forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2348 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2348 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the actions class which performs semantic analysis and
 | |
| // builds an AST out of a parse stream.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTDiagnostic.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclFriend.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/PrettyDeclStackTrace.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/Basic/DiagnosticOptions.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/Stack.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Lex/HeaderSearch.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Sema/CXXFieldCollector.h"
 | |
| #include "clang/Sema/DelayedDiagnostic.h"
 | |
| #include "clang/Sema/ExternalSemaSource.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/MultiplexExternalSemaSource.h"
 | |
| #include "clang/Sema/ObjCMethodList.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/SemaConsumer.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/TemplateDeduction.h"
 | |
| #include "clang/Sema/TemplateInstCallback.h"
 | |
| #include "clang/Sema/TypoCorrection.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Support/TimeProfiler.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| SourceLocation Sema::getLocForEndOfToken(SourceLocation Loc, unsigned Offset) {
 | |
|   return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts);
 | |
| }
 | |
| 
 | |
| ModuleLoader &Sema::getModuleLoader() const { return PP.getModuleLoader(); }
 | |
| 
 | |
| IdentifierInfo *
 | |
| Sema::InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName,
 | |
|                                                  unsigned int Index) {
 | |
|   std::string InventedName;
 | |
|   llvm::raw_string_ostream OS(InventedName);
 | |
| 
 | |
|   if (!ParamName)
 | |
|     OS << "auto:" << Index + 1;
 | |
|   else
 | |
|     OS << ParamName->getName() << ":auto";
 | |
| 
 | |
|   OS.flush();
 | |
|   return &Context.Idents.get(OS.str());
 | |
| }
 | |
| 
 | |
| PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context,
 | |
|                                        const Preprocessor &PP) {
 | |
|   PrintingPolicy Policy = Context.getPrintingPolicy();
 | |
|   // In diagnostics, we print _Bool as bool if the latter is defined as the
 | |
|   // former.
 | |
|   Policy.Bool = Context.getLangOpts().Bool;
 | |
|   if (!Policy.Bool) {
 | |
|     if (const MacroInfo *BoolMacro = PP.getMacroInfo(Context.getBoolName())) {
 | |
|       Policy.Bool = BoolMacro->isObjectLike() &&
 | |
|                     BoolMacro->getNumTokens() == 1 &&
 | |
|                     BoolMacro->getReplacementToken(0).is(tok::kw__Bool);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Policy;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnTranslationUnitScope(Scope *S) {
 | |
|   TUScope = S;
 | |
|   PushDeclContext(S, Context.getTranslationUnitDecl());
 | |
| }
 | |
| 
 | |
| namespace clang {
 | |
| namespace sema {
 | |
| 
 | |
| class SemaPPCallbacks : public PPCallbacks {
 | |
|   Sema *S = nullptr;
 | |
|   llvm::SmallVector<SourceLocation, 8> IncludeStack;
 | |
| 
 | |
| public:
 | |
|   void set(Sema &S) { this->S = &S; }
 | |
| 
 | |
|   void reset() { S = nullptr; }
 | |
| 
 | |
|   virtual void FileChanged(SourceLocation Loc, FileChangeReason Reason,
 | |
|                            SrcMgr::CharacteristicKind FileType,
 | |
|                            FileID PrevFID) override {
 | |
|     if (!S)
 | |
|       return;
 | |
|     switch (Reason) {
 | |
|     case EnterFile: {
 | |
|       SourceManager &SM = S->getSourceManager();
 | |
|       SourceLocation IncludeLoc = SM.getIncludeLoc(SM.getFileID(Loc));
 | |
|       if (IncludeLoc.isValid()) {
 | |
|         if (llvm::timeTraceProfilerEnabled()) {
 | |
|           const FileEntry *FE = SM.getFileEntryForID(SM.getFileID(Loc));
 | |
|           llvm::timeTraceProfilerBegin(
 | |
|               "Source", FE != nullptr ? FE->getName() : StringRef("<unknown>"));
 | |
|         }
 | |
| 
 | |
|         IncludeStack.push_back(IncludeLoc);
 | |
|         S->DiagnoseNonDefaultPragmaPack(
 | |
|             Sema::PragmaPackDiagnoseKind::NonDefaultStateAtInclude, IncludeLoc);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case ExitFile:
 | |
|       if (!IncludeStack.empty()) {
 | |
|         if (llvm::timeTraceProfilerEnabled())
 | |
|           llvm::timeTraceProfilerEnd();
 | |
| 
 | |
|         S->DiagnoseNonDefaultPragmaPack(
 | |
|             Sema::PragmaPackDiagnoseKind::ChangedStateAtExit,
 | |
|             IncludeStack.pop_back_val());
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end namespace sema
 | |
| } // end namespace clang
 | |
| 
 | |
| const unsigned Sema::MaxAlignmentExponent;
 | |
| const unsigned Sema::MaximumAlignment;
 | |
| 
 | |
| Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
 | |
|            TranslationUnitKind TUKind, CodeCompleteConsumer *CodeCompleter)
 | |
|     : ExternalSource(nullptr), isMultiplexExternalSource(false),
 | |
|       FPFeatures(pp.getLangOpts()), LangOpts(pp.getLangOpts()), PP(pp),
 | |
|       Context(ctxt), Consumer(consumer), Diags(PP.getDiagnostics()),
 | |
|       SourceMgr(PP.getSourceManager()), CollectStats(false),
 | |
|       CodeCompleter(CodeCompleter), CurContext(nullptr),
 | |
|       OriginalLexicalContext(nullptr), MSStructPragmaOn(false),
 | |
|       MSPointerToMemberRepresentationMethod(
 | |
|           LangOpts.getMSPointerToMemberRepresentationMethod()),
 | |
|       VtorDispStack(LangOpts.getVtorDispMode()), PackStack(0),
 | |
|       DataSegStack(nullptr), BSSSegStack(nullptr), ConstSegStack(nullptr),
 | |
|       CodeSegStack(nullptr), CurInitSeg(nullptr), VisContext(nullptr),
 | |
|       PragmaAttributeCurrentTargetDecl(nullptr),
 | |
|       IsBuildingRecoveryCallExpr(false), Cleanup{}, LateTemplateParser(nullptr),
 | |
|       LateTemplateParserCleanup(nullptr), OpaqueParser(nullptr), IdResolver(pp),
 | |
|       StdExperimentalNamespaceCache(nullptr), StdInitializerList(nullptr),
 | |
|       StdCoroutineTraitsCache(nullptr), CXXTypeInfoDecl(nullptr),
 | |
|       MSVCGuidDecl(nullptr), NSNumberDecl(nullptr), NSValueDecl(nullptr),
 | |
|       NSStringDecl(nullptr), StringWithUTF8StringMethod(nullptr),
 | |
|       ValueWithBytesObjCTypeMethod(nullptr), NSArrayDecl(nullptr),
 | |
|       ArrayWithObjectsMethod(nullptr), NSDictionaryDecl(nullptr),
 | |
|       DictionaryWithObjectsMethod(nullptr), GlobalNewDeleteDeclared(false),
 | |
|       TUKind(TUKind), NumSFINAEErrors(0),
 | |
|       FullyCheckedComparisonCategories(
 | |
|           static_cast<unsigned>(ComparisonCategoryType::Last) + 1),
 | |
|       SatisfactionCache(Context), AccessCheckingSFINAE(false),
 | |
|       InNonInstantiationSFINAEContext(false), NonInstantiationEntries(0),
 | |
|       ArgumentPackSubstitutionIndex(-1), CurrentInstantiationScope(nullptr),
 | |
|       DisableTypoCorrection(false), TyposCorrected(0), AnalysisWarnings(*this),
 | |
|       ThreadSafetyDeclCache(nullptr), VarDataSharingAttributesStack(nullptr),
 | |
|       CurScope(nullptr), Ident_super(nullptr), Ident___float128(nullptr) {
 | |
|   TUScope = nullptr;
 | |
|   isConstantEvaluatedOverride = false;
 | |
| 
 | |
|   LoadedExternalKnownNamespaces = false;
 | |
|   for (unsigned I = 0; I != NSAPI::NumNSNumberLiteralMethods; ++I)
 | |
|     NSNumberLiteralMethods[I] = nullptr;
 | |
| 
 | |
|   if (getLangOpts().ObjC)
 | |
|     NSAPIObj.reset(new NSAPI(Context));
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus)
 | |
|     FieldCollector.reset(new CXXFieldCollector());
 | |
| 
 | |
|   // Tell diagnostics how to render things from the AST library.
 | |
|   Diags.SetArgToStringFn(&FormatASTNodeDiagnosticArgument, &Context);
 | |
| 
 | |
|   ExprEvalContexts.emplace_back(
 | |
|       ExpressionEvaluationContext::PotentiallyEvaluated, 0, CleanupInfo{},
 | |
|       nullptr, ExpressionEvaluationContextRecord::EK_Other);
 | |
| 
 | |
|   // Initialization of data sharing attributes stack for OpenMP
 | |
|   InitDataSharingAttributesStack();
 | |
| 
 | |
|   std::unique_ptr<sema::SemaPPCallbacks> Callbacks =
 | |
|       std::make_unique<sema::SemaPPCallbacks>();
 | |
|   SemaPPCallbackHandler = Callbacks.get();
 | |
|   PP.addPPCallbacks(std::move(Callbacks));
 | |
|   SemaPPCallbackHandler->set(*this);
 | |
| }
 | |
| 
 | |
| // Anchor Sema's type info to this TU.
 | |
| void Sema::anchor() {}
 | |
| 
 | |
| void Sema::addImplicitTypedef(StringRef Name, QualType T) {
 | |
|   DeclarationName DN = &Context.Idents.get(Name);
 | |
|   if (IdResolver.begin(DN) == IdResolver.end())
 | |
|     PushOnScopeChains(Context.buildImplicitTypedef(T, Name), TUScope);
 | |
| }
 | |
| 
 | |
| void Sema::Initialize() {
 | |
|   if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
 | |
|     SC->InitializeSema(*this);
 | |
| 
 | |
|   // Tell the external Sema source about this Sema object.
 | |
|   if (ExternalSemaSource *ExternalSema
 | |
|       = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
 | |
|     ExternalSema->InitializeSema(*this);
 | |
| 
 | |
|   // This needs to happen after ExternalSemaSource::InitializeSema(this) or we
 | |
|   // will not be able to merge any duplicate __va_list_tag decls correctly.
 | |
|   VAListTagName = PP.getIdentifierInfo("__va_list_tag");
 | |
| 
 | |
|   if (!TUScope)
 | |
|     return;
 | |
| 
 | |
|   // Initialize predefined 128-bit integer types, if needed.
 | |
|   if (Context.getTargetInfo().hasInt128Type()) {
 | |
|     // If either of the 128-bit integer types are unavailable to name lookup,
 | |
|     // define them now.
 | |
|     DeclarationName Int128 = &Context.Idents.get("__int128_t");
 | |
|     if (IdResolver.begin(Int128) == IdResolver.end())
 | |
|       PushOnScopeChains(Context.getInt128Decl(), TUScope);
 | |
| 
 | |
|     DeclarationName UInt128 = &Context.Idents.get("__uint128_t");
 | |
|     if (IdResolver.begin(UInt128) == IdResolver.end())
 | |
|       PushOnScopeChains(Context.getUInt128Decl(), TUScope);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Initialize predefined Objective-C types:
 | |
|   if (getLangOpts().ObjC) {
 | |
|     // If 'SEL' does not yet refer to any declarations, make it refer to the
 | |
|     // predefined 'SEL'.
 | |
|     DeclarationName SEL = &Context.Idents.get("SEL");
 | |
|     if (IdResolver.begin(SEL) == IdResolver.end())
 | |
|       PushOnScopeChains(Context.getObjCSelDecl(), TUScope);
 | |
| 
 | |
|     // If 'id' does not yet refer to any declarations, make it refer to the
 | |
|     // predefined 'id'.
 | |
|     DeclarationName Id = &Context.Idents.get("id");
 | |
|     if (IdResolver.begin(Id) == IdResolver.end())
 | |
|       PushOnScopeChains(Context.getObjCIdDecl(), TUScope);
 | |
| 
 | |
|     // Create the built-in typedef for 'Class'.
 | |
|     DeclarationName Class = &Context.Idents.get("Class");
 | |
|     if (IdResolver.begin(Class) == IdResolver.end())
 | |
|       PushOnScopeChains(Context.getObjCClassDecl(), TUScope);
 | |
| 
 | |
|     // Create the built-in forward declaratino for 'Protocol'.
 | |
|     DeclarationName Protocol = &Context.Idents.get("Protocol");
 | |
|     if (IdResolver.begin(Protocol) == IdResolver.end())
 | |
|       PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope);
 | |
|   }
 | |
| 
 | |
|   // Create the internal type for the *StringMakeConstantString builtins.
 | |
|   DeclarationName ConstantString = &Context.Idents.get("__NSConstantString");
 | |
|   if (IdResolver.begin(ConstantString) == IdResolver.end())
 | |
|     PushOnScopeChains(Context.getCFConstantStringDecl(), TUScope);
 | |
| 
 | |
|   // Initialize Microsoft "predefined C++ types".
 | |
|   if (getLangOpts().MSVCCompat) {
 | |
|     if (getLangOpts().CPlusPlus &&
 | |
|         IdResolver.begin(&Context.Idents.get("type_info")) == IdResolver.end())
 | |
|       PushOnScopeChains(Context.buildImplicitRecord("type_info", TTK_Class),
 | |
|                         TUScope);
 | |
| 
 | |
|     addImplicitTypedef("size_t", Context.getSizeType());
 | |
|   }
 | |
| 
 | |
|   // Initialize predefined OpenCL types and supported extensions and (optional)
 | |
|   // core features.
