoc(callSite->getDebugLoc());
 | 
						|
 | 
						|
    callSite->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
 | 
						|
/// implement a function with no prototype, e.g. "int foo() {}".  If there are
 | 
						|
/// existing call uses of the old function in the module, this adjusts them to
 | 
						|
/// call the new function directly.
 | 
						|
///
 | 
						|
/// This is not just a cleanup: the always_inline pass requires direct calls to
 | 
						|
/// functions to be able to inline them.  If there is a bitcast in the way, it
 | 
						|
/// won't inline them.  Instcombine normally deletes these calls, but it isn't
 | 
						|
/// run at -O0.
 | 
						|
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
 | 
						|
                                                      llvm::Function *NewFn) {
 | 
						|
  // If we're redefining a global as a function, don't transform it.
 | 
						|
  if (!isa<llvm::Function>(Old)) return;
 | 
						|
 | 
						|
  replaceUsesOfNonProtoConstant(Old, NewFn);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
 | 
						|
  auto DK = VD->isThisDeclarationADefinition();
 | 
						|
  if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
 | 
						|
    return;
 | 
						|
 | 
						|
  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
 | 
						|
  // If we have a definition, this might be a deferred decl. If the
 | 
						|
  // instantiation is explicit, make sure we emit it at the end.
 | 
						|
  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
    GetAddrOfGlobalVar(VD);
 | 
						|
 | 
						|
  EmitTopLevelDecl(VD);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
 | 
						|
                                                 llvm::GlobalValue *GV) {
 | 
						|
  // Check if this must be emitted as declare variant.
 | 
						|
  if (LangOpts.OpenMP && OpenMPRuntime &&
 | 
						|
      OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
 | 
						|
    return;
 | 
						|
 | 
						|
  const auto *D = cast<FunctionDecl>(GD.getDecl());
 | 
						|
 | 
						|
  // Compute the function info and LLVM type.
 | 
						|
  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
 | 
						|
  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
 | 
						|
 | 
						|
  // Get or create the prototype for the function.
 | 
						|
  if (!GV || (GV->getType()->getElementType() != Ty))
 | 
						|
    GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
 | 
						|
                                                   /*DontDefer=*/true,
 | 
						|
                                                   ForDefinition));
 | 
						|
 | 
						|
  // Already emitted.
 | 
						|
  if (!GV->isDeclaration())
 | 
						|
    return;
 | 
						|
 | 
						|
  // We need to set linkage and visibility on the function before
 | 
						|
  // generating code for it because various parts of IR generation
 | 
						|
  // want to propagate this information down (e.g. to local static
 | 
						|
  // declarations).
 | 
						|
  auto *Fn = cast<llvm::Function>(GV);
 | 
						|
  setFunctionLinkage(GD, Fn);
 | 
						|
 | 
						|
  // FIXME: this is redundant with part of setFunctionDefinitionAttributes
 | 
						|
  setGVProperties(Fn, GD);
 | 
						|
 | 
						|
  MaybeHandleStaticInExternC(D, Fn);
 | 
						|
 | 
						|
 | 
						|
  maybeSetTrivialComdat(*D, *Fn);
 | 
						|
 | 
						|
  CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
 | 
						|
 | 
						|
  setNonAliasAttributes(GD, Fn);
 | 
						|
  SetLLVMFunctionAttributesForDefinition(D, Fn);
 | 
						|
 | 
						|
  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
 | 
						|
    AddGlobalCtor(Fn, CA->getPriority());
 | 
						|
  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
 | 
						|
    AddGlobalDtor(Fn, DA->getPriority());
 | 
						|
  if (D->hasAttr<AnnotateAttr>())
 | 
						|
    AddGlobalAnnotations(D, Fn);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
 | 
						|
  const auto *D = cast<ValueDecl>(GD.getDecl());
 | 
						|
  const AliasAttr *AA = D->getAttr<AliasAttr>();
 | 
						|
  assert(AA && "Not an alias?");
 | 
						|
 | 
						|
  StringRef MangledName = getMangledName(GD);
 | 
						|
 | 
						|
  if (AA->getAliasee() == MangledName) {
 | 
						|
    Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is a definition in the module, then it wins over the alias.
 | 
						|
  // This is dubious, but allow it to be safe.  Just ignore the alias.
 | 
						|
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | 
						|
  if (Entry && !Entry->isDeclaration())
 | 
						|
    return;
 | 
						|
 | 
						|
  Aliases.push_back(GD);
 | 
						|
 | 
						|
  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
 | 
						|
 | 
						|
  // Create a reference to the named value.  This ensures that it is emitted
 | 
						|
  // if a deferred decl.
 | 
						|
  llvm::Constant *Aliasee;
 | 
						|
  llvm::GlobalValue::LinkageTypes LT;
 | 
						|
  if (isa<llvm::FunctionType>(DeclTy)) {
 | 
						|
    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
 | 
						|
                                      /*ForVTable=*/false);
 | 
						|
    LT = getFunctionLinkage(GD);
 | 
						|
  } else {
 | 
						|
    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
 | 
						|
                                    llvm::PointerType::getUnqual(DeclTy),
 | 
						|
                                    /*D=*/nullptr);
 | 
						|
    LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
 | 
						|
                                     D->getType().isConstQualified());
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the new alias itself, but don't set a name yet.
 | 
						|
  auto *GA =
 | 
						|
      llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
 | 
						|
 | 
						|
  if (Entry) {
 | 
						|
    if (GA->getAliasee() == Entry) {
 | 
						|
      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(Entry->isDeclaration());
 | 
						|
 | 
						|
    // If there is a declaration in the module, then we had an extern followed
 | 
						|
    // by the alias, as in:
 | 
						|
    //   extern int test6();
 | 
						|
    //   ...
 | 
						|
    //   int test6() __attribute__((alias("test7")));
 | 
						|
    //
 | 
						|
    // Remove it and replace uses of it with the alias.
 | 
						|
    GA->takeName(Entry);
 | 
						|
 | 
						|
    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
 | 
						|
                                                          Entry->getType()));
 | 
						|
    Entry->eraseFromParent();
 | 
						|
  } else {
 | 
						|
    GA->setName(MangledName);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set attributes which are particular to an alias; this is a
 | 
						|
  // specialization of the attributes which may be set on a global
 | 
						|
  // variable/function.
 | 
						|
  if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
 | 
						|
      D->isWeakImported()) {
 | 
						|
    GA->setLinkage(llvm::Function::WeakAnyLinkage);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *VD = dyn_cast<VarDecl>(D))
 | 
						|
    if (VD->getTLSKind())
 | 
						|
      setTLSMode(GA, *VD);
 | 
						|
 | 
						|
  SetCommonAttributes(GD, GA);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
 | 
						|
  const auto *D = cast<ValueDecl>(GD.getDecl());
 | 
						|
  const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
 | 
						|
  assert(IFA && "Not an ifunc?");
 | 
						|
 | 
						|
  StringRef MangledName = getMangledName(GD);
 | 
						|
 | 
						|
  if (IFA->getResolver() == MangledName) {
 | 
						|
    Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Report an error if some definition overrides ifunc.
 | 
						|
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | 
						|
  if (Entry && !Entry->isDeclaration()) {
 | 
						|
    GlobalDecl OtherGD;
 | 
						|
    if (lookupRepresentativeDecl(MangledName, OtherGD) &&
 | 
						|
        DiagnosedConflictingDefinitions.insert(GD).second) {
 | 
						|
      Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
 | 
						|
          << MangledName;
 | 
						|
      Diags.Report(OtherGD.getDecl()->getLocation(),
 | 
						|
                   diag::note_previous_definition);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Aliases.push_back(GD);
 | 
						|
 | 
						|
  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
 | 
						|
  llvm::Constant *Resolver =
 | 
						|
      GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
 | 
						|
                              /*ForVTable=*/false);
 | 
						|
  llvm::GlobalIFunc *GIF =
 | 
						|
      llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
 | 
						|
                                "", Resolver, &getModule());
 | 
						|
  if (Entry) {
 | 
						|
    if (GIF->getResolver() == Entry) {
 | 
						|
      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    assert(Entry->isDeclaration());
 | 
						|
 | 
						|
    // If there is a declaration in the module, then we had an extern followed
 | 
						|
    // by the ifunc, as in:
 | 
						|
    //   extern int test();
 | 
						|
    //   ...
