forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4431 lines
		
	
	
		
			170 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4431 lines
		
	
	
		
			170 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This provides C++ code generation targeting the Itanium C++ ABI.  The class
 | |
| // in this file generates structures that follow the Itanium C++ ABI, which is
 | |
| // documented at:
 | |
| //  http://www.codesourcery.com/public/cxx-abi/abi.html
 | |
| //  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
 | |
| //
 | |
| // It also supports the closely-related ARM ABI, documented at:
 | |
| // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGCleanup.h"
 | |
| #include "CGRecordLayout.h"
 | |
| #include "CGVTables.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "TargetInfo.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/Mangle.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/AST/Type.h"
 | |
| #include "clang/CodeGen/ConstantInitBuilder.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/ScopedPrinter.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| namespace {
 | |
| class ItaniumCXXABI : public CodeGen::CGCXXABI {
 | |
|   /// VTables - All the vtables which have been defined.
 | |
|   llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables;
 | |
| 
 | |
|   /// All the thread wrapper functions that have been used.
 | |
|   llvm::SmallVector<std::pair<const VarDecl *, llvm::Function *>, 8>
 | |
|       ThreadWrappers;
 | |
| 
 | |
| protected:
 | |
|   bool UseARMMethodPtrABI;
 | |
|   bool UseARMGuardVarABI;
 | |
|   bool Use32BitVTableOffsetABI;
 | |
| 
 | |
|   ItaniumMangleContext &getMangleContext() {
 | |
|     return cast<ItaniumMangleContext>(CodeGen::CGCXXABI::getMangleContext());
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   ItaniumCXXABI(CodeGen::CodeGenModule &CGM,
 | |
|                 bool UseARMMethodPtrABI = false,
 | |
|                 bool UseARMGuardVarABI = false) :
 | |
|     CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI),
 | |
|     UseARMGuardVarABI(UseARMGuardVarABI),
 | |
|     Use32BitVTableOffsetABI(false) { }
 | |
| 
 | |
|   bool classifyReturnType(CGFunctionInfo &FI) const override;
 | |
| 
 | |
|   RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override {
 | |
|     // If C++ prohibits us from making a copy, pass by address.
 | |
|     if (!RD->canPassInRegisters())
 | |
|       return RAA_Indirect;
 | |
|     return RAA_Default;
 | |
|   }
 | |
| 
 | |
|   bool isThisCompleteObject(GlobalDecl GD) const override {
 | |
|     // The Itanium ABI has separate complete-object vs.  base-object
 | |
|     // variants of both constructors and destructors.
 | |
|     if (isa<CXXDestructorDecl>(GD.getDecl())) {
 | |
|       switch (GD.getDtorType()) {
 | |
|       case Dtor_Complete:
 | |
|       case Dtor_Deleting:
 | |
|         return true;
 | |
| 
 | |
|       case Dtor_Base:
 | |
|         return false;
 | |
| 
 | |
|       case Dtor_Comdat:
 | |
|         llvm_unreachable("emitting dtor comdat as function?");
 | |
|       }
 | |
|       llvm_unreachable("bad dtor kind");
 | |
|     }
 | |
|     if (isa<CXXConstructorDecl>(GD.getDecl())) {
 | |
|       switch (GD.getCtorType()) {
 | |
|       case Ctor_Complete:
 | |
|         return true;
 | |
| 
 | |
|       case Ctor_Base:
 | |
|         return false;
 | |
| 
 | |
|       case Ctor_CopyingClosure:
 | |
|       case Ctor_DefaultClosure:
 | |
|         llvm_unreachable("closure ctors in Itanium ABI?");
 | |
| 
 | |
|       case Ctor_Comdat:
 | |
|         llvm_unreachable("emitting ctor comdat as function?");
 | |
|       }
 | |
|       llvm_unreachable("bad dtor kind");
 | |
|     }
 | |
| 
 | |
|     // No other kinds.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool isZeroInitializable(const MemberPointerType *MPT) override;
 | |
| 
 | |
|   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
 | |
| 
 | |
|   CGCallee
 | |
|     EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
 | |
|                                     const Expr *E,
 | |
|                                     Address This,
 | |
|                                     llvm::Value *&ThisPtrForCall,
 | |
|                                     llvm::Value *MemFnPtr,
 | |
|                                     const MemberPointerType *MPT) override;
 | |
| 
 | |
|   llvm::Value *
 | |
|     EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
 | |
|                                  Address Base,
 | |
|                                  llvm::Value *MemPtr,
 | |
|                                  const MemberPointerType *MPT) override;
 | |
| 
 | |
|   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
 | |
|                                            const CastExpr *E,
 | |
|                                            llvm::Value *Src) override;
 | |
|   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
 | |
|                                               llvm::Constant *Src) override;
 | |
| 
 | |
|   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
 | |
| 
 | |
|   llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
 | |
|   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
 | |
|                                         CharUnits offset) override;
 | |
|   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
 | |
|   llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
 | |
|                                      CharUnits ThisAdjustment);
 | |
| 
 | |
|   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
 | |
|                                            llvm::Value *L, llvm::Value *R,
 | |
|                                            const MemberPointerType *MPT,
 | |
|                                            bool Inequality) override;
 | |
| 
 | |
|   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
 | |
|                                          llvm::Value *Addr,
 | |
|                                          const MemberPointerType *MPT) override;
 | |
| 
 | |
|   void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
 | |
|                                Address Ptr, QualType ElementType,
 | |
|                                const CXXDestructorDecl *Dtor) override;
 | |
| 
 | |
|   void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
 | |
|   void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
 | |
| 
 | |
|   void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
 | |
| 
 | |
|   llvm::CallInst *
 | |
|   emitTerminateForUnexpectedException(CodeGenFunction &CGF,
 | |
|                                       llvm::Value *Exn) override;
 | |
| 
 | |
|   void EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD);
 | |
|   llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
 | |
|   CatchTypeInfo
 | |
|   getAddrOfCXXCatchHandlerType(QualType Ty,
 | |
|                                QualType CatchHandlerType) override {
 | |
|     return CatchTypeInfo{getAddrOfRTTIDescriptor(Ty), 0};
 | |
|   }
 | |
| 
 | |
|   bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
 | |
|   void EmitBadTypeidCall(CodeGenFunction &CGF) override;
 | |
|   llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
 | |
|                           Address ThisPtr,
 | |
|                           llvm::Type *StdTypeInfoPtrTy) override;
 | |
| 
 | |
|   bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
 | |
|                                           QualType SrcRecordTy) override;
 | |
| 
 | |
|   llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
 | |
|                                    QualType SrcRecordTy, QualType DestTy,
 | |
|                                    QualType DestRecordTy,
 | |
|                                    llvm::BasicBlock *CastEnd) override;
 | |
| 
 | |
|   llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
 | |
|                                      QualType SrcRecordTy,
 | |
|                                      QualType DestTy) override;
 | |
| 
 | |
|   bool EmitBadCastCall(CodeGenFunction &CGF) override;
 | |
| 
 | |
|   llvm::Value *
 | |
|     GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
 | |
|                               const CXXRecordDecl *ClassDecl,
 | |
|                               const CXXRecordDecl *BaseClassDecl) override;
 | |
| 
 | |
|   void EmitCXXConstructors(const CXXConstructorDecl *D) override;
 | |
| 
 | |
|   AddedStructorArgs
 | |
|   buildStructorSignature(GlobalDecl GD,
 | |
|                          SmallVectorImpl<CanQualType> &ArgTys) override;
 | |
| 
 | |
|   bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
 | |
|                               CXXDtorType DT) const override {
 | |
|     // Itanium does not emit any destructor variant as an inline thunk.
 | |
|     // Delegating may occur as an optimization, but all variants are either
 | |
|     // emitted with external linkage or as linkonce if they are inline and used.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void EmitCXXDestructors(const CXXDestructorDecl *D) override;
 | |
| 
 | |
|   void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
 | |
|                                  FunctionArgList &Params) override;
 | |
| 
 | |
|   void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
 | |
| 
 | |
|   AddedStructorArgs
 | |
|   addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D,
 | |
|                              CXXCtorType Type, bool ForVirtualBase,
 | |
|                              bool Delegating, CallArgList &Args) override;
 | |
| 
 | |
|   void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
 | |
|                           CXXDtorType Type, bool ForVirtualBase,
 | |
|                           bool Delegating, Address This,
 | |
|                           QualType ThisTy) override;
 | |
| 
 | |
|   void emitVTableDefinitions(CodeGenVTables &CGVT,
 | |
|                              const CXXRecordDecl *RD) override;
 | |
| 
 | |
|   bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
 | |
|                                            CodeGenFunction::VPtr Vptr) override;
 | |
| 
 | |
|   bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *
 | |
|   getVTableAddressPoint(BaseSubobject Base,
 | |
|                         const CXXRecordDecl *VTableClass) override;
 | |
| 
 | |
|   llvm::Value *getVTableAddressPointInStructor(
 | |
|       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
 | |
|       BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
 | |
| 
 | |
|   llvm::Value *getVTableAddressPointInStructorWithVTT(
 | |
|       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
 | |
|       BaseSubobject Base, const CXXRecordDecl *NearestVBase);
 | |
| 
 | |
|   llvm::Constant *
 | |
|   getVTableAddressPointForConstExpr(BaseSubobject Base,
 | |
|                                     const CXXRecordDecl *VTableClass) override;
 | |
| 
 | |
|   llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
 | |
|                                         CharUnits VPtrOffset) override;
 | |
| 
 | |
|   CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
 | |
|                                      Address This, llvm::Type *Ty,
 | |
|                                      SourceLocation Loc) override;
 | |
| 
 | |
|   llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
 | |
|                                          const CXXDestructorDecl *Dtor,
 | |
|                                          CXXDtorType DtorType, Address This,
 | |
|                                          DeleteOrMemberCallExpr E) override;
 | |
| 
 | |
|   void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
 | |
| 
 | |
|   bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override;
 | |
|   bool canSpeculativelyEmitVTableAsBaseClass(const CXXRecordDecl *RD) const;
 | |
| 
 | |
|   void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD,
 | |
|                        bool ReturnAdjustment) override {
 | |
|     // Allow inlining of thunks by emitting them with available_externally
 | |
|     // linkage together with vtables when needed.
 | |
|     if (ForVTable && !Thunk->hasLocalLinkage())
 | |
|       Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
 | |
|     CGM.setGVProperties(Thunk, GD);
 | |
|   }
 | |
| 
 | |
|   bool exportThunk() override { return true; }
 | |
| 
 | |
|   llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
 | |
|                                      const ThisAdjustment &TA) override;
 | |
| 
 | |
|   llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
 | |
|                                        const ReturnAdjustment &RA) override;
 | |
| 
 | |
|   size_t getSrcArgforCopyCtor(const CXXConstructorDecl *,
 | |
|                               FunctionArgList &Args) const override {
 | |
|     assert(!Args.empty() && "expected the arglist to not be empty!");
 | |
|     return Args.size() - 1;
 | |
|   }
 | |
| 
 | |
|   StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual"; }
 | |
|   StringRef GetDeletedVirtualCallName() override
 | |
|     { return "__cxa_deleted_virtual"; }
 | |
| 
 | |
|   CharUnits getArrayCookieSizeImpl(QualType elementType) override;
 | |
|   Address InitializeArrayCookie(CodeGenFunction &CGF,
 | |
|                                 Address NewPtr,
 | |
|                                 llvm::Value *NumElements,
 | |
|                                 const CXXNewExpr *expr,
 | |
|                                 QualType ElementType) override;
 | |
|   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
 | |
|                                    Address allocPtr,
 | |
|                                    CharUnits cookieSize) override;
 | |
| 
 | |
|   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
 | |
|                        llvm::GlobalVariable *DeclPtr,
 | |
|                        bool PerformInit) override;
 | |
|   void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
 | |
|                           llvm::FunctionCallee dtor,
 | |
|                           llvm::Constant *addr) override;
 | |
| 
 | |
|   llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD,
 | |
|                                                 llvm::Value *Val);
 | |
|   void EmitThreadLocalInitFuncs(
 | |
|       CodeGenModule &CGM,
 | |
|       ArrayRef<const VarDecl *> CXXThreadLocals,
 | |
|       ArrayRef<llvm::Function *> CXXThreadLocalInits,
 | |
|       ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
 | |
| 
 | |
|   /// Determine whether we will definitely emit this variable with a constant
 | |
|   /// initializer, either because the language semantics demand it or because
 | |
|   /// we know that the initializer is a constant.
 | |
|   bool isEmittedWithConstantInitializer(const VarDecl *VD) const {
 | |
|     VD = VD->getMostRecentDecl();
 | |
|     if (VD->hasAttr<ConstInitAttr>())
 | |
|       return true;
 | |
| 
 | |
|     // All later checks examine the initializer specified on the variable. If
 | |
|     // the variable is weak, such examination would not be correct.
 | |
|     if (VD->isWeak() || VD->hasAttr<SelectAnyAttr>())
 | |
|       return false;
 | |
| 
 | |
|     const VarDecl *InitDecl = VD->getInitializingDeclaration();
 | |
|     if (!InitDecl)
 | |
|       return false;
 | |
| 
 | |
|     // If there's no initializer to run, this is constant initialization.
 | |
|     if (!InitDecl->hasInit())
 | |
|       return true;
 | |
| 
 | |
|     // If we have the only definition, we don't need a thread wrapper if we
 | |
|     // will emit the value as a constant.
 | |
|     if (isUniqueGVALinkage(getContext().GetGVALinkageForVariable(VD)))
 | |
|       return !VD->needsDestruction(getContext()) && InitDecl->evaluateValue();
 | |
| 
 | |
|     // Otherwise, we need a thread wrapper unless we know that every
 | |
|     // translation unit will emit the value as a constant. We rely on
 | |
|     // ICE-ness not varying between translation units, which isn't actually
 | |
|     // guaranteed by the standard but is necessary for sanity.
 | |
|     return InitDecl->isInitKnownICE() && InitDecl->isInitICE();
 | |
|   }
 | |
| 
 | |
|   bool usesThreadWrapperFunction(const VarDecl *VD) const override {
 | |
|     return !isEmittedWithConstantInitializer(VD) ||
 | |
|            VD->needsDestruction(getContext());
 | |
|   }
 | |
|   LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
 | |
|                                       QualType LValType) override;
 | |
| 
 | |
|   bool NeedsVTTParameter(GlobalDecl GD) override;
 | |
| 
 | |
|   /**************************** RTTI Uniqueness ******************************/
 | |
| 
 | |
| protected:
 | |
|   /// Returns true if the ABI requires RTTI type_info objects to be unique
 | |
|   /// across a program.
 | |
|   virtual bool shouldRTTIBeUnique() const { return true; }
 | |
| 
 | |
| public:
 | |
|   /// What sort of unique-RTTI behavior should we use?
 | |
|   enum RTTIUniquenessKind {
 | |
|     /// We are guaranteeing, or need to guarantee, that the RTTI string
 | |
|     /// is unique.
 | |
|     RUK_Unique,
 | |
| 
 | |
|     /// We are not guaranteeing uniqueness for the RTTI string, so we
 | |
|     /// can demote to hidden visibility but must use string comparisons.
 | |
|     RUK_NonUniqueHidden,
 | |
| 
 | |
|     /// We are not guaranteeing uniqueness for the RTTI string, so we
 | |
|     /// have to use string comparisons, but we also have to emit it with
 | |
|     /// non-hidden visibility.
 | |
|     RUK_NonUniqueVisible
 | |
|   };
 | |
| 
 | |
|   /// Return the required visibility status for the given type and linkage in
 | |
|   /// the current ABI.
 | |
|   RTTIUniquenessKind
 | |
|   classifyRTTIUniqueness(QualType CanTy,
 | |
|                          llvm::GlobalValue::LinkageTypes Linkage) const;
 | |
|   friend class ItaniumRTTIBuilder;
 | |
| 
 | |
|   void emitCXXStructor(GlobalDecl GD) override;
 | |
| 
 | |
|   std::pair<llvm::Value *, const CXXRecordDecl *>
 | |
|   LoadVTablePtr(CodeGenFunction &CGF, Address This,
 | |
|                 const CXXRecordDecl *RD) override;
 | |
| 
 | |
|  private:
 | |
|    bool hasAnyUnusedVirtualInlineFunction(const CXXRecordDecl *RD) const {
 | |
|      const auto &VtableLayout =
 | |
|          CGM.getItaniumVTableContext().getVTableLayout(RD);
 | |
| 
 | |
|      for (const auto &VtableComponent : VtableLayout.vtable_components()) {
 | |
|        // Skip empty slot.
 | |
|        if (!VtableComponent.isUsedFunctionPointerKind())
 | |
|          continue;
 | |
| 
 | |
|        const CXXMethodDecl *Method = VtableComponent.getFunctionDecl();
 | |
|        if (!Method->getCanonicalDecl()->isInlined())
 | |
|          continue;
 | |
| 
 | |
|        StringRef Name = CGM.getMangledName(VtableComponent.getGlobalDecl());
 | |
|        auto *Entry = CGM.GetGlobalValue(Name);
 | |
|        // This checks if virtual inline function has already been emitted.
 | |
|        // Note that it is possible that this inline function would be emitted
 | |
|        // after trying to emit vtable speculatively. Because of this we do
 | |
|        // an extra pass after emitting all deferred vtables to find and emit
 | |
|        // these vtables opportunistically.
 | |
|        if (!Entry || Entry->isDeclaration())
 | |
|          return true;
 | |
|      }
 | |
|      return false;
 | |
|   }
 | |
| 
 | |
|   bool isVTableHidden(const CXXRecordDecl *RD) const {
 | |
|     const auto &VtableLayout =
 | |
|             CGM.getItaniumVTableContext().getVTableLayout(RD);
 | |
| 
 | |
|     for (const auto &VtableComponent : VtableLayout.vtable_components()) {
 | |
|       if (VtableComponent.isRTTIKind()) {
 | |
|         const CXXRecordDecl *RTTIDecl = VtableComponent.getRTTIDecl();
 | |
|         if (RTTIDecl->getVisibility() == Visibility::HiddenVisibility)
 | |
|           return true;
 | |
|       } else if (VtableComponent.isUsedFunctionPointerKind()) {
 | |
|         const CXXMethodDecl *Method = VtableComponent.getFunctionDecl();
 | |
|         if (Method->getVisibility() == Visibility::HiddenVisibility &&
 | |
|             !Method->isDefined())
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ARMCXXABI : public ItaniumCXXABI {
 | |
| public:
 | |
|   ARMCXXABI(CodeGen::CodeGenModule &CGM) :
 | |
|     ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true,
 | |
|                   /*UseARMGuardVarABI=*/true) {}
 | |
| 
 | |
|   bool HasThisReturn(GlobalDecl GD) const override {
 | |
|     return (isa<CXXConstructorDecl>(GD.getDecl()) || (
 | |
|               isa<CXXDestructorDecl>(GD.getDecl()) &&
 | |
|               GD.getDtorType() != Dtor_Deleting));
 | |
|   }
 | |
| 
 | |
|   void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV,
 | |
|                            QualType ResTy) override;
 | |
| 
 | |
|   CharUnits getArrayCookieSizeImpl(QualType elementType) override;
 | |
|   Address InitializeArrayCookie(CodeGenFunction &CGF,
 | |
|                                 Address NewPtr,
 | |
|                                 llvm::Value *NumElements,
 | |
|                                 const CXXNewExpr *expr,
 | |
|                                 QualType ElementType) override;
 | |
|   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr,
 | |
|                                    CharUnits cookieSize) override;
 | |
| };
 | |
| 
 | |
| class iOS64CXXABI : public ARMCXXABI {
 | |
| public:
 | |
|   iOS64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) {
 | |
|     Use32BitVTableOffsetABI = true;
 | |
|   }
 | |
| 
 | |
|   // ARM64 libraries are prepared for non-unique RTTI.
 | |
|   bool shouldRTTIBeUnique() const override { return false; }
 | |
| };
 | |
| 
 | |
| class FuchsiaCXXABI final : public ItaniumCXXABI {
 | |
| public:
 | |
|   explicit FuchsiaCXXABI(CodeGen::CodeGenModule &CGM)
 | |
|       : ItaniumCXXABI(CGM) {}
 | |
| 
 | |
| private:
 | |
|   bool HasThisReturn(GlobalDecl GD) const override {
 | |
|     return isa<CXXConstructorDecl>(GD.getDecl()) ||
 | |
|            (isa<CXXDestructorDecl>(GD.getDecl()) &&
 | |
|             GD.getDtorType() != Dtor_Deleting);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class WebAssemblyCXXABI final : public ItaniumCXXABI {
 | |
| public:
 | |
|   explicit WebAssemblyCXXABI(CodeGen::CodeGenModule &CGM)
 | |
|       : ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true,
 | |
|                       /*UseARMGuardVarABI=*/true) {}
 | |
|   void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
 | |
| 
 | |
| private:
 | |
|   bool HasThisReturn(GlobalDecl GD) const override {
 | |
|     return isa<CXXConstructorDecl>(GD.getDecl()) ||
 | |
|            (isa<CXXDestructorDecl>(GD.getDecl()) &&
 | |
|             GD.getDtorType() != Dtor_Deleting);
 | |
|   }
 | |
|   bool canCallMismatchedFunctionType() const override { return false; }
 | |
| };
 | |
| 
 | |
| class XLCXXABI final : public ItaniumCXXABI {
 | |
| public:
 | |
|   explicit XLCXXABI(CodeGen::CodeGenModule &CGM)
 | |
|       : ItaniumCXXABI(CGM) {}
 | |
| 
 | |
|   void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
 | |
|                           llvm::FunctionCallee dtor,
 | |
|                           llvm::Constant *addr) override;
 | |
| };
 | |
| }
 | |
| 
 | |
| CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
 | |
|   switch (CGM.getTarget().getCXXABI().getKind()) {
 | |
|   // For IR-generation purposes, there's no significant difference
 | |
|   // between the ARM and iOS ABIs.
 | |
|   case TargetCXXABI::GenericARM:
 | |
|   case TargetCXXABI::iOS:
 | |
|   case TargetCXXABI::WatchOS:
 | |
|     return new ARMCXXABI(CGM);
 | |
| 
 | |
|   case TargetCXXABI::iOS64:
 | |
|     return new iOS64CXXABI(CGM);
 | |
| 
 | |
|   case TargetCXXABI::Fuchsia:
 | |
|     return new FuchsiaCXXABI(CGM);
 | |
| 
 | |
|   // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
 | |
|   // include the other 32-bit ARM oddities: constructor/destructor return values
 | |
|   // and array cookies.
 | |
|   case TargetCXXABI::GenericAArch64:
 | |
|     return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true,
 | |
|                              /*UseARMGuardVarABI=*/true);
 | |
| 
 | |
|   case TargetCXXABI::GenericMIPS:
 | |
|     return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true);
 | |
| 
 | |
|   case TargetCXXABI::WebAssembly:
 | |
|     return new WebAssemblyCXXABI(CGM);
 | |
| 
 | |
|   case TargetCXXABI::XL:
 | |
|     return new XLCXXABI(CGM);
 | |
| 
 | |
|   case TargetCXXABI::GenericItanium:
 | |
|     if (CGM.getContext().getTargetInfo().getTriple().getArch()
 | |
|         == llvm::Triple::le32) {
 | |
|       // For PNaCl, use ARM-style method pointers so that PNaCl code
 | |
|       // does not assume anything about the alignment of function
 | |
|       // pointers.
 | |
|       return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true);
 | |
|     }
 | |
|     return new ItaniumCXXABI(CGM);
 | |
| 
 | |
|   case TargetCXXABI::Microsoft:
 | |
|     llvm_unreachable("Microsoft ABI is not Itanium-based");
 | |
|   }
 | |
|   llvm_unreachable("bad ABI kind");
 | |
| }
 | |
| 
 | |
| llvm::Type *
 | |
| ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
 | |
|   if (MPT->isMemberDataPointer())
 | |
|     return CGM.PtrDiffTy;
 | |
|   return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy);
 | |
| }
 | |
| 
 | |
| /// In the Itanium and ARM ABIs, method pointers have the form:
 | |
| ///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
 | |
| ///
 | |
| /// In the Itanium ABI:
 | |
| ///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
 | |
| ///  - the this-adjustment is (memptr.adj)
 | |
| ///  - the virtual offset is (memptr.ptr - 1)
 | |
| ///
 | |
| /// In the ARM ABI:
 | |
| ///  - method pointers are virtual if (memptr.adj & 1) is nonzero
 | |
| ///  - the this-adjustment is (memptr.adj >> 1)
 | |
| ///  - the virtual offset is (memptr.ptr)
 | |
| /// ARM uses 'adj' for the virtual flag because Thumb functions
 | |
| /// may be only single-byte aligned.