 | |
|   if (getLangOpts().OpenCL) {
 | |
|     getOpenCLOptions().addSupport(
 | |
|         Context.getTargetInfo().getSupportedOpenCLOpts());
 | |
|     getOpenCLOptions().enableSupportedCore(getLangOpts());
 | |
|     addImplicitTypedef("sampler_t", Context.OCLSamplerTy);
 | |
|     addImplicitTypedef("event_t", Context.OCLEventTy);
 | |
|     if (getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) {
 | |
|       addImplicitTypedef("clk_event_t", Context.OCLClkEventTy);
 | |
|       addImplicitTypedef("queue_t", Context.OCLQueueTy);
 | |
|       addImplicitTypedef("reserve_id_t", Context.OCLReserveIDTy);
 | |
|       addImplicitTypedef("atomic_int", Context.getAtomicType(Context.IntTy));
 | |
|       addImplicitTypedef("atomic_uint",
 | |
|                          Context.getAtomicType(Context.UnsignedIntTy));
 | |
|       auto AtomicLongT = Context.getAtomicType(Context.LongTy);
 | |
|       addImplicitTypedef("atomic_long", AtomicLongT);
 | |
|       auto AtomicULongT = Context.getAtomicType(Context.UnsignedLongTy);
 | |
|       addImplicitTypedef("atomic_ulong", AtomicULongT);
 | |
|       addImplicitTypedef("atomic_float",
 | |
|                          Context.getAtomicType(Context.FloatTy));
 | |
|       auto AtomicDoubleT = Context.getAtomicType(Context.DoubleTy);
 | |
|       addImplicitTypedef("atomic_double", AtomicDoubleT);
 | |
|       // OpenCLC v2.0, s6.13.11.6 requires that atomic_flag is implemented as
 | |
|       // 32-bit integer and OpenCLC v2.0, s6.1.1 int is always 32-bit wide.
 | |
|       addImplicitTypedef("atomic_flag", Context.getAtomicType(Context.IntTy));
 | |
|       auto AtomicIntPtrT = Context.getAtomicType(Context.getIntPtrType());
 | |
|       addImplicitTypedef("atomic_intptr_t", AtomicIntPtrT);
 | |
|       auto AtomicUIntPtrT = Context.getAtomicType(Context.getUIntPtrType());
 | |
|       addImplicitTypedef("atomic_uintptr_t", AtomicUIntPtrT);
 | |
|       auto AtomicSizeT = Context.getAtomicType(Context.getSizeType());
 | |
|       addImplicitTypedef("atomic_size_t", AtomicSizeT);
 | |
|       auto AtomicPtrDiffT = Context.getAtomicType(Context.getPointerDiffType());
 | |
|       addImplicitTypedef("atomic_ptrdiff_t", AtomicPtrDiffT);
 | |
| 
 | |
|       // OpenCL v2.0 s6.13.11.6:
 | |
|       // - The atomic_long and atomic_ulong types are supported if the
 | |
|       //   cl_khr_int64_base_atomics and cl_khr_int64_extended_atomics
 | |
|       //   extensions are supported.
 | |
|       // - The atomic_double type is only supported if double precision
 | |
|       //   is supported and the cl_khr_int64_base_atomics and
 | |
|       //   cl_khr_int64_extended_atomics extensions are supported.
 | |
|       // - If the device address space is 64-bits, the data types
 | |
|       //   atomic_intptr_t, atomic_uintptr_t, atomic_size_t and
 | |
|       //   atomic_ptrdiff_t are supported if the cl_khr_int64_base_atomics and
 | |
|       //   cl_khr_int64_extended_atomics extensions are supported.
 | |
|       std::vector<QualType> Atomic64BitTypes;
 | |
|       Atomic64BitTypes.push_back(AtomicLongT);
 | |
|       Atomic64BitTypes.push_back(AtomicULongT);
 | |
|       Atomic64BitTypes.push_back(AtomicDoubleT);
 | |
|       if (Context.getTypeSize(AtomicSizeT) == 64) {
 | |
|         Atomic64BitTypes.push_back(AtomicSizeT);
 | |
|         Atomic64BitTypes.push_back(AtomicIntPtrT);
 | |
|         Atomic64BitTypes.push_back(AtomicUIntPtrT);
 | |
|         Atomic64BitTypes.push_back(AtomicPtrDiffT);
 | |
|       }
 | |
|       for (auto &I : Atomic64BitTypes)
 | |
|         setOpenCLExtensionForType(I,
 | |
|             "cl_khr_int64_base_atomics cl_khr_int64_extended_atomics");
 | |
| 
 | |
|       setOpenCLExtensionForType(AtomicDoubleT, "cl_khr_fp64");
 | |
|     }
 | |
| 
 | |
|     setOpenCLExtensionForType(Context.DoubleTy, "cl_khr_fp64");
 | |
| 
 | |
| #define GENERIC_IMAGE_TYPE_EXT(Type, Id, Ext) \
 | |
|     setOpenCLExtensionForType(Context.Id, Ext);
 | |
| #include "clang/Basic/OpenCLImageTypes.def"
 | |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
 | |
|     addImplicitTypedef(#ExtType, Context.Id##Ty); \
 | |
|     setOpenCLExtensionForType(Context.Id##Ty, #Ext);
 | |
| #include "clang/Basic/OpenCLExtensionTypes.def"
 | |
|   }
 | |
| 
 | |
|   if (Context.getTargetInfo().hasAArch64SVETypes()) {
 | |
| #define SVE_TYPE(Name, Id, SingletonId) \
 | |
|     addImplicitTypedef(Name, Context.SingletonId);
 | |
| #include "clang/Basic/AArch64SVEACLETypes.def"
 | |
|   }
 | |
| 
 | |
|   if (Context.getTargetInfo().hasBuiltinMSVaList()) {
 | |
|     DeclarationName MSVaList = &Context.Idents.get("__builtin_ms_va_list");
 | |
|     if (IdResolver.begin(MSVaList) == IdResolver.end())
 | |
|       PushOnScopeChains(Context.getBuiltinMSVaListDecl(), TUScope);
 | |
|   }
 | |
| 
 | |
|   DeclarationName BuiltinVaList = &Context.Idents.get("__builtin_va_list");
 | |
|   if (IdResolver.begin(BuiltinVaList) == IdResolver.end())
 | |
|     PushOnScopeChains(Context.getBuiltinVaListDecl(), TUScope);
 | |
| }
 | |
| 
 | |
| Sema::~Sema() {
 | |
|   if (VisContext) FreeVisContext();
 | |
| 
 | |
|   // Kill all the active scopes.
 | |
|   for (sema::FunctionScopeInfo *FSI : FunctionScopes)
 | |
|     delete FSI;
 | |
| 
 | |
|   // Tell the SemaConsumer to forget about us; we're going out of scope.
 | |
|   if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
 | |
|     SC->ForgetSema();
 | |
| 
 | |
|   // Detach from the external Sema source.
 | |
|   if (ExternalSemaSource *ExternalSema
 | |
|         = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
 | |
|     ExternalSema->ForgetSema();
 | |
| 
 | |
|   // If Sema's ExternalSource is the multiplexer - we own it.
 | |
|   if (isMultiplexExternalSource)
 | |
|     delete ExternalSource;
 | |
| 
 | |
|   // Delete cached satisfactions.
 | |
|   std::vector<ConstraintSatisfaction *> Satisfactions;
 | |
|   Satisfactions.reserve(Satisfactions.size());
 | |
|   for (auto &Node : SatisfactionCache)
 | |
|     Satisfactions.push_back(&Node);
 | |
|   for (auto *Node : Satisfactions)
 | |
|     delete Node;
 | |
| 
 | |
|   threadSafety::threadSafetyCleanup(ThreadSafetyDeclCache);
 | |
| 
 | |
|   // Destroys data sharing attributes stack for OpenMP
 | |
|   DestroyDataSharingAttributesStack();
 | |
| 
 | |
|   // Detach from the PP callback handler which outlives Sema since it's owned
 | |
|   // by the preprocessor.
 | |
|   SemaPPCallbackHandler->reset();
 | |
| }
 | |
| 
 | |
| void Sema::warnStackExhausted(SourceLocation Loc) {
 | |
|   // Only warn about this once.
 | |
|   if (!WarnedStackExhausted) {
 | |
|     Diag(Loc, diag::warn_stack_exhausted);
 | |
|     WarnedStackExhausted = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::runWithSufficientStackSpace(SourceLocation Loc,
 | |
|                                        llvm::function_ref<void()> Fn) {
 | |
|   clang::runWithSufficientStackSpace([&] { warnStackExhausted(Loc); }, Fn);
 | |
| }
 | |
| 
 | |
| /// makeUnavailableInSystemHeader - There is an error in the current
 | |
| /// context.  If we're still in a system header, and we can plausibly
 | |
| /// make the relevant declaration unavailable instead of erroring, do
 | |
| /// so and return true.
 | |
| bool Sema::makeUnavailableInSystemHeader(SourceLocation loc,
 | |
|                                       UnavailableAttr::ImplicitReason reason) {
 | |
|   // If we're not in a function, it's an error.
 | |
|   FunctionDecl *fn = dyn_cast<FunctionDecl>(CurContext);
 | |
|   if (!fn) return false;
 | |
| 
 | |
|   // If we're in template instantiation, it's an error.
 | |
|   if (inTemplateInstantiation())
 | |
|     return false;
 | |
| 
 | |
|   // If that function's not in a system header, it's an error.
 | |
|   if (!Context.getSourceManager().isInSystemHeader(loc))
 | |
|     return false;
 | |
| 
 | |
|   // If the function is already unavailable, it's not an error.
 | |
|   if (fn->hasAttr<UnavailableAttr>()) return true;
 | |
| 
 | |
|   fn->addAttr(UnavailableAttr::CreateImplicit(Context, "", reason, loc));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ASTMutationListener *Sema::getASTMutationListener() const {
 | |
|   return getASTConsumer().GetASTMutationListener();
 | |
| }
 | |
| 
 | |
| ///Registers an external source. If an external source already exists,
 | |
| /// creates a multiplex external source and appends to it.
 | |
| ///
 | |
| ///\param[in] E - A non-null external sema source.
 | |
| ///
 | |
| void Sema::addExternalSource(ExternalSemaSource *E) {
 | |
|   assert(E && "Cannot use with NULL ptr");
 | |
| 
 | |
|   if (!ExternalSource) {
 | |
|     ExternalSource = E;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isMultiplexExternalSource)
 | |
|     static_cast<MultiplexExternalSemaSource*>(ExternalSource)->addSource(*E);
 | |
|   else {
 | |
|     ExternalSource = new MultiplexExternalSemaSource(*ExternalSource, *E);
 | |
|     isMultiplexExternalSource = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Print out statistics about the semantic analysis.
 | |
| void Sema::PrintStats() const {
 | |
|   llvm::errs() << "\n*** Semantic Analysis Stats:\n";
 | |
|   llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n";
 | |
| 
 | |
|   BumpAlloc.PrintStats();
 | |
|   AnalysisWarnings.PrintStats();
 | |
| }
 | |
| 
 | |
| void Sema::diagnoseNullableToNonnullConversion(QualType DstType,
 | |
|                                                QualType SrcType,
 | |
|                                                SourceLocation Loc) {
 | |
|   Optional<NullabilityKind> ExprNullability = SrcType->getNullability(Context);
 | |
|   if (!ExprNullability || *ExprNullability != NullabilityKind::Nullable)
 | |
|     return;
 | |
| 
 | |
|   Optional<NullabilityKind> TypeNullability = DstType->getNullability(Context);
 | |
|   if (!TypeNullability || *TypeNullability != NullabilityKind::NonNull)
 | |
|     return;
 | |
| 
 | |
|   Diag(Loc, diag::warn_nullability_lost) << SrcType << DstType;
 | |
| }
 | |
| 
 | |
| void Sema::diagnoseZeroToNullptrConversion(CastKind Kind, const Expr* E) {
 | |
|   if (Diags.isIgnored(diag::warn_zero_as_null_pointer_constant,
 | |
|                       E->getBeginLoc()))
 | |
|     return;
 | |
|   // nullptr only exists from C++11 on, so don't warn on its absence earlier.
 | |
|   if (!getLangOpts().CPlusPlus11)
 | |
|     return;
 | |
| 
 | |
|   if (Kind != CK_NullToPointer && Kind != CK_NullToMemberPointer)
 | |
|     return;
 | |
|   if (E->IgnoreParenImpCasts()->getType()->isNullPtrType())
 | |
|     return;
 | |
| 
 | |
|   // If it is a macro from system header, and if the macro name is not "NULL",
 | |
|   // do not warn.
 | |
|   SourceLocation MaybeMacroLoc = E->getBeginLoc();
 | |
|   if (Diags.getSuppressSystemWarnings() &&
 | |
|       SourceMgr.isInSystemMacro(MaybeMacroLoc) &&
 | |
|       !findMacroSpelling(MaybeMacroLoc, "NULL"))
 | |
|     return;
 | |
| 
 | |
|   Diag(E->getBeginLoc(), diag::warn_zero_as_null_pointer_constant)
 | |
|       << FixItHint::CreateReplacement(E->getSourceRange(), "nullptr");
 | |
| }
 | |
| 
 | |
| /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
 | |
| /// If there is already an implicit cast, merge into the existing one.
 | |
| /// The result is of the given category.
 | |
| ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty,
 | |
|                                    CastKind Kind, ExprValueKind VK,
 | |
|                                    const CXXCastPath *BasePath,
 | |
|                                    CheckedConversionKind CCK) {
 | |
| #ifndef NDEBUG
 | |
|   if (VK == VK_RValue && !E->isRValue()) {
 | |
|     switch (Kind) {
 | |
|     default:
 | |
|       llvm_unreachable("can't implicitly cast lvalue to rvalue with this cast "
 | |
|                        "kind");
 | |
|     case CK_Dependent:
 | |
|     case CK_LValueToRValue:
 | |
|     case CK_ArrayToPointerDecay:
 | |
|     case CK_FunctionToPointerDecay:
 | |
|     case CK_ToVoid:
 | |
|     case CK_NonAtomicToAtomic:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   assert((VK == VK_RValue || Kind == CK_Dependent || !E->isRValue()) &&
 | |
|          "can't cast rvalue to lvalue");
 | |
| #endif
 | |
| 
 | |
|   diagnoseNullableToNonnullConversion(Ty, E->getType(), E->getBeginLoc());
 | |
|   diagnoseZeroToNullptrConversion(Kind, E);
 | |
| 
 | |
|   QualType ExprTy = Context.getCanonicalType(E->getType());
 | |
|   QualType TypeTy = Context.getCanonicalType(Ty);
 | |
| 
 | |
|   if (ExprTy == TypeTy)
 | |
|     return E;
 | |
| 
 | |
|   // C++1z [conv.array]: The temporary materialization conversion is applied.
 | |
|   // We also use this to fuel C++ DR1213, which applies to C++11 onwards.
 | |
|   if (Kind == CK_ArrayToPointerDecay && getLangOpts().CPlusPlus &&
 | |
|       E->getValueKind() == VK_RValue) {
 | |
|     // The temporary is an lvalue in C++98 and an xvalue otherwise.
