forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1950 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1950 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file provides Sema routines for C++ access control semantics.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Basic/Specifiers.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclFriend.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DependentDiagnostic.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/Sema/DelayedDiagnostic.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| /// A copy of Sema's enum without AR_delayed.
 | |
| enum AccessResult {
 | |
|   AR_accessible,
 | |
|   AR_inaccessible,
 | |
|   AR_dependent
 | |
| };
 | |
| 
 | |
| /// SetMemberAccessSpecifier - Set the access specifier of a member.
 | |
| /// Returns true on error (when the previous member decl access specifier
 | |
| /// is different from the new member decl access specifier).
 | |
| bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
 | |
|                                     NamedDecl *PrevMemberDecl,
 | |
|                                     AccessSpecifier LexicalAS) {
 | |
|   if (!PrevMemberDecl) {
 | |
|     // Use the lexical access specifier.
 | |
|     MemberDecl->setAccess(LexicalAS);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // C++ [class.access.spec]p3: When a member is redeclared its access
 | |
|   // specifier must be same as its initial declaration.
 | |
|   if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
 | |
|     Diag(MemberDecl->getLocation(),
 | |
|          diag::err_class_redeclared_with_different_access)
 | |
|       << MemberDecl << LexicalAS;
 | |
|     Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
 | |
|       << PrevMemberDecl << PrevMemberDecl->getAccess();
 | |
| 
 | |
|     MemberDecl->setAccess(LexicalAS);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   MemberDecl->setAccess(PrevMemberDecl->getAccess());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
 | |
|   DeclContext *DC = D->getDeclContext();
 | |
| 
 | |
|   // This can only happen at top: enum decls only "publish" their
 | |
|   // immediate members.
 | |
|   if (isa<EnumDecl>(DC))
 | |
|     DC = cast<EnumDecl>(DC)->getDeclContext();
 | |
| 
 | |
|   CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
 | |
|   while (DeclaringClass->isAnonymousStructOrUnion())
 | |
|     DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
 | |
|   return DeclaringClass;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct EffectiveContext {
 | |
|   EffectiveContext() : Inner(nullptr), Dependent(false) {}
 | |
| 
 | |
|   explicit EffectiveContext(DeclContext *DC)
 | |
|     : Inner(DC),
 | |
|       Dependent(DC->isDependentContext()) {
 | |
| 
 | |
|     // C++11 [class.access.nest]p1:
 | |
|     //   A nested class is a member and as such has the same access
 | |
|     //   rights as any other member.
 | |
|     // C++11 [class.access]p2:
 | |
|     //   A member of a class can also access all the names to which
 | |
|     //   the class has access.  A local class of a member function
 | |
|     //   may access the same names that the member function itself
 | |
|     //   may access.
 | |
|     // This almost implies that the privileges of nesting are transitive.
 | |
|     // Technically it says nothing about the local classes of non-member
 | |
|     // functions (which can gain privileges through friendship), but we
 | |
|     // take that as an oversight.
 | |
|     while (true) {
 | |
|       // We want to add canonical declarations to the EC lists for
 | |
|       // simplicity of checking, but we need to walk up through the
 | |
|       // actual current DC chain.  Otherwise, something like a local
 | |
|       // extern or friend which happens to be the canonical
 | |
|       // declaration will really mess us up.
 | |
| 
 | |
|       if (isa<CXXRecordDecl>(DC)) {
 | |
|         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
 | |
|         Records.push_back(Record->getCanonicalDecl());
 | |
|         DC = Record->getDeclContext();
 | |
|       } else if (isa<FunctionDecl>(DC)) {
 | |
|         FunctionDecl *Function = cast<FunctionDecl>(DC);
 | |
|         Functions.push_back(Function->getCanonicalDecl());
 | |
|         if (Function->getFriendObjectKind())
 | |
|           DC = Function->getLexicalDeclContext();
 | |
|         else
 | |
|           DC = Function->getDeclContext();
 | |
|       } else if (DC->isFileContext()) {
 | |
|         break;
 | |
|       } else {
 | |
|         DC = DC->getParent();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool isDependent() const { return Dependent; }
 | |
| 
 | |
|   bool includesClass(const CXXRecordDecl *R) const {
 | |
|     R = R->getCanonicalDecl();
 | |
|     return llvm::find(Records, R) != Records.end();
 | |
|   }
 | |
| 
 | |
|   /// Retrieves the innermost "useful" context.  Can be null if we're
 | |
|   /// doing access-control without privileges.
 | |
|   DeclContext *getInnerContext() const {
 | |
|     return Inner;
 | |
|   }
 | |
| 
 | |
|   typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
 | |
| 
 | |
|   DeclContext *Inner;
 | |
|   SmallVector<FunctionDecl*, 4> Functions;
 | |
|   SmallVector<CXXRecordDecl*, 4> Records;
 | |
|   bool Dependent;
 | |
| };
 | |
| 
 | |
| /// Like sema::AccessedEntity, but kindly lets us scribble all over
 | |
| /// it.
 | |
| struct AccessTarget : public AccessedEntity {
 | |
|   AccessTarget(const AccessedEntity &Entity)
 | |
|     : AccessedEntity(Entity) {
 | |
|     initialize();
 | |
|   }
 | |
| 
 | |
|   AccessTarget(ASTContext &Context,
 | |
|                MemberNonce _,
 | |
|                CXXRecordDecl *NamingClass,
 | |
|                DeclAccessPair FoundDecl,
 | |
|                QualType BaseObjectType)
 | |
|     : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
 | |
|                      FoundDecl, BaseObjectType) {
 | |
|     initialize();
 | |
|   }
 | |
| 
 | |
|   AccessTarget(ASTContext &Context,
 | |
|                BaseNonce _,
 | |
|                CXXRecordDecl *BaseClass,
 | |
|                CXXRecordDecl *DerivedClass,
 | |
|                AccessSpecifier Access)
 | |
|     : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
 | |
|                      Access) {
 | |
|     initialize();
 | |
|   }
 | |
| 
 | |
|   bool isInstanceMember() const {
 | |
|     return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
 | |
|   }
 | |
| 
 | |
|   bool hasInstanceContext() const {
 | |
|     return HasInstanceContext;
 | |
|   }
 | |
| 
 | |
|   class SavedInstanceContext {
 | |
|   public:
 | |
|     SavedInstanceContext(SavedInstanceContext &&S)
 | |
|         : Target(S.Target), Has(S.Has) {
 | |
|       S.Target = nullptr;
 | |
|     }
 | |
|     ~SavedInstanceContext() {
 | |
|       if (Target)
 | |
|         Target->HasInstanceContext = Has;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     friend struct AccessTarget;
 | |
|     explicit SavedInstanceContext(AccessTarget &Target)
 | |
|         : Target(&Target), Has(Target.HasInstanceContext) {}
 | |
|     AccessTarget *Target;
 | |
|     bool Has;
 | |
|   };
 | |
| 
 | |
|   SavedInstanceContext saveInstanceContext() {
 | |
|     return SavedInstanceContext(*this);
 | |
|   }
 | |
| 
 | |
|   void suppressInstanceContext() {
 | |
|     HasInstanceContext = false;
 | |
|   }
 | |
| 
 | |
|   const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
 | |
|     assert(HasInstanceContext);
 | |
|     if (CalculatedInstanceContext)
 | |
|       return InstanceContext;
 | |
| 
 | |
|     CalculatedInstanceContext = true;
 | |
|     DeclContext *IC = S.computeDeclContext(getBaseObjectType());
 | |
|     InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
 | |
|                           : nullptr);
 | |
|     return InstanceContext;
 | |
|   }
 | |
| 
 | |
|   const CXXRecordDecl *getDeclaringClass() const {
 | |
|     return DeclaringClass;
 | |
|   }
 | |
| 
 | |
|   /// The "effective" naming class is the canonical non-anonymous
 | |
|   /// class containing the actual naming class.
 | |
|   const CXXRecordDecl *getEffectiveNamingClass() const {
 | |
|     const CXXRecordDecl *namingClass = getNamingClass();
 | |
|     while (namingClass->isAnonymousStructOrUnion())
 | |
|       namingClass = cast<CXXRecordDecl>(namingClass->getParent());
 | |
|     return namingClass->getCanonicalDecl();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void initialize() {
 | |
|     HasInstanceContext = (isMemberAccess() &&
 | |
|                           !getBaseObjectType().isNull() &&
 | |
|                           getTargetDecl()->isCXXInstanceMember());
 | |
|     CalculatedInstanceContext = false;
 | |
|     InstanceContext = nullptr;
 | |
| 
 | |
|     if (isMemberAccess())
 | |
|       DeclaringClass = FindDeclaringClass(getTargetDecl());
 | |
|     else
 | |
|       DeclaringClass = getBaseClass();
 | |
|     DeclaringClass = DeclaringClass->getCanonicalDecl();
 | |
|   }
 | |
| 
 | |
|   bool HasInstanceContext : 1;
 | |
|   mutable bool CalculatedInstanceContext : 1;
 | |
|   mutable const CXXRecordDecl *InstanceContext;
 | |
|   const CXXRecordDecl *DeclaringClass;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// Checks whether one class might instantiate to the other.
 | |
| static bool MightInstantiateTo(const CXXRecordDecl *From,
 | |
|                                const CXXRecordDecl *To) {
 | |
|   // Declaration names are always preserved by instantiation.
 | |
|   if (From->getDeclName() != To->getDeclName())
 | |
|     return false;
 | |
| 
 | |
|   const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
 | |
|   const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
 | |
|   if (FromDC == ToDC) return true;
 | |
|   if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
 | |
| 
 | |
|   // Be conservative.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Checks whether one class is derived from another, inclusively.
 | |
| /// Properly indicates when it couldn't be determined due to
 | |
| /// dependence.