 | |
| ///
 | |
| /// If the member is virtual, the adjusted 'this' pointer points
 | |
| /// to a vtable pointer from which the virtual offset is applied.
 | |
| ///
 | |
| /// If the member is non-virtual, memptr.ptr is the address of
 | |
| /// the function to call.
 | |
| CGCallee ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(
 | |
|     CodeGenFunction &CGF, const Expr *E, Address ThisAddr,
 | |
|     llvm::Value *&ThisPtrForCall,
 | |
|     llvm::Value *MemFnPtr, const MemberPointerType *MPT) {
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   const FunctionProtoType *FPT =
 | |
|     MPT->getPointeeType()->getAs<FunctionProtoType>();
 | |
|   auto *RD =
 | |
|       cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
 | |
| 
 | |
|   llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
 | |
|       CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
 | |
| 
 | |
|   llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1);
 | |
| 
 | |
|   llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
 | |
|   llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
 | |
|   llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
 | |
| 
 | |
|   // Extract memptr.adj, which is in the second field.
 | |
|   llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
 | |
| 
 | |
|   // Compute the true adjustment.
 | |
|   llvm::Value *Adj = RawAdj;
 | |
|   if (UseARMMethodPtrABI)
 | |
|     Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
 | |
| 
 | |
|   // Apply the adjustment and cast back to the original struct type
 | |
|   // for consistency.
 | |
|   llvm::Value *This = ThisAddr.getPointer();
 | |
|   llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
 | |
|   Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
 | |
|   This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
 | |
|   ThisPtrForCall = This;
 | |
| 
 | |
|   // Load the function pointer.
 | |
|   llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
 | |
| 
 | |
|   // If the LSB in the function pointer is 1, the function pointer points to
 | |
|   // a virtual function.
 | |
|   llvm::Value *IsVirtual;
 | |
|   if (UseARMMethodPtrABI)
 | |
|     IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
 | |
|   else
 | |
|     IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
 | |
|   IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
 | |
|   Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
 | |
| 
 | |
|   // In the virtual path, the adjustment left 'This' pointing to the
 | |
|   // vtable of the correct base subobject.  The "function pointer" is an
 | |
|   // offset within the vtable (+1 for the virtual flag on non-ARM).
 | |
|   CGF.EmitBlock(FnVirtual);
 | |
| 
 | |
|   // Cast the adjusted this to a pointer to vtable pointer and load.
 | |
|   llvm::Type *VTableTy = Builder.getInt8PtrTy();
 | |
|   CharUnits VTablePtrAlign =
 | |
|     CGF.CGM.getDynamicOffsetAlignment(ThisAddr.getAlignment(), RD,
 | |
|                                       CGF.getPointerAlign());
 | |
|   llvm::Value *VTable =
 | |
|     CGF.GetVTablePtr(Address(This, VTablePtrAlign), VTableTy, RD);
 | |
| 
 | |
|   // Apply the offset.
 | |
|   // On ARM64, to reserve extra space in virtual member function pointers,
 | |
|   // we only pay attention to the low 32 bits of the offset.
 | |
|   llvm::Value *VTableOffset = FnAsInt;
 | |
|   if (!UseARMMethodPtrABI)
 | |
|     VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
 | |
|   if (Use32BitVTableOffsetABI) {
 | |
|     VTableOffset = Builder.CreateTrunc(VTableOffset, CGF.Int32Ty);
 | |
|     VTableOffset = Builder.CreateZExt(VTableOffset, CGM.PtrDiffTy);
 | |
|   }
 | |
| 
 | |
|   // Check the address of the function pointer if CFI on member function
 | |
|   // pointers is enabled.
 | |
|   llvm::Constant *CheckSourceLocation;
 | |
|   llvm::Constant *CheckTypeDesc;
 | |
|   bool ShouldEmitCFICheck = CGF.SanOpts.has(SanitizerKind::CFIMFCall) &&
 | |
|                             CGM.HasHiddenLTOVisibility(RD);
 | |
|   bool ShouldEmitVFEInfo = CGM.getCodeGenOpts().VirtualFunctionElimination &&
 | |
|                            CGM.HasHiddenLTOVisibility(RD);
 | |
|   bool ShouldEmitWPDInfo =
 | |
|       CGM.getCodeGenOpts().WholeProgramVTables &&
 | |
|       // Don't insert type tests if we are forcing public std visibility.
 | |
|       !CGM.HasLTOVisibilityPublicStd(RD);
 | |
|   llvm::Value *VirtualFn = nullptr;
 | |
| 
 | |
|   {
 | |
|     CodeGenFunction::SanitizerScope SanScope(&CGF);
 | |
|     llvm::Value *TypeId = nullptr;
 | |
|     llvm::Value *CheckResult = nullptr;
 | |
| 
 | |
|     if (ShouldEmitCFICheck || ShouldEmitVFEInfo || ShouldEmitWPDInfo) {
 | |
|       // If doing CFI, VFE or WPD, we will need the metadata node to check
 | |
|       // against.
 | |
|       llvm::Metadata *MD =
 | |
|           CGM.CreateMetadataIdentifierForVirtualMemPtrType(QualType(MPT, 0));
 | |
|       TypeId = llvm::MetadataAsValue::get(CGF.getLLVMContext(), MD);
 | |
|     }
 | |
| 
 | |
|     llvm::Value *VFPAddr = Builder.CreateGEP(VTable, VTableOffset);
 | |
| 
 | |
|     if (ShouldEmitVFEInfo) {
 | |
|       // If doing VFE, load from the vtable with a type.checked.load intrinsic
 | |
|       // call. Note that we use the GEP to calculate the address to load from
 | |
|       // and pass 0 as the offset to the intrinsic. This is because every
 | |
|       // vtable slot of the correct type is marked with matching metadata, and
 | |
|       // we know that the load must be from one of these slots.
 | |
|       llvm::Value *CheckedLoad = Builder.CreateCall(
 | |
|           CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
 | |
|           {VFPAddr, llvm::ConstantInt::get(CGM.Int32Ty, 0), TypeId});
 | |
|       CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
 | |
|       VirtualFn = Builder.CreateExtractValue(CheckedLoad, 0);
 | |
|       VirtualFn = Builder.CreateBitCast(VirtualFn, FTy->getPointerTo(),
 | |
|                                         "memptr.virtualfn");
 | |
|     } else {
 | |
|       // When not doing VFE, emit a normal load, as it allows more
 | |
|       // optimisations than type.checked.load.
 | |
|       if (ShouldEmitCFICheck || ShouldEmitWPDInfo) {
 | |
|         CheckResult = Builder.CreateCall(
 | |
|             CGM.getIntrinsic(llvm::Intrinsic::type_test),
 | |
|             {Builder.CreateBitCast(VFPAddr, CGF.Int8PtrTy), TypeId});
 | |
|       }
 | |
|       VFPAddr =
 | |
|           Builder.CreateBitCast(VFPAddr, FTy->getPointerTo()->getPointerTo());
 | |
|       VirtualFn = Builder.CreateAlignedLoad(VFPAddr, CGF.getPointerAlign(),
 | |
|                                             "memptr.virtualfn");
 | |
|     }
 | |
|     assert(VirtualFn && "Virtual fuction pointer not created!");
 | |
|     assert((!ShouldEmitCFICheck || !ShouldEmitVFEInfo || !ShouldEmitWPDInfo ||
 | |
|             CheckResult) &&
 | |
|            "Check result required but not created!");
 | |
| 
 | |
|     if (ShouldEmitCFICheck) {
 | |
|       // If doing CFI, emit the check.
 | |
|       CheckSourceLocation = CGF.EmitCheckSourceLocation(E->getBeginLoc());
 | |
|       CheckTypeDesc = CGF.EmitCheckTypeDescriptor(QualType(MPT, 0));
 | |
|       llvm::Constant *StaticData[] = {
 | |
|           llvm::ConstantInt::get(CGF.Int8Ty, CodeGenFunction::CFITCK_VMFCall),
 | |
|           CheckSourceLocation,
 | |
|           CheckTypeDesc,
 | |
|       };
 | |
| 
 | |
|       if (CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIMFCall)) {
 | |
|         CGF.EmitTrapCheck(CheckResult);
 | |
|       } else {
 | |
|         llvm::Value *AllVtables = llvm::MetadataAsValue::get(
 | |
|             CGM.getLLVMContext(),
 | |
|             llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
 | |
|         llvm::Value *ValidVtable = Builder.CreateCall(
 | |
|             CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
 | |
|         CGF.EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIMFCall),
 | |
|                       SanitizerHandler::CFICheckFail, StaticData,
 | |
|                       {VTable, ValidVtable});
 | |
|       }
 | |
| 
 | |
|       FnVirtual = Builder.GetInsertBlock();
 | |
|     }
 | |
|   } // End of sanitizer scope
 | |
| 
 | |
|   CGF.EmitBranch(FnEnd);
 | |
| 
 | |
|   // In the non-virtual path, the function pointer is actually a
 | |
|   // function pointer.
 | |
|   CGF.EmitBlock(FnNonVirtual);
 | |
|   llvm::Value *NonVirtualFn =
 | |
|     Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
 | |
| 
 | |
|   // Check the function pointer if CFI on member function pointers is enabled.
 | |
|   if (ShouldEmitCFICheck) {
 | |
|     CXXRecordDecl *RD = MPT->getClass()->getAsCXXRecordDecl();
 | |
|     if (RD->hasDefinition()) {
 | |
|       CodeGenFunction::SanitizerScope SanScope(&CGF);
 | |
| 
 | |
|       llvm::Constant *StaticData[] = {
 | |
|           llvm::ConstantInt::get(CGF.Int8Ty, CodeGenFunction::CFITCK_NVMFCall),
 | |
|           CheckSourceLocation,
 | |
|           CheckTypeDesc,
 | |
|       };
 | |
| 
 | |
|       llvm::Value *Bit = Builder.getFalse();
 | |
|       llvm::Value *CastedNonVirtualFn =
 | |
|           Builder.CreateBitCast(NonVirtualFn, CGF.Int8PtrTy);
 | |
|       for (const CXXRecordDecl *Base : CGM.getMostBaseClasses(RD)) {
 | |
|         llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(
 | |
|             getContext().getMemberPointerType(
 | |
|                 MPT->getPointeeType(),
 | |
|                 getContext().getRecordType(Base).getTypePtr()));
 | |
|         llvm::Value *TypeId =
 | |
|             llvm::MetadataAsValue::get(CGF.getLLVMContext(), MD);
 | |
| 
 | |
|         llvm::Value *TypeTest =
 | |
|             Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
 | |
|                                {CastedNonVirtualFn, TypeId});
 | |
|         Bit = Builder.CreateOr(Bit, TypeTest);
 | |
|       }
 | |
| 
 | |
|       CGF.EmitCheck(std::make_pair(Bit, SanitizerKind::CFIMFCall),
 | |
|                     SanitizerHandler::CFICheckFail, StaticData,
 | |
|                     {CastedNonVirtualFn, llvm::UndefValue::get(CGF.IntPtrTy)});
 | |
| 
 | |
|       FnNonVirtual = Builder.GetInsertBlock();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We're done.
 | |
|   CGF.EmitBlock(FnEnd);
 | |
|   llvm::PHINode *CalleePtr = Builder.CreatePHI(FTy->getPointerTo(), 2);
 | |
|   CalleePtr->addIncoming(VirtualFn, FnVirtual);
 | |
|   CalleePtr->addIncoming(NonVirtualFn, FnNonVirtual);
 | |
| 
 | |
|   CGCallee Callee(FPT, CalleePtr);
 | |
|   return Callee;
 | |
| }
 | |
| 
 | |
| /// Compute an l-value by applying the given pointer-to-member to a
 | |
| /// base object.
 | |
| llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(
 | |
|     CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
 | |
|     const MemberPointerType *MPT) {
 | |
|   assert(MemPtr->getType() == CGM.PtrDiffTy);
 | |
| 
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   // Cast to char*.
 | |
|   Base = Builder.CreateElementBitCast(Base, CGF.Int8Ty);
 | |
| 
 | |
|   // Apply the offset, which we assume is non-null.
 | |
|   llvm::Value *Addr =
 | |
|     Builder.CreateInBoundsGEP(Base.getPointer(), MemPtr, "memptr.offset");
 | |
| 
 | |
|   // Cast the address to the appropriate pointer type, adopting the
 | |
|   // address space of the base pointer.
 | |
|   llvm::Type *PType = CGF.ConvertTypeForMem(MPT->getPointeeType())
 | |
|                             ->getPointerTo(Base.getAddressSpace());
 | |
|   return Builder.CreateBitCast(Addr, PType);
 | |
| }
 | |
| 
 | |
| /// Perform a bitcast, derived-to-base, or base-to-derived member pointer
 | |
| /// conversion.
 | |
| ///
 | |
| /// Bitcast conversions are always a no-op under Itanium.
 | |
| ///
 | |
| /// Obligatory offset/adjustment diagram:
 | |
| ///         <-- offset -->          <-- adjustment -->
 | |
| ///   |--------------------------|----------------------|--------------------|
 | |
| ///   ^Derived address point     ^Base address point    ^Member address point
 | |
| ///
 | |
| /// So when converting a base member pointer to a derived member pointer,
 | |
| /// we add the offset to the adjustment because the address point has
 | |
| /// decreased;  and conversely, when converting a derived MP to a base MP
 | |
| /// we subtract the offset from the adjustment because the address point
 | |
| /// has increased.
 | |
| ///
 | |
| /// The standard forbids (at compile time) conversion to and from
 | |
| /// virtual bases, which is why we don't have to consider them here.
 | |
| ///
 | |
| /// The standard forbids (at run time) casting a derived MP to a base
 | |
| /// MP when the derived MP does not point to a member of the base.
 | |
| /// This is why -1 is a reasonable choice for null data member
 | |
| /// pointers.
 | |
| llvm::Value *
 | |
| ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
 | |
|                                            const CastExpr *E,
 | |
|                                            llvm::Value *src) {
 | |
|   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
 | |
|          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
 | |
|          E->getCastKind() == CK_ReinterpretMemberPointer);
 | |
| 
 | |
|   // Under Itanium, reinterprets don't require any additional processing.
 | |
|   if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
 | |
| 
 | |
|   // Use constant emission if we can.
 | |
|   if (isa<llvm::Constant>(src))
 | |
|     return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
 | |
| 
 | |
|   llvm::Constant *adj = getMemberPointerAdjustment(E);
 | |
|   if (!adj) return src;
 | |
| 
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
|   bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
 | |
| 
 | |
|   const MemberPointerType *destTy =
 | |
|     E->getType()->castAs<MemberPointerType>();
 | |
| 
 | |
|   // For member data pointers, this is just a matter of adding the
 | |
|   // offset if the source is non-null.
 | |
|   if (destTy->isMemberDataPointer()) {
 | |
|     llvm::Value *dst;
 | |
|     if (isDerivedToBase)
 | |
|       dst = Builder.CreateNSWSub(src, adj, "adj");
 | |
|     else
 | |
|       dst = Builder.CreateNSWAdd(src, adj, "adj");
 | |
| 
 | |
|     // Null check.
 | |
|     llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
 | |
|     llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
 | |
|     return Builder.CreateSelect(isNull, src, dst);
 | |
|   }
 | |
| 
 | |
|   // The this-adjustment is left-shifted by 1 on ARM.
 | |
|   if (UseARMMethodPtrABI) {
 | |
|     uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
 | |
|     offset <<= 1;
 | |
|     adj = llvm::ConstantInt::get(adj->getType(), offset);
 | |
|   }
 | |
| 
 | |
|   llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
 | |
|   llvm::Value *dstAdj;
 | |
|   if (isDerivedToBase)
 | |
|     dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
 | |
|   else
 | |
|     dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
 | |
| 
 | |
|   return Builder.CreateInsertValue(src, dstAdj, 1);
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
 | |
|                                            llvm::Constant *src) {
 | |
|   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
 | |
|          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
 | |
|          E->getCastKind() == CK_ReinterpretMemberPointer);
 | |
| 
 | |
|   // Under Itanium, reinterprets don't require any additional processing.
 | |
|   if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
 | |
| 
 | |
|   // If the adjustment is trivial, we don't need to do anything.
 | |
|   llvm::Constant *adj = getMemberPointerAdjustment(E);
 | |
|   if (!adj) return src;
 | |
| 
 | |
|   bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
 | |
| 
 | |
|   const MemberPointerType *destTy =
 | |
|     E->getType()->castAs<MemberPointerType>();
 | |
| 
 | |
|   // For member data pointers, this is just a matter of adding the
 | |
|   // offset if the source is non-null.
 | |
|   if (destTy->isMemberDataPointer()) {
 | |
|     // null maps to null.
 | |
|     if (src->isAllOnesValue()) return src;
 | |
| 
 | |
|     if (isDerivedToBase)
 | |
|       return llvm::ConstantExpr::getNSWSub(src, adj);
 | |
|     else
 | |
|       return llvm::ConstantExpr::getNSWAdd(src, adj);
 | |
|   }
 | |
| 
 | |
|   // The this-adjustment is left-shifted by 1 on ARM.
 | |
|   if (UseARMMethodPtrABI) {
 | |
|     uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
 | |
|     offset <<= 1;
 | |
|     adj = llvm::ConstantInt::get(adj->getType(), offset);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
 | |
|   llvm::Constant *dstAdj;
 | |
|   if (isDerivedToBase)
 | |
|     dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
 | |
|   else
 | |
|     dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
 | |
| 
 | |
|   return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
 | |
|   // Itanium C++ ABI 2.3:
 | |
|   //   A NULL pointer is represented as -1.
 | |
|   if (MPT->isMemberDataPointer())
 | |
|     return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true);
 | |
| 
 | |
|   llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0);
 | |
|   llvm::Constant *Values[2] = { Zero, Zero };
 | |
|   return llvm::ConstantStruct::getAnon(Values);
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
 | |
|                                      CharUnits offset) {
 | |
|   // Itanium C++ ABI 2.3:
 | |
|   //   A pointer to data member is an offset from the base address of
 | |
|   //   the class object containing it, represented as a ptrdiff_t
 | |
|   return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity());
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ItaniumCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
 | |
|   return BuildMemberPointer(MD, CharUnits::Zero());
 | |
| }
 | |
| 
 | |
| llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
 | |
|                                                   CharUnits ThisAdjustment) {
 | |
|   assert(MD->isInstance() && "Member function must not be static!");
 | |
| 
 | |
|   CodeGenTypes &Types = CGM.getTypes();
 | |
| 
 | |
|   // Get the function pointer (or index if this is a virtual function).
 | |
|   llvm::Constant *MemPtr[2];
 | |
|   if (MD->isVirtual()) {
 | |
|     uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD);
 | |
| 
 | |
|     const ASTContext &Context = getContext();
 | |
|     CharUnits PointerWidth =
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
 | |
|     uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
 | |
| 
 | |
|     if (UseARMMethodPtrABI) {
 | |
|       // ARM C++ ABI 3.2.1:
 | |
|       //   This ABI specifies that adj contains twice the this
 | |
|       //   adjustment, plus 1 if the member function is virtual. The
 | |
|       //   least significant bit of adj then makes exactly the same
 | |
|       //   discrimination as the least significant bit of ptr does for
 | |
|       //   Itanium.
 | |
|       MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset);
 | |
|       MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
 | |
|                                          2 * ThisAdjustment.getQuantity() + 1);
 | |
|     } else {
 | |
|       // Itanium C++ ABI 2.3:
 | |
|       //   For a virtual function, [the pointer field] is 1 plus the
 | |
|       //   virtual table offset (in bytes) of the function,
 | |
|       //   represented as a ptrdiff_t.
 | |
|       MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1);
 | |
|       MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
 | |
|                                          ThisAdjustment.getQuantity());
 | |
|     }
 | |
|   } else {
 | |
|     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
 | |
|     llvm::Type *Ty;
 | |
|     // Check whether the function has a computable LLVM signature.
 | |
|     if (Types.isFuncTypeConvertible(FPT)) {
 | |
|       // The function has a computable LLVM signature; use the correct type.
 | |
|       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
 | |
|     } else {
 | |
|       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
 | |
|       // function type is incomplete.
 | |
|       Ty = CGM.PtrDiffTy;
 | |
|     }
 | |
|     llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
 | |
| 
 | |
|     MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy);
 | |
|     MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
 | |
|                                        (UseARMMethodPtrABI ? 2 : 1) *
 | |
|                                        ThisAdjustment.getQuantity());
 | |
|   }
 | |
| 
 | |
|   return llvm::ConstantStruct::getAnon(MemPtr);
 | |
| }
 | |
| 
 | |
| llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
 | |
|                                                  QualType MPType) {
 | |
|   const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
 | |
|   const ValueDecl *MPD = MP.getMemberPointerDecl();
 | |
|   if (!MPD)
 | |
|     return EmitNullMemberPointer(MPT);
 | |
| 
 | |
|   CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
 | |
| 
 | |
|   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
 | |
|     return BuildMemberPointer(MD, ThisAdjustment);
 | |
| 
 | |
|   CharUnits FieldOffset =
 | |
|     getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
 | |
|   return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
 | |
| }
 | |
| 
 | |
| /// The comparison algorithm is pretty easy: the member pointers are
 | |
| /// the same if they're either bitwise identical *or* both null.
 | |
| ///
 | |
| /// ARM is different here only because null-ness is more complicated.
 | |
| llvm::Value *
 | |
| ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
 | |
|                                            llvm::Value *L,
 | |
|                                            llvm::Value *R,
 | |
|                                            const MemberPointerType *MPT,
 | |
|                                            bool Inequality) {
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   llvm::ICmpInst::Predicate Eq;
 | |
|   llvm::Instruction::BinaryOps And, Or;
 | |
|   if (Inequality) {
 | |
|     Eq = llvm::ICmpInst::ICMP_NE;
 | |
|     And = llvm::Instruction::Or;
 | |
|     Or = llvm::Instruction::And;
 | |
|   } else {
 | |
|     Eq = llvm::ICmpInst::ICMP_EQ;
 | |
|     And = llvm::Instruction::And;
 | |
|     Or = llvm::Instruction::Or;
 | |
|   }
 | |
| 
 | |
|   // Member data pointers are easy because there's a unique null
 | |
|   // value, so it just comes down to bitwise equality.
 | |
|   if (MPT->isMemberDataPointer())
 | |
|     return Builder.CreateICmp(Eq, L, R);
 | |
| 
 | |
|   // For member function pointers, the tautologies are more complex.
 | |
|   // The Itanium tautology is:
 | |
|   //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
 | |
|   // The ARM tautology is:
 | |
|   //   (L == R) <==> (L.ptr == R.ptr &&
 | |
|   //                  (L.adj == R.adj ||
 | |
|   //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
 | |
|   // The inequality tautologies have exactly the same structure, except
 | |
|   // applying De Morgan's laws.
 | |
| 
 | |
|   llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
 | |
|   llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
 | |
| 
 | |
|   // This condition tests whether L.ptr == R.ptr.  This must always be
 | |
|   // true for equality to hold.
 | |
|   llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
 | |
| 
 | |
|   // This condition, together with the assumption that L.ptr == R.ptr,
 | |
|   // tests whether the pointers are both null.  ARM imposes an extra
 | |
|   // condition.
 | |
|   llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
 | |
|   llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
 | |
| 
 | |
|   // This condition tests whether L.adj == R.adj.  If this isn't
 | |
|   // true, the pointers are unequal unless they're both null.
 | |
|   llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
 | |
|   llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
 | |
|   llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
 | |
| 
 | |
|   // Null member function pointers on ARM clear the low bit of Adj,
 | |
|   // so the zero condition has to check that neither low bit is set.
 | |
|   if (UseARMMethodPtrABI) {
 | |
|     llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
 | |
| 
 | |
|     // Compute (l.adj | r.adj) & 1 and test it against zero.
 | |
|     llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
 | |
|     llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
 | |
|     llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
 | |
|                                                       "cmp.or.adj");
 | |
|     EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
 | |
|   }
 | |
| 
 | |
|   // Tie together all our conditions.
 | |
|   llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
 | |
|   Result = Builder.CreateBinOp(And, PtrEq, Result,
 | |
|                                Inequality ? "memptr.ne" : "memptr.eq");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| llvm::Value *
 | |
| ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
 | |
|                                           llvm::Value *MemPtr,
 | |
|                                           const MemberPointerType *MPT) {
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   /// For member data pointers, this is just a check against -1.
 | |
|   if (MPT->isMemberDataPointer()) {
 | |
|     assert(MemPtr->getType() == CGM.PtrDiffTy);
 | |
|     llvm::Value *NegativeOne =
 | |
|       llvm::Constant::getAllOnesValue(MemPtr->getType());
 | |
|     return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
 | |
|   }
 | |
| 
 | |
|   // In Itanium, a member function pointer is not null if 'ptr' is not null.
