forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			10130 lines
		
	
	
		
			366 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			10130 lines
		
	
	
		
			366 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // These classes wrap the information about a call or function
 | |
| // definition used to handle ABI compliancy.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "TargetInfo.h"
 | |
| #include "ABIInfo.h"
 | |
| #include "CGBlocks.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGValue.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/Basic/CodeGenOptions.h"
 | |
| #include "clang/CodeGen/CGFunctionInfo.h"
 | |
| #include "clang/CodeGen/SwiftCallingConv.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm> // std::sort
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| // Helper for coercing an aggregate argument or return value into an integer
 | |
| // array of the same size (including padding) and alignment.  This alternate
 | |
| // coercion happens only for the RenderScript ABI and can be removed after
 | |
| // runtimes that rely on it are no longer supported.
 | |
| //
 | |
| // RenderScript assumes that the size of the argument / return value in the IR
 | |
| // is the same as the size of the corresponding qualified type. This helper
 | |
| // coerces the aggregate type into an array of the same size (including
 | |
| // padding).  This coercion is used in lieu of expansion of struct members or
 | |
| // other canonical coercions that return a coerced-type of larger size.
 | |
| //
 | |
| // Ty          - The argument / return value type
 | |
| // Context     - The associated ASTContext
 | |
| // LLVMContext - The associated LLVMContext
 | |
| static ABIArgInfo coerceToIntArray(QualType Ty,
 | |
|                                    ASTContext &Context,
 | |
|                                    llvm::LLVMContext &LLVMContext) {
 | |
|   // Alignment and Size are measured in bits.
 | |
|   const uint64_t Size = Context.getTypeSize(Ty);
 | |
|   const uint64_t Alignment = Context.getTypeAlign(Ty);
 | |
|   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
 | |
|   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
 | |
|   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
 | |
| }
 | |
| 
 | |
| static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
 | |
|                                llvm::Value *Array,
 | |
|                                llvm::Value *Value,
 | |
|                                unsigned FirstIndex,
 | |
|                                unsigned LastIndex) {
 | |
|   // Alternatively, we could emit this as a loop in the source.
 | |
|   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
 | |
|     llvm::Value *Cell =
 | |
|         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
 | |
|     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isAggregateTypeForABI(QualType T) {
 | |
|   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
 | |
|          T->isMemberFunctionPointerType();
 | |
| }
 | |
| 
 | |
| ABIArgInfo
 | |
| ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
 | |
|                                  llvm::Type *Padding) const {
 | |
|   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
 | |
|                                  ByRef, Realign, Padding);
 | |
| }
 | |
| 
 | |
| ABIArgInfo
 | |
| ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
 | |
|   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
 | |
|                                       /*ByRef*/ false, Realign);
 | |
| }
 | |
| 
 | |
| Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                              QualType Ty) const {
 | |
|   return Address::invalid();
 | |
| }
 | |
| 
 | |
| ABIInfo::~ABIInfo() {}
 | |
| 
 | |
| /// Does the given lowering require more than the given number of
 | |
| /// registers when expanded?
 | |
| ///
 | |
| /// This is intended to be the basis of a reasonable basic implementation
 | |
| /// of should{Pass,Return}IndirectlyForSwift.
 | |
| ///
 | |
| /// For most targets, a limit of four total registers is reasonable; this
 | |
| /// limits the amount of code required in order to move around the value
 | |
| /// in case it wasn't produced immediately prior to the call by the caller
 | |
| /// (or wasn't produced in exactly the right registers) or isn't used
 | |
| /// immediately within the callee.  But some targets may need to further
 | |
| /// limit the register count due to an inability to support that many
 | |
| /// return registers.
 | |
| static bool occupiesMoreThan(CodeGenTypes &cgt,
 | |
|                              ArrayRef<llvm::Type*> scalarTypes,
 | |
|                              unsigned maxAllRegisters) {
 | |
|   unsigned intCount = 0, fpCount = 0;
 | |
|   for (llvm::Type *type : scalarTypes) {
 | |
|     if (type->isPointerTy()) {
 | |
|       intCount++;
 | |
|     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
 | |
|       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
 | |
|       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
 | |
|     } else {
 | |
|       assert(type->isVectorTy() || type->isFloatingPointTy());
 | |
|       fpCount++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return (intCount + fpCount > maxAllRegisters);
 | |
| }
 | |
| 
 | |
| bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
 | |
|                                              llvm::Type *eltTy,
 | |
|                                              unsigned numElts) const {
 | |
|   // The default implementation of this assumes that the target guarantees
 | |
|   // 128-bit SIMD support but nothing more.
 | |
|   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
 | |
| }
 | |
| 
 | |
| static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
 | |
|                                               CGCXXABI &CXXABI) {
 | |
|   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
 | |
|   if (!RD) {
 | |
|     if (!RT->getDecl()->canPassInRegisters())
 | |
|       return CGCXXABI::RAA_Indirect;
 | |
|     return CGCXXABI::RAA_Default;
 | |
|   }
 | |
|   return CXXABI.getRecordArgABI(RD);
 | |
| }
 | |
| 
 | |
| static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
 | |
|                                               CGCXXABI &CXXABI) {
 | |
|   const RecordType *RT = T->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return CGCXXABI::RAA_Default;
 | |
|   return getRecordArgABI(RT, CXXABI);
 | |
| }
 | |
| 
 | |
| static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
 | |
|                                const ABIInfo &Info) {
 | |
|   QualType Ty = FI.getReturnType();
 | |
| 
 | |
|   if (const auto *RT = Ty->getAs<RecordType>())
 | |
|     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
 | |
|         !RT->getDecl()->canPassInRegisters()) {
 | |
|       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   return CXXABI.classifyReturnType(FI);
 | |
| }
 | |
| 
 | |
| /// Pass transparent unions as if they were the type of the first element. Sema
 | |
| /// should ensure that all elements of the union have the same "machine type".
 | |
| static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
 | |
|   if (const RecordType *UT = Ty->getAsUnionType()) {
 | |
|     const RecordDecl *UD = UT->getDecl();
 | |
|     if (UD->hasAttr<TransparentUnionAttr>()) {
 | |
|       assert(!UD->field_empty() && "sema created an empty transparent union");
 | |
|       return UD->field_begin()->getType();
 | |
|     }
 | |
|   }
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| CGCXXABI &ABIInfo::getCXXABI() const {
 | |
|   return CGT.getCXXABI();
 | |
| }
 | |
| 
 | |
| ASTContext &ABIInfo::getContext() const {
 | |
|   return CGT.getContext();
 | |
| }
 | |
| 
 | |
| llvm::LLVMContext &ABIInfo::getVMContext() const {
 | |
|   return CGT.getLLVMContext();
 | |
| }
 | |
| 
 | |
| const llvm::DataLayout &ABIInfo::getDataLayout() const {
 | |
|   return CGT.getDataLayout();
 | |
| }
 | |
| 
 | |
| const TargetInfo &ABIInfo::getTarget() const {
 | |
|   return CGT.getTarget();
 | |
| }
 | |
| 
 | |
| const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
 | |
|   return CGT.getCodeGenOpts();
 | |
| }
 | |
| 
 | |
| bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
 | |
| 
 | |
| bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
 | |
|                                                 uint64_t Members) const {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
|   OS << "(ABIArgInfo Kind=";
 | |
|   switch (TheKind) {
 | |
|   case Direct:
 | |
|     OS << "Direct Type=";
 | |
|     if (llvm::Type *Ty = getCoerceToType())
 | |
|       Ty->print(OS);
 | |
|     else
 | |
|       OS << "null";
 | |
|     break;
 | |
|   case Extend:
 | |
|     OS << "Extend";
 | |
|     break;
 | |
|   case Ignore:
 | |
|     OS << "Ignore";
 | |
|     break;
 | |
|   case InAlloca:
 | |
|     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
 | |
|     break;
 | |
|   case Indirect:
 | |
|     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
 | |
|        << " ByVal=" << getIndirectByVal()
 | |
|        << " Realign=" << getIndirectRealign();
 | |
|     break;
 | |
|   case Expand:
 | |
|     OS << "Expand";
 | |
|     break;
 | |
|   case CoerceAndExpand:
 | |
|     OS << "CoerceAndExpand Type=";
 | |
|     getCoerceAndExpandType()->print(OS);
 | |
|     break;
 | |
|   }
 | |
|   OS << ")\n";
 | |
| }
 | |
| 
 | |
| // Dynamically round a pointer up to a multiple of the given alignment.
 | |
| static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
 | |
|                                                   llvm::Value *Ptr,
 | |
|                                                   CharUnits Align) {
 | |
|   llvm::Value *PtrAsInt = Ptr;
 | |
|   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
 | |
|   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
 | |
|   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
 | |
|         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
 | |
|   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
 | |
|            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
 | |
|   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
 | |
|                                         Ptr->getType(),
 | |
|                                         Ptr->getName() + ".aligned");
 | |
|   return PtrAsInt;
 | |
| }
 | |
| 
 | |
| /// Emit va_arg for a platform using the common void* representation,
 | |
| /// where arguments are simply emitted in an array of slots on the stack.
 | |
| ///
 | |
| /// This version implements the core direct-value passing rules.
 | |
| ///
 | |
| /// \param SlotSize - The size and alignment of a stack slot.
 | |
| ///   Each argument will be allocated to a multiple of this number of
 | |
| ///   slots, and all the slots will be aligned to this value.
 | |
| /// \param AllowHigherAlign - The slot alignment is not a cap;
 | |
| ///   an argument type with an alignment greater than the slot size
 | |
| ///   will be emitted on a higher-alignment address, potentially
 | |
| ///   leaving one or more empty slots behind as padding.  If this
 | |
| ///   is false, the returned address might be less-aligned than
 | |
| ///   DirectAlign.
 | |
| static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
 | |
|                                       Address VAListAddr,
 | |
|                                       llvm::Type *DirectTy,
 | |
|                                       CharUnits DirectSize,
 | |
|                                       CharUnits DirectAlign,
 | |
|                                       CharUnits SlotSize,
 | |
|                                       bool AllowHigherAlign) {
 | |
|   // Cast the element type to i8* if necessary.  Some platforms define
 | |
|   // va_list as a struct containing an i8* instead of just an i8*.
 | |
|   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
 | |
|     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
 | |
| 
 | |
|   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
 | |
| 
 | |
|   // If the CC aligns values higher than the slot size, do so if needed.
 | |
|   Address Addr = Address::invalid();
 | |
|   if (AllowHigherAlign && DirectAlign > SlotSize) {
 | |
|     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
 | |
|                                                  DirectAlign);
 | |
|   } else {
 | |
|     Addr = Address(Ptr, SlotSize);
 | |
|   }
 | |
| 
 | |
|   // Advance the pointer past the argument, then store that back.
 | |
|   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
 | |
|   Address NextPtr =
 | |
|       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
 | |
|   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
 | |
| 
 | |
|   // If the argument is smaller than a slot, and this is a big-endian
 | |
|   // target, the argument will be right-adjusted in its slot.
 | |
|   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
 | |
|       !DirectTy->isStructTy()) {
 | |
|     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
 | |
|   }
 | |
| 
 | |
|   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| /// Emit va_arg for a platform using the common void* representation,
 | |
| /// where arguments are simply emitted in an array of slots on the stack.
 | |
| ///
 | |
| /// \param IsIndirect - Values of this type are passed indirectly.
 | |
| /// \param ValueInfo - The size and alignment of this type, generally
 | |
| ///   computed with getContext().getTypeInfoInChars(ValueTy).
 | |
| /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
 | |
| ///   Each argument will be allocated to a multiple of this number of
 | |
| ///   slots, and all the slots will be aligned to this value.
 | |
| /// \param AllowHigherAlign - The slot alignment is not a cap;
 | |
| ///   an argument type with an alignment greater than the slot size
 | |
| ///   will be emitted on a higher-alignment address, potentially
 | |
| ///   leaving one or more empty slots behind as padding.
 | |
| static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                 QualType ValueTy, bool IsIndirect,
 | |
|                                 std::pair<CharUnits, CharUnits> ValueInfo,
 | |
|                                 CharUnits SlotSizeAndAlign,
 | |
|                                 bool AllowHigherAlign) {
 | |
|   // The size and alignment of the value that was passed directly.
 | |
|   CharUnits DirectSize, DirectAlign;
 | |
|   if (IsIndirect) {
 | |
|     DirectSize = CGF.getPointerSize();
 | |
|     DirectAlign = CGF.getPointerAlign();
 | |
|   } else {
 | |
|     DirectSize = ValueInfo.first;
 | |
|     DirectAlign = ValueInfo.second;
 | |
|   }
 | |
| 
 | |
|   // Cast the address we've calculated to the right type.
 | |
|   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
 | |
|   if (IsIndirect)
 | |
|     DirectTy = DirectTy->getPointerTo(0);
 | |
| 
 | |
|   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
 | |
|                                         DirectSize, DirectAlign,
 | |
|                                         SlotSizeAndAlign,
 | |
|                                         AllowHigherAlign);
 | |
| 
 | |
|   if (IsIndirect) {
 | |
|     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
 | |
|   }
 | |
| 
 | |
|   return Addr;
 | |
| 
 | |
| }
 | |
| 
 | |
| static Address emitMergePHI(CodeGenFunction &CGF,
 | |
|                             Address Addr1, llvm::BasicBlock *Block1,
 | |
|                             Address Addr2, llvm::BasicBlock *Block2,
 | |
|                             const llvm::Twine &Name = "") {
 | |
|   assert(Addr1.getType() == Addr2.getType());
 | |
|   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
 | |
|   PHI->addIncoming(Addr1.getPointer(), Block1);
 | |
|   PHI->addIncoming(Addr2.getPointer(), Block2);
 | |
|   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
 | |
|   return Address(PHI, Align);
 | |
| }
 | |
| 
 | |
| TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
 | |
| 
 | |
| // If someone can figure out a general rule for this, that would be great.
 | |
| // It's probably just doomed to be platform-dependent, though.
 | |
| unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
 | |
|   // Verified for:
 | |
|   //   x86-64     FreeBSD, Linux, Darwin
 | |
|   //   x86-32     FreeBSD, Linux, Darwin
 | |
|   //   PowerPC    Linux, Darwin
 | |
|   //   ARM        Darwin (*not* EABI)
 | |
|   //   AArch64    Linux
 | |
|   return 32;
 | |
| }
 | |
| 
 | |
| bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
 | |
|                                      const FunctionNoProtoType *fnType) const {
 | |
|   // The following conventions are known to require this to be false:
 | |
|   //   x86_stdcall
 | |
|   //   MIPS
 | |
|   // For everything else, we just prefer false unless we opt out.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void
 | |
| TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
 | |
|                                              llvm::SmallString<24> &Opt) const {
 | |
|   // This assumes the user is passing a library name like "rt" instead of a
 | |
|   // filename like "librt.a/so", and that they don't care whether it's static or
 | |
|   // dynamic.
 | |
|   Opt = "-l";
 | |
|   Opt += Lib;
 | |
| }
 | |
| 
 | |
| unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
 | |
|   // OpenCL kernels are called via an explicit runtime API with arguments
 | |
|   // set with clSetKernelArg(), not as normal sub-functions.
 | |
|   // Return SPIR_KERNEL by default as the kernel calling convention to
 | |
|   // ensure the fingerprint is fixed such way that each OpenCL argument
 | |
|   // gets one matching argument in the produced kernel function argument
 | |
|   // list to enable feasible implementation of clSetKernelArg() with
 | |
|   // aggregates etc. In case we would use the default C calling conv here,
 | |
|   // clSetKernelArg() might break depending on the target-specific
 | |
|   // conventions; different targets might split structs passed as values
 | |
|   // to multiple function arguments etc.
 | |
|   return llvm::CallingConv::SPIR_KERNEL;
 | |
| }
 | |
| 
 | |
| llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
 | |
|     llvm::PointerType *T, QualType QT) const {
 | |
|   return llvm::ConstantPointerNull::get(T);
 | |
| }
 | |
| 
 | |
| LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
 | |
|                                                    const VarDecl *D) const {
 | |
|   assert(!CGM.getLangOpts().OpenCL &&
 | |
|          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
 | |
|          "Address space agnostic languages only");
 | |
|   return D ? D->getType().getAddressSpace() : LangAS::Default;
 | |
| }
 | |
| 
 | |
| llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
 | |
|     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
 | |
|     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
 | |
|   // Since target may map different address spaces in AST to the same address
 | |
|   // space, an address space conversion may end up as a bitcast.
 | |
|   if (auto *C = dyn_cast<llvm::Constant>(Src))
 | |
|     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
 | |
|   // Try to preserve the source's name to make IR more readable.
 | |
|   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
 | |
|       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
 | |
|                                         LangAS SrcAddr, LangAS DestAddr,
 | |
|                                         llvm::Type *DestTy) const {
 | |
|   // Since target may map different address spaces in AST to the same address
 | |
|   // space, an address space conversion may end up as a bitcast.
 | |
|   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
 | |
| }
 | |
| 
 | |
| llvm::SyncScope::ID
 | |
| TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
 | |
|                                       SyncScope Scope,
 | |
|                                       llvm::AtomicOrdering Ordering,
 | |
|                                       llvm::LLVMContext &Ctx) const {
 | |
|   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
 | |
| }
 | |
| 
 | |
| static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
 | |
| 
 | |
| /// isEmptyField - Return true iff a the field is "empty", that is it
 | |
| /// is an unnamed bit-field or an (array of) empty record(s).
 | |
| static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
 | |
|                          bool AllowArrays) {
 | |
|   if (FD->isUnnamedBitfield())
 | |
|     return true;
 | |
| 
 | |
|   QualType FT = FD->getType();
 | |
| 
 | |
|   // Constant arrays of empty records count as empty, strip them off.
 | |
|   // Constant arrays of zero length always count as empty.
 | |
|   if (AllowArrays)
 | |
|     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
 | |
|       if (AT->getSize() == 0)
 | |
|         return true;
 | |
|       FT = AT->getElementType();
 | |
|     }
 | |
| 
 | |
|   const RecordType *RT = FT->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return false;
 | |
| 
 | |
|   // C++ record fields are never empty, at least in the Itanium ABI.
 | |
|   //
 | |
|   // FIXME: We should use a predicate for whether this behavior is true in the
 | |
|   // current ABI.
 | |
|   if (isa<CXXRecordDecl>(RT->getDecl()))
 | |
|     return false;
 | |
| 
 | |
|   return isEmptyRecord(Context, FT, AllowArrays);
 | |
| }
 | |
| 
 | |
| /// isEmptyRecord - Return true iff a structure contains only empty
 | |
| /// fields. Note that a structure with a flexible array member is not
 | |
| /// considered empty.
 | |
| static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
 | |
|   const RecordType *RT = T->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return false;
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
|   if (RD->hasFlexibleArrayMember())
 | |
|     return false;
 | |
| 
 | |
|   // If this is a C++ record, check the bases first.
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|     for (const auto &I : CXXRD->bases())
 | |
|       if (!isEmptyRecord(Context, I.getType(), true))
 | |
|         return false;
 | |
| 
 | |
|   for (const auto *I : RD->fields())
 | |
|     if (!isEmptyField(Context, I, AllowArrays))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSingleElementStruct - Determine if a structure is a "single
 | |
| /// element struct", i.e. it has exactly one non-empty field or
 | |
| /// exactly one field which is itself a single element
 | |
| /// struct. Structures with flexible array members are never
 | |
| /// considered single element structs.
 | |
| ///
 | |
| /// \return The field declaration for the single non-empty field, if
 | |
| /// it exists.
 | |
| static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
 | |
|   const RecordType *RT = T->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return nullptr;
 | |
| 
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
|   if (RD->hasFlexibleArrayMember())
 | |
|     return nullptr;
 | |
| 
 | |
|   const Type *Found = nullptr;
 | |
| 
 | |
|   // If this is a C++ record, check the bases first.
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|     for (const auto &I : CXXRD->bases()) {
 | |
|       // Ignore empty records.
 | |
|       if (isEmptyRecord(Context, I.getType(), true))
 | |
|         continue;
 | |
| 
 | |
|       // If we already found an element then this isn't a single-element struct.
 | |
|       if (Found)
 | |
|         return nullptr;
 | |
| 
 | |
|       // If this is non-empty and not a single element struct, the composite
 | |
|       // cannot be a single element struct.
 | |
|       Found = isSingleElementStruct(I.getType(), Context);
 | |
|       if (!Found)
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for single element.
 | |
|   for (const auto *FD : RD->fields()) {
 | |
|     QualType FT = FD->getType();
 | |
| 
 | |
|     // Ignore empty fields.
 | |
|     if (isEmptyField(Context, FD, true))
 | |
|       continue;
 | |
| 
 | |
|     // If we already found an element then this isn't a single-element
 | |
|     // struct.
 | |
|     if (Found)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Treat single element arrays as the element.
 | |
|     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
 | |
|       if (AT->getSize().getZExtValue() != 1)
 | |
|         break;
 | |
|       FT = AT->getElementType();
 | |
|     }
 | |
| 
 | |
|     if (!isAggregateTypeForABI(FT)) {
 | |
|       Found = FT.getTypePtr();
 | |
|     } else {
 | |
|       Found = isSingleElementStruct(FT, Context);
 | |
|       if (!Found)
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We don't consider a struct a single-element struct if it has
 | |
|   // padding beyond the element type.
 | |
|   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
 | |
|     return nullptr;
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
 | |
|                        const ABIArgInfo &AI) {
 | |
|   // This default implementation defers to the llvm backend's va_arg
 | |
|   // instruction. It can handle only passing arguments directly
 | |
|   // (typically only handled in the backend for primitive types), or
 | |
|   // aggregates passed indirectly by pointer (NOTE: if the "byval"
 | |
|   // flag has ABI impact in the callee, this implementation cannot
 | |
|   // work.)
 | |
| 
 | |
|   // Only a few cases are covered here at the moment -- those needed
 | |
|   // by the default abi.
 | |
|   llvm::Value *Val;
 | |
| 
 | |
|   if (AI.isIndirect()) {
 | |
|     assert(!AI.getPaddingType() &&
 | |
|            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
 | |
|     assert(
 | |
|         !AI.getIndirectRealign() &&
 | |
|         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
 | |
| 
 | |
|     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
 | |
|     CharUnits TyAlignForABI = TyInfo.second;
 | |
| 
 | |
|     llvm::Type *BaseTy =
 | |
|         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
 | |
|     llvm::Value *Addr =
 | |
|         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
 | |
|     return Address(Addr, TyAlignForABI);
 | |
|   } else {
 | |
|     assert((AI.isDirect() || AI.isExtend()) &&
 | |
|            "Unexpected ArgInfo Kind in generic VAArg emitter!");
 | |
| 
 | |
|     assert(!AI.getInReg() &&
 | |
|            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
 | |
|     assert(!AI.getPaddingType() &&
 | |
|            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
 | |
|     assert(!AI.getDirectOffset() &&
 | |
|            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
 | |
|     assert(!AI.getCoerceToType() &&
 | |
|            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
 | |
| 
 | |
|     Address Temp = CGF.CreateMemTemp(Ty, "varet");
 | |
|     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
 | |
|     CGF.Builder.CreateStore(Val, Temp);
 | |
|     return Temp;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DefaultABIInfo - The default implementation for ABI specific
 | |
| /// details. This implementation provides information which results in
 | |
| /// self-consistent and sensible LLVM IR generation, but does not
 | |
| /// conform to any particular ABI.
 | |
| class DefaultABIInfo : public ABIInfo {
 | |
| public:
 | |
|   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override {
 | |
|     if (!getCXXABI().classifyReturnType(FI))
 | |
|       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|     for (auto &I : FI.arguments())
 | |
|       I.info = classifyArgumentType(I.type);
 | |
|   }
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override {
 | |
|     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
 | |
|   }
 | |
| };
 | |
| 
 | |
| class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
 | |
| };
 | |
| 
 | |
| ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
| 
 | |
|   if (isAggregateTypeForABI(Ty)) {
 | |
|     // Records with non-trivial destructors/copy-constructors should not be
 | |
|     // passed by value.
 | |
|     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
 | |
|       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
| 
 | |
|     return getNaturalAlignIndirect(Ty);
 | |
|   }
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
 | |
|                                         : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   if (isAggregateTypeForABI(RetTy))
 | |
|     return getNaturalAlignIndirect(RetTy);
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|     RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
 | |
|                                            : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // WebAssembly ABI Implementation
 | |
| //
 | |
| // This is a very simple ABI that relies a lot on DefaultABIInfo.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| class WebAssemblyABIInfo final : public SwiftABIInfo {
 | |
| public:
 | |
|   enum ABIKind {
 | |
|     MVP = 0,
 | |
|     ExperimentalMV = 1,
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   DefaultABIInfo defaultInfo;
 | |
|   ABIKind Kind;
 | |
| 
 | |
| public:
 | |
|   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
 | |
|       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
 | |
| 
 | |
| private:
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType Ty) const;
 | |
| 
 | |
|   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
 | |
|   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
 | |
|   // overload them.
 | |
|   void computeInfo(CGFunctionInfo &FI) const override {
 | |
|     if (!getCXXABI().classifyReturnType(FI))
 | |
|       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|     for (auto &Arg : FI.arguments())
 | |
|       Arg.info = classifyArgumentType(Arg.type);
 | |
|   }
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| 
 | |
|   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
 | |
|                                     bool asReturnValue) const override {
 | |
|     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
 | |
|   }
 | |
| 
 | |
|   bool isSwiftErrorInRegister() const override {
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
 | |
| public:
 | |
|   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
 | |
|                                         WebAssemblyABIInfo::ABIKind K)
 | |
|       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT, K)) {}
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override {
 | |
|     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
 | |
|     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
 | |
|       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
 | |
|         llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
|         llvm::AttrBuilder B;
 | |
|         B.addAttribute("wasm-import-module", Attr->getImportModule());
 | |
|         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
 | |
|       }
 | |
|       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
 | |
|         llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
|         llvm::AttrBuilder B;
 | |
|         B.addAttribute("wasm-import-name", Attr->getImportName());
 | |
|         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
 | |
|       }
 | |
|       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
 | |
|         llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
|         llvm::AttrBuilder B;
 | |
|         B.addAttribute("wasm-export-name", Attr->getExportName());
 | |
|         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
 | |
|       llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
|       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
 | |
|         Fn->addFnAttr("no-prototype");
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Classify argument of given type \p Ty.
 | |
| ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
| 
 | |
|   if (isAggregateTypeForABI(Ty)) {
 | |
|     // Records with non-trivial destructors/copy-constructors should not be
 | |
|     // passed by value.
 | |
|     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
 | |
|       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
|     // Ignore empty structs/unions.
 | |
|     if (isEmptyRecord(getContext(), Ty, true))
 | |
|       return ABIArgInfo::getIgnore();
 | |
|     // Lower single-element structs to just pass a regular value. TODO: We
 | |
|     // could do reasonable-size multiple-element structs too, using getExpand(),
 | |
|     // though watch out for things like bitfields.
 | |
|     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
 | |
|       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
 | |
|     // For the experimental multivalue ABI, fully expand all other aggregates
 | |
|     if (Kind == ABIKind::ExperimentalMV) {
 | |
|       const RecordType *RT = Ty->getAs<RecordType>();
 | |
|       assert(RT);
 | |
|       bool HasBitField = false;
 | |
|       for (auto *Field : RT->getDecl()->fields()) {
 | |
|         if (Field->isBitField()) {
 | |
|           HasBitField = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!HasBitField)
 | |
|         return ABIArgInfo::getExpand();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise just do the default thing.
 | |
|   return defaultInfo.classifyArgumentType(Ty);
 | |
| }
 | |
| 
 | |
| ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (isAggregateTypeForABI(RetTy)) {
 | |
|     // Records with non-trivial destructors/copy-constructors should not be
 | |
|     // returned by value.
 | |
|     if (!getRecordArgABI(RetTy, getCXXABI())) {
 | |
|       // Ignore empty structs/unions.
 | |
|       if (isEmptyRecord(getContext(), RetTy, true))
 | |
|         return ABIArgInfo::getIgnore();
 | |
|       // Lower single-element structs to just return a regular value. TODO: We
 | |
|       // could do reasonable-size multiple-element structs too, using
 | |
|       // ABIArgInfo::getDirect().
 | |
|       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
 | |
|         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
 | |
|       // For the experimental multivalue ABI, return all other aggregates
 | |
|       if (Kind == ABIKind::ExperimentalMV)
 | |
|         return ABIArgInfo::getDirect();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise just do the default thing.
 | |
|   return defaultInfo.classifyReturnType(RetTy);
 | |
| }
 | |
| 
 | |
| Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                       QualType Ty) const {
 | |
|   bool IsIndirect = isAggregateTypeForABI(Ty) &&
 | |
|                     !isEmptyRecord(getContext(), Ty, true) &&
 | |
|                     !isSingleElementStruct(Ty, getContext());
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
 | |
|                           getContext().getTypeInfoInChars(Ty),
 | |
|                           CharUnits::fromQuantity(4),
 | |
|                           /*AllowHigherAlign=*/true);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // le32/PNaCl bitcode ABI Implementation
 | |
| //
 | |
| // This is a simplified version of the x86_32 ABI.  Arguments and return values
 | |
| // are always passed on the stack.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| class PNaClABIInfo : public ABIInfo {
 | |
|  public:
 | |
|   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
|   Address EmitVAArg(CodeGenFunction &CGF,
 | |
|                     Address VAListAddr, QualType Ty) const override;
 | |
| };
 | |
| 
 | |
| class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
|  public:
 | |
|   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
 | |
| };
 | |
| 
 | |
| void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   if (!getCXXABI().classifyReturnType(FI))
 | |
|     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
| 
 | |
|   for (auto &I : FI.arguments())
 | |
|     I.info = classifyArgumentType(I.type);
 | |
| }
 | |
| 
 | |
| Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                 QualType Ty) const {
 | |
|   // The PNaCL ABI is a bit odd, in that varargs don't use normal
 | |
|   // function classification. Structs get passed directly for varargs
 | |
|   // functions, through a rewriting transform in
 | |
|   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
 | |
|   // this target to actually support a va_arg instructions with an
 | |
|   // aggregate type, unlike other targets.
 | |
|   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| /// Classify argument of given type \p Ty.
 | |
| ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   if (isAggregateTypeForABI(Ty)) {
 | |
|     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
 | |
|       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
|     return getNaturalAlignIndirect(Ty);
 | |
|   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
|   } else if (Ty->isFloatingType()) {
 | |
|     // Floating-point types don't go inreg.
 | |
|     return ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
|   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
 | |
|                                         : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   // In the PNaCl ABI we always return records/structures on the stack.
 | |
|   if (isAggregateTypeForABI(RetTy))
 | |
|     return getNaturalAlignIndirect(RetTy);
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|     RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
 | |
|                                            : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| /// IsX86_MMXType - Return true if this is an MMX type.
 | |
| bool IsX86_MMXType(llvm::Type *IRType) {
 | |
|   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
 | |
|   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
 | |
|     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
 | |
|     IRType->getScalarSizeInBits() != 64;
 | |
| }
 | |
| 
 | |
| static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
 | |
|                                           StringRef Constraint,
 | |
|                                           llvm::Type* Ty) {
 | |
|   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
 | |
|                      .Cases("y", "&y", "^Ym", true)
 | |
|                      .Default(false);
 | |
|   if (IsMMXCons && Ty->isVectorTy()) {
 | |
|     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
 | |
|       // Invalid MMX constraint
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
 | |
|   }
 | |
| 
 | |
|   // No operation needed
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// Returns true if this type can be passed in SSE registers with the
 | |
| /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
 | |
| static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
 | |
|     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
 | |
|       if (BT->getKind() == BuiltinType::LongDouble) {
 | |
|         if (&Context.getTargetInfo().getLongDoubleFormat() ==
 | |
|             &llvm::APFloat::x87DoubleExtended())
 | |
|           return false;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
 | |
|     // registers specially.
 | |
|     unsigned VecSize = Context.getTypeSize(VT);
 | |
|     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if this aggregate is small enough to be passed in SSE registers
 | |
| /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
 | |
| static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
 | |
|   return NumMembers <= 4;
 | |
| }
 | |
| 
 | |
| /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
 | |
| static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
 | |
|   auto AI = ABIArgInfo::getDirect(T);
 | |
|   AI.setInReg(true);
 | |
|   AI.setCanBeFlattened(false);
 | |
|   return AI;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // X86-32 ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Similar to llvm::CCState, but for Clang.
 | |
| struct CCState {
 | |
|   CCState(CGFunctionInfo &FI)
 | |
|       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
 | |
| 
 | |
|   llvm::SmallBitVector IsPreassigned;
 | |
|   unsigned CC = CallingConv::CC_C;
 | |
|   unsigned FreeRegs = 0;
 | |
|   unsigned FreeSSERegs = 0;
 | |
| };
 | |
| 
 | |
| enum {
 | |
|   // Vectorcall only allows the first 6 parameters to be passed in registers.
 | |
|   VectorcallMaxParamNumAsReg = 6
 | |
| };
 | |
| 
 | |
| /// X86_32ABIInfo - The X86-32 ABI information.
 | |
| class X86_32ABIInfo : public SwiftABIInfo {
 | |
|   enum Class {
 | |
|     Integer,
 | |
|     Float
 | |
|   };
 | |
| 
 | |
|   static const unsigned MinABIStackAlignInBytes = 4;
 | |
| 
 | |
|   bool IsDarwinVectorABI;
 | |
|   bool IsRetSmallStructInRegABI;
 | |
|   bool IsWin32StructABI;
 | |
|   bool IsSoftFloatABI;
 | |
|   bool IsMCUABI;
 | |
|   unsigned DefaultNumRegisterParameters;
 | |
| 
 | |
|   static bool isRegisterSize(unsigned Size) {
 | |
|     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
 | |
|   }
 | |
| 
 | |
|   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
 | |
|     // FIXME: Assumes vectorcall is in use.
 | |
|     return isX86VectorTypeForVectorCall(getContext(), Ty);
 | |
|   }
 | |
| 
 | |
|   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
 | |
|                                          uint64_t NumMembers) const override {
 | |
|     // FIXME: Assumes vectorcall is in use.
 | |
|     return isX86VectorCallAggregateSmallEnough(NumMembers);
 | |
|   }
 | |
| 
 | |
|   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
 | |
| 
 | |
|   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
 | |
|   /// such that the argument will be passed in memory.
 | |
|   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
 | |
| 
 | |
|   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
 | |
| 
 | |
|   /// Return the alignment to use for the given type on the stack.
 | |
|   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
 | |
| 
 | |
|   Class classify(QualType Ty) const;
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
 | |
| 
 | |
|   /// Updates the number of available free registers, returns
 | |
|   /// true if any registers were allocated.
 | |
|   bool updateFreeRegs(QualType Ty, CCState &State) const;
 | |
| 
 | |
|   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
 | |
|                                 bool &NeedsPadding) const;
 | |
|   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
 | |
| 
 | |
|   bool canExpandIndirectArgument(QualType Ty) const;
 | |
| 
 | |
|   /// Rewrite the function info so that all memory arguments use
 | |
|   /// inalloca.
 | |
|   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
 | |
| 
 | |
|   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
 | |
|                            CharUnits &StackOffset, ABIArgInfo &Info,
 | |
|                            QualType Type) const;
 | |
|   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
 | |
| 
 | |
| public:
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| 
 | |
|   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
 | |
|                 bool RetSmallStructInRegABI, bool Win32StructABI,
 | |
|                 unsigned NumRegisterParameters, bool SoftFloatABI)
 | |
|     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
 | |
|       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
 | |
|       IsWin32StructABI(Win32StructABI),
 | |
|       IsSoftFloatABI(SoftFloatABI),
 | |
|       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
 | |
|       DefaultNumRegisterParameters(NumRegisterParameters) {}
 | |
| 
 | |
|   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
 | |
|                                     bool asReturnValue) const override {
 | |
|     // LLVM's x86-32 lowering currently only assigns up to three
 | |
|     // integer registers and three fp registers.  Oddly, it'll use up to
 | |
|     // four vector registers for vectors, but those can overlap with the
 | |
|     // scalar registers.
 | |
|     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
 | |
|   }
 | |
| 
 | |
|   bool isSwiftErrorInRegister() const override {
 | |
|     // x86-32 lowering does not support passing swifterror in a register.
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
 | |
|                           bool RetSmallStructInRegABI, bool Win32StructABI,
 | |
|                           unsigned NumRegisterParameters, bool SoftFloatABI)
 | |
|       : TargetCodeGenInfo(new X86_32ABIInfo(
 | |
|             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
 | |
|             NumRegisterParameters, SoftFloatABI)) {}
 | |
| 
 | |
|   static bool isStructReturnInRegABI(
 | |
|       const llvm::Triple &Triple, const CodeGenOptions &Opts);
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override;
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
 | |
|     // Darwin uses different dwarf register numbers for EH.
 | |
|     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
 | |
|     return 4;
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const override;
 | |
| 
 | |
|   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
 | |
|                                   StringRef Constraint,
 | |
|                                   llvm::Type* Ty) const override {
 | |
|     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
 | |
|   }
 | |
| 
 | |
|   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
 | |
|                                 std::string &Constraints,
 | |
|                                 std::vector<llvm::Type *> &ResultRegTypes,
 | |
|                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
 | |
|                                 std::vector<LValue> &ResultRegDests,
 | |
|                                 std::string &AsmString,
 | |
|                                 unsigned NumOutputs) const override;
 | |
| 
 | |
|   llvm::Constant *
 | |
|   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
 | |
|     unsigned Sig = (0xeb << 0) |  // jmp rel8
 | |
|                    (0x06 << 8) |  //           .+0x08
 | |
|                    ('v' << 16) |
 | |
|                    ('2' << 24);
 | |
|     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
 | |
|   }
 | |
| 
 | |
|   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
 | |
|     return "movl\t%ebp, %ebp"
 | |
|            "\t\t// marker for objc_retainAutoreleaseReturnValue";
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// Rewrite input constraint references after adding some output constraints.
 | |
| /// In the case where there is one output and one input and we add one output,
 | |
| /// we need to replace all operand references greater than or equal to 1:
 | |
| ///     mov $0, $1
 | |
| ///     mov eax, $1
 | |
| /// The result will be:
 | |
| ///     mov $0, $2
 | |
| ///     mov eax, $2
 | |
| static void rewriteInputConstraintReferences(unsigned FirstIn,
 | |
|                                              unsigned NumNewOuts,
 | |
|                                              std::string &AsmString) {
 | |
|   std::string Buf;
 | |
|   llvm::raw_string_ostream OS(Buf);
 | |
|   size_t Pos = 0;
 | |
|   while (Pos < AsmString.size()) {
 | |
|     size_t DollarStart = AsmString.find('$', Pos);
 | |
|     if (DollarStart == std::string::npos)
 | |
|       DollarStart = AsmString.size();
 | |
|     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
 | |
|     if (DollarEnd == std::string::npos)
 | |
|       DollarEnd = AsmString.size();
 | |
|     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
 | |
|     Pos = DollarEnd;
 | |
|     size_t NumDollars = DollarEnd - DollarStart;
 | |
|     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
 | |
|       // We have an operand reference.
 | |
|       size_t DigitStart = Pos;
 | |
|       if (AsmString[DigitStart] == '{') {
 | |
|         OS << '{';
 | |
|         ++DigitStart;
 | |
|       }
 | |
|       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
 | |
|       if (DigitEnd == std::string::npos)
 | |
|         DigitEnd = AsmString.size();
 | |
|       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
 | |
|       unsigned OperandIndex;
 | |
|       if (!OperandStr.getAsInteger(10, OperandIndex)) {
 | |
|         if (OperandIndex >= FirstIn)
 | |
|           OperandIndex += NumNewOuts;
 | |
|         OS << OperandIndex;
 | |
|       } else {
 | |
|         OS << OperandStr;
 | |
|       }
 | |
|       Pos = DigitEnd;
 | |
|     }
 | |
|   }
 | |
|   AsmString = std::move(OS.str());
 | |
| }
 | |
| 
 | |
| /// Add output constraints for EAX:EDX because they are return registers.
 | |
| void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
 | |
|     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
 | |
|     std::vector<llvm::Type *> &ResultRegTypes,
 | |
|     std::vector<llvm::Type *> &ResultTruncRegTypes,
 | |
|     std::vector<LValue> &ResultRegDests, std::string &AsmString,
 | |
|     unsigned NumOutputs) const {
 | |
|   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
 | |
| 
 | |
|   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
 | |
|   // larger.
 | |
|   if (!Constraints.empty())
 | |
|     Constraints += ',';
 | |
|   if (RetWidth <= 32) {
 | |
|     Constraints += "={eax}";
 | |
|     ResultRegTypes.push_back(CGF.Int32Ty);
 | |
|   } else {
 | |
|     // Use the 'A' constraint for EAX:EDX.
 | |
|     Constraints += "=A";
 | |
|     ResultRegTypes.push_back(CGF.Int64Ty);
 | |
|   }
 | |
| 
 | |
|   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
 | |
|   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
 | |
|   ResultTruncRegTypes.push_back(CoerceTy);
 | |
| 
 | |
|   // Coerce the integer by bitcasting the return slot pointer.
 | |
|   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
 | |
|                                                   CoerceTy->getPointerTo()));
 | |
|   ResultRegDests.push_back(ReturnSlot);
 | |
| 
 | |
|   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
 | |
| }
 | |
| 
 | |
| /// shouldReturnTypeInRegister - Determine if the given type should be
 | |
| /// returned in a register (for the Darwin and MCU ABI).
 | |
| bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
 | |
|                                                ASTContext &Context) const {
 | |
|   uint64_t Size = Context.getTypeSize(Ty);
 | |
| 
 | |
|   // For i386, type must be register sized.
 | |
|   // For the MCU ABI, it only needs to be <= 8-byte
 | |
|   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
 | |
|    return false;
 | |
| 
 | |
|   if (Ty->isVectorType()) {
 | |
|     // 64- and 128- bit vectors inside structures are not returned in
 | |
|     // registers.
 | |
|     if (Size == 64 || Size == 128)
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If this is a builtin, pointer, enum, complex type, member pointer, or
 | |
|   // member function pointer it is ok.
 | |
|   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
 | |
|       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
 | |
|       Ty->isBlockPointerType() || Ty->isMemberPointerType())
 | |
|     return true;
 | |
| 
 | |
|   // Arrays are treated like records.