 | |
| ///
 | |
| /// This should probably be donated to AST or at least Sema.
 | |
| static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
 | |
|                                            const CXXRecordDecl *Target) {
 | |
|   assert(Derived->getCanonicalDecl() == Derived);
 | |
|   assert(Target->getCanonicalDecl() == Target);
 | |
| 
 | |
|   if (Derived == Target) return AR_accessible;
 | |
| 
 | |
|   bool CheckDependent = Derived->isDependentContext();
 | |
|   if (CheckDependent && MightInstantiateTo(Derived, Target))
 | |
|     return AR_dependent;
 | |
| 
 | |
|   AccessResult OnFailure = AR_inaccessible;
 | |
|   SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
 | |
| 
 | |
|   while (true) {
 | |
|     if (Derived->isDependentContext() && !Derived->hasDefinition() &&
 | |
|         !Derived->isLambda())
 | |
|       return AR_dependent;
 | |
| 
 | |
|     for (const auto &I : Derived->bases()) {
 | |
|       const CXXRecordDecl *RD;
 | |
| 
 | |
|       QualType T = I.getType();
 | |
|       if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|         RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|       } else if (const InjectedClassNameType *IT
 | |
|                    = T->getAs<InjectedClassNameType>()) {
 | |
|         RD = IT->getDecl();
 | |
|       } else {
 | |
|         assert(T->isDependentType() && "non-dependent base wasn't a record?");
 | |
|         OnFailure = AR_dependent;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       RD = RD->getCanonicalDecl();
 | |
|       if (RD == Target) return AR_accessible;
 | |
|       if (CheckDependent && MightInstantiateTo(RD, Target))
 | |
|         OnFailure = AR_dependent;
 | |
| 
 | |
|       Queue.push_back(RD);
 | |
|     }
 | |
| 
 | |
|     if (Queue.empty()) break;
 | |
| 
 | |
|     Derived = Queue.pop_back_val();
 | |
|   }
 | |
| 
 | |
|   return OnFailure;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool MightInstantiateTo(Sema &S, DeclContext *Context,
 | |
|                                DeclContext *Friend) {
 | |
|   if (Friend == Context)
 | |
|     return true;
 | |
| 
 | |
|   assert(!Friend->isDependentContext() &&
 | |
|          "can't handle friends with dependent contexts here");
 | |
| 
 | |
|   if (!Context->isDependentContext())
 | |
|     return false;
 | |
| 
 | |
|   if (Friend->isFileContext())
 | |
|     return false;
 | |
| 
 | |
|   // TODO: this is very conservative
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Asks whether the type in 'context' can ever instantiate to the type
 | |
| // in 'friend'.
 | |
| static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
 | |
|   if (Friend == Context)
 | |
|     return true;
 | |
| 
 | |
|   if (!Friend->isDependentType() && !Context->isDependentType())
 | |
|     return false;
 | |
| 
 | |
|   // TODO: this is very conservative.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool MightInstantiateTo(Sema &S,
 | |
|                                FunctionDecl *Context,
 | |
|                                FunctionDecl *Friend) {
 | |
|   if (Context->getDeclName() != Friend->getDeclName())
 | |
|     return false;
 | |
| 
 | |
|   if (!MightInstantiateTo(S,
 | |
|                           Context->getDeclContext(),
 | |
|                           Friend->getDeclContext()))
 | |
|     return false;
 | |
| 
 | |
|   CanQual<FunctionProtoType> FriendTy
 | |
|     = S.Context.getCanonicalType(Friend->getType())
 | |
|          ->getAs<FunctionProtoType>();
 | |
|   CanQual<FunctionProtoType> ContextTy
 | |
|     = S.Context.getCanonicalType(Context->getType())
 | |
|          ->getAs<FunctionProtoType>();
 | |
| 
 | |
|   // There isn't any way that I know of to add qualifiers
 | |
|   // during instantiation.
 | |
|   if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
 | |
|     return false;
 | |
| 
 | |
|   if (FriendTy->getNumParams() != ContextTy->getNumParams())
 | |
|     return false;
 | |
| 
 | |
|   if (!MightInstantiateTo(S, ContextTy->getReturnType(),
 | |
|                           FriendTy->getReturnType()))
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
 | |
|     if (!MightInstantiateTo(S, ContextTy->getParamType(I),
 | |
|                             FriendTy->getParamType(I)))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool MightInstantiateTo(Sema &S,
 | |
|                                FunctionTemplateDecl *Context,
 | |
|                                FunctionTemplateDecl *Friend) {
 | |
|   return MightInstantiateTo(S,
 | |
|                             Context->getTemplatedDecl(),
 | |
|                             Friend->getTemplatedDecl());
 | |
| }
 | |
| 
 | |
| static AccessResult MatchesFriend(Sema &S,
 | |
|                                   const EffectiveContext &EC,
 | |
|                                   const CXXRecordDecl *Friend) {
 | |
|   if (EC.includesClass(Friend))
 | |
|     return AR_accessible;
 | |
| 
 | |
|   if (EC.isDependent()) {
 | |
|     for (const CXXRecordDecl *Context : EC.Records) {
 | |
|       if (MightInstantiateTo(Context, Friend))
 | |
|         return AR_dependent;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return AR_inaccessible;
 | |
| }
 | |
| 
 | |
| static AccessResult MatchesFriend(Sema &S,
 | |
|                                   const EffectiveContext &EC,
 | |
|                                   CanQualType Friend) {
 | |
|   if (const RecordType *RT = Friend->getAs<RecordType>())
 | |
|     return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
 | |
| 
 | |
|   // TODO: we can do better than this
 | |
|   if (Friend->isDependentType())
 | |
|     return AR_dependent;
 | |
| 
 | |
|   return AR_inaccessible;
 | |
| }
 | |
| 
 | |
| /// Determines whether the given friend class template matches
 | |
| /// anything in the effective context.
 | |
| static AccessResult MatchesFriend(Sema &S,
 | |
|                                   const EffectiveContext &EC,
 | |
|                                   ClassTemplateDecl *Friend) {
 | |
|   AccessResult OnFailure = AR_inaccessible;
 | |
| 
 | |
|   // Check whether the friend is the template of a class in the
 | |
|   // context chain.
 | |
|   for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
 | |
|          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
 | |
|     CXXRecordDecl *Record = *I;
 | |
| 
 | |
|     // Figure out whether the current class has a template:
 | |
|     ClassTemplateDecl *CTD;
 | |
| 
 | |
|     // A specialization of the template...
 | |
|     if (isa<ClassTemplateSpecializationDecl>(Record)) {
 | |
|       CTD = cast<ClassTemplateSpecializationDecl>(Record)
 | |
|         ->getSpecializedTemplate();
 | |
| 
 | |
|     // ... or the template pattern itself.
 | |
|     } else {
 | |
|       CTD = Record->getDescribedClassTemplate();
 | |
|       if (!CTD) continue;
 | |
|     }
 | |
| 
 | |
|     // It's a match.
 | |
|     if (Friend == CTD->getCanonicalDecl())
 | |
|       return AR_accessible;
 | |
| 
 | |
|     // If the context isn't dependent, it can't be a dependent match.
 | |
|     if (!EC.isDependent())
 | |
|       continue;
 | |
| 
 | |
|     // If the template names don't match, it can't be a dependent
 | |
|     // match.
 | |
|     if (CTD->getDeclName() != Friend->getDeclName())
 | |
|       continue;
 | |
| 
 | |
|     // If the class's context can't instantiate to the friend's
 | |
|     // context, it can't be a dependent match.
 | |
|     if (!MightInstantiateTo(S, CTD->getDeclContext(),
 | |
|                             Friend->getDeclContext()))
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, it's a dependent match.
 | |
|     OnFailure = AR_dependent;
 | |
|   }
 | |
| 
 | |
|   return OnFailure;
 | |
| }
 | |
| 
 | |
| /// Determines whether the given friend function matches anything in
 | |
| /// the effective context.
 | |
| static AccessResult MatchesFriend(Sema &S,
 | |
|                                   const EffectiveContext &EC,
 | |
|                                   FunctionDecl *Friend) {
 | |
|   AccessResult OnFailure = AR_inaccessible;
 | |
| 
 | |
|   for (SmallVectorImpl<FunctionDecl*>::const_iterator
 | |
|          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
 | |
|     if (Friend == *I)
 | |
|       return AR_accessible;
 | |
| 
 | |
|     if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
 | |
|       OnFailure = AR_dependent;
 | |
|   }
 | |
| 
 | |
|   return OnFailure;
 | |
| }
 | |
| 
 | |
| /// Determines whether the given friend function template matches
 | |
| /// anything in the effective context.
 | |
| static AccessResult MatchesFriend(Sema &S,
 | |
|                                   const EffectiveContext &EC,
 | |
|                                   FunctionTemplateDecl *Friend) {
 | |
|   if (EC.Functions.empty()) return AR_inaccessible;
 | |
| 
 | |
|   AccessResult OnFailure = AR_inaccessible;
 | |
| 
 | |
|   for (SmallVectorImpl<FunctionDecl*>::const_iterator
 | |
|          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
 | |
| 
 | |
|     FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
 | |
|     if (!FTD)
 | |
|       FTD = (*I)->getDescribedFunctionTemplate();
 | |
|     if (!FTD)
 | |
|       continue;
 | |
| 
 | |
|     FTD = FTD->getCanonicalDecl();
 | |
| 
 | |
|     if (Friend == FTD)
 | |
|       return AR_accessible;
 | |
| 
 | |
|     if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
 | |
|       OnFailure = AR_dependent;
 | |
|   }
 | |
| 
 | |
|   return OnFailure;
 | |
| }
 | |
| 
 | |
| /// Determines whether the given friend declaration matches anything
 | |
| /// in the effective context.