 | 
						|
    //   int test() __attribute__((ifunc("resolver")));
 | 
						|
    //
 | 
						|
    // Remove it and replace uses of it with the ifunc.
 | 
						|
    GIF->takeName(Entry);
 | 
						|
 | 
						|
    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
 | 
						|
                                                          Entry->getType()));
 | 
						|
    Entry->eraseFromParent();
 | 
						|
  } else
 | 
						|
    GIF->setName(MangledName);
 | 
						|
 | 
						|
  SetCommonAttributes(GD, GIF);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
 | 
						|
                                            ArrayRef<llvm::Type*> Tys) {
 | 
						|
  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
 | 
						|
                                         Tys);
 | 
						|
}
 | 
						|
 | 
						|
static llvm::StringMapEntry<llvm::GlobalVariable *> &
 | 
						|
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
 | 
						|
                         const StringLiteral *Literal, bool TargetIsLSB,
 | 
						|
                         bool &IsUTF16, unsigned &StringLength) {
 | 
						|
  StringRef String = Literal->getString();
 | 
						|
  unsigned NumBytes = String.size();
 | 
						|
 | 
						|
  // Check for simple case.
 | 
						|
  if (!Literal->containsNonAsciiOrNull()) {
 | 
						|
    StringLength = NumBytes;
 | 
						|
    return *Map.insert(std::make_pair(String, nullptr)).first;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, convert the UTF8 literals into a string of shorts.
 | 
						|
  IsUTF16 = true;
 | 
						|
 | 
						|
  SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
 | 
						|
  const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
 | 
						|
  llvm::UTF16 *ToPtr = &ToBuf[0];
 | 
						|
 | 
						|
  (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
 | 
						|
                                 ToPtr + NumBytes, llvm::strictConversion);
 | 
						|
 | 
						|
  // ConvertUTF8toUTF16 returns the length in ToPtr.
 | 
						|
  StringLength = ToPtr - &ToBuf[0];
 | 
						|
 | 
						|
  // Add an explicit null.
 | 
						|
  *ToPtr = 0;
 | 
						|
  return *Map.insert(std::make_pair(
 | 
						|
                         StringRef(reinterpret_cast<const char *>(ToBuf.data()),
 | 
						|
                                   (StringLength + 1) * 2),
 | 
						|
                         nullptr)).first;
 | 
						|
}
 | 
						|
 | 
						|
ConstantAddress
 | 
						|
CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
 | 
						|
  unsigned StringLength = 0;
 | 
						|
  bool isUTF16 = false;
 | 
						|
  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
 | 
						|
      GetConstantCFStringEntry(CFConstantStringMap, Literal,
 | 
						|
                               getDataLayout().isLittleEndian(), isUTF16,
 | 
						|
                               StringLength);
 | 
						|
 | 
						|
  if (auto *C = Entry.second)
 | 
						|
    return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
 | 
						|
 | 
						|
  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
 | 
						|
  llvm::Constant *Zeros[] = { Zero, Zero };
 | 
						|
 | 
						|
  const ASTContext &Context = getContext();
 | 
						|
  const llvm::Triple &Triple = getTriple();
 | 
						|
 | 
						|
  const auto CFRuntime = getLangOpts().CFRuntime;
 | 
						|
  const bool IsSwiftABI =
 | 
						|
      static_cast<unsigned>(CFRuntime) >=
 | 
						|
      static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
 | 
						|
  const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
 | 
						|
 | 
						|
  // If we don't already have it, get __CFConstantStringClassReference.
 | 
						|
  if (!CFConstantStringClassRef) {
 | 
						|
    const char *CFConstantStringClassName = "__CFConstantStringClassReference";
 | 
						|
    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
 | 
						|
    Ty = llvm::ArrayType::get(Ty, 0);
 | 
						|
 | 
						|
    switch (CFRuntime) {
 | 
						|
    default: break;
 | 
						|
    case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
 | 
						|
    case LangOptions::CoreFoundationABI::Swift5_0:
 | 
						|
      CFConstantStringClassName =
 | 
						|
          Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
 | 
						|
                              : "$s10Foundation19_NSCFConstantStringCN";
 | 
						|
      Ty = IntPtrTy;
 | 
						|
      break;
 | 
						|
    case LangOptions::CoreFoundationABI::Swift4_2:
 | 
						|
      CFConstantStringClassName =
 | 
						|
          Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
 | 
						|
                              : "$S10Foundation19_NSCFConstantStringCN";
 | 
						|
      Ty = IntPtrTy;
 | 
						|
      break;
 | 
						|
    case LangOptions::CoreFoundationABI::Swift4_1:
 | 
						|
      CFConstantStringClassName =
 | 
						|
          Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
 | 
						|
                              : "__T010Foundation19_NSCFConstantStringCN";
 | 
						|
      Ty = IntPtrTy;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
 | 
						|
 | 
						|
    if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
 | 
						|
      llvm::GlobalValue *GV = nullptr;
 | 
						|
 | 
						|
      if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
 | 
						|
        IdentifierInfo &II = Context.Idents.get(GV->getName());
 | 
						|
        TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
 | 
						|
        DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
 | 
						|
 | 
						|
        const VarDecl *VD = nullptr;
 | 
						|
        for (const auto &Result : DC->lookup(&II))
 | 
						|
          if ((VD = dyn_cast<VarDecl>(Result)))
 | 
						|
            break;
 | 
						|
 | 
						|
        if (Triple.isOSBinFormatELF()) {
 | 
						|
          if (!VD)
 | 
						|
            GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
 | 
						|
        } else {
 | 
						|
          GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
 | 
						|
          if (!VD || !VD->hasAttr<DLLExportAttr>())
 | 
						|
            GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
 | 
						|
          else
 | 
						|
            GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
 | 
						|
        }
 | 
						|
 | 
						|
        setDSOLocal(GV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Decay array -> ptr
 | 
						|
    CFConstantStringClassRef =
 | 
						|
        IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
 | 
						|
                   : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
 | 
						|
  }
 | 
						|
 | 
						|
  QualType CFTy = Context.getCFConstantStringType();
 | 
						|
 | 
						|
  auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
 | 
						|
 | 
						|
  ConstantInitBuilder Builder(*this);
 | 
						|
  auto Fields = Builder.beginStruct(STy);
 | 
						|
 | 
						|
  // Class pointer.
 | 
						|
  Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
 | 
						|
 | 
						|
  // Flags.
 | 
						|
  if (IsSwiftABI) {
 | 
						|
    Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
 | 
						|
    Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
 | 
						|
  } else {
 | 
						|
    Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
 | 
						|
  }
 | 
						|
 | 
						|
  // String pointer.
 | 
						|
  llvm::Constant *C = nullptr;
 | 
						|
  if (isUTF16) {
 | 
						|
    auto Arr = llvm::makeArrayRef(
 | 
						|
        reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
 | 
						|
        Entry.first().size() / 2);
 | 
						|
    C = llvm::ConstantDataArray::get(VMContext, Arr);
 | 
						|
  } else {
 | 
						|
    C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
 | 
						|
  }
 | 
						|
 | 
						|
  // Note: -fwritable-strings doesn't make the backing store strings of
 | 
						|
  // CFStrings writable. (See <rdar://problem/10657500>)
 | 
						|
  auto *GV =
 | 
						|
      new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
 | 
						|
                               llvm::GlobalValue::PrivateLinkage, C, ".str");
 | 
						|
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | 
						|
  // Don't enforce the target's minimum global alignment, since the only use
 | 
						|
  // of the string is via this class initializer.