 | |
|     ExprResult Materialized = CreateMaterializeTemporaryExpr(
 | |
|         E->getType(), E, !getLangOpts().CPlusPlus11);
 | |
|     if (Materialized.isInvalid())
 | |
|       return ExprError();
 | |
|     E = Materialized.get();
 | |
|   }
 | |
| 
 | |
|   if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) {
 | |
|       ImpCast->setType(Ty);
 | |
|       ImpCast->setValueKind(VK);
 | |
|       return E;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK);
 | |
| }
 | |
| 
 | |
| /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
 | |
| /// to the conversion from scalar type ScalarTy to the Boolean type.
 | |
| CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) {
 | |
|   switch (ScalarTy->getScalarTypeKind()) {
 | |
|   case Type::STK_Bool: return CK_NoOp;
 | |
|   case Type::STK_CPointer: return CK_PointerToBoolean;
 | |
|   case Type::STK_BlockPointer: return CK_PointerToBoolean;
 | |
|   case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean;
 | |
|   case Type::STK_MemberPointer: return CK_MemberPointerToBoolean;
 | |
|   case Type::STK_Integral: return CK_IntegralToBoolean;
 | |
|   case Type::STK_Floating: return CK_FloatingToBoolean;
 | |
|   case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean;
 | |
|   case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean;
 | |
|   case Type::STK_FixedPoint: return CK_FixedPointToBoolean;
 | |
|   }
 | |
|   llvm_unreachable("unknown scalar type kind");
 | |
| }
 | |
| 
 | |
| /// Used to prune the decls of Sema's UnusedFileScopedDecls vector.
 | |
| static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) {
 | |
|   if (D->getMostRecentDecl()->isUsed())
 | |
|     return true;
 | |
| 
 | |
|   if (D->isExternallyVisible())
 | |
|     return true;
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     // If this is a function template and none of its specializations is used,
 | |
|     // we should warn.
 | |
|     if (FunctionTemplateDecl *Template = FD->getDescribedFunctionTemplate())
 | |
|       for (const auto *Spec : Template->specializations())
 | |
|         if (ShouldRemoveFromUnused(SemaRef, Spec))
 | |
|           return true;
 | |
| 
 | |
|     // UnusedFileScopedDecls stores the first declaration.
 | |
|     // The declaration may have become definition so check again.
 | |
|     const FunctionDecl *DeclToCheck;
 | |
|     if (FD->hasBody(DeclToCheck))
 | |
|       return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
 | |
| 
 | |
|     // Later redecls may add new information resulting in not having to warn,
 | |
|     // so check again.
 | |
|     DeclToCheck = FD->getMostRecentDecl();
 | |
|     if (DeclToCheck != FD)
 | |
|       return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
 | |
|   }
 | |
| 
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
|     // If a variable usable in constant expressions is referenced,
 | |
|     // don't warn if it isn't used: if the value of a variable is required
 | |
|     // for the computation of a constant expression, it doesn't make sense to
 | |
|     // warn even if the variable isn't odr-used.  (isReferenced doesn't
 | |
|     // precisely reflect that, but it's a decent approximation.)
 | |
|     if (VD->isReferenced() &&
 | |
|         VD->mightBeUsableInConstantExpressions(SemaRef->Context))
 | |
|       return true;
 | |
| 
 | |
|     if (VarTemplateDecl *Template = VD->getDescribedVarTemplate())
 | |
|       // If this is a variable template and none of its specializations is used,
 | |
|       // we should warn.
 | |
|       for (const auto *Spec : Template->specializations())
 | |
|         if (ShouldRemoveFromUnused(SemaRef, Spec))
 | |
|           return true;
 | |
| 
 | |
|     // UnusedFileScopedDecls stores the first declaration.
 | |
|     // The declaration may have become definition so check again.
 | |
|     const VarDecl *DeclToCheck = VD->getDefinition();
 | |
|     if (DeclToCheck)
 | |
|       return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
 | |
| 
 | |
|     // Later redecls may add new information resulting in not having to warn,
 | |
|     // so check again.
 | |
|     DeclToCheck = VD->getMostRecentDecl();
 | |
|     if (DeclToCheck != VD)
 | |
|       return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isFunctionOrVarDeclExternC(NamedDecl *ND) {
 | |
|   if (auto *FD = dyn_cast<FunctionDecl>(ND))
 | |
|     return FD->isExternC();
 | |
|   return cast<VarDecl>(ND)->isExternC();
 | |
| }
 | |
| 
 | |
| /// Determine whether ND is an external-linkage function or variable whose
 | |
| /// type has no linkage.
 | |
| bool Sema::isExternalWithNoLinkageType(ValueDecl *VD) {
 | |
|   // Note: it's not quite enough to check whether VD has UniqueExternalLinkage,
 | |
|   // because we also want to catch the case where its type has VisibleNoLinkage,
 | |
|   // which does not affect the linkage of VD.
 | |
|   return getLangOpts().CPlusPlus && VD->hasExternalFormalLinkage() &&
 | |
|          !isExternalFormalLinkage(VD->getType()->getLinkage()) &&
 | |
|          !isFunctionOrVarDeclExternC(VD);
 | |
| }
 | |
| 
 | |
| /// Obtains a sorted list of functions and variables that are undefined but
 | |
| /// ODR-used.
 | |
| void Sema::getUndefinedButUsed(
 | |
|     SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined) {
 | |
|   for (const auto &UndefinedUse : UndefinedButUsed) {
 | |
|     NamedDecl *ND = UndefinedUse.first;
 | |
| 
 | |
|     // Ignore attributes that have become invalid.
 | |
|     if (ND->isInvalidDecl()) continue;
 | |
| 
 | |
|     // __attribute__((weakref)) is basically a definition.
 | |
|     if (ND->hasAttr<WeakRefAttr>()) continue;
 | |
| 
 | |
|     if (isa<CXXDeductionGuideDecl>(ND))
 | |
|       continue;
 | |
| 
 | |
|     if (ND->hasAttr<DLLImportAttr>() || ND->hasAttr<DLLExportAttr>()) {
 | |
|       // An exported function will always be emitted when defined, so even if
 | |
|       // the function is inline, it doesn't have to be emitted in this TU. An
 | |
|       // imported function implies that it has been exported somewhere else.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
 | |
|       if (FD->isDefined())
 | |
|         continue;
 | |
|       if (FD->isExternallyVisible() &&
 | |
|           !isExternalWithNoLinkageType(FD) &&
 | |
|           !FD->getMostRecentDecl()->isInlined() &&
 | |
|           !FD->hasAttr<ExcludeFromExplicitInstantiationAttr>())
 | |
|         continue;
 | |
|       if (FD->getBuiltinID())
 | |
|         continue;
 | |
|     } else {
 | |
|       auto *VD = cast<VarDecl>(ND);
 | |
|       if (VD->hasDefinition() != VarDecl::DeclarationOnly)
 | |
|         continue;
 | |
|       if (VD->isExternallyVisible() &&
 | |
|           !isExternalWithNoLinkageType(VD) &&
 | |
|           !VD->getMostRecentDecl()->isInline() &&
 | |
|           !VD->hasAttr<ExcludeFromExplicitInstantiationAttr>())
 | |
|         continue;
 | |
| 
 | |
|       // Skip VarDecls that lack formal definitions but which we know are in
 | |
|       // fact defined somewhere.
 | |
|       if (VD->isKnownToBeDefined())
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     Undefined.push_back(std::make_pair(ND, UndefinedUse.second));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// checkUndefinedButUsed - Check for undefined objects with internal linkage
 | |
| /// or that are inline.
 | |
| static void checkUndefinedButUsed(Sema &S) {
 | |
|   if (S.UndefinedButUsed.empty()) return;
 | |
| 
 | |
|   // Collect all the still-undefined entities with internal linkage.
 | |
|   SmallVector<std::pair<NamedDecl *, SourceLocation>, 16> Undefined;
 | |
|   S.getUndefinedButUsed(Undefined);
 | |
|   if (Undefined.empty()) return;
 | |
| 
 | |
|   for (auto Undef : Undefined) {
 | |
|     ValueDecl *VD = cast<ValueDecl>(Undef.first);
 | |
|     SourceLocation UseLoc = Undef.second;
 | |
| 
 | |
|     if (S.isExternalWithNoLinkageType(VD)) {
 | |
|       // C++ [basic.link]p8:
 | |
|       //   A type without linkage shall not be used as the type of a variable
 | |
|       //   or function with external linkage unless
 | |
|       //    -- the entity has C language linkage
 | |
|       //    -- the entity is not odr-used or is defined in the same TU
 | |
|       //
 | |
|       // As an extension, accept this in cases where the type is externally
 | |
|       // visible, since the function or variable actually can be defined in
 | |
|       // another translation unit in that case.
 | |
|       S.Diag(VD->getLocation(), isExternallyVisible(VD->getType()->getLinkage())
 | |
|                                     ? diag::ext_undefined_internal_type
 | |
|                                     : diag::err_undefined_internal_type)
 | |
|         << isa<VarDecl>(VD) << VD;
 | |
|     } else if (!VD->isExternallyVisible()) {
 | |
|       // FIXME: We can promote this to an error. The function or variable can't
 | |
|       // be defined anywhere else, so the program must necessarily violate the
 | |
|       // one definition rule.
 | |
|       S.Diag(VD->getLocation(), diag::warn_undefined_internal)
 | |
|         << isa<VarDecl>(VD) << VD;
 | |
|     } else if (auto *FD = dyn_cast<FunctionDecl>(VD)) {
 | |
|       (void)FD;
 | |
|       assert(FD->getMostRecentDecl()->isInlined() &&
 | |
|              "used object requires definition but isn't inline or internal?");
 | |
|       // FIXME: This is ill-formed; we should reject.
 | |
|       S.Diag(VD->getLocation(), diag::warn_undefined_inline) << VD;
 | |
|     } else {
 | |
|       assert(cast<VarDecl>(VD)->getMostRecentDecl()->isInline() &&
 | |
|              "used var requires definition but isn't inline or internal?");
 | |
|       S.Diag(VD->getLocation(), diag::err_undefined_inline_var) << VD;
 | |
|     }
 | |
|     if (UseLoc.isValid())
 | |
|       S.Diag(UseLoc, diag::note_used_here);
 | |
|   }
 | |
| 
 | |
|   S.UndefinedButUsed.clear();
 | |
| }
 | |
| 
 | |
| void Sema::LoadExternalWeakUndeclaredIdentifiers() {
 | |
|   if (!ExternalSource)
 | |
|     return;
 | |
| 
 | |
|   SmallVector<std::pair<IdentifierInfo *, WeakInfo>, 4> WeakIDs;
 | |
|   ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs);
 | |
|   for (auto &WeakID : WeakIDs)
 | |
|     WeakUndeclaredIdentifiers.insert(WeakID);
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef llvm::DenseMap<const CXXRecordDecl*, bool> RecordCompleteMap;
 | |
| 
 | |
| /// Returns true, if all methods and nested classes of the given
 | |
| /// CXXRecordDecl are defined in this translation unit.
 | |
| ///
 | |
| /// Should only be called from ActOnEndOfTranslationUnit so that all
 | |
| /// definitions are actually read.
 | |
| static bool MethodsAndNestedClassesComplete(const CXXRecordDecl *RD,
 | |
|                                             RecordCompleteMap &MNCComplete) {
 | |
|   RecordCompleteMap::iterator Cache = MNCComplete.find(RD);
 | |
|   if (Cache != MNCComplete.end())
 | |
|     return Cache->second;
 | |
|   if (!RD->isCompleteDefinition())
 | |
|     return false;
 | |
|   bool Complete = true;
 | |
|   for (DeclContext::decl_iterator I = RD->decls_begin(),
 | |
|                                   E = RD->decls_end();
 | |
|        I != E && Complete; ++I) {
 | |
|     if (const CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(*I))
 | |
|       Complete = M->isDefined() || M->isDefaulted() ||
 | |
|                  (M->isPure() && !isa<CXXDestructorDecl>(M));
 | |
|     else if (const FunctionTemplateDecl *F = dyn_cast<FunctionTemplateDecl>(*I))
 | |
|       // If the template function is marked as late template parsed at this
 | |
|       // point, it has not been instantiated and therefore we have not
 | |
|       // performed semantic analysis on it yet, so we cannot know if the type
 | |
|       // can be considered complete.
 | |
|       Complete = !F->getTemplatedDecl()->isLateTemplateParsed() &&
 | |
|                   F->getTemplatedDecl()->isDefined();
 | |
|     else if (const CXXRecordDecl *R = dyn_cast<CXXRecordDecl>(*I)) {
 | |
|       if (R->isInjectedClassName())
 | |
|         continue;
 | |
|       if (R->hasDefinition())
 | |
|         Complete = MethodsAndNestedClassesComplete(R->getDefinition(),
 | |
|                                                    MNCComplete);
 | |
|       else
 | |
|         Complete = false;
 | |
|     }
 | |
|   }
 | |
|   MNCComplete[RD] = Complete;
 | |
|   return Complete;
 | |
| }
 | |
| 
 | |
| /// Returns true, if the given CXXRecordDecl is fully defined in this
 | |
| /// translation unit, i.e. all methods are defined or pure virtual and all
 | |
| /// friends, friend functions and nested classes are fully defined in this
 | |
| /// translation unit.
 | |
| ///
 | |
| /// Should only be called from ActOnEndOfTranslationUnit so that all
 | |
| /// definitions are actually read.
 | |
| static bool IsRecordFullyDefined(const CXXRecordDecl *RD,
 | |
|                                  RecordCompleteMap &RecordsComplete,
 | |
|                                  RecordCompleteMap &MNCComplete) {
 | |
|   RecordCompleteMap::iterator Cache = RecordsComplete.find(RD);
 | |
|   if (Cache != RecordsComplete.end())
 | |
|     return Cache->second;
 | |
|   bool Complete = MethodsAndNestedClassesComplete(RD, MNCComplete);
 | |
|   for (CXXRecordDecl::friend_iterator I = RD->friend_begin(),
 | |
|                                       E = RD->friend_end();
 | |
|        I != E && Complete; ++I) {
 | |
|     // Check if friend classes and methods are complete.
 | |
|     if (TypeSourceInfo *TSI = (*I)->getFriendType()) {
 | |
|       // Friend classes are available as the TypeSourceInfo of the FriendDecl.