 | |
| static AccessResult MatchesFriend(Sema &S,
 | |
|                                   const EffectiveContext &EC,
 | |
|                                   FriendDecl *FriendD) {
 | |
|   // Whitelist accesses if there's an invalid or unsupported friend
 | |
|   // declaration.
 | |
|   if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
 | |
|     return AR_accessible;
 | |
| 
 | |
|   if (TypeSourceInfo *T = FriendD->getFriendType())
 | |
|     return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
 | |
| 
 | |
|   NamedDecl *Friend
 | |
|     = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
 | |
| 
 | |
|   // FIXME: declarations with dependent or templated scope.
 | |
| 
 | |
|   if (isa<ClassTemplateDecl>(Friend))
 | |
|     return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
 | |
| 
 | |
|   if (isa<FunctionTemplateDecl>(Friend))
 | |
|     return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
 | |
| 
 | |
|   if (isa<CXXRecordDecl>(Friend))
 | |
|     return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
 | |
| 
 | |
|   assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
 | |
|   return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
 | |
| }
 | |
| 
 | |
| static AccessResult GetFriendKind(Sema &S,
 | |
|                                   const EffectiveContext &EC,
 | |
|                                   const CXXRecordDecl *Class) {
 | |
|   AccessResult OnFailure = AR_inaccessible;
 | |
| 
 | |
|   // Okay, check friends.
 | |
|   for (auto *Friend : Class->friends()) {
 | |
|     switch (MatchesFriend(S, EC, Friend)) {
 | |
|     case AR_accessible:
 | |
|       return AR_accessible;
 | |
| 
 | |
|     case AR_inaccessible:
 | |
|       continue;
 | |
| 
 | |
|     case AR_dependent:
 | |
|       OnFailure = AR_dependent;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // That's it, give up.
 | |
|   return OnFailure;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// A helper class for checking for a friend which will grant access
 | |
| /// to a protected instance member.
 | |
| struct ProtectedFriendContext {
 | |
|   Sema &S;
 | |
|   const EffectiveContext &EC;
 | |
|   const CXXRecordDecl *NamingClass;
 | |
|   bool CheckDependent;
 | |
|   bool EverDependent;
 | |
| 
 | |
|   /// The path down to the current base class.
 | |
|   SmallVector<const CXXRecordDecl*, 20> CurPath;
 | |
| 
 | |
|   ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
 | |
|                          const CXXRecordDecl *InstanceContext,
 | |
|                          const CXXRecordDecl *NamingClass)
 | |
|     : S(S), EC(EC), NamingClass(NamingClass),
 | |
|       CheckDependent(InstanceContext->isDependentContext() ||
 | |
|                      NamingClass->isDependentContext()),
 | |
|       EverDependent(false) {}
 | |
| 
 | |
|   /// Check classes in the current path for friendship, starting at
 | |
|   /// the given index.
 | |
|   bool checkFriendshipAlongPath(unsigned I) {
 | |
|     assert(I < CurPath.size());
 | |
|     for (unsigned E = CurPath.size(); I != E; ++I) {
 | |
|       switch (GetFriendKind(S, EC, CurPath[I])) {
 | |
|       case AR_accessible:   return true;
 | |
|       case AR_inaccessible: continue;
 | |
|       case AR_dependent:    EverDependent = true; continue;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Perform a search starting at the given class.
 | |
|   ///
 | |
|   /// PrivateDepth is the index of the last (least derived) class
 | |
|   /// along the current path such that a notional public member of
 | |
|   /// the final class in the path would have access in that class.
 | |
|   bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
 | |
|     // If we ever reach the naming class, check the current path for
 | |
|     // friendship.  We can also stop recursing because we obviously
 | |
|     // won't find the naming class there again.
 | |
|     if (Cur == NamingClass)
 | |
|       return checkFriendshipAlongPath(PrivateDepth);
 | |
| 
 | |
|     if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
 | |
|       EverDependent = true;
 | |
| 
 | |
|     // Recurse into the base classes.
 | |
|     for (const auto &I : Cur->bases()) {
 | |
|       // If this is private inheritance, then a public member of the
 | |
|       // base will not have any access in classes derived from Cur.
 | |
|       unsigned BasePrivateDepth = PrivateDepth;
 | |
|       if (I.getAccessSpecifier() == AS_private)
 | |
|         BasePrivateDepth = CurPath.size() - 1;
 | |
| 
 | |
|       const CXXRecordDecl *RD;
 | |
| 
 | |
|       QualType T = I.getType();
 | |
|       if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|         RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|       } else if (const InjectedClassNameType *IT
 | |
|                    = T->getAs<InjectedClassNameType>()) {
 | |
|         RD = IT->getDecl();
 | |
|       } else {
 | |
|         assert(T->isDependentType() && "non-dependent base wasn't a record?");
 | |
|         EverDependent = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Recurse.  We don't need to clean up if this returns true.
 | |
|       CurPath.push_back(RD);
 | |
|       if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
 | |
|         return true;
 | |
|       CurPath.pop_back();
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool findFriendship(const CXXRecordDecl *Cur) {
 | |
|     assert(CurPath.empty());
 | |
|     CurPath.push_back(Cur);
 | |
|     return findFriendship(Cur, 0);
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| /// Search for a class P that EC is a friend of, under the constraint
 | |
| ///   InstanceContext <= P
 | |
| /// if InstanceContext exists, or else
 | |
| ///   NamingClass <= P
 | |
| /// and with the additional restriction that a protected member of
 | |
| /// NamingClass would have some natural access in P, which implicitly
 | |
| /// imposes the constraint that P <= NamingClass.
 | |
| ///
 | |
| /// This isn't quite the condition laid out in the standard.
 | |
| /// Instead of saying that a notional protected member of NamingClass
 | |
| /// would have to have some natural access in P, it says the actual
 | |
| /// target has to have some natural access in P, which opens up the
 | |
| /// possibility that the target (which is not necessarily a member
 | |
| /// of NamingClass) might be more accessible along some path not
 | |
| /// passing through it.  That's really a bad idea, though, because it
 | |
| /// introduces two problems:
 | |
| ///   - Most importantly, it breaks encapsulation because you can
 | |
| ///     access a forbidden base class's members by directly subclassing
 | |
| ///     it elsewhere.
 | |
| ///   - It also makes access substantially harder to compute because it
 | |
| ///     breaks the hill-climbing algorithm: knowing that the target is
 | |
| ///     accessible in some base class would no longer let you change
 | |
| ///     the question solely to whether the base class is accessible,
 | |
| ///     because the original target might have been more accessible
 | |
| ///     because of crazy subclassing.
 | |
| /// So we don't implement that.
 | |
| static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
 | |
|                                            const CXXRecordDecl *InstanceContext,
 | |
|                                            const CXXRecordDecl *NamingClass) {
 | |
|   assert(InstanceContext == nullptr ||
 | |
|          InstanceContext->getCanonicalDecl() == InstanceContext);
 | |
|   assert(NamingClass->getCanonicalDecl() == NamingClass);
 | |
| 
 | |
|   // If we don't have an instance context, our constraints give us
 | |
|   // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
 | |
|   // This is just the usual friendship check.
 | |
|   if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
 | |
| 
 | |
|   ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
 | |
|   if (PRC.findFriendship(InstanceContext)) return AR_accessible;
 | |
|   if (PRC.EverDependent) return AR_dependent;
 | |
|   return AR_inaccessible;
 | |
| }
 | |
| 
 | |
| static AccessResult HasAccess(Sema &S,
 | |
|                               const EffectiveContext &EC,
 | |
|                               const CXXRecordDecl *NamingClass,
 | |
|                               AccessSpecifier Access,
 | |
|                               const AccessTarget &Target) {
 | |
|   assert(NamingClass->getCanonicalDecl() == NamingClass &&
 | |
|          "declaration should be canonicalized before being passed here");
 | |
| 
 | |
|   if (Access == AS_public) return AR_accessible;
 | |
|   assert(Access == AS_private || Access == AS_protected);
 | |
| 
 | |
|   AccessResult OnFailure = AR_inaccessible;
 | |
| 
 | |
|   for (EffectiveContext::record_iterator
 | |
|          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
 | |
|     // All the declarations in EC have been canonicalized, so pointer
 | |
|     // equality from this point on will work fine.
 | |
|     const CXXRecordDecl *ECRecord = *I;
 | |
| 
 | |
|     // [B2] and [M2]
 | |
|     if (Access == AS_private) {
 | |
|       if (ECRecord == NamingClass)
 | |
|         return AR_accessible;
 | |
| 
 | |
|       if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
 | |
|         OnFailure = AR_dependent;
 | |
| 
 | |
|     // [B3] and [M3]
 | |
|     } else {
 | |
|       assert(Access == AS_protected);
 | |
|       switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
 | |
|       case AR_accessible: break;
 | |
|       case AR_inaccessible: continue;
 | |
|       case AR_dependent: OnFailure = AR_dependent; continue;
 | |
|       }
 | |
| 
 | |
|       // C++ [class.protected]p1:
 | |
|       //   An additional access check beyond those described earlier in
 | |
|       //   [class.access] is applied when a non-static data member or
 | |
|       //   non-static member function is a protected member of its naming
 | |
|       //   class.  As described earlier, access to a protected member is
 | |
|       //   granted because the reference occurs in a friend or member of
 | |
|       //   some class C.  If the access is to form a pointer to member,
 | |
|       //   the nested-name-specifier shall name C or a class derived from
 | |
|       //   C. All other accesses involve a (possibly implicit) object
 | |
|       //   expression. In this case, the class of the object expression
 | |
|       //   shall be C or a class derived from C.
 | |
|       //
 | |
|       // We interpret this as a restriction on [M3].
 | |
| 
 | |
|       // In this part of the code, 'C' is just our context class ECRecord.