 | |
|   llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
 | |
| 
 | |
|   llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
 | |
|   llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
 | |
| 
 | |
|   // On ARM, a member function pointer is also non-null if the low bit of 'adj'
 | |
|   // (the virtual bit) is set.
 | |
|   if (UseARMMethodPtrABI) {
 | |
|     llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
 | |
|     llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
 | |
|     llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
 | |
|     llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
 | |
|                                                   "memptr.isvirtual");
 | |
|     Result = Builder.CreateOr(Result, IsVirtual);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
 | |
|   const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
 | |
|   if (!RD)
 | |
|     return false;
 | |
| 
 | |
|   // If C++ prohibits us from making a copy, return by address.
 | |
|   if (!RD->canPassInRegisters()) {
 | |
|     auto Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
 | |
|     FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// The Itanium ABI requires non-zero initialization only for data
 | |
| /// member pointers, for which '0' is a valid offset.
 | |
| bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
 | |
|   return MPT->isMemberFunctionPointer();
 | |
| }
 | |
| 
 | |
| /// The Itanium ABI always places an offset to the complete object
 | |
| /// at entry -2 in the vtable.
 | |
| void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
 | |
|                                             const CXXDeleteExpr *DE,
 | |
|                                             Address Ptr,
 | |
|                                             QualType ElementType,
 | |
|                                             const CXXDestructorDecl *Dtor) {
 | |
|   bool UseGlobalDelete = DE->isGlobalDelete();
 | |
|   if (UseGlobalDelete) {
 | |
|     // Derive the complete-object pointer, which is what we need
 | |
|     // to pass to the deallocation function.
 | |
| 
 | |
|     // Grab the vtable pointer as an intptr_t*.
 | |
|     auto *ClassDecl =
 | |
|         cast<CXXRecordDecl>(ElementType->castAs<RecordType>()->getDecl());
 | |
|     llvm::Value *VTable =
 | |
|         CGF.GetVTablePtr(Ptr, CGF.IntPtrTy->getPointerTo(), ClassDecl);
 | |
| 
 | |
|     // Track back to entry -2 and pull out the offset there.
 | |
|     llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64(
 | |
|         VTable, -2, "complete-offset.ptr");
 | |
|     llvm::Value *Offset =
 | |
|       CGF.Builder.CreateAlignedLoad(OffsetPtr, CGF.getPointerAlign());
 | |
| 
 | |
|     // Apply the offset.
 | |
|     llvm::Value *CompletePtr =
 | |
|       CGF.Builder.CreateBitCast(Ptr.getPointer(), CGF.Int8PtrTy);
 | |
|     CompletePtr = CGF.Builder.CreateInBoundsGEP(CompletePtr, Offset);
 | |
| 
 | |
|     // If we're supposed to call the global delete, make sure we do so
 | |
|     // even if the destructor throws.
 | |
|     CGF.pushCallObjectDeleteCleanup(DE->getOperatorDelete(), CompletePtr,
 | |
|                                     ElementType);
 | |
|   }
 | |
| 
 | |
|   // FIXME: Provide a source location here even though there's no
 | |
|   // CXXMemberCallExpr for dtor call.
 | |
|   CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
 | |
|   EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE);
 | |
| 
 | |
|   if (UseGlobalDelete)
 | |
|     CGF.PopCleanupBlock();
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
 | |
|   // void __cxa_rethrow();
 | |
| 
 | |
|   llvm::FunctionType *FTy =
 | |
|     llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
 | |
| 
 | |
|   llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
 | |
| 
 | |
|   if (isNoReturn)
 | |
|     CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, None);
 | |
|   else
 | |
|     CGF.EmitRuntimeCallOrInvoke(Fn);
 | |
| }
 | |
| 
 | |
| static llvm::FunctionCallee getAllocateExceptionFn(CodeGenModule &CGM) {
 | |
|   // void *__cxa_allocate_exception(size_t thrown_size);
 | |
| 
 | |
|   llvm::FunctionType *FTy =
 | |
|     llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*isVarArg=*/false);
 | |
| 
 | |
|   return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
 | |
| }
 | |
| 
 | |
| static llvm::FunctionCallee getThrowFn(CodeGenModule &CGM) {
 | |
|   // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
 | |
|   //                  void (*dest) (void *));
 | |
| 
 | |
|   llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy };
 | |
|   llvm::FunctionType *FTy =
 | |
|     llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false);
 | |
| 
 | |
|   return CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
 | |
|   QualType ThrowType = E->getSubExpr()->getType();
 | |
|   // Now allocate the exception object.
 | |
|   llvm::Type *SizeTy = CGF.ConvertType(getContext().getSizeType());
 | |
|   uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
 | |
| 
 | |
|   llvm::FunctionCallee AllocExceptionFn = getAllocateExceptionFn(CGM);
 | |
|   llvm::CallInst *ExceptionPtr = CGF.EmitNounwindRuntimeCall(
 | |
|       AllocExceptionFn, llvm::ConstantInt::get(SizeTy, TypeSize), "exception");
 | |
| 
 | |
|   CharUnits ExnAlign = CGF.getContext().getExnObjectAlignment();
 | |
|   CGF.EmitAnyExprToExn(E->getSubExpr(), Address(ExceptionPtr, ExnAlign));
 | |
| 
 | |
|   // Now throw the exception.
 | |
|   llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType,
 | |
|                                                          /*ForEH=*/true);
 | |
| 
 | |
|   // The address of the destructor.  If the exception type has a
 | |
|   // trivial destructor (or isn't a record), we just pass null.
 | |
|   llvm::Constant *Dtor = nullptr;
 | |
|   if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
 | |
|     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|     if (!Record->hasTrivialDestructor()) {
 | |
|       CXXDestructorDecl *DtorD = Record->getDestructor();
 | |
|       Dtor = CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete));
 | |
|       Dtor = llvm::ConstantExpr::getBitCast(Dtor, CGM.Int8PtrTy);
 | |
|     }
 | |
|   }
 | |
|   if (!Dtor) Dtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
 | |
| 
 | |
|   llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor };
 | |
|   CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args);
 | |
| }
 | |
| 
 | |
| static llvm::FunctionCallee getItaniumDynamicCastFn(CodeGenFunction &CGF) {
 | |
|   // void *__dynamic_cast(const void *sub,
 | |
|   //                      const abi::__class_type_info *src,
 | |
|   //                      const abi::__class_type_info *dst,
 | |
|   //                      std::ptrdiff_t src2dst_offset);
 | |
| 
 | |
|   llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
 | |
|   llvm::Type *PtrDiffTy =
 | |
|     CGF.ConvertType(CGF.getContext().getPointerDiffType());
 | |
| 
 | |
|   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
 | |
| 
 | |
|   llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
 | |
| 
 | |
|   // Mark the function as nounwind readonly.
 | |
|   llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
 | |
|                                             llvm::Attribute::ReadOnly };
 | |
|   llvm::AttributeList Attrs = llvm::AttributeList::get(
 | |
|       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, FuncAttrs);
 | |
| 
 | |
|   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
 | |
| }
 | |
| 
 | |
| static llvm::FunctionCallee getBadCastFn(CodeGenFunction &CGF) {
 | |
|   // void __cxa_bad_cast();
 | |
|   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
 | |
|   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
 | |
| }
 | |
| 
 | |
| /// Compute the src2dst_offset hint as described in the
 | |
| /// Itanium C++ ABI [2.9.7]
 | |
| static CharUnits computeOffsetHint(ASTContext &Context,
 | |
|                                    const CXXRecordDecl *Src,
 | |
|                                    const CXXRecordDecl *Dst) {
 | |
|   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | |
|                      /*DetectVirtual=*/false);
 | |
| 
 | |
|   // If Dst is not derived from Src we can skip the whole computation below and
 | |
|   // return that Src is not a public base of Dst.  Record all inheritance paths.
 | |
|   if (!Dst->isDerivedFrom(Src, Paths))
 | |
|     return CharUnits::fromQuantity(-2ULL);
 | |
| 
 | |
|   unsigned NumPublicPaths = 0;
 | |
|   CharUnits Offset;
 | |
| 
 | |
|   // Now walk all possible inheritance paths.
 | |
|   for (const CXXBasePath &Path : Paths) {
 | |
|     if (Path.Access != AS_public)  // Ignore non-public inheritance.
 | |
|       continue;
 | |
| 
 | |
|     ++NumPublicPaths;
 | |
| 
 | |
|     for (const CXXBasePathElement &PathElement : Path) {
 | |
|       // If the path contains a virtual base class we can't give any hint.
 | |
|       // -1: no hint.
 | |
|       if (PathElement.Base->isVirtual())
 | |
|         return CharUnits::fromQuantity(-1ULL);
 | |
| 
 | |
|       if (NumPublicPaths > 1) // Won't use offsets, skip computation.
 | |
|         continue;
 | |
| 
 | |
|       // Accumulate the base class offsets.
 | |
|       const ASTRecordLayout &L = Context.getASTRecordLayout(PathElement.Class);
 | |
|       Offset += L.getBaseClassOffset(
 | |
|           PathElement.Base->getType()->getAsCXXRecordDecl());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // -2: Src is not a public base of Dst.
 | |
|   if (NumPublicPaths == 0)
 | |
|     return CharUnits::fromQuantity(-2ULL);
 | |
| 
 | |
|   // -3: Src is a multiple public base type but never a virtual base type.
 | |
|   if (NumPublicPaths > 1)
 | |
|     return CharUnits::fromQuantity(-3ULL);
 | |
| 
 | |
|   // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
 | |
|   // Return the offset of Src from the origin of Dst.
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| static llvm::FunctionCallee getBadTypeidFn(CodeGenFunction &CGF) {
 | |
|   // void __cxa_bad_typeid();
 | |
|   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
 | |
| 
 | |
|   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
 | |
| }
 | |
| 
 | |
| bool ItaniumCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
 | |
|                                               QualType SrcRecordTy) {
 | |
|   return IsDeref;
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
 | |
|   llvm::FunctionCallee Fn = getBadTypeidFn(CGF);
 | |
|   llvm::CallBase *Call = CGF.EmitRuntimeCallOrInvoke(Fn);
 | |
|   Call->setDoesNotReturn();
 | |
|   CGF.Builder.CreateUnreachable();
 | |
| }
 | |
| 
 | |
| llvm::Value *ItaniumCXXABI::EmitTypeid(CodeGenFunction &CGF,
 | |
|                                        QualType SrcRecordTy,
 | |
|                                        Address ThisPtr,
 | |
|                                        llvm::Type *StdTypeInfoPtrTy) {
 | |
|   auto *ClassDecl =
 | |
|       cast<CXXRecordDecl>(SrcRecordTy->castAs<RecordType>()->getDecl());
 | |
|   llvm::Value *Value =
 | |
|       CGF.GetVTablePtr(ThisPtr, StdTypeInfoPtrTy->getPointerTo(), ClassDecl);
 | |
| 
 | |
|   // Load the type info.
 | |
|   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
 | |
|   return CGF.Builder.CreateAlignedLoad(Value, CGF.getPointerAlign());
 | |
| }
 | |
| 
 | |
| bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
 | |
|                                                        QualType SrcRecordTy) {
 | |
|   return SrcIsPtr;
 | |
| }
 | |
| 
 | |
| llvm::Value *ItaniumCXXABI::EmitDynamicCastCall(
 | |
|     CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy,
 | |
|     QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
 | |
|   llvm::Type *PtrDiffLTy =
 | |
|       CGF.ConvertType(CGF.getContext().getPointerDiffType());
 | |
|   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
 | |
| 
 | |
|   llvm::Value *SrcRTTI =
 | |
|       CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
 | |
|   llvm::Value *DestRTTI =
 | |
|       CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
 | |
| 
 | |
|   // Compute the offset hint.
 | |
|   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
 | |
|   const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
 | |
|   llvm::Value *OffsetHint = llvm::ConstantInt::get(
 | |
|       PtrDiffLTy,
 | |
|       computeOffsetHint(CGF.getContext(), SrcDecl, DestDecl).getQuantity());
 | |
| 
 | |
|   // Emit the call to __dynamic_cast.
 | |
|   llvm::Value *Value = ThisAddr.getPointer();
 | |
|   Value = CGF.EmitCastToVoidPtr(Value);
 | |
| 
 | |
|   llvm::Value *args[] = {Value, SrcRTTI, DestRTTI, OffsetHint};
 | |
|   Value = CGF.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF), args);
 | |
|   Value = CGF.Builder.CreateBitCast(Value, DestLTy);
 | |
| 
 | |
|   /// C++ [expr.dynamic.cast]p9:
 | |
|   ///   A failed cast to reference type throws std::bad_cast
 | |
|   if (DestTy->isReferenceType()) {
 | |
|     llvm::BasicBlock *BadCastBlock =
 | |
|         CGF.createBasicBlock("dynamic_cast.bad_cast");
 | |
| 
 | |
|     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
 | |
|     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
 | |
| 
 | |
|     CGF.EmitBlock(BadCastBlock);
 | |
|     EmitBadCastCall(CGF);
 | |
|   }
 | |
| 
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| llvm::Value *ItaniumCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF,
 | |
|                                                   Address ThisAddr,
 | |
|                                                   QualType SrcRecordTy,
 | |
|                                                   QualType DestTy) {
 | |
|   llvm::Type *PtrDiffLTy =
 | |
|       CGF.ConvertType(CGF.getContext().getPointerDiffType());
 | |
|   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
 | |
| 
 | |
|   auto *ClassDecl =
 | |
|       cast<CXXRecordDecl>(SrcRecordTy->castAs<RecordType>()->getDecl());
 | |
|   // Get the vtable pointer.
 | |
|   llvm::Value *VTable = CGF.GetVTablePtr(ThisAddr, PtrDiffLTy->getPointerTo(),
 | |
|       ClassDecl);
 | |
| 
 | |
|   // Get the offset-to-top from the vtable.
 | |
|   llvm::Value *OffsetToTop =
 | |
|       CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
 | |
|   OffsetToTop =
 | |
|     CGF.Builder.CreateAlignedLoad(OffsetToTop, CGF.getPointerAlign(),
 | |
|                                   "offset.to.top");
 | |
| 
 | |
|   // Finally, add the offset to the pointer.
 | |
|   llvm::Value *Value = ThisAddr.getPointer();
 | |
|   Value = CGF.EmitCastToVoidPtr(Value);
 | |
|   Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
 | |
| 
 | |
|   return CGF.Builder.CreateBitCast(Value, DestLTy);
 | |
| }
 | |
| 
 | |
| bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
 | |
|   llvm::FunctionCallee Fn = getBadCastFn(CGF);
 | |
|   llvm::CallBase *Call = CGF.EmitRuntimeCallOrInvoke(Fn);
 | |
|   Call->setDoesNotReturn();
 | |
|   CGF.Builder.CreateUnreachable();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| llvm::Value *
 | |
| ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF,
 | |
|                                          Address This,
 | |
|                                          const CXXRecordDecl *ClassDecl,
 | |
|                                          const CXXRecordDecl *BaseClassDecl) {
 | |
|   llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy, ClassDecl);
 | |
|   CharUnits VBaseOffsetOffset =
 | |
|       CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl,
 | |
|                                                                BaseClassDecl);
 | |
| 
 | |
|   llvm::Value *VBaseOffsetPtr =
 | |
|     CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
 | |
|                                    "vbase.offset.ptr");
 | |
|   VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr,
 | |
|                                              CGM.PtrDiffTy->getPointerTo());
 | |
| 
 | |
|   llvm::Value *VBaseOffset =
 | |
|     CGF.Builder.CreateAlignedLoad(VBaseOffsetPtr, CGF.getPointerAlign(),
 | |
|                                   "vbase.offset");
 | |
| 
 | |
|   return VBaseOffset;
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
 | |
|   // Just make sure we're in sync with TargetCXXABI.
 | |
|   assert(CGM.getTarget().getCXXABI().hasConstructorVariants());
 | |
| 
 | |
|   // The constructor used for constructing this as a base class;
 | |
|   // ignores virtual bases.
 | |
|   CGM.EmitGlobal(GlobalDecl(D, Ctor_Base));
 | |
| 
 | |
|   // The constructor used for constructing this as a complete class;
 | |
|   // constructs the virtual bases, then calls the base constructor.
 | |
|   if (!D->getParent()->isAbstract()) {
 | |
|     // We don't need to emit the complete ctor if the class is abstract.
 | |
|     CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
 | |
|   }
 | |
| }
 | |
| 
 | |
| CGCXXABI::AddedStructorArgs
 | |
| ItaniumCXXABI::buildStructorSignature(GlobalDecl GD,
 | |
|                                       SmallVectorImpl<CanQualType> &ArgTys) {
 | |
|   ASTContext &Context = getContext();
 | |
| 
 | |
|   // All parameters are already in place except VTT, which goes after 'this'.
 | |
|   // These are Clang types, so we don't need to worry about sret yet.
 | |
| 
 | |
|   // Check if we need to add a VTT parameter (which has type void **).
 | |
|   if ((isa<CXXConstructorDecl>(GD.getDecl()) ? GD.getCtorType() == Ctor_Base
 | |
|                                              : GD.getDtorType() == Dtor_Base) &&
 | |
|       cast<CXXMethodDecl>(GD.getDecl())->getParent()->getNumVBases() != 0) {
 | |
|     ArgTys.insert(ArgTys.begin() + 1,
 | |
|                   Context.getPointerType(Context.VoidPtrTy));
 | |
|     return AddedStructorArgs::prefix(1);
 | |
|   }
 | |
|   return AddedStructorArgs{};
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
 | |
|   // The destructor used for destructing this as a base class; ignores
 | |
|   // virtual bases.
 | |
|   CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
 | |
| 
 | |
|   // The destructor used for destructing this as a most-derived class;
 | |
|   // call the base destructor and then destructs any virtual bases.
 | |
|   CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
 | |
| 
 | |
|   // The destructor in a virtual table is always a 'deleting'
 | |
|   // destructor, which calls the complete destructor and then uses the
 | |
|   // appropriate operator delete.
 | |
|   if (D->isVirtual())
 | |
|     CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting));
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
 | |
|                                               QualType &ResTy,
 | |
|                                               FunctionArgList &Params) {
 | |
|   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
 | |
|   assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
 | |
| 
 | |
|   // Check if we need a VTT parameter as well.
 | |
|   if (NeedsVTTParameter(CGF.CurGD)) {
 | |
|     ASTContext &Context = getContext();
 | |
| 
 | |
|     // FIXME: avoid the fake decl
 | |
|     QualType T = Context.getPointerType(Context.VoidPtrTy);
 | |
|     auto *VTTDecl = ImplicitParamDecl::Create(
 | |
|         Context, /*DC=*/nullptr, MD->getLocation(), &Context.Idents.get("vtt"),
 | |
|         T, ImplicitParamDecl::CXXVTT);
 | |
|     Params.insert(Params.begin() + 1, VTTDecl);
 | |
|     getStructorImplicitParamDecl(CGF) = VTTDecl;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
 | |
|   // Naked functions have no prolog.
 | |
|   if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>())
 | |
|     return;
 | |
| 
 | |
|   /// Initialize the 'this' slot. In the Itanium C++ ABI, no prologue
 | |
|   /// adjustments are required, because they are all handled by thunks.
 | |
|   setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
 | |
| 
 | |
|   /// Initialize the 'vtt' slot if needed.
 | |
|   if (getStructorImplicitParamDecl(CGF)) {
 | |
|     getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad(
 | |
|         CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "vtt");
 | |
|   }
 | |
| 
 | |
|   /// If this is a function that the ABI specifies returns 'this', initialize
 | |
|   /// the return slot to 'this' at the start of the function.
 | |
|   ///
 | |
|   /// Unlike the setting of return types, this is done within the ABI
 | |
|   /// implementation instead of by clients of CGCXXABI because:
 | |
|   /// 1) getThisValue is currently protected
 | |
|   /// 2) in theory, an ABI could implement 'this' returns some other way;
 | |
|   ///    HasThisReturn only specifies a contract, not the implementation
 | |
|   if (HasThisReturn(CGF.CurGD))
 | |
|     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
 | |
| }
 | |
| 
 | |
| CGCXXABI::AddedStructorArgs ItaniumCXXABI::addImplicitConstructorArgs(
 | |
|     CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
 | |
|     bool ForVirtualBase, bool Delegating, CallArgList &Args) {
 | |
|   if (!NeedsVTTParameter(GlobalDecl(D, Type)))
 | |
|     return AddedStructorArgs{};
 | |
| 
 | |
|   // Insert the implicit 'vtt' argument as the second argument.
 | |
|   llvm::Value *VTT =
 | |
|       CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating);
 | |
|   QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
 | |
|   Args.insert(Args.begin() + 1, CallArg(RValue::get(VTT), VTTTy));
 | |
|   return AddedStructorArgs::prefix(1);  // Added one arg.
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
 | |
|                                        const CXXDestructorDecl *DD,
 | |
|                                        CXXDtorType Type, bool ForVirtualBase,
 | |
|                                        bool Delegating, Address This,
 | |
|                                        QualType ThisTy) {
 | |
|   GlobalDecl GD(DD, Type);
 | |
|   llvm::Value *VTT = CGF.GetVTTParameter(GD, ForVirtualBase, Delegating);
 | |
|   QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
 | |
| 
 | |
|   CGCallee Callee;
 | |
|   if (getContext().getLangOpts().AppleKext &&
 | |
|       Type != Dtor_Base && DD->isVirtual())
 | |
|     Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, DD->getParent());
 | |
|   else
 | |
|     Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD);
 | |
| 
 | |
|   CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, VTT, VTTTy,
 | |
|                             nullptr);
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
 | |
|                                           const CXXRecordDecl *RD) {
 | |
|   llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits());
 | |
|   if (VTable->hasInitializer())
 | |
|     return;
 | |
| 
 | |
|   ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext();
 | |
|   const VTableLayout &VTLayout = VTContext.getVTableLayout(RD);
 | |
|   llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
 | |
|   llvm::Constant *RTTI =
 | |
|       CGM.GetAddrOfRTTIDescriptor(CGM.getContext().getTagDeclType(RD));
 | |
| 
 | |
|   // Create and set the initializer.
 | |
|   ConstantInitBuilder Builder(CGM);
 | |
|   auto Components = Builder.beginStruct();
 | |
|   CGVT.createVTableInitializer(Components, VTLayout, RTTI);
 | |
|   Components.finishAndSetAsInitializer(VTable);
 | |
| 
 | |
|   // Set the correct linkage.
 | |
|   VTable->setLinkage(Linkage);
 | |
| 
 | |
|   if (CGM.supportsCOMDAT() && VTable->isWeakForLinker())
 | |
|     VTable->setComdat(CGM.getModule().getOrInsertComdat(VTable->getName()));
 | |
| 
 | |
|   // Set the right visibility.
 | |
|   CGM.setGVProperties(VTable, RD);
 | |
| 
 | |
|   // If this is the magic class __cxxabiv1::__fundamental_type_info,
 | |
|   // we will emit the typeinfo for the fundamental types. This is the
 | |
|   // same behaviour as GCC.
 | |
|   const DeclContext *DC = RD->getDeclContext();
 | |
|   if (RD->getIdentifier() &&
 | |
|       RD->getIdentifier()->isStr("__fundamental_type_info") &&
 | |
|       isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() &&
 | |
|       cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") &&
 | |
|       DC->getParent()->isTranslationUnit())
 | |
|     EmitFundamentalRTTIDescriptors(RD);
 | |
| 
 | |
|   if (!VTable->isDeclarationForLinker())
 | |
|     CGM.EmitVTableTypeMetadata(RD, VTable, VTLayout);
 | |
| }
 | |
| 
 | |
| bool ItaniumCXXABI::isVirtualOffsetNeededForVTableField(
 | |
|     CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
 | |
|   if (Vptr.NearestVBase == nullptr)
 | |
|     return false;
 | |
|   return NeedsVTTParameter(CGF.CurGD);
 | |
| }
 | |
| 
 | |
| llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor(
 | |
|     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
 | |
|     const CXXRecordDecl *NearestVBase) {
 | |
| 
 | |
|   if ((Base.getBase()->getNumVBases() || NearestVBase != nullptr) &&
 | |
|       NeedsVTTParameter(CGF.CurGD)) {
 | |
|     return getVTableAddressPointInStructorWithVTT(CGF, VTableClass, Base,
 | |
|                                                   NearestVBase);
 | |
|   }
 | |
|   return getVTableAddressPoint(Base, VTableClass);
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ItaniumCXXABI::getVTableAddressPoint(BaseSubobject Base,
 | |
|                                      const CXXRecordDecl *VTableClass) {
 | |
|   llvm::GlobalValue *VTable = getAddrOfVTable(VTableClass, CharUnits());
 | |
| 
 | |
|   // Find the appropriate vtable within the vtable group, and the address point
 | |
|   // within that vtable.