 | |
|       if (CXXRecordDecl *FriendD = TSI->getType()->getAsCXXRecordDecl())
 | |
|         Complete = MethodsAndNestedClassesComplete(FriendD, MNCComplete);
 | |
|       else
 | |
|         Complete = false;
 | |
|     } else {
 | |
|       // Friend functions are available through the NamedDecl of FriendDecl.
 | |
|       if (const FunctionDecl *FD =
 | |
|           dyn_cast<FunctionDecl>((*I)->getFriendDecl()))
 | |
|         Complete = FD->isDefined();
 | |
|       else
 | |
|         // This is a template friend, give up.
 | |
|         Complete = false;
 | |
|     }
 | |
|   }
 | |
|   RecordsComplete[RD] = Complete;
 | |
|   return Complete;
 | |
| }
 | |
| 
 | |
| void Sema::emitAndClearUnusedLocalTypedefWarnings() {
 | |
|   if (ExternalSource)
 | |
|     ExternalSource->ReadUnusedLocalTypedefNameCandidates(
 | |
|         UnusedLocalTypedefNameCandidates);
 | |
|   for (const TypedefNameDecl *TD : UnusedLocalTypedefNameCandidates) {
 | |
|     if (TD->isReferenced())
 | |
|       continue;
 | |
|     Diag(TD->getLocation(), diag::warn_unused_local_typedef)
 | |
|         << isa<TypeAliasDecl>(TD) << TD->getDeclName();
 | |
|   }
 | |
|   UnusedLocalTypedefNameCandidates.clear();
 | |
| }
 | |
| 
 | |
| /// This is called before the very first declaration in the translation unit
 | |
| /// is parsed. Note that the ASTContext may have already injected some
 | |
| /// declarations.
 | |
| void Sema::ActOnStartOfTranslationUnit() {
 | |
|   if (getLangOpts().ModulesTS &&
 | |
|       (getLangOpts().getCompilingModule() == LangOptions::CMK_ModuleInterface ||
 | |
|        getLangOpts().getCompilingModule() == LangOptions::CMK_None)) {
 | |
|     // We start in an implied global module fragment.
 | |
|     SourceLocation StartOfTU =
 | |
|         SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
 | |
|     ActOnGlobalModuleFragmentDecl(StartOfTU);
 | |
|     ModuleScopes.back().ImplicitGlobalModuleFragment = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind) {
 | |
|   // No explicit actions are required at the end of the global module fragment.
 | |
|   if (Kind == TUFragmentKind::Global)
 | |
|     return;
 | |
| 
 | |
|   // Transfer late parsed template instantiations over to the pending template
 | |
|   // instantiation list. During normal compilation, the late template parser
 | |
|   // will be installed and instantiating these templates will succeed.
 | |
|   //
 | |
|   // If we are building a TU prefix for serialization, it is also safe to
 | |
|   // transfer these over, even though they are not parsed. The end of the TU
 | |
|   // should be outside of any eager template instantiation scope, so when this
 | |
|   // AST is deserialized, these templates will not be parsed until the end of
 | |
|   // the combined TU.
 | |
|   PendingInstantiations.insert(PendingInstantiations.end(),
 | |
|                                LateParsedInstantiations.begin(),
 | |
|                                LateParsedInstantiations.end());
 | |
|   LateParsedInstantiations.clear();
 | |
| 
 | |
|   // If DefinedUsedVTables ends up marking any virtual member functions it
 | |
|   // might lead to more pending template instantiations, which we then need
 | |
|   // to instantiate.
 | |
|   DefineUsedVTables();
 | |
| 
 | |
|   // C++: Perform implicit template instantiations.
 | |
|   //
 | |
|   // FIXME: When we perform these implicit instantiations, we do not
 | |
|   // carefully keep track of the point of instantiation (C++ [temp.point]).
 | |
|   // This means that name lookup that occurs within the template
 | |
|   // instantiation will always happen at the end of the translation unit,
 | |
|   // so it will find some names that are not required to be found. This is
 | |
|   // valid, but we could do better by diagnosing if an instantiation uses a
 | |
|   // name that was not visible at its first point of instantiation.
 | |
|   if (ExternalSource) {
 | |
|     // Load pending instantiations from the external source.
 | |
|     SmallVector<PendingImplicitInstantiation, 4> Pending;
 | |
|     ExternalSource->ReadPendingInstantiations(Pending);
 | |
|     for (auto PII : Pending)
 | |
|       if (auto Func = dyn_cast<FunctionDecl>(PII.first))
 | |
|         Func->setInstantiationIsPending(true);
 | |
|     PendingInstantiations.insert(PendingInstantiations.begin(),
 | |
|                                  Pending.begin(), Pending.end());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     llvm::TimeTraceScope TimeScope("PerformPendingInstantiations");
 | |
|     PerformPendingInstantiations();
 | |
|   }
 | |
| 
 | |
|   // Finalize analysis of OpenMP-specific constructs.
 | |
|   if (LangOpts.OpenMP)
 | |
|     finalizeOpenMPDelayedAnalysis();
 | |
| 
 | |
|   assert(LateParsedInstantiations.empty() &&
 | |
|          "end of TU template instantiation should not create more "
 | |
|          "late-parsed templates");
 | |
| 
 | |
|   // Report diagnostics for uncorrected delayed typos. Ideally all of them
 | |
|   // should have been corrected by that time, but it is very hard to cover all
 | |
|   // cases in practice.
 | |
|   for (const auto &Typo : DelayedTypos) {
 | |
|     // We pass an empty TypoCorrection to indicate no correction was performed.
 | |
|     Typo.second.DiagHandler(TypoCorrection());
 | |
|   }
 | |
|   DelayedTypos.clear();
 | |
| }
 | |
| 
 | |
| /// ActOnEndOfTranslationUnit - This is called at the very end of the
 | |
| /// translation unit when EOF is reached and all but the top-level scope is
 | |
| /// popped.
 | |
| void Sema::ActOnEndOfTranslationUnit() {
 | |
|   assert(DelayedDiagnostics.getCurrentPool() == nullptr
 | |
|          && "reached end of translation unit with a pool attached?");
 | |
| 
 | |
|   // If code completion is enabled, don't perform any end-of-translation-unit
 | |
|   // work.
 | |
|   if (PP.isCodeCompletionEnabled())
 | |
|     return;
 | |
| 
 | |
|   // Complete translation units and modules define vtables and perform implicit
 | |
|   // instantiations. PCH files do not.
 | |
|   if (TUKind != TU_Prefix) {
 | |
|     DiagnoseUseOfUnimplementedSelectors();
 | |
| 
 | |
|     ActOnEndOfTranslationUnitFragment(
 | |
|         !ModuleScopes.empty() && ModuleScopes.back().Module->Kind ==
 | |
|                                      Module::PrivateModuleFragment
 | |
|             ? TUFragmentKind::Private
 | |
|             : TUFragmentKind::Normal);
 | |
| 
 | |
|     if (LateTemplateParserCleanup)
 | |
|       LateTemplateParserCleanup(OpaqueParser);
 | |
| 
 | |
|     CheckDelayedMemberExceptionSpecs();
 | |
|   } else {
 | |
|     // If we are building a TU prefix for serialization, it is safe to transfer
 | |
|     // these over, even though they are not parsed. The end of the TU should be
 | |
|     // outside of any eager template instantiation scope, so when this AST is
 | |
|     // deserialized, these templates will not be parsed until the end of the
 | |
|     // combined TU.
 | |
|     PendingInstantiations.insert(PendingInstantiations.end(),
 | |
|                                  LateParsedInstantiations.begin(),
 | |
|                                  LateParsedInstantiations.end());
 | |
|     LateParsedInstantiations.clear();
 | |
|   }
 | |
| 
 | |
|   DiagnoseUnterminatedPragmaPack();
 | |
|   DiagnoseUnterminatedPragmaAttribute();
 | |
| 
 | |
|   // All delayed member exception specs should be checked or we end up accepting
 | |
|   // incompatible declarations.
 | |
|   assert(DelayedOverridingExceptionSpecChecks.empty());
 | |
|   assert(DelayedEquivalentExceptionSpecChecks.empty());
 | |
| 
 | |
|   // All dllexport classes should have been processed already.
 | |
|   assert(DelayedDllExportClasses.empty());
 | |
|   assert(DelayedDllExportMemberFunctions.empty());
 | |
| 
 | |
|   // Remove file scoped decls that turned out to be used.
 | |
|   UnusedFileScopedDecls.erase(
 | |
|       std::remove_if(UnusedFileScopedDecls.begin(nullptr, true),
 | |
|                      UnusedFileScopedDecls.end(),
 | |
|                      [this](const DeclaratorDecl *DD) {
 | |
|                        return ShouldRemoveFromUnused(this, DD);
 | |
|                      }),
 | |
|       UnusedFileScopedDecls.end());
 | |
| 
 | |
|   if (TUKind == TU_Prefix) {
 | |
|     // Translation unit prefixes don't need any of the checking below.
 | |
|     if (!PP.isIncrementalProcessingEnabled())
 | |
|       TUScope = nullptr;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check for #pragma weak identifiers that were never declared
 | |
|   LoadExternalWeakUndeclaredIdentifiers();
 | |
|   for (auto WeakID : WeakUndeclaredIdentifiers) {
 | |
|     if (WeakID.second.getUsed())
 | |
|       continue;
 | |
| 
 | |
|     Decl *PrevDecl = LookupSingleName(TUScope, WeakID.first, SourceLocation(),
 | |
|                                       LookupOrdinaryName);
 | |
|     if (PrevDecl != nullptr &&
 | |
|         !(isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl)))
 | |
|       Diag(WeakID.second.getLocation(), diag::warn_attribute_wrong_decl_type)
 | |
|           << "'weak'" << ExpectedVariableOrFunction;
 | |
|     else
 | |
|       Diag(WeakID.second.getLocation(), diag::warn_weak_identifier_undeclared)
 | |
|           << WeakID.first;
 | |
|   }
 | |
| 
 | |
|   if (LangOpts.CPlusPlus11 &&
 | |
|       !Diags.isIgnored(diag::warn_delegating_ctor_cycle, SourceLocation()))
 | |
|     CheckDelegatingCtorCycles();
 | |
| 
 | |
|   if (!Diags.hasErrorOccurred()) {
 | |
|     if (ExternalSource)
 | |
|       ExternalSource->ReadUndefinedButUsed(UndefinedButUsed);
 | |
|     checkUndefinedButUsed(*this);
 | |
|   }
 | |
| 
 | |
|   // A global-module-fragment is only permitted within a module unit.
 | |
|   bool DiagnosedMissingModuleDeclaration = false;
 | |
|   if (!ModuleScopes.empty() &&
 | |
|       ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment &&
 | |
|       !ModuleScopes.back().ImplicitGlobalModuleFragment) {
 | |
|     Diag(ModuleScopes.back().BeginLoc,
 | |
|          diag::err_module_declaration_missing_after_global_module_introducer);
 | |
|     DiagnosedMissingModuleDeclaration = true;
 | |
|   }
 | |
| 
 | |
|   if (TUKind == TU_Module) {
 | |
|     // If we are building a module interface unit, we need to have seen the
 | |
|     // module declaration by now.
 | |
|     if (getLangOpts().getCompilingModule() ==
 | |
|             LangOptions::CMK_ModuleInterface &&
 | |
|         (ModuleScopes.empty() ||
 | |
|          !ModuleScopes.back().Module->isModulePurview()) &&
 | |
|         !DiagnosedMissingModuleDeclaration) {
 | |
|       // FIXME: Make a better guess as to where to put the module declaration.
 | |
|       Diag(getSourceManager().getLocForStartOfFile(
 | |
|                getSourceManager().getMainFileID()),
 | |
|            diag::err_module_declaration_missing);
 | |
|     }
 | |
| 
 | |
|     // If we are building a module, resolve all of the exported declarations
 | |
|     // now.
 | |
|     if (Module *CurrentModule = PP.getCurrentModule()) {
 | |
|       ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap();
 | |
| 
 | |
|       SmallVector<Module *, 2> Stack;
 | |
|       Stack.push_back(CurrentModule);
 | |
|       while (!Stack.empty()) {
 | |
|         Module *Mod = Stack.pop_back_val();
 | |
| 
 | |
|         // Resolve the exported declarations and conflicts.
 | |
|         // FIXME: Actually complain, once we figure out how to teach the
 | |
|         // diagnostic client to deal with complaints in the module map at this
 | |
|         // point.
 | |
|         ModMap.resolveExports(Mod, /*Complain=*/false);
 | |
|         ModMap.resolveUses(Mod, /*Complain=*/false);
 | |
|         ModMap.resolveConflicts(Mod, /*Complain=*/false);
 | |
| 
 | |
|         // Queue the submodules, so their exports will also be resolved.
 | |
|         Stack.append(Mod->submodule_begin(), Mod->submodule_end());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Warnings emitted in ActOnEndOfTranslationUnit() should be emitted for
 | |
|     // modules when they are built, not every time they are used.
 | |
|     emitAndClearUnusedLocalTypedefWarnings();
 | |
|   }
 | |
| 
 | |
|   // C99 6.9.2p2:
 | |
|   //   A declaration of an identifier for an object that has file
 | |
|   //   scope without an initializer, and without a storage-class
 | |
|   //   specifier or with the storage-class specifier static,
 | |
|   //   constitutes a tentative definition. If a translation unit
 | |
|   //   contains one or more tentative definitions for an identifier,
 | |
|   //   and the translation unit contains no external definition for
 | |
|   //   that identifier, then the behavior is exactly as if the
 | |
|   //   translation unit contains a file scope declaration of that
 | |
|   //   identifier, with the composite type as of the end of the
 | |
|   //   translation unit, with an initializer equal to 0.
 | |
|   llvm::SmallSet<VarDecl *, 32> Seen;
 | |
|   for (TentativeDefinitionsType::iterator
 | |
|             T = TentativeDefinitions.begin(ExternalSource),
 | |
|          TEnd = TentativeDefinitions.end();
 | |
|        T != TEnd; ++T) {
 | |
|     VarDecl *VD = (*T)->getActingDefinition();
 | |
| 
 | |
|     // If the tentative definition was completed, getActingDefinition() returns
 | |
|     // null. If we've already seen this variable before, insert()'s second
 | |
|     // return value is false.