 | |
| 
 | |
|       // These rules are different if we don't have an instance context.
 | |
|       if (!Target.hasInstanceContext()) {
 | |
|         // If it's not an instance member, these restrictions don't apply.
 | |
|         if (!Target.isInstanceMember()) return AR_accessible;
 | |
| 
 | |
|         // If it's an instance member, use the pointer-to-member rule
 | |
|         // that the naming class has to be derived from the effective
 | |
|         // context.
 | |
| 
 | |
|         // Emulate a MSVC bug where the creation of pointer-to-member
 | |
|         // to protected member of base class is allowed but only from
 | |
|         // static member functions.
 | |
|         if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
 | |
|           if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
 | |
|             if (MD->isStatic()) return AR_accessible;
 | |
| 
 | |
|         // Despite the standard's confident wording, there is a case
 | |
|         // where you can have an instance member that's neither in a
 | |
|         // pointer-to-member expression nor in a member access:  when
 | |
|         // it names a field in an unevaluated context that can't be an
 | |
|         // implicit member.  Pending clarification, we just apply the
 | |
|         // same naming-class restriction here.
 | |
|         //   FIXME: we're probably not correctly adding the
 | |
|         //   protected-member restriction when we retroactively convert
 | |
|         //   an expression to being evaluated.
 | |
| 
 | |
|         // We know that ECRecord derives from NamingClass.  The
 | |
|         // restriction says to check whether NamingClass derives from
 | |
|         // ECRecord, but that's not really necessary: two distinct
 | |
|         // classes can't be recursively derived from each other.  So
 | |
|         // along this path, we just need to check whether the classes
 | |
|         // are equal.
 | |
|         if (NamingClass == ECRecord) return AR_accessible;
 | |
| 
 | |
|         // Otherwise, this context class tells us nothing;  on to the next.
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       assert(Target.isInstanceMember());
 | |
| 
 | |
|       const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
 | |
|       if (!InstanceContext) {
 | |
|         OnFailure = AR_dependent;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
 | |
|       case AR_accessible: return AR_accessible;
 | |
|       case AR_inaccessible: continue;
 | |
|       case AR_dependent: OnFailure = AR_dependent; continue;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // [M3] and [B3] say that, if the target is protected in N, we grant
 | |
|   // access if the access occurs in a friend or member of some class P
 | |
|   // that's a subclass of N and where the target has some natural
 | |
|   // access in P.  The 'member' aspect is easy to handle because P
 | |
|   // would necessarily be one of the effective-context records, and we
 | |
|   // address that above.  The 'friend' aspect is completely ridiculous
 | |
|   // to implement because there are no restrictions at all on P
 | |
|   // *unless* the [class.protected] restriction applies.  If it does,
 | |
|   // however, we should ignore whether the naming class is a friend,
 | |
|   // and instead rely on whether any potential P is a friend.
 | |
|   if (Access == AS_protected && Target.isInstanceMember()) {
 | |
|     // Compute the instance context if possible.
 | |
|     const CXXRecordDecl *InstanceContext = nullptr;
 | |
|     if (Target.hasInstanceContext()) {
 | |
|       InstanceContext = Target.resolveInstanceContext(S);
 | |
|       if (!InstanceContext) return AR_dependent;
 | |
|     }
 | |
| 
 | |
|     switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
 | |
|     case AR_accessible: return AR_accessible;
 | |
|     case AR_inaccessible: return OnFailure;
 | |
|     case AR_dependent: return AR_dependent;
 | |
|     }
 | |
|     llvm_unreachable("impossible friendship kind");
 | |
|   }
 | |
| 
 | |
|   switch (GetFriendKind(S, EC, NamingClass)) {
 | |
|   case AR_accessible: return AR_accessible;
 | |
|   case AR_inaccessible: return OnFailure;
 | |
|   case AR_dependent: return AR_dependent;
 | |
|   }
 | |
| 
 | |
|   // Silence bogus warnings
 | |
|   llvm_unreachable("impossible friendship kind");
 | |
| }
 | |
| 
 | |
| /// Finds the best path from the naming class to the declaring class,
 | |
| /// taking friend declarations into account.
 | |
| ///
 | |
| /// C++0x [class.access.base]p5:
 | |
| ///   A member m is accessible at the point R when named in class N if
 | |
| ///   [M1] m as a member of N is public, or
 | |
| ///   [M2] m as a member of N is private, and R occurs in a member or
 | |
| ///        friend of class N, or
 | |
| ///   [M3] m as a member of N is protected, and R occurs in a member or
 | |
| ///        friend of class N, or in a member or friend of a class P
 | |
| ///        derived from N, where m as a member of P is public, private,
 | |
| ///        or protected, or
 | |
| ///   [M4] there exists a base class B of N that is accessible at R, and
 | |
| ///        m is accessible at R when named in class B.
 | |
| ///
 | |
| /// C++0x [class.access.base]p4:
 | |
| ///   A base class B of N is accessible at R, if
 | |
| ///   [B1] an invented public member of B would be a public member of N, or
 | |
| ///   [B2] R occurs in a member or friend of class N, and an invented public
 | |
| ///        member of B would be a private or protected member of N, or
 | |
| ///   [B3] R occurs in a member or friend of a class P derived from N, and an
 | |
| ///        invented public member of B would be a private or protected member
 | |
| ///        of P, or
 | |
| ///   [B4] there exists a class S such that B is a base class of S accessible
 | |
| ///        at R and S is a base class of N accessible at R.
 | |
| ///
 | |
| /// Along a single inheritance path we can restate both of these
 | |
| /// iteratively:
 | |
| ///
 | |
| /// First, we note that M1-4 are equivalent to B1-4 if the member is
 | |
| /// treated as a notional base of its declaring class with inheritance
 | |
| /// access equivalent to the member's access.  Therefore we need only
 | |
| /// ask whether a class B is accessible from a class N in context R.
 | |
| ///
 | |
| /// Let B_1 .. B_n be the inheritance path in question (i.e. where
 | |
| /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
 | |
| /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
 | |
| /// closest accessible base in the path:
 | |
| ///   Access(a, b) = (* access on the base specifier from a to b *)
 | |
| ///   Merge(a, forbidden) = forbidden
 | |
| ///   Merge(a, private) = forbidden
 | |
| ///   Merge(a, b) = min(a,b)
 | |
| ///   Accessible(c, forbidden) = false
 | |
| ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
 | |
| ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
 | |
| ///   Accessible(c, public) = true
 | |
| ///   ACAB(n) = public
 | |
| ///   ACAB(i) =
 | |
| ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
 | |
| ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
 | |
| ///
 | |
| /// B is an accessible base of N at R iff ACAB(1) = public.
 | |
| ///
 | |
| /// \param FinalAccess the access of the "final step", or AS_public if
 | |
| ///   there is no final step.
 | |
| /// \return null if friendship is dependent
 | |
| static CXXBasePath *FindBestPath(Sema &S,
 | |
|                                  const EffectiveContext &EC,
 | |
|                                  AccessTarget &Target,
 | |
|                                  AccessSpecifier FinalAccess,
 | |
|                                  CXXBasePaths &Paths) {
 | |
|   // Derive the paths to the desired base.
 | |
|   const CXXRecordDecl *Derived = Target.getNamingClass();
 | |
|   const CXXRecordDecl *Base = Target.getDeclaringClass();
 | |
| 
 | |
|   // FIXME: fail correctly when there are dependent paths.
 | |
|   bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
 | |
|                                           Paths);
 | |
|   assert(isDerived && "derived class not actually derived from base");
 | |
|   (void) isDerived;
 | |
| 
 | |
|   CXXBasePath *BestPath = nullptr;
 | |
| 
 | |
|   assert(FinalAccess != AS_none && "forbidden access after declaring class");
 | |
| 
 | |
|   bool AnyDependent = false;
 | |
| 
 | |
|   // Derive the friend-modified access along each path.
 | |
|   for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
 | |
|          PI != PE; ++PI) {
 | |
|     AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
 | |
| 
 | |
|     // Walk through the path backwards.
 | |
|     AccessSpecifier PathAccess = FinalAccess;
 | |
|     CXXBasePath::iterator I = PI->end(), E = PI->begin();
 | |
|     while (I != E) {
 | |
|       --I;
 | |
| 
 | |
|       assert(PathAccess != AS_none);
 | |
| 
 | |
|       // If the declaration is a private member of a base class, there
 | |
|       // is no level of friendship in derived classes that can make it
 | |
|       // accessible.
 | |
|       if (PathAccess == AS_private) {
 | |
|         PathAccess = AS_none;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
 | |
| 
 | |
|       AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
 | |
|       PathAccess = std::max(PathAccess, BaseAccess);
 | |
| 
 | |
|       switch (HasAccess(S, EC, NC, PathAccess, Target)) {
 | |
|       case AR_inaccessible: break;
 | |
|       case AR_accessible:
 | |
|         PathAccess = AS_public;
 | |
| 
 | |
|         // Future tests are not against members and so do not have
 | |
|         // instance context.
 | |
|         Target.suppressInstanceContext();
 | |
|         break;
 | |
|       case AR_dependent:
 | |
|         AnyDependent = true;
 | |
|         goto Next;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Note that we modify the path's Access field to the
 | |
|     // friend-modified access.
 | |
|     if (BestPath == nullptr || PathAccess < BestPath->Access) {
 | |
|       BestPath = &*PI;
 | |
|       BestPath->Access = PathAccess;
 | |
| 
 | |
|       // Short-circuit if we found a public path.
 | |
|       if (BestPath->Access == AS_public)
 | |
|         return BestPath;
 | |
|     }
 | |
| 
 | |
|   Next: ;
 | |
|   }
 | |
| 
 | |
|   assert((!BestPath || BestPath->Access != AS_public) &&
 | |
|          "fell out of loop with public path");
 | |
| 
 | |
|   // We didn't find a public path, but at least one path was subject
 | |
|   // to dependent friendship, so delay the check.