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
 | |
|     return shouldReturnTypeInRegister(AT->getElementType(), Context);
 | |
| 
 | |
|   // Otherwise, it must be a record type.
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (!RT) return false;
 | |
| 
 | |
|   // FIXME: Traverse bases here too.
 | |
| 
 | |
|   // Structure types are passed in register if all fields would be
 | |
|   // passed in a register.
 | |
|   for (const auto *FD : RT->getDecl()->fields()) {
 | |
|     // Empty fields are ignored.
 | |
|     if (isEmptyField(Context, FD, true))
 | |
|       continue;
 | |
| 
 | |
|     // Check fields recursively.
 | |
|     if (!shouldReturnTypeInRegister(FD->getType(), Context))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
 | |
|   // Treat complex types as the element type.
 | |
|   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
 | |
|     Ty = CTy->getElementType();
 | |
| 
 | |
|   // Check for a type which we know has a simple scalar argument-passing
 | |
|   // convention without any padding.  (We're specifically looking for 32
 | |
|   // and 64-bit integer and integer-equivalents, float, and double.)
 | |
|   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
 | |
|       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
 | |
|     return false;
 | |
| 
 | |
|   uint64_t Size = Context.getTypeSize(Ty);
 | |
|   return Size == 32 || Size == 64;
 | |
| }
 | |
| 
 | |
| static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
 | |
|                           uint64_t &Size) {
 | |
|   for (const auto *FD : RD->fields()) {
 | |
|     // Scalar arguments on the stack get 4 byte alignment on x86. If the
 | |
|     // argument is smaller than 32-bits, expanding the struct will create
 | |
|     // alignment padding.
 | |
|     if (!is32Or64BitBasicType(FD->getType(), Context))
 | |
|       return false;
 | |
| 
 | |
|     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
 | |
|     // how to expand them yet, and the predicate for telling if a bitfield still
 | |
|     // counts as "basic" is more complicated than what we were doing previously.
 | |
|     if (FD->isBitField())
 | |
|       return false;
 | |
| 
 | |
|     Size += Context.getTypeSize(FD->getType());
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
 | |
|                                  uint64_t &Size) {
 | |
|   // Don't do this if there are any non-empty bases.
 | |
|   for (const CXXBaseSpecifier &Base : RD->bases()) {
 | |
|     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
 | |
|                               Size))
 | |
|       return false;
 | |
|   }
 | |
|   if (!addFieldSizes(Context, RD, Size))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Test whether an argument type which is to be passed indirectly (on the
 | |
| /// stack) would have the equivalent layout if it was expanded into separate
 | |
| /// arguments. If so, we prefer to do the latter to avoid inhibiting
 | |
| /// optimizations.
 | |
| bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
 | |
|   // We can only expand structure types.
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return false;
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
|   uint64_t Size = 0;
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|     if (!IsWin32StructABI) {
 | |
|       // On non-Windows, we have to conservatively match our old bitcode
 | |
|       // prototypes in order to be ABI-compatible at the bitcode level.
 | |
|       if (!CXXRD->isCLike())
 | |
|         return false;
 | |
|     } else {
 | |
|       // Don't do this for dynamic classes.
 | |
|       if (CXXRD->isDynamicClass())
 | |
|         return false;
 | |
|     }
 | |
|     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
 | |
|       return false;
 | |
|   } else {
 | |
|     if (!addFieldSizes(getContext(), RD, Size))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // We can do this if there was no alignment padding.
 | |
|   return Size == getContext().getTypeSize(Ty);
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
 | |
|   // If the return value is indirect, then the hidden argument is consuming one
 | |
|   // integer register.
 | |
|   if (State.FreeRegs) {
 | |
|     --State.FreeRegs;
 | |
|     if (!IsMCUABI)
 | |
|       return getNaturalAlignIndirectInReg(RetTy);
 | |
|   }
 | |
|   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
 | |
|                                              CCState &State) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   const Type *Base = nullptr;
 | |
|   uint64_t NumElts = 0;
 | |
|   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
 | |
|        State.CC == llvm::CallingConv::X86_RegCall) &&
 | |
|       isHomogeneousAggregate(RetTy, Base, NumElts)) {
 | |
|     // The LLVM struct type for such an aggregate should lower properly.
 | |
|     return ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
|   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
 | |
|     // On Darwin, some vectors are returned in registers.
 | |
|     if (IsDarwinVectorABI) {
 | |
|       uint64_t Size = getContext().getTypeSize(RetTy);
 | |
| 
 | |
|       // 128-bit vectors are a special case; they are returned in
 | |
|       // registers and we need to make sure to pick a type the LLVM
 | |
|       // backend will like.
 | |
|       if (Size == 128)
 | |
|         return ABIArgInfo::getDirect(llvm::VectorType::get(
 | |
|                   llvm::Type::getInt64Ty(getVMContext()), 2));
 | |
| 
 | |
|       // Always return in register if it fits in a general purpose
 | |
|       // register, or if it is 64 bits and has a single element.
 | |
|       if ((Size == 8 || Size == 16 || Size == 32) ||
 | |
|           (Size == 64 && VT->getNumElements() == 1))
 | |
|         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | |
|                                                             Size));
 | |
| 
 | |
|       return getIndirectReturnResult(RetTy, State);
 | |
|     }
 | |
| 
 | |
|     return ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
|   if (isAggregateTypeForABI(RetTy)) {
 | |
|     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
 | |
|       // Structures with flexible arrays are always indirect.
 | |
|       if (RT->getDecl()->hasFlexibleArrayMember())
 | |
|         return getIndirectReturnResult(RetTy, State);
 | |
|     }
 | |
| 
 | |
|     // If specified, structs and unions are always indirect.
 | |
|     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
 | |
|       return getIndirectReturnResult(RetTy, State);
 | |
| 
 | |
|     // Ignore empty structs/unions.
 | |
|     if (isEmptyRecord(getContext(), RetTy, true))
 | |
|       return ABIArgInfo::getIgnore();
 | |
| 
 | |
|     // Small structures which are register sized are generally returned
 | |
|     // in a register.
 | |
|     if (shouldReturnTypeInRegister(RetTy, getContext())) {
 | |
|       uint64_t Size = getContext().getTypeSize(RetTy);
 | |
| 
 | |
|       // As a special-case, if the struct is a "single-element" struct, and
 | |
|       // the field is of type "float" or "double", return it in a
 | |
|       // floating-point register. (MSVC does not apply this special case.)
 | |
|       // We apply a similar transformation for pointer types to improve the
 | |
|       // quality of the generated IR.
 | |
|       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
 | |
|         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
 | |
|             || SeltTy->hasPointerRepresentation())
 | |
|           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
 | |
| 
 | |
|       // FIXME: We should be able to narrow this integer in cases with dead
 | |
|       // padding.
 | |
|       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
 | |
|     }
 | |
| 
 | |
|     return getIndirectReturnResult(RetTy, State);
 | |
|   }
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|     RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
 | |
|                                            : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
 | |
|   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
 | |
| }
 | |
| 
 | |
| static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return 0;
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
| 
 | |
|   // If this is a C++ record, check the bases first.
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|     for (const auto &I : CXXRD->bases())
 | |
|       if (!isRecordWithSSEVectorType(Context, I.getType()))
 | |
|         return false;
 | |
| 
 | |
|   for (const auto *i : RD->fields()) {
 | |
|     QualType FT = i->getType();
 | |
| 
 | |
|     if (isSSEVectorType(Context, FT))
 | |
|       return true;
 | |
| 
 | |
|     if (isRecordWithSSEVectorType(Context, FT))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
 | |
|                                                  unsigned Align) const {
 | |
|   // Otherwise, if the alignment is less than or equal to the minimum ABI
 | |
|   // alignment, just use the default; the backend will handle this.
 | |
|   if (Align <= MinABIStackAlignInBytes)
 | |
|     return 0; // Use default alignment.
 | |
| 
 | |
|   // On non-Darwin, the stack type alignment is always 4.
 | |
|   if (!IsDarwinVectorABI) {
 | |
|     // Set explicit alignment, since we may need to realign the top.
 | |
|     return MinABIStackAlignInBytes;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
 | |
|   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
 | |
|                       isRecordWithSSEVectorType(getContext(), Ty)))
 | |
|     return 16;
 | |
| 
 | |
|   return MinABIStackAlignInBytes;
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
 | |
|                                             CCState &State) const {
 | |
|   if (!ByVal) {
 | |
|     if (State.FreeRegs) {
 | |
|       --State.FreeRegs; // Non-byval indirects just use one pointer.
 | |
|       if (!IsMCUABI)
 | |
|         return getNaturalAlignIndirectInReg(Ty);
 | |
|     }
 | |
|     return getNaturalAlignIndirect(Ty, false);
 | |
|   }
 | |
| 
 | |
|   // Compute the byval alignment.
 | |
|   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
 | |
|   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
 | |
|   if (StackAlign == 0)
 | |
|     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
 | |
| 
 | |
|   // If the stack alignment is less than the type alignment, realign the
 | |
|   // argument.
 | |
|   bool Realign = TypeAlign > StackAlign;
 | |
|   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
 | |
|                                  /*ByVal=*/true, Realign);
 | |
| }
 | |
| 
 | |
| X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
 | |
|   const Type *T = isSingleElementStruct(Ty, getContext());
 | |
|   if (!T)
 | |
|     T = Ty.getTypePtr();
 | |
| 
 | |
|   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
 | |
|     BuiltinType::Kind K = BT->getKind();
 | |
|     if (K == BuiltinType::Float || K == BuiltinType::Double)
 | |
|       return Float;
 | |
|   }
 | |
|   return Integer;
 | |
| }
 | |
| 
 | |
| bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
 | |
|   if (!IsSoftFloatABI) {
 | |
|     Class C = classify(Ty);
 | |
|     if (C == Float)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Size = getContext().getTypeSize(Ty);
 | |
|   unsigned SizeInRegs = (Size + 31) / 32;
 | |
| 
 | |
|   if (SizeInRegs == 0)
 | |
|     return false;
 | |
| 
 | |
|   if (!IsMCUABI) {
 | |
|     if (SizeInRegs > State.FreeRegs) {
 | |
|       State.FreeRegs = 0;
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     // The MCU psABI allows passing parameters in-reg even if there are
 | |
|     // earlier parameters that are passed on the stack. Also,
 | |
|     // it does not allow passing >8-byte structs in-register,
 | |
|     // even if there are 3 free registers available.
 | |
|     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   State.FreeRegs -= SizeInRegs;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
 | |
|                                              bool &InReg,
 | |
|                                              bool &NeedsPadding) const {
 | |
|   // On Windows, aggregates other than HFAs are never passed in registers, and
 | |
|   // they do not consume register slots. Homogenous floating-point aggregates
 | |
|   // (HFAs) have already been dealt with at this point.
 | |
|   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
 | |
|     return false;
 | |
| 
 | |
|   NeedsPadding = false;
 | |
|   InReg = !IsMCUABI;
 | |
| 
 | |
|   if (!updateFreeRegs(Ty, State))
 | |
|     return false;
 | |
| 
 | |
|   if (IsMCUABI)
 | |
|     return true;
 | |
| 
 | |
|   if (State.CC == llvm::CallingConv::X86_FastCall ||
 | |
|       State.CC == llvm::CallingConv::X86_VectorCall ||
 | |
|       State.CC == llvm::CallingConv::X86_RegCall) {
 | |
|     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
 | |
|       NeedsPadding = true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
 | |
|   if (!updateFreeRegs(Ty, State))
 | |
|     return false;
 | |
| 
 | |
|   if (IsMCUABI)
 | |
|     return false;
 | |
| 
 | |
|   if (State.CC == llvm::CallingConv::X86_FastCall ||
 | |
|       State.CC == llvm::CallingConv::X86_VectorCall ||
 | |
|       State.CC == llvm::CallingConv::X86_RegCall) {
 | |
|     if (getContext().getTypeSize(Ty) > 32)
 | |
|       return false;
 | |
| 
 | |
|     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
 | |
|         Ty->isReferenceType());
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
 | |
|   // Vectorcall x86 works subtly different than in x64, so the format is
 | |
|   // a bit different than the x64 version.  First, all vector types (not HVAs)
 | |
|   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
 | |
|   // This differs from the x64 implementation, where the first 6 by INDEX get
 | |
|   // registers.
 | |
|   // In the second pass over the arguments, HVAs are passed in the remaining
 | |
|   // vector registers if possible, or indirectly by address. The address will be
 | |
|   // passed in ECX/EDX if available. Any other arguments are passed according to
 | |
|   // the usual fastcall rules.
 | |
|   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
 | |
|   for (int I = 0, E = Args.size(); I < E; ++I) {
 | |
|     const Type *Base = nullptr;
 | |
|     uint64_t NumElts = 0;
 | |
|     const QualType &Ty = Args[I].type;
 | |
|     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
 | |
|         isHomogeneousAggregate(Ty, Base, NumElts)) {
 | |
|       if (State.FreeSSERegs >= NumElts) {
 | |
|         State.FreeSSERegs -= NumElts;
 | |
|         Args[I].info = ABIArgInfo::getDirectInReg();
 | |
|         State.IsPreassigned.set(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
 | |
|                                                CCState &State) const {
 | |
|   // FIXME: Set alignment on indirect arguments.
 | |
|   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
 | |
|   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
 | |
|   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
 | |
| 
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
|   TypeInfo TI = getContext().getTypeInfo(Ty);
 | |
| 
 | |
|   // Check with the C++ ABI first.
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (RT) {
 | |
|     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
 | |
|     if (RAA == CGCXXABI::RAA_Indirect) {
 | |
|       return getIndirectResult(Ty, false, State);
 | |
|     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
 | |
|       // The field index doesn't matter, we'll fix it up later.
 | |
|       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Regcall uses the concept of a homogenous vector aggregate, similar
 | |
|   // to other targets.
 | |
|   const Type *Base = nullptr;
 | |
|   uint64_t NumElts = 0;
 | |
|   if ((IsRegCall || IsVectorCall) &&
 | |
|       isHomogeneousAggregate(Ty, Base, NumElts)) {
 | |
|     if (State.FreeSSERegs >= NumElts) {
 | |
|       State.FreeSSERegs -= NumElts;
 | |
| 
 | |
|       // Vectorcall passes HVAs directly and does not flatten them, but regcall
 | |
|       // does.
 | |
|       if (IsVectorCall)
 | |
|         return getDirectX86Hva();
 | |
| 
 | |
|       if (Ty->isBuiltinType() || Ty->isVectorType())
 | |
|         return ABIArgInfo::getDirect();
 | |
|       return ABIArgInfo::getExpand();
 | |
|     }
 | |
|     return getIndirectResult(Ty, /*ByVal=*/false, State);
 | |
|   }
 | |
| 
 | |
|   if (isAggregateTypeForABI(Ty)) {
 | |
|     // Structures with flexible arrays are always indirect.
 | |
|     // FIXME: This should not be byval!
 | |
|     if (RT && RT->getDecl()->hasFlexibleArrayMember())
 | |
|       return getIndirectResult(Ty, true, State);
 | |
| 
 | |
|     // Ignore empty structs/unions on non-Windows.
 | |
|     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
 | |
|       return ABIArgInfo::getIgnore();
 | |
| 
 | |
|     llvm::LLVMContext &LLVMContext = getVMContext();
 | |
|     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
 | |
|     bool NeedsPadding = false;
 | |
|     bool InReg;
 | |
|     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
 | |
|       unsigned SizeInRegs = (TI.Width + 31) / 32;
 | |
|       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
 | |
|       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
 | |
|       if (InReg)
 | |
|         return ABIArgInfo::getDirectInReg(Result);
 | |
|       else
 | |
|         return ABIArgInfo::getDirect(Result);
 | |
|     }
 | |
|     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
 | |
| 
 | |
|     // Pass over-aligned aggregates on Windows indirectly. This behavior was
 | |
|     // added in MSVC 2015.
 | |
|     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
 | |
|       return getIndirectResult(Ty, /*ByVal=*/false, State);
 | |
| 
 | |
|     // Expand small (<= 128-bit) record types when we know that the stack layout
 | |
|     // of those arguments will match the struct. This is important because the
 | |
|     // LLVM backend isn't smart enough to remove byval, which inhibits many
 | |
|     // optimizations.
 | |
|     // Don't do this for the MCU if there are still free integer registers
 | |
|     // (see X86_64 ABI for full explanation).
 | |
|     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
 | |
|         canExpandIndirectArgument(Ty))
 | |
|       return ABIArgInfo::getExpandWithPadding(
 | |
|           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
 | |
| 
 | |
|     return getIndirectResult(Ty, true, State);
 | |
|   }
 | |
| 
 | |
|   if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|     // On Windows, vectors are passed directly if registers are available, or
 | |
|     // indirectly if not. This avoids the need to align argument memory. Pass
 | |
|     // user-defined vector types larger than 512 bits indirectly for simplicity.
 | |
|     if (IsWin32StructABI) {
 | |
|       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
 | |
|         --State.FreeSSERegs;
 | |
|         return ABIArgInfo::getDirectInReg();
 | |
|       }
 | |
|       return getIndirectResult(Ty, /*ByVal=*/false, State);
 | |
|     }
 | |
| 
 | |
|     // On Darwin, some vectors are passed in memory, we handle this by passing
 | |
|     // it as an i8/i16/i32/i64.
 | |
|     if (IsDarwinVectorABI) {
 | |
|       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
 | |
|           (TI.Width == 64 && VT->getNumElements() == 1))
 | |
|         return ABIArgInfo::getDirect(
 | |
|             llvm::IntegerType::get(getVMContext(), TI.Width));
 | |
|     }
 | |
| 
 | |
|     if (IsX86_MMXType(CGT.ConvertType(Ty)))
 | |
|       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
 | |
| 
 | |
|     return ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   bool InReg = shouldPrimitiveUseInReg(Ty, State);
 | |
| 
 | |
|   if (Ty->isPromotableIntegerType()) {
 | |
|     if (InReg)
 | |
|       return ABIArgInfo::getExtendInReg(Ty);
 | |
|     return ABIArgInfo::getExtend(Ty);
 | |
|   }
 | |
| 
 | |
|   if (InReg)
 | |
|     return ABIArgInfo::getDirectInReg();
 | |
|   return ABIArgInfo::getDirect();
 | |
| }
 | |
| 
 | |
| void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   CCState State(FI);
 | |
|   if (IsMCUABI)
 | |
|     State.FreeRegs = 3;
 | |
|   else if (State.CC == llvm::CallingConv::X86_FastCall) {
 | |
|     State.FreeRegs = 2;
 | |
|     State.FreeSSERegs = 3;
 | |
|   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
 | |
|     State.FreeRegs = 2;
 | |
|     State.FreeSSERegs = 6;
 | |
|   } else if (FI.getHasRegParm())
 | |
|     State.FreeRegs = FI.getRegParm();
 | |
|   else if (State.CC == llvm::CallingConv::X86_RegCall) {
 | |
|     State.FreeRegs = 5;
 | |
|     State.FreeSSERegs = 8;
 | |
|   } else if (IsWin32StructABI) {
 | |
|     // Since MSVC 2015, the first three SSE vectors have been passed in
 | |
|     // registers. The rest are passed indirectly.
 | |
|     State.FreeRegs = DefaultNumRegisterParameters;
 | |
|     State.FreeSSERegs = 3;
 | |
|   } else
 | |
|     State.FreeRegs = DefaultNumRegisterParameters;
 | |
| 
 | |
|   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
 | |
|     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
 | |
|   } else if (FI.getReturnInfo().isIndirect()) {
 | |
|     // The C++ ABI is not aware of register usage, so we have to check if the
 | |
|     // return value was sret and put it in a register ourselves if appropriate.
 | |
|     if (State.FreeRegs) {
 | |
|       --State.FreeRegs;  // The sret parameter consumes a register.
 | |
|       if (!IsMCUABI)
 | |
|         FI.getReturnInfo().setInReg(true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The chain argument effectively gives us another free register.
 | |
|   if (FI.isChainCall())
 | |
|     ++State.FreeRegs;
 | |
| 
 | |
|   // For vectorcall, do a first pass over the arguments, assigning FP and vector
 | |
|   // arguments to XMM registers as available.
 | |
|   if (State.CC == llvm::CallingConv::X86_VectorCall)
 | |
|     runVectorCallFirstPass(FI, State);
 | |
| 
 | |
|   bool UsedInAlloca = false;
 | |
|   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
 | |
|   for (int I = 0, E = Args.size(); I < E; ++I) {
 | |
|     // Skip arguments that have already been assigned.
 | |
|     if (State.IsPreassigned.test(I))
 | |
|       continue;
 | |
| 
 | |
|     Args[I].info = classifyArgumentType(Args[I].type, State);
 | |
|     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
 | |
|   }
 | |
| 
 | |
|   // If we needed to use inalloca for any argument, do a second pass and rewrite
 | |
|   // all the memory arguments to use inalloca.
 | |
|   if (UsedInAlloca)
 | |
|     rewriteWithInAlloca(FI);
 | |
| }
 | |
| 
 | |
| void
 | |
| X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
 | |
|                                    CharUnits &StackOffset, ABIArgInfo &Info,
 | |
|                                    QualType Type) const {
 | |
|   // Arguments are always 4-byte-aligned.
 | |
|   CharUnits WordSize = CharUnits::fromQuantity(4);
 | |
|   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
 | |
| 
 | |
|   // sret pointers and indirect things will require an extra pointer
 | |
|   // indirection, unless they are byval. Most things are byval, and will not
 | |
|   // require this indirection.
 | |
|   bool IsIndirect = false;
 | |
|   if (Info.isIndirect() && !Info.getIndirectByVal())
 | |
|     IsIndirect = true;
 | |
|   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
 | |
|   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
 | |
|   if (IsIndirect)
 | |
|     LLTy = LLTy->getPointerTo(0);
 | |
|   FrameFields.push_back(LLTy);
 | |
|   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
 | |
| 
 | |
|   // Insert padding bytes to respect alignment.
 | |
|   CharUnits FieldEnd = StackOffset;
 | |
|   StackOffset = FieldEnd.alignTo(WordSize);
 | |
|   if (StackOffset != FieldEnd) {
 | |
|     CharUnits NumBytes = StackOffset - FieldEnd;
 | |
|     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
 | |
|     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
 | |
|     FrameFields.push_back(Ty);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isArgInAlloca(const ABIArgInfo &Info) {
 | |
|   // Leave ignored and inreg arguments alone.
 | |
|   switch (Info.getKind()) {
 | |
|   case ABIArgInfo::InAlloca:
 | |
|     return true;
 | |
|   case ABIArgInfo::Ignore:
 | |
|     return false;
 | |
|   case ABIArgInfo::Indirect:
 | |
|   case ABIArgInfo::Direct:
 | |
|   case ABIArgInfo::Extend:
 | |
|     return !Info.getInReg();
 | |
|   case ABIArgInfo::Expand:
 | |
|   case ABIArgInfo::CoerceAndExpand:
 | |
|     // These are aggregate types which are never passed in registers when
 | |
|     // inalloca is involved.
 | |
|     return true;
 | |
|   }
 | |
|   llvm_unreachable("invalid enum");
 | |
| }
 | |
| 
 | |
| void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
 | |
|   assert(IsWin32StructABI && "inalloca only supported on win32");
 | |
| 
 | |
|   // Build a packed struct type for all of the arguments in memory.
 | |
|   SmallVector<llvm::Type *, 6> FrameFields;
 | |
| 
 | |
|   // The stack alignment is always 4.
 | |
|   CharUnits StackAlign = CharUnits::fromQuantity(4);
 | |
| 
 | |
|   CharUnits StackOffset;
 | |
|   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
 | |
| 
 | |
|   // Put 'this' into the struct before 'sret', if necessary.
 | |
|   bool IsThisCall =
 | |
|       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
 | |
|   ABIArgInfo &Ret = FI.getReturnInfo();
 | |
|   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
 | |
|       isArgInAlloca(I->info)) {
 | |
|     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
 | |
|     ++I;
 | |
|   }
 | |
| 
 | |
|   // Put the sret parameter into the inalloca struct if it's in memory.
 | |
|   if (Ret.isIndirect() && !Ret.getInReg()) {
 | |
|     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
 | |
|     // On Windows, the hidden sret parameter is always returned in eax.
 | |
|     Ret.setInAllocaSRet(IsWin32StructABI);
 | |
|   }
 | |
| 
 | |
|   // Skip the 'this' parameter in ecx.
 | |
|   if (IsThisCall)
 | |
|     ++I;
 | |
| 
 | |
|   // Put arguments passed in memory into the struct.
 | |
|   for (; I != E; ++I) {
 | |
|     if (isArgInAlloca(I->info))
 | |
|       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
 | |
|   }
 | |
| 
 | |
|   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
 | |
|                                         /*isPacked=*/true),
 | |
|                   StackAlign);
 | |
| }
 | |
| 
 | |
| Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
 | |
|                                  Address VAListAddr, QualType Ty) const {
 | |
| 
 | |
|   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
 | |
| 
 | |
|   // x86-32 changes the alignment of certain arguments on the stack.
 | |
|   //
 | |
|   // Just messing with TypeInfo like this works because we never pass
 | |
|   // anything indirectly.
 | |
|   TypeInfo.second = CharUnits::fromQuantity(
 | |
|                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
 | |
| 
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
 | |
|                           TypeInfo, CharUnits::fromQuantity(4),
 | |
|                           /*AllowHigherAlign*/ true);
 | |
| }
 | |
| 
 | |
| bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
 | |
|     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
 | |
|   assert(Triple.getArch() == llvm::Triple::x86);
 | |
| 
 | |
|   switch (Opts.getStructReturnConvention()) {
 | |
|   case CodeGenOptions::SRCK_Default:
 | |
|     break;
 | |
|   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
 | |
|     return false;
 | |
|   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
 | |
|     return true;
 | |
| 
 | |
|   switch (Triple.getOS()) {
 | |
|   case llvm::Triple::DragonFly:
 | |
|   case llvm::Triple::FreeBSD:
 | |
|   case llvm::Triple::OpenBSD:
 | |
|   case llvm::Triple::Win32:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86_32TargetCodeGenInfo::setTargetAttributes(
 | |
|     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
 | |
|   if (GV->isDeclaration())
 | |
|     return;
 | |
|   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
 | |
|     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
 | |
|       llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
|       Fn->addFnAttr("stackrealign");
 | |
|     }
 | |
|     if (FD->hasAttr<AnyX86InterruptAttr>()) {
 | |
|       llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
|       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
 | |
|                                                CodeGen::CodeGenFunction &CGF,
 | |
|                                                llvm::Value *Address) const {
 | |
|   CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
 | |
| 
 | |
|   // 0-7 are the eight integer registers;  the order is different
 | |
|   //   on Darwin (for EH), but the range is the same.
 | |
|   // 8 is %eip.
 | |
|   AssignToArrayRange(Builder, Address, Four8, 0, 8);
 | |
| 
 | |
|   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
 | |
|     // 12-16 are st(0..4).  Not sure why we stop at 4.
 | |
|     // These have size 16, which is sizeof(long double) on
 | |
|     // platforms with 8-byte alignment for that type.
 | |
|     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
 | |
|     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
 | |
| 
 | |
|   } else {
 | |
|     // 9 is %eflags, which doesn't get a size on Darwin for some
 | |
|     // reason.
 | |
|     Builder.CreateAlignedStore(
 | |
|         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
 | |
|                                CharUnits::One());
 | |
| 
 | |
|     // 11-16 are st(0..5).  Not sure why we stop at 5.
 | |
|     // These have size 12, which is sizeof(long double) on
 | |
|     // platforms with 4-byte alignment for that type.
 | |
|     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
 | |
|     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // X86-64 ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| /// The AVX ABI level for X86 targets.
 | |
| enum class X86AVXABILevel {
 | |
|   None,
 | |
|   AVX,
 | |
|   AVX512
 | |
| };
 | |
| 
 | |
| /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
 | |
| static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
 | |
|   switch (AVXLevel) {
 | |
|   case X86AVXABILevel::AVX512:
 | |
|     return 512;
 | |
|   case X86AVXABILevel::AVX:
 | |
|     return 256;
 | |
|   case X86AVXABILevel::None:
 | |
|     return 128;
 | |
|   }
 | |
|   llvm_unreachable("Unknown AVXLevel");
 | |
| }
 | |
| 
 | |
| /// X86_64ABIInfo - The X86_64 ABI information.
 | |
| class X86_64ABIInfo : public SwiftABIInfo {
 | |
|   enum Class {
 | |
|     Integer = 0,
 | |
|     SSE,
 | |
|     SSEUp,
 | |
|     X87,
 | |
|     X87Up,
 | |
|     ComplexX87,
 | |
|     NoClass,
 | |
|     Memory
 | |
|   };
 | |
| 
 | |
|   /// merge - Implement the X86_64 ABI merging algorithm.
 | |
|   ///
 | |
|   /// Merge an accumulating classification \arg Accum with a field
 | |
|   /// classification \arg Field.
 | |
|   ///
 | |
|   /// \param Accum - The accumulating classification. This should
 | |
|   /// always be either NoClass or the result of a previous merge
 | |
|   /// call. In addition, this should never be Memory (the caller
 | |
|   /// should just return Memory for the aggregate).
 | |
|   static Class merge(Class Accum, Class Field);
 | |
| 
 | |
|   /// postMerge - Implement the X86_64 ABI post merging algorithm.
 | |
|   ///
 | |
|   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
 | |
|   /// final MEMORY or SSE classes when necessary.
 | |
|   ///
 | |
|   /// \param AggregateSize - The size of the current aggregate in
 | |
|   /// the classification process.
 | |
|   ///
 | |
|   /// \param Lo - The classification for the parts of the type
 | |
|   /// residing in the low word of the containing object.
 | |
|   ///
 | |
|   /// \param Hi - The classification for the parts of the type
 | |
|   /// residing in the higher words of the containing object.
 | |
|   ///
 | |
|   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
 | |
| 
 | |
|   /// classify - Determine the x86_64 register classes in which the
 | |
|   /// given type T should be passed.
 | |
|   ///
 | |
|   /// \param Lo - The classification for the parts of the type
 | |
|   /// residing in the low word of the containing object.
 | |
|   ///
 | |
|   /// \param Hi - The classification for the parts of the type
 | |
|   /// residing in the high word of the containing object.
 | |
|   ///
 | |
|   /// \param OffsetBase - The bit offset of this type in the
 | |
|   /// containing object.  Some parameters are classified different
 | |
|   /// depending on whether they straddle an eightbyte boundary.
 | |
|   ///
 | |
|   /// \param isNamedArg - Whether the argument in question is a "named"
 | |
|   /// argument, as used in AMD64-ABI 3.5.7.
 | |
|   ///
 | |
|   /// If a word is unused its result will be NoClass; if a type should
 | |
|   /// be passed in Memory then at least the classification of \arg Lo
 | |
|   /// will be Memory.
 | |
|   ///
 | |
|   /// The \arg Lo class will be NoClass iff the argument is ignored.
 | |
|   ///
 | |
|   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
 | |
|   /// also be ComplexX87.
 | |
|   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
 | |
|                 bool isNamedArg) const;
 | |
| 
 | |
|   llvm::Type *GetByteVectorType(QualType Ty) const;
 | |
|   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
 | |
|                                  unsigned IROffset, QualType SourceTy,
 | |
|                                  unsigned SourceOffset) const;
 | |
|   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
 | |
|                                      unsigned IROffset, QualType SourceTy,
 | |
|                                      unsigned SourceOffset) const;
 | |
| 
 | |
|   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
 | |
|   /// such that the argument will be returned in memory.
 | |
|   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
 | |
| 
 | |
|   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
 | |
|   /// such that the argument will be passed in memory.
 | |
|   ///
 | |
|   /// \param freeIntRegs - The number of free integer registers remaining
 | |
|   /// available.
 | |
|   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
| 
 | |
|   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
 | |
|                                   unsigned &neededInt, unsigned &neededSSE,
 | |
|                                   bool isNamedArg) const;
 | |
| 
 | |
|   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
 | |
|                                        unsigned &NeededSSE) const;
 | |
| 
 | |
|   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
 | |
|                                            unsigned &NeededSSE) const;
 | |
| 
 | |
|   bool IsIllegalVectorType(QualType Ty) const;
 | |
| 
 | |
|   /// The 0.98 ABI revision clarified a lot of ambiguities,
 | |
|   /// unfortunately in ways that were not always consistent with
 | |
|   /// certain previous compilers.  In particular, platforms which
 | |
|   /// required strict binary compatibility with older versions of GCC
 | |
|   /// may need to exempt themselves.
 | |
|   bool honorsRevision0_98() const {
 | |
|     return !getTarget().getTriple().isOSDarwin();
 | |
|   }
 | |
| 
 | |
|   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
 | |
|   /// classify it as INTEGER (for compatibility with older clang compilers).
 | |
|   bool classifyIntegerMMXAsSSE() const {
 | |
|     // Clang <= 3.8 did not do this.
 | |
|     if (getContext().getLangOpts().getClangABICompat() <=
 | |
|         LangOptions::ClangABI::Ver3_8)
 | |
|       return false;
 | |
| 
 | |
|     const llvm::Triple &Triple = getTarget().getTriple();
 | |
|     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
 | |
|       return false;
 | |
|     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // GCC classifies vectors of __int128 as memory.
 | |
|   bool passInt128VectorsInMem() const {
 | |
|     // Clang <= 9.0 did not do this.
 | |
|     if (getContext().getLangOpts().getClangABICompat() <=
 | |
|         LangOptions::ClangABI::Ver9)
 | |
|       return false;
 | |
| 
 | |
|     const llvm::Triple &T = getTarget().getTriple();
 | |
|     return T.isOSLinux() || T.isOSNetBSD();
 | |
|   }
 | |
| 
 | |
|   X86AVXABILevel AVXLevel;
 | |
|   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
 | |
|   // 64-bit hardware.
 | |
|   bool Has64BitPointers;
 | |
| 
 | |
| public:
 | |
|   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
 | |
|       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
 | |
|       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
 | |
|   }
 | |
| 
 | |
|   bool isPassedUsingAVXType(QualType type) const {
 | |
|     unsigned neededInt, neededSSE;
 | |
|     // The freeIntRegs argument doesn't matter here.
 | |
|     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
 | |
|                                            /*isNamedArg*/true);
 | |
|     if (info.isDirect()) {
 | |
|       llvm::Type *ty = info.getCoerceToType();
 | |
|       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
 | |
|         return (vectorTy->getBitWidth() > 128);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
|   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                       QualType Ty) const override;
 | |
| 
 | |
|   bool has64BitPointers() const {
 | |
|     return Has64BitPointers;
 | |
|   }
 | |
| 
 | |
|   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
 | |
|                                     bool asReturnValue) const override {
 | |
|     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
 | |
|   }
 | |
|   bool isSwiftErrorInRegister() const override {
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
 | |
| class WinX86_64ABIInfo : public SwiftABIInfo {
 | |
| public:
 | |
|   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
 | |
|       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
 | |
|         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| 
 | |
|   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
 | |
|     // FIXME: Assumes vectorcall is in use.
 | |
|     return isX86VectorTypeForVectorCall(getContext(), Ty);
 | |
|   }
 | |
| 
 | |
|   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
 | |
|                                          uint64_t NumMembers) const override {
 | |
|     // FIXME: Assumes vectorcall is in use.
 | |
|     return isX86VectorCallAggregateSmallEnough(NumMembers);
 | |
|   }
 | |
| 
 | |
|   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
 | |
|                                     bool asReturnValue) const override {
 | |
|     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
 | |
|   }
 | |
| 
 | |
|   bool isSwiftErrorInRegister() const override {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
 | |
|                       bool IsVectorCall, bool IsRegCall) const;
 | |
|   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
 | |
|                                       const ABIArgInfo ¤t) const;
 | |
|   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
 | |
|                              bool IsVectorCall, bool IsRegCall) const;
 | |
| 
 | |
|   X86AVXABILevel AVXLevel;
 | |
| 
 | |
|   bool IsMingw64;
 | |
| };
 | |
| 
 | |
| class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
 | |
|       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
 | |
| 
 | |
|   const X86_64ABIInfo &getABIInfo() const {
 | |
|     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
 | |
|   }
 | |
| 
 | |
|   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
 | |
|   /// the autoreleaseRV/retainRV optimization.
 | |
|   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
 | |
|     return 7;
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const override {
 | |
|     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
 | |
| 
 | |
|     // 0-15 are the 16 integer registers.
 | |
|     // 16 is %rip.
 | |
|     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
 | |
|                                   StringRef Constraint,
 | |
|                                   llvm::Type* Ty) const override {
 | |
|     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
 | |
|   }
 | |
| 
 | |
|   bool isNoProtoCallVariadic(const CallArgList &args,
 | |
|                              const FunctionNoProtoType *fnType) const override {
 | |
|     // The default CC on x86-64 sets %al to the number of SSA
 | |
|     // registers used, and GCC sets this when calling an unprototyped
 | |
|     // function, so we override the default behavior.  However, don't do
 | |
|     // that when AVX types are involved: the ABI explicitly states it is
 | |
|     // undefined, and it doesn't work in practice because of how the ABI
 | |
|     // defines varargs anyway.
 | |
|     if (fnType->getCallConv() == CC_C) {
 | |
|       bool HasAVXType = false;
 | |
|       for (CallArgList::const_iterator
 | |
|              it = args.begin(), ie = args.end(); it != ie; ++it) {
 | |
|         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
 | |
|           HasAVXType = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!HasAVXType)
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *
 | |
|   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
 | |
|     unsigned Sig = (0xeb << 0) | // jmp rel8
 | |
|                    (0x06 << 8) | //           .+0x08
 | |
|                    ('v' << 16) |
 | |
|                    ('2' << 24);
 | |
|     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
 | |
|   }
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override {
 | |
|     if (GV->isDeclaration())
 | |
|       return;
 | |
|     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
 | |
|       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
 | |
|         llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
|         Fn->addFnAttr("stackrealign");
 | |
|       }
 | |
|       if (FD->hasAttr<AnyX86InterruptAttr>()) {
 | |
|         llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
|         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
 | |
|   // If the argument does not end in .lib, automatically add the suffix.
 | |
|   // If the argument contains a space, enclose it in quotes.
 | |
|   // This matches the behavior of MSVC.
 | |
|   bool Quote = (Lib.find(" ") != StringRef::npos);
 | |
|   std::string ArgStr = Quote ? "\"" : "";
 | |
|   ArgStr += Lib;
 | |
|   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
 | |
|     ArgStr += ".lib";
 | |
|   ArgStr += Quote ? "\"" : "";
 | |
|   return ArgStr;
 | |
| }
 | |
| 
 | |
| class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
 | |
| public:
 | |
|   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
 | |
|         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
 | |
|         unsigned NumRegisterParameters)
 | |
|     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
 | |
|         Win32StructABI, NumRegisterParameters, false) {}
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override;
 | |
| 
 | |
|   void getDependentLibraryOption(llvm::StringRef Lib,
 | |
|                                  llvm::SmallString<24> &Opt) const override {
 | |
|     Opt = "/DEFAULTLIB:";
 | |
|     Opt += qualifyWindowsLibrary(Lib);
 | |
|   }
 | |
| 
 | |
|   void getDetectMismatchOption(llvm::StringRef Name,
 | |
|                                llvm::StringRef Value,
 | |
|                                llvm::SmallString<32> &Opt) const override {
 | |
|     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
 | |
|   }
 | |
| };
 | |
| 
 | |
| static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                                           CodeGen::CodeGenModule &CGM) {
 | |
|   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
 | |
| 
 | |
|     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
 | |
|       Fn->addFnAttr("stack-probe-size",
 | |
|                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
 | |
|     if (CGM.getCodeGenOpts().NoStackArgProbe)
 | |
|       Fn->addFnAttr("no-stack-arg-probe");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WinX86_32TargetCodeGenInfo::setTargetAttributes(
 | |
|     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
 | |
|   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
 | |
|   if (GV->isDeclaration())
 | |
|     return;
 | |
|   addStackProbeTargetAttributes(D, GV, CGM);
 | |
| }
 | |
| 
 | |
| class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
 | |
|                              X86AVXABILevel AVXLevel)
 | |
|       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {}
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override;
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
 | |
|     return 7;
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const override {
 | |
|     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
 | |
| 
 | |
|     // 0-15 are the 16 integer registers.
 | |
|     // 16 is %rip.
 | |
|     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void getDependentLibraryOption(llvm::StringRef Lib,
 | |
|                                  llvm::SmallString<24> &Opt) const override {
 | |
|     Opt = "/DEFAULTLIB:";
 | |
|     Opt += qualifyWindowsLibrary(Lib);
 | |
|   }
 | |
| 
 | |
|   void getDetectMismatchOption(llvm::StringRef Name,
 | |
|                                llvm::StringRef Value,
 | |
|                                llvm::SmallString<32> &Opt) const override {
 | |
|     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
 | |
|   }
 | |
| };
 | |
| 
 | |
| void WinX86_64TargetCodeGenInfo::setTargetAttributes(
 | |
|     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
 | |
|   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
 | |
|   if (GV->isDeclaration())
 | |
|     return;
 | |
|   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
 | |
|     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
 | |
|       llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
|       Fn->addFnAttr("stackrealign");
 | |
|     }
 | |
|     if (FD->hasAttr<AnyX86InterruptAttr>()) {
 | |
|       llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
|       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   addStackProbeTargetAttributes(D, GV, CGM);
 | |
| }
 | |
| }
 | |
| 
 | |
| void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
 | |
|                               Class &Hi) const {
 | |
|   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
 | |
|   //
 | |
|   // (a) If one of the classes is Memory, the whole argument is passed in
 | |
|   //     memory.
 | |
|   //
 | |
|   // (b) If X87UP is not preceded by X87, the whole argument is passed in
 | |
|   //     memory.
 | |
|   //
 | |
|   // (c) If the size of the aggregate exceeds two eightbytes and the first
 | |
|   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
 | |
|   //     argument is passed in memory. NOTE: This is necessary to keep the
 | |
|   //     ABI working for processors that don't support the __m256 type.