 | |
|     if (!VD || VD->isInvalidDecl() || !Seen.insert(VD).second)
 | |
|       continue;
 | |
| 
 | |
|     if (const IncompleteArrayType *ArrayT
 | |
|         = Context.getAsIncompleteArrayType(VD->getType())) {
 | |
|       // Set the length of the array to 1 (C99 6.9.2p5).
 | |
|       Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
 | |
|       llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
 | |
|       QualType T = Context.getConstantArrayType(ArrayT->getElementType(), One,
 | |
|                                                 nullptr, ArrayType::Normal, 0);
 | |
|       VD->setType(T);
 | |
|     } else if (RequireCompleteType(VD->getLocation(), VD->getType(),
 | |
|                                    diag::err_tentative_def_incomplete_type))
 | |
|       VD->setInvalidDecl();
 | |
| 
 | |
|     // No initialization is performed for a tentative definition.
 | |
|     CheckCompleteVariableDeclaration(VD);
 | |
| 
 | |
|     // Notify the consumer that we've completed a tentative definition.
 | |
|     if (!VD->isInvalidDecl())
 | |
|       Consumer.CompleteTentativeDefinition(VD);
 | |
|   }
 | |
| 
 | |
|   for (auto D : ExternalDeclarations) {
 | |
|     if (!D || D->isInvalidDecl() || D->getPreviousDecl() || !D->isUsed())
 | |
|       continue;
 | |
| 
 | |
|     Consumer.CompleteExternalDeclaration(D);
 | |
|   }
 | |
| 
 | |
|   // If there were errors, disable 'unused' warnings since they will mostly be
 | |
|   // noise. Don't warn for a use from a module: either we should warn on all
 | |
|   // file-scope declarations in modules or not at all, but whether the
 | |
|   // declaration is used is immaterial.
 | |
|   if (!Diags.hasErrorOccurred() && TUKind != TU_Module) {
 | |
|     // Output warning for unused file scoped decls.
 | |
|     for (UnusedFileScopedDeclsType::iterator
 | |
|            I = UnusedFileScopedDecls.begin(ExternalSource),
 | |
|            E = UnusedFileScopedDecls.end(); I != E; ++I) {
 | |
|       if (ShouldRemoveFromUnused(this, *I))
 | |
|         continue;
 | |
| 
 | |
|       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
 | |
|         const FunctionDecl *DiagD;
 | |
|         if (!FD->hasBody(DiagD))
 | |
|           DiagD = FD;
 | |
|         if (DiagD->isDeleted())
 | |
|           continue; // Deleted functions are supposed to be unused.
 | |
|         if (DiagD->isReferenced()) {
 | |
|           if (isa<CXXMethodDecl>(DiagD))
 | |
|             Diag(DiagD->getLocation(), diag::warn_unneeded_member_function)
 | |
|                   << DiagD->getDeclName();
 | |
|           else {
 | |
|             if (FD->getStorageClass() == SC_Static &&
 | |
|                 !FD->isInlineSpecified() &&
 | |
|                 !SourceMgr.isInMainFile(
 | |
|                    SourceMgr.getExpansionLoc(FD->getLocation())))
 | |
|               Diag(DiagD->getLocation(),
 | |
|                    diag::warn_unneeded_static_internal_decl)
 | |
|                   << DiagD->getDeclName();
 | |
|             else
 | |
|               Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
 | |
|                    << /*function*/0 << DiagD->getDeclName();
 | |
|           }
 | |
|         } else {
 | |
|           if (FD->getDescribedFunctionTemplate())
 | |
|             Diag(DiagD->getLocation(), diag::warn_unused_template)
 | |
|               << /*function*/0 << DiagD->getDeclName();
 | |
|           else
 | |
|             Diag(DiagD->getLocation(),
 | |
|                  isa<CXXMethodDecl>(DiagD) ? diag::warn_unused_member_function
 | |
|                                            : diag::warn_unused_function)
 | |
|               << DiagD->getDeclName();
 | |
|         }
 | |
|       } else {
 | |
|         const VarDecl *DiagD = cast<VarDecl>(*I)->getDefinition();
 | |
|         if (!DiagD)
 | |
|           DiagD = cast<VarDecl>(*I);
 | |
|         if (DiagD->isReferenced()) {
 | |
|           Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
 | |
|                 << /*variable*/1 << DiagD->getDeclName();
 | |
|         } else if (DiagD->getType().isConstQualified()) {
 | |
|           const SourceManager &SM = SourceMgr;
 | |
|           if (SM.getMainFileID() != SM.getFileID(DiagD->getLocation()) ||
 | |
|               !PP.getLangOpts().IsHeaderFile)
 | |
|             Diag(DiagD->getLocation(), diag::warn_unused_const_variable)
 | |
|                 << DiagD->getDeclName();
 | |
|         } else {
 | |
|           if (DiagD->getDescribedVarTemplate())
 | |
|             Diag(DiagD->getLocation(), diag::warn_unused_template)
 | |
|               << /*variable*/1 << DiagD->getDeclName();
 | |
|           else
 | |
|             Diag(DiagD->getLocation(), diag::warn_unused_variable)
 | |
|               << DiagD->getDeclName();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     emitAndClearUnusedLocalTypedefWarnings();
 | |
|   }
 | |
| 
 | |
|   if (!Diags.isIgnored(diag::warn_unused_private_field, SourceLocation())) {
 | |
|     // FIXME: Load additional unused private field candidates from the external
 | |
|     // source.
 | |
|     RecordCompleteMap RecordsComplete;
 | |
|     RecordCompleteMap MNCComplete;
 | |
|     for (NamedDeclSetType::iterator I = UnusedPrivateFields.begin(),
 | |
|          E = UnusedPrivateFields.end(); I != E; ++I) {
 | |
|       const NamedDecl *D = *I;
 | |
|       const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
 | |
|       if (RD && !RD->isUnion() &&
 | |
|           IsRecordFullyDefined(RD, RecordsComplete, MNCComplete)) {
 | |
|         Diag(D->getLocation(), diag::warn_unused_private_field)
 | |
|               << D->getDeclName();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) {
 | |
|     if (ExternalSource)
 | |
|       ExternalSource->ReadMismatchingDeleteExpressions(DeleteExprs);
 | |
|     for (const auto &DeletedFieldInfo : DeleteExprs) {
 | |
|       for (const auto &DeleteExprLoc : DeletedFieldInfo.second) {
 | |
|         AnalyzeDeleteExprMismatch(DeletedFieldInfo.first, DeleteExprLoc.first,
 | |
|                                   DeleteExprLoc.second);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check we've noticed that we're no longer parsing the initializer for every
 | |
|   // variable. If we miss cases, then at best we have a performance issue and
 | |
|   // at worst a rejects-valid bug.
 | |
|   assert(ParsingInitForAutoVars.empty() &&
 | |
|          "Didn't unmark var as having its initializer parsed");
 | |
| 
 | |
|   if (!PP.isIncrementalProcessingEnabled())
 | |
|     TUScope = nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper functions.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| DeclContext *Sema::getFunctionLevelDeclContext() {
 | |
|   DeclContext *DC = CurContext;
 | |
| 
 | |
|   while (true) {
 | |
|     if (isa<BlockDecl>(DC) || isa<EnumDecl>(DC) || isa<CapturedDecl>(DC) ||
 | |
|         isa<RequiresExprBodyDecl>(DC)) {
 | |
|       DC = DC->getParent();
 | |
|     } else if (isa<CXXMethodDecl>(DC) &&
 | |
|                cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
 | |
|                cast<CXXRecordDecl>(DC->getParent())->isLambda()) {
 | |
|       DC = DC->getParent()->getParent();
 | |
|     }
 | |
|     else break;
 | |
|   }
 | |
| 
 | |
|   return DC;
 | |
| }
 | |
| 
 | |
| /// getCurFunctionDecl - If inside of a function body, this returns a pointer
 | |
| /// to the function decl for the function being parsed.  If we're currently
 | |
| /// in a 'block', this returns the containing context.
 | |
| FunctionDecl *Sema::getCurFunctionDecl() {
 | |
|   DeclContext *DC = getFunctionLevelDeclContext();
 | |
|   return dyn_cast<FunctionDecl>(DC);
 | |
| }
 | |
| 
 | |
| ObjCMethodDecl *Sema::getCurMethodDecl() {
 | |
|   DeclContext *DC = getFunctionLevelDeclContext();
 | |
|   while (isa<RecordDecl>(DC))
 | |
|     DC = DC->getParent();
 | |
|   return dyn_cast<ObjCMethodDecl>(DC);
 | |
| }
 | |
| 
 | |
| NamedDecl *Sema::getCurFunctionOrMethodDecl() {
 | |
|   DeclContext *DC = getFunctionLevelDeclContext();
 | |
|   if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
 | |
|     return cast<NamedDecl>(DC);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| LangAS Sema::getDefaultCXXMethodAddrSpace() const {
 | |
|   if (getLangOpts().OpenCL)
 | |
|     return LangAS::opencl_generic;
 | |
|   return LangAS::Default;
 | |
| }
 | |
| 
 | |
| void Sema::EmitCurrentDiagnostic(unsigned DiagID) {
 | |
|   // FIXME: It doesn't make sense to me that DiagID is an incoming argument here
 | |
|   // and yet we also use the current diag ID on the DiagnosticsEngine. This has
 | |
|   // been made more painfully obvious by the refactor that introduced this
 | |
|   // function, but it is possible that the incoming argument can be
 | |
|   // eliminated. If it truly cannot be (for example, there is some reentrancy
 | |
|   // issue I am not seeing yet), then there should at least be a clarifying
 | |
|   // comment somewhere.
 | |
|   if (Optional<TemplateDeductionInfo*> Info = isSFINAEContext()) {
 | |
|     switch (DiagnosticIDs::getDiagnosticSFINAEResponse(
 | |
|               Diags.getCurrentDiagID())) {
 | |
|     case DiagnosticIDs::SFINAE_Report:
 | |
|       // We'll report the diagnostic below.
 | |
|       break;
 | |
| 
 | |
|     case DiagnosticIDs::SFINAE_SubstitutionFailure:
 | |
|       // Count this failure so that we know that template argument deduction
 | |
|       // has failed.
 | |
|       ++NumSFINAEErrors;
 | |
| 
 | |
|       // Make a copy of this suppressed diagnostic and store it with the
 | |
|       // template-deduction information.
 | |
|       if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
 | |
|         Diagnostic DiagInfo(&Diags);
 | |
|         (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
 | |
|                        PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
 | |
|       }
 | |
| 
 | |
|       Diags.setLastDiagnosticIgnored(true);
 | |
|       Diags.Clear();
 | |
|       return;
 | |
| 
 | |
|     case DiagnosticIDs::SFINAE_AccessControl: {
 | |
|       // Per C++ Core Issue 1170, access control is part of SFINAE.
 | |
|       // Additionally, the AccessCheckingSFINAE flag can be used to temporarily
 | |
|       // make access control a part of SFINAE for the purposes of checking
 | |
|       // type traits.
 | |
|       if (!AccessCheckingSFINAE && !getLangOpts().CPlusPlus11)
 | |
|         break;
 | |
| 
 | |
|       SourceLocation Loc = Diags.getCurrentDiagLoc();
 | |
| 
 | |
|       // Suppress this diagnostic.
 | |
|       ++NumSFINAEErrors;
 | |
| 
 | |
|       // Make a copy of this suppressed diagnostic and store it with the
 | |
|       // template-deduction information.
 | |
|       if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
 | |
|         Diagnostic DiagInfo(&Diags);
 | |
|         (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
 | |
|                        PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
 | |
|       }
 | |
| 
 | |
|       Diags.setLastDiagnosticIgnored(true);
 | |
|       Diags.Clear();
 | |
| 
 | |
|       // Now the diagnostic state is clear, produce a C++98 compatibility
 | |
|       // warning.
 | |
|       Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control);
 | |
| 
 | |
|       // The last diagnostic which Sema produced was ignored. Suppress any
 | |
|       // notes attached to it.
 | |
|       Diags.setLastDiagnosticIgnored(true);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case DiagnosticIDs::SFINAE_Suppress:
 | |
|       // Make a copy of this suppressed diagnostic and store it with the
 | |
|       // template-deduction information;
 | |
|       if (*Info) {
 | |
|         Diagnostic DiagInfo(&Diags);
 | |
|         (*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(),
 | |
|                        PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
 | |
|       }
 | |
| 
 | |
|       // Suppress this diagnostic.
 | |
|       Diags.setLastDiagnosticIgnored(true);
 | |
|       Diags.Clear();
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Copy the diagnostic printing policy over the ASTContext printing policy.
 | |
|   // TODO: Stop doing that.  See: https://reviews.llvm.org/D45093#1090292
 | |
|   Context.setPrintingPolicy(getPrintingPolicy());
 | |
| 
 | |
|   // Emit the diagnostic.
 | |
|   if (!Diags.EmitCurrentDiagnostic())
 | |
|     return;
 | |
| 
 | |
|   // If this is not a note, and we're in a template instantiation
 | |
|   // that is different from the last template instantiation where
 | |
|   // we emitted an error, print a template instantiation
 | |
|   // backtrace.
 | |
|   if (!DiagnosticIDs::isBuiltinNote(DiagID))
 | |
|     PrintContextStack();
 | |
| }
 | |
| 
 | |
| Sema::SemaDiagnosticBuilder
 | |
| Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) {
 | |
|   SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID()));
 | |
|   PD.Emit(Builder);
 | |
| 
 | |
|   return Builder;
 | |
| }
 | |
| 
 | |
| // Print notes showing how we can reach FD starting from an a priori
 | |
| // known-callable function.
 | |
| static void emitCallStackNotes(Sema &S, FunctionDecl *FD) {
 | |
|   auto FnIt = S.DeviceKnownEmittedFns.find(FD);
 | |
|   while (FnIt != S.DeviceKnownEmittedFns.end()) {
 | |
|     DiagnosticBuilder Builder(
 | |
|         S.Diags.Report(FnIt->second.Loc, diag::note_called_by));
 | |
|     Builder << FnIt->second.FD;
 | |
|     Builder.setForceEmit();
 | |
| 
 | |
|     FnIt = S.DeviceKnownEmittedFns.find(FnIt->second.FD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Emit any deferred diagnostics for FD and erase them from the map in which
 | |
| // they're stored.