 | |
|   if (AnyDependent)
 | |
|     return nullptr;
 | |
| 
 | |
|   return BestPath;
 | |
| }
 | |
| 
 | |
| /// Given that an entity has protected natural access, check whether
 | |
| /// access might be denied because of the protected member access
 | |
| /// restriction.
 | |
| ///
 | |
| /// \return true if a note was emitted
 | |
| static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
 | |
|                                        AccessTarget &Target) {
 | |
|   // Only applies to instance accesses.
 | |
|   if (!Target.isInstanceMember())
 | |
|     return false;
 | |
| 
 | |
|   assert(Target.isMemberAccess());
 | |
| 
 | |
|   const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
 | |
| 
 | |
|   for (EffectiveContext::record_iterator
 | |
|          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
 | |
|     const CXXRecordDecl *ECRecord = *I;
 | |
|     switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
 | |
|     case AR_accessible: break;
 | |
|     case AR_inaccessible: continue;
 | |
|     case AR_dependent: continue;
 | |
|     }
 | |
| 
 | |
|     // The effective context is a subclass of the declaring class.
 | |
|     // Check whether the [class.protected] restriction is limiting
 | |
|     // access.
 | |
| 
 | |
|     // To get this exactly right, this might need to be checked more
 | |
|     // holistically;  it's not necessarily the case that gaining
 | |
|     // access here would grant us access overall.
 | |
| 
 | |
|     NamedDecl *D = Target.getTargetDecl();
 | |
| 
 | |
|     // If we don't have an instance context, [class.protected] says the
 | |
|     // naming class has to equal the context class.
 | |
|     if (!Target.hasInstanceContext()) {
 | |
|       // If it does, the restriction doesn't apply.
 | |
|       if (NamingClass == ECRecord) continue;
 | |
| 
 | |
|       // TODO: it would be great to have a fixit here, since this is
 | |
|       // such an obvious error.
 | |
|       S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
 | |
|         << S.Context.getTypeDeclType(ECRecord);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
 | |
|     assert(InstanceContext && "diagnosing dependent access");
 | |
| 
 | |
|     switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
 | |
|     case AR_accessible: continue;
 | |
|     case AR_dependent: continue;
 | |
|     case AR_inaccessible:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Okay, the restriction seems to be what's limiting us.
 | |
| 
 | |
|     // Use a special diagnostic for constructors and destructors.
 | |
|     if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
 | |
|         (isa<FunctionTemplateDecl>(D) &&
 | |
|          isa<CXXConstructorDecl>(
 | |
|                 cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
 | |
|       return S.Diag(D->getLocation(),
 | |
|                     diag::note_access_protected_restricted_ctordtor)
 | |
|              << isa<CXXDestructorDecl>(D->getAsFunction());
 | |
|     }
 | |
| 
 | |
|     // Otherwise, use the generic diagnostic.
 | |
|     return S.Diag(D->getLocation(),
 | |
|                   diag::note_access_protected_restricted_object)
 | |
|            << S.Context.getTypeDeclType(ECRecord);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// We are unable to access a given declaration due to its direct
 | |
| /// access control;  diagnose that.
 | |
| static void diagnoseBadDirectAccess(Sema &S,
 | |
|                                     const EffectiveContext &EC,
 | |
|                                     AccessTarget &entity) {
 | |
|   assert(entity.isMemberAccess());
 | |
|   NamedDecl *D = entity.getTargetDecl();
 | |
| 
 | |
|   if (D->getAccess() == AS_protected &&
 | |
|       TryDiagnoseProtectedAccess(S, EC, entity))
 | |
|     return;
 | |
| 
 | |
|   // Find an original declaration.
 | |
|   while (D->isOutOfLine()) {
 | |
|     NamedDecl *PrevDecl = nullptr;
 | |
|     if (VarDecl *VD = dyn_cast<VarDecl>(D))
 | |
|       PrevDecl = VD->getPreviousDecl();
 | |
|     else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
 | |
|       PrevDecl = FD->getPreviousDecl();
 | |
|     else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
 | |
|       PrevDecl = TND->getPreviousDecl();
 | |
|     else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
 | |
|       if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
 | |
|         break;
 | |
|       PrevDecl = TD->getPreviousDecl();
 | |
|     }
 | |
|     if (!PrevDecl) break;
 | |
|     D = PrevDecl;
 | |
|   }
 | |
| 
 | |
|   CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
 | |
|   Decl *ImmediateChild;
 | |
|   if (D->getDeclContext() == DeclaringClass)
 | |
|     ImmediateChild = D;
 | |
|   else {
 | |
|     DeclContext *DC = D->getDeclContext();
 | |
|     while (DC->getParent() != DeclaringClass)
 | |
|       DC = DC->getParent();
 | |
|     ImmediateChild = cast<Decl>(DC);
 | |
|   }
 | |
| 
 | |
|   // Check whether there's an AccessSpecDecl preceding this in the
 | |
|   // chain of the DeclContext.
 | |
|   bool isImplicit = true;
 | |
|   for (const auto *I : DeclaringClass->decls()) {
 | |
|     if (I == ImmediateChild) break;
 | |
|     if (isa<AccessSpecDecl>(I)) {
 | |
|       isImplicit = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   S.Diag(D->getLocation(), diag::note_access_natural)
 | |
|     << (unsigned) (D->getAccess() == AS_protected)
 | |
|     << isImplicit;
 | |
| }
 | |
| 
 | |
| /// Diagnose the path which caused the given declaration or base class
 | |
| /// to become inaccessible.
 | |
| static void DiagnoseAccessPath(Sema &S,
 | |
|                                const EffectiveContext &EC,
 | |
|                                AccessTarget &entity) {
 | |
|   // Save the instance context to preserve invariants.
 | |
|   AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
 | |
| 
 | |
|   // This basically repeats the main algorithm but keeps some more
 | |
|   // information.
 | |
| 
 | |
|   // The natural access so far.
 | |
|   AccessSpecifier accessSoFar = AS_public;
 | |
| 
 | |
|   // Check whether we have special rights to the declaring class.
 | |
|   if (entity.isMemberAccess()) {
 | |
|     NamedDecl *D = entity.getTargetDecl();
 | |
|     accessSoFar = D->getAccess();
 | |
|     const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
 | |
| 
 | |
|     switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
 | |
|     // If the declaration is accessible when named in its declaring
 | |
|     // class, then we must be constrained by the path.
 | |
|     case AR_accessible:
 | |
|       accessSoFar = AS_public;
 | |
|       entity.suppressInstanceContext();
 | |
|       break;
 | |
| 
 | |
|     case AR_inaccessible:
 | |
|       if (accessSoFar == AS_private ||
 | |
|           declaringClass == entity.getEffectiveNamingClass())
 | |
|         return diagnoseBadDirectAccess(S, EC, entity);
 | |
|       break;
 | |
| 
 | |
|     case AR_dependent:
 | |
|       llvm_unreachable("cannot diagnose dependent access");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CXXBasePaths paths;
 | |
|   CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
 | |
|   assert(path.Access != AS_public);
 | |
| 
 | |
|   CXXBasePath::iterator i = path.end(), e = path.begin();
 | |
|   CXXBasePath::iterator constrainingBase = i;
 | |
|   while (i != e) {
 | |
|     --i;
 | |
| 
 | |
|     assert(accessSoFar != AS_none && accessSoFar != AS_private);
 | |
| 
 | |
|     // Is the entity accessible when named in the deriving class, as
 | |
|     // modified by the base specifier?
 | |
|     const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
 | |
|     const CXXBaseSpecifier *base = i->Base;
 | |
| 
 | |
|     // If the access to this base is worse than the access we have to
 | |
|     // the declaration, remember it.
 | |
|     AccessSpecifier baseAccess = base->getAccessSpecifier();
 | |
|     if (baseAccess > accessSoFar) {
 | |
|       constrainingBase = i;
 | |
|       accessSoFar = baseAccess;
 | |
|     }
 | |
| 
 | |
|     switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
 | |
|     case AR_inaccessible: break;
 | |
|     case AR_accessible:
 | |
|       accessSoFar = AS_public;
 | |
|       entity.suppressInstanceContext();
 | |
|       constrainingBase = nullptr;
 | |
|       break;
 | |
|     case AR_dependent:
 | |
|       llvm_unreachable("cannot diagnose dependent access");
 | |
|     }
 | |
| 
 | |
|     // If this was private inheritance, but we don't have access to
 | |
|     // the deriving class, we're done.
 | |
|     if (accessSoFar == AS_private) {
 | |
|       assert(baseAccess == AS_private);
 | |
|       assert(constrainingBase == i);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we don't have a constraining base, the access failure must be
 | |
|   // due to the original declaration.
 | |
|   if (constrainingBase == path.end())
 | |
|     return diagnoseBadDirectAccess(S, EC, entity);
 | |
| 
 | |
|   // We're constrained by inheritance, but we want to say
 | |
|   // "declared private here" if we're diagnosing a hierarchy
 | |
|   // conversion and this is the final step.