 | |
|   VTableLayout::AddressPointLocation AddressPoint =
 | |
|       CGM.getItaniumVTableContext()
 | |
|           .getVTableLayout(VTableClass)
 | |
|           .getAddressPoint(Base);
 | |
|   llvm::Value *Indices[] = {
 | |
|     llvm::ConstantInt::get(CGM.Int32Ty, 0),
 | |
|     llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.VTableIndex),
 | |
|     llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.AddressPointIndex),
 | |
|   };
 | |
| 
 | |
|   return llvm::ConstantExpr::getGetElementPtr(VTable->getValueType(), VTable,
 | |
|                                               Indices, /*InBounds=*/true,
 | |
|                                               /*InRangeIndex=*/1);
 | |
| }
 | |
| 
 | |
| llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructorWithVTT(
 | |
|     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
 | |
|     const CXXRecordDecl *NearestVBase) {
 | |
|   assert((Base.getBase()->getNumVBases() || NearestVBase != nullptr) &&
 | |
|          NeedsVTTParameter(CGF.CurGD) && "This class doesn't have VTT");
 | |
| 
 | |
|   // Get the secondary vpointer index.
 | |
|   uint64_t VirtualPointerIndex =
 | |
|       CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
 | |
| 
 | |
|   /// Load the VTT.
 | |
|   llvm::Value *VTT = CGF.LoadCXXVTT();
 | |
|   if (VirtualPointerIndex)
 | |
|     VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
 | |
| 
 | |
|   // And load the address point from the VTT.
 | |
|   return CGF.Builder.CreateAlignedLoad(VTT, CGF.getPointerAlign());
 | |
| }
 | |
| 
 | |
| llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr(
 | |
|     BaseSubobject Base, const CXXRecordDecl *VTableClass) {
 | |
|   return getVTableAddressPoint(Base, VTableClass);
 | |
| }
 | |
| 
 | |
| llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
 | |
|                                                      CharUnits VPtrOffset) {
 | |
|   assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets");
 | |
| 
 | |
|   llvm::GlobalVariable *&VTable = VTables[RD];
 | |
|   if (VTable)
 | |
|     return VTable;
 | |
| 
 | |
|   // Queue up this vtable for possible deferred emission.
 | |
|   CGM.addDeferredVTable(RD);
 | |
| 
 | |
|   SmallString<256> Name;
 | |
|   llvm::raw_svector_ostream Out(Name);
 | |
|   getMangleContext().mangleCXXVTable(RD, Out);
 | |
| 
 | |
|   const VTableLayout &VTLayout =
 | |
|       CGM.getItaniumVTableContext().getVTableLayout(RD);
 | |
|   llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout);
 | |
| 
 | |
|   // Use pointer alignment for the vtable. Otherwise we would align them based
 | |
|   // on the size of the initializer which doesn't make sense as only single
 | |
|   // values are read.
 | |
|   unsigned PAlign = CGM.getTarget().getPointerAlign(0);
 | |
| 
 | |
|   VTable = CGM.CreateOrReplaceCXXRuntimeVariable(
 | |
|       Name, VTableType, llvm::GlobalValue::ExternalLinkage,
 | |
|       getContext().toCharUnitsFromBits(PAlign).getQuantity());
 | |
|   VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | |
| 
 | |
|   CGM.setGVProperties(VTable, RD);
 | |
| 
 | |
|   return VTable;
 | |
| }
 | |
| 
 | |
| CGCallee ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
 | |
|                                                   GlobalDecl GD,
 | |
|                                                   Address This,
 | |
|                                                   llvm::Type *Ty,
 | |
|                                                   SourceLocation Loc) {
 | |
|   Ty = Ty->getPointerTo()->getPointerTo();
 | |
|   auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
 | |
|   llvm::Value *VTable = CGF.GetVTablePtr(This, Ty, MethodDecl->getParent());
 | |
| 
 | |
|   uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD);
 | |
|   llvm::Value *VFunc;
 | |
|   if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
 | |
|     VFunc = CGF.EmitVTableTypeCheckedLoad(
 | |
|         MethodDecl->getParent(), VTable,
 | |
|         VTableIndex * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8);
 | |
|   } else {
 | |
|     CGF.EmitTypeMetadataCodeForVCall(MethodDecl->getParent(), VTable, Loc);
 | |
| 
 | |
|     llvm::Value *VFuncPtr =
 | |
|         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn");
 | |
|     auto *VFuncLoad =
 | |
|         CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
 | |
| 
 | |
|     // Add !invariant.load md to virtual function load to indicate that
 | |
|     // function didn't change inside vtable.
 | |
|     // It's safe to add it without -fstrict-vtable-pointers, but it would not
 | |
|     // help in devirtualization because it will only matter if we will have 2
 | |
|     // the same virtual function loads from the same vtable load, which won't
 | |
|     // happen without enabled devirtualization with -fstrict-vtable-pointers.
 | |
|     if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
 | |
|         CGM.getCodeGenOpts().StrictVTablePointers)
 | |
|       VFuncLoad->setMetadata(
 | |
|           llvm::LLVMContext::MD_invariant_load,
 | |
|           llvm::MDNode::get(CGM.getLLVMContext(),
 | |
|                             llvm::ArrayRef<llvm::Metadata *>()));
 | |
|     VFunc = VFuncLoad;
 | |
|   }
 | |
| 
 | |
|   CGCallee Callee(GD, VFunc);
 | |
|   return Callee;
 | |
| }
 | |
| 
 | |
| llvm::Value *ItaniumCXXABI::EmitVirtualDestructorCall(
 | |
|     CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
 | |
|     Address This, DeleteOrMemberCallExpr E) {
 | |
|   auto *CE = E.dyn_cast<const CXXMemberCallExpr *>();
 | |
|   auto *D = E.dyn_cast<const CXXDeleteExpr *>();
 | |
|   assert((CE != nullptr) ^ (D != nullptr));
 | |
|   assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
 | |
|   assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
 | |
| 
 | |
|   GlobalDecl GD(Dtor, DtorType);
 | |
|   const CGFunctionInfo *FInfo =
 | |
|       &CGM.getTypes().arrangeCXXStructorDeclaration(GD);
 | |
|   llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
 | |
|   CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty);
 | |
| 
 | |
|   QualType ThisTy;
 | |
|   if (CE) {
 | |
|     ThisTy = CE->getObjectType();
 | |
|   } else {
 | |
|     ThisTy = D->getDestroyedType();
 | |
|   }
 | |
| 
 | |
|   CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, nullptr,
 | |
|                             QualType(), nullptr);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
 | |
|   CodeGenVTables &VTables = CGM.getVTables();
 | |
|   llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD);
 | |
|   VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD);
 | |
| }
 | |
| 
 | |
| bool ItaniumCXXABI::canSpeculativelyEmitVTableAsBaseClass(
 | |
|     const CXXRecordDecl *RD) const {
 | |
|   // We don't emit available_externally vtables if we are in -fapple-kext mode
 | |
|   // because kext mode does not permit devirtualization.
 | |
|   if (CGM.getLangOpts().AppleKext)
 | |
|     return false;
 | |
| 
 | |
|   // If the vtable is hidden then it is not safe to emit an available_externally
 | |
|   // copy of vtable.
 | |
|   if (isVTableHidden(RD))
 | |
|     return false;
 | |
| 
 | |
|   if (CGM.getCodeGenOpts().ForceEmitVTables)
 | |
|     return true;
 | |
| 
 | |
|   // If we don't have any not emitted inline virtual function then we are safe
 | |
|   // to emit an available_externally copy of vtable.
 | |
|   // FIXME we can still emit a copy of the vtable if we
 | |
|   // can emit definition of the inline functions.
 | |
|   if (hasAnyUnusedVirtualInlineFunction(RD))
 | |
|     return false;
 | |
| 
 | |
|   // For a class with virtual bases, we must also be able to speculatively
 | |
|   // emit the VTT, because CodeGen doesn't have separate notions of "can emit
 | |
|   // the vtable" and "can emit the VTT". For a base subobject, this means we
 | |
|   // need to be able to emit non-virtual base vtables.
 | |
|   if (RD->getNumVBases()) {
 | |
|     for (const auto &B : RD->bases()) {
 | |
|       auto *BRD = B.getType()->getAsCXXRecordDecl();
 | |
|       assert(BRD && "no class for base specifier");
 | |
|       if (B.isVirtual() || !BRD->isDynamicClass())
 | |
|         continue;
 | |
|       if (!canSpeculativelyEmitVTableAsBaseClass(BRD))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ItaniumCXXABI::canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const {
 | |
|   if (!canSpeculativelyEmitVTableAsBaseClass(RD))
 | |
|     return false;
 | |
| 
 | |
|   // For a complete-object vtable (or more specifically, for the VTT), we need
 | |
|   // to be able to speculatively emit the vtables of all dynamic virtual bases.
 | |
|   for (const auto &B : RD->vbases()) {
 | |
|     auto *BRD = B.getType()->getAsCXXRecordDecl();
 | |
|     assert(BRD && "no class for base specifier");
 | |
|     if (!BRD->isDynamicClass())
 | |
|       continue;
 | |
|     if (!canSpeculativelyEmitVTableAsBaseClass(BRD))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF,
 | |
|                                           Address InitialPtr,
 | |
|                                           int64_t NonVirtualAdjustment,
 | |
|                                           int64_t VirtualAdjustment,
 | |
|                                           bool IsReturnAdjustment) {
 | |
|   if (!NonVirtualAdjustment && !VirtualAdjustment)
 | |
|     return InitialPtr.getPointer();
 | |
| 
 | |
|   Address V = CGF.Builder.CreateElementBitCast(InitialPtr, CGF.Int8Ty);
 | |
| 
 | |
|   // In a base-to-derived cast, the non-virtual adjustment is applied first.
 | |
|   if (NonVirtualAdjustment && !IsReturnAdjustment) {
 | |
|     V = CGF.Builder.CreateConstInBoundsByteGEP(V,
 | |
|                               CharUnits::fromQuantity(NonVirtualAdjustment));
 | |
|   }
 | |
| 
 | |
|   // Perform the virtual adjustment if we have one.
 | |
|   llvm::Value *ResultPtr;
 | |
|   if (VirtualAdjustment) {
 | |
|     llvm::Type *PtrDiffTy =
 | |
|         CGF.ConvertType(CGF.getContext().getPointerDiffType());
 | |
| 
 | |
|     Address VTablePtrPtr = CGF.Builder.CreateElementBitCast(V, CGF.Int8PtrTy);
 | |
|     llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr);
 | |
| 
 | |
|     llvm::Value *OffsetPtr =
 | |
|         CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment);
 | |
| 
 | |
|     OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo());
 | |
| 
 | |
|     // Load the adjustment offset from the vtable.
 | |
|     llvm::Value *Offset =
 | |
|       CGF.Builder.CreateAlignedLoad(OffsetPtr, CGF.getPointerAlign());
 | |
| 
 | |
|     // Adjust our pointer.
 | |
|     ResultPtr = CGF.Builder.CreateInBoundsGEP(V.getPointer(), Offset);
 | |
|   } else {
 | |
|     ResultPtr = V.getPointer();
 | |
|   }
 | |
| 
 | |
|   // In a derived-to-base conversion, the non-virtual adjustment is
 | |
|   // applied second.
 | |
|   if (NonVirtualAdjustment && IsReturnAdjustment) {
 | |
|     ResultPtr = CGF.Builder.CreateConstInBoundsGEP1_64(ResultPtr,
 | |
|                                                        NonVirtualAdjustment);
 | |
|   }
 | |
| 
 | |
|   // Cast back to the original type.
 | |
|   return CGF.Builder.CreateBitCast(ResultPtr, InitialPtr.getType());
 | |
| }
 | |
| 
 | |
| llvm::Value *ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF,
 | |
|                                                   Address This,
 | |
|                                                   const ThisAdjustment &TA) {
 | |
|   return performTypeAdjustment(CGF, This, TA.NonVirtual,
 | |
|                                TA.Virtual.Itanium.VCallOffsetOffset,
 | |
|                                /*IsReturnAdjustment=*/false);
 | |
| }
 | |
| 
 | |
| llvm::Value *
 | |
| ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
 | |
|                                        const ReturnAdjustment &RA) {
 | |
|   return performTypeAdjustment(CGF, Ret, RA.NonVirtual,
 | |
|                                RA.Virtual.Itanium.VBaseOffsetOffset,
 | |
|                                /*IsReturnAdjustment=*/true);
 | |
| }
 | |
| 
 | |
| void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
 | |
|                                     RValue RV, QualType ResultType) {
 | |
|   if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
 | |
|     return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
 | |
| 
 | |
|   // Destructor thunks in the ARM ABI have indeterminate results.
 | |
|   llvm::Type *T = CGF.ReturnValue.getElementType();
 | |
|   RValue Undef = RValue::get(llvm::UndefValue::get(T));
 | |
|   return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
 | |
| }
 | |
| 
 | |
| /************************** Array allocation cookies **************************/
 | |
| 
 | |
| CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) {
 | |
|   // The array cookie is a size_t; pad that up to the element alignment.
 | |
|   // The cookie is actually right-justified in that space.
 | |
|   return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes),
 | |
|                   CGM.getContext().getTypeAlignInChars(elementType));
 | |
| }
 | |
| 
 | |
| Address ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
 | |
|                                              Address NewPtr,
 | |
|                                              llvm::Value *NumElements,
 | |
|                                              const CXXNewExpr *expr,
 | |
|                                              QualType ElementType) {
 | |
|   assert(requiresArrayCookie(expr));
 | |
| 
 | |
|   unsigned AS = NewPtr.getAddressSpace();
 | |
| 
 | |
|   ASTContext &Ctx = getContext();
 | |
|   CharUnits SizeSize = CGF.getSizeSize();
 | |
| 
 | |
|   // The size of the cookie.
 | |
|   CharUnits CookieSize =
 | |
|     std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
 | |
|   assert(CookieSize == getArrayCookieSizeImpl(ElementType));
 | |
| 
 | |
|   // Compute an offset to the cookie.
 | |
|   Address CookiePtr = NewPtr;
 | |
|   CharUnits CookieOffset = CookieSize - SizeSize;
 | |
|   if (!CookieOffset.isZero())
 | |
|     CookiePtr = CGF.Builder.CreateConstInBoundsByteGEP(CookiePtr, CookieOffset);
 | |
| 
 | |
|   // Write the number of elements into the appropriate slot.
 | |
|   Address NumElementsPtr =
 | |
|       CGF.Builder.CreateElementBitCast(CookiePtr, CGF.SizeTy);
 | |
|   llvm::Instruction *SI = CGF.Builder.CreateStore(NumElements, NumElementsPtr);
 | |
| 
 | |
|   // Handle the array cookie specially in ASan.
 | |
|   if (CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) && AS == 0 &&
 | |
|       (expr->getOperatorNew()->isReplaceableGlobalAllocationFunction() ||
 | |
|        CGM.getCodeGenOpts().SanitizeAddressPoisonCustomArrayCookie)) {
 | |
|     // The store to the CookiePtr does not need to be instrumented.
 | |
|     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(SI);
 | |
|     llvm::FunctionType *FTy =
 | |
|         llvm::FunctionType::get(CGM.VoidTy, NumElementsPtr.getType(), false);
 | |
|     llvm::FunctionCallee F =
 | |
|         CGM.CreateRuntimeFunction(FTy, "__asan_poison_cxx_array_cookie");
 | |
|     CGF.Builder.CreateCall(F, NumElementsPtr.getPointer());
 | |
|   }
 | |
| 
 | |
|   // Finally, compute a pointer to the actual data buffer by skipping
 | |
|   // over the cookie completely.
 | |
|   return CGF.Builder.CreateConstInBoundsByteGEP(NewPtr, CookieSize);
 | |
| }
 | |
| 
 | |
| llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
 | |
|                                                 Address allocPtr,
 | |
|                                                 CharUnits cookieSize) {
 | |
|   // The element size is right-justified in the cookie.
 | |
|   Address numElementsPtr = allocPtr;
 | |
|   CharUnits numElementsOffset = cookieSize - CGF.getSizeSize();
 | |
|   if (!numElementsOffset.isZero())
 | |
|     numElementsPtr =
 | |
|       CGF.Builder.CreateConstInBoundsByteGEP(numElementsPtr, numElementsOffset);
 | |
| 
 | |
|   unsigned AS = allocPtr.getAddressSpace();
 | |
|   numElementsPtr = CGF.Builder.CreateElementBitCast(numElementsPtr, CGF.SizeTy);
 | |
|   if (!CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) || AS != 0)
 | |
|     return CGF.Builder.CreateLoad(numElementsPtr);
 | |
|   // In asan mode emit a function call instead of a regular load and let the
 | |
|   // run-time deal with it: if the shadow is properly poisoned return the
 | |
|   // cookie, otherwise return 0 to avoid an infinite loop calling DTORs.
 | |
|   // We can't simply ignore this load using nosanitize metadata because
 | |
|   // the metadata may be lost.
 | |
|   llvm::FunctionType *FTy =
 | |
|       llvm::FunctionType::get(CGF.SizeTy, CGF.SizeTy->getPointerTo(0), false);
 | |
|   llvm::FunctionCallee F =
 | |
|       CGM.CreateRuntimeFunction(FTy, "__asan_load_cxx_array_cookie");
 | |
|   return CGF.Builder.CreateCall(F, numElementsPtr.getPointer());
 | |
| }
 | |
| 
 | |
| CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) {
 | |
|   // ARM says that the cookie is always:
 | |
|   //   struct array_cookie {
 | |
|   //     std::size_t element_size; // element_size != 0
 | |
|   //     std::size_t element_count;
 | |
|   //   };
 | |
|   // But the base ABI doesn't give anything an alignment greater than
 | |
|   // 8, so we can dismiss this as typical ABI-author blindness to
 | |
|   // actual language complexity and round up to the element alignment.
 | |
|   return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes),
 | |
|                   CGM.getContext().getTypeAlignInChars(elementType));
 | |
| }
 | |
| 
 | |
| Address ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
 | |
|                                          Address newPtr,
 | |
|                                          llvm::Value *numElements,
 | |
|                                          const CXXNewExpr *expr,
 | |
|                                          QualType elementType) {
 | |
|   assert(requiresArrayCookie(expr));
 | |
| 
 | |
|   // The cookie is always at the start of the buffer.
 | |
|   Address cookie = newPtr;
 | |
| 
 | |
|   // The first element is the element size.
 | |
|   cookie = CGF.Builder.CreateElementBitCast(cookie, CGF.SizeTy);
 | |
|   llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy,
 | |
|                  getContext().getTypeSizeInChars(elementType).getQuantity());
 | |
|   CGF.Builder.CreateStore(elementSize, cookie);
 | |
| 
 | |
|   // The second element is the element count.
 | |
|   cookie = CGF.Builder.CreateConstInBoundsGEP(cookie, 1);
 | |
|   CGF.Builder.CreateStore(numElements, cookie);
 | |
| 
 | |
|   // Finally, compute a pointer to the actual data buffer by skipping
 | |
|   // over the cookie completely.
 | |
|   CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType);
 | |
|   return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
 | |
| }
 | |
| 
 | |
| llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
 | |
|                                             Address allocPtr,
 | |
|                                             CharUnits cookieSize) {
 | |
|   // The number of elements is at offset sizeof(size_t) relative to
 | |
|   // the allocated pointer.
 | |
|   Address numElementsPtr
 | |
|     = CGF.Builder.CreateConstInBoundsByteGEP(allocPtr, CGF.getSizeSize());
 | |
| 
 | |
|   numElementsPtr = CGF.Builder.CreateElementBitCast(numElementsPtr, CGF.SizeTy);
 | |
|   return CGF.Builder.CreateLoad(numElementsPtr);
 | |
| }
 | |
| 
 | |
| /*********************** Static local initialization **************************/
 | |
| 
 | |
| static llvm::FunctionCallee getGuardAcquireFn(CodeGenModule &CGM,
 | |
|                                               llvm::PointerType *GuardPtrTy) {
 | |
|   // int __cxa_guard_acquire(__guard *guard_object);
 | |
|   llvm::FunctionType *FTy =
 | |
|     llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
 | |
|                             GuardPtrTy, /*isVarArg=*/false);
 | |
|   return CGM.CreateRuntimeFunction(
 | |
|       FTy, "__cxa_guard_acquire",
 | |
|       llvm::AttributeList::get(CGM.getLLVMContext(),
 | |
|                                llvm::AttributeList::FunctionIndex,
 | |
|                                llvm::Attribute::NoUnwind));
 | |
| }
 | |
| 
 | |
| static llvm::FunctionCallee getGuardReleaseFn(CodeGenModule &CGM,
 | |
|                                               llvm::PointerType *GuardPtrTy) {
 | |
|   // void __cxa_guard_release(__guard *guard_object);
 | |
|   llvm::FunctionType *FTy =
 | |
|     llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
 | |
|   return CGM.CreateRuntimeFunction(
 | |
|       FTy, "__cxa_guard_release",
 | |
|       llvm::AttributeList::get(CGM.getLLVMContext(),
 | |
|                                llvm::AttributeList::FunctionIndex,
 | |
|                                llvm::Attribute::NoUnwind));
 | |
| }
 | |
| 
 | |
| static llvm::FunctionCallee getGuardAbortFn(CodeGenModule &CGM,
 | |
|                                             llvm::PointerType *GuardPtrTy) {
 | |
|   // void __cxa_guard_abort(__guard *guard_object);
 | |
|   llvm::FunctionType *FTy =
 | |
|     llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
 | |
|   return CGM.CreateRuntimeFunction(
 | |
|       FTy, "__cxa_guard_abort",
 | |
|       llvm::AttributeList::get(CGM.getLLVMContext(),
 | |
|                                llvm::AttributeList::FunctionIndex,
 | |
|                                llvm::Attribute::NoUnwind));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct CallGuardAbort final : EHScopeStack::Cleanup {
 | |
|     llvm::GlobalVariable *Guard;
 | |
|     CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()),
 | |
|                                   Guard);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// The ARM code here follows the Itanium code closely enough that we
 | |
| /// just special-case it at particular places.
 | |
| void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
 | |
|                                     const VarDecl &D,
 | |
|                                     llvm::GlobalVariable *var,
 | |
|                                     bool shouldPerformInit) {
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   // Inline variables that weren't instantiated from variable templates have
 | |
|   // partially-ordered initialization within their translation unit.
 | |
|   bool NonTemplateInline =
 | |
|       D.isInline() &&
 | |
|       !isTemplateInstantiation(D.getTemplateSpecializationKind());
 | |
| 
 | |
|   // We only need to use thread-safe statics for local non-TLS variables and
 | |
|   // inline variables; other global initialization is always single-threaded
 | |
|   // or (through lazy dynamic loading in multiple threads) unsequenced.
 | |
|   bool threadsafe = getContext().getLangOpts().ThreadsafeStatics &&
 | |
|                     (D.isLocalVarDecl() || NonTemplateInline) &&
 | |
|                     !D.getTLSKind();
 | |
| 
 | |
|   // If we have a global variable with internal linkage and thread-safe statics
 | |
|   // are disabled, we can just let the guard variable be of type i8.
 | |
|   bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
 | |
| 
 | |
|   llvm::IntegerType *guardTy;
 | |
|   CharUnits guardAlignment;
 | |
|   if (useInt8GuardVariable) {
 | |
|     guardTy = CGF.Int8Ty;
 | |
|     guardAlignment = CharUnits::One();
 | |
|   } else {
 | |
|     // Guard variables are 64 bits in the generic ABI and size width on ARM
 | |
|     // (i.e. 32-bit on AArch32, 64-bit on AArch64).
 | |
|     if (UseARMGuardVarABI) {
 | |
|       guardTy = CGF.SizeTy;
 | |
|       guardAlignment = CGF.getSizeAlign();
 | |
|     } else {
 | |
|       guardTy = CGF.Int64Ty;
 | |
|       guardAlignment = CharUnits::fromQuantity(
 | |
|                              CGM.getDataLayout().getABITypeAlignment(guardTy));
 | |
|     }
 | |
|   }
 | |
|   llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
 | |
| 
 | |
|   // Create the guard variable if we don't already have it (as we
 | |
|   // might if we're double-emitting this function body).
 | |
|   llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
 | |
|   if (!guard) {
 | |
|     // Mangle the name for the guard.
 | |
|     SmallString<256> guardName;
 | |
|     {
 | |
|       llvm::raw_svector_ostream out(guardName);
 | |
|       getMangleContext().mangleStaticGuardVariable(&D, out);
 | |
|     }
 | |
| 
 | |
|     // Create the guard variable with a zero-initializer.
 | |
|     // Just absorb linkage and visibility from the guarded variable.
 | |
|     guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
 | |
|                                      false, var->getLinkage(),
 | |
|                                      llvm::ConstantInt::get(guardTy, 0),
 | |
|                                      guardName.str());
 | |
|     guard->setDSOLocal(var->isDSOLocal());
 | |
|     guard->setVisibility(var->getVisibility());
 | |
|     // If the variable is thread-local, so is its guard variable.
 | |
|     guard->setThreadLocalMode(var->getThreadLocalMode());
 | |
|     guard->setAlignment(guardAlignment.getAsAlign());
 | |
| 
 | |
|     // The ABI says: "It is suggested that it be emitted in the same COMDAT
 | |
|     // group as the associated data object." In practice, this doesn't work for
 | |
|     // non-ELF and non-Wasm object formats, so only do it for ELF and Wasm.
 | |
|     llvm::Comdat *C = var->getComdat();
 | |
|     if (!D.isLocalVarDecl() && C &&
 | |
|         (CGM.getTarget().getTriple().isOSBinFormatELF() ||
 | |
|          CGM.getTarget().getTriple().isOSBinFormatWasm())) {
 | |
|       guard->setComdat(C);
 | |
|       // An inline variable's guard function is run from the per-TU
 | |
|       // initialization function, not via a dedicated global ctor function, so
 | |
|       // we can't put it in a comdat.
 | |
|       if (!NonTemplateInline)
 | |
|         CGF.CurFn->setComdat(C);
 | |
|     } else if (CGM.supportsCOMDAT() && guard->isWeakForLinker()) {
 | |
|       guard->setComdat(CGM.getModule().getOrInsertComdat(guard->getName()));
 | |
|     }
 | |
| 
 | |
|     CGM.setStaticLocalDeclGuardAddress(&D, guard);
 | |
|   }
 | |
| 
 | |
|   Address guardAddr = Address(guard, guardAlignment);
 | |
| 
 | |
|   // Test whether the variable has completed initialization.
 | |
|   //
 | |
|   // Itanium C++ ABI 3.3.2:
 | |
|   //   The following is pseudo-code showing how these functions can be used:
 | |
|   //     if (obj_guard.first_byte == 0) {
 | |
|   //       if ( __cxa_guard_acquire (&obj_guard) ) {
 | |
|   //         try {
 | |
|   //           ... initialize the object ...;
 | |
|   //         } catch (...) {
 | |
|   //            __cxa_guard_abort (&obj_guard);
 | |
|   //            throw;
 | |
|   //         }
 | |
|   //         ... queue object destructor with __cxa_atexit() ...;
 | |
|   //         __cxa_guard_release (&obj_guard);
 | |
|   //       }
 | |
|   //     }
 | |
| 
 | |
|   // Load the first byte of the guard variable.
 | |
|   llvm::LoadInst *LI =
 | |
|       Builder.CreateLoad(Builder.CreateElementBitCast(guardAddr, CGM.Int8Ty));
 | |
| 
 | |
|   // Itanium ABI:
 | |
|   //   An implementation supporting thread-safety on multiprocessor
 | |
|   //   systems must also guarantee that references to the initialized
 | |
|   //   object do not occur before the load of the initialization flag.
 | |
|   //
 | |
|   // In LLVM, we do this by marking the load Acquire.
 | |
|   if (threadsafe)
 | |
|     LI->setAtomic(llvm::AtomicOrdering::Acquire);
 | |
| 
 | |
|   // For ARM, we should only check the first bit, rather than the entire byte:
 | |
|   //
 | |
|   // ARM C++ ABI 3.2.3.1:
 | |
|   //   To support the potential use of initialization guard variables
 | |
|   //   as semaphores that are the target of ARM SWP and LDREX/STREX
 | |
|   //   synchronizing instructions we define a static initialization
 | |
|   //   guard variable to be a 4-byte aligned, 4-byte word with the
 | |
|   //   following inline access protocol.
 | |
|   //     #define INITIALIZED 1
 | |
|   //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
 | |
|   //       if (__cxa_guard_acquire(&obj_guard))
 | |
|   //         ...
 | |
|   //     }
 | |
|   //
 | |
|   // and similarly for ARM64:
 | |
|   //
 | |
|   // ARM64 C++ ABI 3.2.2:
 | |
|   //   This ABI instead only specifies the value bit 0 of the static guard
 | |
|   //   variable; all other bits are platform defined. Bit 0 shall be 0 when the
 | |
|   //   variable is not initialized and 1 when it is.
 | |
|   llvm::Value *V =
 | |
|       (UseARMGuardVarABI && !useInt8GuardVariable)
 | |
|           ? Builder.CreateAnd(LI, llvm::ConstantInt::get(CGM.Int8Ty, 1))
 | |
|           : LI;
 | |
|   llvm::Value *NeedsInit = Builder.CreateIsNull(V, "guard.uninitialized");
 | |
| 
 | |
|   llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
 | |
|   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
 | |
| 
 | |
|   // Check if the first byte of the guard variable is zero.
 | |
|   CGF.EmitCXXGuardedInitBranch(NeedsInit, InitCheckBlock, EndBlock,
 | |
|                                CodeGenFunction::GuardKind::VariableGuard, &D);
 | |
| 
 | |
|   CGF.EmitBlock(InitCheckBlock);
 | |
| 
 | |
|   // Variables used when coping with thread-safe statics and exceptions.
 | |
|   if (threadsafe) {
 | |
|     // Call __cxa_guard_acquire.
 | |
|     llvm::Value *V
 | |
|       = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
 | |
| 
 | |
|     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
 | |
| 
 | |
|     Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
 | |
|                          InitBlock, EndBlock);
 | |
| 
 | |
|     // Call __cxa_guard_abort along the exceptional edge.
 | |
|     CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
 | |
| 
 | |
|     CGF.EmitBlock(InitBlock);
 | |
|   }
 | |
| 
 | |
|   // Emit the initializer and add a global destructor if appropriate.
 | |
|   CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
 | |
| 
 | |
|   if (threadsafe) {
 | |
|     // Pop the guard-abort cleanup if we pushed one.
 | |
|     CGF.PopCleanupBlock();
 | |
| 
 | |
|     // Call __cxa_guard_release.  This cannot throw.
 | |
|     CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy),
 | |
|                                 guardAddr.getPointer());
 | |
|   } else {
 | |
|     Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guardAddr);
 | |
|   }
 | |
| 
 | |
|   CGF.EmitBlock(EndBlock);
 | |
| }
 | |
| 
 | |
| /// Register a global destructor using __cxa_atexit.
 | |
| static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF,
 | |
|                                         llvm::FunctionCallee dtor,
 | |
|                                         llvm::Constant *addr, bool TLS) {
 | |
|   assert((TLS || CGF.getTypes().getCodeGenOpts().CXAAtExit) &&
 | |
|          "__cxa_atexit is disabled");
 | |
|   const char *Name = "__cxa_atexit";
 | |
|   if (TLS) {
 | |
|     const llvm::Triple &T = CGF.getTarget().getTriple();
 | |
|     Name = T.isOSDarwin() ?  "_tlv_atexit" : "__cxa_thread_atexit";
 | |
|   }
 | |
| 
 | |
|   // We're assuming that the destructor function is something we can
 | |
|   // reasonably call with the default CC.  Go ahead and cast it to the
 | |
|   // right prototype.
 | |
|   llvm::Type *dtorTy =
 | |
|     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo();
 | |
| 
 | |
|   // Preserve address space of addr.
 | |
|   auto AddrAS = addr ? addr->getType()->getPointerAddressSpace() : 0;
 | |
|   auto AddrInt8PtrTy =
 | |
|       AddrAS ? CGF.Int8Ty->getPointerTo(AddrAS) : CGF.Int8PtrTy;
 | |
| 
 | |
|   // Create a variable that binds the atexit to this shared object.
 | |
|   llvm::Constant *handle =
 | |
|       CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle");
 | |
|   auto *GV = cast<llvm::GlobalValue>(handle->stripPointerCasts());
 | |
|   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
 | |
| 
 | |
|   // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
 | |
|   llvm::Type *paramTys[] = {dtorTy, AddrInt8PtrTy, handle->getType()};
 | |
|   llvm::FunctionType *atexitTy =
 | |
|     llvm::FunctionType::get(CGF.IntTy, paramTys, false);
 | |
| 
 | |
|   // Fetch the actual function.
 | |
|   llvm::FunctionCallee atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name);
 | |
|   if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit.getCallee()))
 | |
|     fn->setDoesNotThrow();
 | |
| 
 | |
|   if (!addr)
 | |
|     // addr is null when we are trying to register a dtor annotated with
 | |
|     // __attribute__((destructor)) in a constructor function. Using null here is
 | |
|     // okay because this argument is just passed back to the destructor
 | |
|     // function.
 | |
|     addr = llvm::Constant::getNullValue(CGF.Int8PtrTy);
 | |
| 
 | |
|   llvm::Value *args[] = {llvm::ConstantExpr::getBitCast(
 | |
|                              cast<llvm::Constant>(dtor.getCallee()), dtorTy),
 | |
|                          llvm::ConstantExpr::getBitCast(addr, AddrInt8PtrTy),
 | |
|                          handle};
 | |
|   CGF.EmitNounwindRuntimeCall(atexit, args);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::registerGlobalDtorsWithAtExit() {
 | |
|   for (const auto &I : DtorsUsingAtExit) {
 | |
|     int Priority = I.first;
 | |
|     const llvm::TinyPtrVector<llvm::Function *> &Dtors = I.second;
 | |
| 
 | |
|     // Create a function that registers destructors that have the same priority.
 | |
|     //
 | |
|     // Since constructor functions are run in non-descending order of their
 | |
|     // priorities, destructors are registered in non-descending order of their
 | |
|     // priorities, and since destructor functions are run in the reverse order
 | |
|     // of their registration, destructor functions are run in non-ascending
 | |
|     // order of their priorities.
 | |
|     CodeGenFunction CGF(*this);
 | |
|     std::string GlobalInitFnName =
 | |
|         std::string("__GLOBAL_init_") + llvm::to_string(Priority);
 | |
|     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
 | |
|     llvm::Function *GlobalInitFn = CreateGlobalInitOrDestructFunction(
 | |
|         FTy, GlobalInitFnName, getTypes().arrangeNullaryFunction(),
 | |
|         SourceLocation());
 | |
|     ASTContext &Ctx = getContext();
 | |
|     QualType ReturnTy = Ctx.VoidTy;
 | |
|     QualType FunctionTy = Ctx.getFunctionType(ReturnTy, llvm::None, {});
 | |
|     FunctionDecl *FD = FunctionDecl::Create(
 | |
|         Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
 | |
|         &Ctx.Idents.get(GlobalInitFnName), FunctionTy, nullptr, SC_Static,
 | |
|         false, false);
 | |
|     CGF.StartFunction(GlobalDecl(FD), ReturnTy, GlobalInitFn,
 | |
|                       getTypes().arrangeNullaryFunction(), FunctionArgList(),
 | |
|                       SourceLocation(), SourceLocation());
 | |
| 
 | |
|     for (auto *Dtor : Dtors) {
 | |
|       // Register the destructor function calling __cxa_atexit if it is
 | |
|       // available. Otherwise fall back on calling atexit.
 | |
|       if (getCodeGenOpts().CXAAtExit)
 | |
|         emitGlobalDtorWithCXAAtExit(CGF, Dtor, nullptr, false);
 | |
|       else
 | |
|         CGF.registerGlobalDtorWithAtExit(Dtor);
 | |
|     }
 | |
| 
 | |
|     CGF.FinishFunction();
 | |
|     AddGlobalCtor(GlobalInitFn, Priority, nullptr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Register a global destructor as best as we know how.
 | |
| void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
 | |
|                                        llvm::FunctionCallee dtor,
 | |
|                                        llvm::Constant *addr) {
 | |
|   if (D.isNoDestroy(CGM.getContext()))
 | |
|     return;
 | |
| 
 | |
|   // emitGlobalDtorWithCXAAtExit will emit a call to either __cxa_thread_atexit
 | |
|   // or __cxa_atexit depending on whether this VarDecl is a thread-local storage
 | |
|   // or not. CXAAtExit controls only __cxa_atexit, so use it if it is enabled.
 | |
|   // We can always use __cxa_thread_atexit.
 | |
|   if (CGM.getCodeGenOpts().CXAAtExit || D.getTLSKind())
 | |
|     return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind());
 | |
| 
 | |
|   // In Apple kexts, we want to add a global destructor entry.
 | |
|   // FIXME: shouldn't this be guarded by some variable?
 | |
|   if (CGM.getLangOpts().AppleKext) {
 | |
|     // Generate a global destructor entry.
 | |
|     return CGM.AddCXXDtorEntry(dtor, addr);
 | |
|   }
 | |
| 
 | |
|   CGF.registerGlobalDtorWithAtExit(D, dtor, addr);
 | |
| }
 | |
| 
 | |
| static bool isThreadWrapperReplaceable(const VarDecl *VD,
 | |
|                                        CodeGen::CodeGenModule &CGM) {
 | |
|   assert(!VD->isStaticLocal() && "static local VarDecls don't need wrappers!");
 | |
|   // Darwin prefers to have references to thread local variables to go through
 | |
|   // the thread wrapper instead of directly referencing the backing variable.
 | |
|   return VD->getTLSKind() == VarDecl::TLS_Dynamic &&
 | |
|          CGM.getTarget().getTriple().isOSDarwin();
 | |
| }
 | |
| 
 | |
| /// Get the appropriate linkage for the wrapper function. This is essentially
 | |
| /// the weak form of the variable's linkage; every translation unit which needs
 | |
| /// the wrapper emits a copy, and we want the linker to merge them.
 | |
| static llvm::GlobalValue::LinkageTypes
 | |
| getThreadLocalWrapperLinkage(const VarDecl *VD, CodeGen::CodeGenModule &CGM) {
 | |
|   llvm::GlobalValue::LinkageTypes VarLinkage =
 | |
|       CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
 | |
| 
 | |
|   // For internal linkage variables, we don't need an external or weak wrapper.
 | |
|   if (llvm::GlobalValue::isLocalLinkage(VarLinkage))
 | |
|     return VarLinkage;
 | |
| 
 | |
|   // If the thread wrapper is replaceable, give it appropriate linkage.
 | |
|   if (isThreadWrapperReplaceable(VD, CGM))
 | |
|     if (!llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage) &&
 | |
|         !llvm::GlobalVariable::isWeakODRLinkage(VarLinkage))
 | |
|       return VarLinkage;
 | |
|   return llvm::GlobalValue::WeakODRLinkage;
 | |
| }
 | |
| 
 | |
| llvm::Function *
 | |
| ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD,
 | |
|                                              llvm::Value *Val) {
 | |
|   // Mangle the name for the thread_local wrapper function.
 | |
|   SmallString<256> WrapperName;
 | |
|   {
 | |
|     llvm::raw_svector_ostream Out(WrapperName);
 | |
|     getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out);
 | |
|   }
 | |
| 
 | |
|   // FIXME: If VD is a definition, we should regenerate the function attributes
 | |
|   // before returning.
 | |
|   if (llvm::Value *V = CGM.getModule().getNamedValue(WrapperName))
 | |
|     return cast<llvm::Function>(V);
 | |
| 
 | |
|   QualType RetQT = VD->getType();
 | |
|   if (RetQT->isReferenceType())
 | |
|     RetQT = RetQT.getNonReferenceType();
 | |
| 
 | |
|   const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
 | |
|       getContext().getPointerType(RetQT), FunctionArgList());
 | |
| 
 | |
|   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FI);
 | |
|   llvm::Function *Wrapper =
 | |
|       llvm::Function::Create(FnTy, getThreadLocalWrapperLinkage(VD, CGM),
 | |
|                              WrapperName.str(), &CGM.getModule());
 | |
| 
 | |
|   if (CGM.supportsCOMDAT() && Wrapper->isWeakForLinker())
 | |
|     Wrapper->setComdat(CGM.getModule().getOrInsertComdat(Wrapper->getName()));
 | |
| 
 | |
|   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Wrapper);
 | |
| 
 | |
|   // Always resolve references to the wrapper at link time.
 | |
|   if (!Wrapper->hasLocalLinkage())
 | |
|     if (!isThreadWrapperReplaceable(VD, CGM) ||
 | |
|         llvm::GlobalVariable::isLinkOnceLinkage(Wrapper->getLinkage()) ||
 | |
|         llvm::GlobalVariable::isWeakODRLinkage(Wrapper->getLinkage()) ||
 | |
|         VD->getVisibility() == HiddenVisibility)
 | |
|       Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility);
 | |
| 
 | |
|   if (isThreadWrapperReplaceable(VD, CGM)) {
 | |
|     Wrapper->setCallingConv(llvm::CallingConv::CXX_FAST_TLS);
 | |
|     Wrapper->addFnAttr(llvm::Attribute::NoUnwind);
 | |
|   }
 | |
| 
 | |
|   ThreadWrappers.push_back({VD, Wrapper});
 | |
|   return Wrapper;
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::EmitThreadLocalInitFuncs(
 | |
|     CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
 | |
|     ArrayRef<llvm::Function *> CXXThreadLocalInits,
 | |
|     ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
 | |
|   llvm::Function *InitFunc = nullptr;
 | |
| 
 | |
|   // Separate initializers into those with ordered (or partially-ordered)
 | |
|   // initialization and those with unordered initialization.
 | |
|   llvm::SmallVector<llvm::Function *, 8> OrderedInits;
 | |
|   llvm::SmallDenseMap<const VarDecl *, llvm::Function *> UnorderedInits;
 | |
|   for (unsigned I = 0; I != CXXThreadLocalInits.size(); ++I) {
 | |
|     if (isTemplateInstantiation(
 | |
|             CXXThreadLocalInitVars[I]->getTemplateSpecializationKind()))
 | |
|       UnorderedInits[CXXThreadLocalInitVars[I]->getCanonicalDecl()] =
 | |
|           CXXThreadLocalInits[I];
 | |
|     else
 | |
|       OrderedInits.push_back(CXXThreadLocalInits[I]);
 | |
|   }
 | |
| 
 | |
|   if (!OrderedInits.empty()) {
 | |
|     // Generate a guarded initialization function.
 | |
|     llvm::FunctionType *FTy =
 | |
|         llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
 | |
|     const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
 | |
|     InitFunc = CGM.CreateGlobalInitOrDestructFunction(FTy, "__tls_init", FI,
 | |
|                                                       SourceLocation(),
 | |
|                                                       /*TLS=*/true);
 | |
|     llvm::GlobalVariable *Guard = new llvm::GlobalVariable(
 | |
|         CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
 | |
|         llvm::GlobalVariable::InternalLinkage,
 | |
|         llvm::ConstantInt::get(CGM.Int8Ty, 0), "__tls_guard");
 | |
|     Guard->setThreadLocal(true);
 | |
| 
 | |
|     CharUnits GuardAlign = CharUnits::One();
 | |
|     Guard->setAlignment(GuardAlign.getAsAlign());
 | |
| 
 | |
|     CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(
 | |
|         InitFunc, OrderedInits, ConstantAddress(Guard, GuardAlign));
 | |
|     // On Darwin platforms, use CXX_FAST_TLS calling convention.
 | |
|     if (CGM.getTarget().getTriple().isOSDarwin()) {
 | |
|       InitFunc->setCallingConv(llvm::CallingConv::CXX_FAST_TLS);
 | |
|       InitFunc->addFnAttr(llvm::Attribute::NoUnwind);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create declarations for thread wrappers for all thread-local variables
 | |
|   // with non-discardable definitions in this translation unit.
 | |
|   for (const VarDecl *VD : CXXThreadLocals) {
 | |
|     if (VD->hasDefinition() &&
 | |
|         !isDiscardableGVALinkage(getContext().GetGVALinkageForVariable(VD))) {
 | |
|       llvm::GlobalValue *GV = CGM.GetGlobalValue(CGM.getMangledName(VD));
 | |
|       getOrCreateThreadLocalWrapper(VD, GV);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emit all referenced thread wrappers.
 | |
|   for (auto VDAndWrapper : ThreadWrappers) {
 | |
|     const VarDecl *VD = VDAndWrapper.first;
 | |
|     llvm::GlobalVariable *Var =
 | |
|         cast<llvm::GlobalVariable>(CGM.GetGlobalValue(CGM.getMangledName(VD)));
 | |
|     llvm::Function *Wrapper = VDAndWrapper.second;
 | |
| 
 | |
|     // Some targets require that all access to thread local variables go through
 | |
|     // the thread wrapper.  This means that we cannot attempt to create a thread
 | |
|     // wrapper or a thread helper.
 | |
|     if (!VD->hasDefinition()) {
 | |
|       if (isThreadWrapperReplaceable(VD, CGM)) {
 | |
|         Wrapper->setLinkage(llvm::Function::ExternalLinkage);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If this isn't a TU in which this variable is defined, the thread
 | |
|       // wrapper is discardable.
 | |
|       if (Wrapper->getLinkage() == llvm::Function::WeakODRLinkage)
 | |
|         Wrapper->setLinkage(llvm::Function::LinkOnceODRLinkage);
 | |
|     }
 | |
| 
 | |
|     CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Wrapper);
 | |
| 
 | |
|     // Mangle the name for the thread_local initialization function.
 | |
|     SmallString<256> InitFnName;
 | |
|     {
 | |
|       llvm::raw_svector_ostream Out(InitFnName);
 | |
|       getMangleContext().mangleItaniumThreadLocalInit(VD, Out);
 | |
|     }
 | |
| 
 | |
|     llvm::FunctionType *InitFnTy = llvm::FunctionType::get(CGM.VoidTy, false);
 | |
| 
 | |
|     // If we have a definition for the variable, emit the initialization
 | |
|     // function as an alias to the global Init function (if any). Otherwise,
 | |
|     // produce a declaration of the initialization function.
 | |
|     llvm::GlobalValue *Init = nullptr;
 | |
|     bool InitIsInitFunc = false;
 | |
|     bool HasConstantInitialization = false;
 | |
|     if (!usesThreadWrapperFunction(VD)) {
 | |
|       HasConstantInitialization = true;
 | |
|     } else if (VD->hasDefinition()) {
 | |
|       InitIsInitFunc = true;
 | |
|       llvm::Function *InitFuncToUse = InitFunc;
 | |
|       if (isTemplateInstantiation(VD->getTemplateSpecializationKind()))
 | |
|         InitFuncToUse = UnorderedInits.lookup(VD->getCanonicalDecl());
 | |
|       if (InitFuncToUse)
 | |
|         Init = llvm::GlobalAlias::create(Var->getLinkage(), InitFnName.str(),
 | |
|                                          InitFuncToUse);
 | |
|     } else {
 | |
|       // Emit a weak global function referring to the initialization function.
 | |
|       // This function will not exist if the TU defining the thread_local
 | |
|       // variable in question does not need any dynamic initialization for
 | |
|       // its thread_local variables.
 | |
|       Init = llvm::Function::Create(InitFnTy,
 | |
|                                     llvm::GlobalVariable::ExternalWeakLinkage,
 | |
|                                     InitFnName.str(), &CGM.getModule());
 | |
|       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
 | |
|       CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI,
 | |
|                                     cast<llvm::Function>(Init));
 | |
|     }
 | |
| 
 | |
|     if (Init) {
 | |
|       Init->setVisibility(Var->getVisibility());
 | |
|       // Don't mark an extern_weak function DSO local on windows.
 | |
|       if (!CGM.getTriple().isOSWindows() || !Init->hasExternalWeakLinkage())
 | |
|         Init->setDSOLocal(Var->isDSOLocal());
 | |
|     }
 | |
| 
 | |
|     llvm::LLVMContext &Context = CGM.getModule().getContext();
 | |
|     llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper);
 | |
|     CGBuilderTy Builder(CGM, Entry);
 | |
|     if (HasConstantInitialization) {
 | |
|       // No dynamic initialization to invoke.
 | |
|     } else if (InitIsInitFunc) {
 | |
|       if (Init) {
 | |
|         llvm::CallInst *CallVal = Builder.CreateCall(InitFnTy, Init);
 | |
|         if (isThreadWrapperReplaceable(VD, CGM)) {
 | |
|           CallVal->setCallingConv(llvm::CallingConv::CXX_FAST_TLS);
 | |
|           llvm::Function *Fn =
 | |
|               cast<llvm::Function>(cast<llvm::GlobalAlias>(Init)->getAliasee());
 | |
|           Fn->setCallingConv(llvm::CallingConv::CXX_FAST_TLS);
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // Don't know whether we have an init function. Call it if it exists.
 | |
|       llvm::Value *Have = Builder.CreateIsNotNull(Init);
 | |
|       llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
 | |
|       llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
 | |
|       Builder.CreateCondBr(Have, InitBB, ExitBB);
 | |
| 
 | |
|       Builder.SetInsertPoint(InitBB);
 | |
|       Builder.CreateCall(InitFnTy, Init);
 | |
|       Builder.CreateBr(ExitBB);
 | |
| 
 | |
|       Builder.SetInsertPoint(ExitBB);
 | |
|     }
 | |
| 
 | |
|     // For a reference, the result of the wrapper function is a pointer to
 | |
|     // the referenced object.
 | |
|     llvm::Value *Val = Var;
 | |
|     if (VD->getType()->isReferenceType()) {
 | |
|       CharUnits Align = CGM.getContext().getDeclAlign(VD);
 | |
|       Val = Builder.CreateAlignedLoad(Val, Align);
 | |
|     }
 | |
|     if (Val->getType() != Wrapper->getReturnType())
 | |
|       Val = Builder.CreatePointerBitCastOrAddrSpaceCast(
 | |
|           Val, Wrapper->getReturnType(), "");
 | |
|     Builder.CreateRet(Val);
 | |
|   }
 | |
| }
 | |
| 
 | |
| LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
 | |
|                                                    const VarDecl *VD,
 | |
|                                                    QualType LValType) {
 | |
|   llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD);
 | |
|   llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Val);
 | |
| 
 | |
|   llvm::CallInst *CallVal = CGF.Builder.CreateCall(Wrapper);
 | |
|   CallVal->setCallingConv(Wrapper->getCallingConv());
 | |
| 
 | |
|   LValue LV;
 | |
|   if (VD->getType()->isReferenceType())
 | |
|     LV = CGF.MakeNaturalAlignAddrLValue(CallVal, LValType);
 | |
|   else
 | |
|     LV = CGF.MakeAddrLValue(CallVal, LValType,
 | |
|                             CGF.getContext().getDeclAlign(VD));
 | |
|   // FIXME: need setObjCGCLValueClass?
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| /// Return whether the given global decl needs a VTT parameter, which it does
 | |
| /// if it's a base constructor or destructor with virtual bases.
 | |
| bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) {
 | |
|   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | |
| 
 | |
|   // We don't have any virtual bases, just return early.
 | |
|   if (!MD->getParent()->getNumVBases())
 | |
|     return false;
 | |
| 
 | |
|   // Check if we have a base constructor.
 | |
|   if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base)
 | |
|     return true;
 | |
| 
 | |
|   // Check if we have a base destructor.
 | |
|   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class ItaniumRTTIBuilder {
 | |
|   CodeGenModule &CGM;  // Per-module state.
 | |
|   llvm::LLVMContext &VMContext;
 | |
|   const ItaniumCXXABI &CXXABI;  // Per-module state.
 | |
| 
 | |
|   /// Fields - The fields of the RTTI descriptor currently being built.
 | |
|   SmallVector<llvm::Constant *, 16> Fields;
 | |
| 
 | |
|   /// GetAddrOfTypeName - Returns the mangled type name of the given type.
 | |
|   llvm::GlobalVariable *
 | |
|   GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage);
 | |
| 
 | |
|   /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
 | |
|   /// descriptor of the given type.
 | |
|   llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty);
 | |
| 
 | |
|   /// BuildVTablePointer - Build the vtable pointer for the given type.
 | |
|   void BuildVTablePointer(const Type *Ty);
 | |
| 
 | |
|   /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
 | |
|   /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
 | |
|   void BuildSIClassTypeInfo(const CXXRecordDecl *RD);
 | |
| 
 | |
|   /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
 | |
|   /// classes with bases that do not satisfy the abi::__si_class_type_info
 | |
|   /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
 | |
|   void BuildVMIClassTypeInfo(const CXXRecordDecl *RD);
 | |
| 
 | |
|   /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
 | |
|   /// for pointer types.
 | |
|   void BuildPointerTypeInfo(QualType PointeeTy);
 | |
| 
 | |
|   /// BuildObjCObjectTypeInfo - Build the appropriate kind of
 | |
|   /// type_info for an object type.
 | |
|   void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty);
 | |
| 
 | |
|   /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
 | |
|   /// struct, used for member pointer types.
 | |
|   void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty);
 | |
| 
 | |
| public:
 | |
|   ItaniumRTTIBuilder(const ItaniumCXXABI &ABI)
 | |
|       : CGM(ABI.CGM), VMContext(CGM.getModule().getContext()), CXXABI(ABI) {}
 | |
| 
 | |
|   // Pointer type info flags.
 | |
|   enum {
 | |
|     /// PTI_Const - Type has const qualifier.
 | |
|     PTI_Const = 0x1,
 | |
| 
 | |
|     /// PTI_Volatile - Type has volatile qualifier.
 | |
|     PTI_Volatile = 0x2,
 | |
| 
 | |
|     /// PTI_Restrict - Type has restrict qualifier.
 | |
|     PTI_Restrict = 0x4,
 | |
| 
 | |
|     /// PTI_Incomplete - Type is incomplete.
 | |
|     PTI_Incomplete = 0x8,
 | |
| 
 | |
|     /// PTI_ContainingClassIncomplete - Containing class is incomplete.
 | |
|     /// (in pointer to member).
 | |
|     PTI_ContainingClassIncomplete = 0x10,
 | |
| 
 | |
|     /// PTI_TransactionSafe - Pointee is transaction_safe function (C++ TM TS).
 | |
|     //PTI_TransactionSafe = 0x20,
 | |
| 
 | |
|     /// PTI_Noexcept - Pointee is noexcept function (C++1z).
 | |
|     PTI_Noexcept = 0x40,
 | |
|   };
 | |
| 
 | |
|   // VMI type info flags.
 | |
|   enum {
 | |
|     /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
 | |
|     VMI_NonDiamondRepeat = 0x1,
 | |
| 
 | |
|     /// VMI_DiamondShaped - Class is diamond shaped.
 | |
|     VMI_DiamondShaped = 0x2
 | |
|   };
 | |
| 
 | |
|   // Base class type info flags.
 | |
|   enum {
 | |
|     /// BCTI_Virtual - Base class is virtual.
 | |
|     BCTI_Virtual = 0x1,
 | |
| 
 | |
|     /// BCTI_Public - Base class is public.
 | |
|     BCTI_Public = 0x2
 | |
|   };
 | |
| 
 | |
|   /// BuildTypeInfo - Build the RTTI type info struct for the given type, or
 | |
|   /// link to an existing RTTI descriptor if one already exists.
 | |
|   llvm::Constant *BuildTypeInfo(QualType Ty);
 | |
| 
 | |
|   /// BuildTypeInfo - Build the RTTI type info struct for the given type.
 | |
|   llvm::Constant *BuildTypeInfo(
 | |
|       QualType Ty,
 | |
|       llvm::GlobalVariable::LinkageTypes Linkage,
 | |
|       llvm::GlobalValue::VisibilityTypes Visibility,
 | |
|       llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass);
 | |
| };
 | |
| }
 | |
| 
 | |
| llvm::GlobalVariable *ItaniumRTTIBuilder::GetAddrOfTypeName(
 | |
|     QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) {
 | |
|   SmallString<256> Name;
 | |
|   llvm::raw_svector_ostream Out(Name);
 | |
|   CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
 | |
| 
 | |
|   // We know that the mangled name of the type starts at index 4 of the
 | |
|   // mangled name of the typename, so we can just index into it in order to
 | |
|   // get the mangled name of the type.
 | |
|   llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
 | |
|                                                             Name.substr(4));
 | |
|   auto Align = CGM.getContext().getTypeAlignInChars(CGM.getContext().CharTy);
 | |
| 
 | |
|   llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(
 | |
|       Name, Init->getType(), Linkage, Align.getQuantity());
 | |
| 
 | |
|   GV->setInitializer(Init);
 | |
| 
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) {
 | |
|   // Mangle the RTTI name.
 | |
|   SmallString<256> Name;
 | |
|   llvm::raw_svector_ostream Out(Name);
 | |
|   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
 | |
| 
 | |
|   // Look for an existing global.
 | |
|   llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name);
 | |
| 
 | |
|   if (!GV) {
 | |
|     // Create a new global variable.
 | |
|     // Note for the future: If we would ever like to do deferred emission of
 | |
|     // RTTI, check if emitting vtables opportunistically need any adjustment.
 | |
| 
 | |
|     GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
 | |
|                                   /*isConstant=*/true,
 | |
|                                   llvm::GlobalValue::ExternalLinkage, nullptr,
 | |
|                                   Name);
 | |
|     const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
 | |
|     CGM.setGVProperties(GV, RD);
 | |
|   }
 | |
| 
 | |
|   return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
 | |
| }
 | |
| 
 | |
| /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
 | |
| /// info for that type is defined in the standard library.
 | |
| static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) {
 | |
|   // Itanium C++ ABI 2.9.2:
 | |
|   //   Basic type information (e.g. for "int", "bool", etc.) will be kept in
 | |
|   //   the run-time support library. Specifically, the run-time support
 | |
|   //   library should contain type_info objects for the types X, X* and
 | |
|   //   X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
 | |
|   //   unsigned char, signed char, short, unsigned short, int, unsigned int,
 | |
|   //   long, unsigned long, long long, unsigned long long, float, double,
 | |
|   //   long double, char16_t, char32_t, and the IEEE 754r decimal and
 | |
|   //   half-precision floating point types.
 | |
|   //
 | |
|   // GCC also emits RTTI for __int128.
 | |
|   // FIXME: We do not emit RTTI information for decimal types here.
 | |
| 
 | |
|   // Types added here must also be added to EmitFundamentalRTTIDescriptors.
 | |
|   switch (Ty->getKind()) {
 | |
|     case BuiltinType::Void:
 | |
|     case BuiltinType::NullPtr:
 | |
|     case BuiltinType::Bool:
 | |
|     case BuiltinType::WChar_S:
 | |
|     case BuiltinType::WChar_U:
 | |
|     case BuiltinType::Char_U:
 | |
|     case BuiltinType::Char_S:
 | |
|     case BuiltinType::UChar:
 | |
|     case BuiltinType::SChar:
 | |
|     case BuiltinType::Short:
 | |
|     case BuiltinType::UShort:
 | |
|     case BuiltinType::Int:
 | |
|     case BuiltinType::UInt:
 | |
|     case BuiltinType::Long:
 | |
|     case BuiltinType::ULong:
 | |
|     case BuiltinType::LongLong:
 | |
|     case BuiltinType::ULongLong:
 | |
|     case BuiltinType::Half:
 | |
|     case BuiltinType::Float:
 | |
|     case BuiltinType::Double:
 | |
|     case BuiltinType::LongDouble:
 | |
|     case BuiltinType::Float16:
 | |
|     case BuiltinType::Float128:
 | |
|     case BuiltinType::Char8:
 | |
|     case BuiltinType::Char16:
 | |
|     case BuiltinType::Char32:
 | |
|     case BuiltinType::Int128:
 | |
|     case BuiltinType::UInt128:
 | |
|       return true;
 | |
| 
 | |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/Basic/OpenCLImageTypes.def"
 | |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/Basic/OpenCLExtensionTypes.def"
 | |
|     case BuiltinType::OCLSampler:
 | |
|     case BuiltinType::OCLEvent:
 | |
|     case BuiltinType::OCLClkEvent:
 | |
|     case BuiltinType::OCLQueue:
 | |
|     case BuiltinType::OCLReserveID:
 | |
| #define SVE_TYPE(Name, Id, SingletonId) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/Basic/AArch64SVEACLETypes.def"
 | |
|     case BuiltinType::ShortAccum:
 | |
|     case BuiltinType::Accum:
 | |
|     case BuiltinType::LongAccum:
 | |
|     case BuiltinType::UShortAccum:
 | |
|     case BuiltinType::UAccum:
 | |
|     case BuiltinType::ULongAccum:
 | |
|     case BuiltinType::ShortFract:
 | |
|     case BuiltinType::Fract:
 | |
|     case BuiltinType::LongFract:
 | |
|     case BuiltinType::UShortFract:
 | |
|     case BuiltinType::UFract:
 | |
|     case BuiltinType::ULongFract:
 | |
|     case BuiltinType::SatShortAccum:
 | |
|     case BuiltinType::SatAccum:
 | |
|     case BuiltinType::SatLongAccum:
 | |
|     case BuiltinType::SatUShortAccum:
 | |
|     case BuiltinType::SatUAccum:
 | |
|     case BuiltinType::SatULongAccum:
 | |
|     case BuiltinType::SatShortFract:
 | |
|     case BuiltinType::SatFract:
 | |
|     case BuiltinType::SatLongFract:
 | |
|     case BuiltinType::SatUShortFract:
 | |
|     case BuiltinType::SatUFract:
 | |
|     case BuiltinType::SatULongFract:
 | |
|       return false;
 | |
| 
 | |
|     case BuiltinType::Dependent:
 | |
| #define BUILTIN_TYPE(Id, SingletonId)
 | |
| #define PLACEHOLDER_TYPE(Id, SingletonId) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/AST/BuiltinTypes.def"
 | |
|       llvm_unreachable("asking for RRTI for a placeholder type!");
 | |
| 
 | |
|     case BuiltinType::ObjCId:
 | |
|     case BuiltinType::ObjCClass:
 | |
|     case BuiltinType::ObjCSel:
 | |
|       llvm_unreachable("FIXME: Objective-C types are unsupported!");
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid BuiltinType Kind!");
 | |
| }
 | |
| 
 | |
| static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) {
 | |
|   QualType PointeeTy = PointerTy->getPointeeType();
 | |
|   const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy);
 | |
|   if (!BuiltinTy)
 | |
|     return false;
 | |
| 
 | |
|   // Check the qualifiers.
 | |
|   Qualifiers Quals = PointeeTy.getQualifiers();
 | |
|   Quals.removeConst();
 | |
| 
 | |
|   if (!Quals.empty())
 | |
|     return false;
 | |
| 
 | |
|   return TypeInfoIsInStandardLibrary(BuiltinTy);
 | |
| }
 | |
| 
 | |
| /// IsStandardLibraryRTTIDescriptor - Returns whether the type
 | |
| /// information for the given type exists in the standard library.
 | |
| static bool IsStandardLibraryRTTIDescriptor(QualType Ty) {
 | |
|   // Type info for builtin types is defined in the standard library.
 | |
|   if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty))
 | |
|     return TypeInfoIsInStandardLibrary(BuiltinTy);
 | |
| 
 | |
|   // Type info for some pointer types to builtin types is defined in the
 | |
|   // standard library.
 | |
|   if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
 | |
|     return TypeInfoIsInStandardLibrary(PointerTy);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
 | |
| /// the given type exists somewhere else, and that we should not emit the type
 | |
| /// information in this translation unit.  Assumes that it is not a
 | |
| /// standard-library type.
 | |
| static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM,
 | |
|                                             QualType Ty) {
 | |
|   ASTContext &Context = CGM.getContext();
 | |
| 
 | |
|   // If RTTI is disabled, assume it might be disabled in the
 | |
|   // translation unit that defines any potential key function, too.
 | |
|   if (!Context.getLangOpts().RTTI) return false;
 | |
| 
 | |
|   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
 | |
|     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|     if (!RD->hasDefinition())
 | |
|       return false;
 | |
| 
 | |
|     if (!RD->isDynamicClass())
 | |
|       return false;
 | |
| 
 | |
|     // FIXME: this may need to be reconsidered if the key function
 | |
|     // changes.
 | |
|     // N.B. We must always emit the RTTI data ourselves if there exists a key
 | |
|     // function.
 | |
|     bool IsDLLImport = RD->hasAttr<DLLImportAttr>();
 | |
| 
 | |
|     // Don't import the RTTI but emit it locally.
 | |
|     if (CGM.getTriple().isWindowsGNUEnvironment())
 | |
|       return false;
 | |
| 
 | |
|     if (CGM.getVTables().isVTableExternal(RD))
 | |
|       return IsDLLImport && !CGM.getTriple().isWindowsItaniumEnvironment()
 | |
|                  ? false
 | |
|                  : true;
 | |
| 
 | |
|     if (IsDLLImport)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsIncompleteClassType - Returns whether the given record type is incomplete.
 | |
| static bool IsIncompleteClassType(const RecordType *RecordTy) {
 | |
|   return !RecordTy->getDecl()->isCompleteDefinition();
 | |
| }
 | |
| 
 | |
| /// ContainsIncompleteClassType - Returns whether the given type contains an
 | |
| /// incomplete class type. This is true if
 | |
| ///
 | |
| ///   * The given type is an incomplete class type.
 | |
| ///   * The given type is a pointer type whose pointee type contains an
 | |
| ///     incomplete class type.
 | |
| ///   * The given type is a member pointer type whose class is an incomplete
 | |
| ///     class type.
 | |
| ///   * The given type is a member pointer type whoise pointee type contains an
 | |
| ///     incomplete class type.
 | |
| /// is an indirect or direct pointer to an incomplete class type.
 | |
| static bool ContainsIncompleteClassType(QualType Ty) {
 | |
|   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
 | |
|     if (IsIncompleteClassType(RecordTy))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
 | |
|     return ContainsIncompleteClassType(PointerTy->getPointeeType());
 | |
| 
 | |
|   if (const MemberPointerType *MemberPointerTy =
 | |
|       dyn_cast<MemberPointerType>(Ty)) {
 | |
|     // Check if the class type is incomplete.
 | |
|     const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass());
 | |
|     if (IsIncompleteClassType(ClassType))
 | |
|       return true;
 | |
| 
 | |
|     return ContainsIncompleteClassType(MemberPointerTy->getPointeeType());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // CanUseSingleInheritance - Return whether the given record decl has a "single,
 | |
| // public, non-virtual base at offset zero (i.e. the derived class is dynamic
 | |
| // iff the base is)", according to Itanium C++ ABI, 2.95p6b.
 | |
| static bool CanUseSingleInheritance(const CXXRecordDecl *RD) {
 | |
|   // Check the number of bases.
 | |
|   if (RD->getNumBases() != 1)
 | |
|     return false;
 | |
| 
 | |
|   // Get the base.
 | |
|   CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin();
 | |
| 
 | |
|   // Check that the base is not virtual.
 | |
|   if (Base->isVirtual())
 | |
|     return false;
 | |
| 
 | |
|   // Check that the base is public.
 | |
|   if (Base->getAccessSpecifier() != AS_public)
 | |
|     return false;
 | |
| 
 | |
|   // Check that the class is dynamic iff the base is.
 | |
|   auto *BaseDecl =
 | |
|       cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
 | |
|   if (!BaseDecl->isEmpty() &&
 | |
|       BaseDecl->isDynamicClass() != RD->isDynamicClass())
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void ItaniumRTTIBuilder::BuildVTablePointer(const Type *Ty) {
 | |
|   // abi::__class_type_info.
 | |
|   static const char * const ClassTypeInfo =
 | |
|     "_ZTVN10__cxxabiv117__class_type_infoE";
 | |
|   // abi::__si_class_type_info.
 | |
|   static const char * const SIClassTypeInfo =
 | |
|     "_ZTVN10__cxxabiv120__si_class_type_infoE";
 | |
|   // abi::__vmi_class_type_info.
 | |
|   static const char * const VMIClassTypeInfo =
 | |
|     "_ZTVN10__cxxabiv121__vmi_class_type_infoE";
 | |
| 
 | |
|   const char *VTableName = nullptr;
 | |
| 
 | |
|   switch (Ty->getTypeClass()) {
 | |
| #define TYPE(Class, Base)
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
|     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
 | |
| 
 | |
|   case Type::LValueReference:
 | |
|   case Type::RValueReference:
 | |
|     llvm_unreachable("References shouldn't get here");
 | |
| 
 | |
|   case Type::Auto:
 | |
|   case Type::DeducedTemplateSpecialization:
 | |
|     llvm_unreachable("Undeduced type shouldn't get here");
 | |
| 
 | |
|   case Type::Pipe:
 | |
|     llvm_unreachable("Pipe types shouldn't get here");
 | |
| 
 | |
|   case Type::Builtin:
 | |
|   // GCC treats vector and complex types as fundamental types.
 | |
|   case Type::Vector:
 | |
|   case Type::ExtVector:
 | |
|   case Type::Complex:
 | |
|   case Type::Atomic:
 | |
|   // FIXME: GCC treats block pointers as fundamental types?!
 | |
|   case Type::BlockPointer:
 | |
|     // abi::__fundamental_type_info.
 | |
|     VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE";
 | |
|     break;
 | |
| 
 | |
|   case Type::ConstantArray:
 | |
|   case Type::IncompleteArray:
 | |
|   case Type::VariableArray:
 | |
|     // abi::__array_type_info.
 | |
|     VTableName = "_ZTVN10__cxxabiv117__array_type_infoE";
 | |
|     break;
 | |
| 
 | |
|   case Type::FunctionNoProto:
 | |
|   case Type::FunctionProto:
 | |
|     // abi::__function_type_info.
 | |
|     VTableName = "_ZTVN10__cxxabiv120__function_type_infoE";
 | |
|     break;
 | |
| 
 | |
|   case Type::Enum:
 | |
|     // abi::__enum_type_info.
 | |
|     VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE";
 | |
|     break;
 | |
| 
 | |
|   case Type::Record: {
 | |
|     const CXXRecordDecl *RD =
 | |
|       cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
 | |
| 
 | |
|     if (!RD->hasDefinition() || !RD->getNumBases()) {
 | |
|       VTableName = ClassTypeInfo;
 | |
|     } else if (CanUseSingleInheritance(RD)) {
 | |
|       VTableName = SIClassTypeInfo;
 | |
|     } else {
 | |
|       VTableName = VMIClassTypeInfo;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::ObjCObject:
 | |
|     // Ignore protocol qualifiers.
 | |
|     Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr();
 | |
| 
 | |
|     // Handle id and Class.
 | |
|     if (isa<BuiltinType>(Ty)) {
 | |
|       VTableName = ClassTypeInfo;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     assert(isa<ObjCInterfaceType>(Ty));
 | |
|     LLVM_FALLTHROUGH;
 | |
| 
 | |
|   case Type::ObjCInterface:
 | |
|     if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) {
 | |
|       VTableName = SIClassTypeInfo;
 | |
|     } else {
 | |
|       VTableName = ClassTypeInfo;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Type::ObjCObjectPointer:
 | |
|   case Type::Pointer:
 | |
|     // abi::__pointer_type_info.
 | |
|     VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE";
 | |
|     break;
 | |
| 
 | |
|   case Type::MemberPointer:
 | |
|     // abi::__pointer_to_member_type_info.
 | |
|     VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *VTable =
 | |
|     CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy);
 | |
|   CGM.setDSOLocal(cast<llvm::GlobalValue>(VTable->stripPointerCasts()));
 | |
| 
 | |
|   llvm::Type *PtrDiffTy =
 | |
|     CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
 | |
| 
 | |
|   // The vtable address point is 2.
 | |
|   llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2);
 | |
|   VTable =
 | |
|       llvm::ConstantExpr::getInBoundsGetElementPtr(CGM.Int8PtrTy, VTable, Two);
 | |
|   VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy);
 | |
| 
 | |
|   Fields.push_back(VTable);
 | |
| }
 | |
| 
 | |
| /// Return the linkage that the type info and type info name constants
 | |
| /// should have for the given type.
 | |
| static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM,
 | |
|                                                              QualType Ty) {
 | |
|   // Itanium C++ ABI 2.9.5p7:
 | |
|   //   In addition, it and all of the intermediate abi::__pointer_type_info
 | |
|   //   structs in the chain down to the abi::__class_type_info for the
 | |
|   //   incomplete class type must be prevented from resolving to the
 | |
|   //   corresponding type_info structs for the complete class type, possibly
 | |
|   //   by making them local static objects. Finally, a dummy class RTTI is
 | |
|   //   generated for the incomplete type that will not resolve to the final
 | |
|   //   complete class RTTI (because the latter need not exist), possibly by
 | |
|   //   making it a local static object.
 | |
|   if (ContainsIncompleteClassType(Ty))
 | |
|     return llvm::GlobalValue::InternalLinkage;
 | |
| 
 | |
|   switch (Ty->getLinkage()) {
 | |
|   case NoLinkage:
 | |
|   case InternalLinkage:
 | |
|   case UniqueExternalLinkage:
 | |
|     return llvm::GlobalValue::InternalLinkage;
 | |
| 
 | |
|   case VisibleNoLinkage:
 | |
|   case ModuleInternalLinkage:
 | |
|   case ModuleLinkage:
 | |
|   case ExternalLinkage:
 | |
|     // RTTI is not enabled, which means that this type info struct is going
 | |
|     // to be used for exception handling. Give it linkonce_odr linkage.
 | |
|     if (!CGM.getLangOpts().RTTI)
 | |
|       return llvm::GlobalValue::LinkOnceODRLinkage;
 | |
| 
 | |
|     if (const RecordType *Record = dyn_cast<RecordType>(Ty)) {
 | |
|       const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
 | |
|       if (RD->hasAttr<WeakAttr>())
 | |
|         return llvm::GlobalValue::WeakODRLinkage;
 | |
|       if (CGM.getTriple().isWindowsItaniumEnvironment())
 | |
|         if (RD->hasAttr<DLLImportAttr>() &&
 | |
|             ShouldUseExternalRTTIDescriptor(CGM, Ty))
 | |
|           return llvm::GlobalValue::ExternalLinkage;
 | |
|       // MinGW always uses LinkOnceODRLinkage for type info.
 | |
|       if (RD->isDynamicClass() &&
 | |
|           !CGM.getContext()
 | |
|                .getTargetInfo()
 | |
|                .getTriple()
 | |
|                .isWindowsGNUEnvironment())
 | |
|         return CGM.getVTableLinkage(RD);
 | |
|     }
 | |
| 
 | |
|     return llvm::GlobalValue::LinkOnceODRLinkage;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid linkage!");
 | |
| }
 | |
| 
 | |
| llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty) {
 | |
|   // We want to operate on the canonical type.
 | |
|   Ty = Ty.getCanonicalType();
 | |
| 
 | |
|   // Check if we've already emitted an RTTI descriptor for this type.
 | |
|   SmallString<256> Name;
 | |
|   llvm::raw_svector_ostream Out(Name);
 | |
|   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
 | |
| 
 | |
|   llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name);
 | |
|   if (OldGV && !OldGV->isDeclaration()) {
 | |
|     assert(!OldGV->hasAvailableExternallyLinkage() &&
 | |
|            "available_externally typeinfos not yet implemented");
 | |
| 
 | |
|     return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy);
 | |
|   }
 | |
| 
 | |
|   // Check if there is already an external RTTI descriptor for this type.
 | |
|   if (IsStandardLibraryRTTIDescriptor(Ty) ||
 | |
|       ShouldUseExternalRTTIDescriptor(CGM, Ty))
 | |
|     return GetAddrOfExternalRTTIDescriptor(Ty);
 | |
| 
 | |
|   // Emit the standard library with external linkage.
 | |
|   llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty);
 | |
| 
 | |
|   // Give the type_info object and name the formal visibility of the
 | |
|   // type itself.
 | |
|   llvm::GlobalValue::VisibilityTypes llvmVisibility;
 | |
|   if (llvm::GlobalValue::isLocalLinkage(Linkage))
 | |
|     // If the linkage is local, only default visibility makes sense.
 | |
|     llvmVisibility = llvm::GlobalValue::DefaultVisibility;
 | |
|   else if (CXXABI.classifyRTTIUniqueness(Ty, Linkage) ==
 | |
|            ItaniumCXXABI::RUK_NonUniqueHidden)
 | |
|     llvmVisibility = llvm::GlobalValue::HiddenVisibility;
 | |
|   else
 | |
|     llvmVisibility = CodeGenModule::GetLLVMVisibility(Ty->getVisibility());
 | |
| 
 | |
|   llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass =
 | |
|       llvm::GlobalValue::DefaultStorageClass;
 | |
|   if (CGM.getTriple().isWindowsItaniumEnvironment()) {
 | |
|     auto RD = Ty->getAsCXXRecordDecl();
 | |
|     if (RD && RD->hasAttr<DLLExportAttr>())
 | |
|       DLLStorageClass = llvm::GlobalValue::DLLExportStorageClass;
 | |
|   }
 | |
| 
 | |
|   return BuildTypeInfo(Ty, Linkage, llvmVisibility, DLLStorageClass);
 | |
| }
 | |
| 
 | |
| llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(
 | |
|       QualType Ty,
 | |
|       llvm::GlobalVariable::LinkageTypes Linkage,
 | |
|       llvm::GlobalValue::VisibilityTypes Visibility,
 | |
|       llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass) {
 | |
|   // Add the vtable pointer.
 | |
|   BuildVTablePointer(cast<Type>(Ty));
 | |
| 
 | |
|   // And the name.
 | |
|   llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage);
 | |
|   llvm::Constant *TypeNameField;
 | |
| 
 | |
|   // If we're supposed to demote the visibility, be sure to set a flag
 | |
|   // to use a string comparison for type_info comparisons.
 | |
|   ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness =
 | |
|       CXXABI.classifyRTTIUniqueness(Ty, Linkage);
 | |
|   if (RTTIUniqueness != ItaniumCXXABI::RUK_Unique) {
 | |
|     // The flag is the sign bit, which on ARM64 is defined to be clear
 | |
|     // for global pointers.  This is very ARM64-specific.
 | |
|     TypeNameField = llvm::ConstantExpr::getPtrToInt(TypeName, CGM.Int64Ty);
 | |
|     llvm::Constant *flag =
 | |
|         llvm::ConstantInt::get(CGM.Int64Ty, ((uint64_t)1) << 63);
 | |
|     TypeNameField = llvm::ConstantExpr::getAdd(TypeNameField, flag);
 | |
|     TypeNameField =
 | |
|         llvm::ConstantExpr::getIntToPtr(TypeNameField, CGM.Int8PtrTy);
 | |
|   } else {
 | |
|     TypeNameField = llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy);
 | |
|   }
 | |
|   Fields.push_back(TypeNameField);
 | |
| 
 | |
|   switch (Ty->getTypeClass()) {
 | |
| #define TYPE(Class, Base)
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
|     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
 | |
| 
 | |
|   // GCC treats vector types as fundamental types.
 | |
|   case Type::Builtin:
 | |
|   case Type::Vector:
 | |
|   case Type::ExtVector:
 | |
|   case Type::Complex:
 | |
|   case Type::BlockPointer:
 | |
|     // Itanium C++ ABI 2.9.5p4:
 | |
|     // abi::__fundamental_type_info adds no data members to std::type_info.
 | |
|     break;
 | |
| 
 | |
|   case Type::LValueReference:
 | |
|   case Type::RValueReference:
 | |
|     llvm_unreachable("References shouldn't get here");
 | |
| 
 | |
|   case Type::Auto:
 | |
|   case Type::DeducedTemplateSpecialization:
 | |
|     llvm_unreachable("Undeduced type shouldn't get here");
 | |
| 
 | |
|   case Type::Pipe:
 | |
|     llvm_unreachable("Pipe type shouldn't get here");
 | |
| 
 | |
|   case Type::ConstantArray:
 | |
|   case Type::IncompleteArray:
 | |
|   case Type::VariableArray:
 | |
|     // Itanium C++ ABI 2.9.5p5:
 | |
|     // abi::__array_type_info adds no data members to std::type_info.
 | |
|     break;
 | |
| 
 | |
|   case Type::FunctionNoProto:
 | |
|   case Type::FunctionProto:
 | |
|     // Itanium C++ ABI 2.9.5p5:
 | |
|     // abi::__function_type_info adds no data members to std::type_info.
 | |
|     break;
 | |
| 
 | |
|   case Type::Enum:
 | |
|     // Itanium C++ ABI 2.9.5p5:
 | |
|     // abi::__enum_type_info adds no data members to std::type_info.
 | |
|     break;
 | |
| 
 | |
|   case Type::Record: {
 | |
|     const CXXRecordDecl *RD =
 | |
|       cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
 | |
|     if (!RD->hasDefinition() || !RD->getNumBases()) {
 | |
|       // We don't need to emit any fields.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (CanUseSingleInheritance(RD))
 | |
|       BuildSIClassTypeInfo(RD);
 | |
|     else
 | |
|       BuildVMIClassTypeInfo(RD);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::ObjCObject:
 | |
|   case Type::ObjCInterface:
 | |
|     BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty));
 | |
|     break;
 | |
| 
 | |
|   case Type::ObjCObjectPointer:
 | |
|     BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
 | |
|     break;
 | |
| 
 | |
|   case Type::Pointer:
 | |
|     BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType());
 | |
|     break;
 | |
| 
 | |
|   case Type::MemberPointer:
 | |
|     BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty));
 | |
|     break;
 | |
| 
 | |
|   case Type::Atomic:
 | |
|     // No fields, at least for the moment.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields);
 | |
| 
 | |
|   SmallString<256> Name;
 | |
|   llvm::raw_svector_ostream Out(Name);
 | |
|   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
 | |
|   llvm::Module &M = CGM.getModule();
 | |
|   llvm::GlobalVariable *OldGV = M.getNamedGlobal(Name);
 | |
|   llvm::GlobalVariable *GV =
 | |
|       new llvm::GlobalVariable(M, Init->getType(),
 | |
|                                /*isConstant=*/true, Linkage, Init, Name);
 | |
| 
 | |
|   // If there's already an old global variable, replace it with the new one.
 | |
|   if (OldGV) {
 | |
|     GV->takeName(OldGV);
 | |
|     llvm::Constant *NewPtr =
 | |
|       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
 | |
|     OldGV->replaceAllUsesWith(NewPtr);
 | |
|     OldGV->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   if (CGM.supportsCOMDAT() && GV->isWeakForLinker())
 | |
|     GV->setComdat(M.getOrInsertComdat(GV->getName()));
 | |
| 
 | |
|   CharUnits Align =
 | |
|       CGM.getContext().toCharUnitsFromBits(CGM.getTarget().getPointerAlign(0));
 | |
|   GV->setAlignment(Align.getAsAlign());
 | |
| 
 | |
|   // The Itanium ABI specifies that type_info objects must be globally
 | |
|   // unique, with one exception: if the type is an incomplete class
 | |
|   // type or a (possibly indirect) pointer to one.  That exception
 | |
|   // affects the general case of comparing type_info objects produced
 | |
|   // by the typeid operator, which is why the comparison operators on
 | |
|   // std::type_info generally use the type_info name pointers instead
 | |
|   // of the object addresses.  However, the language's built-in uses
 | |
|   // of RTTI generally require class types to be complete, even when
 | |
|   // manipulating pointers to those class types.  This allows the
 | |
|   // implementation of dynamic_cast to rely on address equality tests,
 | |
|   // which is much faster.
 | |
| 
 | |
|   // All of this is to say that it's important that both the type_info
 | |
|   // object and the type_info name be uniqued when weakly emitted.
 | |
| 
 | |
|   TypeName->setVisibility(Visibility);
 | |
|   CGM.setDSOLocal(TypeName);
 | |
| 
 | |
|   GV->setVisibility(Visibility);
 | |
|   CGM.setDSOLocal(GV);
 | |
| 
 | |
|   TypeName->setDLLStorageClass(DLLStorageClass);
 | |
|   GV->setDLLStorageClass(DLLStorageClass);
 | |
| 
 | |
|   TypeName->setPartition(CGM.getCodeGenOpts().SymbolPartition);
 | |
|   GV->setPartition(CGM.getCodeGenOpts().SymbolPartition);
 | |
| 
 | |
|   return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
 | |
| }
 | |
| 
 | |
| /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
 | |
| /// for the given Objective-C object type.
 | |
| void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) {
 | |
|   // Drop qualifiers.
 | |
|   const Type *T = OT->getBaseType().getTypePtr();
 | |
|   assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T));
 | |
| 
 | |
|   // The builtin types are abi::__class_type_infos and don't require
 | |
|   // extra fields.
 | |
|   if (isa<BuiltinType>(T)) return;
 | |
| 
 | |
|   ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl();
 | |
|   ObjCInterfaceDecl *Super = Class->getSuperClass();
 | |
| 
 | |
|   // Root classes are also __class_type_info.
 | |
|   if (!Super) return;
 | |
| 
 | |
|   QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super);
 | |
| 
 | |
|   // Everything else is single inheritance.
 | |
|   llvm::Constant *BaseTypeInfo =
 | |
|       ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(SuperTy);
 | |
|   Fields.push_back(BaseTypeInfo);
 | |
| }
 | |
| 
 | |
| /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
 | |
| /// inheritance, according to the Itanium C++ ABI, 2.95p6b.
 | |
| void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) {
 | |
|   // Itanium C++ ABI 2.9.5p6b:
 | |
|   // It adds to abi::__class_type_info a single member pointing to the
 | |
|   // type_info structure for the base type,
 | |
|   llvm::Constant *BaseTypeInfo =
 | |
|     ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(RD->bases_begin()->getType());
 | |
|   Fields.push_back(BaseTypeInfo);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// SeenBases - Contains virtual and non-virtual bases seen when traversing
 | |
|   /// a class hierarchy.
 | |
|   struct SeenBases {
 | |
|     llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases;
 | |
|     llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases;
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
 | |
| /// abi::__vmi_class_type_info.
 | |
| ///
 | |
| static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base,
 | |
|                                              SeenBases &Bases) {
 | |
| 
 | |
|   unsigned Flags = 0;
 | |
| 
 | |
|   auto *BaseDecl =
 | |
|       cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
 | |
| 
 | |
|   if (Base->isVirtual()) {
 | |
|     // Mark the virtual base as seen.
 | |
|     if (!Bases.VirtualBases.insert(BaseDecl).second) {
 | |
|       // If this virtual base has been seen before, then the class is diamond
 | |
|       // shaped.
 | |
|       Flags |= ItaniumRTTIBuilder::VMI_DiamondShaped;
 | |
|     } else {
 | |
|       if (Bases.NonVirtualBases.count(BaseDecl))
 | |
|         Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
 | |
|     }
 | |
|   } else {
 | |
|     // Mark the non-virtual base as seen.
 | |
|     if (!Bases.NonVirtualBases.insert(BaseDecl).second) {
 | |
|       // If this non-virtual base has been seen before, then the class has non-
 | |
|       // diamond shaped repeated inheritance.
 | |
|       Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
 | |
|     } else {
 | |
|       if (Bases.VirtualBases.count(BaseDecl))
 | |
|         Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Walk all bases.
 | |
|   for (const auto &I : BaseDecl->bases())
 | |
|     Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases);
 | |
| 
 | |
|   return Flags;
 | |
| }
 | |
| 
 | |
| static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) {
 | |
|   unsigned Flags = 0;
 | |
|   SeenBases Bases;
 | |
| 
 | |
|   // Walk all bases.
 | |
|   for (const auto &I : RD->bases())
 | |
|     Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases);
 | |
| 
 | |
|   return Flags;
 | |
| }
 | |
| 
 | |
| /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
 | |
| /// classes with bases that do not satisfy the abi::__si_class_type_info
 | |
| /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
 | |
| void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) {
 | |
|   llvm::Type *UnsignedIntLTy =
 | |
|     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
 | |
| 
 | |
|   // Itanium C++ ABI 2.9.5p6c:
 | |
|   //   __flags is a word with flags describing details about the class
 | |
|   //   structure, which may be referenced by using the __flags_masks
 | |
|   //   enumeration. These flags refer to both direct and indirect bases.
 | |
|   unsigned Flags = ComputeVMIClassTypeInfoFlags(RD);
 | |
|   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
 | |
| 
 | |
|   // Itanium C++ ABI 2.9.5p6c:
 | |
|   //   __base_count is a word with the number of direct proper base class
 | |
|   //   descriptions that follow.
 | |
|   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases()));
 | |
| 
 | |
|   if (!RD->getNumBases())
 | |
|     return;
 | |
| 
 | |
|   // Now add the base class descriptions.
 | |
| 
 | |
|   // Itanium C++ ABI 2.9.5p6c:
 | |
|   //   __base_info[] is an array of base class descriptions -- one for every
 | |
|   //   direct proper base. Each description is of the type:
 | |
|   //
 | |
|   //   struct abi::__base_class_type_info {
 | |
|   //   public:
 | |
|   //     const __class_type_info *__base_type;
 | |
|   //     long __offset_flags;
 | |
|   //
 | |
|   //     enum __offset_flags_masks {
 | |
|   //       __virtual_mask = 0x1,
 | |
|   //       __public_mask = 0x2,
 | |
|   //       __offset_shift = 8
 | |
|   //     };
 | |
|   //   };
 | |
| 
 | |
|   // If we're in mingw and 'long' isn't wide enough for a pointer, use 'long
 | |
|   // long' instead of 'long' for __offset_flags. libstdc++abi uses long long on
 | |
|   // LLP64 platforms.
 | |
|   // FIXME: Consider updating libc++abi to match, and extend this logic to all
 | |
|   // LLP64 platforms.
 | |
|   QualType OffsetFlagsTy = CGM.getContext().LongTy;
 | |
|   const TargetInfo &TI = CGM.getContext().getTargetInfo();
 | |
|   if (TI.getTriple().isOSCygMing() && TI.getPointerWidth(0) > TI.getLongWidth())
 | |
|     OffsetFlagsTy = CGM.getContext().LongLongTy;
 | |
|   llvm::Type *OffsetFlagsLTy =
 | |
|       CGM.getTypes().ConvertType(OffsetFlagsTy);
 | |
| 
 | |
|   for (const auto &Base : RD->bases()) {
 | |
|     // The __base_type member points to the RTTI for the base type.
 | |
|     Fields.push_back(ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Base.getType()));
 | |
| 
 | |
|     auto *BaseDecl =
 | |
|         cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
 | |
| 
 | |
|     int64_t OffsetFlags = 0;
 | |
| 
 | |
|     // All but the lower 8 bits of __offset_flags are a signed offset.
 | |
|     // For a non-virtual base, this is the offset in the object of the base
 | |
|     // subobject. For a virtual base, this is the offset in the virtual table of
 | |
|     // the virtual base offset for the virtual base referenced (negative).
 | |
|     CharUnits Offset;
 | |
|     if (Base.isVirtual())
 | |
|       Offset =
 | |
|         CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl);
 | |
|     else {
 | |
|       const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
 | |
|       Offset = Layout.getBaseClassOffset(BaseDecl);
 | |
|     };
 | |
| 
 | |
|     OffsetFlags = uint64_t(Offset.getQuantity()) << 8;
 | |
| 
 | |
|     // The low-order byte of __offset_flags contains flags, as given by the
 | |
|     // masks from the enumeration __offset_flags_masks.
 | |
|     if (Base.isVirtual())
 | |
|       OffsetFlags |= BCTI_Virtual;
 | |
|     if (Base.getAccessSpecifier() == AS_public)
 | |
|       OffsetFlags |= BCTI_Public;
 | |
| 
 | |
|     Fields.push_back(llvm::ConstantInt::get(OffsetFlagsLTy, OffsetFlags));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Compute the flags for a __pbase_type_info, and remove the corresponding
 | |
| /// pieces from \p Type.
 | |
| static unsigned extractPBaseFlags(ASTContext &Ctx, QualType &Type) {
 | |
|   unsigned Flags = 0;
 | |
| 
 | |
|   if (Type.isConstQualified())
 | |
|     Flags |= ItaniumRTTIBuilder::PTI_Const;
 | |
|   if (Type.isVolatileQualified())
 | |
|     Flags |= ItaniumRTTIBuilder::PTI_Volatile;
 | |
|   if (Type.isRestrictQualified())
 | |
|     Flags |= ItaniumRTTIBuilder::PTI_Restrict;
 | |
|   Type = Type.getUnqualifiedType();
 | |
| 
 | |
|   // Itanium C++ ABI 2.9.5p7:
 | |
|   //   When the abi::__pbase_type_info is for a direct or indirect pointer to an
 | |
|   //   incomplete class type, the incomplete target type flag is set.
 | |
|   if (ContainsIncompleteClassType(Type))
 | |
|     Flags |= ItaniumRTTIBuilder::PTI_Incomplete;
 | |
| 
 | |
|   if (auto *Proto = Type->getAs<FunctionProtoType>()) {
 | |
|     if (Proto->isNothrow()) {
 | |
|       Flags |= ItaniumRTTIBuilder::PTI_Noexcept;
 | |
|       Type = Ctx.getFunctionTypeWithExceptionSpec(Type, EST_None);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Flags;
 | |
| }
 | |
| 
 | |
| /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
 | |
| /// used for pointer types.
 | |
| void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) {
 | |
|   // Itanium C++ ABI 2.9.5p7:
 | |
|   //   __flags is a flag word describing the cv-qualification and other
 | |
|   //   attributes of the type pointed to
 | |
|   unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy);
 | |
| 
 | |
|   llvm::Type *UnsignedIntLTy =
 | |
|     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
 | |
|   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
 | |
| 
 | |
|   // Itanium C++ ABI 2.9.5p7:
 | |
|   //  __pointee is a pointer to the std::type_info derivation for the
 | |
|   //  unqualified type being pointed to.
 | |
|   llvm::Constant *PointeeTypeInfo =
 | |
|       ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy);
 | |
|   Fields.push_back(PointeeTypeInfo);
 | |
| }
 | |
| 
 | |
| /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
 | |
| /// struct, used for member pointer types.
 | |
| void
 | |
| ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) {
 | |
|   QualType PointeeTy = Ty->getPointeeType();
 | |
| 
 | |
|   // Itanium C++ ABI 2.9.5p7:
 | |
|   //   __flags is a flag word describing the cv-qualification and other
 | |
|   //   attributes of the type pointed to.
 | |
|   unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy);
 | |
| 
 | |
|   const RecordType *ClassType = cast<RecordType>(Ty->getClass());
 | |
|   if (IsIncompleteClassType(ClassType))
 | |
|     Flags |= PTI_ContainingClassIncomplete;
 | |
| 
 | |
|   llvm::Type *UnsignedIntLTy =
 | |
|     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
 | |
|   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
 | |
| 
 | |
|   // Itanium C++ ABI 2.9.5p7:
 | |
|   //   __pointee is a pointer to the std::type_info derivation for the
 | |
|   //   unqualified type being pointed to.
 | |
|   llvm::Constant *PointeeTypeInfo =
 | |
|       ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy);
 | |
|   Fields.push_back(PointeeTypeInfo);
 | |
| 
 | |
|   // Itanium C++ ABI 2.9.5p9:
 | |
|   //   __context is a pointer to an abi::__class_type_info corresponding to the
 | |
|   //   class type containing the member pointed to
 | |
|   //   (e.g., the "A" in "int A::*").
 | |
|   Fields.push_back(
 | |
|       ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(QualType(ClassType, 0)));
 | |
| }
 | |
| 
 | |
| llvm::Constant *ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty) {
 | |
|   return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty);
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD) {
 | |
|   // Types added here must also be added to TypeInfoIsInStandardLibrary.
 | |
|   QualType FundamentalTypes[] = {
 | |
|       getContext().VoidTy,             getContext().NullPtrTy,
 | |
|       getContext().BoolTy,             getContext().WCharTy,
 | |
|       getContext().CharTy,             getContext().UnsignedCharTy,
 | |
|       getContext().SignedCharTy,       getContext().ShortTy,
 | |
|       getContext().UnsignedShortTy,    getContext().IntTy,
 | |
|       getContext().UnsignedIntTy,      getContext().LongTy,
 | |
|       getContext().UnsignedLongTy,     getContext().LongLongTy,
 | |
|       getContext().UnsignedLongLongTy, getContext().Int128Ty,
 | |
|       getContext().UnsignedInt128Ty,   getContext().HalfTy,
 | |
|       getContext().FloatTy,            getContext().DoubleTy,
 | |
|       getContext().LongDoubleTy,       getContext().Float128Ty,
 | |
|       getContext().Char8Ty,            getContext().Char16Ty,
 | |
|       getContext().Char32Ty
 | |
|   };
 | |
|   llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass =
 | |
|       RD->hasAttr<DLLExportAttr>()
 | |
|       ? llvm::GlobalValue::DLLExportStorageClass
 | |
|       : llvm::GlobalValue::DefaultStorageClass;
 | |
|   llvm::GlobalValue::VisibilityTypes Visibility =
 | |
|       CodeGenModule::GetLLVMVisibility(RD->getVisibility());
 | |
|   for (const QualType &FundamentalType : FundamentalTypes) {
 | |
|     QualType PointerType = getContext().getPointerType(FundamentalType);
 | |
|     QualType PointerTypeConst = getContext().getPointerType(
 | |
|         FundamentalType.withConst());
 | |
|     for (QualType Type : {FundamentalType, PointerType, PointerTypeConst})
 | |
|       ItaniumRTTIBuilder(*this).BuildTypeInfo(
 | |
|           Type, llvm::GlobalValue::ExternalLinkage,
 | |
|           Visibility, DLLStorageClass);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// What sort of uniqueness rules should we use for the RTTI for the
 | |
| /// given type?
 | |
| ItaniumCXXABI::RTTIUniquenessKind ItaniumCXXABI::classifyRTTIUniqueness(
 | |
|     QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const {
 | |
|   if (shouldRTTIBeUnique())
 | |
|     return RUK_Unique;
 | |
| 
 | |
|   // It's only necessary for linkonce_odr or weak_odr linkage.
 | |
|   if (Linkage != llvm::GlobalValue::LinkOnceODRLinkage &&
 | |
|       Linkage != llvm::GlobalValue::WeakODRLinkage)
 | |
|     return RUK_Unique;
 | |
| 
 | |
|   // It's only necessary with default visibility.
 | |
|   if (CanTy->getVisibility() != DefaultVisibility)
 | |
|     return RUK_Unique;
 | |
| 
 | |
|   // If we're not required to publish this symbol, hide it.
 | |
|   if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage)
 | |
|     return RUK_NonUniqueHidden;
 | |
| 
 | |
|   // If we're required to publish this symbol, as we might be under an
 | |
|   // explicit instantiation, leave it with default visibility but
 | |
|   // enable string-comparisons.
 | |
|   assert(Linkage == llvm::GlobalValue::WeakODRLinkage);
 | |
|   return RUK_NonUniqueVisible;
 | |
| }
 | |
| 
 | |
| // Find out how to codegen the complete destructor and constructor
 | |
| namespace {
 | |
| enum class StructorCodegen { Emit, RAUW, Alias, COMDAT };
 | |
| }
 | |
| static StructorCodegen getCodegenToUse(CodeGenModule &CGM,
 | |
|                                        const CXXMethodDecl *MD) {
 | |
|   if (!CGM.getCodeGenOpts().CXXCtorDtorAliases)
 | |
|     return StructorCodegen::Emit;
 | |
| 
 | |
|   // The complete and base structors are not equivalent if there are any virtual
 | |
|   // bases, so emit separate functions.
 | |
|   if (MD->getParent()->getNumVBases())
 | |
|     return StructorCodegen::Emit;
 | |
| 
 | |
|   GlobalDecl AliasDecl;
 | |
|   if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
 | |
|     AliasDecl = GlobalDecl(DD, Dtor_Complete);
 | |
|   } else {
 | |
|     const auto *CD = cast<CXXConstructorDecl>(MD);
 | |
|     AliasDecl = GlobalDecl(CD, Ctor_Complete);
 | |
|   }
 | |
|   llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl);
 | |
| 
 | |
|   if (llvm::GlobalValue::isDiscardableIfUnused(Linkage))
 | |
|     return StructorCodegen::RAUW;
 | |
| 
 | |
|   // FIXME: Should we allow available_externally aliases?
 | |
|   if (!llvm::GlobalAlias::isValidLinkage(Linkage))
 | |
|     return StructorCodegen::RAUW;
 | |
| 
 | |
|   if (llvm::GlobalValue::isWeakForLinker(Linkage)) {
 | |
|     // Only ELF and wasm support COMDATs with arbitrary names (C5/D5).
 | |
|     if (CGM.getTarget().getTriple().isOSBinFormatELF() ||
 | |
|         CGM.getTarget().getTriple().isOSBinFormatWasm())
 | |
|       return StructorCodegen::COMDAT;
 | |
|     return StructorCodegen::Emit;
 | |
|   }
 | |
| 
 | |
|   return StructorCodegen::Alias;
 | |
| }
 | |
| 
 | |
| static void emitConstructorDestructorAlias(CodeGenModule &CGM,
 | |
|                                            GlobalDecl AliasDecl,
 | |
|                                            GlobalDecl TargetDecl) {
 | |
|   llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl);
 | |
| 
 | |
|   StringRef MangledName = CGM.getMangledName(AliasDecl);
 | |
|   llvm::GlobalValue *Entry = CGM.GetGlobalValue(MangledName);
 | |
|   if (Entry && !Entry->isDeclaration())
 | |
|     return;
 | |
| 
 | |
|   auto *Aliasee = cast<llvm::GlobalValue>(CGM.GetAddrOfGlobal(TargetDecl));
 | |
| 
 | |
|   // Create the alias with no name.
 | |
|   auto *Alias = llvm::GlobalAlias::create(Linkage, "", Aliasee);
 | |
| 
 | |
|   // Constructors and destructors are always unnamed_addr.
 | |
|   Alias->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | |
| 
 | |
|   // Switch any previous uses to the alias.
 | |
|   if (Entry) {
 | |
|     assert(Entry->getType() == Aliasee->getType() &&
 | |
|            "declaration exists with different type");
 | |
|     Alias->takeName(Entry);
 | |
|     Entry->replaceAllUsesWith(Alias);
 | |
|     Entry->eraseFromParent();
 | |
|   } else {
 | |
|     Alias->setName(MangledName);
 | |
|   }
 | |
| 
 | |
|   // Finally, set up the alias with its proper name and attributes.
 | |
|   CGM.SetCommonAttributes(AliasDecl, Alias);
 | |
| }
 | |
| 
 | |
| void ItaniumCXXABI::emitCXXStructor(GlobalDecl GD) {
 | |
|   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
 | |
|   auto *CD = dyn_cast<CXXConstructorDecl>(MD);
 | |
|   const CXXDestructorDecl *DD = CD ? nullptr : cast<CXXDestructorDecl>(MD);
 | |
| 
 | |
|   StructorCodegen CGType = getCodegenToUse(CGM, MD);
 | |
| 
 | |
|   if (CD ? GD.getCtorType() == Ctor_Complete
 | |
|          : GD.getDtorType() == Dtor_Complete) {
 | |
|     GlobalDecl BaseDecl;
 | |
|     if (CD)
 | |
|       BaseDecl = GD.getWithCtorType(Ctor_Base);
 | |
|     else
 | |
|       BaseDecl = GD.getWithDtorType(Dtor_Base);
 | |
| 
 | |
|     if (CGType == StructorCodegen::Alias || CGType == StructorCodegen::COMDAT) {
 | |
|       emitConstructorDestructorAlias(CGM, GD, BaseDecl);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (CGType == StructorCodegen::RAUW) {
 | |
|       StringRef MangledName = CGM.getMangledName(GD);
 | |
|       auto *Aliasee = CGM.GetAddrOfGlobal(BaseDecl);
 | |
|       CGM.addReplacement(MangledName, Aliasee);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The base destructor is equivalent to the base destructor of its
 | |
|   // base class if there is exactly one non-virtual base class with a
 | |
|   // non-trivial destructor, there are no fields with a non-trivial
 | |
|   // destructor, and the body of the destructor is trivial.
 | |
|   if (DD && GD.getDtorType() == Dtor_Base &&
 | |
|       CGType != StructorCodegen::COMDAT &&
 | |
|       !CGM.TryEmitBaseDestructorAsAlias(DD))
 | |
|     return;
 | |
| 
 | |
|   // FIXME: The deleting destructor is equivalent to the selected operator
 | |
|   // delete if:
 | |
|   //  * either the delete is a destroying operator delete or the destructor
 | |
|   //    would be trivial if it weren't virtual,
 | |
|   //  * the conversion from the 'this' parameter to the first parameter of the
 | |
|   //    destructor is equivalent to a bitcast,
 | |
|   //  * the destructor does not have an implicit "this" return, and
 | |
|   //  * the operator delete has the same calling convention and IR function type
 | |
|   //    as the destructor.
 | |
|   // In such cases we should try to emit the deleting dtor as an alias to the
 | |
|   // selected 'operator delete'.
 | |
| 
 | |
|   llvm::Function *Fn = CGM.codegenCXXStructor(GD);
 | |
| 
 | |
|   if (CGType == StructorCodegen::COMDAT) {
 | |
|     SmallString<256> Buffer;
 | |
|     llvm::raw_svector_ostream Out(Buffer);
 | |
|     if (DD)
 | |
|       getMangleContext().mangleCXXDtorComdat(DD, Out);
 | |
|     else
 | |
|       getMangleContext().mangleCXXCtorComdat(CD, Out);
 | |
|     llvm::Comdat *C = CGM.getModule().getOrInsertComdat(Out.str());
 | |
|     Fn->setComdat(C);
 | |
|   } else {
 | |
|     CGM.maybeSetTrivialComdat(*MD, *Fn);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static llvm::FunctionCallee getBeginCatchFn(CodeGenModule &CGM) {
 | |
|   // void *__cxa_begin_catch(void*);
 | |
|   llvm::FunctionType *FTy = llvm::FunctionType::get(
 | |
|       CGM.Int8PtrTy, CGM.Int8PtrTy, /*isVarArg=*/false);
 | |
| 
 | |
|   return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
 | |
| }
 | |
| 
 | |
| static llvm::FunctionCallee getEndCatchFn(CodeGenModule &CGM) {
 | |
|   // void __cxa_end_catch();
 | |
|   llvm::FunctionType *FTy =
 | |
|       llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
 | |
| 
 | |
|   return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
 | |
| }
 | |
| 
 | |
| static llvm::FunctionCallee getGetExceptionPtrFn(CodeGenModule &CGM) {
 | |
|   // void *__cxa_get_exception_ptr(void*);
 | |
|   llvm::FunctionType *FTy = llvm::FunctionType::get(
 | |
|       CGM.Int8PtrTy, CGM.Int8PtrTy, /*isVarArg=*/false);
 | |
| 
 | |
|   return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// A cleanup to call __cxa_end_catch.  In many cases, the caught
 | |
|   /// exception type lets us state definitively that the thrown exception
 | |
|   /// type does not have a destructor.  In particular:
 | |
|   ///   - Catch-alls tell us nothing, so we have to conservatively
 | |
|   ///     assume that the thrown exception might have a destructor.
 | |
|   ///   - Catches by reference behave according to their base types.
 | |
|   ///   - Catches of non-record types will only trigger for exceptions
 | |
|   ///     of non-record types, which never have destructors.
 | |
|   ///   - Catches of record types can trigger for arbitrary subclasses
 | |
|   ///     of the caught type, so we have to assume the actual thrown
 | |
|   ///     exception type might have a throwing destructor, even if the
 | |
|   ///     caught type's destructor is trivial or nothrow.
 | |
|   struct CallEndCatch final : EHScopeStack::Cleanup {
 | |
|     CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
 | |
|     bool MightThrow;
 | |
| 
 | |
|     void Emit(CodeGenFunction &CGF, Flags flags) override {
 | |
|       if (!MightThrow) {
 | |
|         CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM));
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM));
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Emits a call to __cxa_begin_catch and enters a cleanup to call
 | |
| /// __cxa_end_catch.
 | |
| ///
 | |
| /// \param EndMightThrow - true if __cxa_end_catch might throw
 | |
| static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
 | |
|                                    llvm::Value *Exn,
 | |
|                                    bool EndMightThrow) {
 | |
|   llvm::CallInst *call =
 | |
|     CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn);
 | |
| 
 | |
|   CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
 | |
| 
 | |
|   return call;
 | |
| }
 | |
| 
 | |
| /// A "special initializer" callback for initializing a catch
 | |
| /// parameter during catch initialization.
 | |
| static void InitCatchParam(CodeGenFunction &CGF,
 | |
|                            const VarDecl &CatchParam,
 | |
|                            Address ParamAddr,
 | |
|                            SourceLocation Loc) {
 | |
|   // Load the exception from where the landing pad saved it.
 | |
|   llvm::Value *Exn = CGF.getExceptionFromSlot();
 | |
| 
 | |
|   CanQualType CatchType =
 | |
|     CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
 | |
|   llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
 | |
| 
 | |
|   // If we're catching by reference, we can just cast the object
 | |
|   // pointer to the appropriate pointer.
 | |
|   if (isa<ReferenceType>(CatchType)) {
 | |
|     QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
 | |
|     bool EndCatchMightThrow = CaughtType->isRecordType();
 | |
| 
 | |
|     // __cxa_begin_catch returns the adjusted object pointer.
 | |
|     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
 | |
| 
 | |
|     // We have no way to tell the personality function that we're
 | |
|     // catching by reference, so if we're catching a pointer,
 | |
|     // __cxa_begin_catch will actually return that pointer by value.
 | |
|     if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
 | |
|       QualType PointeeType = PT->getPointeeType();
 | |
| 
 | |
|       // When catching by reference, generally we should just ignore
 | |
|       // this by-value pointer and use the exception object instead.
 | |
|       if (!PointeeType->isRecordType()) {
 | |
| 
 | |
|         // Exn points to the struct _Unwind_Exception header, which
 | |
|         // we have to skip past in order to reach the exception data.
 | |
|         unsigned HeaderSize =
 | |
|           CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
 | |
|         AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
 | |
| 
 | |
|       // However, if we're catching a pointer-to-record type that won't
 | |
|       // work, because the personality function might have adjusted
 | |
|       // the pointer.  There's actually no way for us to fully satisfy
 | |
|       // the language/ABI contract here:  we can't use Exn because it
 | |
|       // might have the wrong adjustment, but we can't use the by-value
 | |
|       // pointer because it's off by a level of abstraction.
 | |
|       //
 | |
|       // The current solution is to dump the adjusted pointer into an
 | |
|       // alloca, which breaks language semantics (because changing the
 | |
|       // pointer doesn't change the exception) but at least works.
 | |
|       // The better solution would be to filter out non-exact matches
 | |
|       // and rethrow them, but this is tricky because the rethrow
 | |
|       // really needs to be catchable by other sites at this landing
 | |
|       // pad.  The best solution is to fix the personality function.
 | |
|       } else {
 | |
|         // Pull the pointer for the reference type off.
 | |
|         llvm::Type *PtrTy =
 | |
|           cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
 | |
| 
 | |
|         // Create the temporary and write the adjusted pointer into it.
 | |
|         Address ExnPtrTmp =
 | |
|           CGF.CreateTempAlloca(PtrTy, CGF.getPointerAlign(), "exn.byref.tmp");
 | |
|         llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
 | |
|         CGF.Builder.CreateStore(Casted, ExnPtrTmp);
 | |
| 
 | |
|         // Bind the reference to the temporary.
 | |
|         AdjustedExn = ExnPtrTmp.getPointer();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     llvm::Value *ExnCast =
 | |
|       CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
 | |
|     CGF.Builder.CreateStore(ExnCast, ParamAddr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Scalars and complexes.
 | |
|   TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType);
 | |
|   if (TEK != TEK_Aggregate) {
 | |
|     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
 | |
| 
 | |
|     // If the catch type is a pointer type, __cxa_begin_catch returns
 | |
|     // the pointer by value.
 | |
|     if (CatchType->hasPointerRepresentation()) {
 | |
|       llvm::Value *CastExn =
 | |
|         CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
 | |
| 
 | |
|       switch (CatchType.getQualifiers().getObjCLifetime()) {
 | |
|       case Qualifiers::OCL_Strong:
 | |
|         CastExn = CGF.EmitARCRetainNonBlock(CastExn);
 | |
|         LLVM_FALLTHROUGH;
 | |
| 
 | |
|       case Qualifiers::OCL_None:
 | |
|       case Qualifiers::OCL_ExplicitNone:
 | |
|       case Qualifiers::OCL_Autoreleasing:
 | |
|         CGF.Builder.CreateStore(CastExn, ParamAddr);
 | |
|         return;
 | |
| 
 | |
|       case Qualifiers::OCL_Weak:
 | |
|         CGF.EmitARCInitWeak(ParamAddr, CastExn);
 | |
|         return;
 | |
|       }
 | |
|       llvm_unreachable("bad ownership qualifier!");
 | |
|     }
 | |
| 
 | |
|     // Otherwise, it returns a pointer into the exception object.
 | |
| 
 | |
|     llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
 | |
|     llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
 | |
| 
 | |
|     LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType);
 | |
|     LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType);
 | |
|     switch (TEK) {
 | |
|     case TEK_Complex:
 | |
|       CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV,
 | |
|                              /*init*/ true);
 | |
|       return;
 | |
|     case TEK_Scalar: {
 | |
|       llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc);
 | |
|       CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true);
 | |
|       return;
 | |
|     }
 | |
|     case TEK_Aggregate:
 | |
|       llvm_unreachable("evaluation kind filtered out!");
 | |
|     }
 | |
|     llvm_unreachable("bad evaluation kind");
 | |
|   }
 | |
| 
 | |
|   assert(isa<RecordType>(CatchType) && "unexpected catch type!");
 | |
|   auto catchRD = CatchType->getAsCXXRecordDecl();
 | |
|   CharUnits caughtExnAlignment = CGF.CGM.getClassPointerAlignment(catchRD);
 | |
| 
 | |
|   llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
 | |
| 
 | |
|   // Check for a copy expression.  If we don't have a copy expression,
 | |
|   // that means a trivial copy is okay.
 | |
|   const Expr *copyExpr = CatchParam.getInit();
 | |
|   if (!copyExpr) {
 | |
|     llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true);
 | |
|     Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy),
 | |
|                         caughtExnAlignment);
 | |
|     LValue Dest = CGF.MakeAddrLValue(ParamAddr, CatchType);
 | |
|     LValue Src = CGF.MakeAddrLValue(adjustedExn, CatchType);
 | |
|     CGF.EmitAggregateCopy(Dest, Src, CatchType, AggValueSlot::DoesNotOverlap);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We have to call __cxa_get_exception_ptr to get the adjusted
 | |
|   // pointer before copying.
 | |
|   llvm::CallInst *rawAdjustedExn =
 | |
|     CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn);
 | |
| 
 | |
|   // Cast that to the appropriate type.
 | |
|   Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy),
 | |
|                       caughtExnAlignment);
 | |
| 
 | |
|   // The copy expression is defined in terms of an OpaqueValueExpr.
 | |
|   // Find it and map it to the adjusted expression.
 | |
|   CodeGenFunction::OpaqueValueMapping
 | |
|     opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr),
 | |
|            CGF.MakeAddrLValue(adjustedExn, CatchParam.getType()));
 | |
| 
 | |
|   // Call the copy ctor in a terminate scope.
 | |
|   CGF.EHStack.pushTerminate();
 | |
| 
 | |
|   // Perform the copy construction.
 | |
|   CGF.EmitAggExpr(copyExpr,
 | |
|                   AggValueSlot::forAddr(ParamAddr, Qualifiers(),
 | |
|                                         AggValueSlot::IsNotDestructed,
 | |
|                                         AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                                         AggValueSlot::IsNotAliased,
 | |
|                                         AggValueSlot::DoesNotOverlap));
 | |
| 
 | |
|   // Leave the terminate scope.
 | |
|   CGF.EHStack.popTerminate();
 | |
| 
 | |
|   // Undo the opaque value mapping.
 | |
|   opaque.pop();
 | |
| 
 | |
|   // Finally we can call __cxa_begin_catch.
 | |
|   CallBeginCatch(CGF, Exn, true);
 | |
| }
 | |
| 
 | |
| /// Begins a catch statement by initializing the catch variable and
 | |
| /// calling __cxa_begin_catch.
 | |
| void ItaniumCXXABI::emitBeginCatch(CodeGenFunction &CGF,
 | |
|                                    const CXXCatchStmt *S) {
 | |
|   // We have to be very careful with the ordering of cleanups here:
 | |
|   //   C++ [except.throw]p4:
 | |
|   //     The destruction [of the exception temporary] occurs
 | |
|   //     immediately after the destruction of the object declared in
 | |
|   //     the exception-declaration in the handler.
 | |
|   //
 | |
|   // So the precise ordering is:
 | |
|   //   1.  Construct catch variable.
 | |
|   //   2.  __cxa_begin_catch
 | |
|   //   3.  Enter __cxa_end_catch cleanup
 | |
|   //   4.  Enter dtor cleanup
 | |
|   //
 | |
|   // We do this by using a slightly abnormal initialization process.
 | |
|   // Delegation sequence:
 | |
|   //   - ExitCXXTryStmt opens a RunCleanupsScope
 | |
|   //     - EmitAutoVarAlloca creates the variable and debug info
 | |
|   //       - InitCatchParam initializes the variable from the exception
 | |
|   //       - CallBeginCatch calls __cxa_begin_catch
 | |
|   //       - CallBeginCatch enters the __cxa_end_catch cleanup
 | |
|   //     - EmitAutoVarCleanups enters the variable destructor cleanup
 | |
|   //   - EmitCXXTryStmt emits the code for the catch body
 | |
|   //   - EmitCXXTryStmt close the RunCleanupsScope
 | |
| 
 | |
|   VarDecl *CatchParam = S->getExceptionDecl();
 | |
|   if (!CatchParam) {
 | |
|     llvm::Value *Exn = CGF.getExceptionFromSlot();
 | |
|     CallBeginCatch(CGF, Exn, true);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Emit the local.
 | |
|   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
 | |
|   InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getBeginLoc());
 | |
|   CGF.EmitAutoVarCleanups(var);
 | |
| }
 | |
| 
 | |
| /// Get or define the following function:
 | |
| ///   void @__clang_call_terminate(i8* %exn) nounwind noreturn
 | |
| /// This code is used only in C++.
 | |
| static llvm::FunctionCallee getClangCallTerminateFn(CodeGenModule &CGM) {
 | |
|   llvm::FunctionType *fnTy =
 | |
|     llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*isVarArg=*/false);
 | |
|   llvm::FunctionCallee fnRef = CGM.CreateRuntimeFunction(
 | |
|       fnTy, "__clang_call_terminate", llvm::AttributeList(), /*Local=*/true);
 | |
|   llvm::Function *fn =
 | |
|       cast<llvm::Function>(fnRef.getCallee()->stripPointerCasts());
 | |
|   if (fn->empty()) {
 | |
|     fn->setDoesNotThrow();
 | |
|     fn->setDoesNotReturn();
 | |
| 
 | |
|     // What we really want is to massively penalize inlining without
 | |
|     // forbidding it completely.  The difference between that and
 | |
|     // 'noinline' is negligible.
 | |
|     fn->addFnAttr(llvm::Attribute::NoInline);
 | |
| 
 | |
|     // Allow this function to be shared across translation units, but
 | |
|     // we don't want it to turn into an exported symbol.
 | |
|     fn->setLinkage(llvm::Function::LinkOnceODRLinkage);
 | |
|     fn->setVisibility(llvm::Function::HiddenVisibility);
 | |
|     if (CGM.supportsCOMDAT())
 | |
|       fn->setComdat(CGM.getModule().getOrInsertComdat(fn->getName()));
 | |
| 
 | |
|     // Set up the function.
 | |
|     llvm::BasicBlock *entry =
 | |
|         llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn);
 | |
|     CGBuilderTy builder(CGM, entry);
 | |
| 
 | |
|     // Pull the exception pointer out of the parameter list.
 | |
|     llvm::Value *exn = &*fn->arg_begin();
 | |
| 
 | |
|     // Call __cxa_begin_catch(exn).
 | |
|     llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn);
 | |
|     catchCall->setDoesNotThrow();
 | |
|     catchCall->setCallingConv(CGM.getRuntimeCC());
 | |
| 
 | |
|     // Call std::terminate().
 | |
|     llvm::CallInst *termCall = builder.CreateCall(CGM.getTerminateFn());
 | |
|     termCall->setDoesNotThrow();
 | |
|     termCall->setDoesNotReturn();
 | |
|     termCall->setCallingConv(CGM.getRuntimeCC());
 | |
| 
 | |
|     // std::terminate cannot return.
 | |
|     builder.CreateUnreachable();
 | |
|   }
 | |
|   return fnRef;
 | |
| }
 | |
| 
 | |
| llvm::CallInst *
 | |
| ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF,
 | |
|                                                    llvm::Value *Exn) {
 | |
|   // In C++, we want to call __cxa_begin_catch() before terminating.
 | |
|   if (Exn) {
 | |
|     assert(CGF.CGM.getLangOpts().CPlusPlus);
 | |
|     return CGF.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF.CGM), Exn);
 | |
|   }
 | |
|   return CGF.EmitNounwindRuntimeCall(CGF.CGM.getTerminateFn());
 | |
| }
 | |
| 
 | |
| std::pair<llvm::Value *, const CXXRecordDecl *>
 | |
| ItaniumCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This,
 | |
|                              const CXXRecordDecl *RD) {
 | |
|   return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD};
 | |
| }
 | |
| 
 | |
| void WebAssemblyCXXABI::emitBeginCatch(CodeGenFunction &CGF,
 | |
|                                        const CXXCatchStmt *C) {
 | |
|   if (CGF.getTarget().hasFeature("exception-handling"))
 | |
|     CGF.EHStack.pushCleanup<CatchRetScope>(
 | |
|         NormalCleanup, cast<llvm::CatchPadInst>(CGF.CurrentFuncletPad));
 | |
|   ItaniumCXXABI::emitBeginCatch(CGF, C);
 | |
| }
 | |
| 
 | |
| /// Register a global destructor as best as we know how.
 | |
| void XLCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
 | |
|                                   llvm::FunctionCallee dtor,
 | |
|                                   llvm::Constant *addr) {
 | |
|   llvm::report_fatal_error("Static initialization has not been implemented on"
 | |
|                            " XL ABI yet.");
 | |
| }
 |