 | 
						|
  CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
 | 
						|
                            : Context.getTypeAlignInChars(Context.CharTy);
 | 
						|
  GV->setAlignment(Align.getAsAlign());
 | 
						|
 | 
						|
  // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
 | 
						|
  // Without it LLVM can merge the string with a non unnamed_addr one during
 | 
						|
  // LTO.  Doing that changes the section it ends in, which surprises ld64.
 | 
						|
  if (Triple.isOSBinFormatMachO())
 | 
						|
    GV->setSection(isUTF16 ? "__TEXT,__ustring"
 | 
						|
                           : "__TEXT,__cstring,cstring_literals");
 | 
						|
  // Make sure the literal ends up in .rodata to allow for safe ICF and for
 | 
						|
  // the static linker to adjust permissions to read-only later on.
 | 
						|
  else if (Triple.isOSBinFormatELF())
 | 
						|
    GV->setSection(".rodata");
 | 
						|
 | 
						|
  // String.
 | 
						|
  llvm::Constant *Str =
 | 
						|
      llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
 | 
						|
 | 
						|
  if (isUTF16)
 | 
						|
    // Cast the UTF16 string to the correct type.
 | 
						|
    Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
 | 
						|
  Fields.add(Str);
 | 
						|
 | 
						|
  // String length.
 | 
						|
  llvm::IntegerType *LengthTy =
 | 
						|
      llvm::IntegerType::get(getModule().getContext(),
 | 
						|
                             Context.getTargetInfo().getLongWidth());
 | 
						|
  if (IsSwiftABI) {
 | 
						|
    if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
 | 
						|
        CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
 | 
						|
      LengthTy = Int32Ty;
 | 
						|
    else
 | 
						|
      LengthTy = IntPtrTy;
 | 
						|
  }
 | 
						|
  Fields.addInt(LengthTy, StringLength);
 | 
						|
 | 
						|
  // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
 | 
						|
  // properly aligned on 32-bit platforms.
 | 
						|
  CharUnits Alignment =
 | 
						|
      IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
 | 
						|
 | 
						|
  // The struct.
 | 
						|
  GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
 | 
						|
                                    /*isConstant=*/false,
 | 
						|
                                    llvm::GlobalVariable::PrivateLinkage);
 | 
						|
  GV->addAttribute("objc_arc_inert");
 | 
						|
  switch (Triple.getObjectFormat()) {
 | 
						|
  case llvm::Triple::UnknownObjectFormat:
 | 
						|
    llvm_unreachable("unknown file format");
 | 
						|
  case llvm::Triple::XCOFF:
 | 
						|
    llvm_unreachable("XCOFF is not yet implemented");
 | 
						|
  case llvm::Triple::COFF:
 | 
						|
  case llvm::Triple::ELF:
 | 
						|
  case llvm::Triple::Wasm:
 | 
						|
    GV->setSection("cfstring");
 | 
						|
    break;
 | 
						|
  case llvm::Triple::MachO:
 | 
						|
    GV->setSection("__DATA,__cfstring");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  Entry.second = GV;
 | 
						|
 | 
						|
  return ConstantAddress(GV, Alignment);
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::getExpressionLocationsEnabled() const {
 | 
						|
  return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
 | 
						|
}
 | 
						|
 | 
						|
QualType CodeGenModule::getObjCFastEnumerationStateType() {
 | 
						|
  if (ObjCFastEnumerationStateType.isNull()) {
 | 
						|
    RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
 | 
						|
    D->startDefinition();
 | 
						|
 | 
						|
    QualType FieldTypes[] = {
 | 
						|
      Context.UnsignedLongTy,
 | 
						|
      Context.getPointerType(Context.getObjCIdType()),
 | 
						|
      Context.getPointerType(Context.UnsignedLongTy),
 | 
						|
      Context.getConstantArrayType(Context.UnsignedLongTy,
 | 
						|
                           llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
 | 
						|
    };
 | 
						|
 | 
						|
    for (size_t i = 0; i < 4; ++i) {
 | 
						|
      FieldDecl *Field = FieldDecl::Create(Context,
 | 
						|
                                           D,
 | 
						|
                                           SourceLocation(),
 | 
						|
                                           SourceLocation(), nullptr,
 | 
						|
                                           FieldTypes[i], /*TInfo=*/nullptr,
 | 
						|
                                           /*BitWidth=*/nullptr,
 | 
						|
                                           /*Mutable=*/false,
 | 
						|
                                           ICIS_NoInit);
 | 
						|
      Field->setAccess(AS_public);
 | 
						|
      D->addDecl(Field);
 | 
						|
    }
 | 
						|
 | 
						|
    D->completeDefinition();
 | 
						|
    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
 | 
						|
  }
 | 
						|
 | 
						|
  return ObjCFastEnumerationStateType;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
 | 
						|
  assert(!E->getType()->isPointerType() && "Strings are always arrays");
 | 
						|
 | 
						|
  // Don't emit it as the address of the string, emit the string data itself
 | 
						|
  // as an inline array.
 | 
						|
  if (E->getCharByteWidth() == 1) {
 | 
						|
    SmallString<64> Str(E->getString());
 | 
						|
 | 
						|
    // Resize the string to the right size, which is indicated by its type.
 | 
						|
    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
 | 
						|
    Str.resize(CAT->getSize().getZExtValue());
 | 
						|
    return llvm::ConstantDataArray::getString(VMContext, Str, false);
 | 
						|
  }
 | 
						|
 | 
						|
  auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
 | 
						|
  llvm::Type *ElemTy = AType->getElementType();
 | 
						|
  unsigned NumElements = AType->getNumElements();
 | 
						|
 | 
						|
  // Wide strings have either 2-byte or 4-byte elements.
 | 
						|
  if (ElemTy->getPrimitiveSizeInBits() == 16) {
 | 
						|
    SmallVector<uint16_t, 32> Elements;
 | 
						|
    Elements.reserve(NumElements);
 | 
						|
 | 
						|
    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
 | 
						|
      Elements.push_back(E->getCodeUnit(i));
 | 
						|
    Elements.resize(NumElements);
 | 
						|
    return llvm::ConstantDataArray::get(VMContext, Elements);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(ElemTy->getPrimitiveSizeInBits() == 32);
 | 
						|
  SmallVector<uint32_t, 32> Elements;
 | 
						|
  Elements.reserve(NumElements);
 | 
						|
 | 
						|
  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
 | 
						|
    Elements.push_back(E->getCodeUnit(i));
 | 
						|
  Elements.resize(NumElements);
 | 
						|
  return llvm::ConstantDataArray::get(VMContext, Elements);
 | 
						|
}
 | 
						|
 | 
						|
static llvm::GlobalVariable *
 | 
						|
GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
 | 
						|
                      CodeGenModule &CGM, StringRef GlobalName,
 | 
						|
                      CharUnits Alignment) {
 | 
						|
  unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
 | 
						|
      CGM.getStringLiteralAddressSpace());
 | 
						|
 | 
						|
  llvm::Module &M = CGM.getModule();
 | 
						|
  // Create a global variable for this string
 | 
						|
  auto *GV = new llvm::GlobalVariable(
 | 
						|
      M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
 | 
						|
      nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
 | 
						|
  GV->setAlignment(Alignment.getAsAlign());
 | 
						|
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | 
						|
  if (GV->isWeakForLinker()) {
 | 
						|
    assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
 | 
						|
    GV->setComdat(M.getOrInsertComdat(GV->getName()));
 | 
						|
  }
 | 
						|
  CGM.setDSOLocal(GV);
 | 
						|
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
 | 
						|
/// constant array for the given string literal.
 | 
						|
ConstantAddress
 | 
						|
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
 | 
						|
                                                  StringRef Name) {
 | 
						|
  CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
 | 
						|
 | 
						|
  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
 | 
						|
  llvm::GlobalVariable **Entry = nullptr;
 | 
						|
  if (!LangOpts.WritableStrings) {
 | 
						|
    Entry = &ConstantStringMap[C];
 | 
						|
    if (auto GV = *Entry) {
 | 
						|
      if (Alignment.getQuantity() > GV->getAlignment())
 | 
						|
        GV->setAlignment(Alignment.getAsAlign());
 | 
						|
      return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
 | 
						|
                             Alignment);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallString<256> MangledNameBuffer;
 | 
						|
  StringRef GlobalVariableName;
 | 
						|
  llvm::GlobalValue::LinkageTypes LT;
 | 
						|
 | 
						|
  // Mangle the string literal if that's how the ABI merges duplicate strings.
 | 
						|
  // Don't do it if they are writable, since we don't want writes in one TU to
 | 
						|
  // affect strings in another.
 | 
						|
  if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
 | 
						|
      !LangOpts.WritableStrings) {
 | 
						|
    llvm::raw_svector_ostream Out(MangledNameBuffer);
 | 
						|
    getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
 | 
						|
    LT = llvm::GlobalValue::LinkOnceODRLinkage;
 | 
						|
    GlobalVariableName = MangledNameBuffer;
 | 
						|
  } else {
 | 
						|
    LT = llvm::GlobalValue::PrivateLinkage;
 | 
						|
    GlobalVariableName = Name;
 | 
						|
  }
 | 
						|
 | 
						|
  auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
 | 
						|
  if (Entry)
 | 
						|
    *Entry = GV;
 | 
						|
 | 
						|
  SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
 | 
						|
                                  QualType());
 | 
						|
 | 
						|
  return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
 | 
						|
                         Alignment);
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
 | 
						|
/// array for the given ObjCEncodeExpr node.
 | 
						|
ConstantAddress
 | 
						|
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
 | 
						|
  std::string Str;
 | 
						|
  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
 | 
						|
 | 
						|
  return GetAddrOfConstantCString(Str);
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddrOfConstantCString - Returns a pointer to a character array containing
 | 
						|
/// the literal and a terminating '\0' character.
 | 
						|
/// The result has pointer to array type.
 | 
						|
ConstantAddress CodeGenModule::GetAddrOfConstantCString(
 | 
						|
    const std::string &Str, const char *GlobalName) {
 | 
						|
  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
 | 
						|
  CharUnits Alignment =
 | 
						|
    getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
 | 
						|
 | 
						|
  llvm::Constant *C =
 | 
						|
      llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
 | 
						|
 | 
						|
  // Don't share any string literals if strings aren't constant.
 | 
						|
  llvm::GlobalVariable **Entry = nullptr;
 | 
						|
  if (!LangOpts.WritableStrings) {
 | 
						|
    Entry = &ConstantStringMap[C];
 | 
						|
    if (auto GV = *Entry) {
 | 
						|
      if (Alignment.getQuantity() > GV->getAlignment())
 | 
						|
        GV->setAlignment(Alignment.getAsAlign());
 | 
						|
      return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
 | 
						|
                             Alignment);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the default prefix if a name wasn't specified.
 | 
						|
  if (!GlobalName)
 | 
						|
    GlobalName = ".str";
 | 
						|
  // Create a global variable for this.
 | 
						|
  auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
 | 
						|
                                  GlobalName, Alignment);
 | 
						|
  if (Entry)
 | 
						|
    *Entry = GV;
 | 
						|
 | 
						|
  return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
 | 
						|
                         Alignment);
 | 
						|
}
 | 
						|
 | 
						|
ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
 | 
						|
    const MaterializeTemporaryExpr *E, const Expr *Init) {
 | 
						|
  assert((E->getStorageDuration() == SD_Static ||
 | 
						|
          E->getStorageDuration() == SD_Thread) && "not a global temporary");
 | 
						|
  const auto *VD = cast<VarDecl>(E->getExtendingDecl());
 | 
						|
 | 
						|
  // If we're not materializing a subobject of the temporary, keep the
 | 
						|
  // cv-qualifiers from the type of the MaterializeTemporaryExpr.
 | 
						|
  QualType MaterializedType = Init->getType();
 | 
						|
  if (Init == E->getSubExpr())
 | 
						|
    MaterializedType = E->getType();
 | 
						|
 | 
						|
  CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
 | 
						|
 | 
						|
  if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
 | 
						|
    return ConstantAddress(Slot, Align);
 | 
						|
 | 
						|
  // FIXME: If an externally-visible declaration extends multiple temporaries,
 | 
						|
  // we need to give each temporary the same name in every translation unit (and
 | 
						|
  // we also need to make the temporaries externally-visible).
 | 
						|
  SmallString<256> Name;
 | 
						|
  llvm::raw_svector_ostream Out(Name);
 | 
						|
  getCXXABI().getMangleContext().mangleReferenceTemporary(
 | 
						|
      VD, E->getManglingNumber(), Out);
 | 
						|
 | 
						|
  APValue *Value = nullptr;
 | 
						|
  if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
 | 
						|
    // If the initializer of the extending declaration is a constant
 | 
						|
    // initializer, we should have a cached constant initializer for this
 | 
						|
    // temporary. Note that this might have a different value from the value
 | 
						|
    // computed by evaluating the initializer if the surrounding constant
 | 
						|
    // expression modifies the temporary.
 | 
						|
    Value = E->getOrCreateValue(false);
 | 
						|
  }
 | 
						|
 | 
						|
  // Try evaluating it now, it might have a constant initializer.
 | 
						|
  Expr::EvalResult EvalResult;
 | 
						|
  if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
 | 
						|
      !EvalResult.hasSideEffects())
 | 
						|
    Value = &EvalResult.Val;
 | 
						|
 | 
						|
  LangAS AddrSpace =
 | 
						|
      VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
 | 
						|
 | 
						|
  Optional<ConstantEmitter> emitter;
 | 
						|
  llvm::Constant *InitialValue = nullptr;
 | 
						|
  bool Constant = false;
 | 
						|
  llvm::Type *Type;
 | 
						|
  if (Value) {
 | 
						|
    // The temporary has a constant initializer, use it.
 | 
						|
    emitter.emplace(*this);
 | 
						|
    InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
 | 
						|
                                               MaterializedType);
 | 
						|
    Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
 | 
						|
    Type = InitialValue->getType();
 | 
						|
  } else {
 | 
						|
    // No initializer, the initialization will be provided when we
 | 
						|
    // initialize the declaration which performed lifetime extension.
 | 
						|
    Type = getTypes().ConvertTypeForMem(MaterializedType);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a global variable for this lifetime-extended temporary.
 | 
						|
  llvm::GlobalValue::LinkageTypes Linkage =
 | 
						|
      getLLVMLinkageVarDefinition(VD, Constant);
 | 
						|
  if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
 | 
						|
    const VarDecl *InitVD;
 | 
						|
    if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
 | 
						|
        isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
 | 
						|
      // Temporaries defined inside a class get linkonce_odr linkage because the
 | 
						|
      // class can be defined in multiple translation units.
 | 
						|
      Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
 | 
						|
    } else {
 | 
						|
      // There is no need for this temporary to have external linkage if the
 | 
						|
      // VarDecl has external linkage.
 | 
						|
      Linkage = llvm::GlobalVariable::InternalLinkage;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
 | 
						|
  auto *GV = new llvm::GlobalVariable(
 | 
						|
      getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
 | 
						|
      /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
 | 
						|
  if (emitter) emitter->finalize(GV);
 | 
						|
  setGVProperties(GV, VD);
 | 
						|
  GV->setAlignment(Align.getAsAlign());
 | 
						|
  if (supportsCOMDAT() && GV->isWeakForLinker())
 | 
						|
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
 | 
						|
  if (VD->getTLSKind())
 | 
						|
    setTLSMode(GV, *VD);
 | 
						|
  llvm::Constant *CV = GV;
 | 
						|
  if (AddrSpace != LangAS::Default)
 | 
						|
    CV = getTargetCodeGenInfo().performAddrSpaceCast(
 | 
						|
        *this, GV, AddrSpace, LangAS::Default,
 | 
						|
        Type->getPointerTo(
 | 
						|
            getContext().getTargetAddressSpace(LangAS::Default)));
 | 
						|
  MaterializedGlobalTemporaryMap[E] = CV;
 | 
						|
  return ConstantAddress(CV, Align);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitObjCPropertyImplementations - Emit information for synthesized
 | 
						|
/// properties for an implementation.
 | 
						|
void CodeGenModule::EmitObjCPropertyImplementations(const
 | 
						|
                                                    ObjCImplementationDecl *D) {
 | 
						|
  for (const auto *PID : D->property_impls()) {
 | 
						|
    // Dynamic is just for type-checking.
 | 
						|
    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
 | 
						|
      ObjCPropertyDecl *PD = PID->getPropertyDecl();
 | 
						|
 | 
						|
      // Determine which methods need to be implemented, some may have
 | 
						|
      // been overridden. Note that ::isPropertyAccessor is not the method
 | 
						|
      // we want, that just indicates if the decl came from a
 | 
						|
      // property. What we want to know is if the method is defined in
 | 
						|
      // this implementation.
 | 
						|
      auto *Getter = PID->getGetterMethodDecl();
 | 
						|
      if (!Getter || Getter->isSynthesizedAccessorStub())
 | 
						|
        CodeGenFunction(*this).GenerateObjCGetter(
 | 
						|
            const_cast<ObjCImplementationDecl *>(D), PID);
 | 
						|
      auto *Setter = PID->getSetterMethodDecl();
 | 
						|
      if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
 | 
						|
        CodeGenFunction(*this).GenerateObjCSetter(
 | 
						|
                                 const_cast<ObjCImplementationDecl *>(D), PID);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool needsDestructMethod(ObjCImplementationDecl *impl) {
 | 
						|
  const ObjCInterfaceDecl *iface = impl->getClassInterface();
 | 
						|
  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
 | 
						|
       ivar; ivar = ivar->getNextIvar())
 | 
						|
    if (ivar->getType().isDestructedType())
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool AllTrivialInitializers(CodeGenModule &CGM,
 | 
						|
                                   ObjCImplementationDecl *D) {
 | 
						|
  CodeGenFunction CGF(CGM);
 | 
						|
  for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
 | 
						|
       E = D->init_end(); B != E; ++B) {
 | 
						|
    CXXCtorInitializer *CtorInitExp = *B;
 | 
						|
    Expr *Init = CtorInitExp->getInit();
 | 
						|
    if (!CGF.isTrivialInitializer(Init))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// EmitObjCIvarInitializations - Emit information for ivar initialization
 | 
						|
/// for an implementation.
 | 
						|
void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
 | 
						|
  // We might need a .cxx_destruct even if we don't have any ivar initializers.
 | 
						|
  if (needsDestructMethod(D)) {
 | 
						|
    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
 | 
						|
    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
 | 
						|
    ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
 | 
						|
        getContext(), D->getLocation(), D->getLocation(), cxxSelector,
 | 
						|
        getContext().VoidTy, nullptr, D,
 | 
						|
        /*isInstance=*/true, /*isVariadic=*/false,
 | 
						|
        /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
 | 
						|
        /*isImplicitlyDeclared=*/true,
 | 
						|
        /*isDefined=*/false, ObjCMethodDecl::Required);
 | 
						|
    D->addInstanceMethod(DTORMethod);
 | 
						|
    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
 | 
						|
    D->setHasDestructors(true);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the implementation doesn't have any ivar initializers, we don't need
 | 
						|
  // a .cxx_construct.
 | 
						|
  if (D->getNumIvarInitializers() == 0 ||
 | 
						|
      AllTrivialInitializers(*this, D))
 | 
						|
    return;
 | 
						|
 | 
						|
  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
 | 
						|
  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
 | 
						|
  // The constructor returns 'self'.
 | 
						|
  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
 | 
						|
      getContext(), D->getLocation(), D->getLocation(), cxxSelector,
 | 
						|
      getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
 | 
						|
      /*isVariadic=*/false,
 | 
						|
      /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
 | 
						|
      /*isImplicitlyDeclared=*/true,
 | 
						|
      /*isDefined=*/false, ObjCMethodDecl::Required);
 | 
						|
  D->addInstanceMethod(CTORMethod);
 | 
						|
  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
 | 
						|
  D->setHasNonZeroConstructors(true);
 | 
						|
}
 | 
						|
 | 
						|
// EmitLinkageSpec - Emit all declarations in a linkage spec.
 | 
						|
void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
 | 
						|
  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
 | 
						|
      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
 | 
						|
    ErrorUnsupported(LSD, "linkage spec");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  EmitDeclContext(LSD);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
 | 
						|
  for (auto *I : DC->decls()) {
 | 
						|
    // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
 | 
						|
    // are themselves considered "top-level", so EmitTopLevelDecl on an
 | 
						|
    // ObjCImplDecl does not recursively visit them. We need to do that in
 | 
						|
    // case they're nested inside another construct (LinkageSpecDecl /
 | 
						|
    // ExportDecl) that does stop them from being considered "top-level".
 | 
						|
    if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
 | 
						|
      for (auto *M : OID->methods())
 | 
						|
        EmitTopLevelDecl(M);
 | 
						|
    }
 | 
						|
 | 
						|
    EmitTopLevelDecl(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitTopLevelDecl - Emit code for a single top level declaration.
 | 
						|
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
 | 
						|
  // Ignore dependent declarations.
 | 
						|
  if (D->isTemplated())
 | 
						|
    return;
 | 
						|
 | 
						|
  switch (D->getKind()) {
 | 
						|
  case Decl::CXXConversion:
 | 
						|
  case Decl::CXXMethod:
 | 
						|
  case Decl::Function:
 | 
						|
    EmitGlobal(getGlobalDecl(cast<FunctionDecl>(D)));
 | 
						|
    // Always provide some coverage mapping
 | 
						|
    // even for the functions that aren't emitted.
 | 
						|
    AddDeferredUnusedCoverageMapping(D);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::CXXDeductionGuide:
 | 
						|
    // Function-like, but does not result in code emission.
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::Var:
 | 
						|
  case Decl::Decomposition:
 | 
						|
  case Decl::VarTemplateSpecialization:
 | 
						|
    EmitGlobal(cast<VarDecl>(D));
 | 
						|
    if (auto *DD = dyn_cast<DecompositionDecl>(D))
 | 
						|
      for (auto *B : DD->bindings())
 | 
						|
        if (auto *HD = B->getHoldingVar())
 | 
						|
          EmitGlobal(HD);
 | 
						|
    break;
 | 
						|
 | 
						|
  // Indirect fields from global anonymous structs and unions can be
 | 
						|
  // ignored; only the actual variable requires IR gen support.
 | 
						|
  case Decl::IndirectField:
 | 
						|
    break;
 | 
						|
 | 
						|
  // C++ Decls
 | 
						|
  case Decl::Namespace:
 | 
						|
    EmitDeclContext(cast<NamespaceDecl>(D));
 | 
						|
    break;
 | 
						|
  case Decl::ClassTemplateSpecialization: {
 | 
						|
    const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
 | 
						|
    if (DebugInfo &&
 | 
						|
        Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
 | 
						|
        Spec->hasDefinition())
 | 
						|
      DebugInfo->completeTemplateDefinition(*Spec);
 | 
						|
  } LLVM_FALLTHROUGH;
 | 
						|
  case Decl::CXXRecord:
 | 
						|
    if (DebugInfo) {
 | 
						|
      if (auto *ES = D->getASTContext().getExternalSource())
 | 
						|
        if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
 | 
						|
          DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
 | 
						|
    }
 | 
						|
    // Emit any static data members, they may be definitions.
 | 
						|
    for (auto *I : cast<CXXRecordDecl>(D)->decls())
 | 
						|
      if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
 | 
						|
        EmitTopLevelDecl(I);
 | 
						|
    break;
 | 
						|
    // No code generation needed.
 | 
						|
  case Decl::UsingShadow:
 | 
						|
  case Decl::ClassTemplate:
 | 
						|
  case Decl::VarTemplate:
 | 
						|
  case Decl::Concept:
 | 
						|
  case Decl::VarTemplatePartialSpecialization:
 | 
						|
  case Decl::FunctionTemplate:
 | 
						|
  case Decl::TypeAliasTemplate:
 | 
						|
  case Decl::Block:
 | 
						|
  case Decl::Empty:
 | 
						|
  case Decl::Binding:
 | 
						|
    break;
 | 
						|
  case Decl::Using:          // using X; [C++]
 | 
						|
    if (CGDebugInfo *DI = getModuleDebugInfo())
 | 
						|
        DI->EmitUsingDecl(cast<UsingDecl>(*D));
 | 
						|
    return;
 | 
						|
  case Decl::NamespaceAlias:
 | 
						|
    if (CGDebugInfo *DI = getModuleDebugInfo())
 | 
						|
        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
 | 
						|
    return;
 | 
						|
  case Decl::UsingDirective: // using namespace X; [C++]
 | 
						|
    if (CGDebugInfo *DI = getModuleDebugInfo())
 | 
						|
      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
 | 
						|
    return;
 | 
						|
  case Decl::CXXConstructor:
 | 
						|
    getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
 | 
						|
    break;
 | 
						|
  case Decl::CXXDestructor:
 | 
						|
    getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::StaticAssert:
 | 
						|
    // Nothing to do.
 | 
						|
    break;
 | 
						|
 | 
						|
  // Objective-C Decls
 | 
						|
 | 
						|
  // Forward declarations, no (immediate) code generation.
 | 
						|
  case Decl::ObjCInterface:
 | 
						|
  case Decl::ObjCCategory:
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::ObjCProtocol: {
 | 
						|
    auto *Proto = cast<ObjCProtocolDecl>(D);
 | 
						|
    if (Proto->isThisDeclarationADefinition())
 | 
						|
      ObjCRuntime->GenerateProtocol(Proto);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Decl::ObjCCategoryImpl:
 | 
						|
    // Categories have properties but don't support synthesize so we
 | 
						|
    // can ignore them here.
 | 
						|
    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::ObjCImplementation: {
 | 
						|
    auto *OMD = cast<ObjCImplementationDecl>(D);
 | 
						|
    EmitObjCPropertyImplementations(OMD);
 | 
						|
    EmitObjCIvarInitializations(OMD);
 | 
						|
    ObjCRuntime->GenerateClass(OMD);
 | 
						|
    // Emit global variable debug information.
 | 
						|
    if (CGDebugInfo *DI = getModuleDebugInfo())
 | 
						|
      if (getCodeGenOpts().hasReducedDebugInfo())
 | 
						|
        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
 | 
						|
            OMD->getClassInterface()), OMD->getLocation());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Decl::ObjCMethod: {
 | 
						|
    auto *OMD = cast<ObjCMethodDecl>(D);
 | 
						|
    // If this is not a prototype, emit the body.
 | 
						|
    if (OMD->getBody())
 | 
						|
      CodeGenFunction(*this).GenerateObjCMethod(OMD);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Decl::ObjCCompatibleAlias:
 | 
						|
    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::PragmaComment: {
 | 
						|
    const auto *PCD = cast<PragmaCommentDecl>(D);
 | 
						|
    switch (PCD->getCommentKind()) {
 | 
						|
    case PCK_Unknown:
 | 
						|
      llvm_unreachable("unexpected pragma comment kind");
 | 
						|
    case PCK_Linker:
 | 
						|
      AppendLinkerOptions(PCD->getArg());
 | 
						|
      break;
 | 
						|
    case PCK_Lib:
 | 
						|
        AddDependentLib(PCD->getArg());
 | 
						|
      break;
 | 
						|
    case PCK_Compiler:
 | 
						|
    case PCK_ExeStr:
 | 
						|
    case PCK_User:
 | 
						|
      break; // We ignore all of these.
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Decl::PragmaDetectMismatch: {
 | 
						|
    const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
 | 
						|
    AddDetectMismatch(PDMD->getName(), PDMD->getValue());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Decl::LinkageSpec:
 | 
						|
    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::FileScopeAsm: {
 | 
						|
    // File-scope asm is ignored during device-side CUDA compilation.
 | 
						|
    if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
 | 
						|
      break;
 | 
						|
    // File-scope asm is ignored during device-side OpenMP compilation.
 | 
						|
    if (LangOpts.OpenMPIsDevice)
 | 
						|
      break;
 | 
						|
    auto *AD = cast<FileScopeAsmDecl>(D);
 | 
						|
    getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Decl::Import: {
 | 
						|
    auto *Import = cast<ImportDecl>(D);
 | 
						|
 | 
						|
    // If we've already imported this module, we're done.
 | 
						|
    if (!ImportedModules.insert(Import->getImportedModule()))
 | 
						|
      break;
 | 
						|
 | 
						|
    // Emit debug information for direct imports.
 | 
						|
    if (!Import->getImportedOwningModule()) {
 | 
						|
      if (CGDebugInfo *DI = getModuleDebugInfo())
 | 
						|
        DI->EmitImportDecl(*Import);
 | 
						|
    }
 | 
						|
 | 
						|
    // Find all of the submodules and emit the module initializers.
 | 
						|
    llvm::SmallPtrSet<clang::Module *, 16> Visited;
 | 
						|
    SmallVector<clang::Module *, 16> Stack;
 | 
						|
    Visited.insert(Import->getImportedModule());
 | 
						|
    Stack.push_back(Import->getImportedModule());
 | 
						|
 | 
						|
    while (!Stack.empty()) {
 | 
						|
      clang::Module *Mod = Stack.pop_back_val();
 | 
						|
      if (!EmittedModuleInitializers.insert(Mod).second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      for (auto *D : Context.getModuleInitializers(Mod))
 | 
						|
        EmitTopLevelDecl(D);
 | 
						|
 | 
						|
      // Visit the submodules of this module.
 | 
						|
      for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
 | 
						|
                                             SubEnd = Mod->submodule_end();
 | 
						|
           Sub != SubEnd; ++Sub) {
 | 
						|
        // Skip explicit children; they need to be explicitly imported to emit
 | 
						|
        // the initializers.
 | 
						|
        if ((*Sub)->IsExplicit)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (Visited.insert(*Sub).second)
 | 
						|
          Stack.push_back(*Sub);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Decl::Export:
 | 
						|
    EmitDeclContext(cast<ExportDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::OMPThreadPrivate:
 | 
						|
    EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::OMPAllocate:
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::OMPDeclareReduction:
 | 
						|
    EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::OMPDeclareMapper:
 | 
						|
    EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::OMPRequires:
 | 
						|
    EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    // Make sure we handled everything we should, every other kind is a
 | 
						|
    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
 | 
						|
    // function. Need to recode Decl::Kind to do that easily.
 | 
						|
    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
 | 
						|
  // Do we need to generate coverage mapping?
 | 
						|
  if (!CodeGenOpts.CoverageMapping)
 | 
						|
    return;
 | 
						|
  switch (D->getKind()) {
 | 
						|
  case Decl::CXXConversion:
 | 
						|
  case Decl::CXXMethod:
 | 
						|
  case Decl::Function:
 | 
						|
  case Decl::ObjCMethod:
 | 
						|
  case Decl::CXXConstructor:
 | 
						|
  case Decl::CXXDestructor: {
 | 
						|
    if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
 | 
						|
      return;
 | 
						|
    SourceManager &SM = getContext().getSourceManager();
 | 
						|
    if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
 | 
						|
      return;
 | 
						|
    auto I = DeferredEmptyCoverageMappingDecls.find(D);
 | 
						|
    if (I == DeferredEmptyCoverageMappingDecls.end())
 | 
						|
      DeferredEmptyCoverageMappingDecls[D] = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
 | 
						|
  // Do we need to generate coverage mapping?
 | 
						|
  if (!CodeGenOpts.CoverageMapping)
 | 
						|
    return;
 | 
						|
  if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (Fn->isTemplateInstantiation())
 | 
						|
      ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
 | 
						|
  }
 | 
						|
  auto I = DeferredEmptyCoverageMappingDecls.find(D);
 | 
						|
  if (I == DeferredEmptyCoverageMappingDecls.end())
 | 
						|
    DeferredEmptyCoverageMappingDecls[D] = false;
 | 
						|
  else
 | 
						|
    I->second = false;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
 | 
						|
  // We call takeVector() here to avoid use-after-free.
 | 
						|
  // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
 | 
						|
  // we deserialize function bodies to emit coverage info for them, and that
 | 
						|
  // deserializes more declarations. How should we handle that case?
 | 
						|
  for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
 | 
						|
    if (!Entry.second)
 | 
						|
      continue;
 | 
						|
    const Decl *D = Entry.first;
 | 
						|
    switch (D->getKind()) {
 | 
						|
    case Decl::CXXConversion:
 | 
						|
    case Decl::CXXMethod:
 | 
						|
    case Decl::Function:
 | 
						|
    case Decl::ObjCMethod: {
 | 
						|
      CodeGenPGO PGO(*this);
 | 
						|
      GlobalDecl GD(cast<FunctionDecl>(D));
 | 
						|
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
 | 
						|
                                  getFunctionLinkage(GD));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Decl::CXXConstructor: {
 | 
						|
      CodeGenPGO PGO(*this);
 | 
						|
      GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
 | 
						|
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
 | 
						|
                                  getFunctionLinkage(GD));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Decl::CXXDestructor: {
 | 
						|
      CodeGenPGO PGO(*this);
 | 
						|
      GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
 | 
						|
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
 | 
						|
                                  getFunctionLinkage(GD));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    };
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitMainVoidAlias() {
 | 
						|
  // In order to transition away from "__original_main" gracefully, emit an
 | 
						|
  // alias for "main" in the no-argument case so that libc can detect when
 | 
						|
  // new-style no-argument main is in used.
 | 
						|
  if (llvm::Function *F = getModule().getFunction("main")) {
 | 
						|
    if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
 | 
						|
        F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
 | 
						|
      addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Turns the given pointer into a constant.
 | 
						|
static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
 | 
						|
                                          const void *Ptr) {
 | 
						|
  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
 | 
						|
  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
 | 
						|
  return llvm::ConstantInt::get(i64, PtrInt);
 | 
						|
}
 | 
						|
 | 
						|
static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
 | 
						|
                                   llvm::NamedMDNode *&GlobalMetadata,
 | 
						|
                                   GlobalDecl D,
 | 
						|
                                   llvm::GlobalValue *Addr) {
 | 
						|
  if (!GlobalMetadata)
 | 
						|
    GlobalMetadata =
 | 
						|
      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
 | 
						|
 | 
						|
  // TODO: should we report variant information for ctors/dtors?
 | 
						|
  llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
 | 
						|
                           llvm::ConstantAsMetadata::get(GetPointerConstant(
 | 
						|
                               CGM.getLLVMContext(), D.getDecl()))};
 | 
						|
  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
 | 
						|
}
 | 
						|
 | 
						|
/// For each function which is declared within an extern "C" region and marked
 | 
						|
/// as 'used', but has internal linkage, create an alias from the unmangled
 | 
						|
/// name to the mangled name if possible. People expect to be able to refer
 | 
						|
/// to such functions with an unmangled name from inline assembly within the
 | 
						|
/// same translation unit.
 | 
						|
void CodeGenModule::EmitStaticExternCAliases() {
 | 
						|
  if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
 | 
						|
    return;
 | 
						|
  for (auto &I : StaticExternCValues) {
 | 
						|
    IdentifierInfo *Name = I.first;
 | 
						|
    llvm::GlobalValue *Val = I.second;
 | 
						|
    if (Val && !getModule().getNamedValue(Name->getName()))
 | 
						|
      addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
 | 
						|
                                             GlobalDecl &Result) const {
 | 
						|
  auto Res = Manglings.find(MangledName);
 | 
						|
  if (Res == Manglings.end())
 | 
						|
    return false;
 | 
						|
  Result = Res->getValue();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Emits metadata nodes associating all the global values in the
 | 
						|
/// current module with the Decls they came from.  This is useful for
 | 
						|
/// projects using IR gen as a subroutine.
 | 
						|
///
 | 
						|
/// Since there's currently no way to associate an MDNode directly
 | 
						|
/// with an llvm::GlobalValue, we create a global named metadata
 | 
						|
/// with the name 'clang.global.decl.ptrs'.
 | 
						|
void CodeGenModule::EmitDeclMetadata() {
 | 
						|
  llvm::NamedMDNode *GlobalMetadata = nullptr;
 | 
						|
 | 
						|
  for (auto &I : MangledDeclNames) {
 | 
						|
    llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
 | 
						|
    // Some mangled names don't necessarily have an associated GlobalValue
 | 
						|
    // in this module, e.g. if we mangled it for DebugInfo.
 | 
						|
    if (Addr)
 | 
						|
      EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Emits metadata nodes for all the local variables in the current
 | 
						|
/// function.
 | 
						|
void CodeGenFunction::EmitDeclMetadata() {
 | 
						|
  if (LocalDeclMap.empty()) return;
 | 
						|
 | 
						|
  llvm::LLVMContext &Context = getLLVMContext();
 | 
						|
 | 
						|
  // Find the unique metadata ID for this name.
 | 
						|
  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
 | 
						|
 | 
						|
  llvm::NamedMDNode *GlobalMetadata = nullptr;
 | 
						|
 | 
						|
  for (auto &I : LocalDeclMap) {
 | 
						|
    const Decl *D = I.first;
 | 
						|
    llvm::Value *Addr = I.second.getPointer();
 | 
						|
    if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
 | 
						|
      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
 | 
						|
      Alloca->setMetadata(
 | 
						|
          DeclPtrKind, llvm::MDNode::get(
 | 
						|
                           Context, llvm::ValueAsMetadata::getConstant(DAddr)));
 | 
						|
    } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
 | 
						|
      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
 | 
						|
      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitVersionIdentMetadata() {
 | 
						|
  llvm::NamedMDNode *IdentMetadata =
 | 
						|
    TheModule.getOrInsertNamedMetadata("llvm.ident");
 | 
						|
  std::string Version = getClangFullVersion();
 | 
						|
  llvm::LLVMContext &Ctx = TheModule.getContext();
 | 
						|
 | 
						|
  llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
 | 
						|
  IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitCommandLineMetadata() {
 | 
						|
  llvm::NamedMDNode *CommandLineMetadata =
 | 
						|
    TheModule.getOrInsertNamedMetadata("llvm.commandline");
 | 
						|
  std::string CommandLine = getCodeGenOpts().RecordCommandLine;
 | 
						|
  llvm::LLVMContext &Ctx = TheModule.getContext();
 | 
						|
 | 
						|
  llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
 | 
						|
  CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitTargetMetadata() {
 | 
						|
  // Warning, new MangledDeclNames may be appended within this loop.
 | 
						|
  // We rely on MapVector insertions adding new elements to the end
 | 
						|
  // of the container.
 | 
						|
  // FIXME: Move this loop into the one target that needs it, and only
 | 
						|
  // loop over those declarations for which we couldn't emit the target
 | 
						|
  // metadata when we emitted the declaration.
 | 
						|
  for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
 | 
						|
    auto Val = *(MangledDeclNames.begin() + I);
 | 
						|
    const Decl *D = Val.first.getDecl()->getMostRecentDecl();
 | 
						|
    llvm::GlobalValue *GV = GetGlobalValue(Val.second);
 | 
						|
    getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitCoverageFile() {
 | 
						|
  if (getCodeGenOpts().CoverageDataFile.empty() &&
 | 
						|
      getCodeGenOpts().CoverageNotesFile.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
 | 
						|
  if (!CUNode)
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
 | 
						|
  llvm::LLVMContext &Ctx = TheModule.getContext();
 | 
						|
  auto *CoverageDataFile =
 | 
						|
      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
 | 
						|
  auto *CoverageNotesFile =
 | 
						|
      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
 | 
						|
  for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
 | 
						|
    llvm::MDNode *CU = CUNode->getOperand(i);
 | 
						|
    llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
 | 
						|
    GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
 | 
						|
  // Sema has checked that all uuid strings are of the form
 | 
						|
  // "12345678-1234-1234-1234-1234567890ab".
 | 
						|
  assert(Uuid.size() == 36);
 | 
						|
  for (unsigned i = 0; i < 36; ++i) {
 | 
						|
    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
 | 
						|
    else                                         assert(isHexDigit(Uuid[i]));
 | 
						|
  }
 | 
						|
 | 
						|
  // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
 | 
						|
  const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
 | 
						|
 | 
						|
  llvm::Constant *Field3[8];
 | 
						|
  for (unsigned Idx = 0; Idx < 8; ++Idx)
 | 
						|
    Field3[Idx] = llvm::ConstantInt::get(
 | 
						|
        Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
 | 
						|
 | 
						|
  llvm::Constant *Fields[4] = {
 | 
						|
    llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
 | 
						|
    llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
 | 
						|
    llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
 | 
						|
    llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
 | 
						|
  };
 | 
						|
 | 
						|
  return llvm::ConstantStruct::getAnon(Fields);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
 | 
						|
                                                       bool ForEH) {
 | 
						|
  // Return a bogus pointer if RTTI is disabled, unless it's for EH.
 | 
						|
  // FIXME: should we even be calling this method if RTTI is disabled
 | 
						|
  // and it's not for EH?
 | 
						|
  if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
 | 
						|
      (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
 | 
						|
       getTriple().isNVPTX()))
 | 
						|
    return llvm::Constant::getNullValue(Int8PtrTy);
 | 
						|
 | 
						|
  if (ForEH && Ty->isObjCObjectPointerType() &&
 | 
						|
      LangOpts.ObjCRuntime.isGNUFamily())
 | 
						|
    return ObjCRuntime->GetEHType(Ty);
 | 
						|
 | 
						|
  return getCXXABI().getAddrOfRTTIDescriptor(Ty);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
 | 
						|
  // Do not emit threadprivates in simd-only mode.
 | 
						|
  if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
 | 
						|
    return;
 | 
						|
  for (auto RefExpr : D->varlists()) {
 | 
						|
    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
 | 
						|
    bool PerformInit =
 | 
						|
        VD->getAnyInitializer() &&
 | 
						|
        !VD->getAnyInitializer()->isConstantInitializer(getContext(),
 | 
						|
                                                        /*ForRef=*/false);
 | 
						|
 | 
						|
    Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
 | 
						|
    if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
 | 
						|
            VD, Addr, RefExpr->getBeginLoc(), PerformInit))
 | 
						|
      CXXGlobalInits.push_back(InitFunction);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::Metadata *
 | 
						|
CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
 | 
						|
                                            StringRef Suffix) {
 | 
						|
  llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
 | 
						|
  if (InternalId)
 | 
						|
    return InternalId;
 | 
						|
 | 
						|
  if (isExternallyVisible(T->getLinkage())) {
 | 
						|
    std::string OutName;
 | 
						|
    llvm::raw_string_ostream Out(OutName);
 | 
						|
    getCXXABI().getMangleContext().mangleTypeName(T, Out);
 | 
						|
    Out << Suffix;
 | 
						|
 | 
						|
    InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
 | 
						|
  } else {
 | 
						|
    InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
 | 
						|
                                           llvm::ArrayRef<llvm::Metadata *>());
 | 
						|
  }
 | 
						|
 | 
						|
  return InternalId;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
 | 
						|
  return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
 | 
						|
}
 | 
						|
 | 
						|
llvm::Metadata *
 | 
						|
CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
 | 
						|
  return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
 | 
						|
}
 | 
						|
 | 
						|
// Generalize pointer types to a void pointer with the qualifiers of the
 | 
						|
// originally pointed-to type, e.g. 'const char *' and 'char * const *'
 | 
						|
// generalize to 'const void *' while 'char *' and 'const char **' generalize to
 | 
						|
// 'void *'.
 | 
						|
static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
 | 
						|
  if (!Ty->isPointerType())
 | 
						|
    return Ty;
 | 
						|
 | 
						|
  return Ctx.getPointerType(
 | 
						|
      QualType(Ctx.VoidTy).withCVRQualifiers(
 | 
						|
          Ty->getPointeeType().getCVRQualifiers()));
 | 
						|
}
 | 
						|
 | 
						|
// Apply type generalization to a FunctionType's return and argument types
 | 
						|
static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
 | 
						|
  if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
 | 
						|
    SmallVector<QualType, 8> GeneralizedParams;
 | 
						|
    for (auto &Param : FnType->param_types())
 | 
						|
      GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
 | 
						|
 | 
						|
    return Ctx.getFunctionType(
 | 
						|
        GeneralizeType(Ctx, FnType->getReturnType()),
 | 
						|
        GeneralizedParams, FnType->getExtProtoInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
 | 
						|
    return Ctx.getFunctionNoProtoType(
 | 
						|
        GeneralizeType(Ctx, FnType->getReturnType()));
 | 
						|
 | 
						|
  llvm_unreachable("Encountered unknown FunctionType");
 | 
						|
}
 | 
						|
 | 
						|
llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
 | 
						|
  return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
 | 
						|
                                      GeneralizedMetadataIdMap, ".generalized");
 | 
						|
}
 | 
						|
 | 
						|
/// Returns whether this module needs the "all-vtables" type identifier.
 | 
						|
bool CodeGenModule::NeedAllVtablesTypeId() const {
 | 
						|
  // Returns true if at least one of vtable-based CFI checkers is enabled and
 | 
						|
  // is not in the trapping mode.
 | 
						|
  return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
 | 
						|
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
 | 
						|
          (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
 | 
						|
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
 | 
						|
          (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
 | 
						|
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
 | 
						|
          (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
 | 
						|
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
 | 
						|
                                          CharUnits Offset,
 | 
						|
                                          const CXXRecordDecl *RD) {
 | 
						|
  llvm::Metadata *MD =
 | 
						|
      CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
 | 
						|
  VTable->addTypeMetadata(Offset.getQuantity(), MD);
 | 
						|
 | 
						|
  if (CodeGenOpts.SanitizeCfiCrossDso)
 | 
						|
    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
 | 
						|
      VTable->addTypeMetadata(Offset.getQuantity(),
 | 
						|
                              llvm::ConstantAsMetadata::get(CrossDsoTypeId));
 | 
						|
 | 
						|
  if (NeedAllVtablesTypeId()) {
 | 
						|
    llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
 | 
						|
    VTable->addTypeMetadata(Offset.getQuantity(), MD);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
 | 
						|
  if (!SanStats)
 | 
						|
    SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
 | 
						|
 | 
						|
  return *SanStats;
 | 
						|
}
 | 
						|
llvm::Value *
 | 
						|
CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
 | 
						|
                                                  CodeGenFunction &CGF) {
 | 
						|
  llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
 | 
						|
  auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
 | 
						|
  auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
 | 
						|
  return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
 | 
						|
                                "__translate_sampler_initializer"),
 | 
						|
                                {C});
 | 
						|
}
 | 
						|
 | 
						|
GlobalDecl CodeGenModule::getGlobalDecl(const FunctionDecl *FD) {
 | 
						|
  if (FD->hasAttr<CUDAGlobalAttr>())
 | 
						|
    return GlobalDecl::getDefaultKernelReference(FD);
 | 
						|
  else
 | 
						|
    return GlobalDecl(FD);
 | 
						|
}
 |