 | |
|   unsigned diagnostic;
 | |
|   if (entity.isMemberAccess() ||
 | |
|       constrainingBase + 1 != path.end()) {
 | |
|     diagnostic = diag::note_access_constrained_by_path;
 | |
|   } else {
 | |
|     diagnostic = diag::note_access_natural;
 | |
|   }
 | |
| 
 | |
|   const CXXBaseSpecifier *base = constrainingBase->Base;
 | |
| 
 | |
|   S.Diag(base->getSourceRange().getBegin(), diagnostic)
 | |
|     << base->getSourceRange()
 | |
|     << (base->getAccessSpecifier() == AS_protected)
 | |
|     << (base->getAccessSpecifierAsWritten() == AS_none);
 | |
| 
 | |
|   if (entity.isMemberAccess())
 | |
|     S.Diag(entity.getTargetDecl()->getLocation(),
 | |
|            diag::note_member_declared_at);
 | |
| }
 | |
| 
 | |
| static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
 | |
|                               const EffectiveContext &EC,
 | |
|                               AccessTarget &Entity) {
 | |
|   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
 | |
|   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
 | |
|   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
 | |
| 
 | |
|   S.Diag(Loc, Entity.getDiag())
 | |
|     << (Entity.getAccess() == AS_protected)
 | |
|     << (D ? D->getDeclName() : DeclarationName())
 | |
|     << S.Context.getTypeDeclType(NamingClass)
 | |
|     << S.Context.getTypeDeclType(DeclaringClass);
 | |
|   DiagnoseAccessPath(S, EC, Entity);
 | |
| }
 | |
| 
 | |
| /// MSVC has a bug where if during an using declaration name lookup,
 | |
| /// the declaration found is unaccessible (private) and that declaration
 | |
| /// was bring into scope via another using declaration whose target
 | |
| /// declaration is accessible (public) then no error is generated.
 | |
| /// Example:
 | |
| ///   class A {
 | |
| ///   public:
 | |
| ///     int f();
 | |
| ///   };
 | |
| ///   class B : public A {
 | |
| ///   private:
 | |
| ///     using A::f;
 | |
| ///   };
 | |
| ///   class C : public B {
 | |
| ///   private:
 | |
| ///     using B::f;
 | |
| ///   };
 | |
| ///
 | |
| /// Here, B::f is private so this should fail in Standard C++, but
 | |
| /// because B::f refers to A::f which is public MSVC accepts it.
 | |
| static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
 | |
|                                                  SourceLocation AccessLoc,
 | |
|                                                  AccessTarget &Entity) {
 | |
|   if (UsingShadowDecl *Shadow =
 | |
|                          dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
 | |
|     const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
 | |
|     if (Entity.getTargetDecl()->getAccess() == AS_private &&
 | |
|         (OrigDecl->getAccess() == AS_public ||
 | |
|          OrigDecl->getAccess() == AS_protected)) {
 | |
|       S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
 | |
|         << Shadow->getUsingDecl()->getQualifiedNameAsString()
 | |
|         << OrigDecl->getQualifiedNameAsString();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determines whether the accessed entity is accessible.  Public members
 | |
| /// have been weeded out by this point.
 | |
| static AccessResult IsAccessible(Sema &S,
 | |
|                                  const EffectiveContext &EC,
 | |
|                                  AccessTarget &Entity) {
 | |
|   // Determine the actual naming class.
 | |
|   const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
 | |
| 
 | |
|   AccessSpecifier UnprivilegedAccess = Entity.getAccess();
 | |
|   assert(UnprivilegedAccess != AS_public && "public access not weeded out");
 | |
| 
 | |
|   // Before we try to recalculate access paths, try to white-list
 | |
|   // accesses which just trade in on the final step, i.e. accesses
 | |
|   // which don't require [M4] or [B4]. These are by far the most
 | |
|   // common forms of privileged access.
 | |
|   if (UnprivilegedAccess != AS_none) {
 | |
|     switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
 | |
|     case AR_dependent:
 | |
|       // This is actually an interesting policy decision.  We don't
 | |
|       // *have* to delay immediately here: we can do the full access
 | |
|       // calculation in the hope that friendship on some intermediate
 | |
|       // class will make the declaration accessible non-dependently.
 | |
|       // But that's not cheap, and odds are very good (note: assertion
 | |
|       // made without data) that the friend declaration will determine
 | |
|       // access.
 | |
|       return AR_dependent;
 | |
| 
 | |
|     case AR_accessible: return AR_accessible;
 | |
|     case AR_inaccessible: break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
 | |
| 
 | |
|   // We lower member accesses to base accesses by pretending that the
 | |
|   // member is a base class of its declaring class.
 | |
|   AccessSpecifier FinalAccess;
 | |
| 
 | |
|   if (Entity.isMemberAccess()) {
 | |
|     // Determine if the declaration is accessible from EC when named
 | |
|     // in its declaring class.
 | |
|     NamedDecl *Target = Entity.getTargetDecl();
 | |
|     const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
 | |
| 
 | |
|     FinalAccess = Target->getAccess();
 | |
|     switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
 | |
|     case AR_accessible:
 | |
|       // Target is accessible at EC when named in its declaring class.
 | |
|       // We can now hill-climb and simply check whether the declaring
 | |
|       // class is accessible as a base of the naming class.  This is
 | |
|       // equivalent to checking the access of a notional public
 | |
|       // member with no instance context.
 | |
|       FinalAccess = AS_public;
 | |
|       Entity.suppressInstanceContext();
 | |
|       break;
 | |
|     case AR_inaccessible: break;
 | |
|     case AR_dependent: return AR_dependent; // see above
 | |
|     }
 | |
| 
 | |
|     if (DeclaringClass == NamingClass)
 | |
|       return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
 | |
|   } else {
 | |
|     FinalAccess = AS_public;
 | |
|   }
 | |
| 
 | |
|   assert(Entity.getDeclaringClass() != NamingClass);
 | |
| 
 | |
|   // Append the declaration's access if applicable.
 | |
|   CXXBasePaths Paths;
 | |
|   CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
 | |
|   if (!Path)
 | |
|     return AR_dependent;
 | |
| 
 | |
|   assert(Path->Access <= UnprivilegedAccess &&
 | |
|          "access along best path worse than direct?");
 | |
|   if (Path->Access == AS_public)
 | |
|     return AR_accessible;
 | |
|   return AR_inaccessible;
 | |
| }
 | |
| 
 | |
| static void DelayDependentAccess(Sema &S,
 | |
|                                  const EffectiveContext &EC,
 | |
|                                  SourceLocation Loc,
 | |
|                                  const AccessTarget &Entity) {
 | |
|   assert(EC.isDependent() && "delaying non-dependent access");
 | |
|   DeclContext *DC = EC.getInnerContext();
 | |
|   assert(DC->isDependentContext() && "delaying non-dependent access");
 | |
|   DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
 | |
|                               Loc,
 | |
|                               Entity.isMemberAccess(),
 | |
|                               Entity.getAccess(),
 | |
|                               Entity.getTargetDecl(),
 | |
|                               Entity.getNamingClass(),
 | |
|                               Entity.getBaseObjectType(),
 | |
|                               Entity.getDiag());
 | |
| }
 | |
| 
 | |
| /// Checks access to an entity from the given effective context.
 | |
| static AccessResult CheckEffectiveAccess(Sema &S,
 | |
|                                          const EffectiveContext &EC,
 | |
|                                          SourceLocation Loc,
 | |
|                                          AccessTarget &Entity) {
 | |
|   assert(Entity.getAccess() != AS_public && "called for public access!");
 | |
| 
 | |
|   switch (IsAccessible(S, EC, Entity)) {
 | |
|   case AR_dependent:
 | |
|     DelayDependentAccess(S, EC, Loc, Entity);
 | |
|     return AR_dependent;
 | |
| 
 | |
|   case AR_inaccessible:
 | |
|     if (S.getLangOpts().MSVCCompat &&
 | |
|         IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
 | |
|       return AR_accessible;
 | |
|     if (!Entity.isQuiet())
 | |
|       DiagnoseBadAccess(S, Loc, EC, Entity);
 | |
|     return AR_inaccessible;
 | |
| 
 | |
|   case AR_accessible:
 | |
|     return AR_accessible;
 | |
|   }
 | |
| 
 | |
|   // silence unnecessary warning
 | |
|   llvm_unreachable("invalid access result");
 | |
| }
 | |
| 
 | |
| static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
 | |
|                                       AccessTarget &Entity) {
 | |
|   // If the access path is public, it's accessible everywhere.
 | |
|   if (Entity.getAccess() == AS_public)
 | |
|     return Sema::AR_accessible;
 | |
| 
 | |
|   // If we're currently parsing a declaration, we may need to delay
 | |
|   // access control checking, because our effective context might be
 | |
|   // different based on what the declaration comes out as.
 | |
|   //
 | |
|   // For example, we might be parsing a declaration with a scope
 | |
|   // specifier, like this:
 | |
|   //   A::private_type A::foo() { ... }
 | |
|   //
 | |
|   // Or we might be parsing something that will turn out to be a friend:
 | |
|   //   void foo(A::private_type);
 | |
|   //   void B::foo(A::private_type);
 | |
|   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
 | |
|     S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
 | |
|     return Sema::AR_delayed;
 | |
|   }
 | |
| 
 | |
|   EffectiveContext EC(S.CurContext);
 | |
|   switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
 | |
|   case AR_accessible: return Sema::AR_accessible;
 | |
|   case AR_inaccessible: return Sema::AR_inaccessible;
 | |
|   case AR_dependent: return Sema::AR_dependent;
 | |
|   }
 | |
|   llvm_unreachable("invalid access result");
 | |
| }
 | |
| 
 | |
| void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
 | |
|   // Access control for names used in the declarations of functions
 | |
|   // and function templates should normally be evaluated in the context
 | |
|   // of the declaration, just in case it's a friend of something.
 | |
|   // However, this does not apply to local extern declarations.