 | |
|   //
 | |
|   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
 | |
|   //
 | |
|   // Some of these are enforced by the merging logic.  Others can arise
 | |
|   // only with unions; for example:
 | |
|   //   union { _Complex double; unsigned; }
 | |
|   //
 | |
|   // Note that clauses (b) and (c) were added in 0.98.
 | |
|   //
 | |
|   if (Hi == Memory)
 | |
|     Lo = Memory;
 | |
|   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
 | |
|     Lo = Memory;
 | |
|   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
 | |
|     Lo = Memory;
 | |
|   if (Hi == SSEUp && Lo != SSE)
 | |
|     Hi = SSE;
 | |
| }
 | |
| 
 | |
| X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
 | |
|   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
 | |
|   // classified recursively so that always two fields are
 | |
|   // considered. The resulting class is calculated according to
 | |
|   // the classes of the fields in the eightbyte:
 | |
|   //
 | |
|   // (a) If both classes are equal, this is the resulting class.
 | |
|   //
 | |
|   // (b) If one of the classes is NO_CLASS, the resulting class is
 | |
|   // the other class.
 | |
|   //
 | |
|   // (c) If one of the classes is MEMORY, the result is the MEMORY
 | |
|   // class.
 | |
|   //
 | |
|   // (d) If one of the classes is INTEGER, the result is the
 | |
|   // INTEGER.
 | |
|   //
 | |
|   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
 | |
|   // MEMORY is used as class.
 | |
|   //
 | |
|   // (f) Otherwise class SSE is used.
 | |
| 
 | |
|   // Accum should never be memory (we should have returned) or
 | |
|   // ComplexX87 (because this cannot be passed in a structure).
 | |
|   assert((Accum != Memory && Accum != ComplexX87) &&
 | |
|          "Invalid accumulated classification during merge.");
 | |
|   if (Accum == Field || Field == NoClass)
 | |
|     return Accum;
 | |
|   if (Field == Memory)
 | |
|     return Memory;
 | |
|   if (Accum == NoClass)
 | |
|     return Field;
 | |
|   if (Accum == Integer || Field == Integer)
 | |
|     return Integer;
 | |
|   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
 | |
|       Accum == X87 || Accum == X87Up)
 | |
|     return Memory;
 | |
|   return SSE;
 | |
| }
 | |
| 
 | |
| void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
 | |
|                              Class &Lo, Class &Hi, bool isNamedArg) const {
 | |
|   // FIXME: This code can be simplified by introducing a simple value class for
 | |
|   // Class pairs with appropriate constructor methods for the various
 | |
|   // situations.
 | |
| 
 | |
|   // FIXME: Some of the split computations are wrong; unaligned vectors
 | |
|   // shouldn't be passed in registers for example, so there is no chance they
 | |
|   // can straddle an eightbyte. Verify & simplify.
 | |
| 
 | |
|   Lo = Hi = NoClass;
 | |
| 
 | |
|   Class &Current = OffsetBase < 64 ? Lo : Hi;
 | |
|   Current = Memory;
 | |
| 
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
 | |
|     BuiltinType::Kind k = BT->getKind();
 | |
| 
 | |
|     if (k == BuiltinType::Void) {
 | |
|       Current = NoClass;
 | |
|     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
 | |
|       Lo = Integer;
 | |
|       Hi = Integer;
 | |
|     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
 | |
|       Current = Integer;
 | |
|     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
 | |
|       Current = SSE;
 | |
|     } else if (k == BuiltinType::LongDouble) {
 | |
|       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
 | |
|       if (LDF == &llvm::APFloat::IEEEquad()) {
 | |
|         Lo = SSE;
 | |
|         Hi = SSEUp;
 | |
|       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
 | |
|         Lo = X87;
 | |
|         Hi = X87Up;
 | |
|       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
 | |
|         Current = SSE;
 | |
|       } else
 | |
|         llvm_unreachable("unexpected long double representation!");
 | |
|     }
 | |
|     // FIXME: _Decimal32 and _Decimal64 are SSE.
 | |
|     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const EnumType *ET = Ty->getAs<EnumType>()) {
 | |
|     // Classify the underlying integer type.
 | |
|     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Ty->hasPointerRepresentation()) {
 | |
|     Current = Integer;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Ty->isMemberPointerType()) {
 | |
|     if (Ty->isMemberFunctionPointerType()) {
 | |
|       if (Has64BitPointers) {
 | |
|         // If Has64BitPointers, this is an {i64, i64}, so classify both
 | |
|         // Lo and Hi now.
 | |
|         Lo = Hi = Integer;
 | |
|       } else {
 | |
|         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
 | |
|         // straddles an eightbyte boundary, Hi should be classified as well.
 | |
|         uint64_t EB_FuncPtr = (OffsetBase) / 64;
 | |
|         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
 | |
|         if (EB_FuncPtr != EB_ThisAdj) {
 | |
|           Lo = Hi = Integer;
 | |
|         } else {
 | |
|           Current = Integer;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       Current = Integer;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|     uint64_t Size = getContext().getTypeSize(VT);
 | |
|     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
 | |
|       // gcc passes the following as integer:
 | |
|       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
 | |
|       // 2 bytes - <2 x char>, <1 x short>
 | |
|       // 1 byte  - <1 x char>
 | |
|       Current = Integer;
 | |
| 
 | |
|       // If this type crosses an eightbyte boundary, it should be
 | |
|       // split.
 | |
|       uint64_t EB_Lo = (OffsetBase) / 64;
 | |
|       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
 | |
|       if (EB_Lo != EB_Hi)
 | |
|         Hi = Lo;
 | |
|     } else if (Size == 64) {
 | |
|       QualType ElementType = VT->getElementType();
 | |
| 
 | |
|       // gcc passes <1 x double> in memory. :(
 | |
|       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
 | |
|         return;
 | |
| 
 | |
|       // gcc passes <1 x long long> as SSE but clang used to unconditionally
 | |
|       // pass them as integer.  For platforms where clang is the de facto
 | |
|       // platform compiler, we must continue to use integer.
 | |
|       if (!classifyIntegerMMXAsSSE() &&
 | |
|           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
 | |
|            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
 | |
|            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
 | |
|            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
 | |
|         Current = Integer;
 | |
|       else
 | |
|         Current = SSE;
 | |
| 
 | |
|       // If this type crosses an eightbyte boundary, it should be
 | |
|       // split.
 | |
|       if (OffsetBase && OffsetBase != 64)
 | |
|         Hi = Lo;
 | |
|     } else if (Size == 128 ||
 | |
|                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
 | |
|       QualType ElementType = VT->getElementType();
 | |
| 
 | |
|       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
 | |
|       if (passInt128VectorsInMem() && Size != 128 &&
 | |
|           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
 | |
|            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
 | |
|         return;
 | |
| 
 | |
|       // Arguments of 256-bits are split into four eightbyte chunks. The
 | |
|       // least significant one belongs to class SSE and all the others to class
 | |
|       // SSEUP. The original Lo and Hi design considers that types can't be
 | |
|       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
 | |
|       // This design isn't correct for 256-bits, but since there're no cases
 | |
|       // where the upper parts would need to be inspected, avoid adding
 | |
|       // complexity and just consider Hi to match the 64-256 part.
 | |
|       //
 | |
|       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
 | |
|       // registers if they are "named", i.e. not part of the "..." of a
 | |
|       // variadic function.
 | |
|       //
 | |
|       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
 | |
|       // split into eight eightbyte chunks, one SSE and seven SSEUP.
 | |
|       Lo = SSE;
 | |
|       Hi = SSEUp;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
 | |
|     QualType ET = getContext().getCanonicalType(CT->getElementType());
 | |
| 
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
|     if (ET->isIntegralOrEnumerationType()) {
 | |
|       if (Size <= 64)
 | |
|         Current = Integer;
 | |
|       else if (Size <= 128)
 | |
|         Lo = Hi = Integer;
 | |
|     } else if (ET == getContext().FloatTy) {
 | |
|       Current = SSE;
 | |
|     } else if (ET == getContext().DoubleTy) {
 | |
|       Lo = Hi = SSE;
 | |
|     } else if (ET == getContext().LongDoubleTy) {
 | |
|       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
 | |
|       if (LDF == &llvm::APFloat::IEEEquad())
 | |
|         Current = Memory;
 | |
|       else if (LDF == &llvm::APFloat::x87DoubleExtended())
 | |
|         Current = ComplexX87;
 | |
|       else if (LDF == &llvm::APFloat::IEEEdouble())
 | |
|         Lo = Hi = SSE;
 | |
|       else
 | |
|         llvm_unreachable("unexpected long double representation!");
 | |
|     }
 | |
| 
 | |
|     // If this complex type crosses an eightbyte boundary then it
 | |
|     // should be split.
 | |
|     uint64_t EB_Real = (OffsetBase) / 64;
 | |
|     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
 | |
|     if (Hi == NoClass && EB_Real != EB_Imag)
 | |
|       Hi = Lo;
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
 | |
|     // Arrays are treated like structures.
 | |
| 
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
 | |
|     // than eight eightbytes, ..., it has class MEMORY.
 | |
|     if (Size > 512)
 | |
|       return;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
 | |
|     // fields, it has class MEMORY.
 | |
|     //
 | |
|     // Only need to check alignment of array base.
 | |
|     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
 | |
|       return;
 | |
| 
 | |
|     // Otherwise implement simplified merge. We could be smarter about
 | |
|     // this, but it isn't worth it and would be harder to verify.
 | |
|     Current = NoClass;
 | |
|     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
 | |
|     uint64_t ArraySize = AT->getSize().getZExtValue();
 | |
| 
 | |
|     // The only case a 256-bit wide vector could be used is when the array
 | |
|     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
 | |
|     // to work for sizes wider than 128, early check and fallback to memory.
 | |
|     //
 | |
|     if (Size > 128 &&
 | |
|         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
 | |
|       return;
 | |
| 
 | |
|     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
 | |
|       Class FieldLo, FieldHi;
 | |
|       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
 | |
|       Lo = merge(Lo, FieldLo);
 | |
|       Hi = merge(Hi, FieldHi);
 | |
|       if (Lo == Memory || Hi == Memory)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     postMerge(Size, Lo, Hi);
 | |
|     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
 | |
|     // than eight eightbytes, ..., it has class MEMORY.
 | |
|     if (Size > 512)
 | |
|       return;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
 | |
|     // copy constructor or a non-trivial destructor, it is passed by invisible
 | |
|     // reference.
 | |
|     if (getRecordArgABI(RT, getCXXABI()))
 | |
|       return;
 | |
| 
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
| 
 | |
|     // Assume variable sized types are passed in memory.
 | |
|     if (RD->hasFlexibleArrayMember())
 | |
|       return;
 | |
| 
 | |
|     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
 | |
| 
 | |
|     // Reset Lo class, this will be recomputed.
 | |
|     Current = NoClass;
 | |
| 
 | |
|     // If this is a C++ record, classify the bases first.
 | |
|     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|       for (const auto &I : CXXRD->bases()) {
 | |
|         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
 | |
|                "Unexpected base class!");
 | |
|         const auto *Base =
 | |
|             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
 | |
| 
 | |
|         // Classify this field.
 | |
|         //
 | |
|         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
 | |
|         // single eightbyte, each is classified separately. Each eightbyte gets
 | |
|         // initialized to class NO_CLASS.
 | |
|         Class FieldLo, FieldHi;
 | |
|         uint64_t Offset =
 | |
|           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
 | |
|         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
 | |
|         Lo = merge(Lo, FieldLo);
 | |
|         Hi = merge(Hi, FieldHi);
 | |
|         if (Lo == Memory || Hi == Memory) {
 | |
|           postMerge(Size, Lo, Hi);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Classify the fields one at a time, merging the results.
 | |
|     unsigned idx = 0;
 | |
|     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|            i != e; ++i, ++idx) {
 | |
|       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
 | |
|       bool BitField = i->isBitField();
 | |
| 
 | |
|       // Ignore padding bit-fields.
 | |
|       if (BitField && i->isUnnamedBitfield())
 | |
|         continue;
 | |
| 
 | |
|       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
 | |
|       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
 | |
|       //
 | |
|       // The only case a 256-bit wide vector could be used is when the struct
 | |
|       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
 | |
|       // to work for sizes wider than 128, early check and fallback to memory.
 | |
|       //
 | |
|       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
 | |
|                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
 | |
|         Lo = Memory;
 | |
|         postMerge(Size, Lo, Hi);
 | |
|         return;
 | |
|       }
 | |
|       // Note, skip this test for bit-fields, see below.
 | |
|       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
 | |
|         Lo = Memory;
 | |
|         postMerge(Size, Lo, Hi);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Classify this field.
 | |
|       //
 | |
|       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
 | |
|       // exceeds a single eightbyte, each is classified
 | |
|       // separately. Each eightbyte gets initialized to class
 | |
|       // NO_CLASS.
 | |
|       Class FieldLo, FieldHi;
 | |
| 
 | |
|       // Bit-fields require special handling, they do not force the
 | |
|       // structure to be passed in memory even if unaligned, and
 | |
|       // therefore they can straddle an eightbyte.
 | |
|       if (BitField) {
 | |
|         assert(!i->isUnnamedBitfield());
 | |
|         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
 | |
|         uint64_t Size = i->getBitWidthValue(getContext());
 | |
| 
 | |
|         uint64_t EB_Lo = Offset / 64;
 | |
|         uint64_t EB_Hi = (Offset + Size - 1) / 64;
 | |
| 
 | |
|         if (EB_Lo) {
 | |
|           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
 | |
|           FieldLo = NoClass;
 | |
|           FieldHi = Integer;
 | |
|         } else {
 | |
|           FieldLo = Integer;
 | |
|           FieldHi = EB_Hi ? Integer : NoClass;
 | |
|         }
 | |
|       } else
 | |
|         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
 | |
|       Lo = merge(Lo, FieldLo);
 | |
|       Hi = merge(Hi, FieldHi);
 | |
|       if (Lo == Memory || Hi == Memory)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     postMerge(Size, Lo, Hi);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
 | |
|   // If this is a scalar LLVM value then assume LLVM will pass it in the right
 | |
|   // place naturally.
 | |
|   if (!isAggregateTypeForABI(Ty)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|       Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
 | |
|                                           : ABIArgInfo::getDirect());
 | |
|   }
 | |
| 
 | |
|   return getNaturalAlignIndirect(Ty);
 | |
| }
 | |
| 
 | |
| bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
 | |
|   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
 | |
|     uint64_t Size = getContext().getTypeSize(VecTy);
 | |
|     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
 | |
|     if (Size <= 64 || Size > LargestVector)
 | |
|       return true;
 | |
|     QualType EltTy = VecTy->getElementType();
 | |
|     if (passInt128VectorsInMem() &&
 | |
|         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
 | |
|          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
 | |
|                                             unsigned freeIntRegs) const {
 | |
|   // If this is a scalar LLVM value then assume LLVM will pass it in the right
 | |
|   // place naturally.
 | |
|   //
 | |
|   // This assumption is optimistic, as there could be free registers available
 | |
|   // when we need to pass this argument in memory, and LLVM could try to pass
 | |
|   // the argument in the free register. This does not seem to happen currently,
 | |
|   // but this code would be much safer if we could mark the argument with
 | |
|   // 'onstack'. See PR12193.
 | |
|   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|       Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
 | |
|                                           : ABIArgInfo::getDirect());
 | |
|   }
 | |
| 
 | |
|   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
 | |
|     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
| 
 | |
|   // Compute the byval alignment. We specify the alignment of the byval in all
 | |
|   // cases so that the mid-level optimizer knows the alignment of the byval.
 | |
|   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
 | |
| 
 | |
|   // Attempt to avoid passing indirect results using byval when possible. This
 | |
|   // is important for good codegen.
 | |
|   //
 | |
|   // We do this by coercing the value into a scalar type which the backend can
 | |
|   // handle naturally (i.e., without using byval).
 | |
|   //
 | |
|   // For simplicity, we currently only do this when we have exhausted all of the
 | |
|   // free integer registers. Doing this when there are free integer registers
 | |
|   // would require more care, as we would have to ensure that the coerced value
 | |
|   // did not claim the unused register. That would require either reording the
 | |
|   // arguments to the function (so that any subsequent inreg values came first),
 | |
|   // or only doing this optimization when there were no following arguments that
 | |
|   // might be inreg.
 | |
|   //
 | |
|   // We currently expect it to be rare (particularly in well written code) for
 | |
|   // arguments to be passed on the stack when there are still free integer
 | |
|   // registers available (this would typically imply large structs being passed
 | |
|   // by value), so this seems like a fair tradeoff for now.
 | |
|   //
 | |
|   // We can revisit this if the backend grows support for 'onstack' parameter
 | |
|   // attributes. See PR12193.
 | |
|   if (freeIntRegs == 0) {
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
| 
 | |
|     // If this type fits in an eightbyte, coerce it into the matching integral
 | |
|     // type, which will end up on the stack (with alignment 8).
 | |
|     if (Align == 8 && Size <= 64)
 | |
|       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | |
|                                                           Size));
 | |
|   }
 | |
| 
 | |
|   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
 | |
| }
 | |
| 
 | |
| /// The ABI specifies that a value should be passed in a full vector XMM/YMM
 | |
| /// register. Pick an LLVM IR type that will be passed as a vector register.
 | |
| llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
 | |
|   // Wrapper structs/arrays that only contain vectors are passed just like
 | |
|   // vectors; strip them off if present.
 | |
|   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
 | |
|     Ty = QualType(InnerTy, 0);
 | |
| 
 | |
|   llvm::Type *IRType = CGT.ConvertType(Ty);
 | |
|   if (isa<llvm::VectorType>(IRType)) {
 | |
|     // Don't pass vXi128 vectors in their native type, the backend can't
 | |
|     // legalize them.
 | |
|     if (passInt128VectorsInMem() &&
 | |
|         IRType->getVectorElementType()->isIntegerTy(128)) {
 | |
|       // Use a vXi64 vector.
 | |
|       uint64_t Size = getContext().getTypeSize(Ty);
 | |
|       return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()),
 | |
|                                    Size / 64);
 | |
|     }
 | |
| 
 | |
|     return IRType;
 | |
|   }
 | |
| 
 | |
|   if (IRType->getTypeID() == llvm::Type::FP128TyID)
 | |
|     return IRType;
 | |
| 
 | |
|   // We couldn't find the preferred IR vector type for 'Ty'.
 | |
|   uint64_t Size = getContext().getTypeSize(Ty);
 | |
|   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
 | |
| 
 | |
| 
 | |
|   // Return a LLVM IR vector type based on the size of 'Ty'.
 | |
|   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
 | |
|                                Size / 64);
 | |
| }
 | |
| 
 | |
| /// BitsContainNoUserData - Return true if the specified [start,end) bit range
 | |
| /// is known to either be off the end of the specified type or being in
 | |
| /// alignment padding.  The user type specified is known to be at most 128 bits
 | |
| /// in size, and have passed through X86_64ABIInfo::classify with a successful
 | |
| /// classification that put one of the two halves in the INTEGER class.
 | |
| ///
 | |
| /// It is conservatively correct to return false.
 | |
| static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
 | |
|                                   unsigned EndBit, ASTContext &Context) {
 | |
|   // If the bytes being queried are off the end of the type, there is no user
 | |
|   // data hiding here.  This handles analysis of builtins, vectors and other
 | |
|   // types that don't contain interesting padding.
 | |
|   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
 | |
|   if (TySize <= StartBit)
 | |
|     return true;
 | |
| 
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
 | |
|     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
 | |
|     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
 | |
| 
 | |
|     // Check each element to see if the element overlaps with the queried range.
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       // If the element is after the span we care about, then we're done..
 | |
|       unsigned EltOffset = i*EltSize;
 | |
|       if (EltOffset >= EndBit) break;
 | |
| 
 | |
|       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
 | |
|       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
 | |
|                                  EndBit-EltOffset, Context))
 | |
|         return false;
 | |
|     }
 | |
|     // If it overlaps no elements, then it is safe to process as padding.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|     // If this is a C++ record, check the bases first.
 | |
|     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|       for (const auto &I : CXXRD->bases()) {
 | |
|         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
 | |
|                "Unexpected base class!");
 | |
|         const auto *Base =
 | |
|             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
 | |
| 
 | |
|         // If the base is after the span we care about, ignore it.
 | |
|         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
 | |
|         if (BaseOffset >= EndBit) continue;
 | |
| 
 | |
|         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
 | |
|         if (!BitsContainNoUserData(I.getType(), BaseStart,
 | |
|                                    EndBit-BaseOffset, Context))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Verify that no field has data that overlaps the region of interest.  Yes
 | |
|     // this could be sped up a lot by being smarter about queried fields,
 | |
|     // however we're only looking at structs up to 16 bytes, so we don't care
 | |
|     // much.
 | |
|     unsigned idx = 0;
 | |
|     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|          i != e; ++i, ++idx) {
 | |
|       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
 | |
| 
 | |
|       // If we found a field after the region we care about, then we're done.
 | |
|       if (FieldOffset >= EndBit) break;
 | |
| 
 | |
|       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
 | |
|       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
 | |
|                                  Context))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If nothing in this record overlapped the area of interest, then we're
 | |
|     // clean.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
 | |
| /// float member at the specified offset.  For example, {int,{float}} has a
 | |
| /// float at offset 4.  It is conservatively correct for this routine to return
 | |
| /// false.
 | |
| static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
 | |
|                                   const llvm::DataLayout &TD) {
 | |
|   // Base case if we find a float.
 | |
|   if (IROffset == 0 && IRType->isFloatTy())
 | |
|     return true;
 | |
| 
 | |
|   // If this is a struct, recurse into the field at the specified offset.
 | |
|   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
 | |
|     const llvm::StructLayout *SL = TD.getStructLayout(STy);
 | |
|     unsigned Elt = SL->getElementContainingOffset(IROffset);
 | |
|     IROffset -= SL->getElementOffset(Elt);
 | |
|     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
 | |
|   }
 | |
| 
 | |
|   // If this is an array, recurse into the field at the specified offset.
 | |
|   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
 | |
|     llvm::Type *EltTy = ATy->getElementType();
 | |
|     unsigned EltSize = TD.getTypeAllocSize(EltTy);
 | |
|     IROffset -= IROffset/EltSize*EltSize;
 | |
|     return ContainsFloatAtOffset(EltTy, IROffset, TD);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
 | |
| /// low 8 bytes of an XMM register, corresponding to the SSE class.
 | |
| llvm::Type *X86_64ABIInfo::
 | |
| GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
 | |
|                    QualType SourceTy, unsigned SourceOffset) const {
 | |
|   // The only three choices we have are either double, <2 x float>, or float. We
 | |
|   // pass as float if the last 4 bytes is just padding.  This happens for
 | |
|   // structs that contain 3 floats.
 | |
|   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
 | |
|                             SourceOffset*8+64, getContext()))
 | |
|     return llvm::Type::getFloatTy(getVMContext());
 | |
| 
 | |
|   // We want to pass as <2 x float> if the LLVM IR type contains a float at
 | |
|   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
 | |
|   // case.
 | |
|   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
 | |
|       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
 | |
|     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
 | |
| 
 | |
|   return llvm::Type::getDoubleTy(getVMContext());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
 | |
| /// an 8-byte GPR.  This means that we either have a scalar or we are talking
 | |
| /// about the high or low part of an up-to-16-byte struct.  This routine picks
 | |
| /// the best LLVM IR type to represent this, which may be i64 or may be anything
 | |
| /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
 | |
| /// etc).
 | |
| ///
 | |
| /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
 | |
| /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
 | |
| /// the 8-byte value references.  PrefType may be null.
 | |
| ///
 | |
| /// SourceTy is the source-level type for the entire argument.  SourceOffset is
 | |
| /// an offset into this that we're processing (which is always either 0 or 8).
 | |
| ///
 | |
| llvm::Type *X86_64ABIInfo::
 | |
| GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
 | |
|                        QualType SourceTy, unsigned SourceOffset) const {
 | |
|   // If we're dealing with an un-offset LLVM IR type, then it means that we're
 | |
|   // returning an 8-byte unit starting with it.  See if we can safely use it.
 | |
|   if (IROffset == 0) {
 | |
|     // Pointers and int64's always fill the 8-byte unit.
 | |
|     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
 | |
|         IRType->isIntegerTy(64))
 | |
|       return IRType;
 | |
| 
 | |
|     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
 | |
|     // goodness in the source type is just tail padding.  This is allowed to
 | |
|     // kick in for struct {double,int} on the int, but not on
 | |
|     // struct{double,int,int} because we wouldn't return the second int.  We
 | |
|     // have to do this analysis on the source type because we can't depend on
 | |
|     // unions being lowered a specific way etc.
 | |
|     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
 | |
|         IRType->isIntegerTy(32) ||
 | |
|         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
 | |
|       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
 | |
|           cast<llvm::IntegerType>(IRType)->getBitWidth();
 | |
| 
 | |
|       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
 | |
|                                 SourceOffset*8+64, getContext()))
 | |
|         return IRType;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
 | |
|     // If this is a struct, recurse into the field at the specified offset.
 | |
|     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
 | |
|     if (IROffset < SL->getSizeInBytes()) {
 | |
|       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
 | |
|       IROffset -= SL->getElementOffset(FieldIdx);
 | |
| 
 | |
|       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
 | |
|                                     SourceTy, SourceOffset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
 | |
|     llvm::Type *EltTy = ATy->getElementType();
 | |
|     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
 | |
|     unsigned EltOffset = IROffset/EltSize*EltSize;
 | |
|     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
 | |
|                                   SourceOffset);
 | |
|   }
 | |
| 
 | |
|   // Okay, we don't have any better idea of what to pass, so we pass this in an
 | |
|   // integer register that isn't too big to fit the rest of the struct.
 | |
|   unsigned TySizeInBytes =
 | |
|     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
 | |
| 
 | |
|   assert(TySizeInBytes != SourceOffset && "Empty field?");
 | |
| 
 | |
|   // It is always safe to classify this as an integer type up to i64 that
 | |
|   // isn't larger than the structure.
 | |
|   return llvm::IntegerType::get(getVMContext(),
 | |
|                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
 | |
| /// be used as elements of a two register pair to pass or return, return a
 | |
| /// first class aggregate to represent them.  For example, if the low part of
 | |
| /// a by-value argument should be passed as i32* and the high part as float,
 | |
| /// return {i32*, float}.
 | |
| static llvm::Type *
 | |
| GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
 | |
|                            const llvm::DataLayout &TD) {
 | |
|   // In order to correctly satisfy the ABI, we need to the high part to start
 | |
|   // at offset 8.  If the high and low parts we inferred are both 4-byte types
 | |
|   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
 | |
|   // the second element at offset 8.  Check for this:
 | |
|   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
 | |
|   unsigned HiAlign = TD.getABITypeAlignment(Hi);
 | |
|   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
 | |
|   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
 | |
| 
 | |
|   // To handle this, we have to increase the size of the low part so that the
 | |
|   // second element will start at an 8 byte offset.  We can't increase the size
 | |
|   // of the second element because it might make us access off the end of the
 | |
|   // struct.
 | |
|   if (HiStart != 8) {
 | |
|     // There are usually two sorts of types the ABI generation code can produce
 | |
|     // for the low part of a pair that aren't 8 bytes in size: float or
 | |
|     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
 | |
|     // NaCl).
 | |
|     // Promote these to a larger type.
 | |
|     if (Lo->isFloatTy())
 | |
|       Lo = llvm::Type::getDoubleTy(Lo->getContext());
 | |
|     else {
 | |
|       assert((Lo->isIntegerTy() || Lo->isPointerTy())
 | |
|              && "Invalid/unknown lo type");
 | |
|       Lo = llvm::Type::getInt64Ty(Lo->getContext());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
 | |
| 
 | |
|   // Verify that the second element is at an 8-byte offset.
 | |
|   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
 | |
|          "Invalid x86-64 argument pair!");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_64ABIInfo::
 | |
| classifyReturnType(QualType RetTy) const {
 | |
|   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
 | |
|   // classification algorithm.
 | |
|   X86_64ABIInfo::Class Lo, Hi;
 | |
|   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
 | |
| 
 | |
|   // Check some invariants.
 | |
|   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
 | |
|   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
 | |
| 
 | |
|   llvm::Type *ResType = nullptr;
 | |
|   switch (Lo) {
 | |
|   case NoClass:
 | |
|     if (Hi == NoClass)
 | |
|       return ABIArgInfo::getIgnore();
 | |
|     // If the low part is just padding, it takes no register, leave ResType
 | |
|     // null.
 | |
|     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
 | |
|            "Unknown missing lo part");
 | |
|     break;
 | |
| 
 | |
|   case SSEUp:
 | |
|   case X87Up:
 | |
|     llvm_unreachable("Invalid classification for lo word.");
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
 | |
|     // hidden argument.
 | |
|   case Memory:
 | |
|     return getIndirectReturnResult(RetTy);
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
 | |
|     // available register of the sequence %rax, %rdx is used.
 | |
|   case Integer:
 | |
|     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
 | |
| 
 | |
|     // If we have a sign or zero extended integer, make sure to return Extend
 | |
|     // so that the parameter gets the right LLVM IR attributes.
 | |
|     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
 | |
|       // Treat an enum type as its underlying type.
 | |
|       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|         RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|       if (RetTy->isIntegralOrEnumerationType() &&
 | |
|           RetTy->isPromotableIntegerType())
 | |
|         return ABIArgInfo::getExtend(RetTy);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
 | |
|     // available SSE register of the sequence %xmm0, %xmm1 is used.
 | |
|   case SSE:
 | |
|     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
 | |
|     // returned on the X87 stack in %st0 as 80-bit x87 number.
 | |
|   case X87:
 | |
|     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
 | |
|     // part of the value is returned in %st0 and the imaginary part in
 | |
|     // %st1.
 | |
|   case ComplexX87:
 | |
|     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
 | |
|     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
 | |
|                                     llvm::Type::getX86_FP80Ty(getVMContext()));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   llvm::Type *HighPart = nullptr;
 | |
|   switch (Hi) {
 | |
|     // Memory was handled previously and X87 should
 | |
|     // never occur as a hi class.
 | |
|   case Memory:
 | |
|   case X87:
 | |
|     llvm_unreachable("Invalid classification for hi word.");
 | |
| 
 | |
|   case ComplexX87: // Previously handled.
 | |
|   case NoClass:
 | |
|     break;
 | |
| 
 | |
|   case Integer:
 | |
|     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
 | |
|     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
 | |
|       return ABIArgInfo::getDirect(HighPart, 8);
 | |
|     break;
 | |
|   case SSE:
 | |
|     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
 | |
|     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
 | |
|       return ABIArgInfo::getDirect(HighPart, 8);
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
 | |
|     // is passed in the next available eightbyte chunk if the last used
 | |
|     // vector register.
 | |
|     //
 | |
|     // SSEUP should always be preceded by SSE, just widen.
 | |
|   case SSEUp:
 | |
|     assert(Lo == SSE && "Unexpected SSEUp classification.");
 | |
|     ResType = GetByteVectorType(RetTy);
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
 | |
|     // returned together with the previous X87 value in %st0.
 | |
|   case X87Up:
 | |
|     // If X87Up is preceded by X87, we don't need to do
 | |
|     // anything. However, in some cases with unions it may not be
 | |
|     // preceded by X87. In such situations we follow gcc and pass the
 | |
|     // extra bits in an SSE reg.
 | |
|     if (Lo != X87) {
 | |
|       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
 | |
|       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
 | |
|         return ABIArgInfo::getDirect(HighPart, 8);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If a high part was specified, merge it together with the low part.  It is
 | |
|   // known to pass in the high eightbyte of the result.  We do this by forming a
 | |
|   // first class struct aggregate with the high and low part: {low, high}
 | |
|   if (HighPart)
 | |
|     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
 | |
| 
 | |
|   return ABIArgInfo::getDirect(ResType);
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_64ABIInfo::classifyArgumentType(
 | |
|   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
 | |
|   bool isNamedArg)
 | |
|   const
 | |
| {
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
| 
 | |
|   X86_64ABIInfo::Class Lo, Hi;
 | |
|   classify(Ty, 0, Lo, Hi, isNamedArg);
 | |
| 
 | |
|   // Check some invariants.
 | |
|   // FIXME: Enforce these by construction.
 | |
|   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
 | |
|   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
 | |
| 
 | |
|   neededInt = 0;
 | |
|   neededSSE = 0;
 | |
|   llvm::Type *ResType = nullptr;
 | |
|   switch (Lo) {
 | |
|   case NoClass:
 | |
|     if (Hi == NoClass)
 | |
|       return ABIArgInfo::getIgnore();
 | |
|     // If the low part is just padding, it takes no register, leave ResType
 | |
|     // null.
 | |
|     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
 | |
|            "Unknown missing lo part");
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
 | |
|     // on the stack.
 | |
|   case Memory:
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
 | |
|     // COMPLEX_X87, it is passed in memory.
 | |
|   case X87:
 | |
|   case ComplexX87:
 | |
|     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
 | |
|       ++neededInt;
 | |
|     return getIndirectResult(Ty, freeIntRegs);
 | |
| 
 | |
|   case SSEUp:
 | |
|   case X87Up:
 | |
|     llvm_unreachable("Invalid classification for lo word.");
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
 | |
|     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
 | |
|     // and %r9 is used.
 | |
|   case Integer:
 | |
|     ++neededInt;
 | |
| 
 | |
|     // Pick an 8-byte type based on the preferred type.
 | |
|     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
 | |
| 
 | |
|     // If we have a sign or zero extended integer, make sure to return Extend
 | |
|     // so that the parameter gets the right LLVM IR attributes.
 | |
|     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
 | |
|       // Treat an enum type as its underlying type.
 | |
|       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|         Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|       if (Ty->isIntegralOrEnumerationType() &&
 | |
|           Ty->isPromotableIntegerType())
 | |
|         return ABIArgInfo::getExtend(Ty);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
 | |
|     // available SSE register is used, the registers are taken in the
 | |
|     // order from %xmm0 to %xmm7.
 | |
|   case SSE: {
 | |
|     llvm::Type *IRType = CGT.ConvertType(Ty);
 | |
|     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
 | |
|     ++neededSSE;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm::Type *HighPart = nullptr;
 | |
|   switch (Hi) {
 | |
|     // Memory was handled previously, ComplexX87 and X87 should
 | |
|     // never occur as hi classes, and X87Up must be preceded by X87,
 | |
|     // which is passed in memory.
 | |
|   case Memory:
 | |
|   case X87:
 | |
|   case ComplexX87:
 | |
|     llvm_unreachable("Invalid classification for hi word.");
 | |
| 
 | |
|   case NoClass: break;
 | |
| 
 | |
|   case Integer:
 | |
|     ++neededInt;
 | |
|     // Pick an 8-byte type based on the preferred type.
 | |
|     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
 | |
| 
 | |
|     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
 | |
|       return ABIArgInfo::getDirect(HighPart, 8);
 | |
|     break;
 | |
| 
 | |
|     // X87Up generally doesn't occur here (long double is passed in
 | |
|     // memory), except in situations involving unions.
 | |
|   case X87Up:
 | |
|   case SSE:
 | |
|     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
 | |
| 
 | |
|     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
 | |
|       return ABIArgInfo::getDirect(HighPart, 8);
 | |
| 
 | |
|     ++neededSSE;
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
 | |
|     // eightbyte is passed in the upper half of the last used SSE
 | |
|     // register.  This only happens when 128-bit vectors are passed.
 | |
|   case SSEUp:
 | |
|     assert(Lo == SSE && "Unexpected SSEUp classification");
 | |
|     ResType = GetByteVectorType(Ty);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If a high part was specified, merge it together with the low part.  It is
 | |
|   // known to pass in the high eightbyte of the result.  We do this by forming a
 | |
|   // first class struct aggregate with the high and low part: {low, high}
 | |
|   if (HighPart)
 | |
|     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
 | |
| 
 | |
|   return ABIArgInfo::getDirect(ResType);
 | |
| }
 | |
| 
 | |
| ABIArgInfo
 | |
| X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
 | |
|                                              unsigned &NeededSSE) const {
 | |
|   auto RT = Ty->getAs<RecordType>();
 | |
|   assert(RT && "classifyRegCallStructType only valid with struct types");
 | |
| 
 | |
|   if (RT->getDecl()->hasFlexibleArrayMember())
 | |
|     return getIndirectReturnResult(Ty);
 | |
| 
 | |
|   // Sum up bases
 | |
|   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
 | |
|     if (CXXRD->isDynamicClass()) {
 | |
|       NeededInt = NeededSSE = 0;
 | |
|       return getIndirectReturnResult(Ty);
 | |
|     }
 | |
| 
 | |
|     for (const auto &I : CXXRD->bases())
 | |
|       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
 | |
|               .isIndirect()) {
 | |
|         NeededInt = NeededSSE = 0;
 | |
|         return getIndirectReturnResult(Ty);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Sum up members
 | |
|   for (const auto *FD : RT->getDecl()->fields()) {
 | |
|     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
 | |
|       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
 | |
|               .isIndirect()) {
 | |
|         NeededInt = NeededSSE = 0;
 | |
|         return getIndirectReturnResult(Ty);
 | |
|       }
 | |
|     } else {
 | |
|       unsigned LocalNeededInt, LocalNeededSSE;
 | |
|       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
 | |
|                                LocalNeededSSE, true)
 | |
|               .isIndirect()) {
 | |
|         NeededInt = NeededSSE = 0;
 | |
|         return getIndirectReturnResult(Ty);
 | |
|       }
 | |
|       NeededInt += LocalNeededInt;
 | |
|       NeededSSE += LocalNeededSSE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ABIArgInfo::getDirect();
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
 | |
|                                                     unsigned &NeededInt,
 | |
|                                                     unsigned &NeededSSE) const {
 | |
| 
 | |
|   NeededInt = 0;
 | |
|   NeededSSE = 0;
 | |
| 
 | |
|   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
 | |
| }
 | |
| 
 | |
| void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
| 
 | |
|   const unsigned CallingConv = FI.getCallingConvention();
 | |
|   // It is possible to force Win64 calling convention on any x86_64 target by
 | |
|   // using __attribute__((ms_abi)). In such case to correctly emit Win64
 | |
|   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
 | |
|   if (CallingConv == llvm::CallingConv::Win64) {
 | |
|     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
 | |
|     Win64ABIInfo.computeInfo(FI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
 | |
| 
 | |
|   // Keep track of the number of assigned registers.
 | |
|   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
 | |
|   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
 | |
|   unsigned NeededInt, NeededSSE;
 | |
| 
 | |
|   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
 | |
|     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
 | |
|         !FI.getReturnType()->getTypePtr()->isUnionType()) {
 | |
|       FI.getReturnInfo() =
 | |
|           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
 | |
|       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
 | |
|         FreeIntRegs -= NeededInt;
 | |
|         FreeSSERegs -= NeededSSE;
 | |
|       } else {
 | |
|         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
 | |
|       }
 | |
|     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
 | |
|       // Complex Long Double Type is passed in Memory when Regcall
 | |
|       // calling convention is used.
 | |
|       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
 | |
|       if (getContext().getCanonicalType(CT->getElementType()) ==
 | |
|           getContext().LongDoubleTy)
 | |
|         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
 | |
|     } else
 | |
|       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|   }
 | |
| 
 | |
|   // If the return value is indirect, then the hidden argument is consuming one
 | |
|   // integer register.
 | |
|   if (FI.getReturnInfo().isIndirect())
 | |
|     --FreeIntRegs;
 | |
| 
 | |
|   // The chain argument effectively gives us another free register.
 | |
|   if (FI.isChainCall())
 | |
|     ++FreeIntRegs;
 | |
| 
 | |
|   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
 | |
|   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
 | |
|   // get assigned (in left-to-right order) for passing as follows...
 | |
|   unsigned ArgNo = 0;
 | |
|   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | |
|        it != ie; ++it, ++ArgNo) {
 | |
|     bool IsNamedArg = ArgNo < NumRequiredArgs;
 | |
| 
 | |
|     if (IsRegCall && it->type->isStructureOrClassType())
 | |
|       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
 | |
|     else
 | |
|       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
 | |
|                                       NeededSSE, IsNamedArg);
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: If there are no registers available for any
 | |
|     // eightbyte of an argument, the whole argument is passed on the
 | |
|     // stack. If registers have already been assigned for some
 | |
|     // eightbytes of such an argument, the assignments get reverted.
 | |
|     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
 | |
|       FreeIntRegs -= NeededInt;
 | |
|       FreeSSERegs -= NeededSSE;
 | |
|     } else {
 | |
|       it->info = getIndirectResult(it->type, FreeIntRegs);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
 | |
|                                          Address VAListAddr, QualType Ty) {
 | |
|   Address overflow_arg_area_p =
 | |
|       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
 | |
|   llvm::Value *overflow_arg_area =
 | |
|     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
 | |
|   // byte boundary if alignment needed by type exceeds 8 byte boundary.
 | |
|   // It isn't stated explicitly in the standard, but in practice we use
 | |
|   // alignment greater than 16 where necessary.
 | |
|   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
 | |
|   if (Align > CharUnits::fromQuantity(8)) {
 | |
|     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
 | |
|                                                       Align);
 | |
|   }
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
 | |
|   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
 | |
|   llvm::Value *Res =
 | |
|     CGF.Builder.CreateBitCast(overflow_arg_area,
 | |
|                               llvm::PointerType::getUnqual(LTy));
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
 | |
|   // l->overflow_arg_area + sizeof(type).
 | |
|   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
 | |
|   // an 8 byte boundary.
 | |
| 
 | |
|   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
 | |
|   llvm::Value *Offset =
 | |
|       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
 | |
|   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
 | |
|                                             "overflow_arg_area.next");
 | |
|   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
 | |
|   return Address(Res, Align);
 | |
| }
 | |
| 
 | |
| Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                  QualType Ty) const {
 | |
|   // Assume that va_list type is correct; should be pointer to LLVM type:
 | |
|   // struct {
 | |
|   //   i32 gp_offset;
 | |
|   //   i32 fp_offset;
 | |
|   //   i8* overflow_arg_area;
 | |
|   //   i8* reg_save_area;
 | |
|   // };
 | |
|   unsigned neededInt, neededSSE;
 | |
| 
 | |
|   Ty = getContext().getCanonicalType(Ty);
 | |
|   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
 | |
|                                        /*isNamedArg*/false);
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
 | |
|   // in the registers. If not go to step 7.
 | |
|   if (!neededInt && !neededSSE)
 | |
|     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
 | |
|   // general purpose registers needed to pass type and num_fp to hold
 | |
|   // the number of floating point registers needed.
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
 | |
|   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
 | |
|   // l->fp_offset > 304 - num_fp * 16 go to step 7.
 | |
|   //
 | |
|   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
 | |
|   // register save space).
 | |
| 
 | |
|   llvm::Value *InRegs = nullptr;
 | |
|   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
 | |
|   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
 | |
|   if (neededInt) {
 | |
|     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
 | |
|     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
 | |
|     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
 | |
|     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
 | |
|   }
 | |
| 
 | |
|   if (neededSSE) {
 | |
|     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
 | |
|     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
 | |
|     llvm::Value *FitsInFP =
 | |
|       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
 | |
|     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
 | |
|     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
 | |
|   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
 | |
|   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
 | |
| 
 | |
|   // Emit code to load the value if it was passed in registers.
 | |
| 
 | |
|   CGF.EmitBlock(InRegBlock);
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
 | |
|   // an offset of l->gp_offset and/or l->fp_offset. This may require
 | |
|   // copying to a temporary location in case the parameter is passed
 | |
|   // in different register classes or requires an alignment greater
 | |
|   // than 8 for general purpose registers and 16 for XMM registers.
 | |
|   //
 | |
|   // FIXME: This really results in shameful code when we end up needing to
 | |
|   // collect arguments from different places; often what should result in a
 | |
|   // simple assembling of a structure from scattered addresses has many more
 | |
|   // loads than necessary. Can we clean this up?
 | |
|   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
 | |
|   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
 | |
|       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
 | |
| 
 | |
|   Address RegAddr = Address::invalid();
 | |
|   if (neededInt && neededSSE) {
 | |
|     // FIXME: Cleanup.
 | |
|     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
 | |
|     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
 | |
|     Address Tmp = CGF.CreateMemTemp(Ty);
 | |
|     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
 | |
|     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
 | |
|     llvm::Type *TyLo = ST->getElementType(0);
 | |
|     llvm::Type *TyHi = ST->getElementType(1);
 | |
|     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
 | |
|            "Unexpected ABI info for mixed regs");
 | |
|     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
 | |
|     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
 | |
|     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
 | |
|     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
 | |
|     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
 | |
|     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
 | |
| 
 | |
|     // Copy the first element.
 | |
|     // FIXME: Our choice of alignment here and below is probably pessimistic.
 | |
|     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
 | |
|         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
 | |
|         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
 | |
|     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
 | |
| 
 | |
|     // Copy the second element.
 | |
|     V = CGF.Builder.CreateAlignedLoad(
 | |
|         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
 | |
|         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
 | |
|     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
 | |
| 
 | |
|     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
 | |
|   } else if (neededInt) {
 | |
|     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
 | |
|                       CharUnits::fromQuantity(8));
 | |
|     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
 | |
| 
 | |
|     // Copy to a temporary if necessary to ensure the appropriate alignment.
 | |
|     std::pair<CharUnits, CharUnits> SizeAlign =
 | |
|         getContext().getTypeInfoInChars(Ty);
 | |
|     uint64_t TySize = SizeAlign.first.getQuantity();
 | |
|     CharUnits TyAlign = SizeAlign.second;
 | |
| 
 | |
|     // Copy into a temporary if the type is more aligned than the
 | |
|     // register save area.
 | |
|     if (TyAlign.getQuantity() > 8) {
 | |
|       Address Tmp = CGF.CreateMemTemp(Ty);
 | |
|       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
 | |
|       RegAddr = Tmp;
 | |
|     }
 | |
| 
 | |
|   } else if (neededSSE == 1) {
 | |
|     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
 | |
|                       CharUnits::fromQuantity(16));
 | |
|     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
 | |
|   } else {
 | |
|     assert(neededSSE == 2 && "Invalid number of needed registers!");
 | |
|     // SSE registers are spaced 16 bytes apart in the register save
 | |
|     // area, we need to collect the two eightbytes together.
 | |
|     // The ABI isn't explicit about this, but it seems reasonable
 | |
|     // to assume that the slots are 16-byte aligned, since the stack is
 | |
|     // naturally 16-byte aligned and the prologue is expected to store
 | |
|     // all the SSE registers to the RSA.
 | |
|     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
 | |
|                                 CharUnits::fromQuantity(16));
 | |
|     Address RegAddrHi =
 | |
|       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
 | |
|                                              CharUnits::fromQuantity(16));
 | |
|     llvm::Type *ST = AI.canHaveCoerceToType()
 | |
|                          ? AI.getCoerceToType()
 | |
|                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
 | |
|     llvm::Value *V;
 | |
|     Address Tmp = CGF.CreateMemTemp(Ty);
 | |
|     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
 | |
|     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
 | |
|         RegAddrLo, ST->getStructElementType(0)));
 | |
|     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
 | |
|     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
 | |
|         RegAddrHi, ST->getStructElementType(1)));
 | |
|     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
 | |
| 
 | |
|     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
 | |
|   }
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 5. Set:
 | |
|   // l->gp_offset = l->gp_offset + num_gp * 8
 | |
|   // l->fp_offset = l->fp_offset + num_fp * 16.
 | |
|   if (neededInt) {
 | |
|     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
 | |
|     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
 | |
|                             gp_offset_p);
 | |
|   }
 | |
|   if (neededSSE) {
 | |
|     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
 | |
|     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
 | |
|                             fp_offset_p);
 | |
|   }
 | |
|   CGF.EmitBranch(ContBlock);
 | |
| 
 | |
|   // Emit code to load the value if it was passed in memory.
 | |
| 
 | |
|   CGF.EmitBlock(InMemBlock);
 | |
|   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
 | |
| 
 | |
|   // Return the appropriate result.
 | |
| 
 | |
|   CGF.EmitBlock(ContBlock);
 | |
|   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
 | |
|                                  "vaarg.addr");
 | |
|   return ResAddr;
 | |
| }
 | |
| 
 | |
| Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                    QualType Ty) const {
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
 | |
|                           CGF.getContext().getTypeInfoInChars(Ty),
 | |
|                           CharUnits::fromQuantity(8),
 | |
|                           /*allowHigherAlign*/ false);
 | |
| }
 | |
| 
 | |
| ABIArgInfo
 | |
| WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
 | |
|                                     const ABIArgInfo ¤t) const {
 | |
|   // Assumes vectorCall calling convention.
 | |
|   const Type *Base = nullptr;
 | |
|   uint64_t NumElts = 0;
 | |
| 
 | |
|   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
 | |
|       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
 | |
|     FreeSSERegs -= NumElts;
 | |
|     return getDirectX86Hva();
 | |
|   }
 | |
|   return current;
 | |
| }
 | |
| 
 | |
| ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
 | |
|                                       bool IsReturnType, bool IsVectorCall,
 | |
|                                       bool IsRegCall) const {
 | |
| 
 | |
|   if (Ty->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   TypeInfo Info = getContext().getTypeInfo(Ty);
 | |
|   uint64_t Width = Info.Width;
 | |
|   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
 | |
| 
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (RT) {
 | |
|     if (!IsReturnType) {
 | |
|       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
 | |
|         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
|     }
 | |
| 
 | |
|     if (RT->getDecl()->hasFlexibleArrayMember())
 | |
|       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
| 
 | |
|   }
 | |
| 
 | |
|   const Type *Base = nullptr;
 | |
|   uint64_t NumElts = 0;
 | |
|   // vectorcall adds the concept of a homogenous vector aggregate, similar to
 | |
|   // other targets.
 | |
|   if ((IsVectorCall || IsRegCall) &&
 | |
|       isHomogeneousAggregate(Ty, Base, NumElts)) {
 | |
|     if (IsRegCall) {
 | |
|       if (FreeSSERegs >= NumElts) {
 | |
|         FreeSSERegs -= NumElts;
 | |
|         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
 | |
|           return ABIArgInfo::getDirect();
 | |
|         return ABIArgInfo::getExpand();
 | |
|       }
 | |
|       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
 | |
|     } else if (IsVectorCall) {
 | |
|       if (FreeSSERegs >= NumElts &&
 | |
|           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
 | |
|         FreeSSERegs -= NumElts;
 | |
|         return ABIArgInfo::getDirect();
 | |
|       } else if (IsReturnType) {
 | |
|         return ABIArgInfo::getExpand();
 | |
|       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
 | |
|         // HVAs are delayed and reclassified in the 2nd step.
 | |
|         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ty->isMemberPointerType()) {
 | |
|     // If the member pointer is represented by an LLVM int or ptr, pass it
 | |
|     // directly.
 | |
|     llvm::Type *LLTy = CGT.ConvertType(Ty);
 | |
|     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
 | |
|       return ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
|   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
 | |
|     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
 | |
|     // not 1, 2, 4, or 8 bytes, must be passed by reference."
 | |
|     if (Width > 64 || !llvm::isPowerOf2_64(Width))
 | |
|       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
| 
 | |
|     // Otherwise, coerce it to a small integer.
 | |
|     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
 | |
|   }
 | |
| 
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
 | |
|     switch (BT->getKind()) {
 | |
|     case BuiltinType::Bool:
 | |
|       // Bool type is always extended to the ABI, other builtin types are not
 | |
|       // extended.
 | |
|       return ABIArgInfo::getExtend(Ty);
 | |
| 
 | |
|     case BuiltinType::LongDouble:
 | |
|       // Mingw64 GCC uses the old 80 bit extended precision floating point
 | |
|       // unit. It passes them indirectly through memory.
 | |
|       if (IsMingw64) {
 | |
|         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
 | |
|         if (LDF == &llvm::APFloat::x87DoubleExtended())
 | |
|           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case BuiltinType::Int128:
 | |
|     case BuiltinType::UInt128:
 | |
|       // If it's a parameter type, the normal ABI rule is that arguments larger
 | |
|       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
 | |
|       // even though it isn't particularly efficient.
 | |
|       if (!IsReturnType)
 | |
|         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
 | |
| 
 | |
|       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
 | |
|       // Clang matches them for compatibility.
 | |
|       return ABIArgInfo::getDirect(
 | |
|           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ABIArgInfo::getDirect();
 | |
| }
 | |
| 
 | |
| void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
 | |
|                                              unsigned FreeSSERegs,
 | |
|                                              bool IsVectorCall,
 | |
|                                              bool IsRegCall) const {
 | |
|   unsigned Count = 0;
 | |
|   for (auto &I : FI.arguments()) {
 | |
|     // Vectorcall in x64 only permits the first 6 arguments to be passed
 | |
|     // as XMM/YMM registers.
 | |
|     if (Count < VectorcallMaxParamNumAsReg)
 | |
|       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
 | |
|     else {
 | |
|       // Since these cannot be passed in registers, pretend no registers
 | |
|       // are left.
 | |
|       unsigned ZeroSSERegsAvail = 0;
 | |
|       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
 | |
|                         IsVectorCall, IsRegCall);
 | |
|     }
 | |
|     ++Count;
 | |
|   }
 | |
| 
 | |
|   for (auto &I : FI.arguments()) {
 | |
|     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   const unsigned CC = FI.getCallingConvention();
 | |
|   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
 | |
|   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
 | |
| 
 | |
|   // If __attribute__((sysv_abi)) is in use, use the SysV argument
 | |
|   // classification rules.
 | |
|   if (CC == llvm::CallingConv::X86_64_SysV) {
 | |
|     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
 | |
|     SysVABIInfo.computeInfo(FI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned FreeSSERegs = 0;
 | |
|   if (IsVectorCall) {
 | |
|     // We can use up to 4 SSE return registers with vectorcall.
 | |
|     FreeSSERegs = 4;
 | |
|   } else if (IsRegCall) {
 | |
|     // RegCall gives us 16 SSE registers.
 | |
|     FreeSSERegs = 16;
 | |
|   }
 | |
| 
 | |
|   if (!getCXXABI().classifyReturnType(FI))
 | |
|     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
 | |
|                                   IsVectorCall, IsRegCall);
 | |
| 
 | |
|   if (IsVectorCall) {
 | |
|     // We can use up to 6 SSE register parameters with vectorcall.
 | |
|     FreeSSERegs = 6;
 | |
|   } else if (IsRegCall) {
 | |
|     // RegCall gives us 16 SSE registers, we can reuse the return registers.
 | |
|     FreeSSERegs = 16;
 | |
|   }
 | |
| 
 | |
|   if (IsVectorCall) {
 | |
|     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
 | |
|   } else {
 | |
|     for (auto &I : FI.arguments())
 | |
|       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                     QualType Ty) const {
 | |
| 
 | |
|   bool IsIndirect = false;
 | |
| 
 | |
|   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
 | |
|   // not 1, 2, 4, or 8 bytes, must be passed by reference."
 | |
|   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
 | |
|     uint64_t Width = getContext().getTypeSize(Ty);
 | |
|     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
 | |
|   }
 | |
| 
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
 | |
|                           CGF.getContext().getTypeInfoInChars(Ty),
 | |
|                           CharUnits::fromQuantity(8),
 | |
|                           /*allowHigherAlign*/ false);
 | |
| }
 | |
| 
 | |
| // PowerPC-32
 | |
| namespace {
 | |
| /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
 | |
| class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
 | |
|   bool IsSoftFloatABI;
 | |
| 
 | |
|   CharUnits getParamTypeAlignment(QualType Ty) const;
 | |
| 
 | |
| public:
 | |
|   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
 | |
|       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| };
 | |
| 
 | |
| class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
 | |
|       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
 | |
|     // This is recovered from gcc output.
 | |
|     return 1; // r1 is the dedicated stack pointer
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const override;
 | |
| };
 | |
| }
 | |
| 
 | |
| CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
 | |
|   // Complex types are passed just like their elements
 | |
|   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
 | |
|     Ty = CTy->getElementType();
 | |
| 
 | |
|   if (Ty->isVectorType())
 | |
|     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
 | |
|                                                                        : 4);
 | |
| 
 | |
|   // For single-element float/vector structs, we consider the whole type
 | |
|   // to have the same alignment requirements as its single element.
 | |
|   const Type *AlignTy = nullptr;
 | |
|   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
 | |
|     const BuiltinType *BT = EltType->getAs<BuiltinType>();
 | |
|     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
 | |
|         (BT && BT->isFloatingPoint()))
 | |
|       AlignTy = EltType;
 | |
|   }
 | |
| 
 | |
|   if (AlignTy)
 | |
|     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
 | |
|   return CharUnits::fromQuantity(4);
 | |
| }
 | |
| 
 | |
| // TODO: this implementation is now likely redundant with
 | |
| // DefaultABIInfo::EmitVAArg.
 | |
| Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
 | |
|                                       QualType Ty) const {
 | |
|   if (getTarget().getTriple().isOSDarwin()) {
 | |
|     auto TI = getContext().getTypeInfoInChars(Ty);
 | |
|     TI.second = getParamTypeAlignment(Ty);
 | |
| 
 | |
|     CharUnits SlotSize = CharUnits::fromQuantity(4);
 | |
|     return emitVoidPtrVAArg(CGF, VAList, Ty,
 | |
|                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
 | |
|                             /*AllowHigherAlign=*/true);
 | |
|   }
 | |
| 
 | |
|   const unsigned OverflowLimit = 8;
 | |
|   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
 | |
|     // TODO: Implement this. For now ignore.
 | |
|     (void)CTy;
 | |
|     return Address::invalid(); // FIXME?
 | |
|   }
 | |
| 
 | |
|   // struct __va_list_tag {
 | |
|   //   unsigned char gpr;
 | |
|   //   unsigned char fpr;
 | |
|   //   unsigned short reserved;
 | |
|   //   void *overflow_arg_area;
 | |
|   //   void *reg_save_area;
 | |
|   // };
 | |
| 
 | |
|   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
 | |
|   bool isInt =
 | |
|       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
 | |
|   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
 | |
| 
 | |
|   // All aggregates are passed indirectly?  That doesn't seem consistent
 | |
|   // with the argument-lowering code.
 | |
|   bool isIndirect = Ty->isAggregateType();
 | |
| 
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   // The calling convention either uses 1-2 GPRs or 1 FPR.
 | |
|   Address NumRegsAddr = Address::invalid();
 | |
|   if (isInt || IsSoftFloatABI) {
 | |
|     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
 | |
|   } else {
 | |
|     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
 | |
|   }
 | |
| 
 | |
|   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
 | |
| 
 | |
|   // "Align" the register count when TY is i64.
 | |
|   if (isI64 || (isF64 && IsSoftFloatABI)) {
 | |
|     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
 | |
|     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
 | |
|   }
 | |
| 
 | |
|   llvm::Value *CC =
 | |
|       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
 | |
| 
 | |
|   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
 | |
|   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
 | |
|   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
 | |
| 
 | |
|   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
 | |
| 
 | |
|   llvm::Type *DirectTy = CGF.ConvertType(Ty);
 | |
|   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
 | |
| 
 | |
|   // Case 1: consume registers.
 | |
|   Address RegAddr = Address::invalid();
 | |
|   {
 | |
|     CGF.EmitBlock(UsingRegs);
 | |
| 
 | |
|     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
 | |
|     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
 | |
|                       CharUnits::fromQuantity(8));
 | |
|     assert(RegAddr.getElementType() == CGF.Int8Ty);
 | |
| 
 | |
|     // Floating-point registers start after the general-purpose registers.
 | |
|     if (!(isInt || IsSoftFloatABI)) {
 | |
|       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
 | |
|                                                    CharUnits::fromQuantity(32));
 | |
|     }
 | |
| 
 | |
|     // Get the address of the saved value by scaling the number of
 | |
|     // registers we've used by the number of
 | |
|     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
 | |
|     llvm::Value *RegOffset =
 | |
|       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
 | |
|     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
 | |
|                                             RegAddr.getPointer(), RegOffset),
 | |
|                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
 | |
|     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
 | |
| 
 | |
|     // Increase the used-register count.
 | |
|     NumRegs =
 | |
|       Builder.CreateAdd(NumRegs,
 | |
|                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
 | |
|     Builder.CreateStore(NumRegs, NumRegsAddr);
 | |
| 
 | |
|     CGF.EmitBranch(Cont);
 | |
|   }
 | |
| 
 | |
|   // Case 2: consume space in the overflow area.
 | |
|   Address MemAddr = Address::invalid();
 | |
|   {
 | |
|     CGF.EmitBlock(UsingOverflow);
 | |
| 
 | |
|     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
 | |
| 
 | |
|     // Everything in the overflow area is rounded up to a size of at least 4.
 | |
|     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
 | |
| 
 | |
|     CharUnits Size;
 | |
|     if (!isIndirect) {
 | |
|       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
 | |
|       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
 | |
|     } else {
 | |
|       Size = CGF.getPointerSize();
 | |
|     }
 | |
| 
 | |
|     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
 | |
|     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
 | |
|                          OverflowAreaAlign);
 | |
|     // Round up address of argument to alignment
 | |
|     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
 | |
|     if (Align > OverflowAreaAlign) {
 | |
|       llvm::Value *Ptr = OverflowArea.getPointer();
 | |
|       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
 | |
|                                                            Align);
 | |
|     }
 | |
| 
 | |
|     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
 | |
| 
 | |
|     // Increase the overflow area.
 | |
|     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
 | |
|     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
 | |
|     CGF.EmitBranch(Cont);
 | |
|   }
 | |
| 
 | |
|   CGF.EmitBlock(Cont);
 | |
| 
 | |
|   // Merge the cases with a phi.
 | |
|   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
 | |
|                                 "vaarg.addr");
 | |
| 
 | |
|   // Load the pointer if the argument was passed indirectly.
 | |
|   if (isIndirect) {
 | |
|     Result = Address(Builder.CreateLoad(Result, "aggr"),
 | |
|                      getContext().getTypeAlignInChars(Ty));
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                                 llvm::Value *Address) const {
 | |
|   // This is calculated from the LLVM and GCC tables and verified
 | |
|   // against gcc output.  AFAIK all ABIs use the same encoding.
 | |
| 
 | |
|   CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   llvm::IntegerType *i8 = CGF.Int8Ty;
 | |
|   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
 | |
|   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
 | |
|   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
 | |
| 
 | |
|   // 0-31: r0-31, the 4-byte general-purpose registers
 | |
|   AssignToArrayRange(Builder, Address, Four8, 0, 31);
 | |
| 
 | |
|   // 32-63: fp0-31, the 8-byte floating-point registers
 | |
|   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
 | |
| 
 | |
|   // 64-76 are various 4-byte special-purpose registers:
 | |
|   // 64: mq
 | |
|   // 65: lr
 | |
|   // 66: ctr
 | |
|   // 67: ap
 | |
|   // 68-75 cr0-7
 | |
|   // 76: xer
 | |
|   AssignToArrayRange(Builder, Address, Four8, 64, 76);
 | |
| 
 | |
|   // 77-108: v0-31, the 16-byte vector registers
 | |
|   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
 | |
| 
 | |
|   // 109: vrsave
 | |
|   // 110: vscr
 | |
|   // 111: spe_acc
 | |
|   // 112: spefscr
 | |
|   // 113: sfp
 | |
|   AssignToArrayRange(Builder, Address, Four8, 109, 113);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // PowerPC-64
 | |
| 
 | |
| namespace {
 | |
| /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
 | |
| class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
 | |
| public:
 | |
|   enum ABIKind {
 | |
|     ELFv1 = 0,
 | |
|     ELFv2
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   static const unsigned GPRBits = 64;
 | |
|   ABIKind Kind;
 | |
|   bool HasQPX;
 | |
|   bool IsSoftFloatABI;
 | |
| 
 | |
|   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
 | |
|   // will be passed in a QPX register.
 | |
|   bool IsQPXVectorTy(const Type *Ty) const {
 | |
|     if (!HasQPX)
 | |
|       return false;
 | |
| 
 | |
|     if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|       unsigned NumElements = VT->getNumElements();
 | |
|       if (NumElements == 1)
 | |
|         return false;
 | |
| 
 | |
|       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
 | |
|         if (getContext().getTypeSize(Ty) <= 256)
 | |
|           return true;
 | |
|       } else if (VT->getElementType()->
 | |
|                    isSpecificBuiltinType(BuiltinType::Float)) {
 | |
|         if (getContext().getTypeSize(Ty) <= 128)
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool IsQPXVectorTy(QualType Ty) const {
 | |
|     return IsQPXVectorTy(Ty.getTypePtr());
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
 | |
|                      bool SoftFloatABI)
 | |
|       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
 | |
|         IsSoftFloatABI(SoftFloatABI) {}
 | |
| 
 | |
|   bool isPromotableTypeForABI(QualType Ty) const;
 | |
|   CharUnits getParamTypeAlignment(QualType Ty) const;
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType Ty) const;
 | |
| 
 | |
|   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
 | |
|   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
 | |
|                                          uint64_t Members) const override;
 | |
| 
 | |
|   // TODO: We can add more logic to computeInfo to improve performance.
 | |
|   // Example: For aggregate arguments that fit in a register, we could
 | |
|   // use getDirectInReg (as is done below for structs containing a single
 | |
|   // floating-point value) to avoid pushing them to memory on function
 | |
|   // entry.  This would require changing the logic in PPCISelLowering
 | |
|   // when lowering the parameters in the caller and args in the callee.
 | |
|   void computeInfo(CGFunctionInfo &FI) const override {
 | |
|     if (!getCXXABI().classifyReturnType(FI))
 | |
|       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|     for (auto &I : FI.arguments()) {
 | |
|       // We rely on the default argument classification for the most part.
 | |
|       // One exception:  An aggregate containing a single floating-point
 | |
|       // or vector item must be passed in a register if one is available.
 | |
|       const Type *T = isSingleElementStruct(I.type, getContext());
 | |
|       if (T) {
 | |
|         const BuiltinType *BT = T->getAs<BuiltinType>();
 | |
|         if (IsQPXVectorTy(T) ||
 | |
|             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
 | |
|             (BT && BT->isFloatingPoint())) {
 | |
|           QualType QT(T, 0);
 | |
|           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       I.info = classifyArgumentType(I.type);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| 
 | |
|   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
 | |
|                                     bool asReturnValue) const override {
 | |
|     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
 | |
|   }
 | |
| 
 | |
|   bool isSwiftErrorInRegister() const override {
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| 
 | |
| public:
 | |
|   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
 | |
|                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
 | |
|                                bool SoftFloatABI)
 | |
|       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
 | |
|                                                  SoftFloatABI)) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
 | |
|     // This is recovered from gcc output.
 | |
|     return 1; // r1 is the dedicated stack pointer
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const override;
 | |
| };
 | |
| 
 | |
| class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
 | |
| public:
 | |
|   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
 | |
|     // This is recovered from gcc output.
 | |
|     return 1; // r1 is the dedicated stack pointer
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const override;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| // Return true if the ABI requires Ty to be passed sign- or zero-
 | |
| // extended to 64 bits.
 | |
| bool
 | |
| PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   // Promotable integer types are required to be promoted by the ABI.
 | |
|   if (Ty->isPromotableIntegerType())
 | |
|     return true;
 | |
| 
 | |
|   // In addition to the usual promotable integer types, we also need to
 | |
|   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
 | |
|     switch (BT->getKind()) {
 | |
|     case BuiltinType::Int:
 | |
|     case BuiltinType::UInt:
 | |
|       return true;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isAlignedParamType - Determine whether a type requires 16-byte or
 | |
| /// higher alignment in the parameter area.  Always returns at least 8.
 | |
| CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
 | |
|   // Complex types are passed just like their elements.
 | |
|   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
 | |
|     Ty = CTy->getElementType();
 | |
| 
 | |
|   // Only vector types of size 16 bytes need alignment (larger types are
 | |
|   // passed via reference, smaller types are not aligned).
 | |
|   if (IsQPXVectorTy(Ty)) {
 | |
|     if (getContext().getTypeSize(Ty) > 128)
 | |
|       return CharUnits::fromQuantity(32);
 | |
| 
 | |
|     return CharUnits::fromQuantity(16);
 | |
|   } else if (Ty->isVectorType()) {
 | |
|     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
 | |
|   }
 | |
| 
 | |
|   // For single-element float/vector structs, we consider the whole type
 | |
|   // to have the same alignment requirements as its single element.
 | |
|   const Type *AlignAsType = nullptr;
 | |
|   const Type *EltType = isSingleElementStruct(Ty, getContext());
 | |
|   if (EltType) {
 | |
|     const BuiltinType *BT = EltType->getAs<BuiltinType>();
 | |
|     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
 | |
|          getContext().getTypeSize(EltType) == 128) ||
 | |
|         (BT && BT->isFloatingPoint()))
 | |
|       AlignAsType = EltType;
 | |
|   }
 | |
| 
 | |
|   // Likewise for ELFv2 homogeneous aggregates.
 | |
|   const Type *Base = nullptr;
 | |
|   uint64_t Members = 0;
 | |
|   if (!AlignAsType && Kind == ELFv2 &&
 | |
|       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
 | |
|     AlignAsType = Base;
 | |
| 
 | |
|   // With special case aggregates, only vector base types need alignment.
 | |
|   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
 | |
|     if (getContext().getTypeSize(AlignAsType) > 128)
 | |
|       return CharUnits::fromQuantity(32);
 | |
| 
 | |
|     return CharUnits::fromQuantity(16);
 | |
|   } else if (AlignAsType) {
 | |
|     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we only need alignment for any aggregate type that
 | |
|   // has an alignment requirement of >= 16 bytes.
 | |
|   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
 | |
|     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
 | |
|       return CharUnits::fromQuantity(32);
 | |
|     return CharUnits::fromQuantity(16);
 | |
|   }
 | |
| 
 | |
|   return CharUnits::fromQuantity(8);
 | |
| }
 | |
| 
 | |
| /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
 | |
| /// aggregate.  Base is set to the base element type, and Members is set
 | |
| /// to the number of base elements.
 | |
| bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
 | |
|                                      uint64_t &Members) const {
 | |
|   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
 | |
|     uint64_t NElements = AT->getSize().getZExtValue();
 | |
|     if (NElements == 0)
 | |
|       return false;
 | |
|     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
 | |
|       return false;
 | |
|     Members *= NElements;
 | |
|   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     if (RD->hasFlexibleArrayMember())
 | |
|       return false;
 | |
| 
 | |
|     Members = 0;
 | |
| 
 | |
|     // If this is a C++ record, check the bases first.
 | |
|     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|       for (const auto &I : CXXRD->bases()) {
 | |
|         // Ignore empty records.
 | |
|         if (isEmptyRecord(getContext(), I.getType(), true))
 | |
|           continue;
 | |
| 
 | |
|         uint64_t FldMembers;
 | |
|         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
 | |
|           return false;
 | |
| 
 | |
|         Members += FldMembers;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (const auto *FD : RD->fields()) {
 | |
|       // Ignore (non-zero arrays of) empty records.
 | |
|       QualType FT = FD->getType();
 | |
|       while (const ConstantArrayType *AT =
 | |
|              getContext().getAsConstantArrayType(FT)) {
 | |
|         if (AT->getSize().getZExtValue() == 0)
 | |
|           return false;
 | |
|         FT = AT->getElementType();
 | |
|       }
 | |
|       if (isEmptyRecord(getContext(), FT, true))
 | |
|         continue;
 | |
| 
 | |
|       // For compatibility with GCC, ignore empty bitfields in C++ mode.
 | |
|       if (getContext().getLangOpts().CPlusPlus &&
 | |
|           FD->isZeroLengthBitField(getContext()))
 | |
|         continue;
 | |
| 
 | |
|       uint64_t FldMembers;
 | |
|       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
 | |
|         return false;
 | |
| 
 | |
|       Members = (RD->isUnion() ?
 | |
|                  std::max(Members, FldMembers) : Members + FldMembers);
 | |
|     }
 | |
| 
 | |
|     if (!Base)
 | |
|       return false;
 | |
| 
 | |
|     // Ensure there is no padding.
 | |
|     if (getContext().getTypeSize(Base) * Members !=
 | |
|         getContext().getTypeSize(Ty))
 | |
|       return false;
 | |
|   } else {
 | |
|     Members = 1;
 | |
|     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
 | |
|       Members = 2;
 | |
|       Ty = CT->getElementType();
 | |
|     }
 | |
| 
 | |
|     // Most ABIs only support float, double, and some vector type widths.
 | |
|     if (!isHomogeneousAggregateBaseType(Ty))
 | |
|       return false;
 | |
| 
 | |
|     // The base type must be the same for all members.  Types that
 | |
|     // agree in both total size and mode (float vs. vector) are
 | |
|     // treated as being equivalent here.
 | |
|     const Type *TyPtr = Ty.getTypePtr();
 | |
|     if (!Base) {
 | |
|       Base = TyPtr;
 | |
|       // If it's a non-power-of-2 vector, its size is already a power-of-2,
 | |
|       // so make sure to widen it explicitly.
 | |
|       if (const VectorType *VT = Base->getAs<VectorType>()) {
 | |
|         QualType EltTy = VT->getElementType();
 | |
|         unsigned NumElements =
 | |
|             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
 | |
|         Base = getContext()
 | |
|                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
 | |
|                    .getTypePtr();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Base->isVectorType() != TyPtr->isVectorType() ||
 | |
|         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
 | |
|       return false;
 | |
|   }
 | |
|   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
 | |
| }
 | |
| 
 | |
| bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
 | |
|   // Homogeneous aggregates for ELFv2 must have base types of float,
 | |
|   // double, long double, or 128-bit vectors.
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
 | |
|     if (BT->getKind() == BuiltinType::Float ||
 | |
|         BT->getKind() == BuiltinType::Double ||
 | |
|         BT->getKind() == BuiltinType::LongDouble ||
 | |
|         (getContext().getTargetInfo().hasFloat128Type() &&
 | |
|           (BT->getKind() == BuiltinType::Float128))) {
 | |
|       if (IsSoftFloatABI)
 | |
|         return false;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
 | |
|     const Type *Base, uint64_t Members) const {
 | |
|   // Vector and fp128 types require one register, other floating point types
 | |
|   // require one or two registers depending on their size.
 | |
|   uint32_t NumRegs =
 | |
|       ((getContext().getTargetInfo().hasFloat128Type() &&
 | |
|           Base->isFloat128Type()) ||
 | |
|         Base->isVectorType()) ? 1
 | |
|                               : (getContext().getTypeSize(Base) + 63) / 64;
 | |
| 
 | |
|   // Homogeneous Aggregates may occupy at most 8 registers.
 | |
|   return Members * NumRegs <= 8;
 | |
| }
 | |
| 
 | |
| ABIArgInfo
 | |
| PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
| 
 | |
|   if (Ty->isAnyComplexType())
 | |
|     return ABIArgInfo::getDirect();
 | |
| 
 | |
|   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
 | |
|   // or via reference (larger than 16 bytes).
 | |
|   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
|     if (Size > 128)
 | |
|       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
|     else if (Size < 128) {
 | |
|       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
 | |
|       return ABIArgInfo::getDirect(CoerceTy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isAggregateTypeForABI(Ty)) {
 | |
|     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
 | |
|       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
| 
 | |
|     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
 | |
|     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
 | |
| 
 | |
|     // ELFv2 homogeneous aggregates are passed as array types.
 | |
|     const Type *Base = nullptr;
 | |
|     uint64_t Members = 0;
 | |
|     if (Kind == ELFv2 &&
 | |
|         isHomogeneousAggregate(Ty, Base, Members)) {
 | |
|       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
 | |
|       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
 | |
|       return ABIArgInfo::getDirect(CoerceTy);
 | |
|     }
 | |
| 
 | |
|     // If an aggregate may end up fully in registers, we do not
 | |
|     // use the ByVal method, but pass the aggregate as array.
 | |
|     // This is usually beneficial since we avoid forcing the
 | |
|     // back-end to store the argument to memory.
 | |
|     uint64_t Bits = getContext().getTypeSize(Ty);
 | |
|     if (Bits > 0 && Bits <= 8 * GPRBits) {
 | |
|       llvm::Type *CoerceTy;
 | |
| 
 | |
|       // Types up to 8 bytes are passed as integer type (which will be
 | |
|       // properly aligned in the argument save area doubleword).
 | |
|       if (Bits <= GPRBits)
 | |
|         CoerceTy =
 | |
|             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
 | |
|       // Larger types are passed as arrays, with the base type selected
 | |
|       // according to the required alignment in the save area.
 | |
|       else {
 | |
|         uint64_t RegBits = ABIAlign * 8;
 | |
|         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
 | |
|         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
 | |
|         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
 | |
|       }
 | |
| 
 | |
|       return ABIArgInfo::getDirect(CoerceTy);
 | |
|     }
 | |
| 
 | |
|     // All other aggregates are passed ByVal.
 | |
|     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
 | |
|                                    /*ByVal=*/true,
 | |
|                                    /*Realign=*/TyAlign > ABIAlign);
 | |
|   }
 | |
| 
 | |
|   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
 | |
|                                      : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| ABIArgInfo
 | |
| PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   if (RetTy->isAnyComplexType())
 | |
|     return ABIArgInfo::getDirect();
 | |
| 
 | |
|   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
 | |
|   // or via reference (larger than 16 bytes).
 | |
|   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
 | |
|     uint64_t Size = getContext().getTypeSize(RetTy);
 | |
|     if (Size > 128)
 | |
|       return getNaturalAlignIndirect(RetTy);
 | |
|     else if (Size < 128) {
 | |
|       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
 | |
|       return ABIArgInfo::getDirect(CoerceTy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isAggregateTypeForABI(RetTy)) {
 | |
|     // ELFv2 homogeneous aggregates are returned as array types.
 | |
|     const Type *Base = nullptr;
 | |
|     uint64_t Members = 0;
 | |
|     if (Kind == ELFv2 &&
 | |
|         isHomogeneousAggregate(RetTy, Base, Members)) {
 | |
|       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
 | |
|       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
 | |
|       return ABIArgInfo::getDirect(CoerceTy);
 | |
|     }
 | |
| 
 | |
|     // ELFv2 small aggregates are returned in up to two registers.
 | |
|     uint64_t Bits = getContext().getTypeSize(RetTy);
 | |
|     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
 | |
|       if (Bits == 0)
 | |
|         return ABIArgInfo::getIgnore();
 | |
| 
 | |
|       llvm::Type *CoerceTy;
 | |
|       if (Bits > GPRBits) {
 | |
|         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
 | |
|         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
 | |
|       } else
 | |
|         CoerceTy =
 | |
|             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
 | |
|       return ABIArgInfo::getDirect(CoerceTy);
 | |
|     }
 | |
| 
 | |
|     // All other aggregates are returned indirectly.
 | |
|     return getNaturalAlignIndirect(RetTy);
 | |
|   }
 | |
| 
 | |
|   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
 | |
|                                         : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
 | |
| Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                       QualType Ty) const {
 | |
|   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
 | |
|   TypeInfo.second = getParamTypeAlignment(Ty);
 | |
| 
 | |
|   CharUnits SlotSize = CharUnits::fromQuantity(8);
 | |
| 
 | |
|   // If we have a complex type and the base type is smaller than 8 bytes,
 | |
|   // the ABI calls for the real and imaginary parts to be right-adjusted
 | |
|   // in separate doublewords.  However, Clang expects us to produce a
 | |
|   // pointer to a structure with the two parts packed tightly.  So generate
 | |
|   // loads of the real and imaginary parts relative to the va_list pointer,
 | |
|   // and store them to a temporary structure.
 | |
|   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
 | |
|     CharUnits EltSize = TypeInfo.first / 2;
 | |
|     if (EltSize < SlotSize) {
 | |
|       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
 | |
|                                             SlotSize * 2, SlotSize,
 | |
|                                             SlotSize, /*AllowHigher*/ true);
 | |
| 
 | |
|       Address RealAddr = Addr;
 | |
|       Address ImagAddr = RealAddr;
 | |
|       if (CGF.CGM.getDataLayout().isBigEndian()) {
 | |
|         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
 | |
|                                                           SlotSize - EltSize);
 | |
|         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
 | |
|                                                       2 * SlotSize - EltSize);
 | |
|       } else {
 | |
|         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
 | |
|       }
 | |
| 
 | |
|       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
 | |
|       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
 | |
|       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
 | |
|       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
 | |
|       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
 | |
| 
 | |
|       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
 | |
|       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
 | |
|                              /*init*/ true);
 | |
|       return Temp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, just use the general rule.
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
 | |
|                           TypeInfo, SlotSize, /*AllowHigher*/ true);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                               llvm::Value *Address) {
 | |
|   // This is calculated from the LLVM and GCC tables and verified
 | |
|   // against gcc output.  AFAIK all ABIs use the same encoding.
 | |
| 
 | |
|   CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   llvm::IntegerType *i8 = CGF.Int8Ty;
 | |
|   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
 | |
|   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
 | |
|   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
 | |
| 
 | |
|   // 0-31: r0-31, the 8-byte general-purpose registers
 | |
|   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
 | |
| 
 | |
|   // 32-63: fp0-31, the 8-byte floating-point registers
 | |
|   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
 | |
| 
 | |
|   // 64-67 are various 8-byte special-purpose registers:
 | |
|   // 64: mq
 | |
|   // 65: lr
 | |
|   // 66: ctr
 | |
|   // 67: ap
 | |
|   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
 | |
| 
 | |
|   // 68-76 are various 4-byte special-purpose registers:
 | |
|   // 68-75 cr0-7
 | |
|   // 76: xer
 | |
|   AssignToArrayRange(Builder, Address, Four8, 68, 76);
 | |
| 
 | |
|   // 77-108: v0-31, the 16-byte vector registers
 | |
|   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
 | |
| 
 | |
|   // 109: vrsave
 | |
|   // 110: vscr
 | |
|   // 111: spe_acc
 | |
|   // 112: spefscr
 | |
|   // 113: sfp
 | |
|   // 114: tfhar
 | |
|   // 115: tfiar
 | |
|   // 116: texasr
 | |
|   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
 | |
|   CodeGen::CodeGenFunction &CGF,
 | |
|   llvm::Value *Address) const {
 | |
| 
 | |
|   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                                 llvm::Value *Address) const {
 | |
| 
 | |
|   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // AArch64 ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class AArch64ABIInfo : public SwiftABIInfo {
 | |
| public:
 | |
|   enum ABIKind {
 | |
|     AAPCS = 0,
 | |
|     DarwinPCS,
 | |
|     Win64
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   ABIKind Kind;
 | |
| 
 | |
| public:
 | |
|   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
 | |
|     : SwiftABIInfo(CGT), Kind(Kind) {}
 | |
| 
 | |
| private:
 | |
|   ABIKind getABIKind() const { return Kind; }
 | |
|   bool isDarwinPCS() const { return Kind == DarwinPCS; }
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | |
|   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
 | |
|   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
 | |
|                                          uint64_t Members) const override;
 | |
| 
 | |
|   bool isIllegalVectorType(QualType Ty) const;
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override {
 | |
|     if (!::classifyReturnType(getCXXABI(), FI, *this))
 | |
|       FI.getReturnInfo() =
 | |
|           classifyReturnType(FI.getReturnType(), FI.isVariadic());
 | |
| 
 | |
|     for (auto &it : FI.arguments())
 | |
|       it.info = classifyArgumentType(it.type);
 | |
|   }
 | |
| 
 | |
|   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
 | |
|                           CodeGenFunction &CGF) const;
 | |
| 
 | |
|   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
 | |
|                          CodeGenFunction &CGF) const;
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override {
 | |
|     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
 | |
|                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
 | |
|                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
 | |
|   }
 | |
| 
 | |
|   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                       QualType Ty) const override;
 | |
| 
 | |
|   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
 | |
|                                     bool asReturnValue) const override {
 | |
|     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
 | |
|   }
 | |
|   bool isSwiftErrorInRegister() const override {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
 | |
|                                  unsigned elts) const override;
 | |
| };
 | |
| 
 | |
| class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
 | |
|       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
 | |
| 
 | |
|   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
 | |
|     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
 | |
|   }
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
 | |
|     return 31;
 | |
|   }
 | |
| 
 | |
|   bool doesReturnSlotInterfereWithArgs() const override { return false; }
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override {
 | |
|     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
 | |
|     if (!FD)
 | |
|       return;
 | |
| 
 | |
|     CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress();
 | |
|     CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
 | |
|     bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement;
 | |
|     if (const auto *TA = FD->getAttr<TargetAttr>()) {
 | |
|       ParsedTargetAttr Attr = TA->parse();
 | |
|       if (!Attr.BranchProtection.empty()) {
 | |
|         TargetInfo::BranchProtectionInfo BPI;
 | |
|         StringRef Error;
 | |
|         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
 | |
|                                                        BPI, Error);
 | |
|         assert(Error.empty());
 | |
|         Scope = BPI.SignReturnAddr;
 | |
|         Key = BPI.SignKey;
 | |
|         BranchTargetEnforcement = BPI.BranchTargetEnforcement;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     auto *Fn = cast<llvm::Function>(GV);
 | |
|     if (Scope != CodeGenOptions::SignReturnAddressScope::None) {
 | |
|       Fn->addFnAttr("sign-return-address",
 | |
|                     Scope == CodeGenOptions::SignReturnAddressScope::All
 | |
|                         ? "all"
 | |
|                         : "non-leaf");
 | |
| 
 | |
|       Fn->addFnAttr("sign-return-address-key",
 | |
|                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
 | |
|                         ? "a_key"
 | |
|                         : "b_key");
 | |
|     }
 | |
| 
 | |
|     if (BranchTargetEnforcement)
 | |
|       Fn->addFnAttr("branch-target-enforcement");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
 | |
| public:
 | |
|   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
 | |
|       : AArch64TargetCodeGenInfo(CGT, K) {}
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override;
 | |
| 
 | |
|   void getDependentLibraryOption(llvm::StringRef Lib,
 | |
|                                  llvm::SmallString<24> &Opt) const override {
 | |
|     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
 | |
|   }
 | |
| 
 | |
|   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
 | |
|                                llvm::SmallString<32> &Opt) const override {
 | |
|     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
 | |
|   }
 | |
| };
 | |
| 
 | |
| void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
 | |
|     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
 | |
|   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
 | |
|   if (GV->isDeclaration())
 | |
|     return;
 | |
|   addStackProbeTargetAttributes(D, GV, CGM);
 | |
| }
 | |
| }
 | |
| 
 | |
| ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
| 
 | |
|   // Handle illegal vector types here.
 | |
|   if (isIllegalVectorType(Ty)) {
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
|     // Android promotes <2 x i8> to i16, not i32
 | |
|     if (isAndroid() && (Size <= 16)) {
 | |
|       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
 | |
|       return ABIArgInfo::getDirect(ResType);
 | |
|     }
 | |
|     if (Size <= 32) {
 | |
|       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
 | |
|       return ABIArgInfo::getDirect(ResType);
 | |
|     }
 | |
|     if (Size == 64) {
 | |
|       llvm::Type *ResType =
 | |
|           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
 | |
|       return ABIArgInfo::getDirect(ResType);
 | |
|     }
 | |
|     if (Size == 128) {
 | |
|       llvm::Type *ResType =
 | |
|           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
 | |
|       return ABIArgInfo::getDirect(ResType);
 | |
|     }
 | |
|     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
|   }
 | |
| 
 | |
|   if (!isAggregateTypeForABI(Ty)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|       Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return (Ty->isPromotableIntegerType() && isDarwinPCS()
 | |
|                 ? ABIArgInfo::getExtend(Ty)
 | |
|                 : ABIArgInfo::getDirect());
 | |
|   }
 | |
| 
 | |
|   // Structures with either a non-trivial destructor or a non-trivial
 | |
|   // copy constructor are always indirect.
 | |
|   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
 | |
|     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
 | |
|                                      CGCXXABI::RAA_DirectInMemory);
 | |
|   }
 | |
| 
 | |
|   // Empty records are always ignored on Darwin, but actually passed in C++ mode
 | |
|   // elsewhere for GNU compatibility.
 | |
|   uint64_t Size = getContext().getTypeSize(Ty);
 | |
|   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
 | |
|   if (IsEmpty || Size == 0) {
 | |
|     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
 | |
|       return ABIArgInfo::getIgnore();
 | |
| 
 | |
|     // GNU C mode. The only argument that gets ignored is an empty one with size
 | |
|     // 0.
 | |
|     if (IsEmpty && Size == 0)
 | |
|       return ABIArgInfo::getIgnore();
 | |
|     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
 | |
|   }
 | |
| 
 | |
|   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
 | |
|   const Type *Base = nullptr;
 | |
|   uint64_t Members = 0;
 | |
|   if (isHomogeneousAggregate(Ty, Base, Members)) {
 | |
|     return ABIArgInfo::getDirect(
 | |
|         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
 | |
|   }
 | |
| 
 | |
|   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
 | |
|   if (Size <= 128) {
 | |
|     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
 | |
|     // same size and alignment.
 | |
|     if (getTarget().isRenderScriptTarget()) {
 | |
|       return coerceToIntArray(Ty, getContext(), getVMContext());
 | |
|     }
 | |
|     unsigned Alignment;
 | |
|     if (Kind == AArch64ABIInfo::AAPCS) {
 | |
|       Alignment = getContext().getTypeUnadjustedAlign(Ty);
 | |
|       Alignment = Alignment < 128 ? 64 : 128;
 | |
|     } else {
 | |
|       Alignment = std::max(getContext().getTypeAlign(Ty),
 | |
|                            (unsigned)getTarget().getPointerWidth(0));
 | |
|     }
 | |
|     Size = llvm::alignTo(Size, Alignment);
 | |
| 
 | |
|     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
 | |
|     // For aggregates with 16-byte alignment, we use i128.
 | |
|     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
 | |
|     return ABIArgInfo::getDirect(
 | |
|         Size == Alignment ? BaseTy
 | |
|                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
 | |
|   }
 | |
| 
 | |
|   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
| }
 | |
| 
 | |
| ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
 | |
|                                               bool IsVariadic) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   // Large vector types should be returned via memory.
 | |
|   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
 | |
|     return getNaturalAlignIndirect(RetTy);
 | |
| 
 | |
|   if (!isAggregateTypeForABI(RetTy)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|       RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
 | |
|                 ? ABIArgInfo::getExtend(RetTy)
 | |
|                 : ABIArgInfo::getDirect());
 | |
|   }
 | |
| 
 | |
|   uint64_t Size = getContext().getTypeSize(RetTy);
 | |
|   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   const Type *Base = nullptr;
 | |
|   uint64_t Members = 0;
 | |
|   if (isHomogeneousAggregate(RetTy, Base, Members) &&
 | |
|       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
 | |
|         IsVariadic))
 | |
|     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
 | |
|     return ABIArgInfo::getDirect();
 | |
| 
 | |
|   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
 | |
|   if (Size <= 128) {
 | |
|     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
 | |
|     // same size and alignment.
 | |
|     if (getTarget().isRenderScriptTarget()) {
 | |
|       return coerceToIntArray(RetTy, getContext(), getVMContext());
 | |
|     }
 | |
|     unsigned Alignment = getContext().getTypeAlign(RetTy);
 | |
|     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
 | |
| 
 | |
|     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
 | |
|     // For aggregates with 16-byte alignment, we use i128.
 | |
|     if (Alignment < 128 && Size == 128) {
 | |
|       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
 | |
|       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
 | |
|     }
 | |
|     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
 | |
|   }
 | |
| 
 | |
|   return getNaturalAlignIndirect(RetTy);
 | |
| }
 | |
| 
 | |
| /// isIllegalVectorType - check whether the vector type is legal for AArch64.
 | |
| bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
 | |
|   if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|     // Check whether VT is legal.
 | |
|     unsigned NumElements = VT->getNumElements();
 | |
|     uint64_t Size = getContext().getTypeSize(VT);
 | |
|     // NumElements should be power of 2.
 | |
|     if (!llvm::isPowerOf2_32(NumElements))
 | |
|       return true;
 | |
| 
 | |
|     // arm64_32 has to be compatible with the ARM logic here, which allows huge
 | |
|     // vectors for some reason.
 | |
|     llvm::Triple Triple = getTarget().getTriple();
 | |
|     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
 | |
|         Triple.isOSBinFormatMachO())
 | |
|       return Size <= 32;
 | |
| 
 | |
|     return Size != 64 && (Size != 128 || NumElements == 1);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
 | |
|                                                llvm::Type *eltTy,
 | |
|                                                unsigned elts) const {
 | |
|   if (!llvm::isPowerOf2_32(elts))
 | |
|     return false;
 | |
|   if (totalSize.getQuantity() != 8 &&
 | |
|       (totalSize.getQuantity() != 16 || elts == 1))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
 | |
|   // Homogeneous aggregates for AAPCS64 must have base types of a floating
 | |
|   // point type or a short-vector type. This is the same as the 32-bit ABI,
 | |
|   // but with the difference that any floating-point type is allowed,
 | |
|   // including __fp16.
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
 | |
|     if (BT->isFloatingPoint())
 | |
|       return true;
 | |
|   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|     unsigned VecSize = getContext().getTypeSize(VT);
 | |
|     if (VecSize == 64 || VecSize == 128)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
 | |
|                                                        uint64_t Members) const {
 | |
|   return Members <= 4;
 | |
| }
 | |
| 
 | |
| Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
 | |
|                                             QualType Ty,
 | |
|                                             CodeGenFunction &CGF) const {
 | |
|   ABIArgInfo AI = classifyArgumentType(Ty);
 | |
|   bool IsIndirect = AI.isIndirect();
 | |
| 
 | |
|   llvm::Type *BaseTy = CGF.ConvertType(Ty);
 | |
|   if (IsIndirect)
 | |
|     BaseTy = llvm::PointerType::getUnqual(BaseTy);
 | |
|   else if (AI.getCoerceToType())
 | |
|     BaseTy = AI.getCoerceToType();
 | |
| 
 | |
|   unsigned NumRegs = 1;
 | |
|   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
 | |
|     BaseTy = ArrTy->getElementType();
 | |
|     NumRegs = ArrTy->getNumElements();
 | |
|   }
 | |
|   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
 | |
| 
 | |
|   // The AArch64 va_list type and handling is specified in the Procedure Call
 | |
|   // Standard, section B.4:
 | |
|   //
 | |
|   // struct {
 | |
|   //   void *__stack;
 | |
|   //   void *__gr_top;
 | |
|   //   void *__vr_top;
 | |
|   //   int __gr_offs;
 | |
|   //   int __vr_offs;
 | |
|   // };
 | |
| 
 | |
|   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
 | |
|   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
 | |
|   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
 | |
| 
 | |
|   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
 | |
|   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
 | |
| 
 | |
|   Address reg_offs_p = Address::invalid();
 | |
|   llvm::Value *reg_offs = nullptr;
 | |
|   int reg_top_index;
 | |
|   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
 | |
|   if (!IsFPR) {
 | |
|     // 3 is the field number of __gr_offs
 | |
|     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
 | |
|     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
 | |
|     reg_top_index = 1; // field number for __gr_top
 | |
|     RegSize = llvm::alignTo(RegSize, 8);
 | |
|   } else {
 | |
|     // 4 is the field number of __vr_offs.
 | |
|     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
 | |
|     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
 | |
|     reg_top_index = 2; // field number for __vr_top
 | |
|     RegSize = 16 * NumRegs;
 | |
|   }
 | |
| 
 | |
|   //=======================================
 | |
|   // Find out where argument was passed
 | |
|   //=======================================
 | |
| 
 | |
|   // If reg_offs >= 0 we're already using the stack for this type of
 | |
|   // argument. We don't want to keep updating reg_offs (in case it overflows,
 | |
|   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
 | |
|   // whatever they get).
 | |
|   llvm::Value *UsingStack = nullptr;
 | |
|   UsingStack = CGF.Builder.CreateICmpSGE(
 | |
|       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
 | |
| 
 | |
|   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
 | |
| 
 | |
|   // Otherwise, at least some kind of argument could go in these registers, the
 | |
|   // question is whether this particular type is too big.
 | |
|   CGF.EmitBlock(MaybeRegBlock);
 | |
| 
 | |
|   // Integer arguments may need to correct register alignment (for example a
 | |
|   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
 | |
|   // align __gr_offs to calculate the potential address.
 | |
|   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
 | |
|     int Align = TyAlign.getQuantity();
 | |
| 
 | |
|     reg_offs = CGF.Builder.CreateAdd(
 | |
|         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
 | |
|         "align_regoffs");
 | |
|     reg_offs = CGF.Builder.CreateAnd(
 | |
|         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
 | |
|         "aligned_regoffs");
 | |
|   }
 | |
| 
 | |
|   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
 | |
|   // The fact that this is done unconditionally reflects the fact that
 | |
|   // allocating an argument to the stack also uses up all the remaining
 | |
|   // registers of the appropriate kind.
 | |
|   llvm::Value *NewOffset = nullptr;
 | |
|   NewOffset = CGF.Builder.CreateAdd(
 | |
|       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
 | |
|   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
 | |
| 
 | |
|   // Now we're in a position to decide whether this argument really was in
 | |
|   // registers or not.
 | |
|   llvm::Value *InRegs = nullptr;
 | |
|   InRegs = CGF.Builder.CreateICmpSLE(
 | |
|       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
 | |
| 
 | |
|   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
 | |
| 
 | |
|   //=======================================
 | |
|   // Argument was in registers
 | |
|   //=======================================
 | |
| 
 | |
|   // Now we emit the code for if the argument was originally passed in
 | |
|   // registers. First start the appropriate block:
 | |
|   CGF.EmitBlock(InRegBlock);
 | |
| 
 | |
|   llvm::Value *reg_top = nullptr;
 | |
|   Address reg_top_p =
 | |
|       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
 | |
|   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
 | |
|   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
 | |
|                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
 | |
|   Address RegAddr = Address::invalid();
 | |
|   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
 | |
| 
 | |
|   if (IsIndirect) {
 | |
|     // If it's been passed indirectly (actually a struct), whatever we find from
 | |
|     // stored registers or on the stack will actually be a struct **.
 | |
|     MemTy = llvm::PointerType::getUnqual(MemTy);
 | |
|   }
 | |
| 
 | |
|   const Type *Base = nullptr;
 | |
|   uint64_t NumMembers = 0;
 | |
|   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
 | |
|   if (IsHFA && NumMembers > 1) {
 | |
|     // Homogeneous aggregates passed in registers will have their elements split
 | |
|     // and stored 16-bytes apart regardless of size (they're notionally in qN,
 | |
|     // qN+1, ...). We reload and store into a temporary local variable
 | |
|     // contiguously.
 | |
|     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
 | |
|     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
 | |
|     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
 | |
|     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
 | |
|     Address Tmp = CGF.CreateTempAlloca(HFATy,
 | |
|                                        std::max(TyAlign, BaseTyInfo.second));
 | |
| 
 | |
|     // On big-endian platforms, the value will be right-aligned in its slot.
 | |
|     int Offset = 0;
 | |
|     if (CGF.CGM.getDataLayout().isBigEndian() &&
 | |
|         BaseTyInfo.first.getQuantity() < 16)
 | |
|       Offset = 16 - BaseTyInfo.first.getQuantity();
 | |
| 
 | |
|     for (unsigned i = 0; i < NumMembers; ++i) {
 | |
|       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
 | |
|       Address LoadAddr =
 | |
|         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
 | |
|       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
 | |
| 
 | |
|       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
 | |
| 
 | |
|       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
 | |
|       CGF.Builder.CreateStore(Elem, StoreAddr);
 | |
|     }
 | |
| 
 | |
|     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
 | |
|   } else {
 | |
|     // Otherwise the object is contiguous in memory.
 | |
| 
 | |
|     // It might be right-aligned in its slot.
 | |
|     CharUnits SlotSize = BaseAddr.getAlignment();
 | |
|     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
 | |
|         (IsHFA || !isAggregateTypeForABI(Ty)) &&
 | |
|         TySize < SlotSize) {
 | |
|       CharUnits Offset = SlotSize - TySize;
 | |
|       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
 | |
|     }
 | |
| 
 | |
|     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
 | |
|   }
 | |
| 
 | |
|   CGF.EmitBranch(ContBlock);
 | |
| 
 | |
|   //=======================================
 | |
|   // Argument was on the stack
 | |
|   //=======================================
 | |
|   CGF.EmitBlock(OnStackBlock);
 | |
| 
 | |
|   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
 | |
|   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
 | |
| 
 | |
|   // Again, stack arguments may need realignment. In this case both integer and
 | |
|   // floating-point ones might be affected.
 | |
|   if (!IsIndirect && TyAlign.getQuantity() > 8) {
 | |
|     int Align = TyAlign.getQuantity();
 | |
| 
 | |
|     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
 | |
| 
 | |
|     OnStackPtr = CGF.Builder.CreateAdd(
 | |
|         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
 | |
|         "align_stack");
 | |
|     OnStackPtr = CGF.Builder.CreateAnd(
 | |
|         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
 | |
|         "align_stack");
 | |
| 
 | |
|     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
 | |
|   }
 | |
|   Address OnStackAddr(OnStackPtr,
 | |
|                       std::max(CharUnits::fromQuantity(8), TyAlign));
 | |
| 
 | |
|   // All stack slots are multiples of 8 bytes.
 | |
|   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
 | |
|   CharUnits StackSize;
 | |
|   if (IsIndirect)
 | |
|     StackSize = StackSlotSize;
 | |
|   else
 | |
|     StackSize = TySize.alignTo(StackSlotSize);
 | |
| 
 | |
|   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
 | |
|   llvm::Value *NewStack =
 | |
|       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
 | |
| 
 | |
|   // Write the new value of __stack for the next call to va_arg
 | |
|   CGF.Builder.CreateStore(NewStack, stack_p);
 | |
| 
 | |
|   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
 | |
|       TySize < StackSlotSize) {
 | |
|     CharUnits Offset = StackSlotSize - TySize;
 | |
|     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
 | |
|   }
 | |
| 
 | |
|   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
 | |
| 
 | |
|   CGF.EmitBranch(ContBlock);
 | |
| 
 | |
|   //=======================================
 | |
|   // Tidy up
 | |
|   //=======================================
 | |
|   CGF.EmitBlock(ContBlock);
 | |
| 
 | |
|   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
 | |
|                                  OnStackAddr, OnStackBlock, "vaargs.addr");
 | |
| 
 | |
|   if (IsIndirect)
 | |
|     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
 | |
|                    TyAlign);
 | |
| 
 | |
|   return ResAddr;
 | |
| }
 | |
| 
 | |
| Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
 | |
|                                         CodeGenFunction &CGF) const {
 | |
|   // The backend's lowering doesn't support va_arg for aggregates or
 | |
|   // illegal vector types.  Lower VAArg here for these cases and use
 | |
|   // the LLVM va_arg instruction for everything else.
 | |
|   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
 | |
|     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
 | |
| 
 | |
|   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
 | |
|   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
 | |
| 
 | |
|   // Empty records are ignored for parameter passing purposes.
 | |
|   if (isEmptyRecord(getContext(), Ty, true)) {
 | |
|     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
 | |
|     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
 | |
|     return Addr;
 | |
|   }
 | |
| 
 | |
|   // The size of the actual thing passed, which might end up just
 | |
|   // being a pointer for indirect types.
 | |
|   auto TyInfo = getContext().getTypeInfoInChars(Ty);
 | |
| 
 | |
|   // Arguments bigger than 16 bytes which aren't homogeneous
 | |
|   // aggregates should be passed indirectly.
 | |
|   bool IsIndirect = false;
 | |
|   if (TyInfo.first.getQuantity() > 16) {
 | |
|     const Type *Base = nullptr;
 | |
|     uint64_t Members = 0;
 | |
|     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
 | |
|   }
 | |
| 
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
 | |
|                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
 | |
| }
 | |
| 
 | |
| Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                     QualType Ty) const {
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
 | |
|                           CGF.getContext().getTypeInfoInChars(Ty),
 | |
|                           CharUnits::fromQuantity(8),
 | |
|                           /*allowHigherAlign*/ false);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ARM ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class ARMABIInfo : public SwiftABIInfo {
 | |
| public:
 | |
|   enum ABIKind {
 | |
|     APCS = 0,
 | |
|     AAPCS = 1,
 | |
|     AAPCS_VFP = 2,
 | |
|     AAPCS16_VFP = 3,
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   ABIKind Kind;
 | |
| 
 | |
| public:
 | |
|   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
 | |
|       : SwiftABIInfo(CGT), Kind(_Kind) {
 | |
|     setCCs();
 | |
|   }
 | |
| 
 | |
|   bool isEABI() const {
 | |
|     switch (getTarget().getTriple().getEnvironment()) {
 | |
|     case llvm::Triple::Android:
 | |
|     case llvm::Triple::EABI:
 | |
|     case llvm::Triple::EABIHF:
 | |
|     case llvm::Triple::GNUEABI:
 | |
|     case llvm::Triple::GNUEABIHF:
 | |
|     case llvm::Triple::MuslEABI:
 | |
|     case llvm::Triple::MuslEABIHF:
 | |
|       return true;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool isEABIHF() const {
 | |
|     switch (getTarget().getTriple().getEnvironment()) {
 | |
|     case llvm::Triple::EABIHF:
 | |
|     case llvm::Triple::GNUEABIHF:
 | |
|     case llvm::Triple::MuslEABIHF:
 | |
|       return true;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ABIKind getABIKind() const { return Kind; }
 | |
| 
 | |
| private:
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
 | |
|                                 unsigned functionCallConv) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
 | |
|                                   unsigned functionCallConv) const;
 | |
|   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
 | |
|                                           uint64_t Members) const;
 | |
|   ABIArgInfo coerceIllegalVector(QualType Ty) const;
 | |
|   bool isIllegalVectorType(QualType Ty) const;
 | |
|   bool containsAnyFP16Vectors(QualType Ty) const;
 | |
| 
 | |
|   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
 | |
|   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
 | |
|                                          uint64_t Members) const override;
 | |
| 
 | |
|   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| 
 | |
|   llvm::CallingConv::ID getLLVMDefaultCC() const;
 | |
|   llvm::CallingConv::ID getABIDefaultCC() const;
 | |
|   void setCCs();
 | |
| 
 | |
|   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
 | |
|                                     bool asReturnValue) const override {
 | |
|     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
 | |
|   }
 | |
|   bool isSwiftErrorInRegister() const override {
 | |
|     return true;
 | |
|   }
 | |
|   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
 | |
|                                  unsigned elts) const override;
 | |
| };
 | |
| 
 | |
| class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
 | |
|     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
 | |
| 
 | |
|   const ARMABIInfo &getABIInfo() const {
 | |
|     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
 | |
|   }
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
 | |
|     return 13;
 | |
|   }
 | |
| 
 | |
|   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
 | |
|     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const override {
 | |
|     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
 | |
| 
 | |
|     // 0-15 are the 16 integer registers.
 | |
|     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned getSizeOfUnwindException() const override {
 | |
|     if (getABIInfo().isEABI()) return 88;
 | |
|     return TargetCodeGenInfo::getSizeOfUnwindException();
 | |
|   }
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override {
 | |
|     if (GV->isDeclaration())
 | |
|       return;
 | |
|     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
 | |
|     if (!FD)
 | |
|       return;
 | |
| 
 | |
|     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
 | |
|     if (!Attr)
 | |
|       return;
 | |
| 
 | |
|     const char *Kind;
 | |
|     switch (Attr->getInterrupt()) {
 | |
|     case ARMInterruptAttr::Generic: Kind = ""; break;
 | |
|     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
 | |
|     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
 | |
|     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
 | |
|     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
 | |
|     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
 | |
|     }
 | |
| 
 | |
|     llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
| 
 | |
|     Fn->addFnAttr("interrupt", Kind);
 | |
| 
 | |
|     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
 | |
|     if (ABI == ARMABIInfo::APCS)
 | |
|       return;
 | |
| 
 | |
|     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
 | |
|     // however this is not necessarily true on taking any interrupt. Instruct
 | |
|     // the backend to perform a realignment as part of the function prologue.
 | |
|     llvm::AttrBuilder B;
 | |
|     B.addStackAlignmentAttr(8);
 | |
|     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
 | |
| public:
 | |
|   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
 | |
|       : ARMTargetCodeGenInfo(CGT, K) {}
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override;
 | |
| 
 | |
|   void getDependentLibraryOption(llvm::StringRef Lib,
 | |
|                                  llvm::SmallString<24> &Opt) const override {
 | |
|     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
 | |
|   }
 | |
| 
 | |
|   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
 | |
|                                llvm::SmallString<32> &Opt) const override {
 | |
|     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
 | |
|   }
 | |
| };
 | |
| 
 | |
| void WindowsARMTargetCodeGenInfo::setTargetAttributes(
 | |
|     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
 | |
|   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
 | |
|   if (GV->isDeclaration())
 | |
|     return;
 | |
|   addStackProbeTargetAttributes(D, GV, CGM);
 | |
| }
 | |
| }
 | |
| 
 | |
| void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   if (!::classifyReturnType(getCXXABI(), FI, *this))
 | |
|     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
 | |
|                                             FI.getCallingConvention());
 | |
| 
 | |
|   for (auto &I : FI.arguments())
 | |
|     I.info = classifyArgumentType(I.type, FI.isVariadic(),
 | |
|                                   FI.getCallingConvention());
 | |
| 
 | |
| 
 | |
|   // Always honor user-specified calling convention.
 | |
|   if (FI.getCallingConvention() != llvm::CallingConv::C)
 | |
|     return;
 | |
| 
 | |
|   llvm::CallingConv::ID cc = getRuntimeCC();
 | |
|   if (cc != llvm::CallingConv::C)
 | |
|     FI.setEffectiveCallingConvention(cc);
 | |
| }
 | |
| 
 | |
| /// Return the default calling convention that LLVM will use.
 | |
| llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
 | |
|   // The default calling convention that LLVM will infer.
 | |
|   if (isEABIHF() || getTarget().getTriple().isWatchABI())
 | |
|     return llvm::CallingConv::ARM_AAPCS_VFP;
 | |
|   else if (isEABI())
 | |
|     return llvm::CallingConv::ARM_AAPCS;
 | |
|   else
 | |
|     return llvm::CallingConv::ARM_APCS;
 | |
| }
 | |
| 
 | |
| /// Return the calling convention that our ABI would like us to use
 | |
| /// as the C calling convention.
 | |
| llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
 | |
|   switch (getABIKind()) {
 | |
|   case APCS: return llvm::CallingConv::ARM_APCS;
 | |
|   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
 | |
|   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
 | |
|   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
 | |
|   }
 | |
|   llvm_unreachable("bad ABI kind");
 | |
| }
 | |
| 
 | |
| void ARMABIInfo::setCCs() {
 | |
|   assert(getRuntimeCC() == llvm::CallingConv::C);
 | |
| 
 | |
|   // Don't muddy up the IR with a ton of explicit annotations if
 | |
|   // they'd just match what LLVM will infer from the triple.
 | |
|   llvm::CallingConv::ID abiCC = getABIDefaultCC();
 | |
|   if (abiCC != getLLVMDefaultCC())
 | |
|     RuntimeCC = abiCC;
 | |
| }
 | |
| 
 | |
| ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
 | |
|   uint64_t Size = getContext().getTypeSize(Ty);
 | |
|   if (Size <= 32) {
 | |
|     llvm::Type *ResType =
 | |
|         llvm::Type::getInt32Ty(getVMContext());
 | |
|     return ABIArgInfo::getDirect(ResType);
 | |
|   }
 | |
|   if (Size == 64 || Size == 128) {
 | |
|     llvm::Type *ResType = llvm::VectorType::get(
 | |
|         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
 | |
|     return ABIArgInfo::getDirect(ResType);
 | |
|   }
 | |
|   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
| }
 | |
| 
 | |
| ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
 | |
|                                                     const Type *Base,
 | |
|                                                     uint64_t Members) const {
 | |
|   assert(Base && "Base class should be set for homogeneous aggregate");
 | |
|   // Base can be a floating-point or a vector.
 | |
|   if (const VectorType *VT = Base->getAs<VectorType>()) {
 | |
|     // FP16 vectors should be converted to integer vectors
 | |
|     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
 | |
|       uint64_t Size = getContext().getTypeSize(VT);
 | |
|       llvm::Type *NewVecTy = llvm::VectorType::get(
 | |
|           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
 | |
|       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
 | |
|       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
 | |
|     }
 | |
|   }
 | |
|   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
 | |
| }
 | |
| 
 | |
| ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
 | |
|                                             unsigned functionCallConv) const {
 | |
|   // 6.1.2.1 The following argument types are VFP CPRCs:
 | |
|   //   A single-precision floating-point type (including promoted
 | |
|   //   half-precision types); A double-precision floating-point type;
 | |
|   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
 | |
|   //   with a Base Type of a single- or double-precision floating-point type,
 | |
|   //   64-bit containerized vectors or 128-bit containerized vectors with one
 | |
|   //   to four Elements.
 | |
|   // Variadic functions should always marshal to the base standard.
 | |
|   bool IsAAPCS_VFP =
 | |
|       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
 | |
| 
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
| 
 | |
|   // Handle illegal vector types here.
 | |
|   if (isIllegalVectorType(Ty))
 | |
|     return coerceIllegalVector(Ty);
 | |
| 
 | |
|   // _Float16 and __fp16 get passed as if it were an int or float, but with
 | |
|   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
 | |
|   // half type natively, and does not need to interwork with AAPCS code.
 | |
|   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
 | |
|       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
 | |
|     llvm::Type *ResType = IsAAPCS_VFP ?
 | |
|       llvm::Type::getFloatTy(getVMContext()) :
 | |
|       llvm::Type::getInt32Ty(getVMContext());
 | |
|     return ABIArgInfo::getDirect(ResType);
 | |
|   }
 | |
| 
 | |
|   if (!isAggregateTypeForABI(Ty)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
 | |
|       Ty = EnumTy->getDecl()->getIntegerType();
 | |
|     }
 | |
| 
 | |
|     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
 | |
|                                           : ABIArgInfo::getDirect());
 | |
|   }
 | |
| 
 | |
|   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
 | |
|     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
|   }
 | |
| 
 | |
|   // Ignore empty records.
 | |
|   if (isEmptyRecord(getContext(), Ty, true))
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   if (IsAAPCS_VFP) {
 | |
|     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
 | |
|     // into VFP registers.
 | |
|     const Type *Base = nullptr;
 | |
|     uint64_t Members = 0;
 | |
|     if (isHomogeneousAggregate(Ty, Base, Members))
 | |
|       return classifyHomogeneousAggregate(Ty, Base, Members);
 | |
|   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
 | |
|     // WatchOS does have homogeneous aggregates. Note that we intentionally use
 | |
|     // this convention even for a variadic function: the backend will use GPRs
 | |
|     // if needed.
 | |
|     const Type *Base = nullptr;
 | |
|     uint64_t Members = 0;
 | |
|     if (isHomogeneousAggregate(Ty, Base, Members)) {
 | |
|       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
 | |
|       llvm::Type *Ty =
 | |
|         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
 | |
|       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
 | |
|       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
 | |
|     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
 | |
|     // bigger than 128-bits, they get placed in space allocated by the caller,
 | |
|     // and a pointer is passed.
 | |
|     return ABIArgInfo::getIndirect(
 | |
|         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
 | |
|   }
 | |
| 
 | |
|   // Support byval for ARM.
 | |
|   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
 | |
|   // most 8-byte. We realign the indirect argument if type alignment is bigger
 | |
|   // than ABI alignment.
 | |
|   uint64_t ABIAlign = 4;
 | |
|   uint64_t TyAlign;
 | |
|   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
 | |
|       getABIKind() == ARMABIInfo::AAPCS) {
 | |
|     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
 | |
|     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
 | |
|   } else {
 | |
|     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
 | |
|   }
 | |
|   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
 | |
|     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
 | |
|     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
 | |
|                                    /*ByVal=*/true,
 | |
|                                    /*Realign=*/TyAlign > ABIAlign);
 | |
|   }
 | |
| 
 | |
|   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
 | |
|   // same size and alignment.
 | |
|   if (getTarget().isRenderScriptTarget()) {
 | |
|     return coerceToIntArray(Ty, getContext(), getVMContext());
 | |
|   }
 | |
| 
 | |
|   // Otherwise, pass by coercing to a structure of the appropriate size.
 | |
|   llvm::Type* ElemTy;
 | |
|   unsigned SizeRegs;
 | |
|   // FIXME: Try to match the types of the arguments more accurately where
 | |
|   // we can.
 | |
|   if (TyAlign <= 4) {
 | |
|     ElemTy = llvm::Type::getInt32Ty(getVMContext());
 | |
|     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
 | |
|   } else {
 | |
|     ElemTy = llvm::Type::getInt64Ty(getVMContext());
 | |
|     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
 | |
|   }
 | |
| 
 | |
|   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
 | |
| }
 | |
| 
 | |
| static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
 | |
|                               llvm::LLVMContext &VMContext) {
 | |
|   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
 | |
|   // is called integer-like if its size is less than or equal to one word, and
 | |
|   // the offset of each of its addressable sub-fields is zero.
 | |
| 
 | |
|   uint64_t Size = Context.getTypeSize(Ty);
 | |
| 
 | |
|   // Check that the type fits in a word.
 | |
|   if (Size > 32)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: Handle vector types!
 | |
|   if (Ty->isVectorType())
 | |
|     return false;
 | |
| 
 | |
|   // Float types are never treated as "integer like".
 | |
|   if (Ty->isRealFloatingType())
 | |
|     return false;
 | |
| 
 | |
|   // If this is a builtin or pointer type then it is ok.
 | |
|   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
 | |
|     return true;
 | |
| 
 | |
|   // Small complex integer types are "integer like".
 | |
|   if (const ComplexType *CT = Ty->getAs<ComplexType>())
 | |
|     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
 | |
| 
 | |
|   // Single element and zero sized arrays should be allowed, by the definition
 | |
|   // above, but they are not.
 | |
| 
 | |
|   // Otherwise, it must be a record type.
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (!RT) return false;
 | |
| 
 | |
|   // Ignore records with flexible arrays.
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
|   if (RD->hasFlexibleArrayMember())
 | |
|     return false;
 | |
| 
 | |
|   // Check that all sub-fields are at offset 0, and are themselves "integer
 | |
|   // like".
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   bool HadField = false;
 | |
|   unsigned idx = 0;
 | |
|   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|        i != e; ++i, ++idx) {
 | |
|     const FieldDecl *FD = *i;
 | |
| 
 | |
|     // Bit-fields are not addressable, we only need to verify they are "integer
 | |
|     // like". We still have to disallow a subsequent non-bitfield, for example:
 | |
|     //   struct { int : 0; int x }
 | |
|     // is non-integer like according to gcc.
 | |
|     if (FD->isBitField()) {
 | |
|       if (!RD->isUnion())
 | |
|         HadField = true;
 | |
| 
 | |
|       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
 | |
|         return false;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check if this field is at offset 0.
 | |
|     if (Layout.getFieldOffset(idx) != 0)
 | |
|       return false;
 | |
| 
 | |
|     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
 | |
|       return false;
 | |
| 
 | |
|     // Only allow at most one field in a structure. This doesn't match the
 | |
|     // wording above, but follows gcc in situations with a field following an
 | |
|     // empty structure.
 | |
|     if (!RD->isUnion()) {
 | |
|       if (HadField)
 | |
|         return false;
 | |
| 
 | |
|       HadField = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
 | |
|                                           unsigned functionCallConv) const {
 | |
| 
 | |
|   // Variadic functions should always marshal to the base standard.
 | |
|   bool IsAAPCS_VFP =
 | |
|       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
 | |
| 
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
 | |
|     // Large vector types should be returned via memory.
 | |
|     if (getContext().getTypeSize(RetTy) > 128)
 | |
|       return getNaturalAlignIndirect(RetTy);
 | |
|     // FP16 vectors should be converted to integer vectors
 | |
|     if (!getTarget().hasLegalHalfType() &&
 | |
|         (VT->getElementType()->isFloat16Type() ||
 | |
|          VT->getElementType()->isHalfType()))
 | |
|       return coerceIllegalVector(RetTy);
 | |
|   }
 | |
| 
 | |
|   // _Float16 and __fp16 get returned as if it were an int or float, but with
 | |
|   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
 | |
|   // half type natively, and does not need to interwork with AAPCS code.
 | |
|   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
 | |
|       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
 | |
|     llvm::Type *ResType = IsAAPCS_VFP ?
 | |
|       llvm::Type::getFloatTy(getVMContext()) :
 | |
|       llvm::Type::getInt32Ty(getVMContext());
 | |
|     return ABIArgInfo::getDirect(ResType);
 | |
|   }
 | |
| 
 | |
|   if (!isAggregateTypeForABI(RetTy)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|       RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
 | |
|                                             : ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
|   // Are we following APCS?
 | |
|   if (getABIKind() == APCS) {
 | |
|     if (isEmptyRecord(getContext(), RetTy, false))
 | |
|       return ABIArgInfo::getIgnore();
 | |
| 
 | |
|     // Complex types are all returned as packed integers.
 | |
|     //
 | |
|     // FIXME: Consider using 2 x vector types if the back end handles them
 | |
|     // correctly.
 | |
|     if (RetTy->isAnyComplexType())
 | |
|       return ABIArgInfo::getDirect(llvm::IntegerType::get(
 | |
|           getVMContext(), getContext().getTypeSize(RetTy)));
 | |
| 
 | |
|     // Integer like structures are returned in r0.
 | |
|     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
 | |
|       // Return in the smallest viable integer type.
 | |
|       uint64_t Size = getContext().getTypeSize(RetTy);
 | |
|       if (Size <= 8)
 | |
|         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
 | |
|       if (Size <= 16)
 | |
|         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
 | |
|       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | |
|     }
 | |
| 
 | |
|     // Otherwise return in memory.
 | |
|     return getNaturalAlignIndirect(RetTy);
 | |
|   }
 | |
| 
 | |
|   // Otherwise this is an AAPCS variant.
 | |
| 
 | |
|   if (isEmptyRecord(getContext(), RetTy, true))
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   // Check for homogeneous aggregates with AAPCS-VFP.
 | |
|   if (IsAAPCS_VFP) {
 | |
|     const Type *Base = nullptr;
 | |
|     uint64_t Members = 0;
 | |
|     if (isHomogeneousAggregate(RetTy, Base, Members))
 | |
|       return classifyHomogeneousAggregate(RetTy, Base, Members);
 | |
|   }
 | |
| 
 | |
|   // Aggregates <= 4 bytes are returned in r0; other aggregates
 | |
|   // are returned indirectly.
 | |
|   uint64_t Size = getContext().getTypeSize(RetTy);
 | |
|   if (Size <= 32) {
 | |
|     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
 | |
|     // same size and alignment.
 | |
|     if (getTarget().isRenderScriptTarget()) {
 | |
|       return coerceToIntArray(RetTy, getContext(), getVMContext());
 | |
|     }
 | |
|     if (getDataLayout().isBigEndian())
 | |
|       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
 | |
|       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | |
| 
 | |
|     // Return in the smallest viable integer type.
 | |
|     if (Size <= 8)
 | |
|       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
 | |
|     if (Size <= 16)
 | |
|       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
 | |
|     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | |
|   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
 | |
|     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
 | |
|     llvm::Type *CoerceTy =
 | |
|         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
 | |
|     return ABIArgInfo::getDirect(CoerceTy);
 | |
|   }
 | |
| 
 | |
|   return getNaturalAlignIndirect(RetTy);
 | |
| }
 | |
| 
 | |
| /// isIllegalVector - check whether Ty is an illegal vector type.
 | |
| bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
 | |
|   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
 | |
|     // On targets that don't support FP16, FP16 is expanded into float, and we
 | |
|     // don't want the ABI to depend on whether or not FP16 is supported in
 | |
|     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
 | |
|     if (!getTarget().hasLegalHalfType() &&
 | |
|         (VT->getElementType()->isFloat16Type() ||
 | |
|          VT->getElementType()->isHalfType()))
 | |
|       return true;
 | |
|     if (isAndroid()) {
 | |
|       // Android shipped using Clang 3.1, which supported a slightly different
 | |
|       // vector ABI. The primary differences were that 3-element vector types
 | |
|       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
 | |
|       // accepts that legacy behavior for Android only.
 | |
|       // Check whether VT is legal.
 | |
|       unsigned NumElements = VT->getNumElements();
 | |
|       // NumElements should be power of 2 or equal to 3.
 | |
|       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
 | |
|         return true;
 | |
|     } else {
 | |
|       // Check whether VT is legal.
 | |
|       unsigned NumElements = VT->getNumElements();
 | |
|       uint64_t Size = getContext().getTypeSize(VT);
 | |
|       // NumElements should be power of 2.
 | |
|       if (!llvm::isPowerOf2_32(NumElements))
 | |
|         return true;
 | |
|       // Size should be greater than 32 bits.
 | |
|       return Size <= 32;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if a type contains any 16-bit floating point vectors
 | |
| bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
 | |
|   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
 | |
|     uint64_t NElements = AT->getSize().getZExtValue();
 | |
|     if (NElements == 0)
 | |
|       return false;
 | |
|     return containsAnyFP16Vectors(AT->getElementType());
 | |
|   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
| 
 | |
|     // If this is a C++ record, check the bases first.
 | |
|     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
 | |
|             return containsAnyFP16Vectors(B.getType());
 | |
|           }))
 | |
|         return true;
 | |
| 
 | |
|     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
 | |
|           return FD && containsAnyFP16Vectors(FD->getType());
 | |
|         }))
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   } else {
 | |
|     if (const VectorType *VT = Ty->getAs<VectorType>())
 | |
|       return (VT->getElementType()->isFloat16Type() ||
 | |
|               VT->getElementType()->isHalfType());
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
 | |
|                                            llvm::Type *eltTy,
 | |
|                                            unsigned numElts) const {
 | |
|   if (!llvm::isPowerOf2_32(numElts))
 | |
|     return false;
 | |
|   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
 | |
|   if (size > 64)
 | |
|     return false;
 | |
|   if (vectorSize.getQuantity() != 8 &&
 | |
|       (vectorSize.getQuantity() != 16 || numElts == 1))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
 | |
|   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
 | |
|   // double, or 64-bit or 128-bit vectors.
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
 | |
|     if (BT->getKind() == BuiltinType::Float ||
 | |
|         BT->getKind() == BuiltinType::Double ||
 | |
|         BT->getKind() == BuiltinType::LongDouble)
 | |
|       return true;
 | |
|   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|     unsigned VecSize = getContext().getTypeSize(VT);
 | |
|     if (VecSize == 64 || VecSize == 128)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
 | |
|                                                    uint64_t Members) const {
 | |
|   return Members <= 4;
 | |
| }
 | |
| 
 | |
| bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
 | |
|                                         bool acceptHalf) const {
 | |
|   // Give precedence to user-specified calling conventions.
 | |
|   if (callConvention != llvm::CallingConv::C)
 | |
|     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
 | |
|   else
 | |
|     return (getABIKind() == AAPCS_VFP) ||
 | |
|            (acceptHalf && (getABIKind() == AAPCS16_VFP));
 | |
| }
 | |
| 
 | |
| Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                               QualType Ty) const {
 | |
|   CharUnits SlotSize = CharUnits::fromQuantity(4);
 | |
| 
 | |
|   // Empty records are ignored for parameter passing purposes.
 | |
|   if (isEmptyRecord(getContext(), Ty, true)) {
 | |
|     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
 | |
|     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
 | |
|     return Addr;
 | |
|   }
 | |
| 
 | |
|   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
 | |
|   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
 | |
| 
 | |
|   // Use indirect if size of the illegal vector is bigger than 16 bytes.
 | |
|   bool IsIndirect = false;
 | |
|   const Type *Base = nullptr;
 | |
|   uint64_t Members = 0;
 | |
|   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
 | |
|     IsIndirect = true;
 | |
| 
 | |
|   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
 | |
|   // allocated by the caller.
 | |
|   } else if (TySize > CharUnits::fromQuantity(16) &&
 | |
|              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
 | |
|              !isHomogeneousAggregate(Ty, Base, Members)) {
 | |
|     IsIndirect = true;
 | |
| 
 | |
|   // Otherwise, bound the type's ABI alignment.
 | |
|   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
 | |
|   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
 | |
|   // Our callers should be prepared to handle an under-aligned address.
 | |
|   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
 | |
|              getABIKind() == ARMABIInfo::AAPCS) {
 | |
|     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
 | |
|     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
 | |
|   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
 | |
|     // ARMv7k allows type alignment up to 16 bytes.
 | |
|     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
 | |
|     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
 | |
|   } else {
 | |
|     TyAlignForABI = CharUnits::fromQuantity(4);
 | |
|   }
 | |
| 
 | |
|   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
 | |
|                           SlotSize, /*AllowHigherAlign*/ true);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // NVPTX ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class NVPTXABIInfo : public ABIInfo {
 | |
| public:
 | |
|   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType Ty) const;
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| };
 | |
| 
 | |
| class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &M) const override;
 | |
|   bool shouldEmitStaticExternCAliases() const override;
 | |
| 
 | |
| private:
 | |
|   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
 | |
|   // resulting MDNode to the nvvm.annotations MDNode.
 | |
|   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
 | |
| };
 | |
| 
 | |
| /// Checks if the type is unsupported directly by the current target.
 | |
| static bool isUnsupportedType(ASTContext &Context, QualType T) {
 | |
|   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
 | |
|     return true;
 | |
|   if (!Context.getTargetInfo().hasFloat128Type() &&
 | |
|       (T->isFloat128Type() ||
 | |
|        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
 | |
|     return true;
 | |
|   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
 | |
|       Context.getTypeSize(T) > 64)
 | |
|     return true;
 | |
|   if (const auto *AT = T->getAsArrayTypeUnsafe())
 | |
|     return isUnsupportedType(Context, AT->getElementType());
 | |
|   const auto *RT = T->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return false;
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
| 
 | |
|   // If this is a C++ record, check the bases first.
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|     for (const CXXBaseSpecifier &I : CXXRD->bases())
 | |
|       if (isUnsupportedType(Context, I.getType()))
 | |
|         return true;
 | |
| 
 | |
|   for (const FieldDecl *I : RD->fields())
 | |
|     if (isUnsupportedType(Context, I->getType()))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Coerce the given type into an array with maximum allowed size of elements.
 | |
| static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
 | |
|                                             llvm::LLVMContext &LLVMContext,
 | |
|                                             unsigned MaxSize) {
 | |
|   // Alignment and Size are measured in bits.
 | |
|   const uint64_t Size = Context.getTypeSize(Ty);
 | |
|   const uint64_t Alignment = Context.getTypeAlign(Ty);
 | |
|   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
 | |
|   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
 | |
|   const uint64_t NumElements = (Size + Div - 1) / Div;
 | |
|   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
 | |
| }
 | |
| 
 | |
| ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   if (getContext().getLangOpts().OpenMP &&
 | |
|       getContext().getLangOpts().OpenMPIsDevice &&
 | |
|       isUnsupportedType(getContext(), RetTy))
 | |
|     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
 | |
| 
 | |
|   // note: this is different from default ABI
 | |
|   if (!RetTy->isScalarType())
 | |
|     return ABIArgInfo::getDirect();
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|     RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
 | |
|                                            : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   // Return aggregates type as indirect by value
 | |
|   if (isAggregateTypeForABI(Ty))
 | |
|     return getNaturalAlignIndirect(Ty, /* byval */ true);
 | |
| 
 | |
|   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
 | |
|                                         : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   if (!getCXXABI().classifyReturnType(FI))
 | |
|     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|   for (auto &I : FI.arguments())
 | |
|     I.info = classifyArgumentType(I.type);
 | |
| 
 | |
|   // Always honor user-specified calling convention.
 | |
|   if (FI.getCallingConvention() != llvm::CallingConv::C)
 | |
|     return;
 | |
| 
 | |
|   FI.setEffectiveCallingConvention(getRuntimeCC());
 | |
| }
 | |
| 
 | |
| Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                 QualType Ty) const {
 | |
|   llvm_unreachable("NVPTX does not support varargs");
 | |
| }
 | |
| 
 | |
| void NVPTXTargetCodeGenInfo::setTargetAttributes(
 | |
|     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
 | |
|   if (GV->isDeclaration())
 | |
|     return;
 | |
|   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
 | |
|   if (!FD) return;
 | |
| 
 | |
|   llvm::Function *F = cast<llvm::Function>(GV);
 | |
| 
 | |
|   // Perform special handling in OpenCL mode
 | |
|   if (M.getLangOpts().OpenCL) {
 | |
|     // Use OpenCL function attributes to check for kernel functions
 | |
|     // By default, all functions are device functions
 | |
|     if (FD->hasAttr<OpenCLKernelAttr>()) {
 | |
|       // OpenCL __kernel functions get kernel metadata
 | |
|       // Create !{<func-ref>, metadata !"kernel", i32 1} node
 | |
|       addNVVMMetadata(F, "kernel", 1);
 | |
|       // And kernel functions are not subject to inlining
 | |
|       F->addFnAttr(llvm::Attribute::NoInline);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Perform special handling in CUDA mode.
 | |
|   if (M.getLangOpts().CUDA) {
 | |
|     // CUDA __global__ functions get a kernel metadata entry.  Since
 | |
|     // __global__ functions cannot be called from the device, we do not
 | |
|     // need to set the noinline attribute.
 | |
|     if (FD->hasAttr<CUDAGlobalAttr>()) {
 | |
|       // Create !{<func-ref>, metadata !"kernel", i32 1} node
 | |
|       addNVVMMetadata(F, "kernel", 1);
 | |
|     }
 | |
|     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
 | |
|       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
 | |
|       llvm::APSInt MaxThreads(32);
 | |
|       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
 | |
|       if (MaxThreads > 0)
 | |
|         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
 | |
| 
 | |
|       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
 | |
|       // not specified in __launch_bounds__ or if the user specified a 0 value,
 | |
|       // we don't have to add a PTX directive.
 | |
|       if (Attr->getMinBlocks()) {
 | |
|         llvm::APSInt MinBlocks(32);
 | |
|         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
 | |
|         if (MinBlocks > 0)
 | |
|           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
 | |
|           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
 | |
|                                              int Operand) {
 | |
|   llvm::Module *M = F->getParent();
 | |
|   llvm::LLVMContext &Ctx = M->getContext();
 | |
| 
 | |
|   // Get "nvvm.annotations" metadata node
 | |
|   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
 | |
| 
 | |
|   llvm::Metadata *MDVals[] = {
 | |
|       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
 | |
|       llvm::ConstantAsMetadata::get(
 | |
|           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
 | |
|   // Append metadata to nvvm.annotations
 | |
|   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
 | |
| }
 | |
| 
 | |
| bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
 | |
|   return false;
 | |
| }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SystemZ ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class SystemZABIInfo : public SwiftABIInfo {
 | |
|   bool HasVector;
 | |
|   bool IsSoftFloatABI;
 | |
| 
 | |
| public:
 | |
|   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
 | |
|     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
 | |
| 
 | |
|   bool isPromotableIntegerType(QualType Ty) const;
 | |
|   bool isCompoundType(QualType Ty) const;
 | |
|   bool isVectorArgumentType(QualType Ty) const;
 | |
|   bool isFPArgumentType(QualType Ty) const;
 | |
|   QualType GetSingleElementType(QualType Ty) const;
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override {
 | |
|     if (!getCXXABI().classifyReturnType(FI))
 | |
|       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|     for (auto &I : FI.arguments())
 | |
|       I.info = classifyArgumentType(I.type);
 | |
|   }
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| 
 | |
|   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
 | |
|                                     bool asReturnValue) const override {
 | |
|     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
 | |
|   }
 | |
|   bool isSwiftErrorInRegister() const override {
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
 | |
|     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector, SoftFloatABI)) {}
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   // Promotable integer types are required to be promoted by the ABI.
 | |
|   if (Ty->isPromotableIntegerType())
 | |
|     return true;
 | |
| 
 | |
|   // 32-bit values must also be promoted.
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
 | |
|     switch (BT->getKind()) {
 | |
|     case BuiltinType::Int:
 | |
|     case BuiltinType::UInt:
 | |
|       return true;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SystemZABIInfo::isCompoundType(QualType Ty) const {
 | |
|   return (Ty->isAnyComplexType() ||
 | |
|           Ty->isVectorType() ||
 | |
|           isAggregateTypeForABI(Ty));
 | |
| }
 | |
| 
 | |
| bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
 | |
|   return (HasVector &&
 | |
|           Ty->isVectorType() &&
 | |
|           getContext().getTypeSize(Ty) <= 128);
 | |
| }
 | |
| 
 | |
| bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
 | |
|   if (IsSoftFloatABI)
 | |
|     return false;
 | |
| 
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
 | |
|     switch (BT->getKind()) {
 | |
|     case BuiltinType::Float:
 | |
|     case BuiltinType::Double:
 | |
|       return true;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
 | |
|   if (const RecordType *RT = Ty->getAsStructureType()) {
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     QualType Found;
 | |
| 
 | |
|     // If this is a C++ record, check the bases first.
 | |
|     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|       for (const auto &I : CXXRD->bases()) {
 | |
|         QualType Base = I.getType();
 | |
| 
 | |
|         // Empty bases don't affect things either way.
 | |
|         if (isEmptyRecord(getContext(), Base, true))
 | |
|           continue;
 | |
| 
 | |
|         if (!Found.isNull())
 | |
|           return Ty;
 | |
|         Found = GetSingleElementType(Base);
 | |
|       }
 | |
| 
 | |
|     // Check the fields.
 | |
|     for (const auto *FD : RD->fields()) {
 | |
|       // For compatibility with GCC, ignore empty bitfields in C++ mode.
 | |
|       // Unlike isSingleElementStruct(), empty structure and array fields
 | |
|       // do count.  So do anonymous bitfields that aren't zero-sized.
 | |
|       if (getContext().getLangOpts().CPlusPlus &&
 | |
|           FD->isZeroLengthBitField(getContext()))
 | |
|         continue;
 | |
| 
 | |
|       // Unlike isSingleElementStruct(), arrays do not count.
 | |
|       // Nested structures still do though.
 | |
|       if (!Found.isNull())
 | |
|         return Ty;
 | |
|       Found = GetSingleElementType(FD->getType());
 | |
|     }
 | |
| 
 | |
|     // Unlike isSingleElementStruct(), trailing padding is allowed.
 | |
|     // An 8-byte aligned struct s { float f; } is passed as a double.
 | |
|     if (!Found.isNull())
 | |
|       return Found;
 | |
|   }
 | |
| 
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                   QualType Ty) const {
 | |
|   // Assume that va_list type is correct; should be pointer to LLVM type:
 | |
|   // struct {
 | |
|   //   i64 __gpr;
 | |
|   //   i64 __fpr;
 | |
|   //   i8 *__overflow_arg_area;
 | |
|   //   i8 *__reg_save_area;
 | |
|   // };
 | |
| 
 | |
|   // Every non-vector argument occupies 8 bytes and is passed by preference
 | |
|   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
 | |
|   // always passed on the stack.
 | |
|   Ty = getContext().getCanonicalType(Ty);
 | |
|   auto TyInfo = getContext().getTypeInfoInChars(Ty);
 | |
|   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
 | |
|   llvm::Type *DirectTy = ArgTy;
 | |
|   ABIArgInfo AI = classifyArgumentType(Ty);
 | |
|   bool IsIndirect = AI.isIndirect();
 | |
|   bool InFPRs = false;
 | |
|   bool IsVector = false;
 | |
|   CharUnits UnpaddedSize;
 | |
|   CharUnits DirectAlign;
 | |
|   if (IsIndirect) {
 | |
|     DirectTy = llvm::PointerType::getUnqual(DirectTy);
 | |
|     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
 | |
|   } else {
 | |
|     if (AI.getCoerceToType())
 | |
|       ArgTy = AI.getCoerceToType();
 | |
|     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
 | |
|     IsVector = ArgTy->isVectorTy();
 | |
|     UnpaddedSize = TyInfo.first;
 | |
|     DirectAlign = TyInfo.second;
 | |
|   }
 | |
|   CharUnits PaddedSize = CharUnits::fromQuantity(8);
 | |
|   if (IsVector && UnpaddedSize > PaddedSize)
 | |
|     PaddedSize = CharUnits::fromQuantity(16);
 | |
|   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
 | |
| 
 | |
|   CharUnits Padding = (PaddedSize - UnpaddedSize);
 | |
| 
 | |
|   llvm::Type *IndexTy = CGF.Int64Ty;
 | |
|   llvm::Value *PaddedSizeV =
 | |
|     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
 | |
| 
 | |
|   if (IsVector) {
 | |
|     // Work out the address of a vector argument on the stack.
 | |
|     // Vector arguments are always passed in the high bits of a
 | |
|     // single (8 byte) or double (16 byte) stack slot.
 | |
|     Address OverflowArgAreaPtr =
 | |
|         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
 | |
|     Address OverflowArgArea =
 | |
|       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
 | |
|               TyInfo.second);
 | |
|     Address MemAddr =
 | |
|       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
 | |
| 
 | |
|     // Update overflow_arg_area_ptr pointer
 | |
|     llvm::Value *NewOverflowArgArea =
 | |
|       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
 | |
|                             "overflow_arg_area");
 | |
|     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
 | |
| 
 | |
|     return MemAddr;
 | |
|   }
 | |
| 
 | |
|   assert(PaddedSize.getQuantity() == 8);
 | |
| 
 | |
|   unsigned MaxRegs, RegCountField, RegSaveIndex;
 | |
|   CharUnits RegPadding;
 | |
|   if (InFPRs) {
 | |
|     MaxRegs = 4; // Maximum of 4 FPR arguments
 | |
|     RegCountField = 1; // __fpr
 | |
|     RegSaveIndex = 16; // save offset for f0
 | |
|     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
 | |
|   } else {
 | |
|     MaxRegs = 5; // Maximum of 5 GPR arguments
 | |
|     RegCountField = 0; // __gpr
 | |
|     RegSaveIndex = 2; // save offset for r2
 | |
|     RegPadding = Padding; // values are passed in the low bits of a GPR
 | |
|   }
 | |
| 
 | |
|   Address RegCountPtr =
 | |
|       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
 | |
|   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
 | |
|   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
 | |
|   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
 | |
|                                                  "fits_in_regs");
 | |
| 
 | |
|   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
 | |
|   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
 | |
|   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
 | |
| 
 | |
|   // Emit code to load the value if it was passed in registers.
 | |
|   CGF.EmitBlock(InRegBlock);
 | |
| 
 | |
|   // Work out the address of an argument register.
 | |
|   llvm::Value *ScaledRegCount =
 | |
|     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
 | |
|   llvm::Value *RegBase =
 | |
|     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
 | |
|                                       + RegPadding.getQuantity());
 | |
|   llvm::Value *RegOffset =
 | |
|     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
 | |
|   Address RegSaveAreaPtr =
 | |
|       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
 | |
|   llvm::Value *RegSaveArea =
 | |
|     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
 | |
|   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
 | |
|                                            "raw_reg_addr"),
 | |
|                      PaddedSize);
 | |
|   Address RegAddr =
 | |
|     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
 | |
| 
 | |
|   // Update the register count
 | |
|   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
 | |
|   llvm::Value *NewRegCount =
 | |
|     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
 | |
|   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
 | |
|   CGF.EmitBranch(ContBlock);
 | |
| 
 | |
|   // Emit code to load the value if it was passed in memory.
 | |
|   CGF.EmitBlock(InMemBlock);
 | |
| 
 | |
|   // Work out the address of a stack argument.
 | |
|   Address OverflowArgAreaPtr =
 | |
|       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
 | |
|   Address OverflowArgArea =
 | |
|     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
 | |
|             PaddedSize);
 | |
|   Address RawMemAddr =
 | |
|     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
 | |
|   Address MemAddr =
 | |
|     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
 | |
| 
 | |
|   // Update overflow_arg_area_ptr pointer
 | |
|   llvm::Value *NewOverflowArgArea =
 | |
|     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
 | |
|                           "overflow_arg_area");
 | |
|   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
 | |
|   CGF.EmitBranch(ContBlock);
 | |
| 
 | |
|   // Return the appropriate result.
 | |
|   CGF.EmitBlock(ContBlock);
 | |
|   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
 | |
|                                  MemAddr, InMemBlock, "va_arg.addr");
 | |
| 
 | |
|   if (IsIndirect)
 | |
|     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
 | |
|                       TyInfo.second);
 | |
| 
 | |
|   return ResAddr;
 | |
| }
 | |
| 
 | |
| ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
|   if (isVectorArgumentType(RetTy))
 | |
|     return ABIArgInfo::getDirect();
 | |
|   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
 | |
|     return getNaturalAlignIndirect(RetTy);
 | |
|   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
 | |
|                                          : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   // Handle the generic C++ ABI.
 | |
|   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
 | |
|     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
| 
 | |
|   // Integers and enums are extended to full register width.
 | |
|   if (isPromotableIntegerType(Ty))
 | |
|     return ABIArgInfo::getExtend(Ty);
 | |
| 
 | |
|   // Handle vector types and vector-like structure types.  Note that
 | |
|   // as opposed to float-like structure types, we do not allow any
 | |
|   // padding for vector-like structures, so verify the sizes match.
 | |
|   uint64_t Size = getContext().getTypeSize(Ty);
 | |
|   QualType SingleElementTy = GetSingleElementType(Ty);
 | |
|   if (isVectorArgumentType(SingleElementTy) &&
 | |
|       getContext().getTypeSize(SingleElementTy) == Size)
 | |
|     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
 | |
| 
 | |
|   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
 | |
|   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
 | |
|     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
| 
 | |
|   // Handle small structures.
 | |
|   if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     // Structures with flexible arrays have variable length, so really
 | |
|     // fail the size test above.
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     if (RD->hasFlexibleArrayMember())
 | |
|       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
| 
 | |
|     // The structure is passed as an unextended integer, a float, or a double.
 | |
|     llvm::Type *PassTy;
 | |
|     if (isFPArgumentType(SingleElementTy)) {
 | |
|       assert(Size == 32 || Size == 64);
 | |
|       if (Size == 32)
 | |
|         PassTy = llvm::Type::getFloatTy(getVMContext());
 | |
|       else
 | |
|         PassTy = llvm::Type::getDoubleTy(getVMContext());
 | |
|     } else
 | |
|       PassTy = llvm::IntegerType::get(getVMContext(), Size);
 | |
|     return ABIArgInfo::getDirect(PassTy);
 | |
|   }
 | |
| 
 | |
|   // Non-structure compounds are passed indirectly.
 | |
|   if (isCompoundType(Ty))
 | |
|     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
| 
 | |
|   return ABIArgInfo::getDirect(nullptr);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // MSP430 ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &M) const override;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| void MSP430TargetCodeGenInfo::setTargetAttributes(
 | |
|     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
 | |
|   if (GV->isDeclaration())
 | |
|     return;
 | |
|   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
 | |
|     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
 | |
|     if (!InterruptAttr)
 | |
|       return;
 | |
| 
 | |
|     // Handle 'interrupt' attribute:
 | |
|     llvm::Function *F = cast<llvm::Function>(GV);
 | |
| 
 | |
|     // Step 1: Set ISR calling convention.
 | |
|     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
 | |
| 
 | |
|     // Step 2: Add attributes goodness.
 | |
|     F->addFnAttr(llvm::Attribute::NoInline);
 | |
|     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // MIPS ABI Implementation.  This works for both little-endian and
 | |
| // big-endian variants.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class MipsABIInfo : public ABIInfo {
 | |
|   bool IsO32;
 | |
|   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
 | |
|   void CoerceToIntArgs(uint64_t TySize,
 | |
|                        SmallVectorImpl<llvm::Type *> &ArgList) const;
 | |
|   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
 | |
|   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
 | |
|   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
 | |
| public:
 | |
|   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
 | |
|     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
 | |
|     StackAlignInBytes(IsO32 ? 8 : 16) {}
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
|   ABIArgInfo extendType(QualType Ty) const;
 | |
| };
 | |
| 
 | |
| class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
|   unsigned SizeOfUnwindException;
 | |
| public:
 | |
|   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
 | |
|     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
 | |
|       SizeOfUnwindException(IsO32 ? 24 : 32) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
 | |
|     return 29;
 | |
|   }
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override {
 | |
|     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
 | |
|     if (!FD) return;
 | |
|     llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
| 
 | |
|     if (FD->hasAttr<MipsLongCallAttr>())
 | |
|       Fn->addFnAttr("long-call");
 | |
|     else if (FD->hasAttr<MipsShortCallAttr>())
 | |
|       Fn->addFnAttr("short-call");
 | |
| 
 | |
|     // Other attributes do not have a meaning for declarations.
 | |
|     if (GV->isDeclaration())
 | |
|       return;
 | |
| 
 | |
|     if (FD->hasAttr<Mips16Attr>()) {
 | |
|       Fn->addFnAttr("mips16");
 | |
|     }
 | |
|     else if (FD->hasAttr<NoMips16Attr>()) {
 | |
|       Fn->addFnAttr("nomips16");
 | |
|     }
 | |
| 
 | |
|     if (FD->hasAttr<MicroMipsAttr>())
 | |
|       Fn->addFnAttr("micromips");
 | |
|     else if (FD->hasAttr<NoMicroMipsAttr>())
 | |
|       Fn->addFnAttr("nomicromips");
 | |
| 
 | |
|     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
 | |
|     if (!Attr)
 | |
|       return;
 | |
| 
 | |
|     const char *Kind;
 | |
|     switch (Attr->getInterrupt()) {
 | |
|     case MipsInterruptAttr::eic:     Kind = "eic"; break;
 | |
|     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
 | |
|     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
 | |
|     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
 | |
|     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
 | |
|     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
 | |
|     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
 | |
|     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
 | |
|     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
 | |
|     }
 | |
| 
 | |
|     Fn->addFnAttr("interrupt", Kind);
 | |
| 
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const override;
 | |
| 
 | |
|   unsigned getSizeOfUnwindException() const override {
 | |
|     return SizeOfUnwindException;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| void MipsABIInfo::CoerceToIntArgs(
 | |
|     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
 | |
|   llvm::IntegerType *IntTy =
 | |
|     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
 | |
| 
 | |
|   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
 | |
|   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
 | |
|     ArgList.push_back(IntTy);
 | |
| 
 | |
|   // If necessary, add one more integer type to ArgList.
 | |
|   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
 | |
| 
 | |
|   if (R)
 | |
|     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
 | |
| }
 | |
| 
 | |
| // In N32/64, an aligned double precision floating point field is passed in
 | |
| // a register.
 | |
| llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
 | |
|   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
 | |
| 
 | |
|   if (IsO32) {
 | |
|     CoerceToIntArgs(TySize, ArgList);
 | |
|     return llvm::StructType::get(getVMContext(), ArgList);
 | |
|   }
 | |
| 
 | |
|   if (Ty->isComplexType())
 | |
|     return CGT.ConvertType(Ty);
 | |
| 
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
| 
 | |
|   // Unions/vectors are passed in integer registers.
 | |
|   if (!RT || !RT->isStructureOrClassType()) {
 | |
|     CoerceToIntArgs(TySize, ArgList);
 | |
|     return llvm::StructType::get(getVMContext(), ArgList);
 | |
|   }
 | |
| 
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
|   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
 | |
|   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
 | |
| 
 | |
|   uint64_t LastOffset = 0;
 | |
|   unsigned idx = 0;
 | |
|   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
 | |
| 
 | |
|   // Iterate over fields in the struct/class and check if there are any aligned
 | |
|   // double fields.
 | |
|   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|        i != e; ++i, ++idx) {
 | |
|     const QualType Ty = i->getType();
 | |
|     const BuiltinType *BT = Ty->getAs<BuiltinType>();
 | |
| 
 | |
|     if (!BT || BT->getKind() != BuiltinType::Double)
 | |
|       continue;
 | |
| 
 | |
|     uint64_t Offset = Layout.getFieldOffset(idx);
 | |
|     if (Offset % 64) // Ignore doubles that are not aligned.
 | |
|       continue;
 | |
| 
 | |
|     // Add ((Offset - LastOffset) / 64) args of type i64.
 | |
|     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
 | |
|       ArgList.push_back(I64);
 | |
| 
 | |
|     // Add double type.
 | |
|     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
 | |
|     LastOffset = Offset + 64;
 | |
|   }
 | |
| 
 | |
|   CoerceToIntArgs(TySize - LastOffset, IntArgList);
 | |
|   ArgList.append(IntArgList.begin(), IntArgList.end());
 | |
| 
 | |
|   return llvm::StructType::get(getVMContext(), ArgList);
 | |
| }
 | |
| 
 | |
| llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
 | |
|                                         uint64_t Offset) const {
 | |
|   if (OrigOffset + MinABIStackAlignInBytes > Offset)
 | |
|     return nullptr;
 | |
| 
 | |
|   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
 | |
| }
 | |
| 
 | |
| ABIArgInfo
 | |
| MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
| 
 | |
|   uint64_t OrigOffset = Offset;
 | |
|   uint64_t TySize = getContext().getTypeSize(Ty);
 | |
|   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
 | |
| 
 | |
|   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
 | |
|                    (uint64_t)StackAlignInBytes);
 | |
|   unsigned CurrOffset = llvm::alignTo(Offset, Align);
 | |
|   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
 | |
| 
 | |
|   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
 | |
|     // Ignore empty aggregates.
 | |
|     if (TySize == 0)
 | |
|       return ABIArgInfo::getIgnore();
 | |
| 
 | |
|     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
 | |
|       Offset = OrigOffset + MinABIStackAlignInBytes;
 | |
|       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
|     }
 | |
| 
 | |
|     // If we have reached here, aggregates are passed directly by coercing to
 | |
|     // another structure type. Padding is inserted if the offset of the
 | |
|     // aggregate is unaligned.
 | |
|     ABIArgInfo ArgInfo =
 | |
|         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
 | |
|                               getPaddingType(OrigOffset, CurrOffset));
 | |
|     ArgInfo.setInReg(true);
 | |
|     return ArgInfo;
 | |
|   }
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   // All integral types are promoted to the GPR width.
 | |
|   if (Ty->isIntegralOrEnumerationType())
 | |
|     return extendType(Ty);
 | |
| 
 | |
|   return ABIArgInfo::getDirect(
 | |
|       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
 | |
| }
 | |
| 
 | |
| llvm::Type*
 | |
| MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
 | |
|   const RecordType *RT = RetTy->getAs<RecordType>();
 | |
|   SmallVector<llvm::Type*, 8> RTList;
 | |
| 
 | |
|   if (RT && RT->isStructureOrClassType()) {
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
 | |
|     unsigned FieldCnt = Layout.getFieldCount();
 | |
| 
 | |
|     // N32/64 returns struct/classes in floating point registers if the
 | |
|     // following conditions are met:
 | |
|     // 1. The size of the struct/class is no larger than 128-bit.
 | |
|     // 2. The struct/class has one or two fields all of which are floating
 | |
|     //    point types.
 | |
|     // 3. The offset of the first field is zero (this follows what gcc does).
 | |
|     //
 | |
|     // Any other composite results are returned in integer registers.
 | |
|     //
 | |
|     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
 | |
|       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
 | |
|       for (; b != e; ++b) {
 | |
|         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
 | |
| 
 | |
|         if (!BT || !BT->isFloatingPoint())
 | |
|           break;
 | |
| 
 | |
|         RTList.push_back(CGT.ConvertType(b->getType()));
 | |
|       }
 | |
| 
 | |
|       if (b == e)
 | |
|         return llvm::StructType::get(getVMContext(), RTList,
 | |
|                                      RD->hasAttr<PackedAttr>());
 | |
| 
 | |
|       RTList.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CoerceToIntArgs(Size, RTList);
 | |
|   return llvm::StructType::get(getVMContext(), RTList);
 | |
| }
 | |
| 
 | |
| ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   uint64_t Size = getContext().getTypeSize(RetTy);
 | |
| 
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   // O32 doesn't treat zero-sized structs differently from other structs.
 | |
|   // However, N32/N64 ignores zero sized return values.
 | |
|   if (!IsO32 && Size == 0)
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
 | |
|     if (Size <= 128) {
 | |
|       if (RetTy->isAnyComplexType())
 | |
|         return ABIArgInfo::getDirect();
 | |
| 
 | |
|       // O32 returns integer vectors in registers and N32/N64 returns all small
 | |
|       // aggregates in registers.
 | |
|       if (!IsO32 ||
 | |
|           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
 | |
|         ABIArgInfo ArgInfo =
 | |
|             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
 | |
|         ArgInfo.setInReg(true);
 | |
|         return ArgInfo;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return getNaturalAlignIndirect(RetTy);
 | |
|   }
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|     RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   if (RetTy->isPromotableIntegerType())
 | |
|     return ABIArgInfo::getExtend(RetTy);
 | |
| 
 | |
|   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
 | |
|       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
 | |
|     return ABIArgInfo::getSignExtend(RetTy);
 | |
| 
 | |
|   return ABIArgInfo::getDirect();
 | |
| }
 | |
| 
 | |
| void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   ABIArgInfo &RetInfo = FI.getReturnInfo();
 | |
|   if (!getCXXABI().classifyReturnType(FI))
 | |
|     RetInfo = classifyReturnType(FI.getReturnType());
 | |
| 
 | |
|   // Check if a pointer to an aggregate is passed as a hidden argument.
 | |
|   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
 | |
| 
 | |
|   for (auto &I : FI.arguments())
 | |
|     I.info = classifyArgumentType(I.type, Offset);
 | |
| }
 | |
| 
 | |
| Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                QualType OrigTy) const {
 | |
|   QualType Ty = OrigTy;
 | |
| 
 | |
|   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
 | |
|   // Pointers are also promoted in the same way but this only matters for N32.
 | |
|   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
 | |
|   unsigned PtrWidth = getTarget().getPointerWidth(0);
 | |
|   bool DidPromote = false;
 | |
|   if ((Ty->isIntegerType() &&
 | |
|           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
 | |
|       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
 | |
|     DidPromote = true;
 | |
|     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
 | |
|                                             Ty->isSignedIntegerType());
 | |
|   }
 | |
| 
 | |
|   auto TyInfo = getContext().getTypeInfoInChars(Ty);
 | |
| 
 | |
|   // The alignment of things in the argument area is never larger than
 | |
|   // StackAlignInBytes.
 | |
|   TyInfo.second =
 | |
|     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
 | |
| 
 | |
|   // MinABIStackAlignInBytes is the size of argument slots on the stack.
 | |
|   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
 | |
| 
 | |
|   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
 | |
|                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
 | |
| 
 | |
| 
 | |
|   // If there was a promotion, "unpromote" into a temporary.
 | |
|   // TODO: can we just use a pointer into a subset of the original slot?
 | |
|   if (DidPromote) {
 | |
|     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
 | |
|     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
 | |
| 
 | |
|     // Truncate down to the right width.
 | |
|     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
 | |
|                                                  : CGF.IntPtrTy);
 | |
|     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
 | |
|     if (OrigTy->isPointerType())
 | |
|       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
 | |
| 
 | |
|     CGF.Builder.CreateStore(V, Temp);
 | |
|     Addr = Temp;
 | |
|   }
 | |
| 
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
 | |
|   int TySize = getContext().getTypeSize(Ty);
 | |
| 
 | |
|   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
 | |
|   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
 | |
|     return ABIArgInfo::getSignExtend(Ty);
 | |
| 
 | |
|   return ABIArgInfo::getExtend(Ty);
 | |
| }
 | |
| 
 | |
| bool
 | |
| MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                                llvm::Value *Address) const {
 | |
|   // This information comes from gcc's implementation, which seems to
 | |
|   // as canonical as it gets.
 | |
| 
 | |
|   // Everything on MIPS is 4 bytes.  Double-precision FP registers
 | |
|   // are aliased to pairs of single-precision FP registers.
 | |
|   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
 | |
| 
 | |
|   // 0-31 are the general purpose registers, $0 - $31.
 | |
|   // 32-63 are the floating-point registers, $f0 - $f31.
 | |
|   // 64 and 65 are the multiply/divide registers, $hi and $lo.
 | |
|   // 66 is the (notional, I think) register for signal-handler return.
 | |
|   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
 | |
| 
 | |
|   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
 | |
|   // They are one bit wide and ignored here.
 | |
| 
 | |
|   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
 | |
|   // (coprocessor 1 is the FP unit)
 | |
|   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
 | |
|   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
 | |
|   // 176-181 are the DSP accumulator registers.
 | |
|   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // AVR ABI Implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override {
 | |
|     if (GV->isDeclaration())
 | |
|       return;
 | |
|     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
 | |
|     if (!FD) return;
 | |
|     auto *Fn = cast<llvm::Function>(GV);
 | |
| 
 | |
|     if (FD->getAttr<AVRInterruptAttr>())
 | |
|       Fn->addFnAttr("interrupt");
 | |
| 
 | |
|     if (FD->getAttr<AVRSignalAttr>())
 | |
|       Fn->addFnAttr("signal");
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
 | |
| // Currently subclassed only to implement custom OpenCL C function attribute
 | |
| // handling.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
 | |
| public:
 | |
|   TCETargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : DefaultTargetCodeGenInfo(CGT) {}
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &M) const override;
 | |
| };
 | |
| 
 | |
| void TCETargetCodeGenInfo::setTargetAttributes(
 | |
|     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
 | |
|   if (GV->isDeclaration())
 | |
|     return;
 | |
|   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
 | |
|   if (!FD) return;
 | |
| 
 | |
|   llvm::Function *F = cast<llvm::Function>(GV);
 | |
| 
 | |
|   if (M.getLangOpts().OpenCL) {
 | |
|     if (FD->hasAttr<OpenCLKernelAttr>()) {
 | |
|       // OpenCL C Kernel functions are not subject to inlining
 | |
|       F->addFnAttr(llvm::Attribute::NoInline);
 | |
|       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
 | |
|       if (Attr) {
 | |
|         // Convert the reqd_work_group_size() attributes to metadata.
 | |
|         llvm::LLVMContext &Context = F->getContext();
 | |
|         llvm::NamedMDNode *OpenCLMetadata =
 | |
|             M.getModule().getOrInsertNamedMetadata(
 | |
|                 "opencl.kernel_wg_size_info");
 | |
| 
 | |
|         SmallVector<llvm::Metadata *, 5> Operands;
 | |
|         Operands.push_back(llvm::ConstantAsMetadata::get(F));
 | |
| 
 | |
|         Operands.push_back(
 | |
|             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
 | |
|                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
 | |
|         Operands.push_back(
 | |
|             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
 | |
|                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
 | |
|         Operands.push_back(
 | |
|             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
 | |
|                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
 | |
| 
 | |
|         // Add a boolean constant operand for "required" (true) or "hint"
 | |
|         // (false) for implementing the work_group_size_hint attr later.
 | |
|         // Currently always true as the hint is not yet implemented.
 | |
|         Operands.push_back(
 | |
|             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
 | |
|         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Hexagon ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class HexagonABIInfo : public ABIInfo {
 | |
| public:
 | |
|   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | |
| 
 | |
| private:
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| };
 | |
| 
 | |
| class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
 | |
|     return 29;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   if (!getCXXABI().classifyReturnType(FI))
 | |
|     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|   for (auto &I : FI.arguments())
 | |
|     I.info = classifyArgumentType(I.type);
 | |
| }
 | |
| 
 | |
| ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   if (!isAggregateTypeForABI(Ty)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|       Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
 | |
|                                          : ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
|   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
 | |
|     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
| 
 | |
|   // Ignore empty records.
 | |
|   if (isEmptyRecord(getContext(), Ty, true))
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   uint64_t Size = getContext().getTypeSize(Ty);
 | |
|   if (Size <= 64) {
 | |
|     // Pass in the smallest viable integer type.
 | |
|     if (!llvm::isPowerOf2_64(Size))
 | |
|       Size = llvm::NextPowerOf2(Size);
 | |
|     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
 | |
|   }
 | |
|   return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
 | |
| }
 | |
| 
 | |
| ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   const TargetInfo &T = CGT.getTarget();
 | |
|   uint64_t Size = getContext().getTypeSize(RetTy);
 | |
| 
 | |
|   if (RetTy->getAs<VectorType>()) {
 | |
|     // HVX vectors are returned in vector registers or register pairs.
 | |
|     if (T.hasFeature("hvx")) {
 | |
|       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
 | |
|       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
 | |
|       if (Size == VecSize || Size == 2*VecSize)
 | |
|         return ABIArgInfo::getDirectInReg();
 | |
|     }
 | |
| 
 | |
|     // Large vector types should be returned via memory.
 | |
|     if (Size > 64)
 | |
|       return getNaturalAlignIndirect(RetTy);
 | |
|   }
 | |
| 
 | |
|   if (!isAggregateTypeForABI(RetTy)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|       RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
 | |
|                                             : ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
|   if (isEmptyRecord(getContext(), RetTy, true))
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   // Aggregates <= 8 bytes are returned in registers, other aggregates
 | |
|   // are returned indirectly.
 | |
|   if (Size <= 64) {
 | |
|     // Return in the smallest viable integer type.
 | |
|     if (!llvm::isPowerOf2_64(Size))
 | |
|       Size = llvm::NextPowerOf2(Size);
 | |
|     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
 | |
|   }
 | |
|   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
 | |
| }
 | |
| 
 | |
| Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                   QualType Ty) const {
 | |
|   // FIXME: Someone needs to audit that this handle alignment correctly.
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
 | |
|                           getContext().getTypeInfoInChars(Ty),
 | |
|                           CharUnits::fromQuantity(4),
 | |
|                           /*AllowHigherAlign*/ true);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lanai ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class LanaiABIInfo : public DefaultABIInfo {
 | |
| public:
 | |
|   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
 | |
| 
 | |
|   bool shouldUseInReg(QualType Ty, CCState &State) const;
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override {
 | |
|     CCState State(FI);
 | |
|     // Lanai uses 4 registers to pass arguments unless the function has the
 | |
|     // regparm attribute set.
 | |
|     if (FI.getHasRegParm()) {
 | |
|       State.FreeRegs = FI.getRegParm();
 | |
|     } else {
 | |
|       State.FreeRegs = 4;
 | |
|     }
 | |
| 
 | |
|     if (!getCXXABI().classifyReturnType(FI))
 | |
|       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|     for (auto &I : FI.arguments())
 | |
|       I.info = classifyArgumentType(I.type, State);
 | |
|   }
 | |
| 
 | |
|   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
 | |
|   unsigned Size = getContext().getTypeSize(Ty);
 | |
|   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
 | |
| 
 | |
|   if (SizeInRegs == 0)
 | |
|     return false;
 | |
| 
 | |
|   if (SizeInRegs > State.FreeRegs) {
 | |
|     State.FreeRegs = 0;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   State.FreeRegs -= SizeInRegs;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
 | |
|                                            CCState &State) const {
 | |
|   if (!ByVal) {
 | |
|     if (State.FreeRegs) {
 | |
|       --State.FreeRegs; // Non-byval indirects just use one pointer.
 | |
|       return getNaturalAlignIndirectInReg(Ty);
 | |
|     }
 | |
|     return getNaturalAlignIndirect(Ty, false);
 | |
|   }
 | |
| 
 | |
|   // Compute the byval alignment.
 | |
|   const unsigned MinABIStackAlignInBytes = 4;
 | |
|   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
 | |
|   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
 | |
|                                  /*Realign=*/TypeAlign >
 | |
|                                      MinABIStackAlignInBytes);
 | |
| }
 | |
| 
 | |
| ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
 | |
|                                               CCState &State) const {
 | |
|   // Check with the C++ ABI first.
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (RT) {
 | |
|     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
 | |
|     if (RAA == CGCXXABI::RAA_Indirect) {
 | |
|       return getIndirectResult(Ty, /*ByVal=*/false, State);
 | |
|     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
 | |
|       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isAggregateTypeForABI(Ty)) {
 | |
|     // Structures with flexible arrays are always indirect.
 | |
|     if (RT && RT->getDecl()->hasFlexibleArrayMember())
 | |
|       return getIndirectResult(Ty, /*ByVal=*/true, State);
 | |
| 
 | |
|     // Ignore empty structs/unions.
 | |
|     if (isEmptyRecord(getContext(), Ty, true))
 | |
|       return ABIArgInfo::getIgnore();
 | |
| 
 | |
|     llvm::LLVMContext &LLVMContext = getVMContext();
 | |
|     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
 | |
|     if (SizeInRegs <= State.FreeRegs) {
 | |
|       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
 | |
|       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
 | |
|       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
 | |
|       State.FreeRegs -= SizeInRegs;
 | |
|       return ABIArgInfo::getDirectInReg(Result);
 | |
|     } else {
 | |
|       State.FreeRegs = 0;
 | |
|     }
 | |
|     return getIndirectResult(Ty, true, State);
 | |
|   }
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const auto *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   bool InReg = shouldUseInReg(Ty, State);
 | |
|   if (Ty->isPromotableIntegerType()) {
 | |
|     if (InReg)
 | |
|       return ABIArgInfo::getDirectInReg();
 | |
|     return ABIArgInfo::getExtend(Ty);
 | |
|   }
 | |
|   if (InReg)
 | |
|     return ABIArgInfo::getDirectInReg();
 | |
|   return ABIArgInfo::getDirect();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
 | |
|       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
 | |
| };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // AMDGPU ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class AMDGPUABIInfo final : public DefaultABIInfo {
 | |
| private:
 | |
|   static const unsigned MaxNumRegsForArgsRet = 16;
 | |
| 
 | |
|   unsigned numRegsForType(QualType Ty) const;
 | |
| 
 | |
|   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
 | |
|   bool isHomogeneousAggregateSmallEnough(const Type *Base,
 | |
|                                          uint64_t Members) const override;
 | |
| 
 | |
|   // Coerce HIP pointer arguments from generic pointers to global ones.
 | |
|   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
 | |
|                                        unsigned ToAS) const {
 | |
|     // Structure types.
 | |
|     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
 | |
|       SmallVector<llvm::Type *, 8> EltTys;
 | |
|       bool Changed = false;
 | |
|       for (auto T : STy->elements()) {
 | |
|         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
 | |
|         EltTys.push_back(NT);
 | |
|         Changed |= (NT != T);
 | |
|       }
 | |
|       // Skip if there is no change in element types.
 | |
|       if (!Changed)
 | |
|         return STy;
 | |
|       if (STy->hasName())
 | |
|         return llvm::StructType::create(
 | |
|             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
 | |
|       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
 | |
|     }
 | |
|     // Arrary types.
 | |
|     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
 | |
|       auto T = ATy->getElementType();
 | |
|       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
 | |
|       // Skip if there is no change in that element type.
 | |
|       if (NT == T)
 | |
|         return ATy;
 | |
|       return llvm::ArrayType::get(NT, ATy->getNumElements());
 | |
|     }
 | |
|     // Single value types.
 | |
|     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
 | |
|       return llvm::PointerType::get(
 | |
|           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
 | |
|     return Ty;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
 | |
|     DefaultABIInfo(CGT) {}
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| };
 | |
| 
 | |
| bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
 | |
|   const Type *Base, uint64_t Members) const {
 | |
|   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
 | |
| 
 | |
|   // Homogeneous Aggregates may occupy at most 16 registers.
 | |
|   return Members * NumRegs <= MaxNumRegsForArgsRet;
 | |
| }
 | |
| 
 | |
| /// Estimate number of registers the type will use when passed in registers.
 | |
| unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
 | |
|   unsigned NumRegs = 0;
 | |
| 
 | |
|   if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|     // Compute from the number of elements. The reported size is based on the
 | |
|     // in-memory size, which includes the padding 4th element for 3-vectors.
 | |
|     QualType EltTy = VT->getElementType();
 | |
|     unsigned EltSize = getContext().getTypeSize(EltTy);
 | |
| 
 | |
|     // 16-bit element vectors should be passed as packed.
 | |
|     if (EltSize == 16)
 | |
|       return (VT->getNumElements() + 1) / 2;
 | |
| 
 | |
|     unsigned EltNumRegs = (EltSize + 31) / 32;
 | |
|     return EltNumRegs * VT->getNumElements();
 | |
|   }
 | |
| 
 | |
|   if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     assert(!RD->hasFlexibleArrayMember());
 | |
| 
 | |
|     for (const FieldDecl *Field : RD->fields()) {
 | |
|       QualType FieldTy = Field->getType();
 | |
|       NumRegs += numRegsForType(FieldTy);
 | |
|     }
 | |
| 
 | |
|     return NumRegs;
 | |
|   }
 | |
| 
 | |
|   return (getContext().getTypeSize(Ty) + 31) / 32;
 | |
| }
 | |
| 
 | |
| void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   llvm::CallingConv::ID CC = FI.getCallingConvention();
 | |
| 
 | |
|   if (!getCXXABI().classifyReturnType(FI))
 | |
|     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
| 
 | |
|   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
 | |
|   for (auto &Arg : FI.arguments()) {
 | |
|     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
 | |
|       Arg.info = classifyKernelArgumentType(Arg.type);
 | |
|     } else {
 | |
|       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                  QualType Ty) const {
 | |
|   llvm_unreachable("AMDGPU does not support varargs");
 | |
| }
 | |
| 
 | |
| ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (isAggregateTypeForABI(RetTy)) {
 | |
|     // Records with non-trivial destructors/copy-constructors should not be
 | |
|     // returned by value.
 | |
|     if (!getRecordArgABI(RetTy, getCXXABI())) {
 | |
|       // Ignore empty structs/unions.
 | |
|       if (isEmptyRecord(getContext(), RetTy, true))
 | |
|         return ABIArgInfo::getIgnore();
 | |
| 
 | |
|       // Lower single-element structs to just return a regular value.
 | |
|       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
 | |
|         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
 | |
| 
 | |
|       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
 | |
|         const RecordDecl *RD = RT->getDecl();
 | |
|         if (RD->hasFlexibleArrayMember())
 | |
|           return DefaultABIInfo::classifyReturnType(RetTy);
 | |
|       }
 | |
| 
 | |
|       // Pack aggregates <= 4 bytes into single VGPR or pair.
 | |
|       uint64_t Size = getContext().getTypeSize(RetTy);
 | |
|       if (Size <= 16)
 | |
|         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
 | |
| 
 | |
|       if (Size <= 32)
 | |
|         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | |
| 
 | |
|       if (Size <= 64) {
 | |
|         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
 | |
|         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
 | |
|       }
 | |
| 
 | |
|       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
 | |
|         return ABIArgInfo::getDirect();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise just do the default thing.
 | |
|   return DefaultABIInfo::classifyReturnType(RetTy);
 | |
| }
 | |
| 
 | |
| /// For kernels all parameters are really passed in a special buffer. It doesn't
 | |
| /// make sense to pass anything byval, so everything must be direct.
 | |
| ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
| 
 | |
|   // TODO: Can we omit empty structs?
 | |
| 
 | |
|   llvm::Type *LTy = nullptr;
 | |
|   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
 | |
|     LTy = CGT.ConvertType(QualType(SeltTy, 0));
 | |
| 
 | |
|   if (getContext().getLangOpts().HIP) {
 | |
|     if (!LTy)
 | |
|       LTy = CGT.ConvertType(Ty);
 | |
|     LTy = coerceKernelArgumentType(
 | |
|         LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
 | |
|         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
 | |
|   }
 | |
| 
 | |
|   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
 | |
|   // individual elements, which confuses the Clover OpenCL backend; therefore we
 | |
|   // have to set it to false here. Other args of getDirect() are just defaults.
 | |
|   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
 | |
| }
 | |
| 
 | |
| ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
 | |
|                                                unsigned &NumRegsLeft) const {
 | |
|   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
 | |
| 
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
| 
 | |
|   if (isAggregateTypeForABI(Ty)) {
 | |
|     // Records with non-trivial destructors/copy-constructors should not be
 | |
|     // passed by value.
 | |
|     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
 | |
|       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
| 
 | |
|     // Ignore empty structs/unions.
 | |
|     if (isEmptyRecord(getContext(), Ty, true))
 | |
|       return ABIArgInfo::getIgnore();
 | |
| 
 | |
|     // Lower single-element structs to just pass a regular value. TODO: We
 | |
|     // could do reasonable-size multiple-element structs too, using getExpand(),
 | |
|     // though watch out for things like bitfields.
 | |
|     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
 | |
|       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
 | |
| 
 | |
|     if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|       const RecordDecl *RD = RT->getDecl();
 | |
|       if (RD->hasFlexibleArrayMember())
 | |
|         return DefaultABIInfo::classifyArgumentType(Ty);
 | |
|     }
 | |
| 
 | |
|     // Pack aggregates <= 8 bytes into single VGPR or pair.
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
|     if (Size <= 64) {
 | |
|       unsigned NumRegs = (Size + 31) / 32;
 | |
|       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
 | |
| 
 | |
|       if (Size <= 16)
 | |
|         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
 | |
| 
 | |
|       if (Size <= 32)
 | |
|         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | |
| 
 | |
|       // XXX: Should this be i64 instead, and should the limit increase?
 | |
|       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
 | |
|       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
 | |
|     }
 | |
| 
 | |
|     if (NumRegsLeft > 0) {
 | |
|       unsigned NumRegs = numRegsForType(Ty);
 | |
|       if (NumRegsLeft >= NumRegs) {
 | |
|         NumRegsLeft -= NumRegs;
 | |
|         return ABIArgInfo::getDirect();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise just do the default thing.
 | |
|   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
 | |
|   if (!ArgInfo.isIndirect()) {
 | |
|     unsigned NumRegs = numRegsForType(Ty);
 | |
|     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
 | |
|   }
 | |
| 
 | |
|   return ArgInfo;
 | |
| }
 | |
| 
 | |
| class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &M) const override;
 | |
|   unsigned getOpenCLKernelCallingConv() const override;
 | |
| 
 | |
|   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
 | |
|       llvm::PointerType *T, QualType QT) const override;
 | |
| 
 | |
|   LangAS getASTAllocaAddressSpace() const override {
 | |
|     return getLangASFromTargetAS(
 | |
|         getABIInfo().getDataLayout().getAllocaAddrSpace());
 | |
|   }
 | |
|   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
 | |
|                                   const VarDecl *D) const override;
 | |
|   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
 | |
|                                          SyncScope Scope,
 | |
|                                          llvm::AtomicOrdering Ordering,
 | |
|                                          llvm::LLVMContext &Ctx) const override;
 | |
|   llvm::Function *
 | |
|   createEnqueuedBlockKernel(CodeGenFunction &CGF,
 | |
|                             llvm::Function *BlockInvokeFunc,
 | |
|                             llvm::Value *BlockLiteral) const override;
 | |
|   bool shouldEmitStaticExternCAliases() const override;
 | |
|   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
 | |
| };
 | |
| }
 | |
| 
 | |
| static bool requiresAMDGPUProtectedVisibility(const Decl *D,
 | |
|                                               llvm::GlobalValue *GV) {
 | |
|   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
 | |
|     return false;
 | |
| 
 | |
|   return D->hasAttr<OpenCLKernelAttr>() ||
 | |
|          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
 | |
|          (isa<VarDecl>(D) &&
 | |
|           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
 | |
|            D->hasAttr<HIPPinnedShadowAttr>()));
 | |
| }
 | |
| 
 | |
| static bool requiresAMDGPUDefaultVisibility(const Decl *D,
 | |
|                                             llvm::GlobalValue *GV) {
 | |
|   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
 | |
|     return false;
 | |
| 
 | |
|   return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>();
 | |
| }
 | |
| 
 | |
| void AMDGPUTargetCodeGenInfo::setTargetAttributes(
 | |
|     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
 | |
|   if (requiresAMDGPUDefaultVisibility(D, GV)) {
 | |
|     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
 | |
|     GV->setDSOLocal(false);
 | |
|   } else if (requiresAMDGPUProtectedVisibility(D, GV)) {
 | |
|     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
 | |
|     GV->setDSOLocal(true);
 | |
|   }
 | |
| 
 | |
|   if (GV->isDeclaration())
 | |
|     return;
 | |
|   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
 | |
|   if (!FD)
 | |
|     return;
 | |
| 
 | |
|   llvm::Function *F = cast<llvm::Function>(GV);
 | |
| 
 | |
|   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
 | |
|     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
 | |
| 
 | |
| 
 | |
|   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
 | |
|                               FD->hasAttr<OpenCLKernelAttr>();
 | |
|   const bool IsHIPKernel = M.getLangOpts().HIP &&
 | |
|                            FD->hasAttr<CUDAGlobalAttr>();
 | |
|   if ((IsOpenCLKernel || IsHIPKernel) &&
 | |
|       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
 | |
|     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
 | |
| 
 | |
|   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
 | |
|   if (ReqdWGS || FlatWGS) {
 | |
|     unsigned Min = 0;
 | |
|     unsigned Max = 0;
 | |
|     if (FlatWGS) {
 | |
|       Min = FlatWGS->getMin()
 | |
|                 ->EvaluateKnownConstInt(M.getContext())
 | |
|                 .getExtValue();
 | |
|       Max = FlatWGS->getMax()
 | |
|                 ->EvaluateKnownConstInt(M.getContext())
 | |
|                 .getExtValue();
 | |
|     }
 | |
|     if (ReqdWGS && Min == 0 && Max == 0)
 | |
|       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
 | |
| 
 | |
|     if (Min != 0) {
 | |
|       assert(Min <= Max && "Min must be less than or equal Max");
 | |
| 
 | |
|       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
 | |
|       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
 | |
|     } else
 | |
|       assert(Max == 0 && "Max must be zero");
 | |
|   } else if (IsOpenCLKernel || IsHIPKernel) {
 | |
|     // By default, restrict the maximum size to a value specified by
 | |
|     // --gpu-max-threads-per-block=n or its default value.
 | |
|     std::string AttrVal =
 | |
|         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
 | |
|     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
 | |
|   }
 | |
| 
 | |
|   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
 | |
|     unsigned Min =
 | |
|         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
 | |
|     unsigned Max = Attr->getMax() ? Attr->getMax()
 | |
|                                         ->EvaluateKnownConstInt(M.getContext())
 | |
|                                         .getExtValue()
 | |
|                                   : 0;
 | |
| 
 | |
|     if (Min != 0) {
 | |
|       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
 | |
| 
 | |
|       std::string AttrVal = llvm::utostr(Min);
 | |
|       if (Max != 0)
 | |
|         AttrVal = AttrVal + "," + llvm::utostr(Max);
 | |
|       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
 | |
|     } else
 | |
|       assert(Max == 0 && "Max must be zero");
 | |
|   }
 | |
| 
 | |
|   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
 | |
|     unsigned NumSGPR = Attr->getNumSGPR();
 | |
| 
 | |
|     if (NumSGPR != 0)
 | |
|       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
 | |
|   }
 | |
| 
 | |
|   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
 | |
|     uint32_t NumVGPR = Attr->getNumVGPR();
 | |
| 
 | |
|     if (NumVGPR != 0)
 | |
|       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
 | |
|   return llvm::CallingConv::AMDGPU_KERNEL;
 | |
| }
 | |
| 
 | |
| // Currently LLVM assumes null pointers always have value 0,
 | |
| // which results in incorrectly transformed IR. Therefore, instead of
 | |
| // emitting null pointers in private and local address spaces, a null
 | |
| // pointer in generic address space is emitted which is casted to a
 | |
| // pointer in local or private address space.
 | |
| llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
 | |
|     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
 | |
|     QualType QT) const {
 | |
|   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
 | |
|     return llvm::ConstantPointerNull::get(PT);
 | |
| 
 | |
|   auto &Ctx = CGM.getContext();
 | |
|   auto NPT = llvm::PointerType::get(PT->getElementType(),
 | |
|       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
 | |
|   return llvm::ConstantExpr::getAddrSpaceCast(
 | |
|       llvm::ConstantPointerNull::get(NPT), PT);
 | |
| }
 | |
| 
 | |
| LangAS
 | |
| AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
 | |
|                                                   const VarDecl *D) const {
 | |
|   assert(!CGM.getLangOpts().OpenCL &&
 | |
|          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
 | |
|          "Address space agnostic languages only");
 | |
|   LangAS DefaultGlobalAS = getLangASFromTargetAS(
 | |
|       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
 | |
|   if (!D)
 | |
|     return DefaultGlobalAS;
 | |
| 
 | |
|   LangAS AddrSpace = D->getType().getAddressSpace();
 | |
|   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
 | |
|   if (AddrSpace != LangAS::Default)
 | |
|     return AddrSpace;
 | |
| 
 | |
|   if (CGM.isTypeConstant(D->getType(), false)) {
 | |
|     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
 | |
|       return ConstAS.getValue();
 | |
|   }
 | |
|   return DefaultGlobalAS;
 | |
| }
 | |
| 
 | |
| llvm::SyncScope::ID
 | |
| AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
 | |
|                                             SyncScope Scope,
 | |
|                                             llvm::AtomicOrdering Ordering,
 | |
|                                             llvm::LLVMContext &Ctx) const {
 | |
|   std::string Name;
 | |
|   switch (Scope) {
 | |
|   case SyncScope::OpenCLWorkGroup:
 | |
|     Name = "workgroup";
 | |
|     break;
 | |
|   case SyncScope::OpenCLDevice:
 | |
|     Name = "agent";
 | |
|     break;
 | |
|   case SyncScope::OpenCLAllSVMDevices:
 | |
|     Name = "";
 | |
|     break;
 | |
|   case SyncScope::OpenCLSubGroup:
 | |
|     Name = "wavefront";
 | |
|   }
 | |
| 
 | |
|   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
 | |
|     if (!Name.empty())
 | |
|       Name = Twine(Twine(Name) + Twine("-")).str();
 | |
| 
 | |
|     Name = Twine(Twine(Name) + Twine("one-as")).str();
 | |
|   }
 | |
| 
 | |
|   return Ctx.getOrInsertSyncScopeID(Name);
 | |
| }
 | |
| 
 | |
| bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
 | |
|     const FunctionType *&FT) const {
 | |
|   FT = getABIInfo().getContext().adjustFunctionType(
 | |
|       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SPARC v8 ABI Implementation.
 | |
| // Based on the SPARC Compliance Definition version 2.4.1.
 | |
| //
 | |
| // Ensures that complex values are passed in registers.
 | |
| //
 | |
| namespace {
 | |
| class SparcV8ABIInfo : public DefaultABIInfo {
 | |
| public:
 | |
|   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
 | |
| 
 | |
| private:
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| 
 | |
| ABIArgInfo
 | |
| SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
 | |
|   if (Ty->isAnyComplexType()) {
 | |
|     return ABIArgInfo::getDirect();
 | |
|   }
 | |
|   else {
 | |
|     return DefaultABIInfo::classifyReturnType(Ty);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
| 
 | |
|   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|   for (auto &Arg : FI.arguments())
 | |
|     Arg.info = classifyArgumentType(Arg.type);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SPARC v9 ABI Implementation.
 | |
| // Based on the SPARC Compliance Definition version 2.4.1.
 | |
| //
 | |
| // Function arguments a mapped to a nominal "parameter array" and promoted to
 | |
| // registers depending on their type. Each argument occupies 8 or 16 bytes in
 | |
| // the array, structs larger than 16 bytes are passed indirectly.
 | |
| //
 | |
| // One case requires special care:
 | |
| //
 | |
| //   struct mixed {
 | |
| //     int i;
 | |
| //     float f;
 | |
| //   };
 | |
| //
 | |
| // When a struct mixed is passed by value, it only occupies 8 bytes in the
 | |
| // parameter array, but the int is passed in an integer register, and the float
 | |
| // is passed in a floating point register. This is represented as two arguments
 | |
| // with the LLVM IR inreg attribute:
 | |
| //
 | |
| //   declare void f(i32 inreg %i, float inreg %f)
 | |
| //
 | |
| // The code generator will only allocate 4 bytes from the parameter array for
 | |
| // the inreg arguments. All other arguments are allocated a multiple of 8
 | |
| // bytes.
 | |
| //
 | |
| namespace {
 | |
| class SparcV9ABIInfo : public ABIInfo {
 | |
| public:
 | |
|   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | |
| 
 | |
| private:
 | |
|   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| 
 | |
|   // Coercion type builder for structs passed in registers. The coercion type
 | |
|   // serves two purposes:
 | |
|   //
 | |
|   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
 | |
|   //    in registers.
 | |
|   // 2. Expose aligned floating point elements as first-level elements, so the
 | |
|   //    code generator knows to pass them in floating point registers.
 | |
|   //
 | |
|   // We also compute the InReg flag which indicates that the struct contains
 | |
|   // aligned 32-bit floats.
 | |
|   //
 | |
|   struct CoerceBuilder {
 | |
|     llvm::LLVMContext &Context;
 | |
|     const llvm::DataLayout &DL;
 | |
|     SmallVector<llvm::Type*, 8> Elems;
 | |
|     uint64_t Size;
 | |
|     bool InReg;
 | |
| 
 | |
|     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
 | |
|       : Context(c), DL(dl), Size(0), InReg(false) {}
 | |
| 
 | |
|     // Pad Elems with integers until Size is ToSize.
 | |
|     void pad(uint64_t ToSize) {
 | |
|       assert(ToSize >= Size && "Cannot remove elements");
 | |
|       if (ToSize == Size)
 | |
|         return;
 | |
| 
 | |
|       // Finish the current 64-bit word.
 | |
|       uint64_t Aligned = llvm::alignTo(Size, 64);
 | |
|       if (Aligned > Size && Aligned <= ToSize) {
 | |
|         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
 | |
|         Size = Aligned;
 | |
|       }
 | |
| 
 | |
|       // Add whole 64-bit words.
 | |
|       while (Size + 64 <= ToSize) {
 | |
|         Elems.push_back(llvm::Type::getInt64Ty(Context));
 | |
|         Size += 64;
 | |
|       }
 | |
| 
 | |
|       // Final in-word padding.
 | |
|       if (Size < ToSize) {
 | |
|         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
 | |
|         Size = ToSize;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add a floating point element at Offset.
 | |
|     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
 | |
|       // Unaligned floats are treated as integers.
 | |
|       if (Offset % Bits)
 | |
|         return;
 | |
|       // The InReg flag is only required if there are any floats < 64 bits.
 | |
|       if (Bits < 64)
 | |
|         InReg = true;
 | |
|       pad(Offset);
 | |
|       Elems.push_back(Ty);
 | |
|       Size = Offset + Bits;
 | |
|     }
 | |
| 
 | |
|     // Add a struct type to the coercion type, starting at Offset (in bits).
 | |
|     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
 | |
|       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
 | |
|       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
 | |
|         llvm::Type *ElemTy = StrTy->getElementType(i);
 | |
|         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
 | |
|         switch (ElemTy->getTypeID()) {
 | |
|         case llvm::Type::StructTyID:
 | |
|           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
 | |
|           break;
 | |
|         case llvm::Type::FloatTyID:
 | |
|           addFloat(ElemOffset, ElemTy, 32);
 | |
|           break;
 | |
|         case llvm::Type::DoubleTyID:
 | |
|           addFloat(ElemOffset, ElemTy, 64);
 | |
|           break;
 | |
|         case llvm::Type::FP128TyID:
 | |
|           addFloat(ElemOffset, ElemTy, 128);
 | |
|           break;
 | |
|         case llvm::Type::PointerTyID:
 | |
|           if (ElemOffset % 64 == 0) {
 | |
|             pad(ElemOffset);
 | |
|             Elems.push_back(ElemTy);
 | |
|             Size += 64;
 | |
|           }
 | |
|           break;
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check if Ty is a usable substitute for the coercion type.
 | |
|     bool isUsableType(llvm::StructType *Ty) const {
 | |
|       return llvm::makeArrayRef(Elems) == Ty->elements();
 | |
|     }
 | |
| 
 | |
|     // Get the coercion type as a literal struct type.
 | |
|     llvm::Type *getType() const {
 | |
|       if (Elems.size() == 1)
 | |
|         return Elems.front();
 | |
|       else
 | |
|         return llvm::StructType::get(Context, Elems);
 | |
|     }
 | |
|   };
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| ABIArgInfo
 | |
| SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
 | |
|   if (Ty->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   uint64_t Size = getContext().getTypeSize(Ty);
 | |
| 
 | |
|   // Anything too big to fit in registers is passed with an explicit indirect
 | |
|   // pointer / sret pointer.
 | |
|   if (Size > SizeLimit)
 | |
|     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   // Integer types smaller than a register are extended.
 | |
|   if (Size < 64 && Ty->isIntegerType())
 | |
|     return ABIArgInfo::getExtend(Ty);
 | |
| 
 | |
|   // Other non-aggregates go in registers.
 | |
|   if (!isAggregateTypeForABI(Ty))
 | |
|     return ABIArgInfo::getDirect();
 | |
| 
 | |
|   // If a C++ object has either a non-trivial copy constructor or a non-trivial
 | |
|   // destructor, it is passed with an explicit indirect pointer / sret pointer.
 | |
|   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
 | |
|     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
 | |
| 
 | |
|   // This is a small aggregate type that should be passed in registers.
 | |
|   // Build a coercion type from the LLVM struct type.
 | |
|   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
 | |
|   if (!StrTy)
 | |
|     return ABIArgInfo::getDirect();
 | |
| 
 | |
|   CoerceBuilder CB(getVMContext(), getDataLayout());
 | |
|   CB.addStruct(0, StrTy);
 | |
|   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
 | |
| 
 | |
|   // Try to use the original type for coercion.
 | |
|   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
 | |
| 
 | |
|   if (CB.InReg)
 | |
|     return ABIArgInfo::getDirectInReg(CoerceTy);
 | |
|   else
 | |
|     return ABIArgInfo::getDirect(CoerceTy);
 | |
| }
 | |
| 
 | |
| Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                   QualType Ty) const {
 | |
|   ABIArgInfo AI = classifyType(Ty, 16 * 8);
 | |
|   llvm::Type *ArgTy = CGT.ConvertType(Ty);
 | |
|   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
 | |
|     AI.setCoerceToType(ArgTy);
 | |
| 
 | |
|   CharUnits SlotSize = CharUnits::fromQuantity(8);
 | |
| 
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
|   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
 | |
|   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
 | |
| 
 | |
|   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
 | |
| 
 | |
|   Address ArgAddr = Address::invalid();
 | |
|   CharUnits Stride;
 | |
|   switch (AI.getKind()) {
 | |
|   case ABIArgInfo::Expand:
 | |
|   case ABIArgInfo::CoerceAndExpand:
 | |
|   case ABIArgInfo::InAlloca:
 | |
|     llvm_unreachable("Unsupported ABI kind for va_arg");
 | |
| 
 | |
|   case ABIArgInfo::Extend: {
 | |
|     Stride = SlotSize;
 | |
|     CharUnits Offset = SlotSize - TypeInfo.first;
 | |
|     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ABIArgInfo::Direct: {
 | |
|     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
 | |
|     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
 | |
|     ArgAddr = Addr;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ABIArgInfo::Indirect:
 | |
|     Stride = SlotSize;
 | |
|     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
 | |
|     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
 | |
|                       TypeInfo.second);
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::Ignore:
 | |
|     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
 | |
|   }
 | |
| 
 | |
|   // Update VAList.
 | |
|   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
 | |
|   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
 | |
| 
 | |
|   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
 | |
| }
 | |
| 
 | |
| void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
 | |
|   for (auto &I : FI.arguments())
 | |
|     I.info = classifyType(I.type, 16 * 8);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
 | |
|     return 14;
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const override;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool
 | |
| SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                                 llvm::Value *Address) const {
 | |
|   // This is calculated from the LLVM and GCC tables and verified
 | |
|   // against gcc output.  AFAIK all ABIs use the same encoding.
 | |
| 
 | |
|   CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   llvm::IntegerType *i8 = CGF.Int8Ty;
 | |
|   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
 | |
|   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
 | |
| 
 | |
|   // 0-31: the 8-byte general-purpose registers
 | |
|   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
 | |
| 
 | |
|   // 32-63: f0-31, the 4-byte floating-point registers
 | |
|   AssignToArrayRange(Builder, Address, Four8, 32, 63);
 | |
| 
 | |
|   //   Y   = 64
 | |
|   //   PSR = 65
 | |
|   //   WIM = 66
 | |
|   //   TBR = 67
 | |
|   //   PC  = 68
 | |
|   //   NPC = 69
 | |
|   //   FSR = 70
 | |
|   //   CSR = 71
 | |
|   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
 | |
| 
 | |
|   // 72-87: d0-15, the 8-byte floating-point registers
 | |
|   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // ARC ABI implementation.
 | |
| namespace {
 | |
| 
 | |
| class ARCABIInfo : public DefaultABIInfo {
 | |
| public:
 | |
|   using DefaultABIInfo::DefaultABIInfo;
 | |
| 
 | |
| private:
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| 
 | |
|   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
 | |
|     if (!State.FreeRegs)
 | |
|       return;
 | |
|     if (Info.isIndirect() && Info.getInReg())
 | |
|       State.FreeRegs--;
 | |
|     else if (Info.isDirect() && Info.getInReg()) {
 | |
|       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
 | |
|       if (sz < State.FreeRegs)
 | |
|         State.FreeRegs -= sz;
 | |
|       else
 | |
|         State.FreeRegs = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void computeInfo(CGFunctionInfo &FI) const override {
 | |
|     CCState State(FI);
 | |
|     // ARC uses 8 registers to pass arguments.
 | |
|     State.FreeRegs = 8;
 | |
| 
 | |
|     if (!getCXXABI().classifyReturnType(FI))
 | |
|       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
 | |
|     for (auto &I : FI.arguments()) {
 | |
|       I.info = classifyArgumentType(I.type, State.FreeRegs);
 | |
|       updateState(I.info, I.type, State);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
 | |
|   ABIArgInfo getIndirectByValue(QualType Ty) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
| };
 | |
| 
 | |
| class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
 | |
| };
 | |
| 
 | |
| 
 | |
| ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
 | |
|   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
 | |
|                        getNaturalAlignIndirect(Ty, false);
 | |
| }
 | |
| 
 | |
| ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
 | |
|   // Compute the byval alignment.
 | |
|   const unsigned MinABIStackAlignInBytes = 4;
 | |
|   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
 | |
|   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
 | |
|                                  TypeAlign > MinABIStackAlignInBytes);
 | |
| }
 | |
| 
 | |
| Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                               QualType Ty) const {
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
 | |
|                           getContext().getTypeInfoInChars(Ty),
 | |
|                           CharUnits::fromQuantity(4), true);
 | |
| }
 | |
| 
 | |
| ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
 | |
|                                             uint8_t FreeRegs) const {
 | |
|   // Handle the generic C++ ABI.
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (RT) {
 | |
|     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
 | |
|     if (RAA == CGCXXABI::RAA_Indirect)
 | |
|       return getIndirectByRef(Ty, FreeRegs > 0);
 | |
| 
 | |
|     if (RAA == CGCXXABI::RAA_DirectInMemory)
 | |
|       return getIndirectByValue(Ty);
 | |
|   }
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
 | |
| 
 | |
|   if (isAggregateTypeForABI(Ty)) {
 | |
|     // Structures with flexible arrays are always indirect.
 | |
|     if (RT && RT->getDecl()->hasFlexibleArrayMember())
 | |
|       return getIndirectByValue(Ty);
 | |
| 
 | |
|     // Ignore empty structs/unions.
 | |
|     if (isEmptyRecord(getContext(), Ty, true))
 | |
|       return ABIArgInfo::getIgnore();
 | |
| 
 | |
|     llvm::LLVMContext &LLVMContext = getVMContext();
 | |
| 
 | |
|     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
 | |
|     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
 | |
|     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
 | |
| 
 | |
|     return FreeRegs >= SizeInRegs ?
 | |
|         ABIArgInfo::getDirectInReg(Result) :
 | |
|         ABIArgInfo::getDirect(Result, 0, nullptr, false);
 | |
|   }
 | |
| 
 | |
|   return Ty->isPromotableIntegerType() ?
 | |
|       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
 | |
|                                 ABIArgInfo::getExtend(Ty)) :
 | |
|       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
 | |
|                                 ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isAnyComplexType())
 | |
|     return ABIArgInfo::getDirectInReg();
 | |
| 
 | |
|   // Arguments of size > 4 registers are indirect.
 | |
|   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
 | |
|   if (RetSize > 4)
 | |
|     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
 | |
| 
 | |
|   return DefaultABIInfo::classifyReturnType(RetTy);
 | |
| }
 | |
| 
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // XCore ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// A SmallStringEnc instance is used to build up the TypeString by passing
 | |
| /// it by reference between functions that append to it.
 | |
| typedef llvm::SmallString<128> SmallStringEnc;
 | |
| 
 | |
| /// TypeStringCache caches the meta encodings of Types.
 | |
| ///
 | |
| /// The reason for caching TypeStrings is two fold:
 | |
| ///   1. To cache a type's encoding for later uses;
 | |
| ///   2. As a means to break recursive member type inclusion.
 | |
| ///
 | |
| /// A cache Entry can have a Status of:
 | |
| ///   NonRecursive:   The type encoding is not recursive;
 | |
| ///   Recursive:      The type encoding is recursive;
 | |
| ///   Incomplete:     An incomplete TypeString;
 | |
| ///   IncompleteUsed: An incomplete TypeString that has been used in a
 | |
| ///                   Recursive type encoding.
 | |
| ///
 | |
| /// A NonRecursive entry will have all of its sub-members expanded as fully
 | |
| /// as possible. Whilst it may contain types which are recursive, the type
 | |
| /// itself is not recursive and thus its encoding may be safely used whenever
 | |
| /// the type is encountered.
 | |
| ///
 | |
| /// A Recursive entry will have all of its sub-members expanded as fully as
 | |
| /// possible. The type itself is recursive and it may contain other types which
 | |
| /// are recursive. The Recursive encoding must not be used during the expansion
 | |
| /// of a recursive type's recursive branch. For simplicity the code uses
 | |
| /// IncompleteCount to reject all usage of Recursive encodings for member types.
 | |
| ///
 | |
| /// An Incomplete entry is always a RecordType and only encodes its
 | |
| /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
 | |
| /// are placed into the cache during type expansion as a means to identify and
 | |
| /// handle recursive inclusion of types as sub-members. If there is recursion
 | |
| /// the entry becomes IncompleteUsed.
 | |
| ///
 | |
| /// During the expansion of a RecordType's members:
 | |
| ///
 | |
| ///   If the cache contains a NonRecursive encoding for the member type, the
 | |
| ///   cached encoding is used;
 | |
| ///
 | |
| ///   If the cache contains a Recursive encoding for the member type, the
 | |
| ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
 | |
| ///
 | |
| ///   If the member is a RecordType, an Incomplete encoding is placed into the
 | |
| ///   cache to break potential recursive inclusion of itself as a sub-member;
 | |
| ///
 | |
| ///   Once a member RecordType has been expanded, its temporary incomplete
 | |
| ///   entry is removed from the cache. If a Recursive encoding was swapped out
 | |
| ///   it is swapped back in;
 | |
| ///
 | |
| ///   If an incomplete entry is used to expand a sub-member, the incomplete
 | |
| ///   entry is marked as IncompleteUsed. The cache keeps count of how many
 | |
| ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
 | |
| ///
 | |
| ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
 | |
| ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
 | |
| ///   Else the member is part of a recursive type and thus the recursion has
 | |
| ///   been exited too soon for the encoding to be correct for the member.
 | |
| ///
 | |
| class TypeStringCache {
 | |
|   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
 | |
|   struct Entry {
 | |
|     std::string Str;     // The encoded TypeString for the type.
 | |
|     enum Status State;   // Information about the encoding in 'Str'.
 | |
|     std::string Swapped; // A temporary place holder for a Recursive encoding
 | |
|                          // during the expansion of RecordType's members.
 | |
|   };
 | |
|   std::map<const IdentifierInfo *, struct Entry> Map;
 | |
|   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
 | |
|   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
 | |
| public:
 | |
|   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
 | |
|   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
 | |
|   bool removeIncomplete(const IdentifierInfo *ID);
 | |
|   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
 | |
|                      bool IsRecursive);
 | |
|   StringRef lookupStr(const IdentifierInfo *ID);
 | |
| };
 | |
| 
 | |
| /// TypeString encodings for enum & union fields must be order.
 | |
| /// FieldEncoding is a helper for this ordering process.
 | |
| class FieldEncoding {
 | |
|   bool HasName;
 | |
|   std::string Enc;
 | |
| public:
 | |
|   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
 | |
|   StringRef str() { return Enc; }
 | |
|   bool operator<(const FieldEncoding &rhs) const {
 | |
|     if (HasName != rhs.HasName) return HasName;
 | |
|     return Enc < rhs.Enc;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class XCoreABIInfo : public DefaultABIInfo {
 | |
| public:
 | |
|   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| };
 | |
| 
 | |
| class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
|   mutable TypeStringCache TSC;
 | |
| public:
 | |
|   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
 | |
|   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
 | |
|                     CodeGen::CodeGenModule &M) const override;
 | |
| };
 | |
| 
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| // TODO: this implementation is likely now redundant with the default
 | |
| // EmitVAArg.
 | |
| Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                 QualType Ty) const {
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
| 
 | |
|   // Get the VAList.
 | |
|   CharUnits SlotSize = CharUnits::fromQuantity(4);
 | |
|   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
 | |
| 
 | |
|   // Handle the argument.
 | |
|   ABIArgInfo AI = classifyArgumentType(Ty);
 | |
|   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
 | |
|   llvm::Type *ArgTy = CGT.ConvertType(Ty);
 | |
|   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
 | |
|     AI.setCoerceToType(ArgTy);
 | |
|   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
 | |
| 
 | |
|   Address Val = Address::invalid();
 | |
|   CharUnits ArgSize = CharUnits::Zero();
 | |
|   switch (AI.getKind()) {
 | |
|   case ABIArgInfo::Expand:
 | |
|   case ABIArgInfo::CoerceAndExpand:
 | |
|   case ABIArgInfo::InAlloca:
 | |
|     llvm_unreachable("Unsupported ABI kind for va_arg");
 | |
|   case ABIArgInfo::Ignore:
 | |
|     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
 | |
|     ArgSize = CharUnits::Zero();
 | |
|     break;
 | |
|   case ABIArgInfo::Extend:
 | |
|   case ABIArgInfo::Direct:
 | |
|     Val = Builder.CreateBitCast(AP, ArgPtrTy);
 | |
|     ArgSize = CharUnits::fromQuantity(
 | |
|                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
 | |
|     ArgSize = ArgSize.alignTo(SlotSize);
 | |
|     break;
 | |
|   case ABIArgInfo::Indirect:
 | |
|     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
 | |
|     Val = Address(Builder.CreateLoad(Val), TypeAlign);
 | |
|     ArgSize = SlotSize;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Increment the VAList.
 | |
|   if (!ArgSize.isZero()) {
 | |
|     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
 | |
|     Builder.CreateStore(APN.getPointer(), VAListAddr);
 | |
|   }
 | |
| 
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| /// During the expansion of a RecordType, an incomplete TypeString is placed
 | |
| /// into the cache as a means to identify and break recursion.
 | |
| /// If there is a Recursive encoding in the cache, it is swapped out and will
 | |
| /// be reinserted by removeIncomplete().
 | |
| /// All other types of encoding should have been used rather than arriving here.
 | |
| void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
 | |
|                                     std::string StubEnc) {
 | |
|   if (!ID)
 | |
|     return;
 | |
|   Entry &E = Map[ID];
 | |
|   assert( (E.Str.empty() || E.State == Recursive) &&
 | |
|          "Incorrectly use of addIncomplete");
 | |
|   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
 | |
|   E.Swapped.swap(E.Str); // swap out the Recursive
 | |
|   E.Str.swap(StubEnc);
 | |
|   E.State = Incomplete;
 | |
|   ++IncompleteCount;
 | |
| }
 | |
| 
 | |
| /// Once the RecordType has been expanded, the temporary incomplete TypeString
 | |
| /// must be removed from the cache.
 | |
| /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
 | |
| /// Returns true if the RecordType was defined recursively.
 | |
| bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
 | |
|   if (!ID)
 | |
|     return false;
 | |
|   auto I = Map.find(ID);
 | |
|   assert(I != Map.end() && "Entry not present");
 | |
|   Entry &E = I->second;
 | |
|   assert( (E.State == Incomplete ||
 | |
|            E.State == IncompleteUsed) &&
 | |
|          "Entry must be an incomplete type");
 | |
|   bool IsRecursive = false;
 | |
|   if (E.State == IncompleteUsed) {
 | |
|     // We made use of our Incomplete encoding, thus we are recursive.
 | |
|     IsRecursive = true;
 | |
|     --IncompleteUsedCount;
 | |
|   }
 | |
|   if (E.Swapped.empty())
 | |
|     Map.erase(I);
 | |
|   else {
 | |
|     // Swap the Recursive back.
 | |
|     E.Swapped.swap(E.Str);
 | |
|     E.Swapped.clear();
 | |
|     E.State = Recursive;
 | |
|   }
 | |
|   --IncompleteCount;
 | |
|   return IsRecursive;
 | |
| }
 | |
| 
 | |
| /// Add the encoded TypeString to the cache only if it is NonRecursive or
 | |
| /// Recursive (viz: all sub-members were expanded as fully as possible).
 | |
| void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
 | |
|                                     bool IsRecursive) {
 | |
|   if (!ID || IncompleteUsedCount)
 | |
|     return; // No key or it is is an incomplete sub-type so don't add.
 | |
|   Entry &E = Map[ID];
 | |
|   if (IsRecursive && !E.Str.empty()) {
 | |
|     assert(E.State==Recursive && E.Str.size() == Str.size() &&
 | |
|            "This is not the same Recursive entry");
 | |
|     // The parent container was not recursive after all, so we could have used
 | |
|     // this Recursive sub-member entry after all, but we assumed the worse when
 | |
|     // we started viz: IncompleteCount!=0.
 | |
|     return;
 | |
|   }
 | |
|   assert(E.Str.empty() && "Entry already present");
 | |
|   E.Str = Str.str();
 | |
|   E.State = IsRecursive? Recursive : NonRecursive;
 | |
| }
 | |
| 
 | |
| /// Return a cached TypeString encoding for the ID. If there isn't one, or we
 | |
| /// are recursively expanding a type (IncompleteCount != 0) and the cached
 | |
| /// encoding is Recursive, return an empty StringRef.
 | |
| StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
 | |
|   if (!ID)
 | |
|     return StringRef();   // We have no key.
 | |
|   auto I = Map.find(ID);
 | |
|   if (I == Map.end())
 | |
|     return StringRef();   // We have no encoding.
 | |
|   Entry &E = I->second;
 | |
|   if (E.State == Recursive && IncompleteCount)
 | |
|     return StringRef();   // We don't use Recursive encodings for member types.
 | |
| 
 | |
|   if (E.State == Incomplete) {
 | |
|     // The incomplete type is being used to break out of recursion.
 | |
|     E.State = IncompleteUsed;
 | |
|     ++IncompleteUsedCount;
 | |
|   }
 | |
|   return E.Str;
 | |
| }
 | |
| 
 | |
| /// The XCore ABI includes a type information section that communicates symbol
 | |
| /// type information to the linker. The linker uses this information to verify
 | |
| /// safety/correctness of things such as array bound and pointers et al.
 | |
| /// The ABI only requires C (and XC) language modules to emit TypeStrings.
 | |
| /// This type information (TypeString) is emitted into meta data for all global
 | |
| /// symbols: definitions, declarations, functions & variables.
 | |
| ///
 | |
| /// The TypeString carries type, qualifier, name, size & value details.
 | |
| /// Please see 'Tools Development Guide' section 2.16.2 for format details:
 | |
| /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
 | |
| /// The output is tested by test/CodeGen/xcore-stringtype.c.
 | |
| ///
 | |
| static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
 | |
|                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
 | |
| 
 | |
| /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
 | |
| void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
 | |
|                                           CodeGen::CodeGenModule &CGM) const {
 | |
|   SmallStringEnc Enc;
 | |
|   if (getTypeString(Enc, D, CGM, TSC)) {
 | |
|     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
 | |
|     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
 | |
|                                 llvm::MDString::get(Ctx, Enc.str())};
 | |
|     llvm::NamedMDNode *MD =
 | |
|       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
 | |
|     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SPIR ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
 | |
|   unsigned getOpenCLKernelCallingConv() const override;
 | |
| };
 | |
| 
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| namespace clang {
 | |
| namespace CodeGen {
 | |
| void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
 | |
|   DefaultABIInfo SPIRABI(CGM.getTypes());
 | |
|   SPIRABI.computeInfo(FI);
 | |
| }
 | |
| }
 | |
| }
 | |
| 
 | |
| unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
 | |
|   return llvm::CallingConv::SPIR_KERNEL;
 | |
| }
 | |
| 
 | |
| static bool appendType(SmallStringEnc &Enc, QualType QType,
 | |
|                        const CodeGen::CodeGenModule &CGM,
 | |
|                        TypeStringCache &TSC);
 | |
| 
 | |
| /// Helper function for appendRecordType().
 | |
| /// Builds a SmallVector containing the encoded field types in declaration
 | |
| /// order.
 | |
| static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
 | |
|                              const RecordDecl *RD,
 | |
|                              const CodeGen::CodeGenModule &CGM,
 | |
|                              TypeStringCache &TSC) {
 | |
|   for (const auto *Field : RD->fields()) {
 | |
|     SmallStringEnc Enc;
 | |
|     Enc += "m(";
 | |
|     Enc += Field->getName();
 | |
|     Enc += "){";
 | |
|     if (Field->isBitField()) {
 | |
|       Enc += "b(";
 | |
|       llvm::raw_svector_ostream OS(Enc);
 | |
|       OS << Field->getBitWidthValue(CGM.getContext());
 | |
|       Enc += ':';
 | |
|     }
 | |
|     if (!appendType(Enc, Field->getType(), CGM, TSC))
 | |
|       return false;
 | |
|     if (Field->isBitField())
 | |
|       Enc += ')';
 | |
|     Enc += '}';
 | |
|     FE.emplace_back(!Field->getName().empty(), Enc);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Appends structure and union types to Enc and adds encoding to cache.
 | |
| /// Recursively calls appendType (via extractFieldType) for each field.
 | |
| /// Union types have their fields ordered according to the ABI.
 | |
| static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
 | |
|                              const CodeGen::CodeGenModule &CGM,
 | |
|                              TypeStringCache &TSC, const IdentifierInfo *ID) {
 | |
|   // Append the cached TypeString if we have one.
 | |
|   StringRef TypeString = TSC.lookupStr(ID);
 | |
|   if (!TypeString.empty()) {
 | |
|     Enc += TypeString;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Start to emit an incomplete TypeString.
 | |
|   size_t Start = Enc.size();
 | |
|   Enc += (RT->isUnionType()? 'u' : 's');
 | |
|   Enc += '(';
 | |
|   if (ID)
 | |
|     Enc += ID->getName();
 | |
|   Enc += "){";
 | |
| 
 | |
|   // We collect all encoded fields and order as necessary.
 | |
|   bool IsRecursive = false;
 | |
|   const RecordDecl *RD = RT->getDecl()->getDefinition();
 | |
|   if (RD && !RD->field_empty()) {
 | |
|     // An incomplete TypeString stub is placed in the cache for this RecordType
 | |
|     // so that recursive calls to this RecordType will use it whilst building a
 | |
|     // complete TypeString for this RecordType.
 | |
|     SmallVector<FieldEncoding, 16> FE;
 | |
|     std::string StubEnc(Enc.substr(Start).str());
 | |
|     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
 | |
|     TSC.addIncomplete(ID, std::move(StubEnc));
 | |
|     if (!extractFieldType(FE, RD, CGM, TSC)) {
 | |
|       (void) TSC.removeIncomplete(ID);
 | |
|       return false;
 | |
|     }
 | |
|     IsRecursive = TSC.removeIncomplete(ID);
 | |
|     // The ABI requires unions to be sorted but not structures.
 | |
|     // See FieldEncoding::operator< for sort algorithm.
 | |
|     if (RT->isUnionType())
 | |
|       llvm::sort(FE);
 | |
|     // We can now complete the TypeString.
 | |
|     unsigned E = FE.size();
 | |
|     for (unsigned I = 0; I != E; ++I) {
 | |
|       if (I)
 | |
|         Enc += ',';
 | |
|       Enc += FE[I].str();
 | |
|     }
 | |
|   }
 | |
|   Enc += '}';
 | |
|   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Appends enum types to Enc and adds the encoding to the cache.
 | |
| static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
 | |
|                            TypeStringCache &TSC,
 | |
|                            const IdentifierInfo *ID) {
 | |
|   // Append the cached TypeString if we have one.
 | |
|   StringRef TypeString = TSC.lookupStr(ID);
 | |
|   if (!TypeString.empty()) {
 | |
|     Enc += TypeString;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   size_t Start = Enc.size();
 | |
|   Enc += "e(";
 | |
|   if (ID)
 | |
|     Enc += ID->getName();
 | |
|   Enc += "){";
 | |
| 
 | |
|   // We collect all encoded enumerations and order them alphanumerically.
 | |
|   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
 | |
|     SmallVector<FieldEncoding, 16> FE;
 | |
|     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
 | |
|          ++I) {
 | |
|       SmallStringEnc EnumEnc;
 | |
|       EnumEnc += "m(";
 | |
|       EnumEnc += I->getName();
 | |
|       EnumEnc += "){";
 | |
|       I->getInitVal().toString(EnumEnc);
 | |
|       EnumEnc += '}';
 | |
|       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
 | |
|     }
 | |
|     llvm::sort(FE);
 | |
|     unsigned E = FE.size();
 | |
|     for (unsigned I = 0; I != E; ++I) {
 | |
|       if (I)
 | |
|         Enc += ',';
 | |
|       Enc += FE[I].str();
 | |
|     }
 | |
|   }
 | |
|   Enc += '}';
 | |
|   TSC.addIfComplete(ID, Enc.substr(Start), false);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Appends type's qualifier to Enc.
 | |
| /// This is done prior to appending the type's encoding.
 | |
| static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
 | |
|   // Qualifiers are emitted in alphabetical order.
 | |
|   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
 | |
|   int Lookup = 0;
 | |
|   if (QT.isConstQualified())
 | |
|     Lookup += 1<<0;
 | |
|   if (QT.isRestrictQualified())
 | |
|     Lookup += 1<<1;
 | |
|   if (QT.isVolatileQualified())
 | |
|     Lookup += 1<<2;
 | |
|   Enc += Table[Lookup];
 | |
| }
 | |
| 
 | |
| /// Appends built-in types to Enc.
 | |
| static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
 | |
|   const char *EncType;
 | |
|   switch (BT->getKind()) {
 | |
|     case BuiltinType::Void:
 | |
|       EncType = "0";
 | |
|       break;
 | |
|     case BuiltinType::Bool:
 | |
|       EncType = "b";
 | |
|       break;
 | |
|     case BuiltinType::Char_U:
 | |
|       EncType = "uc";
 | |
|       break;
 | |
|     case BuiltinType::UChar:
 | |
|       EncType = "uc";
 | |
|       break;
 | |
|     case BuiltinType::SChar:
 | |
|       EncType = "sc";
 | |
|       break;
 | |
|     case BuiltinType::UShort:
 | |
|       EncType = "us";
 | |
|       break;
 | |
|     case BuiltinType::Short:
 | |
|       EncType = "ss";
 | |
|       break;
 | |
|     case BuiltinType::UInt:
 | |
|       EncType = "ui";
 | |
|       break;
 | |
|     case BuiltinType::Int:
 | |
|       EncType = "si";
 | |
|       break;
 | |
|     case BuiltinType::ULong:
 | |
|       EncType = "ul";
 | |
|       break;
 | |
|     case BuiltinType::Long:
 | |
|       EncType = "sl";
 | |
|       break;
 | |
|     case BuiltinType::ULongLong:
 | |
|       EncType = "ull";
 | |
|       break;
 | |
|     case BuiltinType::LongLong:
 | |
|       EncType = "sll";
 | |
|       break;
 | |
|     case BuiltinType::Float:
 | |
|       EncType = "ft";
 | |
|       break;
 | |
|     case BuiltinType::Double:
 | |
|       EncType = "d";
 | |
|       break;
 | |
|     case BuiltinType::LongDouble:
 | |
|       EncType = "ld";
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
|   Enc += EncType;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Appends a pointer encoding to Enc before calling appendType for the pointee.
 | |
| static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
 | |
|                               const CodeGen::CodeGenModule &CGM,
 | |
|                               TypeStringCache &TSC) {
 | |
|   Enc += "p(";
 | |
|   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
 | |
|     return false;
 | |
|   Enc += ')';
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Appends array encoding to Enc before calling appendType for the element.
 | |
| static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
 | |
|                             const ArrayType *AT,
 | |
|                             const CodeGen::CodeGenModule &CGM,
 | |
|                             TypeStringCache &TSC, StringRef NoSizeEnc) {
 | |
|   if (AT->getSizeModifier() != ArrayType::Normal)
 | |
|     return false;
 | |
|   Enc += "a(";
 | |
|   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
 | |
|     CAT->getSize().toStringUnsigned(Enc);
 | |
|   else
 | |
|     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
 | |
|   Enc += ':';
 | |
|   // The Qualifiers should be attached to the type rather than the array.
 | |
|   appendQualifier(Enc, QT);
 | |
|   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
 | |
|     return false;
 | |
|   Enc += ')';
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Appends a function encoding to Enc, calling appendType for the return type
 | |
| /// and the arguments.
 | |
| static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
 | |
|                              const CodeGen::CodeGenModule &CGM,
 | |
|                              TypeStringCache &TSC) {
 | |
|   Enc += "f{";
 | |
|   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
 | |
|     return false;
 | |
|   Enc += "}(";
 | |
|   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
 | |
|     // N.B. we are only interested in the adjusted param types.
 | |
|     auto I = FPT->param_type_begin();
 | |
|     auto E = FPT->param_type_end();
 | |
|     if (I != E) {
 | |
|       do {
 | |
|         if (!appendType(Enc, *I, CGM, TSC))
 | |
|           return false;
 | |
|         ++I;
 | |
|         if (I != E)
 | |
|           Enc += ',';
 | |
|       } while (I != E);
 | |
|       if (FPT->isVariadic())
 | |
|         Enc += ",va";
 | |
|     } else {
 | |
|       if (FPT->isVariadic())
 | |
|         Enc += "va";
 | |
|       else
 | |
|         Enc += '0';
 | |
|     }
 | |
|   }
 | |
|   Enc += ')';
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Handles the type's qualifier before dispatching a call to handle specific
 | |
| /// type encodings.
 | |
| static bool appendType(SmallStringEnc &Enc, QualType QType,
 | |
|                        const CodeGen::CodeGenModule &CGM,
 | |
|                        TypeStringCache &TSC) {
 | |
| 
 | |
|   QualType QT = QType.getCanonicalType();
 | |
| 
 | |
|   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
 | |
|     // The Qualifiers should be attached to the type rather than the array.
 | |
|     // Thus we don't call appendQualifier() here.
 | |
|     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
 | |
| 
 | |
|   appendQualifier(Enc, QT);
 | |
| 
 | |
|   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
 | |
|     return appendBuiltinType(Enc, BT);
 | |
| 
 | |
|   if (const PointerType *PT = QT->getAs<PointerType>())
 | |
|     return appendPointerType(Enc, PT, CGM, TSC);
 | |
| 
 | |
|   if (const EnumType *ET = QT->getAs<EnumType>())
 | |
|     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
 | |
| 
 | |
|   if (const RecordType *RT = QT->getAsStructureType())
 | |
|     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
 | |
| 
 | |
|   if (const RecordType *RT = QT->getAsUnionType())
 | |
|     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
 | |
| 
 | |
|   if (const FunctionType *FT = QT->getAs<FunctionType>())
 | |
|     return appendFunctionType(Enc, FT, CGM, TSC);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
 | |
|                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
 | |
|   if (!D)
 | |
|     return false;
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     if (FD->getLanguageLinkage() != CLanguageLinkage)
 | |
|       return false;
 | |
|     return appendType(Enc, FD->getType(), CGM, TSC);
 | |
|   }
 | |
| 
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
|     if (VD->getLanguageLinkage() != CLanguageLinkage)
 | |
|       return false;
 | |
|     QualType QT = VD->getType().getCanonicalType();
 | |
|     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
 | |
|       // Global ArrayTypes are given a size of '*' if the size is unknown.
 | |
|       // The Qualifiers should be attached to the type rather than the array.
 | |
|       // Thus we don't call appendQualifier() here.
 | |
|       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
 | |
|     }
 | |
|     return appendType(Enc, QT, CGM, TSC);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // RISCV ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class RISCVABIInfo : public DefaultABIInfo {
 | |
| private:
 | |
|   // Size of the integer ('x') registers in bits.
 | |
|   unsigned XLen;
 | |
|   // Size of the floating point ('f') registers in bits. Note that the target
 | |
|   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
 | |
|   // with soft float ABI has FLen==0).
 | |
|   unsigned FLen;
 | |
|   static const int NumArgGPRs = 8;
 | |
|   static const int NumArgFPRs = 8;
 | |
|   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
 | |
|                                       llvm::Type *&Field1Ty,
 | |
|                                       CharUnits &Field1Off,
 | |
|                                       llvm::Type *&Field2Ty,
 | |
|                                       CharUnits &Field2Off) const;
 | |
| 
 | |
| public:
 | |
|   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
 | |
|       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
 | |
| 
 | |
|   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
 | |
|   // non-virtual, but computeInfo is virtual, so we overload it.
 | |
|   void computeInfo(CGFunctionInfo &FI) const override;
 | |
| 
 | |
|   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
 | |
|                                   int &ArgFPRsLeft) const;
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
| 
 | |
|   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                     QualType Ty) const override;
 | |
| 
 | |
|   ABIArgInfo extendType(QualType Ty) const;
 | |
| 
 | |
|   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
 | |
|                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
 | |
|                                 CharUnits &Field2Off, int &NeededArgGPRs,
 | |
|                                 int &NeededArgFPRs) const;
 | |
|   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
 | |
|                                                CharUnits Field1Off,
 | |
|                                                llvm::Type *Field2Ty,
 | |
|                                                CharUnits Field2Off) const;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   QualType RetTy = FI.getReturnType();
 | |
|   if (!getCXXABI().classifyReturnType(FI))
 | |
|     FI.getReturnInfo() = classifyReturnType(RetTy);
 | |
| 
 | |
|   // IsRetIndirect is true if classifyArgumentType indicated the value should
 | |
|   // be passed indirect, or if the type size is a scalar greater than 2*XLen
 | |
|   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
 | |
|   // in LLVM IR, relying on the backend lowering code to rewrite the argument
 | |
|   // list and pass indirectly on RV32.
 | |
|   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
 | |
|   if (!IsRetIndirect && RetTy->isScalarType() &&
 | |
|       getContext().getTypeSize(RetTy) > (2 * XLen)) {
 | |
|     if (RetTy->isComplexType() && FLen) {
 | |
|       QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
 | |
|       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
 | |
|     } else {
 | |
|       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
 | |
|       IsRetIndirect = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We must track the number of GPRs used in order to conform to the RISC-V
 | |
|   // ABI, as integer scalars passed in registers should have signext/zeroext
 | |
|   // when promoted, but are anyext if passed on the stack. As GPR usage is
 | |
|   // different for variadic arguments, we must also track whether we are
 | |
|   // examining a vararg or not.
 | |
|   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
 | |
|   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
 | |
|   int NumFixedArgs = FI.getNumRequiredArgs();
 | |
| 
 | |
|   int ArgNum = 0;
 | |
|   for (auto &ArgInfo : FI.arguments()) {
 | |
|     bool IsFixed = ArgNum < NumFixedArgs;
 | |
|     ArgInfo.info =
 | |
|         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
 | |
|     ArgNum++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns true if the struct is a potential candidate for the floating point
 | |
| // calling convention. If this function returns true, the caller is
 | |
| // responsible for checking that if there is only a single field then that
 | |
| // field is a float.
 | |
| bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
 | |
|                                                   llvm::Type *&Field1Ty,
 | |
|                                                   CharUnits &Field1Off,
 | |
|                                                   llvm::Type *&Field2Ty,
 | |
|                                                   CharUnits &Field2Off) const {
 | |
|   bool IsInt = Ty->isIntegralOrEnumerationType();
 | |
|   bool IsFloat = Ty->isRealFloatingType();
 | |
| 
 | |
|   if (IsInt || IsFloat) {
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
|     if (IsInt && Size > XLen)
 | |
|       return false;
 | |
|     // Can't be eligible if larger than the FP registers. Half precision isn't
 | |
|     // currently supported on RISC-V and the ABI hasn't been confirmed, so
 | |
|     // default to the integer ABI in that case.
 | |
|     if (IsFloat && (Size > FLen || Size < 32))
 | |
|       return false;
 | |
|     // Can't be eligible if an integer type was already found (int+int pairs
 | |
|     // are not eligible).
 | |
|     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
 | |
|       return false;
 | |
|     if (!Field1Ty) {
 | |
|       Field1Ty = CGT.ConvertType(Ty);
 | |
|       Field1Off = CurOff;
 | |
|       return true;
 | |
|     }
 | |
|     if (!Field2Ty) {
 | |
|       Field2Ty = CGT.ConvertType(Ty);
 | |
|       Field2Off = CurOff;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (auto CTy = Ty->getAs<ComplexType>()) {
 | |
|     if (Field1Ty)
 | |
|       return false;
 | |
|     QualType EltTy = CTy->getElementType();
 | |
|     if (getContext().getTypeSize(EltTy) > FLen)
 | |
|       return false;
 | |
|     Field1Ty = CGT.ConvertType(EltTy);
 | |
|     Field1Off = CurOff;
 | |
|     assert(CurOff.isZero() && "Unexpected offset for first field");
 | |
|     Field2Ty = Field1Ty;
 | |
|     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
 | |
|     uint64_t ArraySize = ATy->getSize().getZExtValue();
 | |
|     QualType EltTy = ATy->getElementType();
 | |
|     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
 | |
|     for (uint64_t i = 0; i < ArraySize; ++i) {
 | |
|       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
 | |
|                                                 Field1Off, Field2Ty, Field2Off);
 | |
|       if (!Ret)
 | |
|         return false;
 | |
|       CurOff += EltSize;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (const auto *RTy = Ty->getAs<RecordType>()) {
 | |
|     // Structures with either a non-trivial destructor or a non-trivial
 | |
|     // copy constructor are not eligible for the FP calling convention.
 | |
|     if (getRecordArgABI(Ty, CGT.getCXXABI()))
 | |
|       return false;
 | |
|     if (isEmptyRecord(getContext(), Ty, true))
 | |
|       return true;
 | |
|     const RecordDecl *RD = RTy->getDecl();
 | |
|     // Unions aren't eligible unless they're empty (which is caught above).
 | |
|     if (RD->isUnion())
 | |
|       return false;
 | |
|     int ZeroWidthBitFieldCount = 0;
 | |
|     for (const FieldDecl *FD : RD->fields()) {
 | |
|       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
 | |
|       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
 | |
|       QualType QTy = FD->getType();
 | |
|       if (FD->isBitField()) {
 | |
|         unsigned BitWidth = FD->getBitWidthValue(getContext());
 | |
|         // Allow a bitfield with a type greater than XLen as long as the
 | |
|         // bitwidth is XLen or less.
 | |
|         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
 | |
|           QTy = getContext().getIntTypeForBitwidth(XLen, false);
 | |
|         if (BitWidth == 0) {
 | |
|           ZeroWidthBitFieldCount++;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       bool Ret = detectFPCCEligibleStructHelper(
 | |
|           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
 | |
|           Field1Ty, Field1Off, Field2Ty, Field2Off);
 | |
|       if (!Ret)
 | |
|         return false;
 | |
| 
 | |
|       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
 | |
|       // or int+fp structs, but are ignored for a struct with an fp field and
 | |
|       // any number of zero-width bitfields.
 | |
|       if (Field2Ty && ZeroWidthBitFieldCount > 0)
 | |
|         return false;
 | |
|     }
 | |
|     return Field1Ty != nullptr;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Determine if a struct is eligible for passing according to the floating
 | |
| // point calling convention (i.e., when flattened it contains a single fp
 | |
| // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
 | |
| // NeededArgGPRs are incremented appropriately.
 | |
| bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
 | |
|                                             CharUnits &Field1Off,
 | |
|                                             llvm::Type *&Field2Ty,
 | |
|                                             CharUnits &Field2Off,
 | |
|                                             int &NeededArgGPRs,
 | |
|                                             int &NeededArgFPRs) const {
 | |
|   Field1Ty = nullptr;
 | |
|   Field2Ty = nullptr;
 | |
|   NeededArgGPRs = 0;
 | |
|   NeededArgFPRs = 0;
 | |
|   bool IsCandidate = detectFPCCEligibleStructHelper(
 | |
|       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
 | |
|   // Not really a candidate if we have a single int but no float.
 | |
|   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
 | |
|     return false;
 | |
|   if (!IsCandidate)
 | |
|     return false;
 | |
|   if (Field1Ty && Field1Ty->isFloatingPointTy())
 | |
|     NeededArgFPRs++;
 | |
|   else if (Field1Ty)
 | |
|     NeededArgGPRs++;
 | |
|   if (Field2Ty && Field2Ty->isFloatingPointTy())
 | |
|     NeededArgFPRs++;
 | |
|   else if (Field2Ty)
 | |
|     NeededArgGPRs++;
 | |
|   return IsCandidate;
 | |
| }
 | |
| 
 | |
| // Call getCoerceAndExpand for the two-element flattened struct described by
 | |
| // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
 | |
| // appropriate coerceToType and unpaddedCoerceToType.
 | |
| ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
 | |
|     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
 | |
|     CharUnits Field2Off) const {
 | |
|   SmallVector<llvm::Type *, 3> CoerceElts;
 | |
|   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
 | |
|   if (!Field1Off.isZero())
 | |
|     CoerceElts.push_back(llvm::ArrayType::get(
 | |
|         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
 | |
| 
 | |
|   CoerceElts.push_back(Field1Ty);
 | |
|   UnpaddedCoerceElts.push_back(Field1Ty);
 | |
| 
 | |
|   if (!Field2Ty) {
 | |
|     return ABIArgInfo::getCoerceAndExpand(
 | |
|         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
 | |
|         UnpaddedCoerceElts[0]);
 | |
|   }
 | |
| 
 | |
|   CharUnits Field2Align =
 | |
|       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
 | |
|   CharUnits Field1Size =
 | |
|       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
 | |
|   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
 | |
| 
 | |
|   CharUnits Padding = CharUnits::Zero();
 | |
|   if (Field2Off > Field2OffNoPadNoPack)
 | |
|     Padding = Field2Off - Field2OffNoPadNoPack;
 | |
|   else if (Field2Off != Field2Align && Field2Off > Field1Size)
 | |
|     Padding = Field2Off - Field1Size;
 | |
| 
 | |
|   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
 | |
| 
 | |
|   if (!Padding.isZero())
 | |
|     CoerceElts.push_back(llvm::ArrayType::get(
 | |
|         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
 | |
| 
 | |
|   CoerceElts.push_back(Field2Ty);
 | |
|   UnpaddedCoerceElts.push_back(Field2Ty);
 | |
| 
 | |
|   auto CoerceToType =
 | |
|       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
 | |
|   auto UnpaddedCoerceToType =
 | |
|       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
 | |
| 
 | |
|   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
 | |
| }
 | |
| 
 | |
| ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
 | |
|                                               int &ArgGPRsLeft,
 | |
|                                               int &ArgFPRsLeft) const {
 | |
|   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
 | |
|   Ty = useFirstFieldIfTransparentUnion(Ty);
 | |
| 
 | |
|   // Structures with either a non-trivial destructor or a non-trivial
 | |
|   // copy constructor are always passed indirectly.
 | |
|   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
 | |
|     if (ArgGPRsLeft)
 | |
|       ArgGPRsLeft -= 1;
 | |
|     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
 | |
|                                            CGCXXABI::RAA_DirectInMemory);
 | |
|   }
 | |
| 
 | |
|   // Ignore empty structs/unions.
 | |
|   if (isEmptyRecord(getContext(), Ty, true))
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   uint64_t Size = getContext().getTypeSize(Ty);
 | |
| 
 | |
|   // Pass floating point values via FPRs if possible.
 | |
|   if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
 | |
|     ArgFPRsLeft--;
 | |
|     return ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
|   // Complex types for the hard float ABI must be passed direct rather than
 | |
|   // using CoerceAndExpand.
 | |
|   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
 | |
|     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
 | |
|     if (getContext().getTypeSize(EltTy) <= FLen) {
 | |
|       ArgFPRsLeft -= 2;
 | |
|       return ABIArgInfo::getDirect();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
 | |
|     llvm::Type *Field1Ty = nullptr;
 | |
|     llvm::Type *Field2Ty = nullptr;
 | |
|     CharUnits Field1Off = CharUnits::Zero();
 | |
|     CharUnits Field2Off = CharUnits::Zero();
 | |
|     int NeededArgGPRs;
 | |
|     int NeededArgFPRs;
 | |
|     bool IsCandidate =
 | |
|         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
 | |
|                                  NeededArgGPRs, NeededArgFPRs);
 | |
|     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
 | |
|         NeededArgFPRs <= ArgFPRsLeft) {
 | |
|       ArgGPRsLeft -= NeededArgGPRs;
 | |
|       ArgFPRsLeft -= NeededArgFPRs;
 | |
|       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
 | |
|                                                Field2Off);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
 | |
|   bool MustUseStack = false;
 | |
|   // Determine the number of GPRs needed to pass the current argument
 | |
|   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
 | |
|   // register pairs, so may consume 3 registers.
 | |
|   int NeededArgGPRs = 1;
 | |
|   if (!IsFixed && NeededAlign == 2 * XLen)
 | |
|     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
 | |
|   else if (Size > XLen && Size <= 2 * XLen)
 | |
|     NeededArgGPRs = 2;
 | |
| 
 | |
|   if (NeededArgGPRs > ArgGPRsLeft) {
 | |
|     MustUseStack = true;
 | |
|     NeededArgGPRs = ArgGPRsLeft;
 | |
|   }
 | |
| 
 | |
|   ArgGPRsLeft -= NeededArgGPRs;
 | |
| 
 | |
|   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|       Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     // All integral types are promoted to XLen width, unless passed on the
 | |
|     // stack.
 | |
|     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
 | |
|       return extendType(Ty);
 | |
|     }
 | |
| 
 | |
|     return ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
|   // Aggregates which are <= 2*XLen will be passed in registers if possible,
 | |
|   // so coerce to integers.
 | |
|   if (Size <= 2 * XLen) {
 | |
|     unsigned Alignment = getContext().getTypeAlign(Ty);
 | |
| 
 | |
|     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
 | |
|     // required, and a 2-element XLen array if only XLen alignment is required.
 | |
|     if (Size <= XLen) {
 | |
|       return ABIArgInfo::getDirect(
 | |
|           llvm::IntegerType::get(getVMContext(), XLen));
 | |
|     } else if (Alignment == 2 * XLen) {
 | |
|       return ABIArgInfo::getDirect(
 | |
|           llvm::IntegerType::get(getVMContext(), 2 * XLen));
 | |
|     } else {
 | |
|       return ABIArgInfo::getDirect(llvm::ArrayType::get(
 | |
|           llvm::IntegerType::get(getVMContext(), XLen), 2));
 | |
|     }
 | |
|   }
 | |
|   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
 | |
| }
 | |
| 
 | |
| ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   int ArgGPRsLeft = 2;
 | |
|   int ArgFPRsLeft = FLen ? 2 : 0;
 | |
| 
 | |
|   // The rules for return and argument types are the same, so defer to
 | |
|   // classifyArgumentType.
 | |
|   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
 | |
|                               ArgFPRsLeft);
 | |
| }
 | |
| 
 | |
| Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
 | |
|                                 QualType Ty) const {
 | |
|   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
 | |
| 
 | |
|   // Empty records are ignored for parameter passing purposes.
 | |
|   if (isEmptyRecord(getContext(), Ty, true)) {
 | |
|     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
 | |
|     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
 | |
|     return Addr;
 | |
|   }
 | |
| 
 | |
|   std::pair<CharUnits, CharUnits> SizeAndAlign =
 | |
|       getContext().getTypeInfoInChars(Ty);
 | |
| 
 | |
|   // Arguments bigger than 2*Xlen bytes are passed indirectly.
 | |
|   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
 | |
| 
 | |
|   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
 | |
|                           SlotSize, /*AllowHigherAlign=*/true);
 | |
| }
 | |
| 
 | |
| ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
 | |
|   int TySize = getContext().getTypeSize(Ty);
 | |
|   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
 | |
|   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
 | |
|     return ABIArgInfo::getSignExtend(Ty);
 | |
|   return ABIArgInfo::getExtend(Ty);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
 | |
|                          unsigned FLen)
 | |
|       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
 | |
| 
 | |
|   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const override {
 | |
|     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
 | |
|     if (!FD) return;
 | |
| 
 | |
|     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
 | |
|     if (!Attr)
 | |
|       return;
 | |
| 
 | |
|     const char *Kind;
 | |
|     switch (Attr->getInterrupt()) {
 | |
|     case RISCVInterruptAttr::user: Kind = "user"; break;
 | |
|     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
 | |
|     case RISCVInterruptAttr::machine: Kind = "machine"; break;
 | |
|     }
 | |
| 
 | |
|     auto *Fn = cast<llvm::Function>(GV);
 | |
| 
 | |
|     Fn->addFnAttr("interrupt", Kind);
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Driver code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool CodeGenModule::supportsCOMDAT() const {
 | |
|   return getTriple().supportsCOMDAT();
 | |
| }
 | |
| 
 | |
| const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
 | |
|   if (TheTargetCodeGenInfo)
 | |
|     return *TheTargetCodeGenInfo;
 | |
| 
 | |
|   // Helper to set the unique_ptr while still keeping the return value.
 | |
|   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
 | |
|     this->TheTargetCodeGenInfo.reset(P);
 | |
|     return *P;
 | |
|   };
 | |
| 
 | |
|   const llvm::Triple &Triple = getTarget().getTriple();
 | |
|   switch (Triple.getArch()) {
 | |
|   default:
 | |
|     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::le32:
 | |
|     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
 | |
|   case llvm::Triple::mips:
 | |
|   case llvm::Triple::mipsel:
 | |
|     if (Triple.getOS() == llvm::Triple::NaCl)
 | |
|       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
 | |
|     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
 | |
| 
 | |
|   case llvm::Triple::mips64:
 | |
|   case llvm::Triple::mips64el:
 | |
|     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
 | |
| 
 | |
|   case llvm::Triple::avr:
 | |
|     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::aarch64:
 | |
|   case llvm::Triple::aarch64_32:
 | |
|   case llvm::Triple::aarch64_be: {
 | |
|     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
 | |
|     if (getTarget().getABI() == "darwinpcs")
 | |
|       Kind = AArch64ABIInfo::DarwinPCS;
 | |
|     else if (Triple.isOSWindows())
 | |
|       return SetCGInfo(
 | |
|           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
 | |
| 
 | |
|     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
 | |
|   }
 | |
| 
 | |
|   case llvm::Triple::wasm32:
 | |
|   case llvm::Triple::wasm64: {
 | |
|     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
 | |
|     if (getTarget().getABI() == "experimental-mv")
 | |
|       Kind = WebAssemblyABIInfo::ExperimentalMV;
 | |
|     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
 | |
|   }
 | |
| 
 | |
|   case llvm::Triple::arm:
 | |
|   case llvm::Triple::armeb:
 | |
|   case llvm::Triple::thumb:
 | |
|   case llvm::Triple::thumbeb: {
 | |
|     if (Triple.getOS() == llvm::Triple::Win32) {
 | |
|       return SetCGInfo(
 | |
|           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
 | |
|     }
 | |
| 
 | |
|     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
 | |
|     StringRef ABIStr = getTarget().getABI();
 | |
|     if (ABIStr == "apcs-gnu")
 | |
|       Kind = ARMABIInfo::APCS;
 | |
|     else if (ABIStr == "aapcs16")
 | |
|       Kind = ARMABIInfo::AAPCS16_VFP;
 | |
|     else if (CodeGenOpts.FloatABI == "hard" ||
 | |
|              (CodeGenOpts.FloatABI != "soft" &&
 | |
|               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
 | |
|                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
 | |
|                Triple.getEnvironment() == llvm::Triple::EABIHF)))
 | |
|       Kind = ARMABIInfo::AAPCS_VFP;
 | |
| 
 | |
|     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
 | |
|   }
 | |
| 
 | |
|   case llvm::Triple::ppc:
 | |
|     return SetCGInfo(
 | |
|         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" ||
 | |
|                                    getTarget().hasFeature("spe")));
 | |
|   case llvm::Triple::ppc64:
 | |
|     if (Triple.isOSBinFormatELF()) {
 | |
|       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
 | |
|       if (getTarget().getABI() == "elfv2")
 | |
|         Kind = PPC64_SVR4_ABIInfo::ELFv2;
 | |
|       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
 | |
|       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
 | |
| 
 | |
|       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
 | |
|                                                         IsSoftFloat));
 | |
|     } else
 | |
|       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
 | |
|   case llvm::Triple::ppc64le: {
 | |
|     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
 | |
|     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
 | |
|     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
 | |
|       Kind = PPC64_SVR4_ABIInfo::ELFv1;
 | |
|     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
 | |
|     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
 | |
| 
 | |
|     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
 | |
|                                                       IsSoftFloat));
 | |
|   }
 | |
| 
 | |
|   case llvm::Triple::nvptx:
 | |
|   case llvm::Triple::nvptx64:
 | |
|     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::msp430:
 | |
|     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::riscv32:
 | |
|   case llvm::Triple::riscv64: {
 | |
|     StringRef ABIStr = getTarget().getABI();
 | |
|     unsigned XLen = getTarget().getPointerWidth(0);
 | |
|     unsigned ABIFLen = 0;
 | |
|     if (ABIStr.endswith("f"))
 | |
|       ABIFLen = 32;
 | |
|     else if (ABIStr.endswith("d"))
 | |
|       ABIFLen = 64;
 | |
|     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
 | |
|   }
 | |
| 
 | |
|   case llvm::Triple::systemz: {
 | |
|     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
 | |
|     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
 | |
|     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
 | |
|   }
 | |
| 
 | |
|   case llvm::Triple::tce:
 | |
|   case llvm::Triple::tcele:
 | |
|     return SetCGInfo(new TCETargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::x86: {
 | |
|     bool IsDarwinVectorABI = Triple.isOSDarwin();
 | |
|     bool RetSmallStructInRegABI =
 | |
|         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
 | |
|     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
 | |
| 
 | |
|     if (Triple.getOS() == llvm::Triple::Win32) {
 | |
|       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
 | |
|           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
 | |
|           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
 | |
|     } else {
 | |
|       return SetCGInfo(new X86_32TargetCodeGenInfo(
 | |
|           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
 | |
|           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
 | |
|           CodeGenOpts.FloatABI == "soft"));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case llvm::Triple::x86_64: {
 | |
|     StringRef ABI = getTarget().getABI();
 | |
|     X86AVXABILevel AVXLevel =
 | |
|         (ABI == "avx512"
 | |
|              ? X86AVXABILevel::AVX512
 | |
|              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
 | |
| 
 | |
|     switch (Triple.getOS()) {
 | |
|     case llvm::Triple::Win32:
 | |
|       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
 | |
|     default:
 | |
|       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
 | |
|     }
 | |
|   }
 | |
|   case llvm::Triple::hexagon:
 | |
|     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
 | |
|   case llvm::Triple::lanai:
 | |
|     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
 | |
|   case llvm::Triple::r600:
 | |
|     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
 | |
|   case llvm::Triple::amdgcn:
 | |
|     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
 | |
|   case llvm::Triple::sparc:
 | |
|     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
 | |
|   case llvm::Triple::sparcv9:
 | |
|     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
 | |
|   case llvm::Triple::xcore:
 | |
|     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
 | |
|   case llvm::Triple::arc:
 | |
|     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
 | |
|   case llvm::Triple::spir:
 | |
|   case llvm::Triple::spir64:
 | |
|     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create an OpenCL kernel for an enqueued block.
 | |
| ///
 | |
| /// The kernel has the same function type as the block invoke function. Its
 | |
| /// name is the name of the block invoke function postfixed with "_kernel".
 | |
| /// It simply calls the block invoke function then returns.
 | |
| llvm::Function *
 | |
| TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
 | |
|                                              llvm::Function *Invoke,
 | |
|                                              llvm::Value *BlockLiteral) const {
 | |
|   auto *InvokeFT = Invoke->getFunctionType();
 | |
|   llvm::SmallVector<llvm::Type *, 2> ArgTys;
 | |
|   for (auto &P : InvokeFT->params())
 | |
|     ArgTys.push_back(P);
 | |
|   auto &C = CGF.getLLVMContext();
 | |
|   std::string Name = Invoke->getName().str() + "_kernel";
 | |
|   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
 | |
|   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
 | |
|                                    &CGF.CGM.getModule());
 | |
|   auto IP = CGF.Builder.saveIP();
 | |
|   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
 | |
|   auto &Builder = CGF.Builder;
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   llvm::SmallVector<llvm::Value *, 2> Args;
 | |
|   for (auto &A : F->args())
 | |
|     Args.push_back(&A);
 | |
|   Builder.CreateCall(Invoke, Args);
 | |
|   Builder.CreateRetVoid();
 | |
|   Builder.restoreIP(IP);
 | |
|   return F;
 | |
| }
 | |
| 
 | |
| /// Create an OpenCL kernel for an enqueued block.
 | |
| ///
 | |
| /// The type of the first argument (the block literal) is the struct type
 | |
| /// of the block literal instead of a pointer type. The first argument
 | |
| /// (block literal) is passed directly by value to the kernel. The kernel
 | |
| /// allocates the same type of struct on stack and stores the block literal
 | |
| /// to it and passes its pointer to the block invoke function. The kernel
 | |
| /// has "enqueued-block" function attribute and kernel argument metadata.
 | |
| llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
 | |
|     CodeGenFunction &CGF, llvm::Function *Invoke,
 | |
|     llvm::Value *BlockLiteral) const {
 | |
|   auto &Builder = CGF.Builder;
 | |
|   auto &C = CGF.getLLVMContext();
 | |
| 
 | |
|   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
 | |
|   auto *InvokeFT = Invoke->getFunctionType();
 | |
|   llvm::SmallVector<llvm::Type *, 2> ArgTys;
 | |
|   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
 | |
|   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
 | |
|   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
 | |
|   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
 | |
|   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
 | |
|   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
 | |
| 
 | |
|   ArgTys.push_back(BlockTy);
 | |
|   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
 | |
|   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
 | |
|   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
 | |
|   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
 | |
|   AccessQuals.push_back(llvm::MDString::get(C, "none"));
 | |
|   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
 | |
|   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
 | |
|     ArgTys.push_back(InvokeFT->getParamType(I));
 | |
|     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
 | |
|     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
 | |
|     AccessQuals.push_back(llvm::MDString::get(C, "none"));
 | |
|     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
 | |
|     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
 | |
|     ArgNames.push_back(
 | |
|         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
 | |
|   }
 | |
|   std::string Name = Invoke->getName().str() + "_kernel";
 | |
|   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
 | |
|   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
 | |
|                                    &CGF.CGM.getModule());
 | |
|   F->addFnAttr("enqueued-block");
 | |
|   auto IP = CGF.Builder.saveIP();
 | |
|   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
 | |
|   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
 | |
|   BlockPtr->setAlignment(BlockAlign);
 | |
|   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
 | |
|   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
 | |
|   llvm::SmallVector<llvm::Value *, 2> Args;
 | |
|   Args.push_back(Cast);
 | |
|   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
 | |
|     Args.push_back(I);
 | |
|   Builder.CreateCall(Invoke, Args);
 | |
|   Builder.CreateRetVoid();
 | |
|   Builder.restoreIP(IP);
 | |
| 
 | |
|   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
 | |
|   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
 | |
|   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
 | |
|   F->setMetadata("kernel_arg_base_type",
 | |
|                  llvm::MDNode::get(C, ArgBaseTypeNames));
 | |
|   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
 | |
|   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
 | |
|     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
 | |
| 
 | |
|   return F;
 | |
| }
 |