 | |
| static void emitDeferredDiags(Sema &S, FunctionDecl *FD, bool ShowCallStack) {
 | |
|   auto It = S.DeviceDeferredDiags.find(FD);
 | |
|   if (It == S.DeviceDeferredDiags.end())
 | |
|     return;
 | |
|   bool HasWarningOrError = false;
 | |
|   for (PartialDiagnosticAt &PDAt : It->second) {
 | |
|     const SourceLocation &Loc = PDAt.first;
 | |
|     const PartialDiagnostic &PD = PDAt.second;
 | |
|     HasWarningOrError |= S.getDiagnostics().getDiagnosticLevel(
 | |
|                              PD.getDiagID(), Loc) >= DiagnosticsEngine::Warning;
 | |
|     DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID()));
 | |
|     Builder.setForceEmit();
 | |
|     PD.Emit(Builder);
 | |
|   }
 | |
|   S.DeviceDeferredDiags.erase(It);
 | |
| 
 | |
|   // FIXME: Should this be called after every warning/error emitted in the loop
 | |
|   // above, instead of just once per function?  That would be consistent with
 | |
|   // how we handle immediate errors, but it also seems like a bit much.
 | |
|   if (HasWarningOrError && ShowCallStack)
 | |
|     emitCallStackNotes(S, FD);
 | |
| }
 | |
| 
 | |
| // In CUDA, there are some constructs which may appear in semantically-valid
 | |
| // code, but trigger errors if we ever generate code for the function in which
 | |
| // they appear.  Essentially every construct you're not allowed to use on the
 | |
| // device falls into this category, because you are allowed to use these
 | |
| // constructs in a __host__ __device__ function, but only if that function is
 | |
| // never codegen'ed on the device.
 | |
| //
 | |
| // To handle semantic checking for these constructs, we keep track of the set of
 | |
| // functions we know will be emitted, either because we could tell a priori that
 | |
| // they would be emitted, or because they were transitively called by a
 | |
| // known-emitted function.
 | |
| //
 | |
| // We also keep a partial call graph of which not-known-emitted functions call
 | |
| // which other not-known-emitted functions.
 | |
| //
 | |
| // When we see something which is illegal if the current function is emitted
 | |
| // (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or
 | |
| // CheckCUDACall), we first check if the current function is known-emitted.  If
 | |
| // so, we immediately output the diagnostic.
 | |
| //
 | |
| // Otherwise, we "defer" the diagnostic.  It sits in Sema::DeviceDeferredDiags
 | |
| // until we discover that the function is known-emitted, at which point we take
 | |
| // it out of this map and emit the diagnostic.
 | |
| 
 | |
| Sema::DeviceDiagBuilder::DeviceDiagBuilder(Kind K, SourceLocation Loc,
 | |
|                                            unsigned DiagID, FunctionDecl *Fn,
 | |
|                                            Sema &S)
 | |
|     : S(S), Loc(Loc), DiagID(DiagID), Fn(Fn),
 | |
|       ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) {
 | |
|   switch (K) {
 | |
|   case K_Nop:
 | |
|     break;
 | |
|   case K_Immediate:
 | |
|   case K_ImmediateWithCallStack:
 | |
|     ImmediateDiag.emplace(S.Diag(Loc, DiagID));
 | |
|     break;
 | |
|   case K_Deferred:
 | |
|     assert(Fn && "Must have a function to attach the deferred diag to.");
 | |
|     auto &Diags = S.DeviceDeferredDiags[Fn];
 | |
|     PartialDiagId.emplace(Diags.size());
 | |
|     Diags.emplace_back(Loc, S.PDiag(DiagID));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Sema::DeviceDiagBuilder::DeviceDiagBuilder(DeviceDiagBuilder &&D)
 | |
|     : S(D.S), Loc(D.Loc), DiagID(D.DiagID), Fn(D.Fn),
 | |
|       ShowCallStack(D.ShowCallStack), ImmediateDiag(D.ImmediateDiag),
 | |
|       PartialDiagId(D.PartialDiagId) {
 | |
|   // Clean the previous diagnostics.
 | |
|   D.ShowCallStack = false;
 | |
|   D.ImmediateDiag.reset();
 | |
|   D.PartialDiagId.reset();
 | |
| }
 | |
| 
 | |
| Sema::DeviceDiagBuilder::~DeviceDiagBuilder() {
 | |
|   if (ImmediateDiag) {
 | |
|     // Emit our diagnostic and, if it was a warning or error, output a callstack
 | |
|     // if Fn isn't a priori known-emitted.
 | |
|     bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel(
 | |
|                                 DiagID, Loc) >= DiagnosticsEngine::Warning;
 | |
|     ImmediateDiag.reset(); // Emit the immediate diag.
 | |
|     if (IsWarningOrError && ShowCallStack)
 | |
|       emitCallStackNotes(S, Fn);
 | |
|   } else {
 | |
|     assert((!PartialDiagId || ShowCallStack) &&
 | |
|            "Must always show call stack for deferred diags.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Indicate that this function (and thus everything it transtively calls) will
 | |
| // be codegen'ed, and emit any deferred diagnostics on this function and its
 | |
| // (transitive) callees.
 | |
| void Sema::markKnownEmitted(
 | |
|     Sema &S, FunctionDecl *OrigCaller, FunctionDecl *OrigCallee,
 | |
|     SourceLocation OrigLoc,
 | |
|     const llvm::function_ref<bool(Sema &, FunctionDecl *)> IsKnownEmitted) {
 | |
|   // Nothing to do if we already know that FD is emitted.
 | |
|   if (IsKnownEmitted(S, OrigCallee)) {
 | |
|     assert(!S.DeviceCallGraph.count(OrigCallee));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We've just discovered that OrigCallee is known-emitted.  Walk our call
 | |
|   // graph to see what else we can now discover also must be emitted.
 | |
| 
 | |
|   struct CallInfo {
 | |
|     FunctionDecl *Caller;
 | |
|     FunctionDecl *Callee;
 | |
|     SourceLocation Loc;
 | |
|   };
 | |
|   llvm::SmallVector<CallInfo, 4> Worklist = {{OrigCaller, OrigCallee, OrigLoc}};
 | |
|   llvm::SmallSet<CanonicalDeclPtr<FunctionDecl>, 4> Seen;
 | |
|   Seen.insert(OrigCallee);
 | |
|   while (!Worklist.empty()) {
 | |
|     CallInfo C = Worklist.pop_back_val();
 | |
|     assert(!IsKnownEmitted(S, C.Callee) &&
 | |
|            "Worklist should not contain known-emitted functions.");
 | |
|     S.DeviceKnownEmittedFns[C.Callee] = {C.Caller, C.Loc};
 | |
|     emitDeferredDiags(S, C.Callee, C.Caller);
 | |
| 
 | |
|     // If this is a template instantiation, explore its callgraph as well:
 | |
|     // Non-dependent calls are part of the template's callgraph, while dependent
 | |
|     // calls are part of to the instantiation's call graph.
 | |
|     if (auto *Templ = C.Callee->getPrimaryTemplate()) {
 | |
|       FunctionDecl *TemplFD = Templ->getAsFunction();
 | |
|       if (!Seen.count(TemplFD) && !S.DeviceKnownEmittedFns.count(TemplFD)) {
 | |
|         Seen.insert(TemplFD);
 | |
|         Worklist.push_back(
 | |
|             {/* Caller = */ C.Caller, /* Callee = */ TemplFD, C.Loc});
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add all functions called by Callee to our worklist.
 | |
|     auto CGIt = S.DeviceCallGraph.find(C.Callee);
 | |
|     if (CGIt == S.DeviceCallGraph.end())
 | |
|       continue;
 | |
| 
 | |
|     for (std::pair<CanonicalDeclPtr<FunctionDecl>, SourceLocation> FDLoc :
 | |
|          CGIt->second) {
 | |
|       FunctionDecl *NewCallee = FDLoc.first;
 | |
|       SourceLocation CallLoc = FDLoc.second;
 | |
|       if (Seen.count(NewCallee) || IsKnownEmitted(S, NewCallee))
 | |
|         continue;
 | |
|       Seen.insert(NewCallee);
 | |
|       Worklist.push_back(
 | |
|           {/* Caller = */ C.Callee, /* Callee = */ NewCallee, CallLoc});
 | |
|     }
 | |
| 
 | |
|     // C.Callee is now known-emitted, so we no longer need to maintain its list
 | |
|     // of callees in DeviceCallGraph.
 | |
|     S.DeviceCallGraph.erase(CGIt);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Sema::DeviceDiagBuilder Sema::targetDiag(SourceLocation Loc, unsigned DiagID) {
 | |
|   if (LangOpts.OpenMP)
 | |
|     return LangOpts.OpenMPIsDevice ? diagIfOpenMPDeviceCode(Loc, DiagID)
 | |
|                                    : diagIfOpenMPHostCode(Loc, DiagID);
 | |
|   if (getLangOpts().CUDA)
 | |
|     return getLangOpts().CUDAIsDevice ? CUDADiagIfDeviceCode(Loc, DiagID)
 | |
|                                       : CUDADiagIfHostCode(Loc, DiagID);
 | |
|   return DeviceDiagBuilder(DeviceDiagBuilder::K_Immediate, Loc, DiagID,
 | |
|                            getCurFunctionDecl(), *this);
 | |
| }
 | |
| 
 | |
| /// Looks through the macro-expansion chain for the given
 | |
| /// location, looking for a macro expansion with the given name.
 | |
| /// If one is found, returns true and sets the location to that
 | |
| /// expansion loc.
 | |
| bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) {
 | |
|   SourceLocation loc = locref;
 | |
|   if (!loc.isMacroID()) return false;
 | |
| 
 | |
|   // There's no good way right now to look at the intermediate
 | |
|   // expansions, so just jump to the expansion location.
 | |
|   loc = getSourceManager().getExpansionLoc(loc);
 | |
| 
 | |
|   // If that's written with the name, stop here.
 | |
|   SmallVector<char, 16> buffer;
 | |
|   if (getPreprocessor().getSpelling(loc, buffer) == name) {
 | |
|     locref = loc;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determines the active Scope associated with the given declaration
 | |
| /// context.
 | |
| ///
 | |
| /// This routine maps a declaration context to the active Scope object that
 | |
| /// represents that declaration context in the parser. It is typically used
 | |
| /// from "scope-less" code (e.g., template instantiation, lazy creation of
 | |
| /// declarations) that injects a name for name-lookup purposes and, therefore,
 | |
| /// must update the Scope.
 | |
| ///
 | |
| /// \returns The scope corresponding to the given declaraion context, or NULL
 | |
| /// if no such scope is open.
 | |
| Scope *Sema::getScopeForContext(DeclContext *Ctx) {
 | |
| 
 | |
|   if (!Ctx)
 | |
|     return nullptr;
 | |
| 
 | |
|   Ctx = Ctx->getPrimaryContext();
 | |
|   for (Scope *S = getCurScope(); S; S = S->getParent()) {
 | |
|     // Ignore scopes that cannot have declarations. This is important for
 | |
|     // out-of-line definitions of static class members.
 | |
|     if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope))
 | |
|       if (DeclContext *Entity = S->getEntity())
 | |
|         if (Ctx == Entity->getPrimaryContext())
 | |
|           return S;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Enter a new function scope
 | |
| void Sema::PushFunctionScope() {
 | |
|   if (FunctionScopes.empty() && CachedFunctionScope) {
 | |
|     // Use CachedFunctionScope to avoid allocating memory when possible.
 | |
|     CachedFunctionScope->Clear();
 | |
|     FunctionScopes.push_back(CachedFunctionScope.release());
 | |
|   } else {
 | |
|     FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics()));
 | |
|   }
 | |
|   if (LangOpts.OpenMP)
 | |
|     pushOpenMPFunctionRegion();
 | |
| }
 | |
| 
 | |
| void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) {
 | |
|   FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(),
 | |
|                                               BlockScope, Block));
 | |
| }
 | |
| 
 | |
| LambdaScopeInfo *Sema::PushLambdaScope() {
 | |
|   LambdaScopeInfo *const LSI = new LambdaScopeInfo(getDiagnostics());
 | |
|   FunctionScopes.push_back(LSI);
 | |
|   return LSI;
 | |
| }
 | |
| 
 | |
| void Sema::RecordParsingTemplateParameterDepth(unsigned Depth) {
 | |
|   if (LambdaScopeInfo *const LSI = getCurLambda()) {
 | |
|     LSI->AutoTemplateParameterDepth = Depth;
 | |
|     return;
 | |
|   }
 | |
|   llvm_unreachable(
 | |
|       "Remove assertion if intentionally called in a non-lambda context.");
 | |
| }
 | |
| 
 | |
| // Check that the type of the VarDecl has an accessible copy constructor and
 | |
| // resolve its destructor's exception specification.
 | |
| static void checkEscapingByref(VarDecl *VD, Sema &S) {
 | |
|   QualType T = VD->getType();
 | |
|   EnterExpressionEvaluationContext scope(
 | |
|       S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
 | |
|   SourceLocation Loc = VD->getLocation();
 | |
|   Expr *VarRef =
 | |
|       new (S.Context) DeclRefExpr(S.Context, VD, false, T, VK_LValue, Loc);
 | |
|   ExprResult Result = S.PerformMoveOrCopyInitialization(
 | |
|       InitializedEntity::InitializeBlock(Loc, T, false), VD, VD->getType(),
 | |
|       VarRef, /*AllowNRVO=*/true);
 | |
|   if (!Result.isInvalid()) {
 | |
|     Result = S.MaybeCreateExprWithCleanups(Result);
 | |
|     Expr *Init = Result.getAs<Expr>();
 | |
|     S.Context.setBlockVarCopyInit(VD, Init, S.canThrow(Init));
 | |
|   }
 | |
| 
 | |
|   // The destructor's exception specification is needed when IRGen generates
 | |
|   // block copy/destroy functions. Resolve it here.
 | |
|   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|     if (CXXDestructorDecl *DD = RD->getDestructor()) {
 | |
|       auto *FPT = DD->getType()->getAs<FunctionProtoType>();
 | |
|       S.ResolveExceptionSpec(Loc, FPT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void markEscapingByrefs(const FunctionScopeInfo &FSI, Sema &S) {
 | |
|   // Set the EscapingByref flag of __block variables captured by
 | |
|   // escaping blocks.
 | |
|   for (const BlockDecl *BD : FSI.Blocks) {
 | |
|     for (const BlockDecl::Capture &BC : BD->captures()) {
 | |
|       VarDecl *VD = BC.getVariable();
 | |
|       if (VD->hasAttr<BlocksAttr>()) {
 | |
|         // Nothing to do if this is a __block variable captured by a
 | |
|         // non-escaping block.
 | |
|         if (BD->doesNotEscape())
 | |
|           continue;
 | |
|         VD->setEscapingByref();
 | |
|       }
 | |
|       // Check whether the captured variable is or contains an object of
 | |
|       // non-trivial C union type.
 | |
|       QualType CapType = BC.getVariable()->getType();
 | |
|       if (CapType.hasNonTrivialToPrimitiveDestructCUnion() ||
 | |
|           CapType.hasNonTrivialToPrimitiveCopyCUnion())
 | |
|         S.checkNonTrivialCUnion(BC.getVariable()->getType(),
 | |
|                                 BD->getCaretLocation(),
 | |
|                                 Sema::NTCUC_BlockCapture,
 | |
|                                 Sema::NTCUK_Destruct|Sema::NTCUK_Copy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (VarDecl *VD : FSI.ByrefBlockVars) {
 | |
|     // __block variables might require us to capture a copy-initializer.
 | |
|     if (!VD->isEscapingByref())
 | |
|       continue;
 | |
|     // It's currently invalid to ever have a __block variable with an
 | |
|     // array type; should we diagnose that here?
 | |
|     // Regardless, we don't want to ignore array nesting when
 | |
|     // constructing this copy.
 | |
|     if (VD->getType()->isStructureOrClassType())
 | |
|       checkEscapingByref(VD, S);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Pop a function (or block or lambda or captured region) scope from the stack.
 | |
| ///
 | |
| /// \param WP The warning policy to use for CFG-based warnings, or null if such
 | |
| ///        warnings should not be produced.
 | |
| /// \param D The declaration corresponding to this function scope, if producing
 | |
| ///        CFG-based warnings.
 | |
| /// \param BlockType The type of the block expression, if D is a BlockDecl.
 | |
| Sema::PoppedFunctionScopePtr
 | |
| Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP,
 | |
|                            const Decl *D, QualType BlockType) {
 | |
|   assert(!FunctionScopes.empty() && "mismatched push/pop!");
 | |
| 
 | |
|   markEscapingByrefs(*FunctionScopes.back(), *this);
 | |
| 
 | |
|   PoppedFunctionScopePtr Scope(FunctionScopes.pop_back_val(),
 | |
|                                PoppedFunctionScopeDeleter(this));
 | |
| 
 | |
|   if (LangOpts.OpenMP)
 | |
|     popOpenMPFunctionRegion(Scope.get());
 | |
| 
 | |
|   // Issue any analysis-based warnings.
 | |
|   if (WP && D)
 | |
|     AnalysisWarnings.IssueWarnings(*WP, Scope.get(), D, BlockType);
 | |
|   else
 | |
|     for (const auto &PUD : Scope->PossiblyUnreachableDiags)
 | |
|       Diag(PUD.Loc, PUD.PD);
 | |
| 
 | |
|   return Scope;
 | |
| }
 | |
| 
 | |
| void Sema::PoppedFunctionScopeDeleter::
 | |
| operator()(sema::FunctionScopeInfo *Scope) const {
 | |
|   // Stash the function scope for later reuse if it's for a normal function.
 | |
|   if (Scope->isPlainFunction() && !Self->CachedFunctionScope)
 | |
|     Self->CachedFunctionScope.reset(Scope);
 | |
|   else
 | |
|     delete Scope;
 | |
| }
 | |
| 
 | |
| void Sema::PushCompoundScope(bool IsStmtExpr) {
 | |
|   getCurFunction()->CompoundScopes.push_back(CompoundScopeInfo(IsStmtExpr));
 | |
| }
 | |
| 
 | |
| void Sema::PopCompoundScope() {
 | |
|   FunctionScopeInfo *CurFunction = getCurFunction();
 | |
|   assert(!CurFunction->CompoundScopes.empty() && "mismatched push/pop");
 | |
| 
 | |
|   CurFunction->CompoundScopes.pop_back();
 | |
| }
 | |
| 
 | |
| /// Determine whether any errors occurred within this function/method/
 | |
| /// block.
 | |
| bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const {
 | |
|   return getCurFunction()->ErrorTrap.hasUnrecoverableErrorOccurred();
 | |
| }
 | |
| 
 | |
| void Sema::setFunctionHasBranchIntoScope() {
 | |
|   if (!FunctionScopes.empty())
 | |
|     FunctionScopes.back()->setHasBranchIntoScope();
 | |
| }
 | |
| 
 | |
| void Sema::setFunctionHasBranchProtectedScope() {
 | |
|   if (!FunctionScopes.empty())
 | |
|     FunctionScopes.back()->setHasBranchProtectedScope();
 | |
| }
 | |
| 
 | |
| void Sema::setFunctionHasIndirectGoto() {
 | |
|   if (!FunctionScopes.empty())
 | |
|     FunctionScopes.back()->setHasIndirectGoto();
 | |
| }
 | |
| 
 | |
| BlockScopeInfo *Sema::getCurBlock() {
 | |
|   if (FunctionScopes.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   auto CurBSI = dyn_cast<BlockScopeInfo>(FunctionScopes.back());
 | |
|   if (CurBSI && CurBSI->TheDecl &&
 | |
|       !CurBSI->TheDecl->Encloses(CurContext)) {
 | |
|     // We have switched contexts due to template instantiation.
 | |
|     assert(!CodeSynthesisContexts.empty());
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return CurBSI;
 | |
| }
 | |
| 
 | |
| FunctionScopeInfo *Sema::getEnclosingFunction() const {
 | |
|   if (FunctionScopes.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   for (int e = FunctionScopes.size() - 1; e >= 0; --e) {
 | |
|     if (isa<sema::BlockScopeInfo>(FunctionScopes[e]))
 | |
|       continue;
 | |
|     return FunctionScopes[e];
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| LambdaScopeInfo *Sema::getEnclosingLambda() const {
 | |
|   for (auto *Scope : llvm::reverse(FunctionScopes)) {
 | |
|     if (auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope)) {
 | |
|       if (LSI->Lambda && !LSI->Lambda->Encloses(CurContext)) {
 | |
|         // We have switched contexts due to template instantiation.
 | |
|         // FIXME: We should swap out the FunctionScopes during code synthesis
 | |
|         // so that we don't need to check for this.
 | |
|         assert(!CodeSynthesisContexts.empty());
 | |
|         return nullptr;
 | |
|       }
 | |
|       return LSI;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| LambdaScopeInfo *Sema::getCurLambda(bool IgnoreNonLambdaCapturingScope) {
 | |
|   if (FunctionScopes.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   auto I = FunctionScopes.rbegin();
 | |
|   if (IgnoreNonLambdaCapturingScope) {
 | |
|     auto E = FunctionScopes.rend();
 | |
|     while (I != E && isa<CapturingScopeInfo>(*I) && !isa<LambdaScopeInfo>(*I))
 | |
|       ++I;
 | |
|     if (I == E)
 | |
|       return nullptr;
 | |
|   }
 | |
|   auto *CurLSI = dyn_cast<LambdaScopeInfo>(*I);
 | |
|   if (CurLSI && CurLSI->Lambda &&
 | |
|       !CurLSI->Lambda->Encloses(CurContext)) {
 | |
|     // We have switched contexts due to template instantiation.
 | |
|     assert(!CodeSynthesisContexts.empty());
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return CurLSI;
 | |
| }
 | |
| 
 | |
| // We have a generic lambda if we parsed auto parameters, or we have
 | |
| // an associated template parameter list.
 | |
| LambdaScopeInfo *Sema::getCurGenericLambda() {
 | |
|   if (LambdaScopeInfo *LSI =  getCurLambda()) {
 | |
|     return (LSI->TemplateParams.size() ||
 | |
|                     LSI->GLTemplateParameterList) ? LSI : nullptr;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| void Sema::ActOnComment(SourceRange Comment) {
 | |
|   if (!LangOpts.RetainCommentsFromSystemHeaders &&
 | |
|       SourceMgr.isInSystemHeader(Comment.getBegin()))
 | |
|     return;
 | |
|   RawComment RC(SourceMgr, Comment, LangOpts.CommentOpts, false);
 | |
|   if (RC.isAlmostTrailingComment()) {
 | |
|     SourceRange MagicMarkerRange(Comment.getBegin(),
 | |
|                                  Comment.getBegin().getLocWithOffset(3));
 | |
|     StringRef MagicMarkerText;
 | |
|     switch (RC.getKind()) {
 | |
|     case RawComment::RCK_OrdinaryBCPL:
 | |
|       MagicMarkerText = "///<";
 | |
|       break;
 | |
|     case RawComment::RCK_OrdinaryC:
 | |
|       MagicMarkerText = "/**<";
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("if this is an almost Doxygen comment, "
 | |
|                        "it should be ordinary");
 | |
|     }
 | |
|     Diag(Comment.getBegin(), diag::warn_not_a_doxygen_trailing_member_comment) <<
 | |
|       FixItHint::CreateReplacement(MagicMarkerRange, MagicMarkerText);
 | |
|   }
 | |
|   Context.addComment(RC);
 | |
| }
 | |
| 
 | |
| // Pin this vtable to this file.
 | |
| ExternalSemaSource::~ExternalSemaSource() {}
 | |
| char ExternalSemaSource::ID;
 | |
| 
 | |
| void ExternalSemaSource::ReadMethodPool(Selector Sel) { }
 | |
| void ExternalSemaSource::updateOutOfDateSelector(Selector Sel) { }
 | |
| 
 | |
| void ExternalSemaSource::ReadKnownNamespaces(
 | |
|                            SmallVectorImpl<NamespaceDecl *> &Namespaces) {
 | |
| }
 | |
| 
 | |
| void ExternalSemaSource::ReadUndefinedButUsed(
 | |
|     llvm::MapVector<NamedDecl *, SourceLocation> &Undefined) {}
 | |
| 
 | |
| void ExternalSemaSource::ReadMismatchingDeleteExpressions(llvm::MapVector<
 | |
|     FieldDecl *, llvm::SmallVector<std::pair<SourceLocation, bool>, 4>> &) {}
 | |
| 
 | |
| /// Figure out if an expression could be turned into a call.
 | |
| ///
 | |
| /// Use this when trying to recover from an error where the programmer may have
 | |
| /// written just the name of a function instead of actually calling it.
 | |
| ///
 | |
| /// \param E - The expression to examine.
 | |
| /// \param ZeroArgCallReturnTy - If the expression can be turned into a call
 | |
| ///  with no arguments, this parameter is set to the type returned by such a
 | |
| ///  call; otherwise, it is set to an empty QualType.
 | |
| /// \param OverloadSet - If the expression is an overloaded function
 | |
| ///  name, this parameter is populated with the decls of the various overloads.
 | |
| bool Sema::tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
 | |
|                          UnresolvedSetImpl &OverloadSet) {
 | |
|   ZeroArgCallReturnTy = QualType();
 | |
|   OverloadSet.clear();
 | |
| 
 | |
|   const OverloadExpr *Overloads = nullptr;
 | |
|   bool IsMemExpr = false;
 | |
|   if (E.getType() == Context.OverloadTy) {
 | |
|     OverloadExpr::FindResult FR = OverloadExpr::find(const_cast<Expr*>(&E));
 | |
| 
 | |
|     // Ignore overloads that are pointer-to-member constants.
 | |
|     if (FR.HasFormOfMemberPointer)
 | |
|       return false;
 | |
| 
 | |
|     Overloads = FR.Expression;
 | |
|   } else if (E.getType() == Context.BoundMemberTy) {
 | |
|     Overloads = dyn_cast<UnresolvedMemberExpr>(E.IgnoreParens());
 | |
|     IsMemExpr = true;
 | |
|   }
 | |
| 
 | |
|   bool Ambiguous = false;
 | |
|   bool IsMV = false;
 | |
| 
 | |
|   if (Overloads) {
 | |
|     for (OverloadExpr::decls_iterator it = Overloads->decls_begin(),
 | |
|          DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) {
 | |
|       OverloadSet.addDecl(*it);
 | |
| 
 | |
|       // Check whether the function is a non-template, non-member which takes no
 | |
|       // arguments.
 | |
|       if (IsMemExpr)
 | |
|         continue;
 | |
|       if (const FunctionDecl *OverloadDecl
 | |
|             = dyn_cast<FunctionDecl>((*it)->getUnderlyingDecl())) {
 | |
|         if (OverloadDecl->getMinRequiredArguments() == 0) {
 | |
|           if (!ZeroArgCallReturnTy.isNull() && !Ambiguous &&
 | |
|               (!IsMV || !(OverloadDecl->isCPUDispatchMultiVersion() ||
 | |
|                           OverloadDecl->isCPUSpecificMultiVersion()))) {
 | |
|             ZeroArgCallReturnTy = QualType();
 | |
|             Ambiguous = true;
 | |
|           } else {
 | |
|             ZeroArgCallReturnTy = OverloadDecl->getReturnType();
 | |
|             IsMV = OverloadDecl->isCPUDispatchMultiVersion() ||
 | |
|                    OverloadDecl->isCPUSpecificMultiVersion();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If it's not a member, use better machinery to try to resolve the call
 | |
|     if (!IsMemExpr)
 | |
|       return !ZeroArgCallReturnTy.isNull();
 | |
|   }
 | |
| 
 | |
|   // Attempt to call the member with no arguments - this will correctly handle
 | |
|   // member templates with defaults/deduction of template arguments, overloads
 | |
|   // with default arguments, etc.
 | |
|   if (IsMemExpr && !E.isTypeDependent()) {
 | |
|     Sema::TentativeAnalysisScope Trap(*this);
 | |
|     ExprResult R = BuildCallToMemberFunction(nullptr, &E, SourceLocation(),
 | |
|                                              None, SourceLocation());
 | |
|     if (R.isUsable()) {
 | |
|       ZeroArgCallReturnTy = R.get()->getType();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (const DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E.IgnoreParens())) {
 | |
|     if (const FunctionDecl *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) {
 | |
|       if (Fun->getMinRequiredArguments() == 0)
 | |
|         ZeroArgCallReturnTy = Fun->getReturnType();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We don't have an expression that's convenient to get a FunctionDecl from,
 | |
|   // but we can at least check if the type is "function of 0 arguments".
 | |
|   QualType ExprTy = E.getType();
 | |
|   const FunctionType *FunTy = nullptr;
 | |
|   QualType PointeeTy = ExprTy->getPointeeType();
 | |
|   if (!PointeeTy.isNull())
 | |
|     FunTy = PointeeTy->getAs<FunctionType>();
 | |
|   if (!FunTy)
 | |
|     FunTy = ExprTy->getAs<FunctionType>();
 | |
| 
 | |
|   if (const FunctionProtoType *FPT =
 | |
|       dyn_cast_or_null<FunctionProtoType>(FunTy)) {
 | |
|     if (FPT->getNumParams() == 0)
 | |
|       ZeroArgCallReturnTy = FunTy->getReturnType();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Give notes for a set of overloads.
 | |
| ///
 | |
| /// A companion to tryExprAsCall. In cases when the name that the programmer
 | |
| /// wrote was an overloaded function, we may be able to make some guesses about
 | |
| /// plausible overloads based on their return types; such guesses can be handed
 | |
| /// off to this method to be emitted as notes.
 | |
| ///
 | |
| /// \param Overloads - The overloads to note.
 | |
| /// \param FinalNoteLoc - If we've suppressed printing some overloads due to
 | |
| ///  -fshow-overloads=best, this is the location to attach to the note about too
 | |
| ///  many candidates. Typically this will be the location of the original
 | |
| ///  ill-formed expression.
 | |
| static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads,
 | |
|                           const SourceLocation FinalNoteLoc) {
 | |
|   int ShownOverloads = 0;
 | |
|   int SuppressedOverloads = 0;
 | |
|   for (UnresolvedSetImpl::iterator It = Overloads.begin(),
 | |
|        DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
 | |
|     // FIXME: Magic number for max shown overloads stolen from
 | |
|     // OverloadCandidateSet::NoteCandidates.
 | |
|     if (ShownOverloads >= 4 && S.Diags.getShowOverloads() == Ovl_Best) {
 | |
|       ++SuppressedOverloads;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     NamedDecl *Fn = (*It)->getUnderlyingDecl();
 | |
|     // Don't print overloads for non-default multiversioned functions.
 | |
|     if (const auto *FD = Fn->getAsFunction()) {
 | |
|       if (FD->isMultiVersion() && FD->hasAttr<TargetAttr>() &&
 | |
|           !FD->getAttr<TargetAttr>()->isDefaultVersion())
 | |
|         continue;
 | |
|     }
 | |
|     S.Diag(Fn->getLocation(), diag::note_possible_target_of_call);
 | |
|     ++ShownOverloads;
 | |
|   }
 | |
| 
 | |
|   if (SuppressedOverloads)
 | |
|     S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates)
 | |
|       << SuppressedOverloads;
 | |
| }
 | |
| 
 | |
| static void notePlausibleOverloads(Sema &S, SourceLocation Loc,
 | |
|                                    const UnresolvedSetImpl &Overloads,
 | |
|                                    bool (*IsPlausibleResult)(QualType)) {
 | |
|   if (!IsPlausibleResult)
 | |
|     return noteOverloads(S, Overloads, Loc);
 | |
| 
 | |
|   UnresolvedSet<2> PlausibleOverloads;
 | |
|   for (OverloadExpr::decls_iterator It = Overloads.begin(),
 | |
|          DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
 | |
|     const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*It);
 | |
|     QualType OverloadResultTy = OverloadDecl->getReturnType();
 | |
|     if (IsPlausibleResult(OverloadResultTy))
 | |
|       PlausibleOverloads.addDecl(It.getDecl());
 | |
|   }
 | |
|   noteOverloads(S, PlausibleOverloads, Loc);
 | |
| }
 | |
| 
 | |
| /// Determine whether the given expression can be called by just
 | |
| /// putting parentheses after it.  Notably, expressions with unary
 | |
| /// operators can't be because the unary operator will start parsing
 | |
| /// outside the call.
 | |
| static bool IsCallableWithAppend(Expr *E) {
 | |
|   E = E->IgnoreImplicit();
 | |
|   return (!isa<CStyleCastExpr>(E) &&
 | |
|           !isa<UnaryOperator>(E) &&
 | |
|           !isa<BinaryOperator>(E) &&
 | |
|           !isa<CXXOperatorCallExpr>(E));
 | |
| }
 | |
| 
 | |
| static bool IsCPUDispatchCPUSpecificMultiVersion(const Expr *E) {
 | |
|   if (const auto *UO = dyn_cast<UnaryOperator>(E))
 | |
|     E = UO->getSubExpr();
 | |
| 
 | |
|   if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
 | |
|     if (ULE->getNumDecls() == 0)
 | |
|       return false;
 | |
| 
 | |
|     const NamedDecl *ND = *ULE->decls_begin();
 | |
|     if (const auto *FD = dyn_cast<FunctionDecl>(ND))
 | |
|       return FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
 | |
|                                 bool ForceComplain,
 | |
|                                 bool (*IsPlausibleResult)(QualType)) {
 | |
|   SourceLocation Loc = E.get()->getExprLoc();
 | |
|   SourceRange Range = E.get()->getSourceRange();
 | |
| 
 | |
|   QualType ZeroArgCallTy;
 | |
|   UnresolvedSet<4> Overloads;
 | |
|   if (tryExprAsCall(*E.get(), ZeroArgCallTy, Overloads) &&
 | |
|       !ZeroArgCallTy.isNull() &&
 | |
|       (!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) {
 | |
|     // At this point, we know E is potentially callable with 0
 | |
|     // arguments and that it returns something of a reasonable type,
 | |
|     // so we can emit a fixit and carry on pretending that E was
 | |
|     // actually a CallExpr.
 | |
|     SourceLocation ParenInsertionLoc = getLocForEndOfToken(Range.getEnd());
 | |
|     bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get());
 | |
|     Diag(Loc, PD) << /*zero-arg*/ 1 << IsMV << Range
 | |
|                   << (IsCallableWithAppend(E.get())
 | |
|                           ? FixItHint::CreateInsertion(ParenInsertionLoc, "()")
 | |
|                           : FixItHint());
 | |
|     if (!IsMV)
 | |
|       notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
 | |
| 
 | |
|     // FIXME: Try this before emitting the fixit, and suppress diagnostics
 | |
|     // while doing so.
 | |
|     E = BuildCallExpr(nullptr, E.get(), Range.getEnd(), None,
 | |
|                       Range.getEnd().getLocWithOffset(1));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!ForceComplain) return false;
 | |
| 
 | |
|   bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get());
 | |
|   Diag(Loc, PD) << /*not zero-arg*/ 0 << IsMV << Range;
 | |
|   if (!IsMV)
 | |
|     notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
 | |
|   E = ExprError();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| IdentifierInfo *Sema::getSuperIdentifier() const {
 | |
|   if (!Ident_super)
 | |
|     Ident_super = &Context.Idents.get("super");
 | |
|   return Ident_super;
 | |
| }
 | |
| 
 | |
| IdentifierInfo *Sema::getFloat128Identifier() const {
 | |
|   if (!Ident___float128)
 | |
|     Ident___float128 = &Context.Idents.get("__float128");
 | |
|   return Ident___float128;
 | |
| }
 | |
| 
 | |
| void Sema::PushCapturedRegionScope(Scope *S, CapturedDecl *CD, RecordDecl *RD,
 | |
|                                    CapturedRegionKind K,
 | |
|                                    unsigned OpenMPCaptureLevel) {
 | |
|   auto *CSI = new CapturedRegionScopeInfo(
 | |
|       getDiagnostics(), S, CD, RD, CD->getContextParam(), K,
 | |
|       (getLangOpts().OpenMP && K == CR_OpenMP) ? getOpenMPNestingLevel() : 0,
 | |
|       OpenMPCaptureLevel);
 | |
|   CSI->ReturnType = Context.VoidTy;
 | |
|   FunctionScopes.push_back(CSI);
 | |
| }
 | |
| 
 | |
| CapturedRegionScopeInfo *Sema::getCurCapturedRegion() {
 | |
|   if (FunctionScopes.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   return dyn_cast<CapturedRegionScopeInfo>(FunctionScopes.back());
 | |
| }
 | |
| 
 | |
| const llvm::MapVector<FieldDecl *, Sema::DeleteLocs> &
 | |
| Sema::getMismatchingDeleteExpressions() const {
 | |
|   return DeleteExprs;
 | |
| }
 | |
| 
 | |
| void Sema::setOpenCLExtensionForType(QualType T, llvm::StringRef ExtStr) {
 | |
|   if (ExtStr.empty())
 | |
|     return;
 | |
|   llvm::SmallVector<StringRef, 1> Exts;
 | |
|   ExtStr.split(Exts, " ", /* limit */ -1, /* keep empty */ false);
 | |
|   auto CanT = T.getCanonicalType().getTypePtr();
 | |
|   for (auto &I : Exts)
 | |
|     OpenCLTypeExtMap[CanT].insert(I.str());
 | |
| }
 | |
| 
 | |
| void Sema::setOpenCLExtensionForDecl(Decl *FD, StringRef ExtStr) {
 | |
|   llvm::SmallVector<StringRef, 1> Exts;
 | |
|   ExtStr.split(Exts, " ", /* limit */ -1, /* keep empty */ false);
 | |
|   if (Exts.empty())
 | |
|     return;
 | |
|   for (auto &I : Exts)
 | |
|     OpenCLDeclExtMap[FD].insert(I.str());
 | |
| }
 | |
| 
 | |
| void Sema::setCurrentOpenCLExtensionForType(QualType T) {
 | |
|   if (CurrOpenCLExtension.empty())
 | |
|     return;
 | |
|   setOpenCLExtensionForType(T, CurrOpenCLExtension);
 | |
| }
 | |
| 
 | |
| void Sema::setCurrentOpenCLExtensionForDecl(Decl *D) {
 | |
|   if (CurrOpenCLExtension.empty())
 | |
|     return;
 | |
|   setOpenCLExtensionForDecl(D, CurrOpenCLExtension);
 | |
| }
 | |
| 
 | |
| std::string Sema::getOpenCLExtensionsFromDeclExtMap(FunctionDecl *FD) {
 | |
|   if (!OpenCLDeclExtMap.empty())
 | |
|     return getOpenCLExtensionsFromExtMap(FD, OpenCLDeclExtMap);
 | |
| 
 | |
|   return "";
 | |
| }
 | |
| 
 | |
| std::string Sema::getOpenCLExtensionsFromTypeExtMap(FunctionType *FT) {
 | |
|   if (!OpenCLTypeExtMap.empty())
 | |
|     return getOpenCLExtensionsFromExtMap(FT, OpenCLTypeExtMap);
 | |
| 
 | |
|   return "";
 | |
| }
 | |
| 
 | |
| template <typename T, typename MapT>
 | |
| std::string Sema::getOpenCLExtensionsFromExtMap(T *FDT, MapT &Map) {
 | |
|   std::string ExtensionNames = "";
 | |
|   auto Loc = Map.find(FDT);
 | |
| 
 | |
|   for (auto const& I : Loc->second) {
 | |
|     ExtensionNames += I;
 | |
|     ExtensionNames += " ";
 | |
|   }
 | |
|   ExtensionNames.pop_back();
 | |
| 
 | |
|   return ExtensionNames;
 | |
| }
 | |
| 
 | |
| bool Sema::isOpenCLDisabledDecl(Decl *FD) {
 | |
|   auto Loc = OpenCLDeclExtMap.find(FD);
 | |
|   if (Loc == OpenCLDeclExtMap.end())
 | |
|     return false;
 | |
|   for (auto &I : Loc->second) {
 | |
|     if (!getOpenCLOptions().isEnabled(I))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template <typename T, typename DiagLocT, typename DiagInfoT, typename MapT>
 | |
| bool Sema::checkOpenCLDisabledTypeOrDecl(T D, DiagLocT DiagLoc,
 | |
|                                          DiagInfoT DiagInfo, MapT &Map,
 | |
|                                          unsigned Selector,
 | |
|                                          SourceRange SrcRange) {
 | |
|   auto Loc = Map.find(D);
 | |
|   if (Loc == Map.end())
 | |
|     return false;
 | |
|   bool Disabled = false;
 | |
|   for (auto &I : Loc->second) {
 | |
|     if (I != CurrOpenCLExtension && !getOpenCLOptions().isEnabled(I)) {
 | |
|       Diag(DiagLoc, diag::err_opencl_requires_extension) << Selector << DiagInfo
 | |
|                                                          << I << SrcRange;
 | |
|       Disabled = true;
 | |
|     }
 | |
|   }
 | |
|   return Disabled;
 | |
| }
 | |
| 
 | |
| bool Sema::checkOpenCLDisabledTypeDeclSpec(const DeclSpec &DS, QualType QT) {
 | |
|   // Check extensions for declared types.
 | |
|   Decl *Decl = nullptr;
 | |
|   if (auto TypedefT = dyn_cast<TypedefType>(QT.getTypePtr()))
 | |
|     Decl = TypedefT->getDecl();
 | |
|   if (auto TagT = dyn_cast<TagType>(QT.getCanonicalType().getTypePtr()))
 | |
|     Decl = TagT->getDecl();
 | |
|   auto Loc = DS.getTypeSpecTypeLoc();
 | |
| 
 | |
|   // Check extensions for vector types.
 | |
|   // e.g. double4 is not allowed when cl_khr_fp64 is absent.
 | |
|   if (QT->isExtVectorType()) {
 | |
|     auto TypePtr = QT->castAs<ExtVectorType>()->getElementType().getTypePtr();
 | |
|     return checkOpenCLDisabledTypeOrDecl(TypePtr, Loc, QT, OpenCLTypeExtMap);
 | |
|   }
 | |
| 
 | |
|   if (checkOpenCLDisabledTypeOrDecl(Decl, Loc, QT, OpenCLDeclExtMap))
 | |
|     return true;
 | |
| 
 | |
|   // Check extensions for builtin types.
 | |
|   return checkOpenCLDisabledTypeOrDecl(QT.getCanonicalType().getTypePtr(), Loc,
 | |
|                                        QT, OpenCLTypeExtMap);
 | |
| }
 | |
| 
 | |
| bool Sema::checkOpenCLDisabledDecl(const NamedDecl &D, const Expr &E) {
 | |
|   IdentifierInfo *FnName = D.getIdentifier();
 | |
|   return checkOpenCLDisabledTypeOrDecl(&D, E.getBeginLoc(), FnName,
 | |
|                                        OpenCLDeclExtMap, 1, D.getSourceRange());
 | |
| }
 |