 | |
| 
 | |
|   DeclContext *DC = D->getDeclContext();
 | |
|   if (D->isLocalExternDecl()) {
 | |
|     DC = D->getLexicalDeclContext();
 | |
|   } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
 | |
|     DC = FN;
 | |
|   } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
 | |
|     DC = cast<DeclContext>(TD->getTemplatedDecl());
 | |
|   }
 | |
| 
 | |
|   EffectiveContext EC(DC);
 | |
| 
 | |
|   AccessTarget Target(DD.getAccessData());
 | |
| 
 | |
|   if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
 | |
|     DD.Triggered = true;
 | |
| }
 | |
| 
 | |
| void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
 | |
|                         const MultiLevelTemplateArgumentList &TemplateArgs) {
 | |
|   SourceLocation Loc = DD.getAccessLoc();
 | |
|   AccessSpecifier Access = DD.getAccess();
 | |
| 
 | |
|   Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
 | |
|                                        TemplateArgs);
 | |
|   if (!NamingD) return;
 | |
|   Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
 | |
|                                        TemplateArgs);
 | |
|   if (!TargetD) return;
 | |
| 
 | |
|   if (DD.isAccessToMember()) {
 | |
|     CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
 | |
|     NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
 | |
|     QualType BaseObjectType = DD.getAccessBaseObjectType();
 | |
|     if (!BaseObjectType.isNull()) {
 | |
|       BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
 | |
|                                  DeclarationName());
 | |
|       if (BaseObjectType.isNull()) return;
 | |
|     }
 | |
| 
 | |
|     AccessTarget Entity(Context,
 | |
|                         AccessTarget::Member,
 | |
|                         NamingClass,
 | |
|                         DeclAccessPair::make(TargetDecl, Access),
 | |
|                         BaseObjectType);
 | |
|     Entity.setDiag(DD.getDiagnostic());
 | |
|     CheckAccess(*this, Loc, Entity);
 | |
|   } else {
 | |
|     AccessTarget Entity(Context,
 | |
|                         AccessTarget::Base,
 | |
|                         cast<CXXRecordDecl>(TargetD),
 | |
|                         cast<CXXRecordDecl>(NamingD),
 | |
|                         Access);
 | |
|     Entity.setDiag(DD.getDiagnostic());
 | |
|     CheckAccess(*this, Loc, Entity);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
 | |
|                                                      DeclAccessPair Found) {
 | |
|   if (!getLangOpts().AccessControl ||
 | |
|       !E->getNamingClass() ||
 | |
|       Found.getAccess() == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
 | |
|                       Found, QualType());
 | |
|   Entity.setDiag(diag::err_access) << E->getSourceRange();
 | |
| 
 | |
|   return CheckAccess(*this, E->getNameLoc(), Entity);
 | |
| }
 | |
| 
 | |
| /// Perform access-control checking on a previously-unresolved member
 | |
| /// access which has now been resolved to a member.
 | |
| Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
 | |
|                                                      DeclAccessPair Found) {
 | |
|   if (!getLangOpts().AccessControl ||
 | |
|       Found.getAccess() == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   QualType BaseType = E->getBaseType();
 | |
|   if (E->isArrow())
 | |
|     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
 | |
| 
 | |
|   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
 | |
|                       Found, BaseType);
 | |
|   Entity.setDiag(diag::err_access) << E->getSourceRange();
 | |
| 
 | |
|   return CheckAccess(*this, E->getMemberLoc(), Entity);
 | |
| }
 | |
| 
 | |
| /// Is the given member accessible for the purposes of deciding whether to
 | |
| /// define a special member function as deleted?
 | |
| bool Sema::isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
 | |
|                                          DeclAccessPair Found,
 | |
|                                          QualType ObjectType,
 | |
|                                          SourceLocation Loc,
 | |
|                                          const PartialDiagnostic &Diag) {
 | |
|   // Fast path.
 | |
|   if (Found.getAccess() == AS_public || !getLangOpts().AccessControl)
 | |
|     return true;
 | |
| 
 | |
|   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
 | |
|                       ObjectType);
 | |
| 
 | |
|   // Suppress diagnostics.
 | |
|   Entity.setDiag(Diag);
 | |
| 
 | |
|   switch (CheckAccess(*this, Loc, Entity)) {
 | |
|   case AR_accessible: return true;
 | |
|   case AR_inaccessible: return false;
 | |
|   case AR_dependent: llvm_unreachable("dependent for =delete computation");
 | |
|   case AR_delayed: llvm_unreachable("cannot delay =delete computation");
 | |
|   }
 | |
|   llvm_unreachable("bad access result");
 | |
| }
 | |
| 
 | |
| Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
 | |
|                                                CXXDestructorDecl *Dtor,
 | |
|                                                const PartialDiagnostic &PDiag,
 | |
|                                                QualType ObjectTy) {
 | |
|   if (!getLangOpts().AccessControl)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   // There's never a path involved when checking implicit destructor access.
 | |
|   AccessSpecifier Access = Dtor->getAccess();
 | |
|   if (Access == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   CXXRecordDecl *NamingClass = Dtor->getParent();
 | |
|   if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
 | |
| 
 | |
|   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
 | |
|                       DeclAccessPair::make(Dtor, Access),
 | |
|                       ObjectTy);
 | |
|   Entity.setDiag(PDiag); // TODO: avoid copy
 | |
| 
 | |
|   return CheckAccess(*this, Loc, Entity);
 | |
| }
 | |
| 
 | |
| /// Checks access to a constructor.
 | |
| Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
 | |
|                                                 CXXConstructorDecl *Constructor,
 | |
|                                                 DeclAccessPair Found,
 | |
|                                                 const InitializedEntity &Entity,
 | |
|                                                 bool IsCopyBindingRefToTemp) {
 | |
|   if (!getLangOpts().AccessControl || Found.getAccess() == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   PartialDiagnostic PD(PDiag());
 | |
|   switch (Entity.getKind()) {
 | |
|   default:
 | |
|     PD = PDiag(IsCopyBindingRefToTemp
 | |
|                  ? diag::ext_rvalue_to_reference_access_ctor
 | |
|                  : diag::err_access_ctor);
 | |
| 
 | |
|     break;
 | |
| 
 | |
|   case InitializedEntity::EK_Base:
 | |
|     PD = PDiag(diag::err_access_base_ctor);
 | |
|     PD << Entity.isInheritedVirtualBase()
 | |
|        << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
 | |
|     break;
 | |
| 
 | |
|   case InitializedEntity::EK_Member: {
 | |
|     const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
 | |
|     PD = PDiag(diag::err_access_field_ctor);
 | |
|     PD << Field->getType() << getSpecialMember(Constructor);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case InitializedEntity::EK_LambdaCapture: {
 | |
|     StringRef VarName = Entity.getCapturedVarName();
 | |
|     PD = PDiag(diag::err_access_lambda_capture);
 | |
|     PD << VarName << Entity.getType() << getSpecialMember(Constructor);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   return CheckConstructorAccess(UseLoc, Constructor, Found, Entity, PD);
 | |
| }
 | |
| 
 | |
| /// Checks access to a constructor.
 | |
| Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
 | |
|                                                 CXXConstructorDecl *Constructor,
 | |
|                                                 DeclAccessPair Found,
 | |
|                                                 const InitializedEntity &Entity,
 | |
|                                                 const PartialDiagnostic &PD) {
 | |
|   if (!getLangOpts().AccessControl ||
 | |
|       Found.getAccess() == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   CXXRecordDecl *NamingClass = Constructor->getParent();
 | |
| 
 | |
|   // Initializing a base sub-object is an instance method call on an
 | |
|   // object of the derived class.  Otherwise, we have an instance method
 | |
|   // call on an object of the constructed type.
 | |
|   //
 | |
|   // FIXME: If we have a parent, we're initializing the base class subobject
 | |
|   // in aggregate initialization. It's not clear whether the object class
 | |
|   // should be the base class or the derived class in that case.
 | |
|   CXXRecordDecl *ObjectClass;
 | |
|   if ((Entity.getKind() == InitializedEntity::EK_Base ||
 | |
|        Entity.getKind() == InitializedEntity::EK_Delegating) &&
 | |
|       !Entity.getParent()) {
 | |
|     ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
 | |
|   } else if (auto *Shadow =
 | |
|                  dyn_cast<ConstructorUsingShadowDecl>(Found.getDecl())) {
 | |
|     // If we're using an inheriting constructor to construct an object,
 | |
|     // the object class is the derived class, not the base class.
 | |
|     ObjectClass = Shadow->getParent();
 | |
|   } else {
 | |
|     ObjectClass = NamingClass;
 | |
|   }
 | |
| 
 | |
|   AccessTarget AccessEntity(
 | |
|       Context, AccessTarget::Member, NamingClass,
 | |
|       DeclAccessPair::make(Constructor, Found.getAccess()),
 | |
|       Context.getTypeDeclType(ObjectClass));
 | |
|   AccessEntity.setDiag(PD);
 | |
| 
 | |
|   return CheckAccess(*this, UseLoc, AccessEntity);
 | |
| }
 | |
| 
 | |
| /// Checks access to an overloaded operator new or delete.
 | |
| Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
 | |
|                                                SourceRange PlacementRange,
 | |
|                                                CXXRecordDecl *NamingClass,
 | |
|                                                DeclAccessPair Found,
 | |
|                                                bool Diagnose) {
 | |
|   if (!getLangOpts().AccessControl ||
 | |
|       !NamingClass ||
 | |
|       Found.getAccess() == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
 | |
|                       QualType());
 | |
|   if (Diagnose)
 | |
|     Entity.setDiag(diag::err_access)
 | |
|       << PlacementRange;
 | |
| 
 | |
|   return CheckAccess(*this, OpLoc, Entity);
 | |
| }
 | |
| 
 | |
| /// Checks access to a member.
 | |
| Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
 | |
|                                            CXXRecordDecl *NamingClass,
 | |
|                                            DeclAccessPair Found) {
 | |
|   if (!getLangOpts().AccessControl ||
 | |
|       !NamingClass ||
 | |
|       Found.getAccess() == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
 | |
|                       Found, QualType());
 | |
| 
 | |
|   return CheckAccess(*this, UseLoc, Entity);
 | |
| }
 | |
| 
 | |
| /// Checks implicit access to a member in a structured binding.
 | |
| Sema::AccessResult
 | |
| Sema::CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
 | |
|                                          CXXRecordDecl *DecomposedClass,
 | |
|                                          DeclAccessPair Field) {
 | |
|   if (!getLangOpts().AccessControl ||
 | |
|       Field.getAccess() == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   AccessTarget Entity(Context, AccessTarget::Member, DecomposedClass, Field,
 | |
|                       Context.getRecordType(DecomposedClass));
 | |
|   Entity.setDiag(diag::err_decomp_decl_inaccessible_field);
 | |
| 
 | |
|   return CheckAccess(*this, UseLoc, Entity);
 | |
| }
 | |
| 
 | |
| /// Checks access to an overloaded member operator, including
 | |
| /// conversion operators.
 | |
| Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
 | |
|                                                    Expr *ObjectExpr,
 | |
|                                                    Expr *ArgExpr,
 | |
|                                                    DeclAccessPair Found) {
 | |
|   if (!getLangOpts().AccessControl ||
 | |
|       Found.getAccess() == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
 | |
|   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
 | |
| 
 | |
|   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
 | |
|                       ObjectExpr->getType());
 | |
|   Entity.setDiag(diag::err_access)
 | |
|     << ObjectExpr->getSourceRange()
 | |
|     << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
 | |
| 
 | |
|   return CheckAccess(*this, OpLoc, Entity);
 | |
| }
 | |
| 
 | |
| /// Checks access to the target of a friend declaration.
 | |
| Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
 | |
|   assert(isa<CXXMethodDecl>(target->getAsFunction()));
 | |
| 
 | |
|   // Friendship lookup is a redeclaration lookup, so there's never an
 | |
|   // inheritance path modifying access.
 | |
|   AccessSpecifier access = target->getAccess();
 | |
| 
 | |
|   if (!getLangOpts().AccessControl || access == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
 | |
| 
 | |
|   AccessTarget entity(Context, AccessTarget::Member,
 | |
|                       cast<CXXRecordDecl>(target->getDeclContext()),
 | |
|                       DeclAccessPair::make(target, access),
 | |
|                       /*no instance context*/ QualType());
 | |
|   entity.setDiag(diag::err_access_friend_function)
 | |
|       << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
 | |
|                                  : method->getNameInfo().getSourceRange());
 | |
| 
 | |
|   // We need to bypass delayed-diagnostics because we might be called
 | |
|   // while the ParsingDeclarator is active.
 | |
|   EffectiveContext EC(CurContext);
 | |
|   switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
 | |
|   case ::AR_accessible: return Sema::AR_accessible;
 | |
|   case ::AR_inaccessible: return Sema::AR_inaccessible;
 | |
|   case ::AR_dependent: return Sema::AR_dependent;
 | |
|   }
 | |
|   llvm_unreachable("invalid access result");
 | |
| }
 | |
| 
 | |
| Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
 | |
|                                                     DeclAccessPair Found) {
 | |
|   if (!getLangOpts().AccessControl ||
 | |
|       Found.getAccess() == AS_none ||
 | |
|       Found.getAccess() == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
 | |
|   CXXRecordDecl *NamingClass = Ovl->getNamingClass();
 | |
| 
 | |
|   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
 | |
|                       /*no instance context*/ QualType());
 | |
|   Entity.setDiag(diag::err_access)
 | |
|     << Ovl->getSourceRange();
 | |
| 
 | |
|   return CheckAccess(*this, Ovl->getNameLoc(), Entity);
 | |
| }
 | |
| 
 | |
| /// Checks access for a hierarchy conversion.
 | |
| ///
 | |
| /// \param ForceCheck true if this check should be performed even if access
 | |
| ///     control is disabled;  some things rely on this for semantics
 | |
| /// \param ForceUnprivileged true if this check should proceed as if the
 | |
| ///     context had no special privileges
 | |
| Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
 | |
|                                               QualType Base,
 | |
|                                               QualType Derived,
 | |
|                                               const CXXBasePath &Path,
 | |
|                                               unsigned DiagID,
 | |
|                                               bool ForceCheck,
 | |
|                                               bool ForceUnprivileged) {
 | |
|   if (!ForceCheck && !getLangOpts().AccessControl)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   if (Path.Access == AS_public)
 | |
|     return AR_accessible;
 | |
| 
 | |
|   CXXRecordDecl *BaseD, *DerivedD;
 | |
|   BaseD = cast<CXXRecordDecl>(Base->castAs<RecordType>()->getDecl());
 | |
|   DerivedD = cast<CXXRecordDecl>(Derived->castAs<RecordType>()->getDecl());
 | |
| 
 | |
|   AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
 | |
|                       Path.Access);
 | |
|   if (DiagID)
 | |
|     Entity.setDiag(DiagID) << Derived << Base;
 | |
| 
 | |
|   if (ForceUnprivileged) {
 | |
|     switch (CheckEffectiveAccess(*this, EffectiveContext(),
 | |
|                                  AccessLoc, Entity)) {
 | |
|     case ::AR_accessible: return Sema::AR_accessible;
 | |
|     case ::AR_inaccessible: return Sema::AR_inaccessible;
 | |
|     case ::AR_dependent: return Sema::AR_dependent;
 | |
|     }
 | |
|     llvm_unreachable("unexpected result from CheckEffectiveAccess");
 | |
|   }
 | |
|   return CheckAccess(*this, AccessLoc, Entity);
 | |
| }
 | |
| 
 | |
| /// Checks access to all the declarations in the given result set.
 | |
| void Sema::CheckLookupAccess(const LookupResult &R) {
 | |
|   assert(getLangOpts().AccessControl
 | |
|          && "performing access check without access control");
 | |
|   assert(R.getNamingClass() && "performing access check without naming class");
 | |
| 
 | |
|   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|     if (I.getAccess() != AS_public) {
 | |
|       AccessTarget Entity(Context, AccessedEntity::Member,
 | |
|                           R.getNamingClass(), I.getPair(),
 | |
|                           R.getBaseObjectType());
 | |
|       Entity.setDiag(diag::err_access);
 | |
|       CheckAccess(*this, R.getNameLoc(), Entity);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Checks access to Target from the given class. The check will take access
 | |
| /// specifiers into account, but no member access expressions and such.
 | |
| ///
 | |
| /// \param Target the declaration to check if it can be accessed
 | |
| /// \param NamingClass the class in which the lookup was started.
 | |
| /// \param BaseType type of the left side of member access expression.
 | |
| ///        \p BaseType and \p NamingClass are used for C++ access control.
 | |
| ///        Depending on the lookup case, they should be set to the following:
 | |
| ///        - lhs.target (member access without a qualifier):
 | |
| ///          \p BaseType and \p NamingClass are both the type of 'lhs'.
 | |
| ///        - lhs.X::target (member access with a qualifier):
 | |
| ///          BaseType is the type of 'lhs', NamingClass is 'X'
 | |
| ///        - X::target (qualified lookup without member access):
 | |
| ///          BaseType is null, NamingClass is 'X'.
 | |
| ///        - target (unqualified lookup).
 | |
| ///          BaseType is null, NamingClass is the parent class of 'target'.
 | |
| /// \return true if the Target is accessible from the Class, false otherwise.
 | |
| bool Sema::IsSimplyAccessible(NamedDecl *Target, CXXRecordDecl *NamingClass,
 | |
|                               QualType BaseType) {
 | |
|   // Perform the C++ accessibility checks first.
 | |
|   if (Target->isCXXClassMember() && NamingClass) {
 | |
|     if (!getLangOpts().CPlusPlus)
 | |
|       return false;
 | |
|     // The unprivileged access is AS_none as we don't know how the member was
 | |
|     // accessed, which is described by the access in DeclAccessPair.
 | |
|     // `IsAccessible` will examine the actual access of Target (i.e.
 | |
|     // Decl->getAccess()) when calculating the access.
 | |
|     AccessTarget Entity(Context, AccessedEntity::Member, NamingClass,
 | |
|                         DeclAccessPair::make(Target, AS_none), BaseType);
 | |
|     EffectiveContext EC(CurContext);
 | |
|     return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
 | |
|   }
 | |
| 
 | |
|   if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Target)) {
 | |
|     // @public and @package ivars are always accessible.
 | |
|     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
 | |
|         Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
 | |
|       return true;
 | |
| 
 | |
|     // If we are inside a class or category implementation, determine the
 | |
|     // interface we're in.
 | |
|     ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
 | |
|     if (ObjCMethodDecl *MD = getCurMethodDecl())
 | |
|       ClassOfMethodDecl =  MD->getClassInterface();
 | |
|     else if (FunctionDecl *FD = getCurFunctionDecl()) {
 | |
|       if (ObjCImplDecl *Impl
 | |
|             = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
 | |
|         if (ObjCImplementationDecl *IMPD
 | |
|               = dyn_cast<ObjCImplementationDecl>(Impl))
 | |
|           ClassOfMethodDecl = IMPD->getClassInterface();
 | |
|         else if (ObjCCategoryImplDecl* CatImplClass
 | |
|                    = dyn_cast<ObjCCategoryImplDecl>(Impl))
 | |
|           ClassOfMethodDecl = CatImplClass->getClassInterface();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we're not in an interface, this ivar is inaccessible.
 | |
|     if (!ClassOfMethodDecl)
 | |
|       return false;
 | |
| 
 | |
|     // If we're inside the same interface that owns the ivar, we're fine.
 | |
|     if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
 | |
|       return true;
 | |
| 
 | |
|     // If the ivar is private, it's inaccessible.
 | |
|     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
 | |
|       return false;
 | |
| 
 | |
|     return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |