forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			14580 lines
		
	
	
		
			547 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			14580 lines
		
	
	
		
			547 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements extra semantic analysis beyond what is enforced
 | |
| //  by the C type system.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/APValue.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/AttrIterator.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclBase.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclarationName.h"
 | |
| #include "clang/AST/EvaluatedExprVisitor.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/ExprOpenMP.h"
 | |
| #include "clang/AST/FormatString.h"
 | |
| #include "clang/AST/NSAPI.h"
 | |
| #include "clang/AST/NonTrivialTypeVisitor.h"
 | |
| #include "clang/AST/OperationKinds.h"
 | |
| #include "clang/AST/Stmt.h"
 | |
| #include "clang/AST/TemplateBase.h"
 | |
| #include "clang/AST/Type.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/AST/UnresolvedSet.h"
 | |
| #include "clang/Basic/AddressSpaces.h"
 | |
| #include "clang/Basic/CharInfo.h"
 | |
| #include "clang/Basic/Diagnostic.h"
 | |
| #include "clang/Basic/IdentifierTable.h"
 | |
| #include "clang/Basic/LLVM.h"
 | |
| #include "clang/Basic/LangOptions.h"
 | |
| #include "clang/Basic/OpenCLOptions.h"
 | |
| #include "clang/Basic/OperatorKinds.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Basic/SourceLocation.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/Specifiers.h"
 | |
| #include "clang/Basic/SyncScope.h"
 | |
| #include "clang/Basic/TargetBuiltins.h"
 | |
| #include "clang/Basic/TargetCXXABI.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Basic/TypeTraits.h"
 | |
| #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/Ownership.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/Sema.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Support/AtomicOrdering.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ConvertUTF.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/Locale.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/SaveAndRestore.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
 | |
|                                                     unsigned ByteNo) const {
 | |
|   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
 | |
|                                Context.getTargetInfo());
 | |
| }
 | |
| 
 | |
| /// Checks that a call expression's argument count is the desired number.
 | |
| /// This is useful when doing custom type-checking.  Returns true on error.
 | |
| static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
 | |
|   unsigned argCount = call->getNumArgs();
 | |
|   if (argCount == desiredArgCount) return false;
 | |
| 
 | |
|   if (argCount < desiredArgCount)
 | |
|     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
 | |
|            << 0 /*function call*/ << desiredArgCount << argCount
 | |
|            << call->getSourceRange();
 | |
| 
 | |
|   // Highlight all the excess arguments.
 | |
|   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
 | |
|                     call->getArg(argCount - 1)->getEndLoc());
 | |
| 
 | |
|   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
 | |
|     << 0 /*function call*/ << desiredArgCount << argCount
 | |
|     << call->getArg(1)->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// Check that the first argument to __builtin_annotation is an integer
 | |
| /// and the second argument is a non-wide string literal.
 | |
| static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
 | |
|   if (checkArgCount(S, TheCall, 2))
 | |
|     return true;
 | |
| 
 | |
|   // First argument should be an integer.
 | |
|   Expr *ValArg = TheCall->getArg(0);
 | |
|   QualType Ty = ValArg->getType();
 | |
|   if (!Ty->isIntegerType()) {
 | |
|     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
 | |
|         << ValArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Second argument should be a constant string.
 | |
|   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
 | |
|   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
 | |
|   if (!Literal || !Literal->isAscii()) {
 | |
|     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
 | |
|         << StrArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   TheCall->setType(Ty);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
 | |
|   // We need at least one argument.
 | |
|   if (TheCall->getNumArgs() < 1) {
 | |
|     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
 | |
|         << 0 << 1 << TheCall->getNumArgs()
 | |
|         << TheCall->getCallee()->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // All arguments should be wide string literals.
 | |
|   for (Expr *Arg : TheCall->arguments()) {
 | |
|     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
 | |
|     if (!Literal || !Literal->isWide()) {
 | |
|       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
 | |
|           << Arg->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check that the argument to __builtin_addressof is a glvalue, and set the
 | |
| /// result type to the corresponding pointer type.
 | |
| static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
 | |
|   if (checkArgCount(S, TheCall, 1))
 | |
|     return true;
 | |
| 
 | |
|   ExprResult Arg(TheCall->getArg(0));
 | |
|   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
 | |
|   if (ResultType.isNull())
 | |
|     return true;
 | |
| 
 | |
|   TheCall->setArg(0, Arg.get());
 | |
|   TheCall->setType(ResultType);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check the number of arguments and set the result type to
 | |
| /// the argument type.
 | |
| static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
 | |
|   if (checkArgCount(S, TheCall, 1))
 | |
|     return true;
 | |
| 
 | |
|   TheCall->setType(TheCall->getArg(0)->getType());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check that the value argument for __builtin_is_aligned(value, alignment) and
 | |
| /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
 | |
| /// type (but not a function pointer) and that the alignment is a power-of-two.
 | |
| static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
 | |
|   if (checkArgCount(S, TheCall, 2))
 | |
|     return true;
 | |
| 
 | |
|   clang::Expr *Source = TheCall->getArg(0);
 | |
|   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
 | |
| 
 | |
|   auto IsValidIntegerType = [](QualType Ty) {
 | |
|     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
 | |
|   };
 | |
|   QualType SrcTy = Source->getType();
 | |
|   // We should also be able to use it with arrays (but not functions!).
 | |
|   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
 | |
|     SrcTy = S.Context.getDecayedType(SrcTy);
 | |
|   }
 | |
|   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
 | |
|       SrcTy->isFunctionPointerType()) {
 | |
|     // FIXME: this is not quite the right error message since we don't allow
 | |
|     // floating point types, or member pointers.
 | |
|     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
 | |
|         << SrcTy;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   clang::Expr *AlignOp = TheCall->getArg(1);
 | |
|   if (!IsValidIntegerType(AlignOp->getType())) {
 | |
|     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
 | |
|         << AlignOp->getType();
 | |
|     return true;
 | |
|   }
 | |
|   Expr::EvalResult AlignResult;
 | |
|   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
 | |
|   // We can't check validity of alignment if it is type dependent.
 | |
|   if (!AlignOp->isInstantiationDependent() &&
 | |
|       AlignOp->EvaluateAsInt(AlignResult, S.Context,
 | |
|                              Expr::SE_AllowSideEffects)) {
 | |
|     llvm::APSInt AlignValue = AlignResult.Val.getInt();
 | |
|     llvm::APSInt MaxValue(
 | |
|         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
 | |
|     if (AlignValue < 1) {
 | |
|       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
 | |
|       return true;
 | |
|     }
 | |
|     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
 | |
|       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
 | |
|           << MaxValue.toString(10);
 | |
|       return true;
 | |
|     }
 | |
|     if (!AlignValue.isPowerOf2()) {
 | |
|       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
 | |
|       return true;
 | |
|     }
 | |
|     if (AlignValue == 1) {
 | |
|       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
 | |
|           << IsBooleanAlignBuiltin;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ExprResult SrcArg = S.PerformCopyInitialization(
 | |
|       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
 | |
|       SourceLocation(), Source);
 | |
|   if (SrcArg.isInvalid())
 | |
|     return true;
 | |
|   TheCall->setArg(0, SrcArg.get());
 | |
|   ExprResult AlignArg =
 | |
|       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
 | |
|                                       S.Context, AlignOp->getType(), false),
 | |
|                                   SourceLocation(), AlignOp);
 | |
|   if (AlignArg.isInvalid())
 | |
|     return true;
 | |
|   TheCall->setArg(1, AlignArg.get());
 | |
|   // For align_up/align_down, the return type is the same as the (potentially
 | |
|   // decayed) argument type including qualifiers. For is_aligned(), the result
 | |
|   // is always bool.
 | |
|   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) {
 | |
|   if (checkArgCount(S, TheCall, 3))
 | |
|     return true;
 | |
| 
 | |
|   // First two arguments should be integers.
 | |
|   for (unsigned I = 0; I < 2; ++I) {
 | |
|     ExprResult Arg = TheCall->getArg(I);
 | |
|     QualType Ty = Arg.get()->getType();
 | |
|     if (!Ty->isIntegerType()) {
 | |
|       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
 | |
|           << Ty << Arg.get()->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeParameter(
 | |
|         S.getASTContext(), Ty, /*consume*/ false);
 | |
|     Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | |
|     if (Arg.isInvalid())
 | |
|       return true;
 | |
|     TheCall->setArg(I, Arg.get());
 | |
|   }
 | |
| 
 | |
|   // Third argument should be a pointer to a non-const integer.
 | |
|   // IRGen correctly handles volatile, restrict, and address spaces, and
 | |
|   // the other qualifiers aren't possible.
 | |
|   {
 | |
|     ExprResult Arg = TheCall->getArg(2);
 | |
|     QualType Ty = Arg.get()->getType();
 | |
|     const auto *PtrTy = Ty->getAs<PointerType>();
 | |
|     if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() &&
 | |
|           !PtrTy->getPointeeType().isConstQualified())) {
 | |
|       S.Diag(Arg.get()->getBeginLoc(),
 | |
|              diag::err_overflow_builtin_must_be_ptr_int)
 | |
|           << Ty << Arg.get()->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeParameter(
 | |
|         S.getASTContext(), Ty, /*consume*/ false);
 | |
|     Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | |
|     if (Arg.isInvalid())
 | |
|       return true;
 | |
|     TheCall->setArg(2, Arg.get());
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
 | |
|   if (checkArgCount(S, BuiltinCall, 2))
 | |
|     return true;
 | |
| 
 | |
|   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
 | |
|   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
 | |
|   Expr *Call = BuiltinCall->getArg(0);
 | |
|   Expr *Chain = BuiltinCall->getArg(1);
 | |
| 
 | |
|   if (Call->getStmtClass() != Stmt::CallExprClass) {
 | |
|     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
 | |
|         << Call->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   auto CE = cast<CallExpr>(Call);
 | |
|   if (CE->getCallee()->getType()->isBlockPointerType()) {
 | |
|     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
 | |
|         << Call->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const Decl *TargetDecl = CE->getCalleeDecl();
 | |
|   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
 | |
|     if (FD->getBuiltinID()) {
 | |
|       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
 | |
|           << Call->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
 | |
|     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
 | |
|         << Call->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
 | |
|   if (ChainResult.isInvalid())
 | |
|     return true;
 | |
|   if (!ChainResult.get()->getType()->isPointerType()) {
 | |
|     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
 | |
|         << Chain->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   QualType ReturnTy = CE->getCallReturnType(S.Context);
 | |
|   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
 | |
|   QualType BuiltinTy = S.Context.getFunctionType(
 | |
|       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
 | |
|   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
 | |
| 
 | |
|   Builtin =
 | |
|       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
 | |
| 
 | |
|   BuiltinCall->setType(CE->getType());
 | |
|   BuiltinCall->setValueKind(CE->getValueKind());
 | |
|   BuiltinCall->setObjectKind(CE->getObjectKind());
 | |
|   BuiltinCall->setCallee(Builtin);
 | |
|   BuiltinCall->setArg(1, ChainResult.get());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class EstimateSizeFormatHandler
 | |
|     : public analyze_format_string::FormatStringHandler {
 | |
|   size_t Size;
 | |
| 
 | |
| public:
 | |
|   EstimateSizeFormatHandler(StringRef Format)
 | |
|       : Size(std::min(Format.find(0), Format.size()) +
 | |
|              1 /* null byte always written by sprintf */) {}
 | |
| 
 | |
|   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
 | |
|                              const char *, unsigned SpecifierLen) override {
 | |
| 
 | |
|     const size_t FieldWidth = computeFieldWidth(FS);
 | |
|     const size_t Precision = computePrecision(FS);
 | |
| 
 | |
|     // The actual format.
 | |
|     switch (FS.getConversionSpecifier().getKind()) {
 | |
|     // Just a char.
 | |
|     case analyze_format_string::ConversionSpecifier::cArg:
 | |
|     case analyze_format_string::ConversionSpecifier::CArg:
 | |
|       Size += std::max(FieldWidth, (size_t)1);
 | |
|       break;
 | |
|     // Just an integer.
 | |
|     case analyze_format_string::ConversionSpecifier::dArg:
 | |
|     case analyze_format_string::ConversionSpecifier::DArg:
 | |
|     case analyze_format_string::ConversionSpecifier::iArg:
 | |
|     case analyze_format_string::ConversionSpecifier::oArg:
 | |
|     case analyze_format_string::ConversionSpecifier::OArg:
 | |
|     case analyze_format_string::ConversionSpecifier::uArg:
 | |
|     case analyze_format_string::ConversionSpecifier::UArg:
 | |
|     case analyze_format_string::ConversionSpecifier::xArg:
 | |
|     case analyze_format_string::ConversionSpecifier::XArg:
 | |
|       Size += std::max(FieldWidth, Precision);
 | |
|       break;
 | |
| 
 | |
|     // %g style conversion switches between %f or %e style dynamically.
 | |
|     // %f always takes less space, so default to it.
 | |
|     case analyze_format_string::ConversionSpecifier::gArg:
 | |
|     case analyze_format_string::ConversionSpecifier::GArg:
 | |
| 
 | |
|     // Floating point number in the form '[+]ddd.ddd'.
 | |
|     case analyze_format_string::ConversionSpecifier::fArg:
 | |
|     case analyze_format_string::ConversionSpecifier::FArg:
 | |
|       Size += std::max(FieldWidth, 1 /* integer part */ +
 | |
|                                        (Precision ? 1 + Precision
 | |
|                                                   : 0) /* period + decimal */);
 | |
|       break;
 | |
| 
 | |
|     // Floating point number in the form '[-]d.ddde[+-]dd'.
 | |
|     case analyze_format_string::ConversionSpecifier::eArg:
 | |
|     case analyze_format_string::ConversionSpecifier::EArg:
 | |
|       Size +=
 | |
|           std::max(FieldWidth,
 | |
|                    1 /* integer part */ +
 | |
|                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
 | |
|                        1 /* e or E letter */ + 2 /* exponent */);
 | |
|       break;
 | |
| 
 | |
|     // Floating point number in the form '[-]0xh.hhhhp±dd'.
 | |
|     case analyze_format_string::ConversionSpecifier::aArg:
 | |
|     case analyze_format_string::ConversionSpecifier::AArg:
 | |
|       Size +=
 | |
|           std::max(FieldWidth,
 | |
|                    2 /* 0x */ + 1 /* integer part */ +
 | |
|                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
 | |
|                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
 | |
|       break;
 | |
| 
 | |
|     // Just a string.
 | |
|     case analyze_format_string::ConversionSpecifier::sArg:
 | |
|     case analyze_format_string::ConversionSpecifier::SArg:
 | |
|       Size += FieldWidth;
 | |
|       break;
 | |
| 
 | |
|     // Just a pointer in the form '0xddd'.
 | |
|     case analyze_format_string::ConversionSpecifier::pArg:
 | |
|       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
 | |
|       break;
 | |
| 
 | |
|     // A plain percent.
 | |
|     case analyze_format_string::ConversionSpecifier::PercentArg:
 | |
|       Size += 1;
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
 | |
| 
 | |
|     if (FS.hasAlternativeForm()) {
 | |
|       switch (FS.getConversionSpecifier().getKind()) {
 | |
|       default:
 | |
|         break;
 | |
|       // Force a leading '0'.
 | |
|       case analyze_format_string::ConversionSpecifier::oArg:
 | |
|         Size += 1;
 | |
|         break;
 | |
|       // Force a leading '0x'.
 | |
|       case analyze_format_string::ConversionSpecifier::xArg:
 | |
|       case analyze_format_string::ConversionSpecifier::XArg:
 | |
|         Size += 2;
 | |
|         break;
 | |
|       // Force a period '.' before decimal, even if precision is 0.
 | |
|       case analyze_format_string::ConversionSpecifier::aArg:
 | |
|       case analyze_format_string::ConversionSpecifier::AArg:
 | |
|       case analyze_format_string::ConversionSpecifier::eArg:
 | |
|       case analyze_format_string::ConversionSpecifier::EArg:
 | |
|       case analyze_format_string::ConversionSpecifier::fArg:
 | |
|       case analyze_format_string::ConversionSpecifier::FArg:
 | |
|       case analyze_format_string::ConversionSpecifier::gArg:
 | |
|       case analyze_format_string::ConversionSpecifier::GArg:
 | |
|         Size += (Precision ? 0 : 1);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert(SpecifierLen <= Size && "no underflow");
 | |
|     Size -= SpecifierLen;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   size_t getSizeLowerBound() const { return Size; }
 | |
| 
 | |
| private:
 | |
|   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
 | |
|     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
 | |
|     size_t FieldWidth = 0;
 | |
|     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
 | |
|       FieldWidth = FW.getConstantAmount();
 | |
|     return FieldWidth;
 | |
|   }
 | |
| 
 | |
|   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
 | |
|     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
 | |
|     size_t Precision = 0;
 | |
| 
 | |
|     // See man 3 printf for default precision value based on the specifier.
 | |
|     switch (FW.getHowSpecified()) {
 | |
|     case analyze_format_string::OptionalAmount::NotSpecified:
 | |
|       switch (FS.getConversionSpecifier().getKind()) {
 | |
|       default:
 | |
|         break;
 | |
|       case analyze_format_string::ConversionSpecifier::dArg: // %d
 | |
|       case analyze_format_string::ConversionSpecifier::DArg: // %D
 | |
|       case analyze_format_string::ConversionSpecifier::iArg: // %i
 | |
|         Precision = 1;
 | |
|         break;
 | |
|       case analyze_format_string::ConversionSpecifier::oArg: // %d
 | |
|       case analyze_format_string::ConversionSpecifier::OArg: // %D
 | |
|       case analyze_format_string::ConversionSpecifier::uArg: // %d
 | |
|       case analyze_format_string::ConversionSpecifier::UArg: // %D
 | |
|       case analyze_format_string::ConversionSpecifier::xArg: // %d
 | |
|       case analyze_format_string::ConversionSpecifier::XArg: // %D
 | |
|         Precision = 1;
 | |
|         break;
 | |
|       case analyze_format_string::ConversionSpecifier::fArg: // %f
 | |
|       case analyze_format_string::ConversionSpecifier::FArg: // %F
 | |
|       case analyze_format_string::ConversionSpecifier::eArg: // %e
 | |
|       case analyze_format_string::ConversionSpecifier::EArg: // %E
 | |
|       case analyze_format_string::ConversionSpecifier::gArg: // %g
 | |
|       case analyze_format_string::ConversionSpecifier::GArg: // %G
 | |
|         Precision = 6;
 | |
|         break;
 | |
|       case analyze_format_string::ConversionSpecifier::pArg: // %d
 | |
|         Precision = 1;
 | |
|         break;
 | |
|       }
 | |
|       break;
 | |
|     case analyze_format_string::OptionalAmount::Constant:
 | |
|       Precision = FW.getConstantAmount();
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|     return Precision;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
 | |
| /// __builtin_*_chk function, then use the object size argument specified in the
 | |
| /// source. Otherwise, infer the object size using __builtin_object_size.
 | |
| void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
 | |
|                                                CallExpr *TheCall) {
 | |
|   // FIXME: There are some more useful checks we could be doing here:
 | |
|   //  - Evaluate strlen of strcpy arguments, use as object size.
 | |
| 
 | |
|   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
 | |
|       isConstantEvaluated())
 | |
|     return;
 | |
| 
 | |
|   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
 | |
|   if (!BuiltinID)
 | |
|     return;
 | |
| 
 | |
|   const TargetInfo &TI = getASTContext().getTargetInfo();
 | |
|   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
 | |
| 
 | |
|   unsigned DiagID = 0;
 | |
|   bool IsChkVariant = false;
 | |
|   Optional<llvm::APSInt> UsedSize;
 | |
|   unsigned SizeIndex, ObjectIndex;
 | |
|   switch (BuiltinID) {
 | |
|   default:
 | |
|     return;
 | |
|   case Builtin::BIsprintf:
 | |
|   case Builtin::BI__builtin___sprintf_chk: {
 | |
|     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
 | |
|     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
 | |
| 
 | |
|     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
 | |
| 
 | |
|       if (!Format->isAscii() && !Format->isUTF8())
 | |
|         return;
 | |
| 
 | |
|       StringRef FormatStrRef = Format->getString();
 | |
|       EstimateSizeFormatHandler H(FormatStrRef);
 | |
|       const char *FormatBytes = FormatStrRef.data();
 | |
|       const ConstantArrayType *T =
 | |
|           Context.getAsConstantArrayType(Format->getType());
 | |
|       assert(T && "String literal not of constant array type!");
 | |
|       size_t TypeSize = T->getSize().getZExtValue();
 | |
| 
 | |
|       // In case there's a null byte somewhere.
 | |
|       size_t StrLen =
 | |
|           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
 | |
|       if (!analyze_format_string::ParsePrintfString(
 | |
|               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
 | |
|               Context.getTargetInfo(), false)) {
 | |
|         DiagID = diag::warn_fortify_source_format_overflow;
 | |
|         UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
 | |
|                        .extOrTrunc(SizeTypeWidth);
 | |
|         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
 | |
|           IsChkVariant = true;
 | |
|           ObjectIndex = 2;
 | |
|         } else {
 | |
|           IsChkVariant = false;
 | |
|           ObjectIndex = 0;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case Builtin::BI__builtin___memcpy_chk:
 | |
|   case Builtin::BI__builtin___memmove_chk:
 | |
|   case Builtin::BI__builtin___memset_chk:
 | |
|   case Builtin::BI__builtin___strlcat_chk:
 | |
|   case Builtin::BI__builtin___strlcpy_chk:
 | |
|   case Builtin::BI__builtin___strncat_chk:
 | |
|   case Builtin::BI__builtin___strncpy_chk:
 | |
|   case Builtin::BI__builtin___stpncpy_chk:
 | |
|   case Builtin::BI__builtin___memccpy_chk:
 | |
|   case Builtin::BI__builtin___mempcpy_chk: {
 | |
|     DiagID = diag::warn_builtin_chk_overflow;
 | |
|     IsChkVariant = true;
 | |
|     SizeIndex = TheCall->getNumArgs() - 2;
 | |
|     ObjectIndex = TheCall->getNumArgs() - 1;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin___snprintf_chk:
 | |
|   case Builtin::BI__builtin___vsnprintf_chk: {
 | |
|     DiagID = diag::warn_builtin_chk_overflow;
 | |
|     IsChkVariant = true;
 | |
|     SizeIndex = 1;
 | |
|     ObjectIndex = 3;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Builtin::BIstrncat:
 | |
|   case Builtin::BI__builtin_strncat:
 | |
|   case Builtin::BIstrncpy:
 | |
|   case Builtin::BI__builtin_strncpy:
 | |
|   case Builtin::BIstpncpy:
 | |
|   case Builtin::BI__builtin_stpncpy: {
 | |
|     // Whether these functions overflow depends on the runtime strlen of the
 | |
|     // string, not just the buffer size, so emitting the "always overflow"
 | |
|     // diagnostic isn't quite right. We should still diagnose passing a buffer
 | |
|     // size larger than the destination buffer though; this is a runtime abort
 | |
|     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
 | |
|     DiagID = diag::warn_fortify_source_size_mismatch;
 | |
|     SizeIndex = TheCall->getNumArgs() - 1;
 | |
|     ObjectIndex = 0;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Builtin::BImemcpy:
 | |
|   case Builtin::BI__builtin_memcpy:
 | |
|   case Builtin::BImemmove:
 | |
|   case Builtin::BI__builtin_memmove:
 | |
|   case Builtin::BImemset:
 | |
|   case Builtin::BI__builtin_memset:
 | |
|   case Builtin::BImempcpy:
 | |
|   case Builtin::BI__builtin_mempcpy: {
 | |
|     DiagID = diag::warn_fortify_source_overflow;
 | |
|     SizeIndex = TheCall->getNumArgs() - 1;
 | |
|     ObjectIndex = 0;
 | |
|     break;
 | |
|   }
 | |
|   case Builtin::BIsnprintf:
 | |
|   case Builtin::BI__builtin_snprintf:
 | |
|   case Builtin::BIvsnprintf:
 | |
|   case Builtin::BI__builtin_vsnprintf: {
 | |
|     DiagID = diag::warn_fortify_source_size_mismatch;
 | |
|     SizeIndex = 1;
 | |
|     ObjectIndex = 0;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm::APSInt ObjectSize;
 | |
|   // For __builtin___*_chk, the object size is explicitly provided by the caller
 | |
|   // (usually using __builtin_object_size). Use that value to check this call.
 | |
|   if (IsChkVariant) {
 | |
|     Expr::EvalResult Result;
 | |
|     Expr *SizeArg = TheCall->getArg(ObjectIndex);
 | |
|     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
 | |
|       return;
 | |
|     ObjectSize = Result.Val.getInt();
 | |
| 
 | |
|   // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
 | |
|   } else {
 | |
|     // If the parameter has a pass_object_size attribute, then we should use its
 | |
|     // (potentially) more strict checking mode. Otherwise, conservatively assume
 | |
|     // type 0.
 | |
|     int BOSType = 0;
 | |
|     if (const auto *POS =
 | |
|             FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
 | |
|       BOSType = POS->getType();
 | |
| 
 | |
|     Expr *ObjArg = TheCall->getArg(ObjectIndex);
 | |
|     uint64_t Result;
 | |
|     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
 | |
|       return;
 | |
|     // Get the object size in the target's size_t width.
 | |
|     ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
 | |
|   }
 | |
| 
 | |
|   // Evaluate the number of bytes of the object that this call will use.
 | |
|   if (!UsedSize) {
 | |
|     Expr::EvalResult Result;
 | |
|     Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
 | |
|     if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
 | |
|       return;
 | |
|     UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth);
 | |
|   }
 | |
| 
 | |
|   if (UsedSize.getValue().ule(ObjectSize))
 | |
|     return;
 | |
| 
 | |
|   StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
 | |
|   // Skim off the details of whichever builtin was called to produce a better
 | |
|   // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
 | |
|   if (IsChkVariant) {
 | |
|     FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
 | |
|     FunctionName = FunctionName.drop_back(std::strlen("_chk"));
 | |
|   } else if (FunctionName.startswith("__builtin_")) {
 | |
|     FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
 | |
|   }
 | |
| 
 | |
|   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
 | |
|                       PDiag(DiagID)
 | |
|                           << FunctionName << ObjectSize.toString(/*Radix=*/10)
 | |
|                           << UsedSize.getValue().toString(/*Radix=*/10));
 | |
| }
 | |
| 
 | |
| static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
 | |
|                                      Scope::ScopeFlags NeededScopeFlags,
 | |
|                                      unsigned DiagID) {
 | |
|   // Scopes aren't available during instantiation. Fortunately, builtin
 | |
|   // functions cannot be template args so they cannot be formed through template
 | |
|   // instantiation. Therefore checking once during the parse is sufficient.
 | |
|   if (SemaRef.inTemplateInstantiation())
 | |
|     return false;
 | |
| 
 | |
|   Scope *S = SemaRef.getCurScope();
 | |
|   while (S && !S->isSEHExceptScope())
 | |
|     S = S->getParent();
 | |
|   if (!S || !(S->getFlags() & NeededScopeFlags)) {
 | |
|     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
|     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
 | |
|         << DRE->getDecl()->getIdentifier();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static inline bool isBlockPointer(Expr *Arg) {
 | |
|   return Arg->getType()->isBlockPointerType();
 | |
| }
 | |
| 
 | |
| /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
 | |
| /// void*, which is a requirement of device side enqueue.
 | |
| static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
 | |
|   const BlockPointerType *BPT =
 | |
|       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
 | |
|   ArrayRef<QualType> Params =
 | |
|       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
 | |
|   unsigned ArgCounter = 0;
 | |
|   bool IllegalParams = false;
 | |
|   // Iterate through the block parameters until either one is found that is not
 | |
|   // a local void*, or the block is valid.
 | |
|   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
 | |
|        I != E; ++I, ++ArgCounter) {
 | |
|     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
 | |
|         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
 | |
|             LangAS::opencl_local) {
 | |
|       // Get the location of the error. If a block literal has been passed
 | |
|       // (BlockExpr) then we can point straight to the offending argument,
 | |
|       // else we just point to the variable reference.
 | |
|       SourceLocation ErrorLoc;
 | |
|       if (isa<BlockExpr>(BlockArg)) {
 | |
|         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
 | |
|         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
 | |
|       } else if (isa<DeclRefExpr>(BlockArg)) {
 | |
|         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
 | |
|       }
 | |
|       S.Diag(ErrorLoc,
 | |
|              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
 | |
|       IllegalParams = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return IllegalParams;
 | |
| }
 | |
| 
 | |
| static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
 | |
|   if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
 | |
|     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
 | |
|         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
 | |
|   if (checkArgCount(S, TheCall, 2))
 | |
|     return true;
 | |
| 
 | |
|   if (checkOpenCLSubgroupExt(S, TheCall))
 | |
|     return true;
 | |
| 
 | |
|   // First argument is an ndrange_t type.
 | |
|   Expr *NDRangeArg = TheCall->getArg(0);
 | |
|   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
 | |
|     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
 | |
|         << TheCall->getDirectCallee() << "'ndrange_t'";
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Expr *BlockArg = TheCall->getArg(1);
 | |
|   if (!isBlockPointer(BlockArg)) {
 | |
|     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
 | |
|         << TheCall->getDirectCallee() << "block";
 | |
|     return true;
 | |
|   }
 | |
|   return checkOpenCLBlockArgs(S, BlockArg);
 | |
| }
 | |
| 
 | |
| /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
 | |
| /// get_kernel_work_group_size
 | |
| /// and get_kernel_preferred_work_group_size_multiple builtin functions.
 | |
| static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
 | |
|   if (checkArgCount(S, TheCall, 1))
 | |
|     return true;
 | |
| 
 | |
|   Expr *BlockArg = TheCall->getArg(0);
 | |
|   if (!isBlockPointer(BlockArg)) {
 | |
|     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
 | |
|         << TheCall->getDirectCallee() << "block";
 | |
|     return true;
 | |
|   }
 | |
|   return checkOpenCLBlockArgs(S, BlockArg);
 | |
| }
 | |
| 
 | |
| /// Diagnose integer type and any valid implicit conversion to it.
 | |
| static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
 | |
|                                       const QualType &IntType);
 | |
| 
 | |
| static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
 | |
|                                             unsigned Start, unsigned End) {
 | |
|   bool IllegalParams = false;
 | |
|   for (unsigned I = Start; I <= End; ++I)
 | |
|     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
 | |
|                                               S.Context.getSizeType());
 | |
|   return IllegalParams;
 | |
| }
 | |
| 
 | |
| /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
 | |
| /// 'local void*' parameter of passed block.
 | |
| static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
 | |
|                                            Expr *BlockArg,
 | |
|                                            unsigned NumNonVarArgs) {
 | |
|   const BlockPointerType *BPT =
 | |
|       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
 | |
|   unsigned NumBlockParams =
 | |
|       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
 | |
|   unsigned TotalNumArgs = TheCall->getNumArgs();
 | |
| 
 | |
|   // For each argument passed to the block, a corresponding uint needs to
 | |
|   // be passed to describe the size of the local memory.
 | |
|   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
 | |
|     S.Diag(TheCall->getBeginLoc(),
 | |
|            diag::err_opencl_enqueue_kernel_local_size_args);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check that the sizes of the local memory are specified by integers.
 | |
|   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
 | |
|                                          TotalNumArgs - 1);
 | |
| }
 | |
| 
 | |
| /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
 | |
| /// overload formats specified in Table 6.13.17.1.
 | |
| /// int enqueue_kernel(queue_t queue,
 | |
| ///                    kernel_enqueue_flags_t flags,
 | |
| ///                    const ndrange_t ndrange,
 | |
| ///                    void (^block)(void))
 | |
| /// int enqueue_kernel(queue_t queue,
 | |
| ///                    kernel_enqueue_flags_t flags,
 | |
| ///                    const ndrange_t ndrange,
 | |
| ///                    uint num_events_in_wait_list,
 | |
| ///                    clk_event_t *event_wait_list,
 | |
| ///                    clk_event_t *event_ret,
 | |
| ///                    void (^block)(void))
 | |
| /// int enqueue_kernel(queue_t queue,
 | |
| ///                    kernel_enqueue_flags_t flags,
 | |
| ///                    const ndrange_t ndrange,
 | |
| ///                    void (^block)(local void*, ...),
 | |
| ///                    uint size0, ...)
 | |
| /// int enqueue_kernel(queue_t queue,
 | |
| ///                    kernel_enqueue_flags_t flags,
 | |
| ///                    const ndrange_t ndrange,
 | |
| ///                    uint num_events_in_wait_list,
 | |
| ///                    clk_event_t *event_wait_list,
 | |
| ///                    clk_event_t *event_ret,
 | |
| ///                    void (^block)(local void*, ...),
 | |
| ///                    uint size0, ...)
 | |
| static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
| 
 | |
|   if (NumArgs < 4) {
 | |
|     S.Diag(TheCall->getBeginLoc(),
 | |
|            diag::err_typecheck_call_too_few_args_at_least)
 | |
|         << 0 << 4 << NumArgs;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Expr *Arg0 = TheCall->getArg(0);
 | |
|   Expr *Arg1 = TheCall->getArg(1);
 | |
|   Expr *Arg2 = TheCall->getArg(2);
 | |
|   Expr *Arg3 = TheCall->getArg(3);
 | |
| 
 | |
|   // First argument always needs to be a queue_t type.
 | |
|   if (!Arg0->getType()->isQueueT()) {
 | |
|     S.Diag(TheCall->getArg(0)->getBeginLoc(),
 | |
|            diag::err_opencl_builtin_expected_type)
 | |
|         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
 | |
|   if (!Arg1->getType()->isIntegerType()) {
 | |
|     S.Diag(TheCall->getArg(1)->getBeginLoc(),
 | |
|            diag::err_opencl_builtin_expected_type)
 | |
|         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Third argument is always an ndrange_t type.
 | |
|   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
 | |
|     S.Diag(TheCall->getArg(2)->getBeginLoc(),
 | |
|            diag::err_opencl_builtin_expected_type)
 | |
|         << TheCall->getDirectCallee() << "'ndrange_t'";
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // With four arguments, there is only one form that the function could be
 | |
|   // called in: no events and no variable arguments.
 | |
|   if (NumArgs == 4) {
 | |
|     // check that the last argument is the right block type.
 | |
|     if (!isBlockPointer(Arg3)) {
 | |
|       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
 | |
|           << TheCall->getDirectCallee() << "block";
 | |
|       return true;
 | |
|     }
 | |
|     // we have a block type, check the prototype
 | |
|     const BlockPointerType *BPT =
 | |
|         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
 | |
|     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
 | |
|       S.Diag(Arg3->getBeginLoc(),
 | |
|              diag::err_opencl_enqueue_kernel_blocks_no_args);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   // we can have block + varargs.
 | |
|   if (isBlockPointer(Arg3))
 | |
|     return (checkOpenCLBlockArgs(S, Arg3) ||
 | |
|             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
 | |
|   // last two cases with either exactly 7 args or 7 args and varargs.
 | |
|   if (NumArgs >= 7) {
 | |
|     // check common block argument.
 | |
|     Expr *Arg6 = TheCall->getArg(6);
 | |
|     if (!isBlockPointer(Arg6)) {
 | |
|       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
 | |
|           << TheCall->getDirectCallee() << "block";
 | |
|       return true;
 | |
|     }
 | |
|     if (checkOpenCLBlockArgs(S, Arg6))
 | |
|       return true;
 | |
| 
 | |
|     // Forth argument has to be any integer type.
 | |
|     if (!Arg3->getType()->isIntegerType()) {
 | |
|       S.Diag(TheCall->getArg(3)->getBeginLoc(),
 | |
|              diag::err_opencl_builtin_expected_type)
 | |
|           << TheCall->getDirectCallee() << "integer";
 | |
|       return true;
 | |
|     }
 | |
|     // check remaining common arguments.
 | |
|     Expr *Arg4 = TheCall->getArg(4);
 | |
|     Expr *Arg5 = TheCall->getArg(5);
 | |
| 
 | |
|     // Fifth argument is always passed as a pointer to clk_event_t.
 | |
|     if (!Arg4->isNullPointerConstant(S.Context,
 | |
|                                      Expr::NPC_ValueDependentIsNotNull) &&
 | |
|         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
 | |
|       S.Diag(TheCall->getArg(4)->getBeginLoc(),
 | |
|              diag::err_opencl_builtin_expected_type)
 | |
|           << TheCall->getDirectCallee()
 | |
|           << S.Context.getPointerType(S.Context.OCLClkEventTy);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Sixth argument is always passed as a pointer to clk_event_t.
 | |
|     if (!Arg5->isNullPointerConstant(S.Context,
 | |
|                                      Expr::NPC_ValueDependentIsNotNull) &&
 | |
|         !(Arg5->getType()->isPointerType() &&
 | |
|           Arg5->getType()->getPointeeType()->isClkEventT())) {
 | |
|       S.Diag(TheCall->getArg(5)->getBeginLoc(),
 | |
|              diag::err_opencl_builtin_expected_type)
 | |
|           << TheCall->getDirectCallee()
 | |
|           << S.Context.getPointerType(S.Context.OCLClkEventTy);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (NumArgs == 7)
 | |
|       return false;
 | |
| 
 | |
|     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
 | |
|   }
 | |
| 
 | |
|   // None of the specific case has been detected, give generic error
 | |
|   S.Diag(TheCall->getBeginLoc(),
 | |
|          diag::err_opencl_enqueue_kernel_incorrect_args);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns OpenCL access qual.
 | |
| static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
 | |
|     return D->getAttr<OpenCLAccessAttr>();
 | |
| }
 | |
| 
 | |
| /// Returns true if pipe element type is different from the pointer.
 | |
| static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
 | |
|   const Expr *Arg0 = Call->getArg(0);
 | |
|   // First argument type should always be pipe.
 | |
|   if (!Arg0->getType()->isPipeType()) {
 | |
|     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
 | |
|         << Call->getDirectCallee() << Arg0->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   OpenCLAccessAttr *AccessQual =
 | |
|       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
 | |
|   // Validates the access qualifier is compatible with the call.
 | |
|   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
 | |
|   // read_only and write_only, and assumed to be read_only if no qualifier is
 | |
|   // specified.
 | |
|   switch (Call->getDirectCallee()->getBuiltinID()) {
 | |
|   case Builtin::BIread_pipe:
 | |
|   case Builtin::BIreserve_read_pipe:
 | |
|   case Builtin::BIcommit_read_pipe:
 | |
|   case Builtin::BIwork_group_reserve_read_pipe:
 | |
|   case Builtin::BIsub_group_reserve_read_pipe:
 | |
|   case Builtin::BIwork_group_commit_read_pipe:
 | |
|   case Builtin::BIsub_group_commit_read_pipe:
 | |
|     if (!(!AccessQual || AccessQual->isReadOnly())) {
 | |
|       S.Diag(Arg0->getBeginLoc(),
 | |
|              diag::err_opencl_builtin_pipe_invalid_access_modifier)
 | |
|           << "read_only" << Arg0->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
|     break;
 | |
|   case Builtin::BIwrite_pipe:
 | |
|   case Builtin::BIreserve_write_pipe:
 | |
|   case Builtin::BIcommit_write_pipe:
 | |
|   case Builtin::BIwork_group_reserve_write_pipe:
 | |
|   case Builtin::BIsub_group_reserve_write_pipe:
 | |
|   case Builtin::BIwork_group_commit_write_pipe:
 | |
|   case Builtin::BIsub_group_commit_write_pipe:
 | |
|     if (!(AccessQual && AccessQual->isWriteOnly())) {
 | |
|       S.Diag(Arg0->getBeginLoc(),
 | |
|              diag::err_opencl_builtin_pipe_invalid_access_modifier)
 | |
|           << "write_only" << Arg0->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if pipe element type is different from the pointer.
 | |
| static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
 | |
|   const Expr *Arg0 = Call->getArg(0);
 | |
|   const Expr *ArgIdx = Call->getArg(Idx);
 | |
|   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
 | |
|   const QualType EltTy = PipeTy->getElementType();
 | |
|   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
 | |
|   // The Idx argument should be a pointer and the type of the pointer and
 | |
|   // the type of pipe element should also be the same.
 | |
|   if (!ArgTy ||
 | |
|       !S.Context.hasSameType(
 | |
|           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
 | |
|     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
 | |
|         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
 | |
|         << ArgIdx->getType() << ArgIdx->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Performs semantic analysis for the read/write_pipe call.
 | |
| // \param S Reference to the semantic analyzer.
 | |
| // \param Call A pointer to the builtin call.
 | |
| // \return True if a semantic error has been found, false otherwise.
 | |
| static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
 | |
|   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
 | |
|   // functions have two forms.
 | |
|   switch (Call->getNumArgs()) {
 | |
|   case 2:
 | |
|     if (checkOpenCLPipeArg(S, Call))
 | |
|       return true;
 | |
|     // The call with 2 arguments should be
 | |
|     // read/write_pipe(pipe T, T*).
 | |
|     // Check packet type T.
 | |
|     if (checkOpenCLPipePacketType(S, Call, 1))
 | |
|       return true;
 | |
|     break;
 | |
| 
 | |
|   case 4: {
 | |
|     if (checkOpenCLPipeArg(S, Call))
 | |
|       return true;
 | |
|     // The call with 4 arguments should be
 | |
|     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
 | |
|     // Check reserve_id_t.
 | |
|     if (!Call->getArg(1)->getType()->isReserveIDT()) {
 | |
|       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
 | |
|           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
 | |
|           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Check the index.
 | |
|     const Expr *Arg2 = Call->getArg(2);
 | |
|     if (!Arg2->getType()->isIntegerType() &&
 | |
|         !Arg2->getType()->isUnsignedIntegerType()) {
 | |
|       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
 | |
|           << Call->getDirectCallee() << S.Context.UnsignedIntTy
 | |
|           << Arg2->getType() << Arg2->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Check packet type T.
 | |
|     if (checkOpenCLPipePacketType(S, Call, 3))
 | |
|       return true;
 | |
|   } break;
 | |
|   default:
 | |
|     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
 | |
|         << Call->getDirectCallee() << Call->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Performs a semantic analysis on the {work_group_/sub_group_
 | |
| //        /_}reserve_{read/write}_pipe
 | |
| // \param S Reference to the semantic analyzer.
 | |
| // \param Call The call to the builtin function to be analyzed.
 | |
| // \return True if a semantic error was found, false otherwise.
 | |
| static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
 | |
|   if (checkArgCount(S, Call, 2))
 | |
|     return true;
 | |
| 
 | |
|   if (checkOpenCLPipeArg(S, Call))
 | |
|     return true;
 | |
| 
 | |
|   // Check the reserve size.
 | |
|   if (!Call->getArg(1)->getType()->isIntegerType() &&
 | |
|       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
 | |
|     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
 | |
|         << Call->getDirectCallee() << S.Context.UnsignedIntTy
 | |
|         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Since return type of reserve_read/write_pipe built-in function is
 | |
|   // reserve_id_t, which is not defined in the builtin def file , we used int
 | |
|   // as return type and need to override the return type of these functions.
 | |
|   Call->setType(S.Context.OCLReserveIDTy);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Performs a semantic analysis on {work_group_/sub_group_
 | |
| //        /_}commit_{read/write}_pipe
 | |
| // \param S Reference to the semantic analyzer.
 | |
| // \param Call The call to the builtin function to be analyzed.
 | |
| // \return True if a semantic error was found, false otherwise.
 | |
| static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
 | |
|   if (checkArgCount(S, Call, 2))
 | |
|     return true;
 | |
| 
 | |
|   if (checkOpenCLPipeArg(S, Call))
 | |
|     return true;
 | |
| 
 | |
|   // Check reserve_id_t.
 | |
|   if (!Call->getArg(1)->getType()->isReserveIDT()) {
 | |
|     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
 | |
|         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
 | |
|         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Performs a semantic analysis on the call to built-in Pipe
 | |
| //        Query Functions.
 | |
| // \param S Reference to the semantic analyzer.
 | |
| // \param Call The call to the builtin function to be analyzed.
 | |
| // \return True if a semantic error was found, false otherwise.
 | |
| static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
 | |
|   if (checkArgCount(S, Call, 1))
 | |
|     return true;
 | |
| 
 | |
|   if (!Call->getArg(0)->getType()->isPipeType()) {
 | |
|     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
 | |
|         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
 | |
| // Performs semantic analysis for the to_global/local/private call.
 | |
| // \param S Reference to the semantic analyzer.
 | |
| // \param BuiltinID ID of the builtin function.
 | |
| // \param Call A pointer to the builtin call.
 | |
| // \return True if a semantic error has been found, false otherwise.
 | |
| static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
 | |
|                                     CallExpr *Call) {
 | |
|   if (Call->getNumArgs() != 1) {
 | |
|     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num)
 | |
|         << Call->getDirectCallee() << Call->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   auto RT = Call->getArg(0)->getType();
 | |
|   if (!RT->isPointerType() || RT->getPointeeType()
 | |
|       .getAddressSpace() == LangAS::opencl_constant) {
 | |
|     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
 | |
|         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
 | |
|     S.Diag(Call->getArg(0)->getBeginLoc(),
 | |
|            diag::warn_opencl_generic_address_space_arg)
 | |
|         << Call->getDirectCallee()->getNameInfo().getAsString()
 | |
|         << Call->getArg(0)->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   RT = RT->getPointeeType();
 | |
|   auto Qual = RT.getQualifiers();
 | |
|   switch (BuiltinID) {
 | |
|   case Builtin::BIto_global:
 | |
|     Qual.setAddressSpace(LangAS::opencl_global);
 | |
|     break;
 | |
|   case Builtin::BIto_local:
 | |
|     Qual.setAddressSpace(LangAS::opencl_local);
 | |
|     break;
 | |
|   case Builtin::BIto_private:
 | |
|     Qual.setAddressSpace(LangAS::opencl_private);
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Invalid builtin function");
 | |
|   }
 | |
|   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
 | |
|       RT.getUnqualifiedType(), Qual)));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
 | |
|   if (checkArgCount(S, TheCall, 1))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Compute __builtin_launder's parameter type from the argument.
 | |
|   // The parameter type is:
 | |
|   //  * The type of the argument if it's not an array or function type,
 | |
|   //  Otherwise,
 | |
|   //  * The decayed argument type.
 | |
|   QualType ParamTy = [&]() {
 | |
|     QualType ArgTy = TheCall->getArg(0)->getType();
 | |
|     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
 | |
|       return S.Context.getPointerType(Ty->getElementType());
 | |
|     if (ArgTy->isFunctionType()) {
 | |
|       return S.Context.getPointerType(ArgTy);
 | |
|     }
 | |
|     return ArgTy;
 | |
|   }();
 | |
| 
 | |
|   TheCall->setType(ParamTy);
 | |
| 
 | |
|   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
 | |
|     if (!ParamTy->isPointerType())
 | |
|       return 0;
 | |
|     if (ParamTy->isFunctionPointerType())
 | |
|       return 1;
 | |
|     if (ParamTy->isVoidPointerType())
 | |
|       return 2;
 | |
|     return llvm::Optional<unsigned>{};
 | |
|   }();
 | |
|   if (DiagSelect.hasValue()) {
 | |
|     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
 | |
|         << DiagSelect.getValue() << TheCall->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // We either have an incomplete class type, or we have a class template
 | |
|   // whose instantiation has not been forced. Example:
 | |
|   //
 | |
|   //   template <class T> struct Foo { T value; };
 | |
|   //   Foo<int> *p = nullptr;
 | |
|   //   auto *d = __builtin_launder(p);
 | |
|   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
 | |
|                             diag::err_incomplete_type))
 | |
|     return ExprError();
 | |
| 
 | |
|   assert(ParamTy->getPointeeType()->isObjectType() &&
 | |
|          "Unhandled non-object pointer case");
 | |
| 
 | |
|   InitializedEntity Entity =
 | |
|       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
 | |
|   ExprResult Arg =
 | |
|       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
 | |
|   if (Arg.isInvalid())
 | |
|     return ExprError();
 | |
|   TheCall->setArg(0, Arg.get());
 | |
| 
 | |
|   return TheCall;
 | |
| }
 | |
| 
 | |
| // Emit an error and return true if the current architecture is not in the list
 | |
| // of supported architectures.
 | |
| static bool
 | |
| CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
 | |
|                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
 | |
|   llvm::Triple::ArchType CurArch =
 | |
|       S.getASTContext().getTargetInfo().getTriple().getArch();
 | |
|   if (llvm::is_contained(SupportedArchs, CurArch))
 | |
|     return false;
 | |
|   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
 | |
|       << TheCall->getSourceRange();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
 | |
|                                  SourceLocation CallSiteLoc);
 | |
| 
 | |
| ExprResult
 | |
| Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
 | |
|                                CallExpr *TheCall) {
 | |
|   ExprResult TheCallResult(TheCall);
 | |
| 
 | |
|   // Find out if any arguments are required to be integer constant expressions.
 | |
|   unsigned ICEArguments = 0;
 | |
|   ASTContext::GetBuiltinTypeError Error;
 | |
|   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
 | |
|   if (Error != ASTContext::GE_None)
 | |
|     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
 | |
| 
 | |
|   // If any arguments are required to be ICE's, check and diagnose.
 | |
|   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
 | |
|     // Skip arguments not required to be ICE's.
 | |
|     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
 | |
| 
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
 | |
|       return true;
 | |
|     ICEArguments &= ~(1 << ArgNo);
 | |
|   }
 | |
| 
 | |
|   switch (BuiltinID) {
 | |
|   case Builtin::BI__builtin___CFStringMakeConstantString:
 | |
|     assert(TheCall->getNumArgs() == 1 &&
 | |
|            "Wrong # arguments to builtin CFStringMakeConstantString");
 | |
|     if (CheckObjCString(TheCall->getArg(0)))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_ms_va_start:
 | |
|   case Builtin::BI__builtin_stdarg_start:
 | |
|   case Builtin::BI__builtin_va_start:
 | |
|     if (SemaBuiltinVAStart(BuiltinID, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__va_start: {
 | |
|     switch (Context.getTargetInfo().getTriple().getArch()) {
 | |
|     case llvm::Triple::aarch64:
 | |
|     case llvm::Triple::arm:
 | |
|     case llvm::Triple::thumb:
 | |
|       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
 | |
|         return ExprError();
 | |
|       break;
 | |
|     default:
 | |
|       if (SemaBuiltinVAStart(BuiltinID, TheCall))
 | |
|         return ExprError();
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // The acquire, release, and no fence variants are ARM and AArch64 only.
 | |
|   case Builtin::BI_interlockedbittestandset_acq:
 | |
|   case Builtin::BI_interlockedbittestandset_rel:
 | |
|   case Builtin::BI_interlockedbittestandset_nf:
 | |
|   case Builtin::BI_interlockedbittestandreset_acq:
 | |
|   case Builtin::BI_interlockedbittestandreset_rel:
 | |
|   case Builtin::BI_interlockedbittestandreset_nf:
 | |
|     if (CheckBuiltinTargetSupport(
 | |
|             *this, BuiltinID, TheCall,
 | |
|             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
 | |
|       return ExprError();
 | |
|     break;
 | |
| 
 | |
|   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
 | |
|   case Builtin::BI_bittest64:
 | |
|   case Builtin::BI_bittestandcomplement64:
 | |
|   case Builtin::BI_bittestandreset64:
 | |
|   case Builtin::BI_bittestandset64:
 | |
|   case Builtin::BI_interlockedbittestandreset64:
 | |
|   case Builtin::BI_interlockedbittestandset64:
 | |
|     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
 | |
|                                   {llvm::Triple::x86_64, llvm::Triple::arm,
 | |
|                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
 | |
|       return ExprError();
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__builtin_isgreater:
 | |
|   case Builtin::BI__builtin_isgreaterequal:
 | |
|   case Builtin::BI__builtin_isless:
 | |
|   case Builtin::BI__builtin_islessequal:
 | |
|   case Builtin::BI__builtin_islessgreater:
 | |
|   case Builtin::BI__builtin_isunordered:
 | |
|     if (SemaBuiltinUnorderedCompare(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_fpclassify:
 | |
|     if (SemaBuiltinFPClassification(TheCall, 6))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_isfinite:
 | |
|   case Builtin::BI__builtin_isinf:
 | |
|   case Builtin::BI__builtin_isinf_sign:
 | |
|   case Builtin::BI__builtin_isnan:
 | |
|   case Builtin::BI__builtin_isnormal:
 | |
|   case Builtin::BI__builtin_signbit:
 | |
|   case Builtin::BI__builtin_signbitf:
 | |
|   case Builtin::BI__builtin_signbitl:
 | |
|     if (SemaBuiltinFPClassification(TheCall, 1))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_shufflevector:
 | |
|     return SemaBuiltinShuffleVector(TheCall);
 | |
|     // TheCall will be freed by the smart pointer here, but that's fine, since
 | |
|     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
 | |
|   case Builtin::BI__builtin_prefetch:
 | |
|     if (SemaBuiltinPrefetch(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_alloca_with_align:
 | |
|     if (SemaBuiltinAllocaWithAlign(TheCall))
 | |
|       return ExprError();
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Builtin::BI__builtin_alloca:
 | |
|     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
 | |
|         << TheCall->getDirectCallee();
 | |
|     break;
 | |
|   case Builtin::BI__assume:
 | |
|   case Builtin::BI__builtin_assume:
 | |
|     if (SemaBuiltinAssume(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_assume_aligned:
 | |
|     if (SemaBuiltinAssumeAligned(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_dynamic_object_size:
 | |
|   case Builtin::BI__builtin_object_size:
 | |
|     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_longjmp:
 | |
|     if (SemaBuiltinLongjmp(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_setjmp:
 | |
|     if (SemaBuiltinSetjmp(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI_setjmp:
 | |
|   case Builtin::BI_setjmpex:
 | |
|     if (checkArgCount(*this, TheCall, 1))
 | |
|       return true;
 | |
|     break;
 | |
|   case Builtin::BI__builtin_classify_type:
 | |
|     if (checkArgCount(*this, TheCall, 1)) return true;
 | |
|     TheCall->setType(Context.IntTy);
 | |
|     break;
 | |
|   case Builtin::BI__builtin_constant_p: {
 | |
|     if (checkArgCount(*this, TheCall, 1)) return true;
 | |
|     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
 | |
|     if (Arg.isInvalid()) return true;
 | |
|     TheCall->setArg(0, Arg.get());
 | |
|     TheCall->setType(Context.IntTy);
 | |
|     break;
 | |
|   }
 | |
|   case Builtin::BI__builtin_launder:
 | |
|     return SemaBuiltinLaunder(*this, TheCall);
 | |
|   case Builtin::BI__sync_fetch_and_add:
 | |
|   case Builtin::BI__sync_fetch_and_add_1:
 | |
|   case Builtin::BI__sync_fetch_and_add_2:
 | |
|   case Builtin::BI__sync_fetch_and_add_4:
 | |
|   case Builtin::BI__sync_fetch_and_add_8:
 | |
|   case Builtin::BI__sync_fetch_and_add_16:
 | |
|   case Builtin::BI__sync_fetch_and_sub:
 | |
|   case Builtin::BI__sync_fetch_and_sub_1:
 | |
|   case Builtin::BI__sync_fetch_and_sub_2:
 | |
|   case Builtin::BI__sync_fetch_and_sub_4:
 | |
|   case Builtin::BI__sync_fetch_and_sub_8:
 | |
|   case Builtin::BI__sync_fetch_and_sub_16:
 | |
|   case Builtin::BI__sync_fetch_and_or:
 | |
|   case Builtin::BI__sync_fetch_and_or_1:
 | |
|   case Builtin::BI__sync_fetch_and_or_2:
 | |
|   case Builtin::BI__sync_fetch_and_or_4:
 | |
|   case Builtin::BI__sync_fetch_and_or_8:
 | |
|   case Builtin::BI__sync_fetch_and_or_16:
 | |
|   case Builtin::BI__sync_fetch_and_and:
 | |
|   case Builtin::BI__sync_fetch_and_and_1:
 | |
|   case Builtin::BI__sync_fetch_and_and_2:
 | |
|   case Builtin::BI__sync_fetch_and_and_4:
 | |
|   case Builtin::BI__sync_fetch_and_and_8:
 | |
|   case Builtin::BI__sync_fetch_and_and_16:
 | |
|   case Builtin::BI__sync_fetch_and_xor:
 | |
|   case Builtin::BI__sync_fetch_and_xor_1:
 | |
|   case Builtin::BI__sync_fetch_and_xor_2:
 | |
|   case Builtin::BI__sync_fetch_and_xor_4:
 | |
|   case Builtin::BI__sync_fetch_and_xor_8:
 | |
|   case Builtin::BI__sync_fetch_and_xor_16:
 | |
|   case Builtin::BI__sync_fetch_and_nand:
 | |
|   case Builtin::BI__sync_fetch_and_nand_1:
 | |
|   case Builtin::BI__sync_fetch_and_nand_2:
 | |
|   case Builtin::BI__sync_fetch_and_nand_4:
 | |
|   case Builtin::BI__sync_fetch_and_nand_8:
 | |
|   case Builtin::BI__sync_fetch_and_nand_16:
 | |
|   case Builtin::BI__sync_add_and_fetch:
 | |
|   case Builtin::BI__sync_add_and_fetch_1:
 | |
|   case Builtin::BI__sync_add_and_fetch_2:
 | |
|   case Builtin::BI__sync_add_and_fetch_4:
 | |
|   case Builtin::BI__sync_add_and_fetch_8:
 | |
|   case Builtin::BI__sync_add_and_fetch_16:
 | |
|   case Builtin::BI__sync_sub_and_fetch:
 | |
|   case Builtin::BI__sync_sub_and_fetch_1:
 | |
|   case Builtin::BI__sync_sub_and_fetch_2:
 | |
|   case Builtin::BI__sync_sub_and_fetch_4:
 | |
|   case Builtin::BI__sync_sub_and_fetch_8:
 | |
|   case Builtin::BI__sync_sub_and_fetch_16:
 | |
|   case Builtin::BI__sync_and_and_fetch:
 | |
|   case Builtin::BI__sync_and_and_fetch_1:
 | |
|   case Builtin::BI__sync_and_and_fetch_2:
 | |
|   case Builtin::BI__sync_and_and_fetch_4:
 | |
|   case Builtin::BI__sync_and_and_fetch_8:
 | |
|   case Builtin::BI__sync_and_and_fetch_16:
 | |
|   case Builtin::BI__sync_or_and_fetch:
 | |
|   case Builtin::BI__sync_or_and_fetch_1:
 | |
|   case Builtin::BI__sync_or_and_fetch_2:
 | |
|   case Builtin::BI__sync_or_and_fetch_4:
 | |
|   case Builtin::BI__sync_or_and_fetch_8:
 | |
|   case Builtin::BI__sync_or_and_fetch_16:
 | |
|   case Builtin::BI__sync_xor_and_fetch:
 | |
|   case Builtin::BI__sync_xor_and_fetch_1:
 | |
|   case Builtin::BI__sync_xor_and_fetch_2:
 | |
|   case Builtin::BI__sync_xor_and_fetch_4:
 | |
|   case Builtin::BI__sync_xor_and_fetch_8:
 | |
|   case Builtin::BI__sync_xor_and_fetch_16:
 | |
|   case Builtin::BI__sync_nand_and_fetch:
 | |
|   case Builtin::BI__sync_nand_and_fetch_1:
 | |
|   case Builtin::BI__sync_nand_and_fetch_2:
 | |
|   case Builtin::BI__sync_nand_and_fetch_4:
 | |
|   case Builtin::BI__sync_nand_and_fetch_8:
 | |
|   case Builtin::BI__sync_nand_and_fetch_16:
 | |
|   case Builtin::BI__sync_val_compare_and_swap:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_1:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_2:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_4:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_8:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_16:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_1:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_2:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_4:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_8:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_16:
 | |
|   case Builtin::BI__sync_lock_test_and_set:
 | |
|   case Builtin::BI__sync_lock_test_and_set_1:
 | |
|   case Builtin::BI__sync_lock_test_and_set_2:
 | |
|   case Builtin::BI__sync_lock_test_and_set_4:
 | |
|   case Builtin::BI__sync_lock_test_and_set_8:
 | |
|   case Builtin::BI__sync_lock_test_and_set_16:
 | |
|   case Builtin::BI__sync_lock_release:
 | |
|   case Builtin::BI__sync_lock_release_1:
 | |
|   case Builtin::BI__sync_lock_release_2:
 | |
|   case Builtin::BI__sync_lock_release_4:
 | |
|   case Builtin::BI__sync_lock_release_8:
 | |
|   case Builtin::BI__sync_lock_release_16:
 | |
|   case Builtin::BI__sync_swap:
 | |
|   case Builtin::BI__sync_swap_1:
 | |
|   case Builtin::BI__sync_swap_2:
 | |
|   case Builtin::BI__sync_swap_4:
 | |
|   case Builtin::BI__sync_swap_8:
 | |
|   case Builtin::BI__sync_swap_16:
 | |
|     return SemaBuiltinAtomicOverloaded(TheCallResult);
 | |
|   case Builtin::BI__sync_synchronize:
 | |
|     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
 | |
|         << TheCall->getCallee()->getSourceRange();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_nontemporal_load:
 | |
|   case Builtin::BI__builtin_nontemporal_store:
 | |
|     return SemaBuiltinNontemporalOverloaded(TheCallResult);
 | |
|   case Builtin::BI__builtin_memcpy_inline: {
 | |
|     // __builtin_memcpy_inline size argument is a constant by definition.
 | |
|     if (TheCall->getArg(2)->EvaluateKnownConstInt(Context).isNullValue())
 | |
|       break;
 | |
|     CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
 | |
|     CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
 | |
|     break;
 | |
|   }
 | |
| #define BUILTIN(ID, TYPE, ATTRS)
 | |
| #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
 | |
|   case Builtin::BI##ID: \
 | |
|     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
 | |
| #include "clang/Basic/Builtins.def"
 | |
|   case Builtin::BI__annotation:
 | |
|     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_annotation:
 | |
|     if (SemaBuiltinAnnotation(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_addressof:
 | |
|     if (SemaBuiltinAddressof(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_is_aligned:
 | |
|   case Builtin::BI__builtin_align_up:
 | |
|   case Builtin::BI__builtin_align_down:
 | |
|     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_add_overflow:
 | |
|   case Builtin::BI__builtin_sub_overflow:
 | |
|   case Builtin::BI__builtin_mul_overflow:
 | |
|     if (SemaBuiltinOverflow(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_operator_new:
 | |
|   case Builtin::BI__builtin_operator_delete: {
 | |
|     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
 | |
|     ExprResult Res =
 | |
|         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
 | |
|     if (Res.isInvalid())
 | |
|       CorrectDelayedTyposInExpr(TheCallResult.get());
 | |
|     return Res;
 | |
|   }
 | |
|   case Builtin::BI__builtin_dump_struct: {
 | |
|     // We first want to ensure we are called with 2 arguments
 | |
|     if (checkArgCount(*this, TheCall, 2))
 | |
|       return ExprError();
 | |
|     // Ensure that the first argument is of type 'struct XX *'
 | |
|     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
 | |
|     const QualType PtrArgType = PtrArg->getType();
 | |
|     if (!PtrArgType->isPointerType() ||
 | |
|         !PtrArgType->getPointeeType()->isRecordType()) {
 | |
|       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | |
|           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
 | |
|           << "structure pointer";
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     // Ensure that the second argument is of type 'FunctionType'
 | |
|     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
 | |
|     const QualType FnPtrArgType = FnPtrArg->getType();
 | |
|     if (!FnPtrArgType->isPointerType()) {
 | |
|       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | |
|           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
 | |
|           << FnPtrArgType << "'int (*)(const char *, ...)'";
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     const auto *FuncType =
 | |
|         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
 | |
| 
 | |
|     if (!FuncType) {
 | |
|       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | |
|           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
 | |
|           << FnPtrArgType << "'int (*)(const char *, ...)'";
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
 | |
|       if (!FT->getNumParams()) {
 | |
|         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | |
|             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
 | |
|             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
 | |
|         return ExprError();
 | |
|       }
 | |
|       QualType PT = FT->getParamType(0);
 | |
|       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
 | |
|           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
 | |
|           !PT->getPointeeType().isConstQualified()) {
 | |
|         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | |
|             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
 | |
|             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
 | |
|         return ExprError();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     TheCall->setType(Context.IntTy);
 | |
|     break;
 | |
|   }
 | |
|   case Builtin::BI__builtin_preserve_access_index:
 | |
|     if (SemaBuiltinPreserveAI(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_call_with_static_chain:
 | |
|     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__exception_code:
 | |
|   case Builtin::BI_exception_code:
 | |
|     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
 | |
|                                  diag::err_seh___except_block))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__exception_info:
 | |
|   case Builtin::BI_exception_info:
 | |
|     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
 | |
|                                  diag::err_seh___except_filter))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__GetExceptionInfo:
 | |
|     if (checkArgCount(*this, TheCall, 1))
 | |
|       return ExprError();
 | |
| 
 | |
|     if (CheckCXXThrowOperand(
 | |
|             TheCall->getBeginLoc(),
 | |
|             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
 | |
|             TheCall))
 | |
|       return ExprError();
 | |
| 
 | |
|     TheCall->setType(Context.VoidPtrTy);
 | |
|     break;
 | |
|   // OpenCL v2.0, s6.13.16 - Pipe functions
 | |
|   case Builtin::BIread_pipe:
 | |
|   case Builtin::BIwrite_pipe:
 | |
|     // Since those two functions are declared with var args, we need a semantic
 | |
|     // check for the argument.
 | |
|     if (SemaBuiltinRWPipe(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BIreserve_read_pipe:
 | |
|   case Builtin::BIreserve_write_pipe:
 | |
|   case Builtin::BIwork_group_reserve_read_pipe:
 | |
|   case Builtin::BIwork_group_reserve_write_pipe:
 | |
|     if (SemaBuiltinReserveRWPipe(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BIsub_group_reserve_read_pipe:
 | |
|   case Builtin::BIsub_group_reserve_write_pipe:
 | |
|     if (checkOpenCLSubgroupExt(*this, TheCall) ||
 | |
|         SemaBuiltinReserveRWPipe(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BIcommit_read_pipe:
 | |
|   case Builtin::BIcommit_write_pipe:
 | |
|   case Builtin::BIwork_group_commit_read_pipe:
 | |
|   case Builtin::BIwork_group_commit_write_pipe:
 | |
|     if (SemaBuiltinCommitRWPipe(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BIsub_group_commit_read_pipe:
 | |
|   case Builtin::BIsub_group_commit_write_pipe:
 | |
|     if (checkOpenCLSubgroupExt(*this, TheCall) ||
 | |
|         SemaBuiltinCommitRWPipe(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BIget_pipe_num_packets:
 | |
|   case Builtin::BIget_pipe_max_packets:
 | |
|     if (SemaBuiltinPipePackets(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BIto_global:
 | |
|   case Builtin::BIto_local:
 | |
|   case Builtin::BIto_private:
 | |
|     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
 | |
|   case Builtin::BIenqueue_kernel:
 | |
|     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BIget_kernel_work_group_size:
 | |
|   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
 | |
|     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
 | |
|   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
 | |
|     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_os_log_format:
 | |
|     Cleanup.setExprNeedsCleanups(true);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Builtin::BI__builtin_os_log_format_buffer_size:
 | |
|     if (SemaBuiltinOSLogFormat(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_frame_address:
 | |
|   case Builtin::BI__builtin_return_address:
 | |
|     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
 | |
|       return ExprError();
 | |
| 
 | |
|     // -Wframe-address warning if non-zero passed to builtin
 | |
|     // return/frame address.
 | |
|     Expr::EvalResult Result;
 | |
|     if (TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
 | |
|         Result.Val.getInt() != 0)
 | |
|       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
 | |
|           << ((BuiltinID == Builtin::BI__builtin_return_address)
 | |
|                   ? "__builtin_return_address"
 | |
|                   : "__builtin_frame_address")
 | |
|           << TheCall->getSourceRange();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Since the target specific builtins for each arch overlap, only check those
 | |
|   // of the arch we are compiling for.
 | |
|   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
 | |
|     switch (Context.getTargetInfo().getTriple().getArch()) {
 | |
|       case llvm::Triple::arm:
 | |
|       case llvm::Triple::armeb:
 | |
|       case llvm::Triple::thumb:
 | |
|       case llvm::Triple::thumbeb:
 | |
|         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       case llvm::Triple::aarch64:
 | |
|       case llvm::Triple::aarch64_32:
 | |
|       case llvm::Triple::aarch64_be:
 | |
|         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       case llvm::Triple::bpfeb:
 | |
|       case llvm::Triple::bpfel:
 | |
|         if (CheckBPFBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       case llvm::Triple::hexagon:
 | |
|         if (CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       case llvm::Triple::mips:
 | |
|       case llvm::Triple::mipsel:
 | |
|       case llvm::Triple::mips64:
 | |
|       case llvm::Triple::mips64el:
 | |
|         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       case llvm::Triple::systemz:
 | |
|         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       case llvm::Triple::x86:
 | |
|       case llvm::Triple::x86_64:
 | |
|         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       case llvm::Triple::ppc:
 | |
|       case llvm::Triple::ppc64:
 | |
|       case llvm::Triple::ppc64le:
 | |
|         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TheCallResult;
 | |
| }
 | |
| 
 | |
| // Get the valid immediate range for the specified NEON type code.
 | |
| static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
 | |
|   NeonTypeFlags Type(t);
 | |
|   int IsQuad = ForceQuad ? true : Type.isQuad();
 | |
|   switch (Type.getEltType()) {
 | |
|   case NeonTypeFlags::Int8:
 | |
|   case NeonTypeFlags::Poly8:
 | |
|     return shift ? 7 : (8 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Int16:
 | |
|   case NeonTypeFlags::Poly16:
 | |
|     return shift ? 15 : (4 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Int32:
 | |
|     return shift ? 31 : (2 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Int64:
 | |
|   case NeonTypeFlags::Poly64:
 | |
|     return shift ? 63 : (1 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Poly128:
 | |
|     return shift ? 127 : (1 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Float16:
 | |
|     assert(!shift && "cannot shift float types!");
 | |
|     return (4 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Float32:
 | |
|     assert(!shift && "cannot shift float types!");
 | |
|     return (2 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Float64:
 | |
|     assert(!shift && "cannot shift float types!");
 | |
|     return (1 << IsQuad) - 1;
 | |
|   }
 | |
|   llvm_unreachable("Invalid NeonTypeFlag!");
 | |
| }
 | |
| 
 | |
| /// getNeonEltType - Return the QualType corresponding to the elements of
 | |
| /// the vector type specified by the NeonTypeFlags.  This is used to check
 | |
| /// the pointer arguments for Neon load/store intrinsics.
 | |
| static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
 | |
|                                bool IsPolyUnsigned, bool IsInt64Long) {
 | |
|   switch (Flags.getEltType()) {
 | |
|   case NeonTypeFlags::Int8:
 | |
|     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
 | |
|   case NeonTypeFlags::Int16:
 | |
|     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
 | |
|   case NeonTypeFlags::Int32:
 | |
|     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
 | |
|   case NeonTypeFlags::Int64:
 | |
|     if (IsInt64Long)
 | |
|       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
 | |
|     else
 | |
|       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
 | |
|                                 : Context.LongLongTy;
 | |
|   case NeonTypeFlags::Poly8:
 | |
|     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
 | |
|   case NeonTypeFlags::Poly16:
 | |
|     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
 | |
|   case NeonTypeFlags::Poly64:
 | |
|     if (IsInt64Long)
 | |
|       return Context.UnsignedLongTy;
 | |
|     else
 | |
|       return Context.UnsignedLongLongTy;
 | |
|   case NeonTypeFlags::Poly128:
 | |
|     break;
 | |
|   case NeonTypeFlags::Float16:
 | |
|     return Context.HalfTy;
 | |
|   case NeonTypeFlags::Float32:
 | |
|     return Context.FloatTy;
 | |
|   case NeonTypeFlags::Float64:
 | |
|     return Context.DoubleTy;
 | |
|   }
 | |
|   llvm_unreachable("Invalid NeonTypeFlag!");
 | |
| }
 | |
| 
 | |
| bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   llvm::APSInt Result;
 | |
|   uint64_t mask = 0;
 | |
|   unsigned TV = 0;
 | |
|   int PtrArgNum = -1;
 | |
|   bool HasConstPtr = false;
 | |
|   switch (BuiltinID) {
 | |
| #define GET_NEON_OVERLOAD_CHECK
 | |
| #include "clang/Basic/arm_neon.inc"
 | |
| #include "clang/Basic/arm_fp16.inc"
 | |
| #undef GET_NEON_OVERLOAD_CHECK
 | |
|   }
 | |
| 
 | |
|   // For NEON intrinsics which are overloaded on vector element type, validate
 | |
|   // the immediate which specifies which variant to emit.
 | |
|   unsigned ImmArg = TheCall->getNumArgs()-1;
 | |
|   if (mask) {
 | |
|     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
 | |
|       return true;
 | |
| 
 | |
|     TV = Result.getLimitedValue(64);
 | |
|     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
 | |
|              << TheCall->getArg(ImmArg)->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   if (PtrArgNum >= 0) {
 | |
|     // Check that pointer arguments have the specified type.
 | |
|     Expr *Arg = TheCall->getArg(PtrArgNum);
 | |
|     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
 | |
|       Arg = ICE->getSubExpr();
 | |
|     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
 | |
|     QualType RHSTy = RHS.get()->getType();
 | |
| 
 | |
|     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
 | |
|     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
 | |
|                           Arch == llvm::Triple::aarch64_32 ||
 | |
|                           Arch == llvm::Triple::aarch64_be;
 | |
|     bool IsInt64Long =
 | |
|         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
 | |
|     QualType EltTy =
 | |
|         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
 | |
|     if (HasConstPtr)
 | |
|       EltTy = EltTy.withConst();
 | |
|     QualType LHSTy = Context.getPointerType(EltTy);
 | |
|     AssignConvertType ConvTy;
 | |
|     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
 | |
|     if (RHS.isInvalid())
 | |
|       return true;
 | |
|     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
 | |
|                                  RHS.get(), AA_Assigning))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // For NEON intrinsics which take an immediate value as part of the
 | |
|   // instruction, range check them here.
 | |
|   unsigned i = 0, l = 0, u = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default:
 | |
|     return false;
 | |
|   #define GET_NEON_IMMEDIATE_CHECK
 | |
|   #include "clang/Basic/arm_neon.inc"
 | |
|   #include "clang/Basic/arm_fp16.inc"
 | |
|   #undef GET_NEON_IMMEDIATE_CHECK
 | |
|   }
 | |
| 
 | |
|   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   switch (BuiltinID) {
 | |
|   default:
 | |
|     return false;
 | |
|   #include "clang/Basic/arm_mve_builtin_sema.inc"
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Sema::CheckCDEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   bool Err = false;
 | |
|   switch (BuiltinID) {
 | |
|   default:
 | |
|     return false;
 | |
| #include "clang/Basic/arm_cde_builtin_sema.inc"
 | |
|   }
 | |
| 
 | |
|   if (Err)
 | |
|     return true;
 | |
| 
 | |
|   return CheckARMCoprocessorImmediate(TheCall->getArg(0), /*WantCDE*/ true);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckARMCoprocessorImmediate(const Expr *CoprocArg, bool WantCDE) {
 | |
|   if (isConstantEvaluated())
 | |
|     return false;
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   llvm::APSInt CoprocNoAP;
 | |
|   bool IsICE = CoprocArg->isIntegerConstantExpr(CoprocNoAP, Context);
 | |
|   (void)IsICE;
 | |
|   assert(IsICE && "Coprocossor immediate is not a constant expression");
 | |
|   int64_t CoprocNo = CoprocNoAP.getExtValue();
 | |
|   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
 | |
| 
 | |
|   uint32_t CDECoprocMask = Context.getTargetInfo().getARMCDECoprocMask();
 | |
|   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
 | |
| 
 | |
|   if (IsCDECoproc != WantCDE)
 | |
|     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
 | |
|            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
 | |
|                                         unsigned MaxWidth) {
 | |
|   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
 | |
|           BuiltinID == ARM::BI__builtin_arm_ldaex ||
 | |
|           BuiltinID == ARM::BI__builtin_arm_strex ||
 | |
|           BuiltinID == ARM::BI__builtin_arm_stlex ||
 | |
|           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
 | |
|           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
 | |
|           BuiltinID == AArch64::BI__builtin_arm_strex ||
 | |
|           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
 | |
|          "unexpected ARM builtin");
 | |
|   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
 | |
|                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
 | |
|                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
 | |
|                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
 | |
| 
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
| 
 | |
|   // Ensure that we have the proper number of arguments.
 | |
|   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
 | |
|     return true;
 | |
| 
 | |
|   // Inspect the pointer argument of the atomic builtin.  This should always be
 | |
|   // a pointer type, whose element is an integral scalar or pointer type.
 | |
|   // Because it is a pointer type, we don't have to worry about any implicit
 | |
|   // casts here.
 | |
|   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
 | |
|   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
 | |
|   if (PointerArgRes.isInvalid())
 | |
|     return true;
 | |
|   PointerArg = PointerArgRes.get();
 | |
| 
 | |
|   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
 | |
|   if (!pointerType) {
 | |
|     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
 | |
|         << PointerArg->getType() << PointerArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
 | |
|   // task is to insert the appropriate casts into the AST. First work out just
 | |
|   // what the appropriate type is.
 | |
|   QualType ValType = pointerType->getPointeeType();
 | |
|   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
 | |
|   if (IsLdrex)
 | |
|     AddrType.addConst();
 | |
| 
 | |
|   // Issue a warning if the cast is dodgy.
 | |
|   CastKind CastNeeded = CK_NoOp;
 | |
|   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
 | |
|     CastNeeded = CK_BitCast;
 | |
|     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
 | |
|         << PointerArg->getType() << Context.getPointerType(AddrType)
 | |
|         << AA_Passing << PointerArg->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   // Finally, do the cast and replace the argument with the corrected version.
 | |
|   AddrType = Context.getPointerType(AddrType);
 | |
|   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
 | |
|   if (PointerArgRes.isInvalid())
 | |
|     return true;
 | |
|   PointerArg = PointerArgRes.get();
 | |
| 
 | |
|   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
 | |
| 
 | |
|   // In general, we allow ints, floats and pointers to be loaded and stored.
 | |
|   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
 | |
|       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
 | |
|     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
 | |
|         << PointerArg->getType() << PointerArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // But ARM doesn't have instructions to deal with 128-bit versions.
 | |
|   if (Context.getTypeSize(ValType) > MaxWidth) {
 | |
|     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
 | |
|     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
 | |
|         << PointerArg->getType() << PointerArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   switch (ValType.getObjCLifetime()) {
 | |
|   case Qualifiers::OCL_None:
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     // okay
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Weak:
 | |
|   case Qualifiers::OCL_Strong:
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
 | |
|         << ValType << PointerArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (IsLdrex) {
 | |
|     TheCall->setType(ValType);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Initialize the argument to be stored.
 | |
|   ExprResult ValArg = TheCall->getArg(0);
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeParameter(
 | |
|       Context, ValType, /*consume*/ false);
 | |
|   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
 | |
|   if (ValArg.isInvalid())
 | |
|     return true;
 | |
|   TheCall->setArg(0, ValArg.get());
 | |
| 
 | |
|   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
 | |
|   // but the custom checker bypasses all default analysis.
 | |
|   TheCall->setType(Context.IntTy);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
 | |
|       BuiltinID == ARM::BI__builtin_arm_ldaex ||
 | |
|       BuiltinID == ARM::BI__builtin_arm_strex ||
 | |
|       BuiltinID == ARM::BI__builtin_arm_stlex) {
 | |
|     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
 | |
|   }
 | |
| 
 | |
|   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
 | |
|       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
 | |
|   }
 | |
| 
 | |
|   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
 | |
|       BuiltinID == ARM::BI__builtin_arm_wsr64)
 | |
|     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
 | |
| 
 | |
|   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
 | |
|       BuiltinID == ARM::BI__builtin_arm_rsrp ||
 | |
|       BuiltinID == ARM::BI__builtin_arm_wsr ||
 | |
|       BuiltinID == ARM::BI__builtin_arm_wsrp)
 | |
|     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
 | |
| 
 | |
|   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|     return true;
 | |
|   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|     return true;
 | |
|   if (CheckCDEBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|     return true;
 | |
| 
 | |
|   // For intrinsics which take an immediate value as part of the instruction,
 | |
|   // range check them here.
 | |
|   // FIXME: VFP Intrinsics should error if VFP not present.
 | |
|   switch (BuiltinID) {
 | |
|   default: return false;
 | |
|   case ARM::BI__builtin_arm_ssat:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
 | |
|   case ARM::BI__builtin_arm_usat:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
 | |
|   case ARM::BI__builtin_arm_ssat16:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
 | |
|   case ARM::BI__builtin_arm_usat16:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
 | |
|   case ARM::BI__builtin_arm_vcvtr_f:
 | |
|   case ARM::BI__builtin_arm_vcvtr_d:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
 | |
|   case ARM::BI__builtin_arm_dmb:
 | |
|   case ARM::BI__builtin_arm_dsb:
 | |
|   case ARM::BI__builtin_arm_isb:
 | |
|   case ARM::BI__builtin_arm_dbg:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
 | |
|   case ARM::BI__builtin_arm_cdp:
 | |
|   case ARM::BI__builtin_arm_cdp2:
 | |
|   case ARM::BI__builtin_arm_mcr:
 | |
|   case ARM::BI__builtin_arm_mcr2:
 | |
|   case ARM::BI__builtin_arm_mrc:
 | |
|   case ARM::BI__builtin_arm_mrc2:
 | |
|   case ARM::BI__builtin_arm_mcrr:
 | |
|   case ARM::BI__builtin_arm_mcrr2:
 | |
|   case ARM::BI__builtin_arm_mrrc:
 | |
|   case ARM::BI__builtin_arm_mrrc2:
 | |
|   case ARM::BI__builtin_arm_ldc:
 | |
|   case ARM::BI__builtin_arm_ldcl:
 | |
|   case ARM::BI__builtin_arm_ldc2:
 | |
|   case ARM::BI__builtin_arm_ldc2l:
 | |
|   case ARM::BI__builtin_arm_stc:
 | |
|   case ARM::BI__builtin_arm_stcl:
 | |
|   case ARM::BI__builtin_arm_stc2:
 | |
|   case ARM::BI__builtin_arm_stc2l:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
 | |
|            CheckARMCoprocessorImmediate(TheCall->getArg(0), /*WantCDE*/ false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
 | |
|                                          CallExpr *TheCall) {
 | |
|   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_strex ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_stlex) {
 | |
|     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
 | |
|   }
 | |
| 
 | |
|   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
 | |
|       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
 | |
|       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
 | |
|       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
 | |
|   }
 | |
| 
 | |
|   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_wsr64)
 | |
|     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
 | |
| 
 | |
|   // Memory Tagging Extensions (MTE) Intrinsics
 | |
|   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_addg ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_gmi ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_ldg ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_stg ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_subp) {
 | |
|     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
 | |
|   }
 | |
| 
 | |
|   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_wsr ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_wsrp)
 | |
|     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
 | |
| 
 | |
|   // Only check the valid encoding range. Any constant in this range would be
 | |
|   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
 | |
|   // an exception for incorrect registers. This matches MSVC behavior.
 | |
|   if (BuiltinID == AArch64::BI_ReadStatusReg ||
 | |
|       BuiltinID == AArch64::BI_WriteStatusReg)
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
 | |
| 
 | |
|   if (BuiltinID == AArch64::BI__getReg)
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
 | |
| 
 | |
|   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|     return true;
 | |
| 
 | |
|   // For intrinsics which take an immediate value as part of the instruction,
 | |
|   // range check them here.
 | |
|   unsigned i = 0, l = 0, u = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default: return false;
 | |
|   case AArch64::BI__builtin_arm_dmb:
 | |
|   case AArch64::BI__builtin_arm_dsb:
 | |
|   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
 | |
|   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
 | |
|   }
 | |
| 
 | |
|   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
 | |
|                                        CallExpr *TheCall) {
 | |
|   assert(BuiltinID == BPF::BI__builtin_preserve_field_info &&
 | |
|          "unexpected ARM builtin");
 | |
| 
 | |
|   if (checkArgCount(*this, TheCall, 2))
 | |
|     return true;
 | |
| 
 | |
|   // The first argument needs to be a record field access.
 | |
|   // If it is an array element access, we delay decision
 | |
|   // to BPF backend to check whether the access is a
 | |
|   // field access or not.
 | |
|   Expr *Arg = TheCall->getArg(0);
 | |
|   if (Arg->getType()->getAsPlaceholderType() ||
 | |
|       (Arg->IgnoreParens()->getObjectKind() != OK_BitField &&
 | |
|        !dyn_cast<MemberExpr>(Arg->IgnoreParens()) &&
 | |
|        !dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()))) {
 | |
|     Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_field)
 | |
|         << 1 << Arg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The second argument needs to be a constant int
 | |
|   llvm::APSInt Value;
 | |
|   if (!TheCall->getArg(1)->isIntegerConstantExpr(Value, Context)) {
 | |
|     Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_const)
 | |
|         << 2 << Arg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   TheCall->setType(Context.UnsignedIntTy);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   struct ArgInfo {
 | |
|     uint8_t OpNum;
 | |
|     bool IsSigned;
 | |
|     uint8_t BitWidth;
 | |
|     uint8_t Align;
 | |
|   };
 | |
|   struct BuiltinInfo {
 | |
|     unsigned BuiltinID;
 | |
|     ArgInfo Infos[2];
 | |
|   };
 | |
| 
 | |
|   static BuiltinInfo Infos[] = {
 | |
|     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
 | |
|     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
 | |
|     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
 | |
|     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
 | |
|     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
 | |
|     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
 | |
|     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
 | |
|     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
 | |
|     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
 | |
|     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
 | |
|     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
 | |
| 
 | |
|     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
 | |
| 
 | |
|     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
 | |
|                                                       {{ 1, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
 | |
|                                                       {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
 | |
|                                                        { 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
 | |
|                                                        { 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
 | |
|                                                        { 3, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
 | |
|                                                        { 3, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
 | |
|                                                       {{ 2, false, 4,  0 },
 | |
|                                                        { 3, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
 | |
|                                                       {{ 2, false, 4,  0 },
 | |
|                                                        { 3, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
 | |
|                                                       {{ 2, false, 4,  0 },
 | |
|                                                        { 3, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
 | |
|                                                       {{ 2, false, 4,  0 },
 | |
|                                                        { 3, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
 | |
|                                                        { 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
 | |
|                                                        { 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
 | |
|                                                       {{ 1, false, 4,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
 | |
|                                                       {{ 1, false, 4,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
 | |
|                                                       {{ 3, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
 | |
|                                                       {{ 3, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
 | |
|     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
 | |
|                                                       {{ 3, false, 1,  0 }} },
 | |
|   };
 | |
| 
 | |
|   // Use a dynamically initialized static to sort the table exactly once on
 | |
|   // first run.
 | |
|   static const bool SortOnce =
 | |
|       (llvm::sort(Infos,
 | |
|                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
 | |
|                    return LHS.BuiltinID < RHS.BuiltinID;
 | |
|                  }),
 | |
|        true);
 | |
|   (void)SortOnce;
 | |
| 
 | |
|   const BuiltinInfo *F = llvm::partition_point(
 | |
|       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
 | |
|   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
 | |
|     return false;
 | |
| 
 | |
|   bool Error = false;
 | |
| 
 | |
|   for (const ArgInfo &A : F->Infos) {
 | |
|     // Ignore empty ArgInfo elements.
 | |
|     if (A.BitWidth == 0)
 | |
|       continue;
 | |
| 
 | |
|     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
 | |
|     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
 | |
|     if (!A.Align) {
 | |
|       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
 | |
|     } else {
 | |
|       unsigned M = 1 << A.Align;
 | |
|       Min *= M;
 | |
|       Max *= M;
 | |
|       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
 | |
|                SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
 | |
|     }
 | |
|   }
 | |
|   return Error;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
 | |
|                                            CallExpr *TheCall) {
 | |
|   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   return CheckMipsBuiltinCpu(BuiltinID, TheCall) ||
 | |
|          CheckMipsBuiltinArgument(BuiltinID, TheCall);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckMipsBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   const TargetInfo &TI = Context.getTargetInfo();
 | |
| 
 | |
|   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
 | |
|       BuiltinID <= Mips::BI__builtin_mips_lwx) {
 | |
|     if (!TI.hasFeature("dsp"))
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
 | |
|   }
 | |
| 
 | |
|   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
 | |
|       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
 | |
|     if (!TI.hasFeature("dspr2"))
 | |
|       return Diag(TheCall->getBeginLoc(),
 | |
|                   diag::err_mips_builtin_requires_dspr2);
 | |
|   }
 | |
| 
 | |
|   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
 | |
|       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
 | |
|     if (!TI.hasFeature("msa"))
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // CheckMipsBuiltinArgument - Checks the constant value passed to the
 | |
| // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
 | |
| // ordering for DSP is unspecified. MSA is ordered by the data format used
 | |
| // by the underlying instruction i.e., df/m, df/n and then by size.
 | |
| //
 | |
| // FIXME: The size tests here should instead be tablegen'd along with the
 | |
| //        definitions from include/clang/Basic/BuiltinsMips.def.
 | |
| // FIXME: GCC is strict on signedness for some of these intrinsics, we should
 | |
| //        be too.
 | |
| bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   unsigned i = 0, l = 0, u = 0, m = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default: return false;
 | |
|   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
 | |
|   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
 | |
|   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
 | |
|   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
 | |
|   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
 | |
|   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
 | |
|   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
 | |
|   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
 | |
|   // df/m field.
 | |
|   // These intrinsics take an unsigned 3 bit immediate.
 | |
|   case Mips::BI__builtin_msa_bclri_b:
 | |
|   case Mips::BI__builtin_msa_bnegi_b:
 | |
|   case Mips::BI__builtin_msa_bseti_b:
 | |
|   case Mips::BI__builtin_msa_sat_s_b:
 | |
|   case Mips::BI__builtin_msa_sat_u_b:
 | |
|   case Mips::BI__builtin_msa_slli_b:
 | |
|   case Mips::BI__builtin_msa_srai_b:
 | |
|   case Mips::BI__builtin_msa_srari_b:
 | |
|   case Mips::BI__builtin_msa_srli_b:
 | |
|   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
 | |
|   case Mips::BI__builtin_msa_binsli_b:
 | |
|   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
 | |
|   // These intrinsics take an unsigned 4 bit immediate.
 | |
|   case Mips::BI__builtin_msa_bclri_h:
 | |
|   case Mips::BI__builtin_msa_bnegi_h:
 | |
|   case Mips::BI__builtin_msa_bseti_h:
 | |
|   case Mips::BI__builtin_msa_sat_s_h:
 | |
|   case Mips::BI__builtin_msa_sat_u_h:
 | |
|   case Mips::BI__builtin_msa_slli_h:
 | |
|   case Mips::BI__builtin_msa_srai_h:
 | |
|   case Mips::BI__builtin_msa_srari_h:
 | |
|   case Mips::BI__builtin_msa_srli_h:
 | |
|   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
 | |
|   case Mips::BI__builtin_msa_binsli_h:
 | |
|   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
 | |
|   // These intrinsics take an unsigned 5 bit immediate.
 | |
|   // The first block of intrinsics actually have an unsigned 5 bit field,
 | |
|   // not a df/n field.
 | |
|   case Mips::BI__builtin_msa_cfcmsa:
 | |
|   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
 | |
|   case Mips::BI__builtin_msa_clei_u_b:
 | |
|   case Mips::BI__builtin_msa_clei_u_h:
 | |
|   case Mips::BI__builtin_msa_clei_u_w:
 | |
|   case Mips::BI__builtin_msa_clei_u_d:
 | |
|   case Mips::BI__builtin_msa_clti_u_b:
 | |
|   case Mips::BI__builtin_msa_clti_u_h:
 | |
|   case Mips::BI__builtin_msa_clti_u_w:
 | |
|   case Mips::BI__builtin_msa_clti_u_d:
 | |
|   case Mips::BI__builtin_msa_maxi_u_b:
 | |
|   case Mips::BI__builtin_msa_maxi_u_h:
 | |
|   case Mips::BI__builtin_msa_maxi_u_w:
 | |
|   case Mips::BI__builtin_msa_maxi_u_d:
 | |
|   case Mips::BI__builtin_msa_mini_u_b:
 | |
|   case Mips::BI__builtin_msa_mini_u_h:
 | |
|   case Mips::BI__builtin_msa_mini_u_w:
 | |
|   case Mips::BI__builtin_msa_mini_u_d:
 | |
|   case Mips::BI__builtin_msa_addvi_b:
 | |
|   case Mips::BI__builtin_msa_addvi_h:
 | |
|   case Mips::BI__builtin_msa_addvi_w:
 | |
|   case Mips::BI__builtin_msa_addvi_d:
 | |
|   case Mips::BI__builtin_msa_bclri_w:
 | |
|   case Mips::BI__builtin_msa_bnegi_w:
 | |
|   case Mips::BI__builtin_msa_bseti_w:
 | |
|   case Mips::BI__builtin_msa_sat_s_w:
 | |
|   case Mips::BI__builtin_msa_sat_u_w:
 | |
|   case Mips::BI__builtin_msa_slli_w:
 | |
|   case Mips::BI__builtin_msa_srai_w:
 | |
|   case Mips::BI__builtin_msa_srari_w:
 | |
|   case Mips::BI__builtin_msa_srli_w:
 | |
|   case Mips::BI__builtin_msa_srlri_w:
 | |
|   case Mips::BI__builtin_msa_subvi_b:
 | |
|   case Mips::BI__builtin_msa_subvi_h:
 | |
|   case Mips::BI__builtin_msa_subvi_w:
 | |
|   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
 | |
|   case Mips::BI__builtin_msa_binsli_w:
 | |
|   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
 | |
|   // These intrinsics take an unsigned 6 bit immediate.
 | |
|   case Mips::BI__builtin_msa_bclri_d:
 | |
|   case Mips::BI__builtin_msa_bnegi_d:
 | |
|   case Mips::BI__builtin_msa_bseti_d:
 | |
|   case Mips::BI__builtin_msa_sat_s_d:
 | |
|   case Mips::BI__builtin_msa_sat_u_d:
 | |
|   case Mips::BI__builtin_msa_slli_d:
 | |
|   case Mips::BI__builtin_msa_srai_d:
 | |
|   case Mips::BI__builtin_msa_srari_d:
 | |
|   case Mips::BI__builtin_msa_srli_d:
 | |
|   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
 | |
|   case Mips::BI__builtin_msa_binsli_d:
 | |
|   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
 | |
|   // These intrinsics take a signed 5 bit immediate.
 | |
|   case Mips::BI__builtin_msa_ceqi_b:
 | |
|   case Mips::BI__builtin_msa_ceqi_h:
 | |
|   case Mips::BI__builtin_msa_ceqi_w:
 | |
|   case Mips::BI__builtin_msa_ceqi_d:
 | |
|   case Mips::BI__builtin_msa_clti_s_b:
 | |
|   case Mips::BI__builtin_msa_clti_s_h:
 | |
|   case Mips::BI__builtin_msa_clti_s_w:
 | |
|   case Mips::BI__builtin_msa_clti_s_d:
 | |
|   case Mips::BI__builtin_msa_clei_s_b:
 | |
|   case Mips::BI__builtin_msa_clei_s_h:
 | |
|   case Mips::BI__builtin_msa_clei_s_w:
 | |
|   case Mips::BI__builtin_msa_clei_s_d:
 | |
|   case Mips::BI__builtin_msa_maxi_s_b:
 | |
|   case Mips::BI__builtin_msa_maxi_s_h:
 | |
|   case Mips::BI__builtin_msa_maxi_s_w:
 | |
|   case Mips::BI__builtin_msa_maxi_s_d:
 | |
|   case Mips::BI__builtin_msa_mini_s_b:
 | |
|   case Mips::BI__builtin_msa_mini_s_h:
 | |
|   case Mips::BI__builtin_msa_mini_s_w:
 | |
|   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
 | |
|   // These intrinsics take an unsigned 8 bit immediate.
 | |
|   case Mips::BI__builtin_msa_andi_b:
 | |
|   case Mips::BI__builtin_msa_nori_b:
 | |
|   case Mips::BI__builtin_msa_ori_b:
 | |
|   case Mips::BI__builtin_msa_shf_b:
 | |
|   case Mips::BI__builtin_msa_shf_h:
 | |
|   case Mips::BI__builtin_msa_shf_w:
 | |
|   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
 | |
|   case Mips::BI__builtin_msa_bseli_b:
 | |
|   case Mips::BI__builtin_msa_bmnzi_b:
 | |
|   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
 | |
|   // df/n format
 | |
|   // These intrinsics take an unsigned 4 bit immediate.
 | |
|   case Mips::BI__builtin_msa_copy_s_b:
 | |
|   case Mips::BI__builtin_msa_copy_u_b:
 | |
|   case Mips::BI__builtin_msa_insve_b:
 | |
|   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
 | |
|   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
 | |
|   // These intrinsics take an unsigned 3 bit immediate.
 | |
|   case Mips::BI__builtin_msa_copy_s_h:
 | |
|   case Mips::BI__builtin_msa_copy_u_h:
 | |
|   case Mips::BI__builtin_msa_insve_h:
 | |
|   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
 | |
|   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
 | |
|   // These intrinsics take an unsigned 2 bit immediate.
 | |
|   case Mips::BI__builtin_msa_copy_s_w:
 | |
|   case Mips::BI__builtin_msa_copy_u_w:
 | |
|   case Mips::BI__builtin_msa_insve_w:
 | |
|   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
 | |
|   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
 | |
|   // These intrinsics take an unsigned 1 bit immediate.
 | |
|   case Mips::BI__builtin_msa_copy_s_d:
 | |
|   case Mips::BI__builtin_msa_copy_u_d:
 | |
|   case Mips::BI__builtin_msa_insve_d:
 | |
|   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
 | |
|   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
 | |
|   // Memory offsets and immediate loads.
 | |
|   // These intrinsics take a signed 10 bit immediate.
 | |
|   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
 | |
|   case Mips::BI__builtin_msa_ldi_h:
 | |
|   case Mips::BI__builtin_msa_ldi_w:
 | |
|   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
 | |
|   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
 | |
|   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
 | |
|   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
 | |
|   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
 | |
|   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
 | |
|   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
 | |
|   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
 | |
|   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
 | |
|   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
 | |
|   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
 | |
|   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
 | |
|   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
 | |
|   }
 | |
| 
 | |
|   if (!m)
 | |
|     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
 | |
| 
 | |
|   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
 | |
|          SemaBuiltinConstantArgMultiple(TheCall, i, m);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   unsigned i = 0, l = 0, u = 0;
 | |
|   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
 | |
|                       BuiltinID == PPC::BI__builtin_divdeu ||
 | |
|                       BuiltinID == PPC::BI__builtin_bpermd;
 | |
|   bool IsTarget64Bit = Context.getTargetInfo()
 | |
|                               .getTypeWidth(Context
 | |
|                                             .getTargetInfo()
 | |
|                                             .getIntPtrType()) == 64;
 | |
|   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
 | |
|                        BuiltinID == PPC::BI__builtin_divweu ||
 | |
|                        BuiltinID == PPC::BI__builtin_divde ||
 | |
|                        BuiltinID == PPC::BI__builtin_divdeu;
 | |
| 
 | |
|   if (Is64BitBltin && !IsTarget64Bit)
 | |
|     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
 | |
|            << TheCall->getSourceRange();
 | |
| 
 | |
|   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
 | |
|       (BuiltinID == PPC::BI__builtin_bpermd &&
 | |
|        !Context.getTargetInfo().hasFeature("bpermd")))
 | |
|     return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
 | |
|            << TheCall->getSourceRange();
 | |
| 
 | |
|   auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
 | |
|     if (!Context.getTargetInfo().hasFeature("vsx"))
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
 | |
|              << TheCall->getSourceRange();
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   switch (BuiltinID) {
 | |
|   default: return false;
 | |
|   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
 | |
|   case PPC::BI__builtin_altivec_crypto_vshasigmad:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
 | |
|            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
 | |
|   case PPC::BI__builtin_altivec_dss:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
 | |
|   case PPC::BI__builtin_tbegin:
 | |
|   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
 | |
|   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
 | |
|   case PPC::BI__builtin_tabortwc:
 | |
|   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
 | |
|   case PPC::BI__builtin_tabortwci:
 | |
|   case PPC::BI__builtin_tabortdci:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
 | |
|            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
 | |
|   case PPC::BI__builtin_altivec_dst:
 | |
|   case PPC::BI__builtin_altivec_dstt:
 | |
|   case PPC::BI__builtin_altivec_dstst:
 | |
|   case PPC::BI__builtin_altivec_dststt:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
 | |
|   case PPC::BI__builtin_vsx_xxpermdi:
 | |
|   case PPC::BI__builtin_vsx_xxsldwi:
 | |
|     return SemaBuiltinVSX(TheCall);
 | |
|   case PPC::BI__builtin_unpack_vector_int128:
 | |
|     return SemaVSXCheck(TheCall) ||
 | |
|            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
 | |
|   case PPC::BI__builtin_pack_vector_int128:
 | |
|     return SemaVSXCheck(TheCall);
 | |
|   }
 | |
|   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
 | |
|                                            CallExpr *TheCall) {
 | |
|   if (BuiltinID == SystemZ::BI__builtin_tabort) {
 | |
|     Expr *Arg = TheCall->getArg(0);
 | |
|     llvm::APSInt AbortCode(32);
 | |
|     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
 | |
|         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
 | |
|       return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
 | |
|              << Arg->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   // For intrinsics which take an immediate value as part of the instruction,
 | |
|   // range check them here.
 | |
|   unsigned i = 0, l = 0, u = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default: return false;
 | |
|   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
 | |
|   case SystemZ::BI__builtin_s390_verimb:
 | |
|   case SystemZ::BI__builtin_s390_verimh:
 | |
|   case SystemZ::BI__builtin_s390_verimf:
 | |
|   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
 | |
|   case SystemZ::BI__builtin_s390_vfaeb:
 | |
|   case SystemZ::BI__builtin_s390_vfaeh:
 | |
|   case SystemZ::BI__builtin_s390_vfaef:
 | |
|   case SystemZ::BI__builtin_s390_vfaebs:
 | |
|   case SystemZ::BI__builtin_s390_vfaehs:
 | |
|   case SystemZ::BI__builtin_s390_vfaefs:
 | |
|   case SystemZ::BI__builtin_s390_vfaezb:
 | |
|   case SystemZ::BI__builtin_s390_vfaezh:
 | |
|   case SystemZ::BI__builtin_s390_vfaezf:
 | |
|   case SystemZ::BI__builtin_s390_vfaezbs:
 | |
|   case SystemZ::BI__builtin_s390_vfaezhs:
 | |
|   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
 | |
|   case SystemZ::BI__builtin_s390_vfisb:
 | |
|   case SystemZ::BI__builtin_s390_vfidb:
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
 | |
|            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
 | |
|   case SystemZ::BI__builtin_s390_vftcisb:
 | |
|   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
 | |
|   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
 | |
|   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
 | |
|   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
 | |
|   case SystemZ::BI__builtin_s390_vstrcb:
 | |
|   case SystemZ::BI__builtin_s390_vstrch:
 | |
|   case SystemZ::BI__builtin_s390_vstrcf:
 | |
|   case SystemZ::BI__builtin_s390_vstrczb:
 | |
|   case SystemZ::BI__builtin_s390_vstrczh:
 | |
|   case SystemZ::BI__builtin_s390_vstrczf:
 | |
|   case SystemZ::BI__builtin_s390_vstrcbs:
 | |
|   case SystemZ::BI__builtin_s390_vstrchs:
 | |
|   case SystemZ::BI__builtin_s390_vstrcfs:
 | |
|   case SystemZ::BI__builtin_s390_vstrczbs:
 | |
|   case SystemZ::BI__builtin_s390_vstrczhs:
 | |
|   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
 | |
|   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
 | |
|   case SystemZ::BI__builtin_s390_vfminsb:
 | |
|   case SystemZ::BI__builtin_s390_vfmaxsb:
 | |
|   case SystemZ::BI__builtin_s390_vfmindb:
 | |
|   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
 | |
|   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
 | |
|   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
 | |
|   }
 | |
|   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
 | |
| /// This checks that the target supports __builtin_cpu_supports and
 | |
| /// that the string argument is constant and valid.
 | |
| static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) {
 | |
|   Expr *Arg = TheCall->getArg(0);
 | |
| 
 | |
|   // Check if the argument is a string literal.
 | |
|   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
 | |
|     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
 | |
|            << Arg->getSourceRange();
 | |
| 
 | |
|   // Check the contents of the string.
 | |
|   StringRef Feature =
 | |
|       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
 | |
|   if (!S.Context.getTargetInfo().validateCpuSupports(Feature))
 | |
|     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
 | |
|            << Arg->getSourceRange();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
 | |
| /// This checks that the target supports __builtin_cpu_is and
 | |
| /// that the string argument is constant and valid.
 | |
| static bool SemaBuiltinCpuIs(Sema &S, CallExpr *TheCall) {
 | |
|   Expr *Arg = TheCall->getArg(0);
 | |
| 
 | |
|   // Check if the argument is a string literal.
 | |
|   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
 | |
|     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
 | |
|            << Arg->getSourceRange();
 | |
| 
 | |
|   // Check the contents of the string.
 | |
|   StringRef Feature =
 | |
|       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
 | |
|   if (!S.Context.getTargetInfo().validateCpuIs(Feature))
 | |
|     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
 | |
|            << Arg->getSourceRange();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check if the rounding mode is legal.
 | |
| bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   // Indicates if this instruction has rounding control or just SAE.
 | |
|   bool HasRC = false;
 | |
| 
 | |
|   unsigned ArgNum = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default:
 | |
|     return false;
 | |
|   case X86::BI__builtin_ia32_vcvttsd2si32:
 | |
|   case X86::BI__builtin_ia32_vcvttsd2si64:
 | |
|   case X86::BI__builtin_ia32_vcvttsd2usi32:
 | |
|   case X86::BI__builtin_ia32_vcvttsd2usi64:
 | |
|   case X86::BI__builtin_ia32_vcvttss2si32:
 | |
|   case X86::BI__builtin_ia32_vcvttss2si64:
 | |
|   case X86::BI__builtin_ia32_vcvttss2usi32:
 | |
|   case X86::BI__builtin_ia32_vcvttss2usi64:
 | |
|     ArgNum = 1;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_maxpd512:
 | |
|   case X86::BI__builtin_ia32_maxps512:
 | |
|   case X86::BI__builtin_ia32_minpd512:
 | |
|   case X86::BI__builtin_ia32_minps512:
 | |
|     ArgNum = 2;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_cvtps2pd512_mask:
 | |
|   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvttps2dq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvttps2qq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvttps2udq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
 | |
|   case X86::BI__builtin_ia32_exp2pd_mask:
 | |
|   case X86::BI__builtin_ia32_exp2ps_mask:
 | |
|   case X86::BI__builtin_ia32_getexppd512_mask:
 | |
|   case X86::BI__builtin_ia32_getexpps512_mask:
 | |
|   case X86::BI__builtin_ia32_rcp28pd_mask:
 | |
|   case X86::BI__builtin_ia32_rcp28ps_mask:
 | |
|   case X86::BI__builtin_ia32_rsqrt28pd_mask:
 | |
|   case X86::BI__builtin_ia32_rsqrt28ps_mask:
 | |
|   case X86::BI__builtin_ia32_vcomisd:
 | |
|   case X86::BI__builtin_ia32_vcomiss:
 | |
|   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
 | |
|     ArgNum = 3;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_cmppd512_mask:
 | |
|   case X86::BI__builtin_ia32_cmpps512_mask:
 | |
|   case X86::BI__builtin_ia32_cmpsd_mask:
 | |
|   case X86::BI__builtin_ia32_cmpss_mask:
 | |
|   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
 | |
|   case X86::BI__builtin_ia32_getexpsd128_round_mask:
 | |
|   case X86::BI__builtin_ia32_getexpss128_round_mask:
 | |
|   case X86::BI__builtin_ia32_getmantpd512_mask:
 | |
|   case X86::BI__builtin_ia32_getmantps512_mask:
 | |
|   case X86::BI__builtin_ia32_maxsd_round_mask:
 | |
|   case X86::BI__builtin_ia32_maxss_round_mask:
 | |
|   case X86::BI__builtin_ia32_minsd_round_mask:
 | |
|   case X86::BI__builtin_ia32_minss_round_mask:
 | |
|   case X86::BI__builtin_ia32_rcp28sd_round_mask:
 | |
|   case X86::BI__builtin_ia32_rcp28ss_round_mask:
 | |
|   case X86::BI__builtin_ia32_reducepd512_mask:
 | |
|   case X86::BI__builtin_ia32_reduceps512_mask:
 | |
|   case X86::BI__builtin_ia32_rndscalepd_mask:
 | |
|   case X86::BI__builtin_ia32_rndscaleps_mask:
 | |
|   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
 | |
|   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
 | |
|     ArgNum = 4;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_fixupimmpd512_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
 | |
|   case X86::BI__builtin_ia32_fixupimmps512_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmps512_maskz:
 | |
|   case X86::BI__builtin_ia32_fixupimmsd_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmsd_maskz:
 | |
|   case X86::BI__builtin_ia32_fixupimmss_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmss_maskz:
 | |
|   case X86::BI__builtin_ia32_getmantsd_round_mask:
 | |
|   case X86::BI__builtin_ia32_getmantss_round_mask:
 | |
|   case X86::BI__builtin_ia32_rangepd512_mask:
 | |
|   case X86::BI__builtin_ia32_rangeps512_mask:
 | |
|   case X86::BI__builtin_ia32_rangesd128_round_mask:
 | |
|   case X86::BI__builtin_ia32_rangess128_round_mask:
 | |
|   case X86::BI__builtin_ia32_reducesd_mask:
 | |
|   case X86::BI__builtin_ia32_reducess_mask:
 | |
|   case X86::BI__builtin_ia32_rndscalesd_round_mask:
 | |
|   case X86::BI__builtin_ia32_rndscaless_round_mask:
 | |
|     ArgNum = 5;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_vcvtsd2si64:
 | |
|   case X86::BI__builtin_ia32_vcvtsd2si32:
 | |
|   case X86::BI__builtin_ia32_vcvtsd2usi32:
 | |
|   case X86::BI__builtin_ia32_vcvtsd2usi64:
 | |
|   case X86::BI__builtin_ia32_vcvtss2si32:
 | |
|   case X86::BI__builtin_ia32_vcvtss2si64:
 | |
|   case X86::BI__builtin_ia32_vcvtss2usi32:
 | |
|   case X86::BI__builtin_ia32_vcvtss2usi64:
 | |
|   case X86::BI__builtin_ia32_sqrtpd512:
 | |
|   case X86::BI__builtin_ia32_sqrtps512:
 | |
|     ArgNum = 1;
 | |
|     HasRC = true;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_addpd512:
 | |
|   case X86::BI__builtin_ia32_addps512:
 | |
|   case X86::BI__builtin_ia32_divpd512:
 | |
|   case X86::BI__builtin_ia32_divps512:
 | |
|   case X86::BI__builtin_ia32_mulpd512:
 | |
|   case X86::BI__builtin_ia32_mulps512:
 | |
|   case X86::BI__builtin_ia32_subpd512:
 | |
|   case X86::BI__builtin_ia32_subps512:
 | |
|   case X86::BI__builtin_ia32_cvtsi2sd64:
 | |
|   case X86::BI__builtin_ia32_cvtsi2ss32:
 | |
|   case X86::BI__builtin_ia32_cvtsi2ss64:
 | |
|   case X86::BI__builtin_ia32_cvtusi2sd64:
 | |
|   case X86::BI__builtin_ia32_cvtusi2ss32:
 | |
|   case X86::BI__builtin_ia32_cvtusi2ss64:
 | |
|     ArgNum = 2;
 | |
|     HasRC = true;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtps2dq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtps2qq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtps2udq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
 | |
|   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
 | |
|     ArgNum = 3;
 | |
|     HasRC = true;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_addss_round_mask:
 | |
|   case X86::BI__builtin_ia32_addsd_round_mask:
 | |
|   case X86::BI__builtin_ia32_divss_round_mask:
 | |
|   case X86::BI__builtin_ia32_divsd_round_mask:
 | |
|   case X86::BI__builtin_ia32_mulss_round_mask:
 | |
|   case X86::BI__builtin_ia32_mulsd_round_mask:
 | |
|   case X86::BI__builtin_ia32_subss_round_mask:
 | |
|   case X86::BI__builtin_ia32_subsd_round_mask:
 | |
|   case X86::BI__builtin_ia32_scalefpd512_mask:
 | |
|   case X86::BI__builtin_ia32_scalefps512_mask:
 | |
|   case X86::BI__builtin_ia32_scalefsd_round_mask:
 | |
|   case X86::BI__builtin_ia32_scalefss_round_mask:
 | |
|   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
 | |
|   case X86::BI__builtin_ia32_sqrtsd_round_mask:
 | |
|   case X86::BI__builtin_ia32_sqrtss_round_mask:
 | |
|   case X86::BI__builtin_ia32_vfmaddsd3_mask:
 | |
|   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
 | |
|   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
 | |
|   case X86::BI__builtin_ia32_vfmaddss3_mask:
 | |
|   case X86::BI__builtin_ia32_vfmaddss3_maskz:
 | |
|   case X86::BI__builtin_ia32_vfmaddss3_mask3:
 | |
|   case X86::BI__builtin_ia32_vfmaddpd512_mask:
 | |
|   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
 | |
|   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
 | |
|   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
 | |
|   case X86::BI__builtin_ia32_vfmaddps512_mask:
 | |
|   case X86::BI__builtin_ia32_vfmaddps512_maskz:
 | |
|   case X86::BI__builtin_ia32_vfmaddps512_mask3:
 | |
|   case X86::BI__builtin_ia32_vfmsubps512_mask3:
 | |
|   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
 | |
|   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
 | |
|   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
 | |
|   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
 | |
|   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
 | |
|   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
 | |
|   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
 | |
|   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
 | |
|     ArgNum = 4;
 | |
|     HasRC = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check constant-ness first.
 | |
|   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | |
|     return true;
 | |
| 
 | |
|   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
 | |
|   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
 | |
|   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
 | |
|   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
 | |
|   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
 | |
|       Result == 8/*ROUND_NO_EXC*/ ||
 | |
|       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
 | |
|       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
 | |
|     return false;
 | |
| 
 | |
|   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
 | |
|          << Arg->getSourceRange();
 | |
| }
 | |
| 
 | |
| // Check if the gather/scatter scale is legal.
 | |
| bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
 | |
|                                              CallExpr *TheCall) {
 | |
|   unsigned ArgNum = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default:
 | |
|     return false;
 | |
|   case X86::BI__builtin_ia32_gatherpfdpd:
 | |
|   case X86::BI__builtin_ia32_gatherpfdps:
 | |
|   case X86::BI__builtin_ia32_gatherpfqpd:
 | |
|   case X86::BI__builtin_ia32_gatherpfqps:
 | |
|   case X86::BI__builtin_ia32_scatterpfdpd:
 | |
|   case X86::BI__builtin_ia32_scatterpfdps:
 | |
|   case X86::BI__builtin_ia32_scatterpfqpd:
 | |
|   case X86::BI__builtin_ia32_scatterpfqps:
 | |
|     ArgNum = 3;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_gatherd_pd:
 | |
|   case X86::BI__builtin_ia32_gatherd_pd256:
 | |
|   case X86::BI__builtin_ia32_gatherq_pd:
 | |
|   case X86::BI__builtin_ia32_gatherq_pd256:
 | |
|   case X86::BI__builtin_ia32_gatherd_ps:
 | |
|   case X86::BI__builtin_ia32_gatherd_ps256:
 | |
|   case X86::BI__builtin_ia32_gatherq_ps:
 | |
|   case X86::BI__builtin_ia32_gatherq_ps256:
 | |
|   case X86::BI__builtin_ia32_gatherd_q:
 | |
|   case X86::BI__builtin_ia32_gatherd_q256:
 | |
|   case X86::BI__builtin_ia32_gatherq_q:
 | |
|   case X86::BI__builtin_ia32_gatherq_q256:
 | |
|   case X86::BI__builtin_ia32_gatherd_d:
 | |
|   case X86::BI__builtin_ia32_gatherd_d256:
 | |
|   case X86::BI__builtin_ia32_gatherq_d:
 | |
|   case X86::BI__builtin_ia32_gatherq_d256:
 | |
|   case X86::BI__builtin_ia32_gather3div2df:
 | |
|   case X86::BI__builtin_ia32_gather3div2di:
 | |
|   case X86::BI__builtin_ia32_gather3div4df:
 | |
|   case X86::BI__builtin_ia32_gather3div4di:
 | |
|   case X86::BI__builtin_ia32_gather3div4sf:
 | |
|   case X86::BI__builtin_ia32_gather3div4si:
 | |
|   case X86::BI__builtin_ia32_gather3div8sf:
 | |
|   case X86::BI__builtin_ia32_gather3div8si:
 | |
|   case X86::BI__builtin_ia32_gather3siv2df:
 | |
|   case X86::BI__builtin_ia32_gather3siv2di:
 | |
|   case X86::BI__builtin_ia32_gather3siv4df:
 | |
|   case X86::BI__builtin_ia32_gather3siv4di:
 | |
|   case X86::BI__builtin_ia32_gather3siv4sf:
 | |
|   case X86::BI__builtin_ia32_gather3siv4si:
 | |
|   case X86::BI__builtin_ia32_gather3siv8sf:
 | |
|   case X86::BI__builtin_ia32_gather3siv8si:
 | |
|   case X86::BI__builtin_ia32_gathersiv8df:
 | |
|   case X86::BI__builtin_ia32_gathersiv16sf:
 | |
|   case X86::BI__builtin_ia32_gatherdiv8df:
 | |
|   case X86::BI__builtin_ia32_gatherdiv16sf:
 | |
|   case X86::BI__builtin_ia32_gathersiv8di:
 | |
|   case X86::BI__builtin_ia32_gathersiv16si:
 | |
|   case X86::BI__builtin_ia32_gatherdiv8di:
 | |
|   case X86::BI__builtin_ia32_gatherdiv16si:
 | |
|   case X86::BI__builtin_ia32_scatterdiv2df:
 | |
|   case X86::BI__builtin_ia32_scatterdiv2di:
 | |
|   case X86::BI__builtin_ia32_scatterdiv4df:
 | |
|   case X86::BI__builtin_ia32_scatterdiv4di:
 | |
|   case X86::BI__builtin_ia32_scatterdiv4sf:
 | |
|   case X86::BI__builtin_ia32_scatterdiv4si:
 | |
|   case X86::BI__builtin_ia32_scatterdiv8sf:
 | |
|   case X86::BI__builtin_ia32_scatterdiv8si:
 | |
|   case X86::BI__builtin_ia32_scattersiv2df:
 | |
|   case X86::BI__builtin_ia32_scattersiv2di:
 | |
|   case X86::BI__builtin_ia32_scattersiv4df:
 | |
|   case X86::BI__builtin_ia32_scattersiv4di:
 | |
|   case X86::BI__builtin_ia32_scattersiv4sf:
 | |
|   case X86::BI__builtin_ia32_scattersiv4si:
 | |
|   case X86::BI__builtin_ia32_scattersiv8sf:
 | |
|   case X86::BI__builtin_ia32_scattersiv8si:
 | |
|   case X86::BI__builtin_ia32_scattersiv8df:
 | |
|   case X86::BI__builtin_ia32_scattersiv16sf:
 | |
|   case X86::BI__builtin_ia32_scatterdiv8df:
 | |
|   case X86::BI__builtin_ia32_scatterdiv16sf:
 | |
|   case X86::BI__builtin_ia32_scattersiv8di:
 | |
|   case X86::BI__builtin_ia32_scattersiv16si:
 | |
|   case X86::BI__builtin_ia32_scatterdiv8di:
 | |
|   case X86::BI__builtin_ia32_scatterdiv16si:
 | |
|     ArgNum = 4;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check constant-ness first.
 | |
|   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | |
|     return true;
 | |
| 
 | |
|   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
 | |
|     return false;
 | |
| 
 | |
|   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
 | |
|          << Arg->getSourceRange();
 | |
| }
 | |
| 
 | |
| static bool isX86_32Builtin(unsigned BuiltinID) {
 | |
|   // These builtins only work on x86-32 targets.
 | |
|   switch (BuiltinID) {
 | |
|   case X86::BI__builtin_ia32_readeflags_u32:
 | |
|   case X86::BI__builtin_ia32_writeeflags_u32:
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   if (BuiltinID == X86::BI__builtin_cpu_supports)
 | |
|     return SemaBuiltinCpuSupports(*this, TheCall);
 | |
| 
 | |
|   if (BuiltinID == X86::BI__builtin_cpu_is)
 | |
|     return SemaBuiltinCpuIs(*this, TheCall);
 | |
| 
 | |
|   // Check for 32-bit only builtins on a 64-bit target.
 | |
|   const llvm::Triple &TT = Context.getTargetInfo().getTriple();
 | |
|   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
 | |
|     return Diag(TheCall->getCallee()->getBeginLoc(),
 | |
|                 diag::err_32_bit_builtin_64_bit_tgt);
 | |
| 
 | |
|   // If the intrinsic has rounding or SAE make sure its valid.
 | |
|   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
 | |
|     return true;
 | |
| 
 | |
|   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
 | |
|   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
 | |
|     return true;
 | |
| 
 | |
|   // For intrinsics which take an immediate value as part of the instruction,
 | |
|   // range check them here.
 | |
|   int i = 0, l = 0, u = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default:
 | |
|     return false;
 | |
|   case X86::BI__builtin_ia32_vec_ext_v2si:
 | |
|   case X86::BI__builtin_ia32_vec_ext_v2di:
 | |
|   case X86::BI__builtin_ia32_vextractf128_pd256:
 | |
|   case X86::BI__builtin_ia32_vextractf128_ps256:
 | |
|   case X86::BI__builtin_ia32_vextractf128_si256:
 | |
|   case X86::BI__builtin_ia32_extract128i256:
 | |
|   case X86::BI__builtin_ia32_extractf64x4_mask:
 | |
|   case X86::BI__builtin_ia32_extracti64x4_mask:
 | |
|   case X86::BI__builtin_ia32_extractf32x8_mask:
 | |
|   case X86::BI__builtin_ia32_extracti32x8_mask:
 | |
|   case X86::BI__builtin_ia32_extractf64x2_256_mask:
 | |
|   case X86::BI__builtin_ia32_extracti64x2_256_mask:
 | |
|   case X86::BI__builtin_ia32_extractf32x4_256_mask:
 | |
|   case X86::BI__builtin_ia32_extracti32x4_256_mask:
 | |
|     i = 1; l = 0; u = 1;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_vec_set_v2di:
 | |
|   case X86::BI__builtin_ia32_vinsertf128_pd256:
 | |
|   case X86::BI__builtin_ia32_vinsertf128_ps256:
 | |
|   case X86::BI__builtin_ia32_vinsertf128_si256:
 | |
|   case X86::BI__builtin_ia32_insert128i256:
 | |
|   case X86::BI__builtin_ia32_insertf32x8:
 | |
|   case X86::BI__builtin_ia32_inserti32x8:
 | |
|   case X86::BI__builtin_ia32_insertf64x4:
 | |
|   case X86::BI__builtin_ia32_inserti64x4:
 | |
|   case X86::BI__builtin_ia32_insertf64x2_256:
 | |
|   case X86::BI__builtin_ia32_inserti64x2_256:
 | |
|   case X86::BI__builtin_ia32_insertf32x4_256:
 | |
|   case X86::BI__builtin_ia32_inserti32x4_256:
 | |
|     i = 2; l = 0; u = 1;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_vpermilpd:
 | |
|   case X86::BI__builtin_ia32_vec_ext_v4hi:
 | |
|   case X86::BI__builtin_ia32_vec_ext_v4si:
 | |
|   case X86::BI__builtin_ia32_vec_ext_v4sf:
 | |
|   case X86::BI__builtin_ia32_vec_ext_v4di:
 | |
|   case X86::BI__builtin_ia32_extractf32x4_mask:
 | |
|   case X86::BI__builtin_ia32_extracti32x4_mask:
 | |
|   case X86::BI__builtin_ia32_extractf64x2_512_mask:
 | |
|   case X86::BI__builtin_ia32_extracti64x2_512_mask:
 | |
|     i = 1; l = 0; u = 3;
 | |
|     break;
 | |
|   case X86::BI_mm_prefetch:
 | |
|   case X86::BI__builtin_ia32_vec_ext_v8hi:
 | |
|   case X86::BI__builtin_ia32_vec_ext_v8si:
 | |
|     i = 1; l = 0; u = 7;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_sha1rnds4:
 | |
|   case X86::BI__builtin_ia32_blendpd:
 | |
|   case X86::BI__builtin_ia32_shufpd:
 | |
|   case X86::BI__builtin_ia32_vec_set_v4hi:
 | |
|   case X86::BI__builtin_ia32_vec_set_v4si:
 | |
|   case X86::BI__builtin_ia32_vec_set_v4di:
 | |
|   case X86::BI__builtin_ia32_shuf_f32x4_256:
 | |
|   case X86::BI__builtin_ia32_shuf_f64x2_256:
 | |
|   case X86::BI__builtin_ia32_shuf_i32x4_256:
 | |
|   case X86::BI__builtin_ia32_shuf_i64x2_256:
 | |
|   case X86::BI__builtin_ia32_insertf64x2_512:
 | |
|   case X86::BI__builtin_ia32_inserti64x2_512:
 | |
|   case X86::BI__builtin_ia32_insertf32x4:
 | |
|   case X86::BI__builtin_ia32_inserti32x4:
 | |
|     i = 2; l = 0; u = 3;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_vpermil2pd:
 | |
|   case X86::BI__builtin_ia32_vpermil2pd256:
 | |
|   case X86::BI__builtin_ia32_vpermil2ps:
 | |
|   case X86::BI__builtin_ia32_vpermil2ps256:
 | |
|     i = 3; l = 0; u = 3;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_cmpb128_mask:
 | |
|   case X86::BI__builtin_ia32_cmpw128_mask:
 | |
|   case X86::BI__builtin_ia32_cmpd128_mask:
 | |
|   case X86::BI__builtin_ia32_cmpq128_mask:
 | |
|   case X86::BI__builtin_ia32_cmpb256_mask:
 | |
|   case X86::BI__builtin_ia32_cmpw256_mask:
 | |
|   case X86::BI__builtin_ia32_cmpd256_mask:
 | |
|   case X86::BI__builtin_ia32_cmpq256_mask:
 | |
|   case X86::BI__builtin_ia32_cmpb512_mask:
 | |
|   case X86::BI__builtin_ia32_cmpw512_mask:
 | |
|   case X86::BI__builtin_ia32_cmpd512_mask:
 | |
|   case X86::BI__builtin_ia32_cmpq512_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpb128_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpw128_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpd128_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpq128_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpb256_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpw256_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpd256_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpq256_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpb512_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpw512_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpd512_mask:
 | |
|   case X86::BI__builtin_ia32_ucmpq512_mask:
 | |
|   case X86::BI__builtin_ia32_vpcomub:
 | |
|   case X86::BI__builtin_ia32_vpcomuw:
 | |
|   case X86::BI__builtin_ia32_vpcomud:
 | |
|   case X86::BI__builtin_ia32_vpcomuq:
 | |
|   case X86::BI__builtin_ia32_vpcomb:
 | |
|   case X86::BI__builtin_ia32_vpcomw:
 | |
|   case X86::BI__builtin_ia32_vpcomd:
 | |
|   case X86::BI__builtin_ia32_vpcomq:
 | |
|   case X86::BI__builtin_ia32_vec_set_v8hi:
 | |
|   case X86::BI__builtin_ia32_vec_set_v8si:
 | |
|     i = 2; l = 0; u = 7;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_vpermilpd256:
 | |
|   case X86::BI__builtin_ia32_roundps:
 | |
|   case X86::BI__builtin_ia32_roundpd:
 | |
|   case X86::BI__builtin_ia32_roundps256:
 | |
|   case X86::BI__builtin_ia32_roundpd256:
 | |
|   case X86::BI__builtin_ia32_getmantpd128_mask:
 | |
|   case X86::BI__builtin_ia32_getmantpd256_mask:
 | |
|   case X86::BI__builtin_ia32_getmantps128_mask:
 | |
|   case X86::BI__builtin_ia32_getmantps256_mask:
 | |
|   case X86::BI__builtin_ia32_getmantpd512_mask:
 | |
|   case X86::BI__builtin_ia32_getmantps512_mask:
 | |
|   case X86::BI__builtin_ia32_vec_ext_v16qi:
 | |
|   case X86::BI__builtin_ia32_vec_ext_v16hi:
 | |
|     i = 1; l = 0; u = 15;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_pblendd128:
 | |
|   case X86::BI__builtin_ia32_blendps:
 | |
|   case X86::BI__builtin_ia32_blendpd256:
 | |
|   case X86::BI__builtin_ia32_shufpd256:
 | |
|   case X86::BI__builtin_ia32_roundss:
 | |
|   case X86::BI__builtin_ia32_roundsd:
 | |
|   case X86::BI__builtin_ia32_rangepd128_mask:
 | |
|   case X86::BI__builtin_ia32_rangepd256_mask:
 | |
|   case X86::BI__builtin_ia32_rangepd512_mask:
 | |
|   case X86::BI__builtin_ia32_rangeps128_mask:
 | |
|   case X86::BI__builtin_ia32_rangeps256_mask:
 | |
|   case X86::BI__builtin_ia32_rangeps512_mask:
 | |
|   case X86::BI__builtin_ia32_getmantsd_round_mask:
 | |
|   case X86::BI__builtin_ia32_getmantss_round_mask:
 | |
|   case X86::BI__builtin_ia32_vec_set_v16qi:
 | |
|   case X86::BI__builtin_ia32_vec_set_v16hi:
 | |
|     i = 2; l = 0; u = 15;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_vec_ext_v32qi:
 | |
|     i = 1; l = 0; u = 31;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_cmpps:
 | |
|   case X86::BI__builtin_ia32_cmpss:
 | |
|   case X86::BI__builtin_ia32_cmppd:
 | |
|   case X86::BI__builtin_ia32_cmpsd:
 | |
|   case X86::BI__builtin_ia32_cmpps256:
 | |
|   case X86::BI__builtin_ia32_cmppd256:
 | |
|   case X86::BI__builtin_ia32_cmpps128_mask:
 | |
|   case X86::BI__builtin_ia32_cmppd128_mask:
 | |
|   case X86::BI__builtin_ia32_cmpps256_mask:
 | |
|   case X86::BI__builtin_ia32_cmppd256_mask:
 | |
|   case X86::BI__builtin_ia32_cmpps512_mask:
 | |
|   case X86::BI__builtin_ia32_cmppd512_mask:
 | |
|   case X86::BI__builtin_ia32_cmpsd_mask:
 | |
|   case X86::BI__builtin_ia32_cmpss_mask:
 | |
|   case X86::BI__builtin_ia32_vec_set_v32qi:
 | |
|     i = 2; l = 0; u = 31;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_permdf256:
 | |
|   case X86::BI__builtin_ia32_permdi256:
 | |
|   case X86::BI__builtin_ia32_permdf512:
 | |
|   case X86::BI__builtin_ia32_permdi512:
 | |
|   case X86::BI__builtin_ia32_vpermilps:
 | |
|   case X86::BI__builtin_ia32_vpermilps256:
 | |
|   case X86::BI__builtin_ia32_vpermilpd512:
 | |
|   case X86::BI__builtin_ia32_vpermilps512:
 | |
|   case X86::BI__builtin_ia32_pshufd:
 | |
|   case X86::BI__builtin_ia32_pshufd256:
 | |
|   case X86::BI__builtin_ia32_pshufd512:
 | |
|   case X86::BI__builtin_ia32_pshufhw:
 | |
|   case X86::BI__builtin_ia32_pshufhw256:
 | |
|   case X86::BI__builtin_ia32_pshufhw512:
 | |
|   case X86::BI__builtin_ia32_pshuflw:
 | |
|   case X86::BI__builtin_ia32_pshuflw256:
 | |
|   case X86::BI__builtin_ia32_pshuflw512:
 | |
|   case X86::BI__builtin_ia32_vcvtps2ph:
 | |
|   case X86::BI__builtin_ia32_vcvtps2ph_mask:
 | |
|   case X86::BI__builtin_ia32_vcvtps2ph256:
 | |
|   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
 | |
|   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
 | |
|   case X86::BI__builtin_ia32_rndscaleps_128_mask:
 | |
|   case X86::BI__builtin_ia32_rndscalepd_128_mask:
 | |
|   case X86::BI__builtin_ia32_rndscaleps_256_mask:
 | |
|   case X86::BI__builtin_ia32_rndscalepd_256_mask:
 | |
|   case X86::BI__builtin_ia32_rndscaleps_mask:
 | |
|   case X86::BI__builtin_ia32_rndscalepd_mask:
 | |
|   case X86::BI__builtin_ia32_reducepd128_mask:
 | |
|   case X86::BI__builtin_ia32_reducepd256_mask:
 | |
|   case X86::BI__builtin_ia32_reducepd512_mask:
 | |
|   case X86::BI__builtin_ia32_reduceps128_mask:
 | |
|   case X86::BI__builtin_ia32_reduceps256_mask:
 | |
|   case X86::BI__builtin_ia32_reduceps512_mask:
 | |
|   case X86::BI__builtin_ia32_prold512:
 | |
|   case X86::BI__builtin_ia32_prolq512:
 | |
|   case X86::BI__builtin_ia32_prold128:
 | |
|   case X86::BI__builtin_ia32_prold256:
 | |
|   case X86::BI__builtin_ia32_prolq128:
 | |
|   case X86::BI__builtin_ia32_prolq256:
 | |
|   case X86::BI__builtin_ia32_prord512:
 | |
|   case X86::BI__builtin_ia32_prorq512:
 | |
|   case X86::BI__builtin_ia32_prord128:
 | |
|   case X86::BI__builtin_ia32_prord256:
 | |
|   case X86::BI__builtin_ia32_prorq128:
 | |
|   case X86::BI__builtin_ia32_prorq256:
 | |
|   case X86::BI__builtin_ia32_fpclasspd128_mask:
 | |
|   case X86::BI__builtin_ia32_fpclasspd256_mask:
 | |
|   case X86::BI__builtin_ia32_fpclassps128_mask:
 | |
|   case X86::BI__builtin_ia32_fpclassps256_mask:
 | |
|   case X86::BI__builtin_ia32_fpclassps512_mask:
 | |
|   case X86::BI__builtin_ia32_fpclasspd512_mask:
 | |
|   case X86::BI__builtin_ia32_fpclasssd_mask:
 | |
|   case X86::BI__builtin_ia32_fpclassss_mask:
 | |
|   case X86::BI__builtin_ia32_pslldqi128_byteshift:
 | |
|   case X86::BI__builtin_ia32_pslldqi256_byteshift:
 | |
|   case X86::BI__builtin_ia32_pslldqi512_byteshift:
 | |
|   case X86::BI__builtin_ia32_psrldqi128_byteshift:
 | |
|   case X86::BI__builtin_ia32_psrldqi256_byteshift:
 | |
|   case X86::BI__builtin_ia32_psrldqi512_byteshift:
 | |
|   case X86::BI__builtin_ia32_kshiftliqi:
 | |
|   case X86::BI__builtin_ia32_kshiftlihi:
 | |
|   case X86::BI__builtin_ia32_kshiftlisi:
 | |
|   case X86::BI__builtin_ia32_kshiftlidi:
 | |
|   case X86::BI__builtin_ia32_kshiftriqi:
 | |
|   case X86::BI__builtin_ia32_kshiftrihi:
 | |
|   case X86::BI__builtin_ia32_kshiftrisi:
 | |
|   case X86::BI__builtin_ia32_kshiftridi:
 | |
|     i = 1; l = 0; u = 255;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_vperm2f128_pd256:
 | |
|   case X86::BI__builtin_ia32_vperm2f128_ps256:
 | |
|   case X86::BI__builtin_ia32_vperm2f128_si256:
 | |
|   case X86::BI__builtin_ia32_permti256:
 | |
|   case X86::BI__builtin_ia32_pblendw128:
 | |
|   case X86::BI__builtin_ia32_pblendw256:
 | |
|   case X86::BI__builtin_ia32_blendps256:
 | |
|   case X86::BI__builtin_ia32_pblendd256:
 | |
|   case X86::BI__builtin_ia32_palignr128:
 | |
|   case X86::BI__builtin_ia32_palignr256:
 | |
|   case X86::BI__builtin_ia32_palignr512:
 | |
|   case X86::BI__builtin_ia32_alignq512:
 | |
|   case X86::BI__builtin_ia32_alignd512:
 | |
|   case X86::BI__builtin_ia32_alignd128:
 | |
|   case X86::BI__builtin_ia32_alignd256:
 | |
|   case X86::BI__builtin_ia32_alignq128:
 | |
|   case X86::BI__builtin_ia32_alignq256:
 | |
|   case X86::BI__builtin_ia32_vcomisd:
 | |
|   case X86::BI__builtin_ia32_vcomiss:
 | |
|   case X86::BI__builtin_ia32_shuf_f32x4:
 | |
|   case X86::BI__builtin_ia32_shuf_f64x2:
 | |
|   case X86::BI__builtin_ia32_shuf_i32x4:
 | |
|   case X86::BI__builtin_ia32_shuf_i64x2:
 | |
|   case X86::BI__builtin_ia32_shufpd512:
 | |
|   case X86::BI__builtin_ia32_shufps:
 | |
|   case X86::BI__builtin_ia32_shufps256:
 | |
|   case X86::BI__builtin_ia32_shufps512:
 | |
|   case X86::BI__builtin_ia32_dbpsadbw128:
 | |
|   case X86::BI__builtin_ia32_dbpsadbw256:
 | |
|   case X86::BI__builtin_ia32_dbpsadbw512:
 | |
|   case X86::BI__builtin_ia32_vpshldd128:
 | |
|   case X86::BI__builtin_ia32_vpshldd256:
 | |
|   case X86::BI__builtin_ia32_vpshldd512:
 | |
|   case X86::BI__builtin_ia32_vpshldq128:
 | |
|   case X86::BI__builtin_ia32_vpshldq256:
 | |
|   case X86::BI__builtin_ia32_vpshldq512:
 | |
|   case X86::BI__builtin_ia32_vpshldw128:
 | |
|   case X86::BI__builtin_ia32_vpshldw256:
 | |
|   case X86::BI__builtin_ia32_vpshldw512:
 | |
|   case X86::BI__builtin_ia32_vpshrdd128:
 | |
|   case X86::BI__builtin_ia32_vpshrdd256:
 | |
|   case X86::BI__builtin_ia32_vpshrdd512:
 | |
|   case X86::BI__builtin_ia32_vpshrdq128:
 | |
|   case X86::BI__builtin_ia32_vpshrdq256:
 | |
|   case X86::BI__builtin_ia32_vpshrdq512:
 | |
|   case X86::BI__builtin_ia32_vpshrdw128:
 | |
|   case X86::BI__builtin_ia32_vpshrdw256:
 | |
|   case X86::BI__builtin_ia32_vpshrdw512:
 | |
|     i = 2; l = 0; u = 255;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_fixupimmpd512_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
 | |
|   case X86::BI__builtin_ia32_fixupimmps512_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmps512_maskz:
 | |
|   case X86::BI__builtin_ia32_fixupimmsd_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmsd_maskz:
 | |
|   case X86::BI__builtin_ia32_fixupimmss_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmss_maskz:
 | |
|   case X86::BI__builtin_ia32_fixupimmpd128_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
 | |
|   case X86::BI__builtin_ia32_fixupimmpd256_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
 | |
|   case X86::BI__builtin_ia32_fixupimmps128_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmps128_maskz:
 | |
|   case X86::BI__builtin_ia32_fixupimmps256_mask:
 | |
|   case X86::BI__builtin_ia32_fixupimmps256_maskz:
 | |
|   case X86::BI__builtin_ia32_pternlogd512_mask:
 | |
|   case X86::BI__builtin_ia32_pternlogd512_maskz:
 | |
|   case X86::BI__builtin_ia32_pternlogq512_mask:
 | |
|   case X86::BI__builtin_ia32_pternlogq512_maskz:
 | |
|   case X86::BI__builtin_ia32_pternlogd128_mask:
 | |
|   case X86::BI__builtin_ia32_pternlogd128_maskz:
 | |
|   case X86::BI__builtin_ia32_pternlogd256_mask:
 | |
|   case X86::BI__builtin_ia32_pternlogd256_maskz:
 | |
|   case X86::BI__builtin_ia32_pternlogq128_mask:
 | |
|   case X86::BI__builtin_ia32_pternlogq128_maskz:
 | |
|   case X86::BI__builtin_ia32_pternlogq256_mask:
 | |
|   case X86::BI__builtin_ia32_pternlogq256_maskz:
 | |
|     i = 3; l = 0; u = 255;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_gatherpfdpd:
 | |
|   case X86::BI__builtin_ia32_gatherpfdps:
 | |
|   case X86::BI__builtin_ia32_gatherpfqpd:
 | |
|   case X86::BI__builtin_ia32_gatherpfqps:
 | |
|   case X86::BI__builtin_ia32_scatterpfdpd:
 | |
|   case X86::BI__builtin_ia32_scatterpfdps:
 | |
|   case X86::BI__builtin_ia32_scatterpfqpd:
 | |
|   case X86::BI__builtin_ia32_scatterpfqps:
 | |
|     i = 4; l = 2; u = 3;
 | |
|     break;
 | |
|   case X86::BI__builtin_ia32_reducesd_mask:
 | |
|   case X86::BI__builtin_ia32_reducess_mask:
 | |
|   case X86::BI__builtin_ia32_rndscalesd_round_mask:
 | |
|   case X86::BI__builtin_ia32_rndscaless_round_mask:
 | |
|     i = 4; l = 0; u = 255;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Note that we don't force a hard error on the range check here, allowing
 | |
|   // template-generated or macro-generated dead code to potentially have out-of-
 | |
|   // range values. These need to code generate, but don't need to necessarily
 | |
|   // make any sense. We use a warning that defaults to an error.
 | |
|   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
 | |
| }
 | |
| 
 | |
| /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
 | |
| /// parameter with the FormatAttr's correct format_idx and firstDataArg.
 | |
| /// Returns true when the format fits the function and the FormatStringInfo has
 | |
| /// been populated.
 | |
| bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
 | |
|                                FormatStringInfo *FSI) {
 | |
|   FSI->HasVAListArg = Format->getFirstArg() == 0;
 | |
|   FSI->FormatIdx = Format->getFormatIdx() - 1;
 | |
|   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
 | |
| 
 | |
|   // The way the format attribute works in GCC, the implicit this argument
 | |
|   // of member functions is counted. However, it doesn't appear in our own
 | |
|   // lists, so decrement format_idx in that case.
 | |
|   if (IsCXXMember) {
 | |
|     if(FSI->FormatIdx == 0)
 | |
|       return false;
 | |
|     --FSI->FormatIdx;
 | |
|     if (FSI->FirstDataArg != 0)
 | |
|       --FSI->FirstDataArg;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Checks if a the given expression evaluates to null.
 | |
| ///
 | |
| /// Returns true if the value evaluates to null.
 | |
| static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
 | |
|   // If the expression has non-null type, it doesn't evaluate to null.
 | |
|   if (auto nullability
 | |
|         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
 | |
|     if (*nullability == NullabilityKind::NonNull)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // As a special case, transparent unions initialized with zero are
 | |
|   // considered null for the purposes of the nonnull attribute.
 | |
|   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
 | |
|     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
 | |
|       if (const CompoundLiteralExpr *CLE =
 | |
|           dyn_cast<CompoundLiteralExpr>(Expr))
 | |
|         if (const InitListExpr *ILE =
 | |
|             dyn_cast<InitListExpr>(CLE->getInitializer()))
 | |
|           Expr = ILE->getInit(0);
 | |
|   }
 | |
| 
 | |
|   bool Result;
 | |
|   return (!Expr->isValueDependent() &&
 | |
|           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
 | |
|           !Result);
 | |
| }
 | |
| 
 | |
| static void CheckNonNullArgument(Sema &S,
 | |
|                                  const Expr *ArgExpr,
 | |
|                                  SourceLocation CallSiteLoc) {
 | |
|   if (CheckNonNullExpr(S, ArgExpr))
 | |
|     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
 | |
|                           S.PDiag(diag::warn_null_arg)
 | |
|                               << ArgExpr->getSourceRange());
 | |
| }
 | |
| 
 | |
| bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
 | |
|   FormatStringInfo FSI;
 | |
|   if ((GetFormatStringType(Format) == FST_NSString) &&
 | |
|       getFormatStringInfo(Format, false, &FSI)) {
 | |
|     Idx = FSI.FormatIdx;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Diagnose use of %s directive in an NSString which is being passed
 | |
| /// as formatting string to formatting method.
 | |
| static void
 | |
| DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
 | |
|                                         const NamedDecl *FDecl,
 | |
|                                         Expr **Args,
 | |
|                                         unsigned NumArgs) {
 | |
|   unsigned Idx = 0;
 | |
|   bool Format = false;
 | |
|   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
 | |
|   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
 | |
|     Idx = 2;
 | |
|     Format = true;
 | |
|   }
 | |
|   else
 | |
|     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
 | |
|       if (S.GetFormatNSStringIdx(I, Idx)) {
 | |
|         Format = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   if (!Format || NumArgs <= Idx)
 | |
|     return;
 | |
|   const Expr *FormatExpr = Args[Idx];
 | |
|   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
 | |
|     FormatExpr = CSCE->getSubExpr();
 | |
|   const StringLiteral *FormatString;
 | |
|   if (const ObjCStringLiteral *OSL =
 | |
|       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
 | |
|     FormatString = OSL->getString();
 | |
|   else
 | |
|     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
 | |
|   if (!FormatString)
 | |
|     return;
 | |
|   if (S.FormatStringHasSArg(FormatString)) {
 | |
|     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
 | |
|       << "%s" << 1 << 1;
 | |
|     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
 | |
|       << FDecl->getDeclName();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determine whether the given type has a non-null nullability annotation.
 | |
| static bool isNonNullType(ASTContext &ctx, QualType type) {
 | |
|   if (auto nullability = type->getNullability(ctx))
 | |
|     return *nullability == NullabilityKind::NonNull;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void CheckNonNullArguments(Sema &S,
 | |
|                                   const NamedDecl *FDecl,
 | |
|                                   const FunctionProtoType *Proto,
 | |
|                                   ArrayRef<const Expr *> Args,
 | |
|                                   SourceLocation CallSiteLoc) {
 | |
|   assert((FDecl || Proto) && "Need a function declaration or prototype");
 | |
| 
 | |
|   // Already checked by by constant evaluator.
 | |
|   if (S.isConstantEvaluated())
 | |
|     return;
 | |
|   // Check the attributes attached to the method/function itself.
 | |
|   llvm::SmallBitVector NonNullArgs;
 | |
|   if (FDecl) {
 | |
|     // Handle the nonnull attribute on the function/method declaration itself.
 | |
|     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
 | |
|       if (!NonNull->args_size()) {
 | |
|         // Easy case: all pointer arguments are nonnull.
 | |
|         for (const auto *Arg : Args)
 | |
|           if (S.isValidPointerAttrType(Arg->getType()))
 | |
|             CheckNonNullArgument(S, Arg, CallSiteLoc);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       for (const ParamIdx &Idx : NonNull->args()) {
 | |
|         unsigned IdxAST = Idx.getASTIndex();
 | |
|         if (IdxAST >= Args.size())
 | |
|           continue;
 | |
|         if (NonNullArgs.empty())
 | |
|           NonNullArgs.resize(Args.size());
 | |
|         NonNullArgs.set(IdxAST);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
 | |
|     // Handle the nonnull attribute on the parameters of the
 | |
|     // function/method.
 | |
|     ArrayRef<ParmVarDecl*> parms;
 | |
|     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
 | |
|       parms = FD->parameters();
 | |
|     else
 | |
|       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
 | |
| 
 | |
|     unsigned ParamIndex = 0;
 | |
|     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
 | |
|          I != E; ++I, ++ParamIndex) {
 | |
|       const ParmVarDecl *PVD = *I;
 | |
|       if (PVD->hasAttr<NonNullAttr>() ||
 | |
|           isNonNullType(S.Context, PVD->getType())) {
 | |
|         if (NonNullArgs.empty())
 | |
|           NonNullArgs.resize(Args.size());
 | |
| 
 | |
|         NonNullArgs.set(ParamIndex);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // If we have a non-function, non-method declaration but no
 | |
|     // function prototype, try to dig out the function prototype.
 | |
|     if (!Proto) {
 | |
|       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
 | |
|         QualType type = VD->getType().getNonReferenceType();
 | |
|         if (auto pointerType = type->getAs<PointerType>())
 | |
|           type = pointerType->getPointeeType();
 | |
|         else if (auto blockType = type->getAs<BlockPointerType>())
 | |
|           type = blockType->getPointeeType();
 | |
|         // FIXME: data member pointers?
 | |
| 
 | |
|         // Dig out the function prototype, if there is one.
 | |
|         Proto = type->getAs<FunctionProtoType>();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Fill in non-null argument information from the nullability
 | |
|     // information on the parameter types (if we have them).
 | |
|     if (Proto) {
 | |
|       unsigned Index = 0;
 | |
|       for (auto paramType : Proto->getParamTypes()) {
 | |
|         if (isNonNullType(S.Context, paramType)) {
 | |
|           if (NonNullArgs.empty())
 | |
|             NonNullArgs.resize(Args.size());
 | |
| 
 | |
|           NonNullArgs.set(Index);
 | |
|         }
 | |
| 
 | |
|         ++Index;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for non-null arguments.
 | |
|   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
 | |
|        ArgIndex != ArgIndexEnd; ++ArgIndex) {
 | |
|     if (NonNullArgs[ArgIndex])
 | |
|       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Handles the checks for format strings, non-POD arguments to vararg
 | |
| /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
 | |
| /// attributes.
 | |
| void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
 | |
|                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
 | |
|                      bool IsMemberFunction, SourceLocation Loc,
 | |
|                      SourceRange Range, VariadicCallType CallType) {
 | |
|   // FIXME: We should check as much as we can in the template definition.
 | |
|   if (CurContext->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   // Printf and scanf checking.
 | |
|   llvm::SmallBitVector CheckedVarArgs;
 | |
|   if (FDecl) {
 | |
|     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
 | |
|       // Only create vector if there are format attributes.
 | |
|       CheckedVarArgs.resize(Args.size());
 | |
| 
 | |
|       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
 | |
|                            CheckedVarArgs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Refuse POD arguments that weren't caught by the format string
 | |
|   // checks above.
 | |
|   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
 | |
|   if (CallType != VariadicDoesNotApply &&
 | |
|       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
 | |
|     unsigned NumParams = Proto ? Proto->getNumParams()
 | |
|                        : FDecl && isa<FunctionDecl>(FDecl)
 | |
|                            ? cast<FunctionDecl>(FDecl)->getNumParams()
 | |
|                        : FDecl && isa<ObjCMethodDecl>(FDecl)
 | |
|                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
 | |
|                        : 0;
 | |
| 
 | |
|     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
 | |
|       // Args[ArgIdx] can be null in malformed code.
 | |
|       if (const Expr *Arg = Args[ArgIdx]) {
 | |
|         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
 | |
|           checkVariadicArgument(Arg, CallType);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (FDecl || Proto) {
 | |
|     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
 | |
| 
 | |
|     // Type safety checking.
 | |
|     if (FDecl) {
 | |
|       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
 | |
|         CheckArgumentWithTypeTag(I, Args, Loc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
 | |
|     auto *AA = FDecl->getAttr<AllocAlignAttr>();
 | |
|     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
 | |
|     if (!Arg->isValueDependent()) {
 | |
|       Expr::EvalResult Align;
 | |
|       if (Arg->EvaluateAsInt(Align, Context)) {
 | |
|         const llvm::APSInt &I = Align.Val.getInt();
 | |
|         if (!I.isPowerOf2())
 | |
|           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
 | |
|               << Arg->getSourceRange();
 | |
| 
 | |
|         if (I > Sema::MaximumAlignment)
 | |
|           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
 | |
|               << Arg->getSourceRange() << Sema::MaximumAlignment;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (FD)
 | |
|     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
 | |
| }
 | |
| 
 | |
| /// CheckConstructorCall - Check a constructor call for correctness and safety
 | |
| /// properties not enforced by the C type system.
 | |
| void Sema::CheckConstructorCall(FunctionDecl *FDecl,
 | |
|                                 ArrayRef<const Expr *> Args,
 | |
|                                 const FunctionProtoType *Proto,
 | |
|                                 SourceLocation Loc) {
 | |
|   VariadicCallType CallType =
 | |
|     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
 | |
|   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
 | |
|             Loc, SourceRange(), CallType);
 | |
| }
 | |
| 
 | |
| /// CheckFunctionCall - Check a direct function call for various correctness
 | |
| /// and safety properties not strictly enforced by the C type system.
 | |
| bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
 | |
|                              const FunctionProtoType *Proto) {
 | |
|   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
 | |
|                               isa<CXXMethodDecl>(FDecl);
 | |
|   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
 | |
|                           IsMemberOperatorCall;
 | |
|   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
 | |
|                                                   TheCall->getCallee());
 | |
|   Expr** Args = TheCall->getArgs();
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
| 
 | |
|   Expr *ImplicitThis = nullptr;
 | |
|   if (IsMemberOperatorCall) {
 | |
|     // If this is a call to a member operator, hide the first argument
 | |
|     // from checkCall.
 | |
|     // FIXME: Our choice of AST representation here is less than ideal.
 | |
|     ImplicitThis = Args[0];
 | |
|     ++Args;
 | |
|     --NumArgs;
 | |
|   } else if (IsMemberFunction)
 | |
|     ImplicitThis =
 | |
|         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
 | |
| 
 | |
|   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
 | |
|             IsMemberFunction, TheCall->getRParenLoc(),
 | |
|             TheCall->getCallee()->getSourceRange(), CallType);
 | |
| 
 | |
|   IdentifierInfo *FnInfo = FDecl->getIdentifier();
 | |
|   // None of the checks below are needed for functions that don't have
 | |
|   // simple names (e.g., C++ conversion functions).
 | |
|   if (!FnInfo)
 | |
|     return false;
 | |
| 
 | |
|   CheckAbsoluteValueFunction(TheCall, FDecl);
 | |
|   CheckMaxUnsignedZero(TheCall, FDecl);
 | |
| 
 | |
|   if (getLangOpts().ObjC)
 | |
|     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
 | |
| 
 | |
|   unsigned CMId = FDecl->getMemoryFunctionKind();
 | |
|   if (CMId == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Handle memory setting and copying functions.
 | |
|   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
 | |
|     CheckStrlcpycatArguments(TheCall, FnInfo);
 | |
|   else if (CMId == Builtin::BIstrncat)
 | |
|     CheckStrncatArguments(TheCall, FnInfo);
 | |
|   else
 | |
|     CheckMemaccessArguments(TheCall, CMId, FnInfo);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
 | |
|                                ArrayRef<const Expr *> Args) {
 | |
|   VariadicCallType CallType =
 | |
|       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
 | |
| 
 | |
|   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
 | |
|             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
 | |
|             CallType);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
 | |
|                             const FunctionProtoType *Proto) {
 | |
|   QualType Ty;
 | |
|   if (const auto *V = dyn_cast<VarDecl>(NDecl))
 | |
|     Ty = V->getType().getNonReferenceType();
 | |
|   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
 | |
|     Ty = F->getType().getNonReferenceType();
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
 | |
|       !Ty->isFunctionProtoType())
 | |
|     return false;
 | |
| 
 | |
|   VariadicCallType CallType;
 | |
|   if (!Proto || !Proto->isVariadic()) {
 | |
|     CallType = VariadicDoesNotApply;
 | |
|   } else if (Ty->isBlockPointerType()) {
 | |
|     CallType = VariadicBlock;
 | |
|   } else { // Ty->isFunctionPointerType()
 | |
|     CallType = VariadicFunction;
 | |
|   }
 | |
| 
 | |
|   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
 | |
|             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
 | |
|             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
 | |
|             TheCall->getCallee()->getSourceRange(), CallType);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
 | |
| /// such as function pointers returned from functions.
 | |
| bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
 | |
|   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
 | |
|                                                   TheCall->getCallee());
 | |
|   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
 | |
|             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
 | |
|             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
 | |
|             TheCall->getCallee()->getSourceRange(), CallType);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
 | |
|   if (!llvm::isValidAtomicOrderingCABI(Ordering))
 | |
|     return false;
 | |
| 
 | |
|   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
 | |
|   switch (Op) {
 | |
|   case AtomicExpr::AO__c11_atomic_init:
 | |
|   case AtomicExpr::AO__opencl_atomic_init:
 | |
|     llvm_unreachable("There is no ordering argument for an init");
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_load:
 | |
|   case AtomicExpr::AO__opencl_atomic_load:
 | |
|   case AtomicExpr::AO__atomic_load_n:
 | |
|   case AtomicExpr::AO__atomic_load:
 | |
|     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
 | |
|            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_store:
 | |
|   case AtomicExpr::AO__opencl_atomic_store:
 | |
|   case AtomicExpr::AO__atomic_store:
 | |
|   case AtomicExpr::AO__atomic_store_n:
 | |
|     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
 | |
|            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
 | |
|            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
 | |
| 
 | |
|   default:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
 | |
|                                          AtomicExpr::AtomicOp Op) {
 | |
|   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
|   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
 | |
|   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
 | |
|                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
 | |
|                          Op);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
 | |
|                                  SourceLocation RParenLoc, MultiExprArg Args,
 | |
|                                  AtomicExpr::AtomicOp Op,
 | |
|                                  AtomicArgumentOrder ArgOrder) {
 | |
|   // All the non-OpenCL operations take one of the following forms.
 | |
|   // The OpenCL operations take the __c11 forms with one extra argument for
 | |
|   // synchronization scope.
 | |
|   enum {
 | |
|     // C    __c11_atomic_init(A *, C)
 | |
|     Init,
 | |
| 
 | |
|     // C    __c11_atomic_load(A *, int)
 | |
|     Load,
 | |
| 
 | |
|     // void __atomic_load(A *, CP, int)
 | |
|     LoadCopy,
 | |
| 
 | |
|     // void __atomic_store(A *, CP, int)
 | |
|     Copy,
 | |
| 
 | |
|     // C    __c11_atomic_add(A *, M, int)
 | |
|     Arithmetic,
 | |
| 
 | |
|     // C    __atomic_exchange_n(A *, CP, int)
 | |
|     Xchg,
 | |
| 
 | |
|     // void __atomic_exchange(A *, C *, CP, int)
 | |
|     GNUXchg,
 | |
| 
 | |
|     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
 | |
|     C11CmpXchg,
 | |
| 
 | |
|     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
 | |
|     GNUCmpXchg
 | |
|   } Form = Init;
 | |
| 
 | |
|   const unsigned NumForm = GNUCmpXchg + 1;
 | |
|   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
 | |
|   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
 | |
|   // where:
 | |
|   //   C is an appropriate type,
 | |
|   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
 | |
|   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
 | |
|   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
 | |
|   //   the int parameters are for orderings.
 | |
| 
 | |
|   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
 | |
|       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
 | |
|       "need to update code for modified forms");
 | |
|   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
 | |
|                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
 | |
|                         AtomicExpr::AO__atomic_load,
 | |
|                 "need to update code for modified C11 atomics");
 | |
|   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
 | |
|                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
 | |
|   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
 | |
|                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
 | |
|                IsOpenCL;
 | |
|   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
 | |
|              Op == AtomicExpr::AO__atomic_store_n ||
 | |
|              Op == AtomicExpr::AO__atomic_exchange_n ||
 | |
|              Op == AtomicExpr::AO__atomic_compare_exchange_n;
 | |
|   bool IsAddSub = false;
 | |
| 
 | |
|   switch (Op) {
 | |
|   case AtomicExpr::AO__c11_atomic_init:
 | |
|   case AtomicExpr::AO__opencl_atomic_init:
 | |
|     Form = Init;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_load:
 | |
|   case AtomicExpr::AO__opencl_atomic_load:
 | |
|   case AtomicExpr::AO__atomic_load_n:
 | |
|     Form = Load;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_load:
 | |
|     Form = LoadCopy;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_store:
 | |
|   case AtomicExpr::AO__opencl_atomic_store:
 | |
|   case AtomicExpr::AO__atomic_store:
 | |
|   case AtomicExpr::AO__atomic_store_n:
 | |
|     Form = Copy;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_add:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_sub:
 | |
|   case AtomicExpr::AO__opencl_atomic_fetch_add:
 | |
|   case AtomicExpr::AO__opencl_atomic_fetch_sub:
 | |
|   case AtomicExpr::AO__atomic_fetch_add:
 | |
|   case AtomicExpr::AO__atomic_fetch_sub:
 | |
|   case AtomicExpr::AO__atomic_add_fetch:
 | |
|   case AtomicExpr::AO__atomic_sub_fetch:
 | |
|     IsAddSub = true;
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_and:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_or:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_xor:
 | |
|   case AtomicExpr::AO__opencl_atomic_fetch_and:
 | |
|   case AtomicExpr::AO__opencl_atomic_fetch_or:
 | |
|   case AtomicExpr::AO__opencl_atomic_fetch_xor:
 | |
|   case AtomicExpr::AO__atomic_fetch_and:
 | |
|   case AtomicExpr::AO__atomic_fetch_or:
 | |
|   case AtomicExpr::AO__atomic_fetch_xor:
 | |
|   case AtomicExpr::AO__atomic_fetch_nand:
 | |
|   case AtomicExpr::AO__atomic_and_fetch:
 | |
|   case AtomicExpr::AO__atomic_or_fetch:
 | |
|   case AtomicExpr::AO__atomic_xor_fetch:
 | |
|   case AtomicExpr::AO__atomic_nand_fetch:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_min:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_max:
 | |
|   case AtomicExpr::AO__opencl_atomic_fetch_min:
 | |
|   case AtomicExpr::AO__opencl_atomic_fetch_max:
 | |
|   case AtomicExpr::AO__atomic_min_fetch:
 | |
|   case AtomicExpr::AO__atomic_max_fetch:
 | |
|   case AtomicExpr::AO__atomic_fetch_min:
 | |
|   case AtomicExpr::AO__atomic_fetch_max:
 | |
|     Form = Arithmetic;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_exchange:
 | |
|   case AtomicExpr::AO__opencl_atomic_exchange:
 | |
|   case AtomicExpr::AO__atomic_exchange_n:
 | |
|     Form = Xchg;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_exchange:
 | |
|     Form = GNUXchg;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
 | |
|   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
 | |
|   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
 | |
|   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
 | |
|     Form = C11CmpXchg;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_compare_exchange:
 | |
|   case AtomicExpr::AO__atomic_compare_exchange_n:
 | |
|     Form = GNUCmpXchg;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   unsigned AdjustedNumArgs = NumArgs[Form];
 | |
|   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
 | |
|     ++AdjustedNumArgs;
 | |
|   // Check we have the right number of arguments.
 | |
|   if (Args.size() < AdjustedNumArgs) {
 | |
|     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
 | |
|         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
 | |
|         << ExprRange;
 | |
|     return ExprError();
 | |
|   } else if (Args.size() > AdjustedNumArgs) {
 | |
|     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
 | |
|          diag::err_typecheck_call_too_many_args)
 | |
|         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
 | |
|         << ExprRange;
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Inspect the first argument of the atomic operation.
 | |
|   Expr *Ptr = Args[0];
 | |
|   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
 | |
|   if (ConvertedPtr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   Ptr = ConvertedPtr.get();
 | |
|   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
 | |
|   if (!pointerType) {
 | |
|     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
 | |
|         << Ptr->getType() << Ptr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // For a __c11 builtin, this should be a pointer to an _Atomic type.
 | |
|   QualType AtomTy = pointerType->getPointeeType(); // 'A'
 | |
|   QualType ValType = AtomTy; // 'C'
 | |
|   if (IsC11) {
 | |
|     if (!AtomTy->isAtomicType()) {
 | |
|       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
 | |
|           << Ptr->getType() << Ptr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
 | |
|         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
 | |
|       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
 | |
|           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
 | |
|           << Ptr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|     ValType = AtomTy->castAs<AtomicType>()->getValueType();
 | |
|   } else if (Form != Load && Form != LoadCopy) {
 | |
|     if (ValType.isConstQualified()) {
 | |
|       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
 | |
|           << Ptr->getType() << Ptr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For an arithmetic operation, the implied arithmetic must be well-formed.
 | |
|   if (Form == Arithmetic) {
 | |
|     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
 | |
|     if (IsAddSub && !ValType->isIntegerType()
 | |
|         && !ValType->isPointerType()) {
 | |
|       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
 | |
|           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|     if (!IsAddSub && !ValType->isIntegerType()) {
 | |
|       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
 | |
|           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|     if (IsC11 && ValType->isPointerType() &&
 | |
|         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
 | |
|                             diag::err_incomplete_type)) {
 | |
|       return ExprError();
 | |
|     }
 | |
|   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
 | |
|     // For __atomic_*_n operations, the value type must be a scalar integral or
 | |
|     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
 | |
|     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
 | |
|         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
 | |
|       !AtomTy->isScalarType()) {
 | |
|     // For GNU atomics, require a trivially-copyable type. This is not part of
 | |
|     // the GNU atomics specification, but we enforce it for sanity.
 | |
|     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
 | |
|         << Ptr->getType() << Ptr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   switch (ValType.getObjCLifetime()) {
 | |
|   case Qualifiers::OCL_None:
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     // okay
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Weak:
 | |
|   case Qualifiers::OCL_Strong:
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     // FIXME: Can this happen? By this point, ValType should be known
 | |
|     // to be trivially copyable.
 | |
|     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
 | |
|         << ValType << Ptr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // All atomic operations have an overload which takes a pointer to a volatile
 | |
|   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
 | |
|   // into the result or the other operands. Similarly atomic_load takes a
 | |
|   // pointer to a const 'A'.
 | |
|   ValType.removeLocalVolatile();
 | |
|   ValType.removeLocalConst();
 | |
|   QualType ResultType = ValType;
 | |
|   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
 | |
|       Form == Init)
 | |
|     ResultType = Context.VoidTy;
 | |
|   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
 | |
|     ResultType = Context.BoolTy;
 | |
| 
 | |
|   // The type of a parameter passed 'by value'. In the GNU atomics, such
 | |
|   // arguments are actually passed as pointers.
 | |
|   QualType ByValType = ValType; // 'CP'
 | |
|   bool IsPassedByAddress = false;
 | |
|   if (!IsC11 && !IsN) {
 | |
|     ByValType = Ptr->getType();
 | |
|     IsPassedByAddress = true;
 | |
|   }
 | |
| 
 | |
|   SmallVector<Expr *, 5> APIOrderedArgs;
 | |
|   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
 | |
|     APIOrderedArgs.push_back(Args[0]);
 | |
|     switch (Form) {
 | |
|     case Init:
 | |
|     case Load:
 | |
|       APIOrderedArgs.push_back(Args[1]); // Val1/Order
 | |
|       break;
 | |
|     case LoadCopy:
 | |
|     case Copy:
 | |
|     case Arithmetic:
 | |
|     case Xchg:
 | |
|       APIOrderedArgs.push_back(Args[2]); // Val1
 | |
|       APIOrderedArgs.push_back(Args[1]); // Order
 | |
|       break;
 | |
|     case GNUXchg:
 | |
|       APIOrderedArgs.push_back(Args[2]); // Val1
 | |
|       APIOrderedArgs.push_back(Args[3]); // Val2
 | |
|       APIOrderedArgs.push_back(Args[1]); // Order
 | |
|       break;
 | |
|     case C11CmpXchg:
 | |
|       APIOrderedArgs.push_back(Args[2]); // Val1
 | |
|       APIOrderedArgs.push_back(Args[4]); // Val2
 | |
|       APIOrderedArgs.push_back(Args[1]); // Order
 | |
|       APIOrderedArgs.push_back(Args[3]); // OrderFail
 | |
|       break;
 | |
|     case GNUCmpXchg:
 | |
|       APIOrderedArgs.push_back(Args[2]); // Val1
 | |
|       APIOrderedArgs.push_back(Args[4]); // Val2
 | |
|       APIOrderedArgs.push_back(Args[5]); // Weak
 | |
|       APIOrderedArgs.push_back(Args[1]); // Order
 | |
|       APIOrderedArgs.push_back(Args[3]); // OrderFail
 | |
|       break;
 | |
|     }
 | |
|   } else
 | |
|     APIOrderedArgs.append(Args.begin(), Args.end());
 | |
| 
 | |
|   // The first argument's non-CV pointer type is used to deduce the type of
 | |
|   // subsequent arguments, except for:
 | |
|   //  - weak flag (always converted to bool)
 | |
|   //  - memory order (always converted to int)
 | |
|   //  - scope  (always converted to int)
 | |
|   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
 | |
|     QualType Ty;
 | |
|     if (i < NumVals[Form] + 1) {
 | |
|       switch (i) {
 | |
|       case 0:
 | |
|         // The first argument is always a pointer. It has a fixed type.
 | |
|         // It is always dereferenced, a nullptr is undefined.
 | |
|         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
 | |
|         // Nothing else to do: we already know all we want about this pointer.
 | |
|         continue;
 | |
|       case 1:
 | |
|         // The second argument is the non-atomic operand. For arithmetic, this
 | |
|         // is always passed by value, and for a compare_exchange it is always
 | |
|         // passed by address. For the rest, GNU uses by-address and C11 uses
 | |
|         // by-value.
 | |
|         assert(Form != Load);
 | |
|         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
 | |
|           Ty = ValType;
 | |
|         else if (Form == Copy || Form == Xchg) {
 | |
|           if (IsPassedByAddress) {
 | |
|             // The value pointer is always dereferenced, a nullptr is undefined.
 | |
|             CheckNonNullArgument(*this, APIOrderedArgs[i],
 | |
|                                  ExprRange.getBegin());
 | |
|           }
 | |
|           Ty = ByValType;
 | |
|         } else if (Form == Arithmetic)
 | |
|           Ty = Context.getPointerDiffType();
 | |
|         else {
 | |
|           Expr *ValArg = APIOrderedArgs[i];
 | |
|           // The value pointer is always dereferenced, a nullptr is undefined.
 | |
|           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
 | |
|           LangAS AS = LangAS::Default;
 | |
|           // Keep address space of non-atomic pointer type.
 | |
|           if (const PointerType *PtrTy =
 | |
|                   ValArg->getType()->getAs<PointerType>()) {
 | |
|             AS = PtrTy->getPointeeType().getAddressSpace();
 | |
|           }
 | |
|           Ty = Context.getPointerType(
 | |
|               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
 | |
|         }
 | |
|         break;
 | |
|       case 2:
 | |
|         // The third argument to compare_exchange / GNU exchange is the desired
 | |
|         // value, either by-value (for the C11 and *_n variant) or as a pointer.
 | |
|         if (IsPassedByAddress)
 | |
|           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
 | |
|         Ty = ByValType;
 | |
|         break;
 | |
|       case 3:
 | |
|         // The fourth argument to GNU compare_exchange is a 'weak' flag.
 | |
|         Ty = Context.BoolTy;
 | |
|         break;
 | |
|       }
 | |
|     } else {
 | |
|       // The order(s) and scope are always converted to int.
 | |
|       Ty = Context.IntTy;
 | |
|     }
 | |
| 
 | |
|     InitializedEntity Entity =
 | |
|         InitializedEntity::InitializeParameter(Context, Ty, false);
 | |
|     ExprResult Arg = APIOrderedArgs[i];
 | |
|     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | |
|     if (Arg.isInvalid())
 | |
|       return true;
 | |
|     APIOrderedArgs[i] = Arg.get();
 | |
|   }
 | |
| 
 | |
|   // Permute the arguments into a 'consistent' order.
 | |
|   SmallVector<Expr*, 5> SubExprs;
 | |
|   SubExprs.push_back(Ptr);
 | |
|   switch (Form) {
 | |
|   case Init:
 | |
|     // Note, AtomicExpr::getVal1() has a special case for this atomic.
 | |
|     SubExprs.push_back(APIOrderedArgs[1]); // Val1
 | |
|     break;
 | |
|   case Load:
 | |
|     SubExprs.push_back(APIOrderedArgs[1]); // Order
 | |
|     break;
 | |
|   case LoadCopy:
 | |
|   case Copy:
 | |
|   case Arithmetic:
 | |
|   case Xchg:
 | |
|     SubExprs.push_back(APIOrderedArgs[2]); // Order
 | |
|     SubExprs.push_back(APIOrderedArgs[1]); // Val1
 | |
|     break;
 | |
|   case GNUXchg:
 | |
|     // Note, AtomicExpr::getVal2() has a special case for this atomic.
 | |
|     SubExprs.push_back(APIOrderedArgs[3]); // Order
 | |
|     SubExprs.push_back(APIOrderedArgs[1]); // Val1
 | |
|     SubExprs.push_back(APIOrderedArgs[2]); // Val2
 | |
|     break;
 | |
|   case C11CmpXchg:
 | |
|     SubExprs.push_back(APIOrderedArgs[3]); // Order
 | |
|     SubExprs.push_back(APIOrderedArgs[1]); // Val1
 | |
|     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
 | |
|     SubExprs.push_back(APIOrderedArgs[2]); // Val2
 | |
|     break;
 | |
|   case GNUCmpXchg:
 | |
|     SubExprs.push_back(APIOrderedArgs[4]); // Order
 | |
|     SubExprs.push_back(APIOrderedArgs[1]); // Val1
 | |
|     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
 | |
|     SubExprs.push_back(APIOrderedArgs[2]); // Val2
 | |
|     SubExprs.push_back(APIOrderedArgs[3]); // Weak
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (SubExprs.size() >= 2 && Form != Init) {
 | |
|     llvm::APSInt Result(32);
 | |
|     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
 | |
|         !isValidOrderingForOp(Result.getSExtValue(), Op))
 | |
|       Diag(SubExprs[1]->getBeginLoc(),
 | |
|            diag::warn_atomic_op_has_invalid_memory_order)
 | |
|           << SubExprs[1]->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
 | |
|     auto *Scope = Args[Args.size() - 1];
 | |
|     llvm::APSInt Result(32);
 | |
|     if (Scope->isIntegerConstantExpr(Result, Context) &&
 | |
|         !ScopeModel->isValid(Result.getZExtValue())) {
 | |
|       Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
 | |
|           << Scope->getSourceRange();
 | |
|     }
 | |
|     SubExprs.push_back(Scope);
 | |
|   }
 | |
| 
 | |
|   AtomicExpr *AE = new (Context)
 | |
|       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
 | |
| 
 | |
|   if ((Op == AtomicExpr::AO__c11_atomic_load ||
 | |
|        Op == AtomicExpr::AO__c11_atomic_store ||
 | |
|        Op == AtomicExpr::AO__opencl_atomic_load ||
 | |
|        Op == AtomicExpr::AO__opencl_atomic_store ) &&
 | |
|       Context.AtomicUsesUnsupportedLibcall(AE))
 | |
|     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
 | |
|         << ((Op == AtomicExpr::AO__c11_atomic_load ||
 | |
|              Op == AtomicExpr::AO__opencl_atomic_load)
 | |
|                 ? 0
 | |
|                 : 1);
 | |
| 
 | |
|   return AE;
 | |
| }
 | |
| 
 | |
| /// checkBuiltinArgument - Given a call to a builtin function, perform
 | |
| /// normal type-checking on the given argument, updating the call in
 | |
| /// place.  This is useful when a builtin function requires custom
 | |
| /// type-checking for some of its arguments but not necessarily all of
 | |
| /// them.
 | |
| ///
 | |
| /// Returns true on error.
 | |
| static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
 | |
|   FunctionDecl *Fn = E->getDirectCallee();
 | |
|   assert(Fn && "builtin call without direct callee!");
 | |
| 
 | |
|   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
 | |
|   InitializedEntity Entity =
 | |
|     InitializedEntity::InitializeParameter(S.Context, Param);
 | |
| 
 | |
|   ExprResult Arg = E->getArg(0);
 | |
|   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | |
|   if (Arg.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   E->setArg(ArgIndex, Arg.get());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// We have a call to a function like __sync_fetch_and_add, which is an
 | |
| /// overloaded function based on the pointer type of its first argument.
 | |
| /// The main BuildCallExpr routines have already promoted the types of
 | |
| /// arguments because all of these calls are prototyped as void(...).
 | |
| ///
 | |
| /// This function goes through and does final semantic checking for these
 | |
| /// builtins, as well as generating any warnings.
 | |
| ExprResult
 | |
| Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
 | |
|   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
 | |
|   Expr *Callee = TheCall->getCallee();
 | |
|   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
 | |
|   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | |
| 
 | |
|   // Ensure that we have at least one argument to do type inference from.
 | |
|   if (TheCall->getNumArgs() < 1) {
 | |
|     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
 | |
|         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Inspect the first argument of the atomic builtin.  This should always be
 | |
|   // a pointer type, whose element is an integral scalar or pointer type.
 | |
|   // Because it is a pointer type, we don't have to worry about any implicit
 | |
|   // casts here.
 | |
|   // FIXME: We don't allow floating point scalars as input.
 | |
|   Expr *FirstArg = TheCall->getArg(0);
 | |
|   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
 | |
|   if (FirstArgResult.isInvalid())
 | |
|     return ExprError();
 | |
|   FirstArg = FirstArgResult.get();
 | |
|   TheCall->setArg(0, FirstArg);
 | |
| 
 | |
|   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
 | |
|   if (!pointerType) {
 | |
|     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
 | |
|         << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   QualType ValType = pointerType->getPointeeType();
 | |
|   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
 | |
|       !ValType->isBlockPointerType()) {
 | |
|     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
 | |
|         << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (ValType.isConstQualified()) {
 | |
|     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
 | |
|         << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   switch (ValType.getObjCLifetime()) {
 | |
|   case Qualifiers::OCL_None:
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     // okay
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Weak:
 | |
|   case Qualifiers::OCL_Strong:
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
 | |
|         << ValType << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Strip any qualifiers off ValType.
 | |
|   ValType = ValType.getUnqualifiedType();
 | |
| 
 | |
|   // The majority of builtins return a value, but a few have special return
 | |
|   // types, so allow them to override appropriately below.
 | |
|   QualType ResultType = ValType;
 | |
| 
 | |
|   // We need to figure out which concrete builtin this maps onto.  For example,
 | |
|   // __sync_fetch_and_add with a 2 byte object turns into
 | |
|   // __sync_fetch_and_add_2.
 | |
| #define BUILTIN_ROW(x) \
 | |
|   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
 | |
|     Builtin::BI##x##_8, Builtin::BI##x##_16 }
 | |
| 
 | |
|   static const unsigned BuiltinIndices[][5] = {
 | |
|     BUILTIN_ROW(__sync_fetch_and_add),
 | |
|     BUILTIN_ROW(__sync_fetch_and_sub),
 | |
|     BUILTIN_ROW(__sync_fetch_and_or),
 | |
|     BUILTIN_ROW(__sync_fetch_and_and),
 | |
|     BUILTIN_ROW(__sync_fetch_and_xor),
 | |
|     BUILTIN_ROW(__sync_fetch_and_nand),
 | |
| 
 | |
|     BUILTIN_ROW(__sync_add_and_fetch),
 | |
|     BUILTIN_ROW(__sync_sub_and_fetch),
 | |
|     BUILTIN_ROW(__sync_and_and_fetch),
 | |
|     BUILTIN_ROW(__sync_or_and_fetch),
 | |
|     BUILTIN_ROW(__sync_xor_and_fetch),
 | |
|     BUILTIN_ROW(__sync_nand_and_fetch),
 | |
| 
 | |
|     BUILTIN_ROW(__sync_val_compare_and_swap),
 | |
|     BUILTIN_ROW(__sync_bool_compare_and_swap),
 | |
|     BUILTIN_ROW(__sync_lock_test_and_set),
 | |
|     BUILTIN_ROW(__sync_lock_release),
 | |
|     BUILTIN_ROW(__sync_swap)
 | |
|   };
 | |
| #undef BUILTIN_ROW
 | |
| 
 | |
|   // Determine the index of the size.
 | |
|   unsigned SizeIndex;
 | |
|   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
 | |
|   case 1: SizeIndex = 0; break;
 | |
|   case 2: SizeIndex = 1; break;
 | |
|   case 4: SizeIndex = 2; break;
 | |
|   case 8: SizeIndex = 3; break;
 | |
|   case 16: SizeIndex = 4; break;
 | |
|   default:
 | |
|     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
 | |
|         << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Each of these builtins has one pointer argument, followed by some number of
 | |
|   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
 | |
|   // that we ignore.  Find out which row of BuiltinIndices to read from as well
 | |
|   // as the number of fixed args.
 | |
|   unsigned BuiltinID = FDecl->getBuiltinID();
 | |
|   unsigned BuiltinIndex, NumFixed = 1;
 | |
|   bool WarnAboutSemanticsChange = false;
 | |
|   switch (BuiltinID) {
 | |
|   default: llvm_unreachable("Unknown overloaded atomic builtin!");
 | |
|   case Builtin::BI__sync_fetch_and_add:
 | |
|   case Builtin::BI__sync_fetch_and_add_1:
 | |
|   case Builtin::BI__sync_fetch_and_add_2:
 | |
|   case Builtin::BI__sync_fetch_and_add_4:
 | |
|   case Builtin::BI__sync_fetch_and_add_8:
 | |
|   case Builtin::BI__sync_fetch_and_add_16:
 | |
|     BuiltinIndex = 0;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_fetch_and_sub:
 | |
|   case Builtin::BI__sync_fetch_and_sub_1:
 | |
|   case Builtin::BI__sync_fetch_and_sub_2:
 | |
|   case Builtin::BI__sync_fetch_and_sub_4:
 | |
|   case Builtin::BI__sync_fetch_and_sub_8:
 | |
|   case Builtin::BI__sync_fetch_and_sub_16:
 | |
|     BuiltinIndex = 1;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_fetch_and_or:
 | |
|   case Builtin::BI__sync_fetch_and_or_1:
 | |
|   case Builtin::BI__sync_fetch_and_or_2:
 | |
|   case Builtin::BI__sync_fetch_and_or_4:
 | |
|   case Builtin::BI__sync_fetch_and_or_8:
 | |
|   case Builtin::BI__sync_fetch_and_or_16:
 | |
|     BuiltinIndex = 2;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_fetch_and_and:
 | |
|   case Builtin::BI__sync_fetch_and_and_1:
 | |
|   case Builtin::BI__sync_fetch_and_and_2:
 | |
|   case Builtin::BI__sync_fetch_and_and_4:
 | |
|   case Builtin::BI__sync_fetch_and_and_8:
 | |
|   case Builtin::BI__sync_fetch_and_and_16:
 | |
|     BuiltinIndex = 3;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_fetch_and_xor:
 | |
|   case Builtin::BI__sync_fetch_and_xor_1:
 | |
|   case Builtin::BI__sync_fetch_and_xor_2:
 | |
|   case Builtin::BI__sync_fetch_and_xor_4:
 | |
|   case Builtin::BI__sync_fetch_and_xor_8:
 | |
|   case Builtin::BI__sync_fetch_and_xor_16:
 | |
|     BuiltinIndex = 4;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_fetch_and_nand:
 | |
|   case Builtin::BI__sync_fetch_and_nand_1:
 | |
|   case Builtin::BI__sync_fetch_and_nand_2:
 | |
|   case Builtin::BI__sync_fetch_and_nand_4:
 | |
|   case Builtin::BI__sync_fetch_and_nand_8:
 | |
|   case Builtin::BI__sync_fetch_and_nand_16:
 | |
|     BuiltinIndex = 5;
 | |
|     WarnAboutSemanticsChange = true;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_add_and_fetch:
 | |
|   case Builtin::BI__sync_add_and_fetch_1:
 | |
|   case Builtin::BI__sync_add_and_fetch_2:
 | |
|   case Builtin::BI__sync_add_and_fetch_4:
 | |
|   case Builtin::BI__sync_add_and_fetch_8:
 | |
|   case Builtin::BI__sync_add_and_fetch_16:
 | |
|     BuiltinIndex = 6;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_sub_and_fetch:
 | |
|   case Builtin::BI__sync_sub_and_fetch_1:
 | |
|   case Builtin::BI__sync_sub_and_fetch_2:
 | |
|   case Builtin::BI__sync_sub_and_fetch_4:
 | |
|   case Builtin::BI__sync_sub_and_fetch_8:
 | |
|   case Builtin::BI__sync_sub_and_fetch_16:
 | |
|     BuiltinIndex = 7;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_and_and_fetch:
 | |
|   case Builtin::BI__sync_and_and_fetch_1:
 | |
|   case Builtin::BI__sync_and_and_fetch_2:
 | |
|   case Builtin::BI__sync_and_and_fetch_4:
 | |
|   case Builtin::BI__sync_and_and_fetch_8:
 | |
|   case Builtin::BI__sync_and_and_fetch_16:
 | |
|     BuiltinIndex = 8;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_or_and_fetch:
 | |
|   case Builtin::BI__sync_or_and_fetch_1:
 | |
|   case Builtin::BI__sync_or_and_fetch_2:
 | |
|   case Builtin::BI__sync_or_and_fetch_4:
 | |
|   case Builtin::BI__sync_or_and_fetch_8:
 | |
|   case Builtin::BI__sync_or_and_fetch_16:
 | |
|     BuiltinIndex = 9;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_xor_and_fetch:
 | |
|   case Builtin::BI__sync_xor_and_fetch_1:
 | |
|   case Builtin::BI__sync_xor_and_fetch_2:
 | |
|   case Builtin::BI__sync_xor_and_fetch_4:
 | |
|   case Builtin::BI__sync_xor_and_fetch_8:
 | |
|   case Builtin::BI__sync_xor_and_fetch_16:
 | |
|     BuiltinIndex = 10;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_nand_and_fetch:
 | |
|   case Builtin::BI__sync_nand_and_fetch_1:
 | |
|   case Builtin::BI__sync_nand_and_fetch_2:
 | |
|   case Builtin::BI__sync_nand_and_fetch_4:
 | |
|   case Builtin::BI__sync_nand_and_fetch_8:
 | |
|   case Builtin::BI__sync_nand_and_fetch_16:
 | |
|     BuiltinIndex = 11;
 | |
|     WarnAboutSemanticsChange = true;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_val_compare_and_swap:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_1:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_2:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_4:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_8:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_16:
 | |
|     BuiltinIndex = 12;
 | |
|     NumFixed = 2;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_bool_compare_and_swap:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_1:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_2:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_4:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_8:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_16:
 | |
|     BuiltinIndex = 13;
 | |
|     NumFixed = 2;
 | |
|     ResultType = Context.BoolTy;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_lock_test_and_set:
 | |
|   case Builtin::BI__sync_lock_test_and_set_1:
 | |
|   case Builtin::BI__sync_lock_test_and_set_2:
 | |
|   case Builtin::BI__sync_lock_test_and_set_4:
 | |
|   case Builtin::BI__sync_lock_test_and_set_8:
 | |
|   case Builtin::BI__sync_lock_test_and_set_16:
 | |
|     BuiltinIndex = 14;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_lock_release:
 | |
|   case Builtin::BI__sync_lock_release_1:
 | |
|   case Builtin::BI__sync_lock_release_2:
 | |
|   case Builtin::BI__sync_lock_release_4:
 | |
|   case Builtin::BI__sync_lock_release_8:
 | |
|   case Builtin::BI__sync_lock_release_16:
 | |
|     BuiltinIndex = 15;
 | |
|     NumFixed = 0;
 | |
|     ResultType = Context.VoidTy;
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_swap:
 | |
|   case Builtin::BI__sync_swap_1:
 | |
|   case Builtin::BI__sync_swap_2:
 | |
|   case Builtin::BI__sync_swap_4:
 | |
|   case Builtin::BI__sync_swap_8:
 | |
|   case Builtin::BI__sync_swap_16:
 | |
|     BuiltinIndex = 16;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Now that we know how many fixed arguments we expect, first check that we
 | |
|   // have at least that many.
 | |
|   if (TheCall->getNumArgs() < 1+NumFixed) {
 | |
|     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
 | |
|         << 0 << 1 + NumFixed << TheCall->getNumArgs()
 | |
|         << Callee->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
 | |
|       << Callee->getSourceRange();
 | |
| 
 | |
|   if (WarnAboutSemanticsChange) {
 | |
|     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
 | |
|         << Callee->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   // Get the decl for the concrete builtin from this, we can tell what the
 | |
|   // concrete integer type we should convert to is.
 | |
|   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
 | |
|   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
 | |
|   FunctionDecl *NewBuiltinDecl;
 | |
|   if (NewBuiltinID == BuiltinID)
 | |
|     NewBuiltinDecl = FDecl;
 | |
|   else {
 | |
|     // Perform builtin lookup to avoid redeclaring it.
 | |
|     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
 | |
|     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
 | |
|     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
 | |
|     assert(Res.getFoundDecl());
 | |
|     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
 | |
|     if (!NewBuiltinDecl)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   // The first argument --- the pointer --- has a fixed type; we
 | |
|   // deduce the types of the rest of the arguments accordingly.  Walk
 | |
|   // the remaining arguments, converting them to the deduced value type.
 | |
|   for (unsigned i = 0; i != NumFixed; ++i) {
 | |
|     ExprResult Arg = TheCall->getArg(i+1);
 | |
| 
 | |
|     // GCC does an implicit conversion to the pointer or integer ValType.  This
 | |
|     // can fail in some cases (1i -> int**), check for this error case now.
 | |
|     // Initialize the argument.
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
 | |
|                                                    ValType, /*consume*/ false);
 | |
|     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | |
|     if (Arg.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     // Okay, we have something that *can* be converted to the right type.  Check
 | |
|     // to see if there is a potentially weird extension going on here.  This can
 | |
|     // happen when you do an atomic operation on something like an char* and
 | |
|     // pass in 42.  The 42 gets converted to char.  This is even more strange
 | |
|     // for things like 45.123 -> char, etc.
 | |
|     // FIXME: Do this check.
 | |
|     TheCall->setArg(i+1, Arg.get());
 | |
|   }
 | |
| 
 | |
|   // Create a new DeclRefExpr to refer to the new decl.
 | |
|   DeclRefExpr *NewDRE = DeclRefExpr::Create(
 | |
|       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
 | |
|       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
 | |
|       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
 | |
| 
 | |
|   // Set the callee in the CallExpr.
 | |
|   // FIXME: This loses syntactic information.
 | |
|   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
 | |
|   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
 | |
|                                               CK_BuiltinFnToFnPtr);
 | |
|   TheCall->setCallee(PromotedCall.get());
 | |
| 
 | |
|   // Change the result type of the call to match the original value type. This
 | |
|   // is arbitrary, but the codegen for these builtins ins design to handle it
 | |
|   // gracefully.
 | |
|   TheCall->setType(ResultType);
 | |
| 
 | |
|   return TheCallResult;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinNontemporalOverloaded - We have a call to
 | |
| /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
 | |
| /// overloaded function based on the pointer type of its last argument.
 | |
| ///
 | |
| /// This function goes through and does final semantic checking for these
 | |
| /// builtins.
 | |
| ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
 | |
|   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
 | |
|   DeclRefExpr *DRE =
 | |
|       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
|   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | |
|   unsigned BuiltinID = FDecl->getBuiltinID();
 | |
|   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
 | |
|           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
 | |
|          "Unexpected nontemporal load/store builtin!");
 | |
|   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
 | |
|   unsigned numArgs = isStore ? 2 : 1;
 | |
| 
 | |
|   // Ensure that we have the proper number of arguments.
 | |
|   if (checkArgCount(*this, TheCall, numArgs))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Inspect the last argument of the nontemporal builtin.  This should always
 | |
|   // be a pointer type, from which we imply the type of the memory access.
 | |
|   // Because it is a pointer type, we don't have to worry about any implicit
 | |
|   // casts here.
 | |
|   Expr *PointerArg = TheCall->getArg(numArgs - 1);
 | |
|   ExprResult PointerArgResult =
 | |
|       DefaultFunctionArrayLvalueConversion(PointerArg);
 | |
| 
 | |
|   if (PointerArgResult.isInvalid())
 | |
|     return ExprError();
 | |
|   PointerArg = PointerArgResult.get();
 | |
|   TheCall->setArg(numArgs - 1, PointerArg);
 | |
| 
 | |
|   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
 | |
|   if (!pointerType) {
 | |
|     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
 | |
|         << PointerArg->getType() << PointerArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   QualType ValType = pointerType->getPointeeType();
 | |
| 
 | |
|   // Strip any qualifiers off ValType.
 | |
|   ValType = ValType.getUnqualifiedType();
 | |
|   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
 | |
|       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
 | |
|       !ValType->isVectorType()) {
 | |
|     Diag(DRE->getBeginLoc(),
 | |
|          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
 | |
|         << PointerArg->getType() << PointerArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!isStore) {
 | |
|     TheCall->setType(ValType);
 | |
|     return TheCallResult;
 | |
|   }
 | |
| 
 | |
|   ExprResult ValArg = TheCall->getArg(0);
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeParameter(
 | |
|       Context, ValType, /*consume*/ false);
 | |
|   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
 | |
|   if (ValArg.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   TheCall->setArg(0, ValArg.get());
 | |
|   TheCall->setType(Context.VoidTy);
 | |
|   return TheCallResult;
 | |
| }
 | |
| 
 | |
| /// CheckObjCString - Checks that the argument to the builtin
 | |
| /// CFString constructor is correct
 | |
| /// Note: It might also make sense to do the UTF-16 conversion here (would
 | |
| /// simplify the backend).
 | |
| bool Sema::CheckObjCString(Expr *Arg) {
 | |
|   Arg = Arg->IgnoreParenCasts();
 | |
|   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
 | |
| 
 | |
|   if (!Literal || !Literal->isAscii()) {
 | |
|     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
 | |
|         << Arg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Literal->containsNonAsciiOrNull()) {
 | |
|     StringRef String = Literal->getString();
 | |
|     unsigned NumBytes = String.size();
 | |
|     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
 | |
|     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
 | |
|     llvm::UTF16 *ToPtr = &ToBuf[0];
 | |
| 
 | |
|     llvm::ConversionResult Result =
 | |
|         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
 | |
|                                  ToPtr + NumBytes, llvm::strictConversion);
 | |
|     // Check for conversion failure.
 | |
|     if (Result != llvm::conversionOK)
 | |
|       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
 | |
|           << Arg->getSourceRange();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckObjCString - Checks that the format string argument to the os_log()
 | |
| /// and os_trace() functions is correct, and converts it to const char *.
 | |
| ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
 | |
|   Arg = Arg->IgnoreParenCasts();
 | |
|   auto *Literal = dyn_cast<StringLiteral>(Arg);
 | |
|   if (!Literal) {
 | |
|     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
 | |
|       Literal = ObjcLiteral->getString();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
 | |
|     return ExprError(
 | |
|         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
 | |
|         << Arg->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   ExprResult Result(Literal);
 | |
|   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
 | |
|   InitializedEntity Entity =
 | |
|       InitializedEntity::InitializeParameter(Context, ResultTy, false);
 | |
|   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Check that the user is calling the appropriate va_start builtin for the
 | |
| /// target and calling convention.
 | |
| static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
 | |
|   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
 | |
|   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
 | |
|   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
 | |
|                     TT.getArch() == llvm::Triple::aarch64_32);
 | |
|   bool IsWindows = TT.isOSWindows();
 | |
|   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
 | |
|   if (IsX64 || IsAArch64) {
 | |
|     CallingConv CC = CC_C;
 | |
|     if (const FunctionDecl *FD = S.getCurFunctionDecl())
 | |
|       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
 | |
|     if (IsMSVAStart) {
 | |
|       // Don't allow this in System V ABI functions.
 | |
|       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
 | |
|         return S.Diag(Fn->getBeginLoc(),
 | |
|                       diag::err_ms_va_start_used_in_sysv_function);
 | |
|     } else {
 | |
|       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
 | |
|       // On x64 Windows, don't allow this in System V ABI functions.
 | |
|       // (Yes, that means there's no corresponding way to support variadic
 | |
|       // System V ABI functions on Windows.)
 | |
|       if ((IsWindows && CC == CC_X86_64SysV) ||
 | |
|           (!IsWindows && CC == CC_Win64))
 | |
|         return S.Diag(Fn->getBeginLoc(),
 | |
|                       diag::err_va_start_used_in_wrong_abi_function)
 | |
|                << !IsWindows;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (IsMSVAStart)
 | |
|     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
 | |
|                                              ParmVarDecl **LastParam = nullptr) {
 | |
|   // Determine whether the current function, block, or obj-c method is variadic
 | |
|   // and get its parameter list.
 | |
|   bool IsVariadic = false;
 | |
|   ArrayRef<ParmVarDecl *> Params;
 | |
|   DeclContext *Caller = S.CurContext;
 | |
|   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
 | |
|     IsVariadic = Block->isVariadic();
 | |
|     Params = Block->parameters();
 | |
|   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
 | |
|     IsVariadic = FD->isVariadic();
 | |
|     Params = FD->parameters();
 | |
|   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
 | |
|     IsVariadic = MD->isVariadic();
 | |
|     // FIXME: This isn't correct for methods (results in bogus warning).
 | |
|     Params = MD->parameters();
 | |
|   } else if (isa<CapturedDecl>(Caller)) {
 | |
|     // We don't support va_start in a CapturedDecl.
 | |
|     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
 | |
|     return true;
 | |
|   } else {
 | |
|     // This must be some other declcontext that parses exprs.
 | |
|     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!IsVariadic) {
 | |
|     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (LastParam)
 | |
|     *LastParam = Params.empty() ? nullptr : Params.back();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
 | |
| /// for validity.  Emit an error and return true on failure; return false
 | |
| /// on success.
 | |
| bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   Expr *Fn = TheCall->getCallee();
 | |
| 
 | |
|   if (checkVAStartABI(*this, BuiltinID, Fn))
 | |
|     return true;
 | |
| 
 | |
|   if (TheCall->getNumArgs() > 2) {
 | |
|     Diag(TheCall->getArg(2)->getBeginLoc(),
 | |
|          diag::err_typecheck_call_too_many_args)
 | |
|         << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|         << Fn->getSourceRange()
 | |
|         << SourceRange(TheCall->getArg(2)->getBeginLoc(),
 | |
|                        (*(TheCall->arg_end() - 1))->getEndLoc());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (TheCall->getNumArgs() < 2) {
 | |
|     return Diag(TheCall->getEndLoc(),
 | |
|                 diag::err_typecheck_call_too_few_args_at_least)
 | |
|            << 0 /*function call*/ << 2 << TheCall->getNumArgs();
 | |
|   }
 | |
| 
 | |
|   // Type-check the first argument normally.
 | |
|   if (checkBuiltinArgument(*this, TheCall, 0))
 | |
|     return true;
 | |
| 
 | |
|   // Check that the current function is variadic, and get its last parameter.
 | |
|   ParmVarDecl *LastParam;
 | |
|   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
 | |
|     return true;
 | |
| 
 | |
|   // Verify that the second argument to the builtin is the last argument of the
 | |
|   // current function or method.
 | |
|   bool SecondArgIsLastNamedArgument = false;
 | |
|   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
 | |
| 
 | |
|   // These are valid if SecondArgIsLastNamedArgument is false after the next
 | |
|   // block.
 | |
|   QualType Type;
 | |
|   SourceLocation ParamLoc;
 | |
|   bool IsCRegister = false;
 | |
| 
 | |
|   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
 | |
|     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
 | |
|       SecondArgIsLastNamedArgument = PV == LastParam;
 | |
| 
 | |
|       Type = PV->getType();
 | |
|       ParamLoc = PV->getLocation();
 | |
|       IsCRegister =
 | |
|           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!SecondArgIsLastNamedArgument)
 | |
|     Diag(TheCall->getArg(1)->getBeginLoc(),
 | |
|          diag::warn_second_arg_of_va_start_not_last_named_param);
 | |
|   else if (IsCRegister || Type->isReferenceType() ||
 | |
|            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
 | |
|              // Promotable integers are UB, but enumerations need a bit of
 | |
|              // extra checking to see what their promotable type actually is.
 | |
|              if (!Type->isPromotableIntegerType())
 | |
|                return false;
 | |
|              if (!Type->isEnumeralType())
 | |
|                return true;
 | |
|              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
 | |
|              return !(ED &&
 | |
|                       Context.typesAreCompatible(ED->getPromotionType(), Type));
 | |
|            }()) {
 | |
|     unsigned Reason = 0;
 | |
|     if (Type->isReferenceType())  Reason = 1;
 | |
|     else if (IsCRegister)         Reason = 2;
 | |
|     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
 | |
|     Diag(ParamLoc, diag::note_parameter_type) << Type;
 | |
|   }
 | |
| 
 | |
|   TheCall->setType(Context.VoidTy);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
 | |
|   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
 | |
|   //                 const char *named_addr);
 | |
| 
 | |
|   Expr *Func = Call->getCallee();
 | |
| 
 | |
|   if (Call->getNumArgs() < 3)
 | |
|     return Diag(Call->getEndLoc(),
 | |
|                 diag::err_typecheck_call_too_few_args_at_least)
 | |
|            << 0 /*function call*/ << 3 << Call->getNumArgs();
 | |
| 
 | |
|   // Type-check the first argument normally.
 | |
|   if (checkBuiltinArgument(*this, Call, 0))
 | |
|     return true;
 | |
| 
 | |
|   // Check that the current function is variadic.
 | |
|   if (checkVAStartIsInVariadicFunction(*this, Func))
 | |
|     return true;
 | |
| 
 | |
|   // __va_start on Windows does not validate the parameter qualifiers
 | |
| 
 | |
|   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
 | |
|   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
 | |
| 
 | |
|   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
 | |
|   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
 | |
| 
 | |
|   const QualType &ConstCharPtrTy =
 | |
|       Context.getPointerType(Context.CharTy.withConst());
 | |
|   if (!Arg1Ty->isPointerType() ||
 | |
|       Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
 | |
|     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | |
|         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
 | |
|         << 0                                      /* qualifier difference */
 | |
|         << 3                                      /* parameter mismatch */
 | |
|         << 2 << Arg1->getType() << ConstCharPtrTy;
 | |
| 
 | |
|   const QualType SizeTy = Context.getSizeType();
 | |
|   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
 | |
|     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | |
|         << Arg2->getType() << SizeTy << 1 /* different class */
 | |
|         << 0                              /* qualifier difference */
 | |
|         << 3                              /* parameter mismatch */
 | |
|         << 3 << Arg2->getType() << SizeTy;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
 | |
| /// friends.  This is declared to take (...), so we have to check everything.
 | |
| bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
 | |
|   if (TheCall->getNumArgs() < 2)
 | |
|     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
 | |
|            << 0 << 2 << TheCall->getNumArgs() /*function call*/;
 | |
|   if (TheCall->getNumArgs() > 2)
 | |
|     return Diag(TheCall->getArg(2)->getBeginLoc(),
 | |
|                 diag::err_typecheck_call_too_many_args)
 | |
|            << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
 | |
|                           (*(TheCall->arg_end() - 1))->getEndLoc());
 | |
| 
 | |
|   ExprResult OrigArg0 = TheCall->getArg(0);
 | |
|   ExprResult OrigArg1 = TheCall->getArg(1);
 | |
| 
 | |
|   // Do standard promotions between the two arguments, returning their common
 | |
|   // type.
 | |
|   QualType Res = UsualArithmeticConversions(
 | |
|       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
 | |
|   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   // Make sure any conversions are pushed back into the call; this is
 | |
|   // type safe since unordered compare builtins are declared as "_Bool
 | |
|   // foo(...)".
 | |
|   TheCall->setArg(0, OrigArg0.get());
 | |
|   TheCall->setArg(1, OrigArg1.get());
 | |
| 
 | |
|   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   // If the common type isn't a real floating type, then the arguments were
 | |
|   // invalid for this operation.
 | |
|   if (Res.isNull() || !Res->isRealFloatingType())
 | |
|     return Diag(OrigArg0.get()->getBeginLoc(),
 | |
|                 diag::err_typecheck_call_invalid_ordered_compare)
 | |
|            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
 | |
|            << SourceRange(OrigArg0.get()->getBeginLoc(),
 | |
|                           OrigArg1.get()->getEndLoc());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
 | |
| /// __builtin_isnan and friends.  This is declared to take (...), so we have
 | |
| /// to check everything. We expect the last argument to be a floating point
 | |
| /// value.
 | |
| bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
 | |
|   if (TheCall->getNumArgs() < NumArgs)
 | |
|     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
 | |
|            << 0 << NumArgs << TheCall->getNumArgs() /*function call*/;
 | |
|   if (TheCall->getNumArgs() > NumArgs)
 | |
|     return Diag(TheCall->getArg(NumArgs)->getBeginLoc(),
 | |
|                 diag::err_typecheck_call_too_many_args)
 | |
|            << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
 | |
|            << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(),
 | |
|                           (*(TheCall->arg_end() - 1))->getEndLoc());
 | |
| 
 | |
|   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
 | |
|   // on all preceding parameters just being int.  Try all of those.
 | |
|   for (unsigned i = 0; i < NumArgs - 1; ++i) {
 | |
|     Expr *Arg = TheCall->getArg(i);
 | |
| 
 | |
|     if (Arg->isTypeDependent())
 | |
|       return false;
 | |
| 
 | |
|     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
 | |
| 
 | |
|     if (Res.isInvalid())
 | |
|       return true;
 | |
|     TheCall->setArg(i, Res.get());
 | |
|   }
 | |
| 
 | |
|   Expr *OrigArg = TheCall->getArg(NumArgs-1);
 | |
| 
 | |
|   if (OrigArg->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Usual Unary Conversions will convert half to float, which we want for
 | |
|   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
 | |
|   // type how it is, but do normal L->Rvalue conversions.
 | |
|   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
 | |
|     OrigArg = UsualUnaryConversions(OrigArg).get();
 | |
|   else
 | |
|     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
 | |
|   TheCall->setArg(NumArgs - 1, OrigArg);
 | |
| 
 | |
|   // This operation requires a non-_Complex floating-point number.
 | |
|   if (!OrigArg->getType()->isRealFloatingType())
 | |
|     return Diag(OrigArg->getBeginLoc(),
 | |
|                 diag::err_typecheck_call_invalid_unary_fp)
 | |
|            << OrigArg->getType() << OrigArg->getSourceRange();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Customized Sema Checking for VSX builtins that have the following signature:
 | |
| // vector [...] builtinName(vector [...], vector [...], const int);
 | |
| // Which takes the same type of vectors (any legal vector type) for the first
 | |
| // two arguments and takes compile time constant for the third argument.
 | |
| // Example builtins are :
 | |
| // vector double vec_xxpermdi(vector double, vector double, int);
 | |
| // vector short vec_xxsldwi(vector short, vector short, int);
 | |
| bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
 | |
|   unsigned ExpectedNumArgs = 3;
 | |
|   if (TheCall->getNumArgs() < ExpectedNumArgs)
 | |
|     return Diag(TheCall->getEndLoc(),
 | |
|                 diag::err_typecheck_call_too_few_args_at_least)
 | |
|            << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
 | |
|            << TheCall->getSourceRange();
 | |
| 
 | |
|   if (TheCall->getNumArgs() > ExpectedNumArgs)
 | |
|     return Diag(TheCall->getEndLoc(),
 | |
|                 diag::err_typecheck_call_too_many_args_at_most)
 | |
|            << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
 | |
|            << TheCall->getSourceRange();
 | |
| 
 | |
|   // Check the third argument is a compile time constant
 | |
|   llvm::APSInt Value;
 | |
|   if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context))
 | |
|     return Diag(TheCall->getBeginLoc(),
 | |
|                 diag::err_vsx_builtin_nonconstant_argument)
 | |
|            << 3 /* argument index */ << TheCall->getDirectCallee()
 | |
|            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
 | |
|                           TheCall->getArg(2)->getEndLoc());
 | |
| 
 | |
|   QualType Arg1Ty = TheCall->getArg(0)->getType();
 | |
|   QualType Arg2Ty = TheCall->getArg(1)->getType();
 | |
| 
 | |
|   // Check the type of argument 1 and argument 2 are vectors.
 | |
|   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
 | |
|   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
 | |
|       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
 | |
|     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
 | |
|            << TheCall->getDirectCallee()
 | |
|            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
 | |
|                           TheCall->getArg(1)->getEndLoc());
 | |
|   }
 | |
| 
 | |
|   // Check the first two arguments are the same type.
 | |
|   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
 | |
|     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
 | |
|            << TheCall->getDirectCallee()
 | |
|            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
 | |
|                           TheCall->getArg(1)->getEndLoc());
 | |
|   }
 | |
| 
 | |
|   // When default clang type checking is turned off and the customized type
 | |
|   // checking is used, the returning type of the function must be explicitly
 | |
|   // set. Otherwise it is _Bool by default.
 | |
|   TheCall->setType(Arg1Ty);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
 | |
| // This is declared to take (...), so we have to check everything.
 | |
| ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
 | |
|   if (TheCall->getNumArgs() < 2)
 | |
|     return ExprError(Diag(TheCall->getEndLoc(),
 | |
|                           diag::err_typecheck_call_too_few_args_at_least)
 | |
|                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|                      << TheCall->getSourceRange());
 | |
| 
 | |
|   // Determine which of the following types of shufflevector we're checking:
 | |
|   // 1) unary, vector mask: (lhs, mask)
 | |
|   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
 | |
|   QualType resType = TheCall->getArg(0)->getType();
 | |
|   unsigned numElements = 0;
 | |
| 
 | |
|   if (!TheCall->getArg(0)->isTypeDependent() &&
 | |
|       !TheCall->getArg(1)->isTypeDependent()) {
 | |
|     QualType LHSType = TheCall->getArg(0)->getType();
 | |
|     QualType RHSType = TheCall->getArg(1)->getType();
 | |
| 
 | |
|     if (!LHSType->isVectorType() || !RHSType->isVectorType())
 | |
|       return ExprError(
 | |
|           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
 | |
|           << TheCall->getDirectCallee()
 | |
|           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
 | |
|                          TheCall->getArg(1)->getEndLoc()));
 | |
| 
 | |
|     numElements = LHSType->castAs<VectorType>()->getNumElements();
 | |
|     unsigned numResElements = TheCall->getNumArgs() - 2;
 | |
| 
 | |
|     // Check to see if we have a call with 2 vector arguments, the unary shuffle
 | |
|     // with mask.  If so, verify that RHS is an integer vector type with the
 | |
|     // same number of elts as lhs.
 | |
|     if (TheCall->getNumArgs() == 2) {
 | |
|       if (!RHSType->hasIntegerRepresentation() ||
 | |
|           RHSType->castAs<VectorType>()->getNumElements() != numElements)
 | |
|         return ExprError(Diag(TheCall->getBeginLoc(),
 | |
|                               diag::err_vec_builtin_incompatible_vector)
 | |
|                          << TheCall->getDirectCallee()
 | |
|                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
 | |
|                                         TheCall->getArg(1)->getEndLoc()));
 | |
|     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
 | |
|       return ExprError(Diag(TheCall->getBeginLoc(),
 | |
|                             diag::err_vec_builtin_incompatible_vector)
 | |
|                        << TheCall->getDirectCallee()
 | |
|                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
 | |
|                                       TheCall->getArg(1)->getEndLoc()));
 | |
|     } else if (numElements != numResElements) {
 | |
|       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
 | |
|       resType = Context.getVectorType(eltType, numResElements,
 | |
|                                       VectorType::GenericVector);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
 | |
|     if (TheCall->getArg(i)->isTypeDependent() ||
 | |
|         TheCall->getArg(i)->isValueDependent())
 | |
|       continue;
 | |
| 
 | |
|     llvm::APSInt Result(32);
 | |
|     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
 | |
|       return ExprError(Diag(TheCall->getBeginLoc(),
 | |
|                             diag::err_shufflevector_nonconstant_argument)
 | |
|                        << TheCall->getArg(i)->getSourceRange());
 | |
| 
 | |
|     // Allow -1 which will be translated to undef in the IR.
 | |
|     if (Result.isSigned() && Result.isAllOnesValue())
 | |
|       continue;
 | |
| 
 | |
|     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
 | |
|       return ExprError(Diag(TheCall->getBeginLoc(),
 | |
|                             diag::err_shufflevector_argument_too_large)
 | |
|                        << TheCall->getArg(i)->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   SmallVector<Expr*, 32> exprs;
 | |
| 
 | |
|   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
 | |
|     exprs.push_back(TheCall->getArg(i));
 | |
|     TheCall->setArg(i, nullptr);
 | |
|   }
 | |
| 
 | |
|   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
 | |
|                                          TheCall->getCallee()->getBeginLoc(),
 | |
|                                          TheCall->getRParenLoc());
 | |
| }
 | |
| 
 | |
| /// SemaConvertVectorExpr - Handle __builtin_convertvector
 | |
| ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
 | |
|                                        SourceLocation BuiltinLoc,
 | |
|                                        SourceLocation RParenLoc) {
 | |
|   ExprValueKind VK = VK_RValue;
 | |
|   ExprObjectKind OK = OK_Ordinary;
 | |
|   QualType DstTy = TInfo->getType();
 | |
|   QualType SrcTy = E->getType();
 | |
| 
 | |
|   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
 | |
|     return ExprError(Diag(BuiltinLoc,
 | |
|                           diag::err_convertvector_non_vector)
 | |
|                      << E->getSourceRange());
 | |
|   if (!DstTy->isVectorType() && !DstTy->isDependentType())
 | |
|     return ExprError(Diag(BuiltinLoc,
 | |
|                           diag::err_convertvector_non_vector_type));
 | |
| 
 | |
|   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
 | |
|     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
 | |
|     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
 | |
|     if (SrcElts != DstElts)
 | |
|       return ExprError(Diag(BuiltinLoc,
 | |
|                             diag::err_convertvector_incompatible_vector)
 | |
|                        << E->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   return new (Context)
 | |
|       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
 | |
| // This is declared to take (const void*, ...) and can take two
 | |
| // optional constant int args.
 | |
| bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
| 
 | |
|   if (NumArgs > 3)
 | |
|     return Diag(TheCall->getEndLoc(),
 | |
|                 diag::err_typecheck_call_too_many_args_at_most)
 | |
|            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
 | |
| 
 | |
|   // Argument 0 is checked for us and the remaining arguments must be
 | |
|   // constant integers.
 | |
|   for (unsigned i = 1; i != NumArgs; ++i)
 | |
|     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinAssume - Handle __assume (MS Extension).
 | |
| // __assume does not evaluate its arguments, and should warn if its argument
 | |
| // has side effects.
 | |
| bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
 | |
|   Expr *Arg = TheCall->getArg(0);
 | |
|   if (Arg->isInstantiationDependent()) return false;
 | |
| 
 | |
|   if (Arg->HasSideEffects(Context))
 | |
|     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
 | |
|         << Arg->getSourceRange()
 | |
|         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Handle __builtin_alloca_with_align. This is declared
 | |
| /// as (size_t, size_t) where the second size_t must be a power of 2 greater
 | |
| /// than 8.
 | |
| bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
 | |
|   // The alignment must be a constant integer.
 | |
|   Expr *Arg = TheCall->getArg(1);
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
 | |
|     if (const auto *UE =
 | |
|             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
 | |
|       if (UE->getKind() == UETT_AlignOf ||
 | |
|           UE->getKind() == UETT_PreferredAlignOf)
 | |
|         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
 | |
|             << Arg->getSourceRange();
 | |
| 
 | |
|     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
 | |
| 
 | |
|     if (!Result.isPowerOf2())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
 | |
|              << Arg->getSourceRange();
 | |
| 
 | |
|     if (Result < Context.getCharWidth())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
 | |
|              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
 | |
| 
 | |
|     if (Result > std::numeric_limits<int32_t>::max())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
 | |
|              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Handle __builtin_assume_aligned. This is declared
 | |
| /// as (const void*, size_t, ...) and can take one optional constant int arg.
 | |
| bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
| 
 | |
|   if (NumArgs > 3)
 | |
|     return Diag(TheCall->getEndLoc(),
 | |
|                 diag::err_typecheck_call_too_many_args_at_most)
 | |
|            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
 | |
| 
 | |
|   // The alignment must be a constant integer.
 | |
|   Expr *Arg = TheCall->getArg(1);
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, 1, Result))
 | |
|       return true;
 | |
| 
 | |
|     if (!Result.isPowerOf2())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
 | |
|              << Arg->getSourceRange();
 | |
| 
 | |
|     if (Result > Sema::MaximumAlignment)
 | |
|       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
 | |
|           << Arg->getSourceRange() << Sema::MaximumAlignment;
 | |
|   }
 | |
| 
 | |
|   if (NumArgs > 2) {
 | |
|     ExprResult Arg(TheCall->getArg(2));
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
 | |
|       Context.getSizeType(), false);
 | |
|     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | |
|     if (Arg.isInvalid()) return true;
 | |
|     TheCall->setArg(2, Arg.get());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
 | |
|   unsigned BuiltinID =
 | |
|       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
 | |
|   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
 | |
| 
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
|   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
 | |
|   if (NumArgs < NumRequiredArgs) {
 | |
|     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
 | |
|            << 0 /* function call */ << NumRequiredArgs << NumArgs
 | |
|            << TheCall->getSourceRange();
 | |
|   }
 | |
|   if (NumArgs >= NumRequiredArgs + 0x100) {
 | |
|     return Diag(TheCall->getEndLoc(),
 | |
|                 diag::err_typecheck_call_too_many_args_at_most)
 | |
|            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
 | |
|            << TheCall->getSourceRange();
 | |
|   }
 | |
|   unsigned i = 0;
 | |
| 
 | |
|   // For formatting call, check buffer arg.
 | |
|   if (!IsSizeCall) {
 | |
|     ExprResult Arg(TheCall->getArg(i));
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeParameter(
 | |
|         Context, Context.VoidPtrTy, false);
 | |
|     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | |
|     if (Arg.isInvalid())
 | |
|       return true;
 | |
|     TheCall->setArg(i, Arg.get());
 | |
|     i++;
 | |
|   }
 | |
| 
 | |
|   // Check string literal arg.
 | |
|   unsigned FormatIdx = i;
 | |
|   {
 | |
|     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
 | |
|     if (Arg.isInvalid())
 | |
|       return true;
 | |
|     TheCall->setArg(i, Arg.get());
 | |
|     i++;
 | |
|   }
 | |
| 
 | |
|   // Make sure variadic args are scalar.
 | |
|   unsigned FirstDataArg = i;
 | |
|   while (i < NumArgs) {
 | |
|     ExprResult Arg = DefaultVariadicArgumentPromotion(
 | |
|         TheCall->getArg(i), VariadicFunction, nullptr);
 | |
|     if (Arg.isInvalid())
 | |
|       return true;
 | |
|     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
 | |
|     if (ArgSize.getQuantity() >= 0x100) {
 | |
|       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
 | |
|              << i << (int)ArgSize.getQuantity() << 0xff
 | |
|              << TheCall->getSourceRange();
 | |
|     }
 | |
|     TheCall->setArg(i, Arg.get());
 | |
|     i++;
 | |
|   }
 | |
| 
 | |
|   // Check formatting specifiers. NOTE: We're only doing this for the non-size
 | |
|   // call to avoid duplicate diagnostics.
 | |
|   if (!IsSizeCall) {
 | |
|     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
 | |
|     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
 | |
|     bool Success = CheckFormatArguments(
 | |
|         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
 | |
|         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
 | |
|         CheckedVarArgs);
 | |
|     if (!Success)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (IsSizeCall) {
 | |
|     TheCall->setType(Context.getSizeType());
 | |
|   } else {
 | |
|     TheCall->setType(Context.VoidPtrTy);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
 | |
| /// TheCall is a constant expression.
 | |
| bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
 | |
|                                   llvm::APSInt &Result) {
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
|   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | |
| 
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
 | |
| 
 | |
|   if (!Arg->isIntegerConstantExpr(Result, Context))
 | |
|     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
 | |
|            << FDecl->getDeclName() << Arg->getSourceRange();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
 | |
| /// TheCall is a constant expression in the range [Low, High].
 | |
| bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
 | |
|                                        int Low, int High, bool RangeIsError) {
 | |
|   if (isConstantEvaluated())
 | |
|     return false;
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check constant-ness first.
 | |
|   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | |
|     return true;
 | |
| 
 | |
|   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
 | |
|     if (RangeIsError)
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
 | |
|              << Result.toString(10) << Low << High << Arg->getSourceRange();
 | |
|     else
 | |
|       // Defer the warning until we know if the code will be emitted so that
 | |
|       // dead code can ignore this.
 | |
|       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
 | |
|                           PDiag(diag::warn_argument_invalid_range)
 | |
|                               << Result.toString(10) << Low << High
 | |
|                               << Arg->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
 | |
| /// TheCall is a constant expression is a multiple of Num..
 | |
| bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
 | |
|                                           unsigned Num) {
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check constant-ness first.
 | |
|   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | |
|     return true;
 | |
| 
 | |
|   if (Result.getSExtValue() % Num != 0)
 | |
|     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
 | |
|            << Num << Arg->getSourceRange();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
 | |
| /// constant expression representing a power of 2.
 | |
| bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check constant-ness first.
 | |
|   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | |
|     return true;
 | |
| 
 | |
|   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
 | |
|   // and only if x is a power of 2.
 | |
|   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
 | |
|     return false;
 | |
| 
 | |
|   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
 | |
|          << Arg->getSourceRange();
 | |
| }
 | |
| 
 | |
| static bool IsShiftedByte(llvm::APSInt Value) {
 | |
|   if (Value.isNegative())
 | |
|     return false;
 | |
| 
 | |
|   // Check if it's a shifted byte, by shifting it down
 | |
|   while (true) {
 | |
|     // If the value fits in the bottom byte, the check passes.
 | |
|     if (Value < 0x100)
 | |
|       return true;
 | |
| 
 | |
|     // Otherwise, if the value has _any_ bits in the bottom byte, the check
 | |
|     // fails.
 | |
|     if ((Value & 0xFF) != 0)
 | |
|       return false;
 | |
| 
 | |
|     // If the bottom 8 bits are all 0, but something above that is nonzero,
 | |
|     // then shifting the value right by 8 bits won't affect whether it's a
 | |
|     // shifted byte or not. So do that, and go round again.
 | |
|     Value >>= 8;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
 | |
| /// a constant expression representing an arbitrary byte value shifted left by
 | |
| /// a multiple of 8 bits.
 | |
| bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
 | |
|                                              unsigned ArgBits) {
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check constant-ness first.
 | |
|   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | |
|     return true;
 | |
| 
 | |
|   // Truncate to the given size.
 | |
|   Result = Result.getLoBits(ArgBits);
 | |
|   Result.setIsUnsigned(true);
 | |
| 
 | |
|   if (IsShiftedByte(Result))
 | |
|     return false;
 | |
| 
 | |
|   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
 | |
|          << Arg->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
 | |
| /// TheCall is a constant expression representing either a shifted byte value,
 | |
| /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
 | |
| /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
 | |
| /// Arm MVE intrinsics.
 | |
| bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
 | |
|                                                    int ArgNum,
 | |
|                                                    unsigned ArgBits) {
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check constant-ness first.
 | |
|   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | |
|     return true;
 | |
| 
 | |
|   // Truncate to the given size.
 | |
|   Result = Result.getLoBits(ArgBits);
 | |
|   Result.setIsUnsigned(true);
 | |
| 
 | |
|   // Check to see if it's in either of the required forms.
 | |
|   if (IsShiftedByte(Result) ||
 | |
|       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
 | |
|     return false;
 | |
| 
 | |
|   return Diag(TheCall->getBeginLoc(),
 | |
|               diag::err_argument_not_shifted_byte_or_xxff)
 | |
|          << Arg->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
 | |
| bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
 | |
|     if (checkArgCount(*this, TheCall, 2))
 | |
|       return true;
 | |
|     Expr *Arg0 = TheCall->getArg(0);
 | |
|     Expr *Arg1 = TheCall->getArg(1);
 | |
| 
 | |
|     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
 | |
|     if (FirstArg.isInvalid())
 | |
|       return true;
 | |
|     QualType FirstArgType = FirstArg.get()->getType();
 | |
|     if (!FirstArgType->isAnyPointerType())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
 | |
|                << "first" << FirstArgType << Arg0->getSourceRange();
 | |
|     TheCall->setArg(0, FirstArg.get());
 | |
| 
 | |
|     ExprResult SecArg = DefaultLvalueConversion(Arg1);
 | |
|     if (SecArg.isInvalid())
 | |
|       return true;
 | |
|     QualType SecArgType = SecArg.get()->getType();
 | |
|     if (!SecArgType->isIntegerType())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
 | |
|                << "second" << SecArgType << Arg1->getSourceRange();
 | |
| 
 | |
|     // Derive the return type from the pointer argument.
 | |
|     TheCall->setType(FirstArgType);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
 | |
|     if (checkArgCount(*this, TheCall, 2))
 | |
|       return true;
 | |
| 
 | |
|     Expr *Arg0 = TheCall->getArg(0);
 | |
|     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
 | |
|     if (FirstArg.isInvalid())
 | |
|       return true;
 | |
|     QualType FirstArgType = FirstArg.get()->getType();
 | |
|     if (!FirstArgType->isAnyPointerType())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
 | |
|                << "first" << FirstArgType << Arg0->getSourceRange();
 | |
|     TheCall->setArg(0, FirstArg.get());
 | |
| 
 | |
|     // Derive the return type from the pointer argument.
 | |
|     TheCall->setType(FirstArgType);
 | |
| 
 | |
|     // Second arg must be an constant in range [0,15]
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
 | |
|   }
 | |
| 
 | |
|   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
 | |
|     if (checkArgCount(*this, TheCall, 2))
 | |
|       return true;
 | |
|     Expr *Arg0 = TheCall->getArg(0);
 | |
|     Expr *Arg1 = TheCall->getArg(1);
 | |
| 
 | |
|     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
 | |
|     if (FirstArg.isInvalid())
 | |
|       return true;
 | |
|     QualType FirstArgType = FirstArg.get()->getType();
 | |
|     if (!FirstArgType->isAnyPointerType())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
 | |
|                << "first" << FirstArgType << Arg0->getSourceRange();
 | |
| 
 | |
|     QualType SecArgType = Arg1->getType();
 | |
|     if (!SecArgType->isIntegerType())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
 | |
|                << "second" << SecArgType << Arg1->getSourceRange();
 | |
|     TheCall->setType(Context.IntTy);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
 | |
|       BuiltinID == AArch64::BI__builtin_arm_stg) {
 | |
|     if (checkArgCount(*this, TheCall, 1))
 | |
|       return true;
 | |
|     Expr *Arg0 = TheCall->getArg(0);
 | |
|     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
 | |
|     if (FirstArg.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     QualType FirstArgType = FirstArg.get()->getType();
 | |
|     if (!FirstArgType->isAnyPointerType())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
 | |
|                << "first" << FirstArgType << Arg0->getSourceRange();
 | |
|     TheCall->setArg(0, FirstArg.get());
 | |
| 
 | |
|     // Derive the return type from the pointer argument.
 | |
|     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
 | |
|       TheCall->setType(FirstArgType);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
 | |
|     Expr *ArgA = TheCall->getArg(0);
 | |
|     Expr *ArgB = TheCall->getArg(1);
 | |
| 
 | |
|     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
 | |
|     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
 | |
| 
 | |
|     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     QualType ArgTypeA = ArgExprA.get()->getType();
 | |
|     QualType ArgTypeB = ArgExprB.get()->getType();
 | |
| 
 | |
|     auto isNull = [&] (Expr *E) -> bool {
 | |
|       return E->isNullPointerConstant(
 | |
|                         Context, Expr::NPC_ValueDependentIsNotNull); };
 | |
| 
 | |
|     // argument should be either a pointer or null
 | |
|     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
 | |
|         << "first" << ArgTypeA << ArgA->getSourceRange();
 | |
| 
 | |
|     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
 | |
|         << "second" << ArgTypeB << ArgB->getSourceRange();
 | |
| 
 | |
|     // Ensure Pointee types are compatible
 | |
|     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
 | |
|         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
 | |
|       QualType pointeeA = ArgTypeA->getPointeeType();
 | |
|       QualType pointeeB = ArgTypeB->getPointeeType();
 | |
|       if (!Context.typesAreCompatible(
 | |
|              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
 | |
|              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
 | |
|         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
 | |
|           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
 | |
|           << ArgB->getSourceRange();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // at least one argument should be pointer type
 | |
|     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
 | |
|         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
 | |
| 
 | |
|     if (isNull(ArgA)) // adopt type of the other pointer
 | |
|       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
 | |
| 
 | |
|     if (isNull(ArgB))
 | |
|       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
 | |
| 
 | |
|     TheCall->setArg(0, ArgExprA.get());
 | |
|     TheCall->setArg(1, ArgExprB.get());
 | |
|     TheCall->setType(Context.LongLongTy);
 | |
|     return false;
 | |
|   }
 | |
|   assert(false && "Unhandled ARM MTE intrinsic");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
 | |
| /// TheCall is an ARM/AArch64 special register string literal.
 | |
| bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
 | |
|                                     int ArgNum, unsigned ExpectedFieldNum,
 | |
|                                     bool AllowName) {
 | |
|   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
 | |
|                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
 | |
|                       BuiltinID == ARM::BI__builtin_arm_rsr ||
 | |
|                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
 | |
|                       BuiltinID == ARM::BI__builtin_arm_wsr ||
 | |
|                       BuiltinID == ARM::BI__builtin_arm_wsrp;
 | |
|   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
 | |
|                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
 | |
|                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
 | |
|                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
 | |
|                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
 | |
|                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
 | |
|   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check if the argument is a string literal.
 | |
|   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
 | |
|     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
 | |
|            << Arg->getSourceRange();
 | |
| 
 | |
|   // Check the type of special register given.
 | |
|   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
 | |
|   SmallVector<StringRef, 6> Fields;
 | |
|   Reg.split(Fields, ":");
 | |
| 
 | |
|   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
 | |
|     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
 | |
|            << Arg->getSourceRange();
 | |
| 
 | |
|   // If the string is the name of a register then we cannot check that it is
 | |
|   // valid here but if the string is of one the forms described in ACLE then we
 | |
|   // can check that the supplied fields are integers and within the valid
 | |
|   // ranges.
 | |
|   if (Fields.size() > 1) {
 | |
|     bool FiveFields = Fields.size() == 5;
 | |
| 
 | |
|     bool ValidString = true;
 | |
|     if (IsARMBuiltin) {
 | |
|       ValidString &= Fields[0].startswith_lower("cp") ||
 | |
|                      Fields[0].startswith_lower("p");
 | |
|       if (ValidString)
 | |
|         Fields[0] =
 | |
|           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
 | |
| 
 | |
|       ValidString &= Fields[2].startswith_lower("c");
 | |
|       if (ValidString)
 | |
|         Fields[2] = Fields[2].drop_front(1);
 | |
| 
 | |
|       if (FiveFields) {
 | |
|         ValidString &= Fields[3].startswith_lower("c");
 | |
|         if (ValidString)
 | |
|           Fields[3] = Fields[3].drop_front(1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SmallVector<int, 5> Ranges;
 | |
|     if (FiveFields)
 | |
|       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
 | |
|     else
 | |
|       Ranges.append({15, 7, 15});
 | |
| 
 | |
|     for (unsigned i=0; i<Fields.size(); ++i) {
 | |
|       int IntField;
 | |
|       ValidString &= !Fields[i].getAsInteger(10, IntField);
 | |
|       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
 | |
|     }
 | |
| 
 | |
|     if (!ValidString)
 | |
|       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
 | |
|              << Arg->getSourceRange();
 | |
|   } else if (IsAArch64Builtin && Fields.size() == 1) {
 | |
|     // If the register name is one of those that appear in the condition below
 | |
|     // and the special register builtin being used is one of the write builtins,
 | |
|     // then we require that the argument provided for writing to the register
 | |
|     // is an integer constant expression. This is because it will be lowered to
 | |
|     // an MSR (immediate) instruction, so we need to know the immediate at
 | |
|     // compile time.
 | |
|     if (TheCall->getNumArgs() != 2)
 | |
|       return false;
 | |
| 
 | |
|     std::string RegLower = Reg.lower();
 | |
|     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
 | |
|         RegLower != "pan" && RegLower != "uao")
 | |
|       return false;
 | |
| 
 | |
|     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
 | |
| /// This checks that the target supports __builtin_longjmp and
 | |
| /// that val is a constant 1.
 | |
| bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
 | |
|   if (!Context.getTargetInfo().hasSjLjLowering())
 | |
|     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
 | |
|            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
 | |
| 
 | |
|   Expr *Arg = TheCall->getArg(1);
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // TODO: This is less than ideal. Overload this to take a value.
 | |
|   if (SemaBuiltinConstantArg(TheCall, 1, Result))
 | |
|     return true;
 | |
| 
 | |
|   if (Result != 1)
 | |
|     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
 | |
|            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
 | |
| /// This checks that the target supports __builtin_setjmp.
 | |
| bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
 | |
|   if (!Context.getTargetInfo().hasSjLjLowering())
 | |
|     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
 | |
|            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class UncoveredArgHandler {
 | |
|   enum { Unknown = -1, AllCovered = -2 };
 | |
| 
 | |
|   signed FirstUncoveredArg = Unknown;
 | |
|   SmallVector<const Expr *, 4> DiagnosticExprs;
 | |
| 
 | |
| public:
 | |
|   UncoveredArgHandler() = default;
 | |
| 
 | |
|   bool hasUncoveredArg() const {
 | |
|     return (FirstUncoveredArg >= 0);
 | |
|   }
 | |
| 
 | |
|   unsigned getUncoveredArg() const {
 | |
|     assert(hasUncoveredArg() && "no uncovered argument");
 | |
|     return FirstUncoveredArg;
 | |
|   }
 | |
| 
 | |
|   void setAllCovered() {
 | |
|     // A string has been found with all arguments covered, so clear out
 | |
|     // the diagnostics.
 | |
|     DiagnosticExprs.clear();
 | |
|     FirstUncoveredArg = AllCovered;
 | |
|   }
 | |
| 
 | |
|   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
 | |
|     assert(NewFirstUncoveredArg >= 0 && "Outside range");
 | |
| 
 | |
|     // Don't update if a previous string covers all arguments.
 | |
|     if (FirstUncoveredArg == AllCovered)
 | |
|       return;
 | |
| 
 | |
|     // UncoveredArgHandler tracks the highest uncovered argument index
 | |
|     // and with it all the strings that match this index.
 | |
|     if (NewFirstUncoveredArg == FirstUncoveredArg)
 | |
|       DiagnosticExprs.push_back(StrExpr);
 | |
|     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
 | |
|       DiagnosticExprs.clear();
 | |
|       DiagnosticExprs.push_back(StrExpr);
 | |
|       FirstUncoveredArg = NewFirstUncoveredArg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
 | |
| };
 | |
| 
 | |
| enum StringLiteralCheckType {
 | |
|   SLCT_NotALiteral,
 | |
|   SLCT_UncheckedLiteral,
 | |
|   SLCT_CheckedLiteral
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
 | |
|                                      BinaryOperatorKind BinOpKind,
 | |
|                                      bool AddendIsRight) {
 | |
|   unsigned BitWidth = Offset.getBitWidth();
 | |
|   unsigned AddendBitWidth = Addend.getBitWidth();
 | |
|   // There might be negative interim results.
 | |
|   if (Addend.isUnsigned()) {
 | |
|     Addend = Addend.zext(++AddendBitWidth);
 | |
|     Addend.setIsSigned(true);
 | |
|   }
 | |
|   // Adjust the bit width of the APSInts.
 | |
|   if (AddendBitWidth > BitWidth) {
 | |
|     Offset = Offset.sext(AddendBitWidth);
 | |
|     BitWidth = AddendBitWidth;
 | |
|   } else if (BitWidth > AddendBitWidth) {
 | |
|     Addend = Addend.sext(BitWidth);
 | |
|   }
 | |
| 
 | |
|   bool Ov = false;
 | |
|   llvm::APSInt ResOffset = Offset;
 | |
|   if (BinOpKind == BO_Add)
 | |
|     ResOffset = Offset.sadd_ov(Addend, Ov);
 | |
|   else {
 | |
|     assert(AddendIsRight && BinOpKind == BO_Sub &&
 | |
|            "operator must be add or sub with addend on the right");
 | |
|     ResOffset = Offset.ssub_ov(Addend, Ov);
 | |
|   }
 | |
| 
 | |
|   // We add an offset to a pointer here so we should support an offset as big as
 | |
|   // possible.
 | |
|   if (Ov) {
 | |
|     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
 | |
|            "index (intermediate) result too big");
 | |
|     Offset = Offset.sext(2 * BitWidth);
 | |
|     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Offset = ResOffset;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // This is a wrapper class around StringLiteral to support offsetted string
 | |
| // literals as format strings. It takes the offset into account when returning
 | |
| // the string and its length or the source locations to display notes correctly.
 | |
| class FormatStringLiteral {
 | |
|   const StringLiteral *FExpr;
 | |
|   int64_t Offset;
 | |
| 
 | |
|  public:
 | |
|   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
 | |
|       : FExpr(fexpr), Offset(Offset) {}
 | |
| 
 | |
|   StringRef getString() const {
 | |
|     return FExpr->getString().drop_front(Offset);
 | |
|   }
 | |
| 
 | |
|   unsigned getByteLength() const {
 | |
|     return FExpr->getByteLength() - getCharByteWidth() * Offset;
 | |
|   }
 | |
| 
 | |
|   unsigned getLength() const { return FExpr->getLength() - Offset; }
 | |
|   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
 | |
| 
 | |
|   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
 | |
| 
 | |
|   QualType getType() const { return FExpr->getType(); }
 | |
| 
 | |
|   bool isAscii() const { return FExpr->isAscii(); }
 | |
|   bool isWide() const { return FExpr->isWide(); }
 | |
|   bool isUTF8() const { return FExpr->isUTF8(); }
 | |
|   bool isUTF16() const { return FExpr->isUTF16(); }
 | |
|   bool isUTF32() const { return FExpr->isUTF32(); }
 | |
|   bool isPascal() const { return FExpr->isPascal(); }
 | |
| 
 | |
|   SourceLocation getLocationOfByte(
 | |
|       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
 | |
|       const TargetInfo &Target, unsigned *StartToken = nullptr,
 | |
|       unsigned *StartTokenByteOffset = nullptr) const {
 | |
|     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
 | |
|                                     StartToken, StartTokenByteOffset);
 | |
|   }
 | |
| 
 | |
|   SourceLocation getBeginLoc() const LLVM_READONLY {
 | |
|     return FExpr->getBeginLoc().getLocWithOffset(Offset);
 | |
|   }
 | |
| 
 | |
|   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
 | |
| };
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
 | |
|                               const Expr *OrigFormatExpr,
 | |
|                               ArrayRef<const Expr *> Args,
 | |
|                               bool HasVAListArg, unsigned format_idx,
 | |
|                               unsigned firstDataArg,
 | |
|                               Sema::FormatStringType Type,
 | |
|                               bool inFunctionCall,
 | |
|                               Sema::VariadicCallType CallType,
 | |
|                               llvm::SmallBitVector &CheckedVarArgs,
 | |
|                               UncoveredArgHandler &UncoveredArg,
 | |
|                               bool IgnoreStringsWithoutSpecifiers);
 | |
| 
 | |
| // Determine if an expression is a string literal or constant string.
 | |
| // If this function returns false on the arguments to a function expecting a
 | |
| // format string, we will usually need to emit a warning.
 | |
| // True string literals are then checked by CheckFormatString.
 | |
| static StringLiteralCheckType
 | |
| checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
 | |
|                       bool HasVAListArg, unsigned format_idx,
 | |
|                       unsigned firstDataArg, Sema::FormatStringType Type,
 | |
|                       Sema::VariadicCallType CallType, bool InFunctionCall,
 | |
|                       llvm::SmallBitVector &CheckedVarArgs,
 | |
|                       UncoveredArgHandler &UncoveredArg,
 | |
|                       llvm::APSInt Offset,
 | |
|                       bool IgnoreStringsWithoutSpecifiers = false) {
 | |
|   if (S.isConstantEvaluated())
 | |
|     return SLCT_NotALiteral;
 | |
|  tryAgain:
 | |
|   assert(Offset.isSigned() && "invalid offset");
 | |
| 
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return SLCT_NotALiteral;
 | |
| 
 | |
|   E = E->IgnoreParenCasts();
 | |
| 
 | |
|   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
 | |
|     // Technically -Wformat-nonliteral does not warn about this case.
 | |
|     // The behavior of printf and friends in this case is implementation
 | |
|     // dependent.  Ideally if the format string cannot be null then
 | |
|     // it should have a 'nonnull' attribute in the function prototype.
 | |
|     return SLCT_UncheckedLiteral;
 | |
| 
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::BinaryConditionalOperatorClass:
 | |
|   case Stmt::ConditionalOperatorClass: {
 | |
|     // The expression is a literal if both sub-expressions were, and it was
 | |
|     // completely checked only if both sub-expressions were checked.
 | |
|     const AbstractConditionalOperator *C =
 | |
|         cast<AbstractConditionalOperator>(E);
 | |
| 
 | |
|     // Determine whether it is necessary to check both sub-expressions, for
 | |
|     // example, because the condition expression is a constant that can be
 | |
|     // evaluated at compile time.
 | |
|     bool CheckLeft = true, CheckRight = true;
 | |
| 
 | |
|     bool Cond;
 | |
|     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
 | |
|                                                  S.isConstantEvaluated())) {
 | |
|       if (Cond)
 | |
|         CheckRight = false;
 | |
|       else
 | |
|         CheckLeft = false;
 | |
|     }
 | |
| 
 | |
|     // We need to maintain the offsets for the right and the left hand side
 | |
|     // separately to check if every possible indexed expression is a valid
 | |
|     // string literal. They might have different offsets for different string
 | |
|     // literals in the end.
 | |
|     StringLiteralCheckType Left;
 | |
|     if (!CheckLeft)
 | |
|       Left = SLCT_UncheckedLiteral;
 | |
|     else {
 | |
|       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
 | |
|                                    HasVAListArg, format_idx, firstDataArg,
 | |
|                                    Type, CallType, InFunctionCall,
 | |
|                                    CheckedVarArgs, UncoveredArg, Offset,
 | |
|                                    IgnoreStringsWithoutSpecifiers);
 | |
|       if (Left == SLCT_NotALiteral || !CheckRight) {
 | |
|         return Left;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     StringLiteralCheckType Right = checkFormatStringExpr(
 | |
|         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
 | |
|         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
 | |
|         IgnoreStringsWithoutSpecifiers);
 | |
| 
 | |
|     return (CheckLeft && Left < Right) ? Left : Right;
 | |
|   }
 | |
| 
 | |
|   case Stmt::ImplicitCastExprClass:
 | |
|     E = cast<ImplicitCastExpr>(E)->getSubExpr();
 | |
|     goto tryAgain;
 | |
| 
 | |
|   case Stmt::OpaqueValueExprClass:
 | |
|     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
 | |
|       E = src;
 | |
|       goto tryAgain;
 | |
|     }
 | |
|     return SLCT_NotALiteral;
 | |
| 
 | |
|   case Stmt::PredefinedExprClass:
 | |
|     // While __func__, etc., are technically not string literals, they
 | |
|     // cannot contain format specifiers and thus are not a security
 | |
|     // liability.
 | |
|     return SLCT_UncheckedLiteral;
 | |
| 
 | |
|   case Stmt::DeclRefExprClass: {
 | |
|     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
 | |
| 
 | |
|     // As an exception, do not flag errors for variables binding to
 | |
|     // const string literals.
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
 | |
|       bool isConstant = false;
 | |
|       QualType T = DR->getType();
 | |
| 
 | |
|       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
 | |
|         isConstant = AT->getElementType().isConstant(S.Context);
 | |
|       } else if (const PointerType *PT = T->getAs<PointerType>()) {
 | |
|         isConstant = T.isConstant(S.Context) &&
 | |
|                      PT->getPointeeType().isConstant(S.Context);
 | |
|       } else if (T->isObjCObjectPointerType()) {
 | |
|         // In ObjC, there is usually no "const ObjectPointer" type,
 | |
|         // so don't check if the pointee type is constant.
 | |
|         isConstant = T.isConstant(S.Context);
 | |
|       }
 | |
| 
 | |
|       if (isConstant) {
 | |
|         if (const Expr *Init = VD->getAnyInitializer()) {
 | |
|           // Look through initializers like const char c[] = { "foo" }
 | |
|           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
 | |
|             if (InitList->isStringLiteralInit())
 | |
|               Init = InitList->getInit(0)->IgnoreParenImpCasts();
 | |
|           }
 | |
|           return checkFormatStringExpr(S, Init, Args,
 | |
|                                        HasVAListArg, format_idx,
 | |
|                                        firstDataArg, Type, CallType,
 | |
|                                        /*InFunctionCall*/ false, CheckedVarArgs,
 | |
|                                        UncoveredArg, Offset);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // For vprintf* functions (i.e., HasVAListArg==true), we add a
 | |
|       // special check to see if the format string is a function parameter
 | |
|       // of the function calling the printf function.  If the function
 | |
|       // has an attribute indicating it is a printf-like function, then we
 | |
|       // should suppress warnings concerning non-literals being used in a call
 | |
|       // to a vprintf function.  For example:
 | |
|       //
 | |
|       // void
 | |
|       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
 | |
|       //      va_list ap;
 | |
|       //      va_start(ap, fmt);
 | |
|       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
 | |
|       //      ...
 | |
|       // }
 | |
|       if (HasVAListArg) {
 | |
|         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
 | |
|           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
 | |
|             int PVIndex = PV->getFunctionScopeIndex() + 1;
 | |
|             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
 | |
|               // adjust for implicit parameter
 | |
|               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
 | |
|                 if (MD->isInstance())
 | |
|                   ++PVIndex;
 | |
|               // We also check if the formats are compatible.
 | |
|               // We can't pass a 'scanf' string to a 'printf' function.
 | |
|               if (PVIndex == PVFormat->getFormatIdx() &&
 | |
|                   Type == S.GetFormatStringType(PVFormat))
 | |
|                 return SLCT_UncheckedLiteral;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
| 
 | |
|   case Stmt::CallExprClass:
 | |
|   case Stmt::CXXMemberCallExprClass: {
 | |
|     const CallExpr *CE = cast<CallExpr>(E);
 | |
|     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
 | |
|       bool IsFirst = true;
 | |
|       StringLiteralCheckType CommonResult;
 | |
|       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
 | |
|         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
 | |
|         StringLiteralCheckType Result = checkFormatStringExpr(
 | |
|             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
 | |
|             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
 | |
|             IgnoreStringsWithoutSpecifiers);
 | |
|         if (IsFirst) {
 | |
|           CommonResult = Result;
 | |
|           IsFirst = false;
 | |
|         }
 | |
|       }
 | |
|       if (!IsFirst)
 | |
|         return CommonResult;
 | |
| 
 | |
|       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
 | |
|         unsigned BuiltinID = FD->getBuiltinID();
 | |
|         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
 | |
|             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
 | |
|           const Expr *Arg = CE->getArg(0);
 | |
|           return checkFormatStringExpr(S, Arg, Args,
 | |
|                                        HasVAListArg, format_idx,
 | |
|                                        firstDataArg, Type, CallType,
 | |
|                                        InFunctionCall, CheckedVarArgs,
 | |
|                                        UncoveredArg, Offset,
 | |
|                                        IgnoreStringsWithoutSpecifiers);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
|   case Stmt::ObjCMessageExprClass: {
 | |
|     const auto *ME = cast<ObjCMessageExpr>(E);
 | |
|     if (const auto *MD = ME->getMethodDecl()) {
 | |
|       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
 | |
|         // As a special case heuristic, if we're using the method -[NSBundle
 | |
|         // localizedStringForKey:value:table:], ignore any key strings that lack
 | |
|         // format specifiers. The idea is that if the key doesn't have any
 | |
|         // format specifiers then its probably just a key to map to the
 | |
|         // localized strings. If it does have format specifiers though, then its
 | |
|         // likely that the text of the key is the format string in the
 | |
|         // programmer's language, and should be checked.
 | |
|         const ObjCInterfaceDecl *IFace;
 | |
|         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
 | |
|             IFace->getIdentifier()->isStr("NSBundle") &&
 | |
|             MD->getSelector().isKeywordSelector(
 | |
|                 {"localizedStringForKey", "value", "table"})) {
 | |
|           IgnoreStringsWithoutSpecifiers = true;
 | |
|         }
 | |
| 
 | |
|         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
 | |
|         return checkFormatStringExpr(
 | |
|             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
 | |
|             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
 | |
|             IgnoreStringsWithoutSpecifiers);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
|   case Stmt::ObjCStringLiteralClass:
 | |
|   case Stmt::StringLiteralClass: {
 | |
|     const StringLiteral *StrE = nullptr;
 | |
| 
 | |
|     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
 | |
|       StrE = ObjCFExpr->getString();
 | |
|     else
 | |
|       StrE = cast<StringLiteral>(E);
 | |
| 
 | |
|     if (StrE) {
 | |
|       if (Offset.isNegative() || Offset > StrE->getLength()) {
 | |
|         // TODO: It would be better to have an explicit warning for out of
 | |
|         // bounds literals.
 | |
|         return SLCT_NotALiteral;
 | |
|       }
 | |
|       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
 | |
|       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
 | |
|                         firstDataArg, Type, InFunctionCall, CallType,
 | |
|                         CheckedVarArgs, UncoveredArg,
 | |
|                         IgnoreStringsWithoutSpecifiers);
 | |
|       return SLCT_CheckedLiteral;
 | |
|     }
 | |
| 
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
|   case Stmt::BinaryOperatorClass: {
 | |
|     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
 | |
| 
 | |
|     // A string literal + an int offset is still a string literal.
 | |
|     if (BinOp->isAdditiveOp()) {
 | |
|       Expr::EvalResult LResult, RResult;
 | |
| 
 | |
|       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
 | |
|           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
 | |
|       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
 | |
|           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
 | |
| 
 | |
|       if (LIsInt != RIsInt) {
 | |
|         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
 | |
| 
 | |
|         if (LIsInt) {
 | |
|           if (BinOpKind == BO_Add) {
 | |
|             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
 | |
|             E = BinOp->getRHS();
 | |
|             goto tryAgain;
 | |
|           }
 | |
|         } else {
 | |
|           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
 | |
|           E = BinOp->getLHS();
 | |
|           goto tryAgain;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
|   case Stmt::UnaryOperatorClass: {
 | |
|     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
 | |
|     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
 | |
|     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
 | |
|       Expr::EvalResult IndexResult;
 | |
|       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
 | |
|                                        Expr::SE_NoSideEffects,
 | |
|                                        S.isConstantEvaluated())) {
 | |
|         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
 | |
|                    /*RHS is int*/ true);
 | |
|         E = ASE->getBase();
 | |
|         goto tryAgain;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
 | |
|   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
 | |
|       .Case("scanf", FST_Scanf)
 | |
|       .Cases("printf", "printf0", FST_Printf)
 | |
|       .Cases("NSString", "CFString", FST_NSString)
 | |
|       .Case("strftime", FST_Strftime)
 | |
|       .Case("strfmon", FST_Strfmon)
 | |
|       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
 | |
|       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
 | |
|       .Case("os_trace", FST_OSLog)
 | |
|       .Case("os_log", FST_OSLog)
 | |
|       .Default(FST_Unknown);
 | |
| }
 | |
| 
 | |
| /// CheckFormatArguments - Check calls to printf and scanf (and similar
 | |
| /// functions) for correct use of format strings.
 | |
| /// Returns true if a format string has been fully checked.
 | |
| bool Sema::CheckFormatArguments(const FormatAttr *Format,
 | |
|                                 ArrayRef<const Expr *> Args,
 | |
|                                 bool IsCXXMember,
 | |
|                                 VariadicCallType CallType,
 | |
|                                 SourceLocation Loc, SourceRange Range,
 | |
|                                 llvm::SmallBitVector &CheckedVarArgs) {
 | |
|   FormatStringInfo FSI;
 | |
|   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
 | |
|     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
 | |
|                                 FSI.FirstDataArg, GetFormatStringType(Format),
 | |
|                                 CallType, Loc, Range, CheckedVarArgs);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
 | |
|                                 bool HasVAListArg, unsigned format_idx,
 | |
|                                 unsigned firstDataArg, FormatStringType Type,
 | |
|                                 VariadicCallType CallType,
 | |
|                                 SourceLocation Loc, SourceRange Range,
 | |
|                                 llvm::SmallBitVector &CheckedVarArgs) {
 | |
|   // CHECK: printf/scanf-like function is called with no format string.
 | |
|   if (format_idx >= Args.size()) {
 | |
|     Diag(Loc, diag::warn_missing_format_string) << Range;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
 | |
| 
 | |
|   // CHECK: format string is not a string literal.
 | |
|   //
 | |
|   // Dynamically generated format strings are difficult to
 | |
|   // automatically vet at compile time.  Requiring that format strings
 | |
|   // are string literals: (1) permits the checking of format strings by
 | |
|   // the compiler and thereby (2) can practically remove the source of
 | |
|   // many format string exploits.
 | |
| 
 | |
|   // Format string can be either ObjC string (e.g. @"%d") or
 | |
|   // C string (e.g. "%d")
 | |
|   // ObjC string uses the same format specifiers as C string, so we can use
 | |
|   // the same format string checking logic for both ObjC and C strings.
 | |
|   UncoveredArgHandler UncoveredArg;
 | |
|   StringLiteralCheckType CT =
 | |
|       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
 | |
|                             format_idx, firstDataArg, Type, CallType,
 | |
|                             /*IsFunctionCall*/ true, CheckedVarArgs,
 | |
|                             UncoveredArg,
 | |
|                             /*no string offset*/ llvm::APSInt(64, false) = 0);
 | |
| 
 | |
|   // Generate a diagnostic where an uncovered argument is detected.
 | |
|   if (UncoveredArg.hasUncoveredArg()) {
 | |
|     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
 | |
|     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
 | |
|     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
 | |
|   }
 | |
| 
 | |
|   if (CT != SLCT_NotALiteral)
 | |
|     // Literal format string found, check done!
 | |
|     return CT == SLCT_CheckedLiteral;
 | |
| 
 | |
|   // Strftime is particular as it always uses a single 'time' argument,
 | |
|   // so it is safe to pass a non-literal string.
 | |
|   if (Type == FST_Strftime)
 | |
|     return false;
 | |
| 
 | |
|   // Do not emit diag when the string param is a macro expansion and the
 | |
|   // format is either NSString or CFString. This is a hack to prevent
 | |
|   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
 | |
|   // which are usually used in place of NS and CF string literals.
 | |
|   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
 | |
|   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
 | |
|     return false;
 | |
| 
 | |
|   // If there are no arguments specified, warn with -Wformat-security, otherwise
 | |
|   // warn only with -Wformat-nonliteral.
 | |
|   if (Args.size() == firstDataArg) {
 | |
|     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
 | |
|       << OrigFormatExpr->getSourceRange();
 | |
|     switch (Type) {
 | |
|     default:
 | |
|       break;
 | |
|     case FST_Kprintf:
 | |
|     case FST_FreeBSDKPrintf:
 | |
|     case FST_Printf:
 | |
|       Diag(FormatLoc, diag::note_format_security_fixit)
 | |
|         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
 | |
|       break;
 | |
|     case FST_NSString:
 | |
|       Diag(FormatLoc, diag::note_format_security_fixit)
 | |
|         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     Diag(FormatLoc, diag::warn_format_nonliteral)
 | |
|       << OrigFormatExpr->getSourceRange();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
 | |
| protected:
 | |
|   Sema &S;
 | |
|   const FormatStringLiteral *FExpr;
 | |
|   const Expr *OrigFormatExpr;
 | |
|   const Sema::FormatStringType FSType;
 | |
|   const unsigned FirstDataArg;
 | |
|   const unsigned NumDataArgs;
 | |
|   const char *Beg; // Start of format string.
 | |
|   const bool HasVAListArg;
 | |
|   ArrayRef<const Expr *> Args;
 | |
|   unsigned FormatIdx;
 | |
|   llvm::SmallBitVector CoveredArgs;
 | |
|   bool usesPositionalArgs = false;
 | |
|   bool atFirstArg = true;
 | |
|   bool inFunctionCall;
 | |
|   Sema::VariadicCallType CallType;
 | |
|   llvm::SmallBitVector &CheckedVarArgs;
 | |
|   UncoveredArgHandler &UncoveredArg;
 | |
| 
 | |
| public:
 | |
|   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
 | |
|                      const Expr *origFormatExpr,
 | |
|                      const Sema::FormatStringType type, unsigned firstDataArg,
 | |
|                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
 | |
|                      ArrayRef<const Expr *> Args, unsigned formatIdx,
 | |
|                      bool inFunctionCall, Sema::VariadicCallType callType,
 | |
|                      llvm::SmallBitVector &CheckedVarArgs,
 | |
|                      UncoveredArgHandler &UncoveredArg)
 | |
|       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
 | |
|         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
 | |
|         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
 | |
|         inFunctionCall(inFunctionCall), CallType(callType),
 | |
|         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
 | |
|     CoveredArgs.resize(numDataArgs);
 | |
|     CoveredArgs.reset();
 | |
|   }
 | |
| 
 | |
|   void DoneProcessing();
 | |
| 
 | |
|   void HandleIncompleteSpecifier(const char *startSpecifier,
 | |
|                                  unsigned specifierLen) override;
 | |
| 
 | |
|   void HandleInvalidLengthModifier(
 | |
|                            const analyze_format_string::FormatSpecifier &FS,
 | |
|                            const analyze_format_string::ConversionSpecifier &CS,
 | |
|                            const char *startSpecifier, unsigned specifierLen,
 | |
|                            unsigned DiagID);
 | |
| 
 | |
|   void HandleNonStandardLengthModifier(
 | |
|                     const analyze_format_string::FormatSpecifier &FS,
 | |
|                     const char *startSpecifier, unsigned specifierLen);
 | |
| 
 | |
|   void HandleNonStandardConversionSpecifier(
 | |
|                     const analyze_format_string::ConversionSpecifier &CS,
 | |
|                     const char *startSpecifier, unsigned specifierLen);
 | |
| 
 | |
|   void HandlePosition(const char *startPos, unsigned posLen) override;
 | |
| 
 | |
|   void HandleInvalidPosition(const char *startSpecifier,
 | |
|                              unsigned specifierLen,
 | |
|                              analyze_format_string::PositionContext p) override;
 | |
| 
 | |
|   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
 | |
| 
 | |
|   void HandleNullChar(const char *nullCharacter) override;
 | |
| 
 | |
|   template <typename Range>
 | |
|   static void
 | |
|   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
 | |
|                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
 | |
|                        bool IsStringLocation, Range StringRange,
 | |
|                        ArrayRef<FixItHint> Fixit = None);
 | |
| 
 | |
| protected:
 | |
|   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
 | |
|                                         const char *startSpec,
 | |
|                                         unsigned specifierLen,
 | |
|                                         const char *csStart, unsigned csLen);
 | |
| 
 | |
|   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
 | |
|                                          const char *startSpec,
 | |
|                                          unsigned specifierLen);
 | |
| 
 | |
|   SourceRange getFormatStringRange();
 | |
|   CharSourceRange getSpecifierRange(const char *startSpecifier,
 | |
|                                     unsigned specifierLen);
 | |
|   SourceLocation getLocationOfByte(const char *x);
 | |
| 
 | |
|   const Expr *getDataArg(unsigned i) const;
 | |
| 
 | |
|   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
 | |
|                     const analyze_format_string::ConversionSpecifier &CS,
 | |
|                     const char *startSpecifier, unsigned specifierLen,
 | |
|                     unsigned argIndex);
 | |
| 
 | |
|   template <typename Range>
 | |
|   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
 | |
|                             bool IsStringLocation, Range StringRange,
 | |
|                             ArrayRef<FixItHint> Fixit = None);
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| SourceRange CheckFormatHandler::getFormatStringRange() {
 | |
|   return OrigFormatExpr->getSourceRange();
 | |
| }
 | |
| 
 | |
| CharSourceRange CheckFormatHandler::
 | |
| getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
 | |
|   SourceLocation Start = getLocationOfByte(startSpecifier);
 | |
|   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
 | |
| 
 | |
|   // Advance the end SourceLocation by one due to half-open ranges.
 | |
|   End = End.getLocWithOffset(1);
 | |
| 
 | |
|   return CharSourceRange::getCharRange(Start, End);
 | |
| }
 | |
| 
 | |
| SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
 | |
|   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
 | |
|                                   S.getLangOpts(), S.Context.getTargetInfo());
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
 | |
|                                                    unsigned specifierLen){
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
 | |
|                        getLocationOfByte(startSpecifier),
 | |
|                        /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startSpecifier, specifierLen));
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleInvalidLengthModifier(
 | |
|     const analyze_format_string::FormatSpecifier &FS,
 | |
|     const analyze_format_string::ConversionSpecifier &CS,
 | |
|     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
 | |
|   using namespace analyze_format_string;
 | |
| 
 | |
|   const LengthModifier &LM = FS.getLengthModifier();
 | |
|   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
 | |
| 
 | |
|   // See if we know how to fix this length modifier.
 | |
|   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
 | |
|   if (FixedLM) {
 | |
|     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
 | |
|                          getLocationOfByte(LM.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
| 
 | |
|     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
 | |
|       << FixedLM->toString()
 | |
|       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
 | |
| 
 | |
|   } else {
 | |
|     FixItHint Hint;
 | |
|     if (DiagID == diag::warn_format_nonsensical_length)
 | |
|       Hint = FixItHint::CreateRemoval(LMRange);
 | |
| 
 | |
|     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
 | |
|                          getLocationOfByte(LM.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen),
 | |
|                          Hint);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleNonStandardLengthModifier(
 | |
|     const analyze_format_string::FormatSpecifier &FS,
 | |
|     const char *startSpecifier, unsigned specifierLen) {
 | |
|   using namespace analyze_format_string;
 | |
| 
 | |
|   const LengthModifier &LM = FS.getLengthModifier();
 | |
|   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
 | |
| 
 | |
|   // See if we know how to fix this length modifier.
 | |
|   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
 | |
|   if (FixedLM) {
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | |
|                            << LM.toString() << 0,
 | |
|                          getLocationOfByte(LM.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
| 
 | |
|     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
 | |
|       << FixedLM->toString()
 | |
|       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
 | |
| 
 | |
|   } else {
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | |
|                            << LM.toString() << 0,
 | |
|                          getLocationOfByte(LM.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleNonStandardConversionSpecifier(
 | |
|     const analyze_format_string::ConversionSpecifier &CS,
 | |
|     const char *startSpecifier, unsigned specifierLen) {
 | |
|   using namespace analyze_format_string;
 | |
| 
 | |
|   // See if we know how to fix this conversion specifier.
 | |
|   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
 | |
|   if (FixedCS) {
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | |
|                           << CS.toString() << /*conversion specifier*/1,
 | |
|                          getLocationOfByte(CS.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
| 
 | |
|     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
 | |
|     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
 | |
|       << FixedCS->toString()
 | |
|       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
 | |
|   } else {
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | |
|                           << CS.toString() << /*conversion specifier*/1,
 | |
|                          getLocationOfByte(CS.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandlePosition(const char *startPos,
 | |
|                                         unsigned posLen) {
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
 | |
|                                getLocationOfByte(startPos),
 | |
|                                /*IsStringLocation*/true,
 | |
|                                getSpecifierRange(startPos, posLen));
 | |
| }
 | |
| 
 | |
| void
 | |
| CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
 | |
|                                      analyze_format_string::PositionContext p) {
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
 | |
|                          << (unsigned) p,
 | |
|                        getLocationOfByte(startPos), /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startPos, posLen));
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleZeroPosition(const char *startPos,
 | |
|                                             unsigned posLen) {
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
 | |
|                                getLocationOfByte(startPos),
 | |
|                                /*IsStringLocation*/true,
 | |
|                                getSpecifierRange(startPos, posLen));
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
 | |
|   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
 | |
|     // The presence of a null character is likely an error.
 | |
|     EmitFormatDiagnostic(
 | |
|       S.PDiag(diag::warn_printf_format_string_contains_null_char),
 | |
|       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
 | |
|       getFormatStringRange());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Note that this may return NULL if there was an error parsing or building
 | |
| // one of the argument expressions.
 | |
| const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
 | |
|   return Args[FirstDataArg + i];
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::DoneProcessing() {
 | |
|   // Does the number of data arguments exceed the number of
 | |
|   // format conversions in the format string?
 | |
|   if (!HasVAListArg) {
 | |
|       // Find any arguments that weren't covered.
 | |
|     CoveredArgs.flip();
 | |
|     signed notCoveredArg = CoveredArgs.find_first();
 | |
|     if (notCoveredArg >= 0) {
 | |
|       assert((unsigned)notCoveredArg < NumDataArgs);
 | |
|       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
 | |
|     } else {
 | |
|       UncoveredArg.setAllCovered();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
 | |
|                                    const Expr *ArgExpr) {
 | |
|   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
 | |
|          "Invalid state");
 | |
| 
 | |
|   if (!ArgExpr)
 | |
|     return;
 | |
| 
 | |
|   SourceLocation Loc = ArgExpr->getBeginLoc();
 | |
| 
 | |
|   if (S.getSourceManager().isInSystemMacro(Loc))
 | |
|     return;
 | |
| 
 | |
|   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
 | |
|   for (auto E : DiagnosticExprs)
 | |
|     PDiag << E->getSourceRange();
 | |
| 
 | |
|   CheckFormatHandler::EmitFormatDiagnostic(
 | |
|                                   S, IsFunctionCall, DiagnosticExprs[0],
 | |
|                                   PDiag, Loc, /*IsStringLocation*/false,
 | |
|                                   DiagnosticExprs[0]->getSourceRange());
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
 | |
|                                                      SourceLocation Loc,
 | |
|                                                      const char *startSpec,
 | |
|                                                      unsigned specifierLen,
 | |
|                                                      const char *csStart,
 | |
|                                                      unsigned csLen) {
 | |
|   bool keepGoing = true;
 | |
|   if (argIndex < NumDataArgs) {
 | |
|     // Consider the argument coverered, even though the specifier doesn't
 | |
|     // make sense.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
|   else {
 | |
|     // If argIndex exceeds the number of data arguments we
 | |
|     // don't issue a warning because that is just a cascade of warnings (and
 | |
|     // they may have intended '%%' anyway). We don't want to continue processing
 | |
|     // the format string after this point, however, as we will like just get
 | |
|     // gibberish when trying to match arguments.
 | |
|     keepGoing = false;
 | |
|   }
 | |
| 
 | |
|   StringRef Specifier(csStart, csLen);
 | |
| 
 | |
|   // If the specifier in non-printable, it could be the first byte of a UTF-8
 | |
|   // sequence. In that case, print the UTF-8 code point. If not, print the byte
 | |
|   // hex value.
 | |
|   std::string CodePointStr;
 | |
|   if (!llvm::sys::locale::isPrint(*csStart)) {
 | |
|     llvm::UTF32 CodePoint;
 | |
|     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
 | |
|     const llvm::UTF8 *E =
 | |
|         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
 | |
|     llvm::ConversionResult Result =
 | |
|         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
 | |
| 
 | |
|     if (Result != llvm::conversionOK) {
 | |
|       unsigned char FirstChar = *csStart;
 | |
|       CodePoint = (llvm::UTF32)FirstChar;
 | |
|     }
 | |
| 
 | |
|     llvm::raw_string_ostream OS(CodePointStr);
 | |
|     if (CodePoint < 256)
 | |
|       OS << "\\x" << llvm::format("%02x", CodePoint);
 | |
|     else if (CodePoint <= 0xFFFF)
 | |
|       OS << "\\u" << llvm::format("%04x", CodePoint);
 | |
|     else
 | |
|       OS << "\\U" << llvm::format("%08x", CodePoint);
 | |
|     OS.flush();
 | |
|     Specifier = CodePointStr;
 | |
|   }
 | |
| 
 | |
|   EmitFormatDiagnostic(
 | |
|       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
 | |
|       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
 | |
| 
 | |
|   return keepGoing;
 | |
| }
 | |
| 
 | |
| void
 | |
| CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
 | |
|                                                       const char *startSpec,
 | |
|                                                       unsigned specifierLen) {
 | |
|   EmitFormatDiagnostic(
 | |
|     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
 | |
|     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckFormatHandler::CheckNumArgs(
 | |
|   const analyze_format_string::FormatSpecifier &FS,
 | |
|   const analyze_format_string::ConversionSpecifier &CS,
 | |
|   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
 | |
| 
 | |
|   if (argIndex >= NumDataArgs) {
 | |
|     PartialDiagnostic PDiag = FS.usesPositionalArg()
 | |
|       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
 | |
|            << (argIndex+1) << NumDataArgs)
 | |
|       : S.PDiag(diag::warn_printf_insufficient_data_args);
 | |
|     EmitFormatDiagnostic(
 | |
|       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
 | |
|       getSpecifierRange(startSpecifier, specifierLen));
 | |
| 
 | |
|     // Since more arguments than conversion tokens are given, by extension
 | |
|     // all arguments are covered, so mark this as so.
 | |
|     UncoveredArg.setAllCovered();
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template<typename Range>
 | |
| void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
 | |
|                                               SourceLocation Loc,
 | |
|                                               bool IsStringLocation,
 | |
|                                               Range StringRange,
 | |
|                                               ArrayRef<FixItHint> FixIt) {
 | |
|   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
 | |
|                        Loc, IsStringLocation, StringRange, FixIt);
 | |
| }
 | |
| 
 | |
| /// If the format string is not within the function call, emit a note
 | |
| /// so that the function call and string are in diagnostic messages.
 | |
| ///
 | |
| /// \param InFunctionCall if true, the format string is within the function
 | |
| /// call and only one diagnostic message will be produced.  Otherwise, an
 | |
| /// extra note will be emitted pointing to location of the format string.
 | |
| ///
 | |
| /// \param ArgumentExpr the expression that is passed as the format string
 | |
| /// argument in the function call.  Used for getting locations when two
 | |
| /// diagnostics are emitted.
 | |
| ///
 | |
| /// \param PDiag the callee should already have provided any strings for the
 | |
| /// diagnostic message.  This function only adds locations and fixits
 | |
| /// to diagnostics.
 | |
| ///
 | |
| /// \param Loc primary location for diagnostic.  If two diagnostics are
 | |
| /// required, one will be at Loc and a new SourceLocation will be created for
 | |
| /// the other one.
 | |
| ///
 | |
| /// \param IsStringLocation if true, Loc points to the format string should be
 | |
| /// used for the note.  Otherwise, Loc points to the argument list and will
 | |
| /// be used with PDiag.
 | |
| ///
 | |
| /// \param StringRange some or all of the string to highlight.  This is
 | |
| /// templated so it can accept either a CharSourceRange or a SourceRange.
 | |
| ///
 | |
| /// \param FixIt optional fix it hint for the format string.
 | |
| template <typename Range>
 | |
| void CheckFormatHandler::EmitFormatDiagnostic(
 | |
|     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
 | |
|     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
 | |
|     Range StringRange, ArrayRef<FixItHint> FixIt) {
 | |
|   if (InFunctionCall) {
 | |
|     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
 | |
|     D << StringRange;
 | |
|     D << FixIt;
 | |
|   } else {
 | |
|     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
 | |
|       << ArgumentExpr->getSourceRange();
 | |
| 
 | |
|     const Sema::SemaDiagnosticBuilder &Note =
 | |
|       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
 | |
|              diag::note_format_string_defined);
 | |
| 
 | |
|     Note << StringRange;
 | |
|     Note << FixIt;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Printf format string checking ------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class CheckPrintfHandler : public CheckFormatHandler {
 | |
| public:
 | |
|   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
 | |
|                      const Expr *origFormatExpr,
 | |
|                      const Sema::FormatStringType type, unsigned firstDataArg,
 | |
|                      unsigned numDataArgs, bool isObjC, const char *beg,
 | |
|                      bool hasVAListArg, ArrayRef<const Expr *> Args,
 | |
|                      unsigned formatIdx, bool inFunctionCall,
 | |
|                      Sema::VariadicCallType CallType,
 | |
|                      llvm::SmallBitVector &CheckedVarArgs,
 | |
|                      UncoveredArgHandler &UncoveredArg)
 | |
|       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
 | |
|                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
 | |
|                            inFunctionCall, CallType, CheckedVarArgs,
 | |
|                            UncoveredArg) {}
 | |
| 
 | |
|   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
 | |
| 
 | |
|   /// Returns true if '%@' specifiers are allowed in the format string.
 | |
|   bool allowsObjCArg() const {
 | |
|     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
 | |
|            FSType == Sema::FST_OSTrace;
 | |
|   }
 | |
| 
 | |
|   bool HandleInvalidPrintfConversionSpecifier(
 | |
|                                       const analyze_printf::PrintfSpecifier &FS,
 | |
|                                       const char *startSpecifier,
 | |
|                                       unsigned specifierLen) override;
 | |
| 
 | |
|   void handleInvalidMaskType(StringRef MaskType) override;
 | |
| 
 | |
|   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
 | |
|                              const char *startSpecifier,
 | |
|                              unsigned specifierLen) override;
 | |
|   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
 | |
|                        const char *StartSpecifier,
 | |
|                        unsigned SpecifierLen,
 | |
|                        const Expr *E);
 | |
| 
 | |
|   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
 | |
|                     const char *startSpecifier, unsigned specifierLen);
 | |
|   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
 | |
|                            const analyze_printf::OptionalAmount &Amt,
 | |
|                            unsigned type,
 | |
|                            const char *startSpecifier, unsigned specifierLen);
 | |
|   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
 | |
|                   const analyze_printf::OptionalFlag &flag,
 | |
|                   const char *startSpecifier, unsigned specifierLen);
 | |
|   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
 | |
|                          const analyze_printf::OptionalFlag &ignoredFlag,
 | |
|                          const analyze_printf::OptionalFlag &flag,
 | |
|                          const char *startSpecifier, unsigned specifierLen);
 | |
|   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
 | |
|                            const Expr *E);
 | |
| 
 | |
|   void HandleEmptyObjCModifierFlag(const char *startFlag,
 | |
|                                    unsigned flagLen) override;
 | |
| 
 | |
|   void HandleInvalidObjCModifierFlag(const char *startFlag,
 | |
|                                             unsigned flagLen) override;
 | |
| 
 | |
|   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
 | |
|                                            const char *flagsEnd,
 | |
|                                            const char *conversionPosition)
 | |
|                                              override;
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
 | |
|                                       const analyze_printf::PrintfSpecifier &FS,
 | |
|                                       const char *startSpecifier,
 | |
|                                       unsigned specifierLen) {
 | |
|   const analyze_printf::PrintfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
| 
 | |
|   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
 | |
|                                           getLocationOfByte(CS.getStart()),
 | |
|                                           startSpecifier, specifierLen,
 | |
|                                           CS.getStart(), CS.getLength());
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
 | |
|   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
 | |
| }
 | |
| 
 | |
| bool CheckPrintfHandler::HandleAmount(
 | |
|                                const analyze_format_string::OptionalAmount &Amt,
 | |
|                                unsigned k, const char *startSpecifier,
 | |
|                                unsigned specifierLen) {
 | |
|   if (Amt.hasDataArgument()) {
 | |
|     if (!HasVAListArg) {
 | |
|       unsigned argIndex = Amt.getArgIndex();
 | |
|       if (argIndex >= NumDataArgs) {
 | |
|         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
 | |
|                                << k,
 | |
|                              getLocationOfByte(Amt.getStart()),
 | |
|                              /*IsStringLocation*/true,
 | |
|                              getSpecifierRange(startSpecifier, specifierLen));
 | |
|         // Don't do any more checking.  We will just emit
 | |
|         // spurious errors.
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Type check the data argument.  It should be an 'int'.
 | |
|       // Although not in conformance with C99, we also allow the argument to be
 | |
|       // an 'unsigned int' as that is a reasonably safe case.  GCC also
 | |
|       // doesn't emit a warning for that case.
 | |
|       CoveredArgs.set(argIndex);
 | |
|       const Expr *Arg = getDataArg(argIndex);
 | |
|       if (!Arg)
 | |
|         return false;
 | |
| 
 | |
|       QualType T = Arg->getType();
 | |
| 
 | |
|       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
 | |
|       assert(AT.isValid());
 | |
| 
 | |
|       if (!AT.matchesType(S.Context, T)) {
 | |
|         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
 | |
|                                << k << AT.getRepresentativeTypeName(S.Context)
 | |
|                                << T << Arg->getSourceRange(),
 | |
|                              getLocationOfByte(Amt.getStart()),
 | |
|                              /*IsStringLocation*/true,
 | |
|                              getSpecifierRange(startSpecifier, specifierLen));
 | |
|         // Don't do any more checking.  We will just emit
 | |
|         // spurious errors.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleInvalidAmount(
 | |
|                                       const analyze_printf::PrintfSpecifier &FS,
 | |
|                                       const analyze_printf::OptionalAmount &Amt,
 | |
|                                       unsigned type,
 | |
|                                       const char *startSpecifier,
 | |
|                                       unsigned specifierLen) {
 | |
|   const analyze_printf::PrintfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
| 
 | |
|   FixItHint fixit =
 | |
|     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
 | |
|       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
 | |
|                                  Amt.getConstantLength()))
 | |
|       : FixItHint();
 | |
| 
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
 | |
|                          << type << CS.toString(),
 | |
|                        getLocationOfByte(Amt.getStart()),
 | |
|                        /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startSpecifier, specifierLen),
 | |
|                        fixit);
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
 | |
|                                     const analyze_printf::OptionalFlag &flag,
 | |
|                                     const char *startSpecifier,
 | |
|                                     unsigned specifierLen) {
 | |
|   // Warn about pointless flag with a fixit removal.
 | |
|   const analyze_printf::PrintfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
 | |
|                          << flag.toString() << CS.toString(),
 | |
|                        getLocationOfByte(flag.getPosition()),
 | |
|                        /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startSpecifier, specifierLen),
 | |
|                        FixItHint::CreateRemoval(
 | |
|                          getSpecifierRange(flag.getPosition(), 1)));
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleIgnoredFlag(
 | |
|                                 const analyze_printf::PrintfSpecifier &FS,
 | |
|                                 const analyze_printf::OptionalFlag &ignoredFlag,
 | |
|                                 const analyze_printf::OptionalFlag &flag,
 | |
|                                 const char *startSpecifier,
 | |
|                                 unsigned specifierLen) {
 | |
|   // Warn about ignored flag with a fixit removal.
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
 | |
|                          << ignoredFlag.toString() << flag.toString(),
 | |
|                        getLocationOfByte(ignoredFlag.getPosition()),
 | |
|                        /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startSpecifier, specifierLen),
 | |
|                        FixItHint::CreateRemoval(
 | |
|                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
 | |
|                                                      unsigned flagLen) {
 | |
|   // Warn about an empty flag.
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
 | |
|                        getLocationOfByte(startFlag),
 | |
|                        /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startFlag, flagLen));
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
 | |
|                                                        unsigned flagLen) {
 | |
|   // Warn about an invalid flag.
 | |
|   auto Range = getSpecifierRange(startFlag, flagLen);
 | |
|   StringRef flag(startFlag, flagLen);
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
 | |
|                       getLocationOfByte(startFlag),
 | |
|                       /*IsStringLocation*/true,
 | |
|                       Range, FixItHint::CreateRemoval(Range));
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
 | |
|     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
 | |
|     // Warn about using '[...]' without a '@' conversion.
 | |
|     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
 | |
|     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
 | |
|     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
 | |
|                          getLocationOfByte(conversionPosition),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          Range, FixItHint::CreateRemoval(Range));
 | |
| }
 | |
| 
 | |
| // Determines if the specified is a C++ class or struct containing
 | |
| // a member with the specified name and kind (e.g. a CXXMethodDecl named
 | |
| // "c_str()").
 | |
| template<typename MemberKind>
 | |
| static llvm::SmallPtrSet<MemberKind*, 1>
 | |
| CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   llvm::SmallPtrSet<MemberKind*, 1> Results;
 | |
| 
 | |
|   if (!RT)
 | |
|     return Results;
 | |
|   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
 | |
|   if (!RD || !RD->getDefinition())
 | |
|     return Results;
 | |
| 
 | |
|   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
 | |
|                  Sema::LookupMemberName);
 | |
|   R.suppressDiagnostics();
 | |
| 
 | |
|   // We just need to include all members of the right kind turned up by the
 | |
|   // filter, at this point.
 | |
|   if (S.LookupQualifiedName(R, RT->getDecl()))
 | |
|     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|       NamedDecl *decl = (*I)->getUnderlyingDecl();
 | |
|       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
 | |
|         Results.insert(FK);
 | |
|     }
 | |
|   return Results;
 | |
| }
 | |
| 
 | |
| /// Check if we could call '.c_str()' on an object.
 | |
| ///
 | |
| /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
 | |
| /// allow the call, or if it would be ambiguous).
 | |
| bool Sema::hasCStrMethod(const Expr *E) {
 | |
|   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
 | |
| 
 | |
|   MethodSet Results =
 | |
|       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
 | |
|   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
 | |
|        MI != ME; ++MI)
 | |
|     if ((*MI)->getMinRequiredArguments() == 0)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check if a (w)string was passed when a (w)char* was needed, and offer a
 | |
| // better diagnostic if so. AT is assumed to be valid.
 | |
| // Returns true when a c_str() conversion method is found.
 | |
| bool CheckPrintfHandler::checkForCStrMembers(
 | |
|     const analyze_printf::ArgType &AT, const Expr *E) {
 | |
|   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
 | |
| 
 | |
|   MethodSet Results =
 | |
|       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
 | |
| 
 | |
|   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
 | |
|        MI != ME; ++MI) {
 | |
|     const CXXMethodDecl *Method = *MI;
 | |
|     if (Method->getMinRequiredArguments() == 0 &&
 | |
|         AT.matchesType(S.Context, Method->getReturnType())) {
 | |
|       // FIXME: Suggest parens if the expression needs them.
 | |
|       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
 | |
|       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
 | |
|           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
 | |
|                                             &FS,
 | |
|                                           const char *startSpecifier,
 | |
|                                           unsigned specifierLen) {
 | |
|   using namespace analyze_format_string;
 | |
|   using namespace analyze_printf;
 | |
| 
 | |
|   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
 | |
| 
 | |
|   if (FS.consumesDataArgument()) {
 | |
|     if (atFirstArg) {
 | |
|         atFirstArg = false;
 | |
|         usesPositionalArgs = FS.usesPositionalArg();
 | |
|     }
 | |
|     else if (usesPositionalArgs != FS.usesPositionalArg()) {
 | |
|       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
 | |
|                                         startSpecifier, specifierLen);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // First check if the field width, precision, and conversion specifier
 | |
|   // have matching data arguments.
 | |
|   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
 | |
|                     startSpecifier, specifierLen)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
 | |
|                     startSpecifier, specifierLen)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!CS.consumesDataArgument()) {
 | |
|     // FIXME: Technically specifying a precision or field width here
 | |
|     // makes no sense.  Worth issuing a warning at some point.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Consume the argument.
 | |
|   unsigned argIndex = FS.getArgIndex();
 | |
|   if (argIndex < NumDataArgs) {
 | |
|     // The check to see if the argIndex is valid will come later.
 | |
|     // We set the bit here because we may exit early from this
 | |
|     // function if we encounter some other error.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
| 
 | |
|   // FreeBSD kernel extensions.
 | |
|   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
 | |
|       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
 | |
|     // We need at least two arguments.
 | |
|     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
 | |
|       return false;
 | |
| 
 | |
|     // Claim the second argument.
 | |
|     CoveredArgs.set(argIndex + 1);
 | |
| 
 | |
|     // Type check the first argument (int for %b, pointer for %D)
 | |
|     const Expr *Ex = getDataArg(argIndex);
 | |
|     const analyze_printf::ArgType &AT =
 | |
|       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
 | |
|         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
 | |
|     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
 | |
|       EmitFormatDiagnostic(
 | |
|           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
 | |
|               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
 | |
|               << false << Ex->getSourceRange(),
 | |
|           Ex->getBeginLoc(), /*IsStringLocation*/ false,
 | |
|           getSpecifierRange(startSpecifier, specifierLen));
 | |
| 
 | |
|     // Type check the second argument (char * for both %b and %D)
 | |
|     Ex = getDataArg(argIndex + 1);
 | |
|     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
 | |
|     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
 | |
|       EmitFormatDiagnostic(
 | |
|           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
 | |
|               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
 | |
|               << false << Ex->getSourceRange(),
 | |
|           Ex->getBeginLoc(), /*IsStringLocation*/ false,
 | |
|           getSpecifierRange(startSpecifier, specifierLen));
 | |
| 
 | |
|      return true;
 | |
|   }
 | |
| 
 | |
|   // Check for using an Objective-C specific conversion specifier
 | |
|   // in a non-ObjC literal.
 | |
|   if (!allowsObjCArg() && CS.isObjCArg()) {
 | |
|     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
 | |
|                                                   specifierLen);
 | |
|   }
 | |
| 
 | |
|   // %P can only be used with os_log.
 | |
|   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
 | |
|     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
 | |
|                                                   specifierLen);
 | |
|   }
 | |
| 
 | |
|   // %n is not allowed with os_log.
 | |
|   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
 | |
|                          getLocationOfByte(CS.getStart()),
 | |
|                          /*IsStringLocation*/ false,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Only scalars are allowed for os_trace.
 | |
|   if (FSType == Sema::FST_OSTrace &&
 | |
|       (CS.getKind() == ConversionSpecifier::PArg ||
 | |
|        CS.getKind() == ConversionSpecifier::sArg ||
 | |
|        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
 | |
|     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
 | |
|                                                   specifierLen);
 | |
|   }
 | |
| 
 | |
|   // Check for use of public/private annotation outside of os_log().
 | |
|   if (FSType != Sema::FST_OSLog) {
 | |
|     if (FS.isPublic().isSet()) {
 | |
|       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
 | |
|                                << "public",
 | |
|                            getLocationOfByte(FS.isPublic().getPosition()),
 | |
|                            /*IsStringLocation*/ false,
 | |
|                            getSpecifierRange(startSpecifier, specifierLen));
 | |
|     }
 | |
|     if (FS.isPrivate().isSet()) {
 | |
|       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
 | |
|                                << "private",
 | |
|                            getLocationOfByte(FS.isPrivate().getPosition()),
 | |
|                            /*IsStringLocation*/ false,
 | |
|                            getSpecifierRange(startSpecifier, specifierLen));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for invalid use of field width
 | |
|   if (!FS.hasValidFieldWidth()) {
 | |
|     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
 | |
|         startSpecifier, specifierLen);
 | |
|   }
 | |
| 
 | |
|   // Check for invalid use of precision
 | |
|   if (!FS.hasValidPrecision()) {
 | |
|     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
 | |
|         startSpecifier, specifierLen);
 | |
|   }
 | |
| 
 | |
|   // Precision is mandatory for %P specifier.
 | |
|   if (CS.getKind() == ConversionSpecifier::PArg &&
 | |
|       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
 | |
|                          getLocationOfByte(startSpecifier),
 | |
|                          /*IsStringLocation*/ false,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
|   }
 | |
| 
 | |
|   // Check each flag does not conflict with any other component.
 | |
|   if (!FS.hasValidThousandsGroupingPrefix())
 | |
|     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidLeadingZeros())
 | |
|     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidPlusPrefix())
 | |
|     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidSpacePrefix())
 | |
|     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidAlternativeForm())
 | |
|     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidLeftJustified())
 | |
|     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
 | |
| 
 | |
|   // Check that flags are not ignored by another flag
 | |
|   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
 | |
|     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
 | |
|         startSpecifier, specifierLen);
 | |
|   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
 | |
|     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
 | |
|             startSpecifier, specifierLen);
 | |
| 
 | |
|   // Check the length modifier is valid with the given conversion specifier.
 | |
|   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
 | |
|                                  S.getLangOpts()))
 | |
|     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | |
|                                 diag::warn_format_nonsensical_length);
 | |
|   else if (!FS.hasStandardLengthModifier())
 | |
|     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
 | |
|   else if (!FS.hasStandardLengthConversionCombination())
 | |
|     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | |
|                                 diag::warn_format_non_standard_conversion_spec);
 | |
| 
 | |
|   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
 | |
|     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
 | |
| 
 | |
|   // The remaining checks depend on the data arguments.
 | |
|   if (HasVAListArg)
 | |
|     return true;
 | |
| 
 | |
|   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
 | |
|     return false;
 | |
| 
 | |
|   const Expr *Arg = getDataArg(argIndex);
 | |
|   if (!Arg)
 | |
|     return true;
 | |
| 
 | |
|   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
 | |
| }
 | |
| 
 | |
| static bool requiresParensToAddCast(const Expr *E) {
 | |
|   // FIXME: We should have a general way to reason about operator
 | |
|   // precedence and whether parens are actually needed here.
 | |
|   // Take care of a few common cases where they aren't.
 | |
|   const Expr *Inside = E->IgnoreImpCasts();
 | |
|   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
 | |
|     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
 | |
| 
 | |
|   switch (Inside->getStmtClass()) {
 | |
|   case Stmt::ArraySubscriptExprClass:
 | |
|   case Stmt::CallExprClass:
 | |
|   case Stmt::CharacterLiteralClass:
 | |
|   case Stmt::CXXBoolLiteralExprClass:
 | |
|   case Stmt::DeclRefExprClass:
 | |
|   case Stmt::FloatingLiteralClass:
 | |
|   case Stmt::IntegerLiteralClass:
 | |
|   case Stmt::MemberExprClass:
 | |
|   case Stmt::ObjCArrayLiteralClass:
 | |
|   case Stmt::ObjCBoolLiteralExprClass:
 | |
|   case Stmt::ObjCBoxedExprClass:
 | |
|   case Stmt::ObjCDictionaryLiteralClass:
 | |
|   case Stmt::ObjCEncodeExprClass:
 | |
|   case Stmt::ObjCIvarRefExprClass:
 | |
|   case Stmt::ObjCMessageExprClass:
 | |
|   case Stmt::ObjCPropertyRefExprClass:
 | |
|   case Stmt::ObjCStringLiteralClass:
 | |
|   case Stmt::ObjCSubscriptRefExprClass:
 | |
|   case Stmt::ParenExprClass:
 | |
|   case Stmt::StringLiteralClass:
 | |
|   case Stmt::UnaryOperatorClass:
 | |
|     return false;
 | |
|   default:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static std::pair<QualType, StringRef>
 | |
| shouldNotPrintDirectly(const ASTContext &Context,
 | |
|                        QualType IntendedTy,
 | |
|                        const Expr *E) {
 | |
|   // Use a 'while' to peel off layers of typedefs.
 | |
|   QualType TyTy = IntendedTy;
 | |
|   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
 | |
|     StringRef Name = UserTy->getDecl()->getName();
 | |
|     QualType CastTy = llvm::StringSwitch<QualType>(Name)
 | |
|       .Case("CFIndex", Context.getNSIntegerType())
 | |
|       .Case("NSInteger", Context.getNSIntegerType())
 | |
|       .Case("NSUInteger", Context.getNSUIntegerType())
 | |
|       .Case("SInt32", Context.IntTy)
 | |
|       .Case("UInt32", Context.UnsignedIntTy)
 | |
|       .Default(QualType());
 | |
| 
 | |
|     if (!CastTy.isNull())
 | |
|       return std::make_pair(CastTy, Name);
 | |
| 
 | |
|     TyTy = UserTy->desugar();
 | |
|   }
 | |
| 
 | |
|   // Strip parens if necessary.
 | |
|   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
 | |
|     return shouldNotPrintDirectly(Context,
 | |
|                                   PE->getSubExpr()->getType(),
 | |
|                                   PE->getSubExpr());
 | |
| 
 | |
|   // If this is a conditional expression, then its result type is constructed
 | |
|   // via usual arithmetic conversions and thus there might be no necessary
 | |
|   // typedef sugar there.  Recurse to operands to check for NSInteger &
 | |
|   // Co. usage condition.
 | |
|   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
 | |
|     QualType TrueTy, FalseTy;
 | |
|     StringRef TrueName, FalseName;
 | |
| 
 | |
|     std::tie(TrueTy, TrueName) =
 | |
|       shouldNotPrintDirectly(Context,
 | |
|                              CO->getTrueExpr()->getType(),
 | |
|                              CO->getTrueExpr());
 | |
|     std::tie(FalseTy, FalseName) =
 | |
|       shouldNotPrintDirectly(Context,
 | |
|                              CO->getFalseExpr()->getType(),
 | |
|                              CO->getFalseExpr());
 | |
| 
 | |
|     if (TrueTy == FalseTy)
 | |
|       return std::make_pair(TrueTy, TrueName);
 | |
|     else if (TrueTy.isNull())
 | |
|       return std::make_pair(FalseTy, FalseName);
 | |
|     else if (FalseTy.isNull())
 | |
|       return std::make_pair(TrueTy, TrueName);
 | |
|   }
 | |
| 
 | |
|   return std::make_pair(QualType(), StringRef());
 | |
| }
 | |
| 
 | |
| /// Return true if \p ICE is an implicit argument promotion of an arithmetic
 | |
| /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
 | |
| /// type do not count.
 | |
| static bool
 | |
| isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
 | |
|   QualType From = ICE->getSubExpr()->getType();
 | |
|   QualType To = ICE->getType();
 | |
|   // It's an integer promotion if the destination type is the promoted
 | |
|   // source type.
 | |
|   if (ICE->getCastKind() == CK_IntegralCast &&
 | |
|       From->isPromotableIntegerType() &&
 | |
|       S.Context.getPromotedIntegerType(From) == To)
 | |
|     return true;
 | |
|   // Look through vector types, since we do default argument promotion for
 | |
|   // those in OpenCL.
 | |
|   if (const auto *VecTy = From->getAs<ExtVectorType>())
 | |
|     From = VecTy->getElementType();
 | |
|   if (const auto *VecTy = To->getAs<ExtVectorType>())
 | |
|     To = VecTy->getElementType();
 | |
|   // It's a floating promotion if the source type is a lower rank.
 | |
|   return ICE->getCastKind() == CK_FloatingCast &&
 | |
|          S.Context.getFloatingTypeOrder(From, To) < 0;
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
 | |
|                                     const char *StartSpecifier,
 | |
|                                     unsigned SpecifierLen,
 | |
|                                     const Expr *E) {
 | |
|   using namespace analyze_format_string;
 | |
|   using namespace analyze_printf;
 | |
| 
 | |
|   // Now type check the data expression that matches the
 | |
|   // format specifier.
 | |
|   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
 | |
|   if (!AT.isValid())
 | |
|     return true;
 | |
| 
 | |
|   QualType ExprTy = E->getType();
 | |
|   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
 | |
|     ExprTy = TET->getUnderlyingExpr()->getType();
 | |
|   }
 | |
| 
 | |
|   // Diagnose attempts to print a boolean value as a character. Unlike other
 | |
|   // -Wformat diagnostics, this is fine from a type perspective, but it still
 | |
|   // doesn't make sense.
 | |
|   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
 | |
|       E->isKnownToHaveBooleanValue()) {
 | |
|     const CharSourceRange &CSR =
 | |
|         getSpecifierRange(StartSpecifier, SpecifierLen);
 | |
|     SmallString<4> FSString;
 | |
|     llvm::raw_svector_ostream os(FSString);
 | |
|     FS.toString(os);
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
 | |
|                              << FSString,
 | |
|                          E->getExprLoc(), false, CSR);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
 | |
|   if (Match == analyze_printf::ArgType::Match)
 | |
|     return true;
 | |
| 
 | |
|   // Look through argument promotions for our error message's reported type.
 | |
|   // This includes the integral and floating promotions, but excludes array
 | |
|   // and function pointer decay (seeing that an argument intended to be a
 | |
|   // string has type 'char [6]' is probably more confusing than 'char *') and
 | |
|   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
 | |
|   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (isArithmeticArgumentPromotion(S, ICE)) {
 | |
|       E = ICE->getSubExpr();
 | |
|       ExprTy = E->getType();
 | |
| 
 | |
|       // Check if we didn't match because of an implicit cast from a 'char'
 | |
|       // or 'short' to an 'int'.  This is done because printf is a varargs
 | |
|       // function.
 | |
|       if (ICE->getType() == S.Context.IntTy ||
 | |
|           ICE->getType() == S.Context.UnsignedIntTy) {
 | |
|         // All further checking is done on the subexpression
 | |
|         const analyze_printf::ArgType::MatchKind ImplicitMatch =
 | |
|             AT.matchesType(S.Context, ExprTy);
 | |
|         if (ImplicitMatch == analyze_printf::ArgType::Match)
 | |
|           return true;
 | |
|         if (ImplicitMatch == ArgType::NoMatchPedantic ||
 | |
|             ImplicitMatch == ArgType::NoMatchTypeConfusion)
 | |
|           Match = ImplicitMatch;
 | |
|       }
 | |
|     }
 | |
|   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
 | |
|     // Special case for 'a', which has type 'int' in C.
 | |
|     // Note, however, that we do /not/ want to treat multibyte constants like
 | |
|     // 'MooV' as characters! This form is deprecated but still exists.
 | |
|     if (ExprTy == S.Context.IntTy)
 | |
|       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
 | |
|         ExprTy = S.Context.CharTy;
 | |
|   }
 | |
| 
 | |
|   // Look through enums to their underlying type.
 | |
|   bool IsEnum = false;
 | |
|   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
 | |
|     ExprTy = EnumTy->getDecl()->getIntegerType();
 | |
|     IsEnum = true;
 | |
|   }
 | |
| 
 | |
|   // %C in an Objective-C context prints a unichar, not a wchar_t.
 | |
|   // If the argument is an integer of some kind, believe the %C and suggest
 | |
|   // a cast instead of changing the conversion specifier.
 | |
|   QualType IntendedTy = ExprTy;
 | |
|   if (isObjCContext() &&
 | |
|       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
 | |
|     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
 | |
|         !ExprTy->isCharType()) {
 | |
|       // 'unichar' is defined as a typedef of unsigned short, but we should
 | |
|       // prefer using the typedef if it is visible.
 | |
|       IntendedTy = S.Context.UnsignedShortTy;
 | |
| 
 | |
|       // While we are here, check if the value is an IntegerLiteral that happens
 | |
|       // to be within the valid range.
 | |
|       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
 | |
|         const llvm::APInt &V = IL->getValue();
 | |
|         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
 | |
|           return true;
 | |
|       }
 | |
| 
 | |
|       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
 | |
|                           Sema::LookupOrdinaryName);
 | |
|       if (S.LookupName(Result, S.getCurScope())) {
 | |
|         NamedDecl *ND = Result.getFoundDecl();
 | |
|         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
 | |
|           if (TD->getUnderlyingType() == IntendedTy)
 | |
|             IntendedTy = S.Context.getTypedefType(TD);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Special-case some of Darwin's platform-independence types by suggesting
 | |
|   // casts to primitive types that are known to be large enough.
 | |
|   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
 | |
|   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
 | |
|     QualType CastTy;
 | |
|     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
 | |
|     if (!CastTy.isNull()) {
 | |
|       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
 | |
|       // (long in ASTContext). Only complain to pedants.
 | |
|       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
 | |
|           (AT.isSizeT() || AT.isPtrdiffT()) &&
 | |
|           AT.matchesType(S.Context, CastTy))
 | |
|         Match = ArgType::NoMatchPedantic;
 | |
|       IntendedTy = CastTy;
 | |
|       ShouldNotPrintDirectly = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We may be able to offer a FixItHint if it is a supported type.
 | |
|   PrintfSpecifier fixedFS = FS;
 | |
|   bool Success =
 | |
|       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
 | |
| 
 | |
|   if (Success) {
 | |
|     // Get the fix string from the fixed format specifier
 | |
|     SmallString<16> buf;
 | |
|     llvm::raw_svector_ostream os(buf);
 | |
|     fixedFS.toString(os);
 | |
| 
 | |
|     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
 | |
| 
 | |
|     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
 | |
|       unsigned Diag;
 | |
|       switch (Match) {
 | |
|       case ArgType::Match: llvm_unreachable("expected non-matching");
 | |
|       case ArgType::NoMatchPedantic:
 | |
|         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
 | |
|         break;
 | |
|       case ArgType::NoMatchTypeConfusion:
 | |
|         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
 | |
|         break;
 | |
|       case ArgType::NoMatch:
 | |
|         Diag = diag::warn_format_conversion_argument_type_mismatch;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // In this case, the specifier is wrong and should be changed to match
 | |
|       // the argument.
 | |
|       EmitFormatDiagnostic(S.PDiag(Diag)
 | |
|                                << AT.getRepresentativeTypeName(S.Context)
 | |
|                                << IntendedTy << IsEnum << E->getSourceRange(),
 | |
|                            E->getBeginLoc(),
 | |
|                            /*IsStringLocation*/ false, SpecRange,
 | |
|                            FixItHint::CreateReplacement(SpecRange, os.str()));
 | |
|     } else {
 | |
|       // The canonical type for formatting this value is different from the
 | |
|       // actual type of the expression. (This occurs, for example, with Darwin's
 | |
|       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
 | |
|       // should be printed as 'long' for 64-bit compatibility.)
 | |
|       // Rather than emitting a normal format/argument mismatch, we want to
 | |
|       // add a cast to the recommended type (and correct the format string
 | |
|       // if necessary).
 | |
|       SmallString<16> CastBuf;
 | |
|       llvm::raw_svector_ostream CastFix(CastBuf);
 | |
|       CastFix << "(";
 | |
|       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
 | |
|       CastFix << ")";
 | |
| 
 | |
|       SmallVector<FixItHint,4> Hints;
 | |
|       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
 | |
|         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
 | |
| 
 | |
|       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
 | |
|         // If there's already a cast present, just replace it.
 | |
|         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
 | |
|         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
 | |
| 
 | |
|       } else if (!requiresParensToAddCast(E)) {
 | |
|         // If the expression has high enough precedence,
 | |
|         // just write the C-style cast.
 | |
|         Hints.push_back(
 | |
|             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
 | |
|       } else {
 | |
|         // Otherwise, add parens around the expression as well as the cast.
 | |
|         CastFix << "(";
 | |
|         Hints.push_back(
 | |
|             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
 | |
| 
 | |
|         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
 | |
|         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
 | |
|       }
 | |
| 
 | |
|       if (ShouldNotPrintDirectly) {
 | |
|         // The expression has a type that should not be printed directly.
 | |
|         // We extract the name from the typedef because we don't want to show
 | |
|         // the underlying type in the diagnostic.
 | |
|         StringRef Name;
 | |
|         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
 | |
|           Name = TypedefTy->getDecl()->getName();
 | |
|         else
 | |
|           Name = CastTyName;
 | |
|         unsigned Diag = Match == ArgType::NoMatchPedantic
 | |
|                             ? diag::warn_format_argument_needs_cast_pedantic
 | |
|                             : diag::warn_format_argument_needs_cast;
 | |
|         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
 | |
|                                            << E->getSourceRange(),
 | |
|                              E->getBeginLoc(), /*IsStringLocation=*/false,
 | |
|                              SpecRange, Hints);
 | |
|       } else {
 | |
|         // In this case, the expression could be printed using a different
 | |
|         // specifier, but we've decided that the specifier is probably correct
 | |
|         // and we should cast instead. Just use the normal warning message.
 | |
|         EmitFormatDiagnostic(
 | |
|             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
 | |
|                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
 | |
|                 << E->getSourceRange(),
 | |
|             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
 | |
|                                                    SpecifierLen);
 | |
|     // Since the warning for passing non-POD types to variadic functions
 | |
|     // was deferred until now, we emit a warning for non-POD
 | |
|     // arguments here.
 | |
|     switch (S.isValidVarArgType(ExprTy)) {
 | |
|     case Sema::VAK_Valid:
 | |
|     case Sema::VAK_ValidInCXX11: {
 | |
|       unsigned Diag;
 | |
|       switch (Match) {
 | |
|       case ArgType::Match: llvm_unreachable("expected non-matching");
 | |
|       case ArgType::NoMatchPedantic:
 | |
|         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
 | |
|         break;
 | |
|       case ArgType::NoMatchTypeConfusion:
 | |
|         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
 | |
|         break;
 | |
|       case ArgType::NoMatch:
 | |
|         Diag = diag::warn_format_conversion_argument_type_mismatch;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       EmitFormatDiagnostic(
 | |
|           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
 | |
|                         << IsEnum << CSR << E->getSourceRange(),
 | |
|           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
 | |
|       break;
 | |
|     }
 | |
|     case Sema::VAK_Undefined:
 | |
|     case Sema::VAK_MSVCUndefined:
 | |
|       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
 | |
|                                << S.getLangOpts().CPlusPlus11 << ExprTy
 | |
|                                << CallType
 | |
|                                << AT.getRepresentativeTypeName(S.Context) << CSR
 | |
|                                << E->getSourceRange(),
 | |
|                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
 | |
|       checkForCStrMembers(AT, E);
 | |
|       break;
 | |
| 
 | |
|     case Sema::VAK_Invalid:
 | |
|       if (ExprTy->isObjCObjectType())
 | |
|         EmitFormatDiagnostic(
 | |
|             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
 | |
|                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
 | |
|                 << AT.getRepresentativeTypeName(S.Context) << CSR
 | |
|                 << E->getSourceRange(),
 | |
|             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
 | |
|       else
 | |
|         // FIXME: If this is an initializer list, suggest removing the braces
 | |
|         // or inserting a cast to the target type.
 | |
|         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
 | |
|             << isa<InitListExpr>(E) << ExprTy << CallType
 | |
|             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
 | |
|            "format string specifier index out of range");
 | |
|     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Scanf format string checking ------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class CheckScanfHandler : public CheckFormatHandler {
 | |
| public:
 | |
|   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
 | |
|                     const Expr *origFormatExpr, Sema::FormatStringType type,
 | |
|                     unsigned firstDataArg, unsigned numDataArgs,
 | |
|                     const char *beg, bool hasVAListArg,
 | |
|                     ArrayRef<const Expr *> Args, unsigned formatIdx,
 | |
|                     bool inFunctionCall, Sema::VariadicCallType CallType,
 | |
|                     llvm::SmallBitVector &CheckedVarArgs,
 | |
|                     UncoveredArgHandler &UncoveredArg)
 | |
|       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
 | |
|                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
 | |
|                            inFunctionCall, CallType, CheckedVarArgs,
 | |
|                            UncoveredArg) {}
 | |
| 
 | |
|   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
 | |
|                             const char *startSpecifier,
 | |
|                             unsigned specifierLen) override;
 | |
| 
 | |
|   bool HandleInvalidScanfConversionSpecifier(
 | |
|           const analyze_scanf::ScanfSpecifier &FS,
 | |
|           const char *startSpecifier,
 | |
|           unsigned specifierLen) override;
 | |
| 
 | |
|   void HandleIncompleteScanList(const char *start, const char *end) override;
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| void CheckScanfHandler::HandleIncompleteScanList(const char *start,
 | |
|                                                  const char *end) {
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
 | |
|                        getLocationOfByte(end), /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(start, end - start));
 | |
| }
 | |
| 
 | |
| bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
 | |
|                                         const analyze_scanf::ScanfSpecifier &FS,
 | |
|                                         const char *startSpecifier,
 | |
|                                         unsigned specifierLen) {
 | |
|   const analyze_scanf::ScanfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
| 
 | |
|   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
 | |
|                                           getLocationOfByte(CS.getStart()),
 | |
|                                           startSpecifier, specifierLen,
 | |
|                                           CS.getStart(), CS.getLength());
 | |
| }
 | |
| 
 | |
| bool CheckScanfHandler::HandleScanfSpecifier(
 | |
|                                        const analyze_scanf::ScanfSpecifier &FS,
 | |
|                                        const char *startSpecifier,
 | |
|                                        unsigned specifierLen) {
 | |
|   using namespace analyze_scanf;
 | |
|   using namespace analyze_format_string;
 | |
| 
 | |
|   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
 | |
| 
 | |
|   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
 | |
|   // be used to decide if we are using positional arguments consistently.
 | |
|   if (FS.consumesDataArgument()) {
 | |
|     if (atFirstArg) {
 | |
|       atFirstArg = false;
 | |
|       usesPositionalArgs = FS.usesPositionalArg();
 | |
|     }
 | |
|     else if (usesPositionalArgs != FS.usesPositionalArg()) {
 | |
|       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
 | |
|                                         startSpecifier, specifierLen);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check if the field with is non-zero.
 | |
|   const OptionalAmount &Amt = FS.getFieldWidth();
 | |
|   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
 | |
|     if (Amt.getConstantAmount() == 0) {
 | |
|       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
 | |
|                                                    Amt.getConstantLength());
 | |
|       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
 | |
|                            getLocationOfByte(Amt.getStart()),
 | |
|                            /*IsStringLocation*/true, R,
 | |
|                            FixItHint::CreateRemoval(R));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!FS.consumesDataArgument()) {
 | |
|     // FIXME: Technically specifying a precision or field width here
 | |
|     // makes no sense.  Worth issuing a warning at some point.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Consume the argument.
 | |
|   unsigned argIndex = FS.getArgIndex();
 | |
|   if (argIndex < NumDataArgs) {
 | |
|       // The check to see if the argIndex is valid will come later.
 | |
|       // We set the bit here because we may exit early from this
 | |
|       // function if we encounter some other error.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
| 
 | |
|   // Check the length modifier is valid with the given conversion specifier.
 | |
|   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
 | |
|                                  S.getLangOpts()))
 | |
|     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | |
|                                 diag::warn_format_nonsensical_length);
 | |
|   else if (!FS.hasStandardLengthModifier())
 | |
|     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
 | |
|   else if (!FS.hasStandardLengthConversionCombination())
 | |
|     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | |
|                                 diag::warn_format_non_standard_conversion_spec);
 | |
| 
 | |
|   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
 | |
|     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
 | |
| 
 | |
|   // The remaining checks depend on the data arguments.
 | |
|   if (HasVAListArg)
 | |
|     return true;
 | |
| 
 | |
|   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
 | |
|     return false;
 | |
| 
 | |
|   // Check that the argument type matches the format specifier.
 | |
|   const Expr *Ex = getDataArg(argIndex);
 | |
|   if (!Ex)
 | |
|     return true;
 | |
| 
 | |
|   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
 | |
| 
 | |
|   if (!AT.isValid()) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   analyze_format_string::ArgType::MatchKind Match =
 | |
|       AT.matchesType(S.Context, Ex->getType());
 | |
|   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
 | |
|   if (Match == analyze_format_string::ArgType::Match)
 | |
|     return true;
 | |
| 
 | |
|   ScanfSpecifier fixedFS = FS;
 | |
|   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
 | |
|                                  S.getLangOpts(), S.Context);
 | |
| 
 | |
|   unsigned Diag =
 | |
|       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
 | |
|                : diag::warn_format_conversion_argument_type_mismatch;
 | |
| 
 | |
|   if (Success) {
 | |
|     // Get the fix string from the fixed format specifier.
 | |
|     SmallString<128> buf;
 | |
|     llvm::raw_svector_ostream os(buf);
 | |
|     fixedFS.toString(os);
 | |
| 
 | |
|     EmitFormatDiagnostic(
 | |
|         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
 | |
|                       << Ex->getType() << false << Ex->getSourceRange(),
 | |
|         Ex->getBeginLoc(),
 | |
|         /*IsStringLocation*/ false,
 | |
|         getSpecifierRange(startSpecifier, specifierLen),
 | |
|         FixItHint::CreateReplacement(
 | |
|             getSpecifierRange(startSpecifier, specifierLen), os.str()));
 | |
|   } else {
 | |
|     EmitFormatDiagnostic(S.PDiag(Diag)
 | |
|                              << AT.getRepresentativeTypeName(S.Context)
 | |
|                              << Ex->getType() << false << Ex->getSourceRange(),
 | |
|                          Ex->getBeginLoc(),
 | |
|                          /*IsStringLocation*/ false,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
 | |
|                               const Expr *OrigFormatExpr,
 | |
|                               ArrayRef<const Expr *> Args,
 | |
|                               bool HasVAListArg, unsigned format_idx,
 | |
|                               unsigned firstDataArg,
 | |
|                               Sema::FormatStringType Type,
 | |
|                               bool inFunctionCall,
 | |
|                               Sema::VariadicCallType CallType,
 | |
|                               llvm::SmallBitVector &CheckedVarArgs,
 | |
|                               UncoveredArgHandler &UncoveredArg,
 | |
|                               bool IgnoreStringsWithoutSpecifiers) {
 | |
|   // CHECK: is the format string a wide literal?
 | |
|   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
 | |
|     CheckFormatHandler::EmitFormatDiagnostic(
 | |
|         S, inFunctionCall, Args[format_idx],
 | |
|         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
 | |
|         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Str - The format string.  NOTE: this is NOT null-terminated!
 | |
|   StringRef StrRef = FExpr->getString();
 | |
|   const char *Str = StrRef.data();
 | |
|   // Account for cases where the string literal is truncated in a declaration.
 | |
|   const ConstantArrayType *T =
 | |
|     S.Context.getAsConstantArrayType(FExpr->getType());
 | |
|   assert(T && "String literal not of constant array type!");
 | |
|   size_t TypeSize = T->getSize().getZExtValue();
 | |
|   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
 | |
|   const unsigned numDataArgs = Args.size() - firstDataArg;
 | |
| 
 | |
|   if (IgnoreStringsWithoutSpecifiers &&
 | |
|       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
 | |
|           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
 | |
|     return;
 | |
| 
 | |
|   // Emit a warning if the string literal is truncated and does not contain an
 | |
|   // embedded null character.
 | |
|   if (TypeSize <= StrRef.size() &&
 | |
|       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
 | |
|     CheckFormatHandler::EmitFormatDiagnostic(
 | |
|         S, inFunctionCall, Args[format_idx],
 | |
|         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
 | |
|         FExpr->getBeginLoc(),
 | |
|         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // CHECK: empty format string?
 | |
|   if (StrLen == 0 && numDataArgs > 0) {
 | |
|     CheckFormatHandler::EmitFormatDiagnostic(
 | |
|         S, inFunctionCall, Args[format_idx],
 | |
|         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
 | |
|         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
 | |
|       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
 | |
|       Type == Sema::FST_OSTrace) {
 | |
|     CheckPrintfHandler H(
 | |
|         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
 | |
|         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
 | |
|         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
 | |
|         CheckedVarArgs, UncoveredArg);
 | |
| 
 | |
|     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
 | |
|                                                   S.getLangOpts(),
 | |
|                                                   S.Context.getTargetInfo(),
 | |
|                                             Type == Sema::FST_FreeBSDKPrintf))
 | |
|       H.DoneProcessing();
 | |
|   } else if (Type == Sema::FST_Scanf) {
 | |
|     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
 | |
|                         numDataArgs, Str, HasVAListArg, Args, format_idx,
 | |
|                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
 | |
| 
 | |
|     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
 | |
|                                                  S.getLangOpts(),
 | |
|                                                  S.Context.getTargetInfo()))
 | |
|       H.DoneProcessing();
 | |
|   } // TODO: handle other formats
 | |
| }
 | |
| 
 | |
| bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
 | |
|   // Str - The format string.  NOTE: this is NOT null-terminated!
 | |
|   StringRef StrRef = FExpr->getString();
 | |
|   const char *Str = StrRef.data();
 | |
|   // Account for cases where the string literal is truncated in a declaration.
 | |
|   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
 | |
|   assert(T && "String literal not of constant array type!");
 | |
|   size_t TypeSize = T->getSize().getZExtValue();
 | |
|   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
 | |
|   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
 | |
|                                                          getLangOpts(),
 | |
|                                                          Context.getTargetInfo());
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
 | |
| 
 | |
| // Returns the related absolute value function that is larger, of 0 if one
 | |
| // does not exist.
 | |
| static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
 | |
|   switch (AbsFunction) {
 | |
|   default:
 | |
|     return 0;
 | |
| 
 | |
|   case Builtin::BI__builtin_abs:
 | |
|     return Builtin::BI__builtin_labs;
 | |
|   case Builtin::BI__builtin_labs:
 | |
|     return Builtin::BI__builtin_llabs;
 | |
|   case Builtin::BI__builtin_llabs:
 | |
|     return 0;
 | |
| 
 | |
|   case Builtin::BI__builtin_fabsf:
 | |
|     return Builtin::BI__builtin_fabs;
 | |
|   case Builtin::BI__builtin_fabs:
 | |
|     return Builtin::BI__builtin_fabsl;
 | |
|   case Builtin::BI__builtin_fabsl:
 | |
|     return 0;
 | |
| 
 | |
|   case Builtin::BI__builtin_cabsf:
 | |
|     return Builtin::BI__builtin_cabs;
 | |
|   case Builtin::BI__builtin_cabs:
 | |
|     return Builtin::BI__builtin_cabsl;
 | |
|   case Builtin::BI__builtin_cabsl:
 | |
|     return 0;
 | |
| 
 | |
|   case Builtin::BIabs:
 | |
|     return Builtin::BIlabs;
 | |
|   case Builtin::BIlabs:
 | |
|     return Builtin::BIllabs;
 | |
|   case Builtin::BIllabs:
 | |
|     return 0;
 | |
| 
 | |
|   case Builtin::BIfabsf:
 | |
|     return Builtin::BIfabs;
 | |
|   case Builtin::BIfabs:
 | |
|     return Builtin::BIfabsl;
 | |
|   case Builtin::BIfabsl:
 | |
|     return 0;
 | |
| 
 | |
|   case Builtin::BIcabsf:
 | |
|    return Builtin::BIcabs;
 | |
|   case Builtin::BIcabs:
 | |
|     return Builtin::BIcabsl;
 | |
|   case Builtin::BIcabsl:
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns the argument type of the absolute value function.
 | |
| static QualType getAbsoluteValueArgumentType(ASTContext &Context,
 | |
|                                              unsigned AbsType) {
 | |
|   if (AbsType == 0)
 | |
|     return QualType();
 | |
| 
 | |
|   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
 | |
|   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
 | |
|   if (Error != ASTContext::GE_None)
 | |
|     return QualType();
 | |
| 
 | |
|   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
 | |
|   if (!FT)
 | |
|     return QualType();
 | |
| 
 | |
|   if (FT->getNumParams() != 1)
 | |
|     return QualType();
 | |
| 
 | |
|   return FT->getParamType(0);
 | |
| }
 | |
| 
 | |
| // Returns the best absolute value function, or zero, based on type and
 | |
| // current absolute value function.
 | |
| static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
 | |
|                                    unsigned AbsFunctionKind) {
 | |
|   unsigned BestKind = 0;
 | |
|   uint64_t ArgSize = Context.getTypeSize(ArgType);
 | |
|   for (unsigned Kind = AbsFunctionKind; Kind != 0;
 | |
|        Kind = getLargerAbsoluteValueFunction(Kind)) {
 | |
|     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
 | |
|     if (Context.getTypeSize(ParamType) >= ArgSize) {
 | |
|       if (BestKind == 0)
 | |
|         BestKind = Kind;
 | |
|       else if (Context.hasSameType(ParamType, ArgType)) {
 | |
|         BestKind = Kind;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return BestKind;
 | |
| }
 | |
| 
 | |
| enum AbsoluteValueKind {
 | |
|   AVK_Integer,
 | |
|   AVK_Floating,
 | |
|   AVK_Complex
 | |
| };
 | |
| 
 | |
| static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
 | |
|   if (T->isIntegralOrEnumerationType())
 | |
|     return AVK_Integer;
 | |
|   if (T->isRealFloatingType())
 | |
|     return AVK_Floating;
 | |
|   if (T->isAnyComplexType())
 | |
|     return AVK_Complex;
 | |
| 
 | |
|   llvm_unreachable("Type not integer, floating, or complex");
 | |
| }
 | |
| 
 | |
| // Changes the absolute value function to a different type.  Preserves whether
 | |
| // the function is a builtin.
 | |
| static unsigned changeAbsFunction(unsigned AbsKind,
 | |
|                                   AbsoluteValueKind ValueKind) {
 | |
|   switch (ValueKind) {
 | |
|   case AVK_Integer:
 | |
|     switch (AbsKind) {
 | |
|     default:
 | |
|       return 0;
 | |
|     case Builtin::BI__builtin_fabsf:
 | |
|     case Builtin::BI__builtin_fabs:
 | |
|     case Builtin::BI__builtin_fabsl:
 | |
|     case Builtin::BI__builtin_cabsf:
 | |
|     case Builtin::BI__builtin_cabs:
 | |
|     case Builtin::BI__builtin_cabsl:
 | |
|       return Builtin::BI__builtin_abs;
 | |
|     case Builtin::BIfabsf:
 | |
|     case Builtin::BIfabs:
 | |
|     case Builtin::BIfabsl:
 | |
|     case Builtin::BIcabsf:
 | |
|     case Builtin::BIcabs:
 | |
|     case Builtin::BIcabsl:
 | |
|       return Builtin::BIabs;
 | |
|     }
 | |
|   case AVK_Floating:
 | |
|     switch (AbsKind) {
 | |
|     default:
 | |
|       return 0;
 | |
|     case Builtin::BI__builtin_abs:
 | |
|     case Builtin::BI__builtin_labs:
 | |
|     case Builtin::BI__builtin_llabs:
 | |
|     case Builtin::BI__builtin_cabsf:
 | |
|     case Builtin::BI__builtin_cabs:
 | |
|     case Builtin::BI__builtin_cabsl:
 | |
|       return Builtin::BI__builtin_fabsf;
 | |
|     case Builtin::BIabs:
 | |
|     case Builtin::BIlabs:
 | |
|     case Builtin::BIllabs:
 | |
|     case Builtin::BIcabsf:
 | |
|     case Builtin::BIcabs:
 | |
|     case Builtin::BIcabsl:
 | |
|       return Builtin::BIfabsf;
 | |
|     }
 | |
|   case AVK_Complex:
 | |
|     switch (AbsKind) {
 | |
|     default:
 | |
|       return 0;
 | |
|     case Builtin::BI__builtin_abs:
 | |
|     case Builtin::BI__builtin_labs:
 | |
|     case Builtin::BI__builtin_llabs:
 | |
|     case Builtin::BI__builtin_fabsf:
 | |
|     case Builtin::BI__builtin_fabs:
 | |
|     case Builtin::BI__builtin_fabsl:
 | |
|       return Builtin::BI__builtin_cabsf;
 | |
|     case Builtin::BIabs:
 | |
|     case Builtin::BIlabs:
 | |
|     case Builtin::BIllabs:
 | |
|     case Builtin::BIfabsf:
 | |
|     case Builtin::BIfabs:
 | |
|     case Builtin::BIfabsl:
 | |
|       return Builtin::BIcabsf;
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("Unable to convert function");
 | |
| }
 | |
| 
 | |
| static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
 | |
|   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
 | |
|   if (!FnInfo)
 | |
|     return 0;
 | |
| 
 | |
|   switch (FDecl->getBuiltinID()) {
 | |
|   default:
 | |
|     return 0;
 | |
|   case Builtin::BI__builtin_abs:
 | |
|   case Builtin::BI__builtin_fabs:
 | |
|   case Builtin::BI__builtin_fabsf:
 | |
|   case Builtin::BI__builtin_fabsl:
 | |
|   case Builtin::BI__builtin_labs:
 | |
|   case Builtin::BI__builtin_llabs:
 | |
|   case Builtin::BI__builtin_cabs:
 | |
|   case Builtin::BI__builtin_cabsf:
 | |
|   case Builtin::BI__builtin_cabsl:
 | |
|   case Builtin::BIabs:
 | |
|   case Builtin::BIlabs:
 | |
|   case Builtin::BIllabs:
 | |
|   case Builtin::BIfabs:
 | |
|   case Builtin::BIfabsf:
 | |
|   case Builtin::BIfabsl:
 | |
|   case Builtin::BIcabs:
 | |
|   case Builtin::BIcabsf:
 | |
|   case Builtin::BIcabsl:
 | |
|     return FDecl->getBuiltinID();
 | |
|   }
 | |
|   llvm_unreachable("Unknown Builtin type");
 | |
| }
 | |
| 
 | |
| // If the replacement is valid, emit a note with replacement function.
 | |
| // Additionally, suggest including the proper header if not already included.
 | |
| static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
 | |
|                             unsigned AbsKind, QualType ArgType) {
 | |
|   bool EmitHeaderHint = true;
 | |
|   const char *HeaderName = nullptr;
 | |
|   const char *FunctionName = nullptr;
 | |
|   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
 | |
|     FunctionName = "std::abs";
 | |
|     if (ArgType->isIntegralOrEnumerationType()) {
 | |
|       HeaderName = "cstdlib";
 | |
|     } else if (ArgType->isRealFloatingType()) {
 | |
|       HeaderName = "cmath";
 | |
|     } else {
 | |
|       llvm_unreachable("Invalid Type");
 | |
|     }
 | |
| 
 | |
|     // Lookup all std::abs
 | |
|     if (NamespaceDecl *Std = S.getStdNamespace()) {
 | |
|       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
 | |
|       R.suppressDiagnostics();
 | |
|       S.LookupQualifiedName(R, Std);
 | |
| 
 | |
|       for (const auto *I : R) {
 | |
|         const FunctionDecl *FDecl = nullptr;
 | |
|         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
 | |
|           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
 | |
|         } else {
 | |
|           FDecl = dyn_cast<FunctionDecl>(I);
 | |
|         }
 | |
|         if (!FDecl)
 | |
|           continue;
 | |
| 
 | |
|         // Found std::abs(), check that they are the right ones.
 | |
|         if (FDecl->getNumParams() != 1)
 | |
|           continue;
 | |
| 
 | |
|         // Check that the parameter type can handle the argument.
 | |
|         QualType ParamType = FDecl->getParamDecl(0)->getType();
 | |
|         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
 | |
|             S.Context.getTypeSize(ArgType) <=
 | |
|                 S.Context.getTypeSize(ParamType)) {
 | |
|           // Found a function, don't need the header hint.
 | |
|           EmitHeaderHint = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
 | |
|     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
 | |
| 
 | |
|     if (HeaderName) {
 | |
|       DeclarationName DN(&S.Context.Idents.get(FunctionName));
 | |
|       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
 | |
|       R.suppressDiagnostics();
 | |
|       S.LookupName(R, S.getCurScope());
 | |
| 
 | |
|       if (R.isSingleResult()) {
 | |
|         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
 | |
|         if (FD && FD->getBuiltinID() == AbsKind) {
 | |
|           EmitHeaderHint = false;
 | |
|         } else {
 | |
|           return;
 | |
|         }
 | |
|       } else if (!R.empty()) {
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   S.Diag(Loc, diag::note_replace_abs_function)
 | |
|       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
 | |
| 
 | |
|   if (!HeaderName)
 | |
|     return;
 | |
| 
 | |
|   if (!EmitHeaderHint)
 | |
|     return;
 | |
| 
 | |
|   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
 | |
|                                                     << FunctionName;
 | |
| }
 | |
| 
 | |
| template <std::size_t StrLen>
 | |
| static bool IsStdFunction(const FunctionDecl *FDecl,
 | |
|                           const char (&Str)[StrLen]) {
 | |
|   if (!FDecl)
 | |
|     return false;
 | |
|   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
 | |
|     return false;
 | |
|   if (!FDecl->isInStdNamespace())
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Warn when using the wrong abs() function.
 | |
| void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
 | |
|                                       const FunctionDecl *FDecl) {
 | |
|   if (Call->getNumArgs() != 1)
 | |
|     return;
 | |
| 
 | |
|   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
 | |
|   bool IsStdAbs = IsStdFunction(FDecl, "abs");
 | |
|   if (AbsKind == 0 && !IsStdAbs)
 | |
|     return;
 | |
| 
 | |
|   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
 | |
|   QualType ParamType = Call->getArg(0)->getType();
 | |
| 
 | |
|   // Unsigned types cannot be negative.  Suggest removing the absolute value
 | |
|   // function call.
 | |
|   if (ArgType->isUnsignedIntegerType()) {
 | |
|     const char *FunctionName =
 | |
|         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
 | |
|     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
 | |
|     Diag(Call->getExprLoc(), diag::note_remove_abs)
 | |
|         << FunctionName
 | |
|         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Taking the absolute value of a pointer is very suspicious, they probably
 | |
|   // wanted to index into an array, dereference a pointer, call a function, etc.
 | |
|   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
 | |
|     unsigned DiagType = 0;
 | |
|     if (ArgType->isFunctionType())
 | |
|       DiagType = 1;
 | |
|     else if (ArgType->isArrayType())
 | |
|       DiagType = 2;
 | |
| 
 | |
|     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // std::abs has overloads which prevent most of the absolute value problems
 | |
|   // from occurring.
 | |
|   if (IsStdAbs)
 | |
|     return;
 | |
| 
 | |
|   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
 | |
|   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
 | |
| 
 | |
|   // The argument and parameter are the same kind.  Check if they are the right
 | |
|   // size.
 | |
|   if (ArgValueKind == ParamValueKind) {
 | |
|     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
 | |
|       return;
 | |
| 
 | |
|     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
 | |
|     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
 | |
|         << FDecl << ArgType << ParamType;
 | |
| 
 | |
|     if (NewAbsKind == 0)
 | |
|       return;
 | |
| 
 | |
|     emitReplacement(*this, Call->getExprLoc(),
 | |
|                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // ArgValueKind != ParamValueKind
 | |
|   // The wrong type of absolute value function was used.  Attempt to find the
 | |
|   // proper one.
 | |
|   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
 | |
|   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
 | |
|   if (NewAbsKind == 0)
 | |
|     return;
 | |
| 
 | |
|   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
 | |
|       << FDecl << ParamValueKind << ArgValueKind;
 | |
| 
 | |
|   emitReplacement(*this, Call->getExprLoc(),
 | |
|                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
 | |
| void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
 | |
|                                 const FunctionDecl *FDecl) {
 | |
|   if (!Call || !FDecl) return;
 | |
| 
 | |
|   // Ignore template specializations and macros.
 | |
|   if (inTemplateInstantiation()) return;
 | |
|   if (Call->getExprLoc().isMacroID()) return;
 | |
| 
 | |
|   // Only care about the one template argument, two function parameter std::max
 | |
|   if (Call->getNumArgs() != 2) return;
 | |
|   if (!IsStdFunction(FDecl, "max")) return;
 | |
|   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
 | |
|   if (!ArgList) return;
 | |
|   if (ArgList->size() != 1) return;
 | |
| 
 | |
|   // Check that template type argument is unsigned integer.
 | |
|   const auto& TA = ArgList->get(0);
 | |
|   if (TA.getKind() != TemplateArgument::Type) return;
 | |
|   QualType ArgType = TA.getAsType();
 | |
|   if (!ArgType->isUnsignedIntegerType()) return;
 | |
| 
 | |
|   // See if either argument is a literal zero.
 | |
|   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
 | |
|     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
 | |
|     if (!MTE) return false;
 | |
|     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
 | |
|     if (!Num) return false;
 | |
|     if (Num->getValue() != 0) return false;
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   const Expr *FirstArg = Call->getArg(0);
 | |
|   const Expr *SecondArg = Call->getArg(1);
 | |
|   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
 | |
|   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
 | |
| 
 | |
|   // Only warn when exactly one argument is zero.
 | |
|   if (IsFirstArgZero == IsSecondArgZero) return;
 | |
| 
 | |
|   SourceRange FirstRange = FirstArg->getSourceRange();
 | |
|   SourceRange SecondRange = SecondArg->getSourceRange();
 | |
| 
 | |
|   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
 | |
| 
 | |
|   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
 | |
|       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
 | |
| 
 | |
|   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
 | |
|   SourceRange RemovalRange;
 | |
|   if (IsFirstArgZero) {
 | |
|     RemovalRange = SourceRange(FirstRange.getBegin(),
 | |
|                                SecondRange.getBegin().getLocWithOffset(-1));
 | |
|   } else {
 | |
|     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
 | |
|                                SecondRange.getEnd());
 | |
|   }
 | |
| 
 | |
|   Diag(Call->getExprLoc(), diag::note_remove_max_call)
 | |
|         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
 | |
|         << FixItHint::CreateRemoval(RemovalRange);
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Standard memory functions ---------------------------------===//
 | |
| 
 | |
| /// Takes the expression passed to the size_t parameter of functions
 | |
| /// such as memcmp, strncat, etc and warns if it's a comparison.
 | |
| ///
 | |
| /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
 | |
| static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
 | |
|                                            IdentifierInfo *FnName,
 | |
|                                            SourceLocation FnLoc,
 | |
|                                            SourceLocation RParenLoc) {
 | |
|   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
 | |
|   if (!Size)
 | |
|     return false;
 | |
| 
 | |
|   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
 | |
|   if (!Size->isComparisonOp() && !Size->isLogicalOp())
 | |
|     return false;
 | |
| 
 | |
|   SourceRange SizeRange = Size->getSourceRange();
 | |
|   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
 | |
|       << SizeRange << FnName;
 | |
|   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
 | |
|       << FnName
 | |
|       << FixItHint::CreateInsertion(
 | |
|              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
 | |
|       << FixItHint::CreateRemoval(RParenLoc);
 | |
|   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
 | |
|       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
 | |
|       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
 | |
|                                     ")");
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Determine whether the given type is or contains a dynamic class type
 | |
| /// (e.g., whether it has a vtable).
 | |
| static const CXXRecordDecl *getContainedDynamicClass(QualType T,
 | |
|                                                      bool &IsContained) {
 | |
|   // Look through array types while ignoring qualifiers.
 | |
|   const Type *Ty = T->getBaseElementTypeUnsafe();
 | |
|   IsContained = false;
 | |
| 
 | |
|   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
 | |
|   RD = RD ? RD->getDefinition() : nullptr;
 | |
|   if (!RD || RD->isInvalidDecl())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (RD->isDynamicClass())
 | |
|     return RD;
 | |
| 
 | |
|   // Check all the fields.  If any bases were dynamic, the class is dynamic.
 | |
|   // It's impossible for a class to transitively contain itself by value, so
 | |
|   // infinite recursion is impossible.
 | |
|   for (auto *FD : RD->fields()) {
 | |
|     bool SubContained;
 | |
|     if (const CXXRecordDecl *ContainedRD =
 | |
|             getContainedDynamicClass(FD->getType(), SubContained)) {
 | |
|       IsContained = true;
 | |
|       return ContainedRD;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
 | |
|   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
 | |
|     if (Unary->getKind() == UETT_SizeOf)
 | |
|       return Unary;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// If E is a sizeof expression, returns its argument expression,
 | |
| /// otherwise returns NULL.
 | |
| static const Expr *getSizeOfExprArg(const Expr *E) {
 | |
|   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
 | |
|     if (!SizeOf->isArgumentType())
 | |
|       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// If E is a sizeof expression, returns its argument type.
 | |
| static QualType getSizeOfArgType(const Expr *E) {
 | |
|   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
 | |
|     return SizeOf->getTypeOfArgument();
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct SearchNonTrivialToInitializeField
 | |
|     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
 | |
|   using Super =
 | |
|       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
 | |
| 
 | |
|   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
 | |
| 
 | |
|   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
 | |
|                      SourceLocation SL) {
 | |
|     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
 | |
|       asDerived().visitArray(PDIK, AT, SL);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Super::visitWithKind(PDIK, FT, SL);
 | |
|   }
 | |
| 
 | |
|   void visitARCStrong(QualType FT, SourceLocation SL) {
 | |
|     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
 | |
|   }
 | |
|   void visitARCWeak(QualType FT, SourceLocation SL) {
 | |
|     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
 | |
|   }
 | |
|   void visitStruct(QualType FT, SourceLocation SL) {
 | |
|     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
 | |
|       visit(FD->getType(), FD->getLocation());
 | |
|   }
 | |
|   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
 | |
|                   const ArrayType *AT, SourceLocation SL) {
 | |
|     visit(getContext().getBaseElementType(AT), SL);
 | |
|   }
 | |
|   void visitTrivial(QualType FT, SourceLocation SL) {}
 | |
| 
 | |
|   static void diag(QualType RT, const Expr *E, Sema &S) {
 | |
|     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
 | |
|   }
 | |
| 
 | |
|   ASTContext &getContext() { return S.getASTContext(); }
 | |
| 
 | |
|   const Expr *E;
 | |
|   Sema &S;
 | |
| };
 | |
| 
 | |
| struct SearchNonTrivialToCopyField
 | |
|     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
 | |
|   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
 | |
| 
 | |
|   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
 | |
| 
 | |
|   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
 | |
|                      SourceLocation SL) {
 | |
|     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
 | |
|       asDerived().visitArray(PCK, AT, SL);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Super::visitWithKind(PCK, FT, SL);
 | |
|   }
 | |
| 
 | |
|   void visitARCStrong(QualType FT, SourceLocation SL) {
 | |
|     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
 | |
|   }
 | |
|   void visitARCWeak(QualType FT, SourceLocation SL) {
 | |
|     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
 | |
|   }
 | |
|   void visitStruct(QualType FT, SourceLocation SL) {
 | |
|     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
 | |
|       visit(FD->getType(), FD->getLocation());
 | |
|   }
 | |
|   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
 | |
|                   SourceLocation SL) {
 | |
|     visit(getContext().getBaseElementType(AT), SL);
 | |
|   }
 | |
|   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
 | |
|                 SourceLocation SL) {}
 | |
|   void visitTrivial(QualType FT, SourceLocation SL) {}
 | |
|   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
 | |
| 
 | |
|   static void diag(QualType RT, const Expr *E, Sema &S) {
 | |
|     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
 | |
|   }
 | |
| 
 | |
|   ASTContext &getContext() { return S.getASTContext(); }
 | |
| 
 | |
|   const Expr *E;
 | |
|   Sema &S;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
 | |
| static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
 | |
|   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
 | |
| 
 | |
|   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
 | |
|     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
 | |
|       return false;
 | |
| 
 | |
|     return doesExprLikelyComputeSize(BO->getLHS()) ||
 | |
|            doesExprLikelyComputeSize(BO->getRHS());
 | |
|   }
 | |
| 
 | |
|   return getAsSizeOfExpr(SizeofExpr) != nullptr;
 | |
| }
 | |
| 
 | |
| /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
 | |
| ///
 | |
| /// \code
 | |
| ///   #define MACRO 0
 | |
| ///   foo(MACRO);
 | |
| ///   foo(0);
 | |
| /// \endcode
 | |
| ///
 | |
| /// This should return true for the first call to foo, but not for the second
 | |
| /// (regardless of whether foo is a macro or function).
 | |
| static bool isArgumentExpandedFromMacro(SourceManager &SM,
 | |
|                                         SourceLocation CallLoc,
 | |
|                                         SourceLocation ArgLoc) {
 | |
|   if (!CallLoc.isMacroID())
 | |
|     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
 | |
| 
 | |
|   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
 | |
|          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
 | |
| }
 | |
| 
 | |
| /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
 | |
| /// last two arguments transposed.
 | |
| static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
 | |
|   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
 | |
|     return;
 | |
| 
 | |
|   const Expr *SizeArg =
 | |
|     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
 | |
| 
 | |
|   auto isLiteralZero = [](const Expr *E) {
 | |
|     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
 | |
|   };
 | |
| 
 | |
|   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
 | |
|   SourceLocation CallLoc = Call->getRParenLoc();
 | |
|   SourceManager &SM = S.getSourceManager();
 | |
|   if (isLiteralZero(SizeArg) &&
 | |
|       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
 | |
| 
 | |
|     SourceLocation DiagLoc = SizeArg->getExprLoc();
 | |
| 
 | |
|     // Some platforms #define bzero to __builtin_memset. See if this is the
 | |
|     // case, and if so, emit a better diagnostic.
 | |
|     if (BId == Builtin::BIbzero ||
 | |
|         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
 | |
|                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
 | |
|       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
 | |
|       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
 | |
|     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
 | |
|       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
 | |
|       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the second argument to a memset is a sizeof expression and the third
 | |
|   // isn't, this is also likely an error. This should catch
 | |
|   // 'memset(buf, sizeof(buf), 0xff)'.
 | |
|   if (BId == Builtin::BImemset &&
 | |
|       doesExprLikelyComputeSize(Call->getArg(1)) &&
 | |
|       !doesExprLikelyComputeSize(Call->getArg(2))) {
 | |
|     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
 | |
|     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
 | |
|     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check for dangerous or invalid arguments to memset().
 | |
| ///
 | |
| /// This issues warnings on known problematic, dangerous or unspecified
 | |
| /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
 | |
| /// function calls.
 | |
| ///
 | |
| /// \param Call The call expression to diagnose.
 | |
| void Sema::CheckMemaccessArguments(const CallExpr *Call,
 | |
|                                    unsigned BId,
 | |
|                                    IdentifierInfo *FnName) {
 | |
|   assert(BId != 0);
 | |
| 
 | |
|   // It is possible to have a non-standard definition of memset.  Validate
 | |
|   // we have enough arguments, and if not, abort further checking.
 | |
|   unsigned ExpectedNumArgs =
 | |
|       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
 | |
|   if (Call->getNumArgs() < ExpectedNumArgs)
 | |
|     return;
 | |
| 
 | |
|   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
 | |
|                       BId == Builtin::BIstrndup ? 1 : 2);
 | |
|   unsigned LenArg =
 | |
|       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
 | |
|   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
 | |
| 
 | |
|   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
 | |
|                                      Call->getBeginLoc(), Call->getRParenLoc()))
 | |
|     return;
 | |
| 
 | |
|   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
 | |
|   CheckMemaccessSize(*this, BId, Call);
 | |
| 
 | |
|   // We have special checking when the length is a sizeof expression.
 | |
|   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
 | |
|   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
 | |
|   llvm::FoldingSetNodeID SizeOfArgID;
 | |
| 
 | |
|   // Although widely used, 'bzero' is not a standard function. Be more strict
 | |
|   // with the argument types before allowing diagnostics and only allow the
 | |
|   // form bzero(ptr, sizeof(...)).
 | |
|   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
 | |
|   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
 | |
|     return;
 | |
| 
 | |
|   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
 | |
|     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
 | |
|     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
 | |
| 
 | |
|     QualType DestTy = Dest->getType();
 | |
|     QualType PointeeTy;
 | |
|     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
 | |
|       PointeeTy = DestPtrTy->getPointeeType();
 | |
| 
 | |
|       // Never warn about void type pointers. This can be used to suppress
 | |
|       // false positives.
 | |
|       if (PointeeTy->isVoidType())
 | |
|         continue;
 | |
| 
 | |
|       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
 | |
|       // actually comparing the expressions for equality. Because computing the
 | |
|       // expression IDs can be expensive, we only do this if the diagnostic is
 | |
|       // enabled.
 | |
|       if (SizeOfArg &&
 | |
|           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
 | |
|                            SizeOfArg->getExprLoc())) {
 | |
|         // We only compute IDs for expressions if the warning is enabled, and
 | |
|         // cache the sizeof arg's ID.
 | |
|         if (SizeOfArgID == llvm::FoldingSetNodeID())
 | |
|           SizeOfArg->Profile(SizeOfArgID, Context, true);
 | |
|         llvm::FoldingSetNodeID DestID;
 | |
|         Dest->Profile(DestID, Context, true);
 | |
|         if (DestID == SizeOfArgID) {
 | |
|           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
 | |
|           //       over sizeof(src) as well.
 | |
|           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
 | |
|           StringRef ReadableName = FnName->getName();
 | |
| 
 | |
|           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
 | |
|             if (UnaryOp->getOpcode() == UO_AddrOf)
 | |
|               ActionIdx = 1; // If its an address-of operator, just remove it.
 | |
|           if (!PointeeTy->isIncompleteType() &&
 | |
|               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
 | |
|             ActionIdx = 2; // If the pointee's size is sizeof(char),
 | |
|                            // suggest an explicit length.
 | |
| 
 | |
|           // If the function is defined as a builtin macro, do not show macro
 | |
|           // expansion.
 | |
|           SourceLocation SL = SizeOfArg->getExprLoc();
 | |
|           SourceRange DSR = Dest->getSourceRange();
 | |
|           SourceRange SSR = SizeOfArg->getSourceRange();
 | |
|           SourceManager &SM = getSourceManager();
 | |
| 
 | |
|           if (SM.isMacroArgExpansion(SL)) {
 | |
|             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
 | |
|             SL = SM.getSpellingLoc(SL);
 | |
|             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
 | |
|                              SM.getSpellingLoc(DSR.getEnd()));
 | |
|             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
 | |
|                              SM.getSpellingLoc(SSR.getEnd()));
 | |
|           }
 | |
| 
 | |
|           DiagRuntimeBehavior(SL, SizeOfArg,
 | |
|                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
 | |
|                                 << ReadableName
 | |
|                                 << PointeeTy
 | |
|                                 << DestTy
 | |
|                                 << DSR
 | |
|                                 << SSR);
 | |
|           DiagRuntimeBehavior(SL, SizeOfArg,
 | |
|                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
 | |
|                                 << ActionIdx
 | |
|                                 << SSR);
 | |
| 
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Also check for cases where the sizeof argument is the exact same
 | |
|       // type as the memory argument, and where it points to a user-defined
 | |
|       // record type.
 | |
|       if (SizeOfArgTy != QualType()) {
 | |
|         if (PointeeTy->isRecordType() &&
 | |
|             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
 | |
|           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
 | |
|                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
 | |
|                                 << FnName << SizeOfArgTy << ArgIdx
 | |
|                                 << PointeeTy << Dest->getSourceRange()
 | |
|                                 << LenExpr->getSourceRange());
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     } else if (DestTy->isArrayType()) {
 | |
|       PointeeTy = DestTy;
 | |
|     }
 | |
| 
 | |
|     if (PointeeTy == QualType())
 | |
|       continue;
 | |
| 
 | |
|     // Always complain about dynamic classes.
 | |
|     bool IsContained;
 | |
|     if (const CXXRecordDecl *ContainedRD =
 | |
|             getContainedDynamicClass(PointeeTy, IsContained)) {
 | |
| 
 | |
|       unsigned OperationType = 0;
 | |
|       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
 | |
|       // "overwritten" if we're warning about the destination for any call
 | |
|       // but memcmp; otherwise a verb appropriate to the call.
 | |
|       if (ArgIdx != 0 || IsCmp) {
 | |
|         if (BId == Builtin::BImemcpy)
 | |
|           OperationType = 1;
 | |
|         else if(BId == Builtin::BImemmove)
 | |
|           OperationType = 2;
 | |
|         else if (IsCmp)
 | |
|           OperationType = 3;
 | |
|       }
 | |
| 
 | |
|       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
 | |
|                           PDiag(diag::warn_dyn_class_memaccess)
 | |
|                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
 | |
|                               << IsContained << ContainedRD << OperationType
 | |
|                               << Call->getCallee()->getSourceRange());
 | |
|     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
 | |
|              BId != Builtin::BImemset)
 | |
|       DiagRuntimeBehavior(
 | |
|         Dest->getExprLoc(), Dest,
 | |
|         PDiag(diag::warn_arc_object_memaccess)
 | |
|           << ArgIdx << FnName << PointeeTy
 | |
|           << Call->getCallee()->getSourceRange());
 | |
|     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
 | |
|       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
 | |
|           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
 | |
|         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
 | |
|                             PDiag(diag::warn_cstruct_memaccess)
 | |
|                                 << ArgIdx << FnName << PointeeTy << 0);
 | |
|         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
 | |
|       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
 | |
|                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
 | |
|         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
 | |
|                             PDiag(diag::warn_cstruct_memaccess)
 | |
|                                 << ArgIdx << FnName << PointeeTy << 1);
 | |
|         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
 | |
|       } else {
 | |
|         continue;
 | |
|       }
 | |
|     } else
 | |
|       continue;
 | |
| 
 | |
|     DiagRuntimeBehavior(
 | |
|       Dest->getExprLoc(), Dest,
 | |
|       PDiag(diag::note_bad_memaccess_silence)
 | |
|         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // A little helper routine: ignore addition and subtraction of integer literals.
 | |
| // This intentionally does not ignore all integer constant expressions because
 | |
| // we don't want to remove sizeof().
 | |
| static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
 | |
|   Ex = Ex->IgnoreParenCasts();
 | |
| 
 | |
|   while (true) {
 | |
|     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
 | |
|     if (!BO || !BO->isAdditiveOp())
 | |
|       break;
 | |
| 
 | |
|     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
 | |
|     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
 | |
| 
 | |
|     if (isa<IntegerLiteral>(RHS))
 | |
|       Ex = LHS;
 | |
|     else if (isa<IntegerLiteral>(LHS))
 | |
|       Ex = RHS;
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return Ex;
 | |
| }
 | |
| 
 | |
| static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
 | |
|                                                       ASTContext &Context) {
 | |
|   // Only handle constant-sized or VLAs, but not flexible members.
 | |
|   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
 | |
|     // Only issue the FIXIT for arrays of size > 1.
 | |
|     if (CAT->getSize().getSExtValue() <= 1)
 | |
|       return false;
 | |
|   } else if (!Ty->isVariableArrayType()) {
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Warn if the user has made the 'size' argument to strlcpy or strlcat
 | |
| // be the size of the source, instead of the destination.
 | |
| void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
 | |
|                                     IdentifierInfo *FnName) {
 | |
| 
 | |
|   // Don't crash if the user has the wrong number of arguments
 | |
|   unsigned NumArgs = Call->getNumArgs();
 | |
|   if ((NumArgs != 3) && (NumArgs != 4))
 | |
|     return;
 | |
| 
 | |
|   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
 | |
|   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
 | |
|   const Expr *CompareWithSrc = nullptr;
 | |
| 
 | |
|   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
 | |
|                                      Call->getBeginLoc(), Call->getRParenLoc()))
 | |
|     return;
 | |
| 
 | |
|   // Look for 'strlcpy(dst, x, sizeof(x))'
 | |
|   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
 | |
|     CompareWithSrc = Ex;
 | |
|   else {
 | |
|     // Look for 'strlcpy(dst, x, strlen(x))'
 | |
|     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
 | |
|       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
 | |
|           SizeCall->getNumArgs() == 1)
 | |
|         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!CompareWithSrc)
 | |
|     return;
 | |
| 
 | |
|   // Determine if the argument to sizeof/strlen is equal to the source
 | |
|   // argument.  In principle there's all kinds of things you could do
 | |
|   // here, for instance creating an == expression and evaluating it with
 | |
|   // EvaluateAsBooleanCondition, but this uses a more direct technique:
 | |
|   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
 | |
|   if (!SrcArgDRE)
 | |
|     return;
 | |
| 
 | |
|   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
 | |
|   if (!CompareWithSrcDRE ||
 | |
|       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
 | |
|     return;
 | |
| 
 | |
|   const Expr *OriginalSizeArg = Call->getArg(2);
 | |
|   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
 | |
|       << OriginalSizeArg->getSourceRange() << FnName;
 | |
| 
 | |
|   // Output a FIXIT hint if the destination is an array (rather than a
 | |
|   // pointer to an array).  This could be enhanced to handle some
 | |
|   // pointers if we know the actual size, like if DstArg is 'array+2'
 | |
|   // we could say 'sizeof(array)-2'.
 | |
|   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
 | |
|   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
 | |
|     return;
 | |
| 
 | |
|   SmallString<128> sizeString;
 | |
|   llvm::raw_svector_ostream OS(sizeString);
 | |
|   OS << "sizeof(";
 | |
|   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
 | |
|   OS << ")";
 | |
| 
 | |
|   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
 | |
|       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
 | |
|                                       OS.str());
 | |
| }
 | |
| 
 | |
| /// Check if two expressions refer to the same declaration.
 | |
| static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
 | |
|   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
 | |
|     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
 | |
|       return D1->getDecl() == D2->getDecl();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static const Expr *getStrlenExprArg(const Expr *E) {
 | |
|   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
 | |
|     const FunctionDecl *FD = CE->getDirectCallee();
 | |
|     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
 | |
|       return nullptr;
 | |
|     return CE->getArg(0)->IgnoreParenCasts();
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Warn on anti-patterns as the 'size' argument to strncat.
 | |
| // The correct size argument should look like following:
 | |
| //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
 | |
| void Sema::CheckStrncatArguments(const CallExpr *CE,
 | |
|                                  IdentifierInfo *FnName) {
 | |
|   // Don't crash if the user has the wrong number of arguments.
 | |
|   if (CE->getNumArgs() < 3)
 | |
|     return;
 | |
|   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
 | |
|   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
 | |
|   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
 | |
| 
 | |
|   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
 | |
|                                      CE->getRParenLoc()))
 | |
|     return;
 | |
| 
 | |
|   // Identify common expressions, which are wrongly used as the size argument
 | |
|   // to strncat and may lead to buffer overflows.
 | |
|   unsigned PatternType = 0;
 | |
|   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
 | |
|     // - sizeof(dst)
 | |
|     if (referToTheSameDecl(SizeOfArg, DstArg))
 | |
|       PatternType = 1;
 | |
|     // - sizeof(src)
 | |
|     else if (referToTheSameDecl(SizeOfArg, SrcArg))
 | |
|       PatternType = 2;
 | |
|   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
 | |
|     if (BE->getOpcode() == BO_Sub) {
 | |
|       const Expr *L = BE->getLHS()->IgnoreParenCasts();
 | |
|       const Expr *R = BE->getRHS()->IgnoreParenCasts();
 | |
|       // - sizeof(dst) - strlen(dst)
 | |
|       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
 | |
|           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
 | |
|         PatternType = 1;
 | |
|       // - sizeof(src) - (anything)
 | |
|       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
 | |
|         PatternType = 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PatternType == 0)
 | |
|     return;
 | |
| 
 | |
|   // Generate the diagnostic.
 | |
|   SourceLocation SL = LenArg->getBeginLoc();
 | |
|   SourceRange SR = LenArg->getSourceRange();
 | |
|   SourceManager &SM = getSourceManager();
 | |
| 
 | |
|   // If the function is defined as a builtin macro, do not show macro expansion.
 | |
|   if (SM.isMacroArgExpansion(SL)) {
 | |
|     SL = SM.getSpellingLoc(SL);
 | |
|     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
 | |
|                      SM.getSpellingLoc(SR.getEnd()));
 | |
|   }
 | |
| 
 | |
|   // Check if the destination is an array (rather than a pointer to an array).
 | |
|   QualType DstTy = DstArg->getType();
 | |
|   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
 | |
|                                                                     Context);
 | |
|   if (!isKnownSizeArray) {
 | |
|     if (PatternType == 1)
 | |
|       Diag(SL, diag::warn_strncat_wrong_size) << SR;
 | |
|     else
 | |
|       Diag(SL, diag::warn_strncat_src_size) << SR;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (PatternType == 1)
 | |
|     Diag(SL, diag::warn_strncat_large_size) << SR;
 | |
|   else
 | |
|     Diag(SL, diag::warn_strncat_src_size) << SR;
 | |
| 
 | |
|   SmallString<128> sizeString;
 | |
|   llvm::raw_svector_ostream OS(sizeString);
 | |
|   OS << "sizeof(";
 | |
|   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
 | |
|   OS << ") - ";
 | |
|   OS << "strlen(";
 | |
|   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
 | |
|   OS << ") - 1";
 | |
| 
 | |
|   Diag(SL, diag::note_strncat_wrong_size)
 | |
|     << FixItHint::CreateReplacement(SR, OS.str());
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
 | |
|                          SourceLocation ReturnLoc,
 | |
|                          bool isObjCMethod,
 | |
|                          const AttrVec *Attrs,
 | |
|                          const FunctionDecl *FD) {
 | |
|   // Check if the return value is null but should not be.
 | |
|   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
 | |
|        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
 | |
|       CheckNonNullExpr(*this, RetValExp))
 | |
|     Diag(ReturnLoc, diag::warn_null_ret)
 | |
|       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
 | |
| 
 | |
|   // C++11 [basic.stc.dynamic.allocation]p4:
 | |
|   //   If an allocation function declared with a non-throwing
 | |
|   //   exception-specification fails to allocate storage, it shall return
 | |
|   //   a null pointer. Any other allocation function that fails to allocate
 | |
|   //   storage shall indicate failure only by throwing an exception [...]
 | |
|   if (FD) {
 | |
|     OverloadedOperatorKind Op = FD->getOverloadedOperator();
 | |
|     if (Op == OO_New || Op == OO_Array_New) {
 | |
|       const FunctionProtoType *Proto
 | |
|         = FD->getType()->castAs<FunctionProtoType>();
 | |
|       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
 | |
|           CheckNonNullExpr(*this, RetValExp))
 | |
|         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
 | |
|           << FD << getLangOpts().CPlusPlus11;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
 | |
| 
 | |
| /// Check for comparisons of floating point operands using != and ==.
 | |
| /// Issue a warning if these are no self-comparisons, as they are not likely
 | |
| /// to do what the programmer intended.
 | |
| void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
 | |
|   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
 | |
|   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
 | |
| 
 | |
|   // Special case: check for x == x (which is OK).
 | |
|   // Do not emit warnings for such cases.
 | |
|   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
 | |
|     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
 | |
|       if (DRL->getDecl() == DRR->getDecl())
 | |
|         return;
 | |
| 
 | |
|   // Special case: check for comparisons against literals that can be exactly
 | |
|   //  represented by APFloat.  In such cases, do not emit a warning.  This
 | |
|   //  is a heuristic: often comparison against such literals are used to
 | |
|   //  detect if a value in a variable has not changed.  This clearly can
 | |
|   //  lead to false negatives.
 | |
|   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
 | |
|     if (FLL->isExact())
 | |
|       return;
 | |
|   } else
 | |
|     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
 | |
|       if (FLR->isExact())
 | |
|         return;
 | |
| 
 | |
|   // Check for comparisons with builtin types.
 | |
|   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
 | |
|     if (CL->getBuiltinCallee())
 | |
|       return;
 | |
| 
 | |
|   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
 | |
|     if (CR->getBuiltinCallee())
 | |
|       return;
 | |
| 
 | |
|   // Emit the diagnostic.
 | |
|   Diag(Loc, diag::warn_floatingpoint_eq)
 | |
|     << LHS->getSourceRange() << RHS->getSourceRange();
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
 | |
| //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Structure recording the 'active' range of an integer-valued
 | |
| /// expression.
 | |
| struct IntRange {
 | |
|   /// The number of bits active in the int.
 | |
|   unsigned Width;
 | |
| 
 | |
|   /// True if the int is known not to have negative values.
 | |
|   bool NonNegative;
 | |
| 
 | |
|   IntRange(unsigned Width, bool NonNegative)
 | |
|       : Width(Width), NonNegative(NonNegative) {}
 | |
| 
 | |
|   /// Returns the range of the bool type.
 | |
|   static IntRange forBoolType() {
 | |
|     return IntRange(1, true);
 | |
|   }
 | |
| 
 | |
|   /// Returns the range of an opaque value of the given integral type.
 | |
|   static IntRange forValueOfType(ASTContext &C, QualType T) {
 | |
|     return forValueOfCanonicalType(C,
 | |
|                           T->getCanonicalTypeInternal().getTypePtr());
 | |
|   }
 | |
| 
 | |
|   /// Returns the range of an opaque value of a canonical integral type.
 | |
|   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
 | |
|     assert(T->isCanonicalUnqualified());
 | |
| 
 | |
|     if (const VectorType *VT = dyn_cast<VectorType>(T))
 | |
|       T = VT->getElementType().getTypePtr();
 | |
|     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
 | |
|       T = CT->getElementType().getTypePtr();
 | |
|     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
 | |
|       T = AT->getValueType().getTypePtr();
 | |
| 
 | |
|     if (!C.getLangOpts().CPlusPlus) {
 | |
|       // For enum types in C code, use the underlying datatype.
 | |
|       if (const EnumType *ET = dyn_cast<EnumType>(T))
 | |
|         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
 | |
|     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
 | |
|       // For enum types in C++, use the known bit width of the enumerators.
 | |
|       EnumDecl *Enum = ET->getDecl();
 | |
|       // In C++11, enums can have a fixed underlying type. Use this type to
 | |
|       // compute the range.
 | |
|       if (Enum->isFixed()) {
 | |
|         return IntRange(C.getIntWidth(QualType(T, 0)),
 | |
|                         !ET->isSignedIntegerOrEnumerationType());
 | |
|       }
 | |
| 
 | |
|       unsigned NumPositive = Enum->getNumPositiveBits();
 | |
|       unsigned NumNegative = Enum->getNumNegativeBits();
 | |
| 
 | |
|       if (NumNegative == 0)
 | |
|         return IntRange(NumPositive, true/*NonNegative*/);
 | |
|       else
 | |
|         return IntRange(std::max(NumPositive + 1, NumNegative),
 | |
|                         false/*NonNegative*/);
 | |
|     }
 | |
| 
 | |
|     const BuiltinType *BT = cast<BuiltinType>(T);
 | |
|     assert(BT->isInteger());
 | |
| 
 | |
|     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
 | |
|   }
 | |
| 
 | |
|   /// Returns the "target" range of a canonical integral type, i.e.
 | |
|   /// the range of values expressible in the type.
 | |
|   ///
 | |
|   /// This matches forValueOfCanonicalType except that enums have the
 | |
|   /// full range of their type, not the range of their enumerators.
 | |
|   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
 | |
|     assert(T->isCanonicalUnqualified());
 | |
| 
 | |
|     if (const VectorType *VT = dyn_cast<VectorType>(T))
 | |
|       T = VT->getElementType().getTypePtr();
 | |
|     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
 | |
|       T = CT->getElementType().getTypePtr();
 | |
|     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
 | |
|       T = AT->getValueType().getTypePtr();
 | |
|     if (const EnumType *ET = dyn_cast<EnumType>(T))
 | |
|       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
 | |
| 
 | |
|     const BuiltinType *BT = cast<BuiltinType>(T);
 | |
|     assert(BT->isInteger());
 | |
| 
 | |
|     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
 | |
|   }
 | |
| 
 | |
|   /// Returns the supremum of two ranges: i.e. their conservative merge.
 | |
|   static IntRange join(IntRange L, IntRange R) {
 | |
|     return IntRange(std::max(L.Width, R.Width),
 | |
|                     L.NonNegative && R.NonNegative);
 | |
|   }
 | |
| 
 | |
|   /// Returns the infinum of two ranges: i.e. their aggressive merge.
 | |
|   static IntRange meet(IntRange L, IntRange R) {
 | |
|     return IntRange(std::min(L.Width, R.Width),
 | |
|                     L.NonNegative || R.NonNegative);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
 | |
|                               unsigned MaxWidth) {
 | |
|   if (value.isSigned() && value.isNegative())
 | |
|     return IntRange(value.getMinSignedBits(), false);
 | |
| 
 | |
|   if (value.getBitWidth() > MaxWidth)
 | |
|     value = value.trunc(MaxWidth);
 | |
| 
 | |
|   // isNonNegative() just checks the sign bit without considering
 | |
|   // signedness.
 | |
|   return IntRange(value.getActiveBits(), true);
 | |
| }
 | |
| 
 | |
| static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
 | |
|                               unsigned MaxWidth) {
 | |
|   if (result.isInt())
 | |
|     return GetValueRange(C, result.getInt(), MaxWidth);
 | |
| 
 | |
|   if (result.isVector()) {
 | |
|     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
 | |
|     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
 | |
|       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
 | |
|       R = IntRange::join(R, El);
 | |
|     }
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   if (result.isComplexInt()) {
 | |
|     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
 | |
|     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
 | |
|     return IntRange::join(R, I);
 | |
|   }
 | |
| 
 | |
|   // This can happen with lossless casts to intptr_t of "based" lvalues.
 | |
|   // Assume it might use arbitrary bits.
 | |
|   // FIXME: The only reason we need to pass the type in here is to get
 | |
|   // the sign right on this one case.  It would be nice if APValue
 | |
|   // preserved this.
 | |
|   assert(result.isLValue() || result.isAddrLabelDiff());
 | |
|   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
 | |
| }
 | |
| 
 | |
| static QualType GetExprType(const Expr *E) {
 | |
|   QualType Ty = E->getType();
 | |
|   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
 | |
|     Ty = AtomicRHS->getValueType();
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// Pseudo-evaluate the given integer expression, estimating the
 | |
| /// range of values it might take.
 | |
| ///
 | |
| /// \param MaxWidth - the width to which the value will be truncated
 | |
| static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
 | |
|                              bool InConstantContext) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Try a full evaluation first.
 | |
|   Expr::EvalResult result;
 | |
|   if (E->EvaluateAsRValue(result, C, InConstantContext))
 | |
|     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
 | |
| 
 | |
|   // I think we only want to look through implicit casts here; if the
 | |
|   // user has an explicit widening cast, we should treat the value as
 | |
|   // being of the new, wider type.
 | |
|   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
 | |
|       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext);
 | |
| 
 | |
|     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
 | |
| 
 | |
|     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
 | |
|                          CE->getCastKind() == CK_BooleanToSignedIntegral;
 | |
| 
 | |
|     // Assume that non-integer casts can span the full range of the type.
 | |
|     if (!isIntegerCast)
 | |
|       return OutputTypeRange;
 | |
| 
 | |
|     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
 | |
|                                      std::min(MaxWidth, OutputTypeRange.Width),
 | |
|                                      InConstantContext);
 | |
| 
 | |
|     // Bail out if the subexpr's range is as wide as the cast type.
 | |
|     if (SubRange.Width >= OutputTypeRange.Width)
 | |
|       return OutputTypeRange;
 | |
| 
 | |
|     // Otherwise, we take the smaller width, and we're non-negative if
 | |
|     // either the output type or the subexpr is.
 | |
|     return IntRange(SubRange.Width,
 | |
|                     SubRange.NonNegative || OutputTypeRange.NonNegative);
 | |
|   }
 | |
| 
 | |
|   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
 | |
|     // If we can fold the condition, just take that operand.
 | |
|     bool CondResult;
 | |
|     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
 | |
|       return GetExprRange(C,
 | |
|                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
 | |
|                           MaxWidth, InConstantContext);
 | |
| 
 | |
|     // Otherwise, conservatively merge.
 | |
|     IntRange L =
 | |
|         GetExprRange(C, CO->getTrueExpr(), MaxWidth, InConstantContext);
 | |
|     IntRange R =
 | |
|         GetExprRange(C, CO->getFalseExpr(), MaxWidth, InConstantContext);
 | |
|     return IntRange::join(L, R);
 | |
|   }
 | |
| 
 | |
|   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     switch (BO->getOpcode()) {
 | |
|     case BO_Cmp:
 | |
|       llvm_unreachable("builtin <=> should have class type");
 | |
| 
 | |
|     // Boolean-valued operations are single-bit and positive.
 | |
|     case BO_LAnd:
 | |
|     case BO_LOr:
 | |
|     case BO_LT:
 | |
|     case BO_GT:
 | |
|     case BO_LE:
 | |
|     case BO_GE:
 | |
|     case BO_EQ:
 | |
|     case BO_NE:
 | |
|       return IntRange::forBoolType();
 | |
| 
 | |
|     // The type of the assignments is the type of the LHS, so the RHS
 | |
|     // is not necessarily the same type.
 | |
|     case BO_MulAssign:
 | |
|     case BO_DivAssign:
 | |
|     case BO_RemAssign:
 | |
|     case BO_AddAssign:
 | |
|     case BO_SubAssign:
 | |
|     case BO_XorAssign:
 | |
|     case BO_OrAssign:
 | |
|       // TODO: bitfields?
 | |
|       return IntRange::forValueOfType(C, GetExprType(E));
 | |
| 
 | |
|     // Simple assignments just pass through the RHS, which will have
 | |
|     // been coerced to the LHS type.
 | |
|     case BO_Assign:
 | |
|       // TODO: bitfields?
 | |
|       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext);
 | |
| 
 | |
|     // Operations with opaque sources are black-listed.
 | |
|     case BO_PtrMemD:
 | |
|     case BO_PtrMemI:
 | |
|       return IntRange::forValueOfType(C, GetExprType(E));
 | |
| 
 | |
|     // Bitwise-and uses the *infinum* of the two source ranges.
 | |
|     case BO_And:
 | |
|     case BO_AndAssign:
 | |
|       return IntRange::meet(
 | |
|           GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext),
 | |
|           GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext));
 | |
| 
 | |
|     // Left shift gets black-listed based on a judgement call.
 | |
|     case BO_Shl:
 | |
|       // ...except that we want to treat '1 << (blah)' as logically
 | |
|       // positive.  It's an important idiom.
 | |
|       if (IntegerLiteral *I
 | |
|             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
 | |
|         if (I->getValue() == 1) {
 | |
|           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
 | |
|           return IntRange(R.Width, /*NonNegative*/ true);
 | |
|         }
 | |
|       }
 | |
|       LLVM_FALLTHROUGH;
 | |
| 
 | |
|     case BO_ShlAssign:
 | |
|       return IntRange::forValueOfType(C, GetExprType(E));
 | |
| 
 | |
|     // Right shift by a constant can narrow its left argument.
 | |
|     case BO_Shr:
 | |
|     case BO_ShrAssign: {
 | |
|       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext);
 | |
| 
 | |
|       // If the shift amount is a positive constant, drop the width by
 | |
|       // that much.
 | |
|       llvm::APSInt shift;
 | |
|       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
 | |
|           shift.isNonNegative()) {
 | |
|         unsigned zext = shift.getZExtValue();
 | |
|         if (zext >= L.Width)
 | |
|           L.Width = (L.NonNegative ? 0 : 1);
 | |
|         else
 | |
|           L.Width -= zext;
 | |
|       }
 | |
| 
 | |
|       return L;
 | |
|     }
 | |
| 
 | |
|     // Comma acts as its right operand.
 | |
|     case BO_Comma:
 | |
|       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext);
 | |
| 
 | |
|     // Black-list pointer subtractions.
 | |
|     case BO_Sub:
 | |
|       if (BO->getLHS()->getType()->isPointerType())
 | |
|         return IntRange::forValueOfType(C, GetExprType(E));
 | |
|       break;
 | |
| 
 | |
|     // The width of a division result is mostly determined by the size
 | |
|     // of the LHS.
 | |
|     case BO_Div: {
 | |
|       // Don't 'pre-truncate' the operands.
 | |
|       unsigned opWidth = C.getIntWidth(GetExprType(E));
 | |
|       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext);
 | |
| 
 | |
|       // If the divisor is constant, use that.
 | |
|       llvm::APSInt divisor;
 | |
|       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
 | |
|         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
 | |
|         if (log2 >= L.Width)
 | |
|           L.Width = (L.NonNegative ? 0 : 1);
 | |
|         else
 | |
|           L.Width = std::min(L.Width - log2, MaxWidth);
 | |
|         return L;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, just use the LHS's width.
 | |
|       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext);
 | |
|       return IntRange(L.Width, L.NonNegative && R.NonNegative);
 | |
|     }
 | |
| 
 | |
|     // The result of a remainder can't be larger than the result of
 | |
|     // either side.
 | |
|     case BO_Rem: {
 | |
|       // Don't 'pre-truncate' the operands.
 | |
|       unsigned opWidth = C.getIntWidth(GetExprType(E));
 | |
|       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext);
 | |
|       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext);
 | |
| 
 | |
|       IntRange meet = IntRange::meet(L, R);
 | |
|       meet.Width = std::min(meet.Width, MaxWidth);
 | |
|       return meet;
 | |
|     }
 | |
| 
 | |
|     // The default behavior is okay for these.
 | |
|     case BO_Mul:
 | |
|     case BO_Add:
 | |
|     case BO_Xor:
 | |
|     case BO_Or:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // The default case is to treat the operation as if it were closed
 | |
|     // on the narrowest type that encompasses both operands.
 | |
|     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext);
 | |
|     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext);
 | |
|     return IntRange::join(L, R);
 | |
|   }
 | |
| 
 | |
|   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|     switch (UO->getOpcode()) {
 | |
|     // Boolean-valued operations are white-listed.
 | |
|     case UO_LNot:
 | |
|       return IntRange::forBoolType();
 | |
| 
 | |
|     // Operations with opaque sources are black-listed.
 | |
|     case UO_Deref:
 | |
|     case UO_AddrOf: // should be impossible
 | |
|       return IntRange::forValueOfType(C, GetExprType(E));
 | |
| 
 | |
|     default:
 | |
|       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
 | |
|     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext);
 | |
| 
 | |
|   if (const auto *BitField = E->getSourceBitField())
 | |
|     return IntRange(BitField->getBitWidthValue(C),
 | |
|                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
 | |
| 
 | |
|   return IntRange::forValueOfType(C, GetExprType(E));
 | |
| }
 | |
| 
 | |
| static IntRange GetExprRange(ASTContext &C, const Expr *E,
 | |
|                              bool InConstantContext) {
 | |
|   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext);
 | |
| }
 | |
| 
 | |
| /// Checks whether the given value, which currently has the given
 | |
| /// source semantics, has the same value when coerced through the
 | |
| /// target semantics.
 | |
| static bool IsSameFloatAfterCast(const llvm::APFloat &value,
 | |
|                                  const llvm::fltSemantics &Src,
 | |
|                                  const llvm::fltSemantics &Tgt) {
 | |
|   llvm::APFloat truncated = value;
 | |
| 
 | |
|   bool ignored;
 | |
|   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
 | |
|   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
 | |
| 
 | |
|   return truncated.bitwiseIsEqual(value);
 | |
| }
 | |
| 
 | |
| /// Checks whether the given value, which currently has the given
 | |
| /// source semantics, has the same value when coerced through the
 | |
| /// target semantics.
 | |
| ///
 | |
| /// The value might be a vector of floats (or a complex number).
 | |
| static bool IsSameFloatAfterCast(const APValue &value,
 | |
|                                  const llvm::fltSemantics &Src,
 | |
|                                  const llvm::fltSemantics &Tgt) {
 | |
|   if (value.isFloat())
 | |
|     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
 | |
| 
 | |
|   if (value.isVector()) {
 | |
|     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
 | |
|       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(value.isComplexFloat());
 | |
|   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
 | |
|           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
 | |
| }
 | |
| 
 | |
| static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
 | |
|                                        bool IsListInit = false);
 | |
| 
 | |
| static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
 | |
|   // Suppress cases where we are comparing against an enum constant.
 | |
|   if (const DeclRefExpr *DR =
 | |
|       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
 | |
|     if (isa<EnumConstantDecl>(DR->getDecl()))
 | |
|       return true;
 | |
| 
 | |
|   // Suppress cases where the value is expanded from a macro, unless that macro
 | |
|   // is how a language represents a boolean literal. This is the case in both C
 | |
|   // and Objective-C.
 | |
|   SourceLocation BeginLoc = E->getBeginLoc();
 | |
|   if (BeginLoc.isMacroID()) {
 | |
|     StringRef MacroName = Lexer::getImmediateMacroName(
 | |
|         BeginLoc, S.getSourceManager(), S.getLangOpts());
 | |
|     return MacroName != "YES" && MacroName != "NO" &&
 | |
|            MacroName != "true" && MacroName != "false";
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isKnownToHaveUnsignedValue(Expr *E) {
 | |
|   return E->getType()->isIntegerType() &&
 | |
|          (!E->getType()->isSignedIntegerType() ||
 | |
|           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// The promoted range of values of a type. In general this has the
 | |
| /// following structure:
 | |
| ///
 | |
| ///     |-----------| . . . |-----------|
 | |
| ///     ^           ^       ^           ^
 | |
| ///    Min       HoleMin  HoleMax      Max
 | |
| ///
 | |
| /// ... where there is only a hole if a signed type is promoted to unsigned
 | |
| /// (in which case Min and Max are the smallest and largest representable
 | |
| /// values).
 | |
| struct PromotedRange {
 | |
|   // Min, or HoleMax if there is a hole.
 | |
|   llvm::APSInt PromotedMin;
 | |
|   // Max, or HoleMin if there is a hole.
 | |
|   llvm::APSInt PromotedMax;
 | |
| 
 | |
|   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
 | |
|     if (R.Width == 0)
 | |
|       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
 | |
|     else if (R.Width >= BitWidth && !Unsigned) {
 | |
|       // Promotion made the type *narrower*. This happens when promoting
 | |
|       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
 | |
|       // Treat all values of 'signed int' as being in range for now.
 | |
|       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
 | |
|       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
 | |
|     } else {
 | |
|       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
 | |
|                         .extOrTrunc(BitWidth);
 | |
|       PromotedMin.setIsUnsigned(Unsigned);
 | |
| 
 | |
|       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
 | |
|                         .extOrTrunc(BitWidth);
 | |
|       PromotedMax.setIsUnsigned(Unsigned);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Determine whether this range is contiguous (has no hole).
 | |
|   bool isContiguous() const { return PromotedMin <= PromotedMax; }
 | |
| 
 | |
|   // Where a constant value is within the range.
 | |
|   enum ComparisonResult {
 | |
|     LT = 0x1,
 | |
|     LE = 0x2,
 | |
|     GT = 0x4,
 | |
|     GE = 0x8,
 | |
|     EQ = 0x10,
 | |
|     NE = 0x20,
 | |
|     InRangeFlag = 0x40,
 | |
| 
 | |
|     Less = LE | LT | NE,
 | |
|     Min = LE | InRangeFlag,
 | |
|     InRange = InRangeFlag,
 | |
|     Max = GE | InRangeFlag,
 | |
|     Greater = GE | GT | NE,
 | |
| 
 | |
|     OnlyValue = LE | GE | EQ | InRangeFlag,
 | |
|     InHole = NE
 | |
|   };
 | |
| 
 | |
|   ComparisonResult compare(const llvm::APSInt &Value) const {
 | |
|     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
 | |
|            Value.isUnsigned() == PromotedMin.isUnsigned());
 | |
|     if (!isContiguous()) {
 | |
|       assert(Value.isUnsigned() && "discontiguous range for signed compare");
 | |
|       if (Value.isMinValue()) return Min;
 | |
|       if (Value.isMaxValue()) return Max;
 | |
|       if (Value >= PromotedMin) return InRange;
 | |
|       if (Value <= PromotedMax) return InRange;
 | |
|       return InHole;
 | |
|     }
 | |
| 
 | |
|     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
 | |
|     case -1: return Less;
 | |
|     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
 | |
|     case 1:
 | |
|       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
 | |
|       case -1: return InRange;
 | |
|       case 0: return Max;
 | |
|       case 1: return Greater;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("impossible compare result");
 | |
|   }
 | |
| 
 | |
|   static llvm::Optional<StringRef>
 | |
|   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
 | |
|     if (Op == BO_Cmp) {
 | |
|       ComparisonResult LTFlag = LT, GTFlag = GT;
 | |
|       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
 | |
| 
 | |
|       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
 | |
|       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
 | |
|       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
 | |
|       return llvm::None;
 | |
|     }
 | |
| 
 | |
|     ComparisonResult TrueFlag, FalseFlag;
 | |
|     if (Op == BO_EQ) {
 | |
|       TrueFlag = EQ;
 | |
|       FalseFlag = NE;
 | |
|     } else if (Op == BO_NE) {
 | |
|       TrueFlag = NE;
 | |
|       FalseFlag = EQ;
 | |
|     } else {
 | |
|       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
 | |
|         TrueFlag = LT;
 | |
|         FalseFlag = GE;
 | |
|       } else {
 | |
|         TrueFlag = GT;
 | |
|         FalseFlag = LE;
 | |
|       }
 | |
|       if (Op == BO_GE || Op == BO_LE)
 | |
|         std::swap(TrueFlag, FalseFlag);
 | |
|     }
 | |
|     if (R & TrueFlag)
 | |
|       return StringRef("true");
 | |
|     if (R & FalseFlag)
 | |
|       return StringRef("false");
 | |
|     return llvm::None;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static bool HasEnumType(Expr *E) {
 | |
|   // Strip off implicit integral promotions.
 | |
|   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() != CK_IntegralCast &&
 | |
|         ICE->getCastKind() != CK_NoOp)
 | |
|       break;
 | |
|     E = ICE->getSubExpr();
 | |
|   }
 | |
| 
 | |
|   return E->getType()->isEnumeralType();
 | |
| }
 | |
| 
 | |
| static int classifyConstantValue(Expr *Constant) {
 | |
|   // The values of this enumeration are used in the diagnostics
 | |
|   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
 | |
|   enum ConstantValueKind {
 | |
|     Miscellaneous = 0,
 | |
|     LiteralTrue,
 | |
|     LiteralFalse
 | |
|   };
 | |
|   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
 | |
|     return BL->getValue() ? ConstantValueKind::LiteralTrue
 | |
|                           : ConstantValueKind::LiteralFalse;
 | |
|   return ConstantValueKind::Miscellaneous;
 | |
| }
 | |
| 
 | |
| static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
 | |
|                                         Expr *Constant, Expr *Other,
 | |
|                                         const llvm::APSInt &Value,
 | |
|                                         bool RhsConstant) {
 | |
|   if (S.inTemplateInstantiation())
 | |
|     return false;
 | |
| 
 | |
|   Expr *OriginalOther = Other;
 | |
| 
 | |
|   Constant = Constant->IgnoreParenImpCasts();
 | |
|   Other = Other->IgnoreParenImpCasts();
 | |
| 
 | |
|   // Suppress warnings on tautological comparisons between values of the same
 | |
|   // enumeration type. There are only two ways we could warn on this:
 | |
|   //  - If the constant is outside the range of representable values of
 | |
|   //    the enumeration. In such a case, we should warn about the cast
 | |
|   //    to enumeration type, not about the comparison.
 | |
|   //  - If the constant is the maximum / minimum in-range value. For an
 | |
|   //    enumeratin type, such comparisons can be meaningful and useful.
 | |
|   if (Constant->getType()->isEnumeralType() &&
 | |
|       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // TODO: Investigate using GetExprRange() to get tighter bounds
 | |
|   // on the bit ranges.
 | |
|   QualType OtherT = Other->getType();
 | |
|   if (const auto *AT = OtherT->getAs<AtomicType>())
 | |
|     OtherT = AT->getValueType();
 | |
|   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
 | |
| 
 | |
|   // Special case for ObjC BOOL on targets where its a typedef for a signed char
 | |
|   // (Namely, macOS).
 | |
|   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
 | |
|                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
 | |
|                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
 | |
| 
 | |
|   // Whether we're treating Other as being a bool because of the form of
 | |
|   // expression despite it having another type (typically 'int' in C).
 | |
|   bool OtherIsBooleanDespiteType =
 | |
|       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
 | |
|   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
 | |
|     OtherRange = IntRange::forBoolType();
 | |
| 
 | |
|   // Determine the promoted range of the other type and see if a comparison of
 | |
|   // the constant against that range is tautological.
 | |
|   PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(),
 | |
|                                    Value.isUnsigned());
 | |
|   auto Cmp = OtherPromotedRange.compare(Value);
 | |
|   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
 | |
|   if (!Result)
 | |
|     return false;
 | |
| 
 | |
|   // Suppress the diagnostic for an in-range comparison if the constant comes
 | |
|   // from a macro or enumerator. We don't want to diagnose
 | |
|   //
 | |
|   //   some_long_value <= INT_MAX
 | |
|   //
 | |
|   // when sizeof(int) == sizeof(long).
 | |
|   bool InRange = Cmp & PromotedRange::InRangeFlag;
 | |
|   if (InRange && IsEnumConstOrFromMacro(S, Constant))
 | |
|     return false;
 | |
| 
 | |
|   // If this is a comparison to an enum constant, include that
 | |
|   // constant in the diagnostic.
 | |
|   const EnumConstantDecl *ED = nullptr;
 | |
|   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
 | |
|     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
 | |
| 
 | |
|   // Should be enough for uint128 (39 decimal digits)
 | |
|   SmallString<64> PrettySourceValue;
 | |
|   llvm::raw_svector_ostream OS(PrettySourceValue);
 | |
|   if (ED) {
 | |
|     OS << '\'' << *ED << "' (" << Value << ")";
 | |
|   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
 | |
|                Constant->IgnoreParenImpCasts())) {
 | |
|     OS << (BL->getValue() ? "YES" : "NO");
 | |
|   } else {
 | |
|     OS << Value;
 | |
|   }
 | |
| 
 | |
|   if (IsObjCSignedCharBool) {
 | |
|     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
 | |
|                           S.PDiag(diag::warn_tautological_compare_objc_bool)
 | |
|                               << OS.str() << *Result);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: We use a somewhat different formatting for the in-range cases and
 | |
|   // cases involving boolean values for historical reasons. We should pick a
 | |
|   // consistent way of presenting these diagnostics.
 | |
|   if (!InRange || Other->isKnownToHaveBooleanValue()) {
 | |
| 
 | |
|     S.DiagRuntimeBehavior(
 | |
|         E->getOperatorLoc(), E,
 | |
|         S.PDiag(!InRange ? diag::warn_out_of_range_compare
 | |
|                          : diag::warn_tautological_bool_compare)
 | |
|             << OS.str() << classifyConstantValue(Constant) << OtherT
 | |
|             << OtherIsBooleanDespiteType << *Result
 | |
|             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
 | |
|   } else {
 | |
|     unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
 | |
|                         ? (HasEnumType(OriginalOther)
 | |
|                                ? diag::warn_unsigned_enum_always_true_comparison
 | |
|                                : diag::warn_unsigned_always_true_comparison)
 | |
|                         : diag::warn_tautological_constant_compare;
 | |
| 
 | |
|     S.Diag(E->getOperatorLoc(), Diag)
 | |
|         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
 | |
|         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Analyze the operands of the given comparison.  Implements the
 | |
| /// fallback case from AnalyzeComparison.
 | |
| static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
 | |
|   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
 | |
|   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
 | |
| }
 | |
| 
 | |
| /// Implements -Wsign-compare.
 | |
| ///
 | |
| /// \param E the binary operator to check for warnings
 | |
| static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
 | |
|   // The type the comparison is being performed in.
 | |
|   QualType T = E->getLHS()->getType();
 | |
| 
 | |
|   // Only analyze comparison operators where both sides have been converted to
 | |
|   // the same type.
 | |
|   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
| 
 | |
|   // Don't analyze value-dependent comparisons directly.
 | |
|   if (E->isValueDependent())
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
| 
 | |
|   Expr *LHS = E->getLHS();
 | |
|   Expr *RHS = E->getRHS();
 | |
| 
 | |
|   if (T->isIntegralType(S.Context)) {
 | |
|     llvm::APSInt RHSValue;
 | |
|     llvm::APSInt LHSValue;
 | |
| 
 | |
|     bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context);
 | |
|     bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context);
 | |
| 
 | |
|     // We don't care about expressions whose result is a constant.
 | |
|     if (IsRHSIntegralLiteral && IsLHSIntegralLiteral)
 | |
|       return AnalyzeImpConvsInComparison(S, E);
 | |
| 
 | |
|     // We only care about expressions where just one side is literal
 | |
|     if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) {
 | |
|       // Is the constant on the RHS or LHS?
 | |
|       const bool RhsConstant = IsRHSIntegralLiteral;
 | |
|       Expr *Const = RhsConstant ? RHS : LHS;
 | |
|       Expr *Other = RhsConstant ? LHS : RHS;
 | |
|       const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue;
 | |
| 
 | |
|       // Check whether an integer constant comparison results in a value
 | |
|       // of 'true' or 'false'.
 | |
|       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
 | |
|         return AnalyzeImpConvsInComparison(S, E);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!T->hasUnsignedIntegerRepresentation()) {
 | |
|     // We don't do anything special if this isn't an unsigned integral
 | |
|     // comparison:  we're only interested in integral comparisons, and
 | |
|     // signed comparisons only happen in cases we don't care to warn about.
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
|   }
 | |
| 
 | |
|   LHS = LHS->IgnoreParenImpCasts();
 | |
|   RHS = RHS->IgnoreParenImpCasts();
 | |
| 
 | |
|   if (!S.getLangOpts().CPlusPlus) {
 | |
|     // Avoid warning about comparison of integers with different signs when
 | |
|     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
 | |
|     // the type of `E`.
 | |
|     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
 | |
|       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
 | |
|     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
 | |
|       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
 | |
|   }
 | |
| 
 | |
|   // Check to see if one of the (unmodified) operands is of different
 | |
|   // signedness.
 | |
|   Expr *signedOperand, *unsignedOperand;
 | |
|   if (LHS->getType()->hasSignedIntegerRepresentation()) {
 | |
|     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
 | |
|            "unsigned comparison between two signed integer expressions?");
 | |
|     signedOperand = LHS;
 | |
|     unsignedOperand = RHS;
 | |
|   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
 | |
|     signedOperand = RHS;
 | |
|     unsignedOperand = LHS;
 | |
|   } else {
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, calculate the effective range of the signed operand.
 | |
|   IntRange signedRange =
 | |
|       GetExprRange(S.Context, signedOperand, S.isConstantEvaluated());
 | |
| 
 | |
|   // Go ahead and analyze implicit conversions in the operands.  Note
 | |
|   // that we skip the implicit conversions on both sides.
 | |
|   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
 | |
|   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
 | |
| 
 | |
|   // If the signed range is non-negative, -Wsign-compare won't fire.
 | |
|   if (signedRange.NonNegative)
 | |
|     return;
 | |
| 
 | |
|   // For (in)equality comparisons, if the unsigned operand is a
 | |
|   // constant which cannot collide with a overflowed signed operand,
 | |
|   // then reinterpreting the signed operand as unsigned will not
 | |
|   // change the result of the comparison.
 | |
|   if (E->isEqualityOp()) {
 | |
|     unsigned comparisonWidth = S.Context.getIntWidth(T);
 | |
|     IntRange unsignedRange =
 | |
|         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated());
 | |
| 
 | |
|     // We should never be unable to prove that the unsigned operand is
 | |
|     // non-negative.
 | |
|     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
 | |
| 
 | |
|     if (unsignedRange.Width < comparisonWidth)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
 | |
|                         S.PDiag(diag::warn_mixed_sign_comparison)
 | |
|                             << LHS->getType() << RHS->getType()
 | |
|                             << LHS->getSourceRange() << RHS->getSourceRange());
 | |
| }
 | |
| 
 | |
| /// Analyzes an attempt to assign the given value to a bitfield.
 | |
| ///
 | |
| /// Returns true if there was something fishy about the attempt.
 | |
| static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
 | |
|                                       SourceLocation InitLoc) {
 | |
|   assert(Bitfield->isBitField());
 | |
|   if (Bitfield->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   // White-list bool bitfields.
 | |
|   QualType BitfieldType = Bitfield->getType();
 | |
|   if (BitfieldType->isBooleanType())
 | |
|      return false;
 | |
| 
 | |
|   if (BitfieldType->isEnumeralType()) {
 | |
|     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
 | |
|     // If the underlying enum type was not explicitly specified as an unsigned
 | |
|     // type and the enum contain only positive values, MSVC++ will cause an
 | |
|     // inconsistency by storing this as a signed type.
 | |
|     if (S.getLangOpts().CPlusPlus11 &&
 | |
|         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
 | |
|         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
 | |
|         BitfieldEnumDecl->getNumNegativeBits() == 0) {
 | |
|       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
 | |
|         << BitfieldEnumDecl->getNameAsString();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Bitfield->getType()->isBooleanType())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore value- or type-dependent expressions.
 | |
|   if (Bitfield->getBitWidth()->isValueDependent() ||
 | |
|       Bitfield->getBitWidth()->isTypeDependent() ||
 | |
|       Init->isValueDependent() ||
 | |
|       Init->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   Expr *OriginalInit = Init->IgnoreParenImpCasts();
 | |
|   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
 | |
| 
 | |
|   Expr::EvalResult Result;
 | |
|   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
 | |
|                                    Expr::SE_AllowSideEffects)) {
 | |
|     // The RHS is not constant.  If the RHS has an enum type, make sure the
 | |
|     // bitfield is wide enough to hold all the values of the enum without
 | |
|     // truncation.
 | |
|     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
 | |
|       EnumDecl *ED = EnumTy->getDecl();
 | |
|       bool SignedBitfield = BitfieldType->isSignedIntegerType();
 | |
| 
 | |
|       // Enum types are implicitly signed on Windows, so check if there are any
 | |
|       // negative enumerators to see if the enum was intended to be signed or
 | |
|       // not.
 | |
|       bool SignedEnum = ED->getNumNegativeBits() > 0;
 | |
| 
 | |
|       // Check for surprising sign changes when assigning enum values to a
 | |
|       // bitfield of different signedness.  If the bitfield is signed and we
 | |
|       // have exactly the right number of bits to store this unsigned enum,
 | |
|       // suggest changing the enum to an unsigned type. This typically happens
 | |
|       // on Windows where unfixed enums always use an underlying type of 'int'.
 | |
|       unsigned DiagID = 0;
 | |
|       if (SignedEnum && !SignedBitfield) {
 | |
|         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
 | |
|       } else if (SignedBitfield && !SignedEnum &&
 | |
|                  ED->getNumPositiveBits() == FieldWidth) {
 | |
|         DiagID = diag::warn_signed_bitfield_enum_conversion;
 | |
|       }
 | |
| 
 | |
|       if (DiagID) {
 | |
|         S.Diag(InitLoc, DiagID) << Bitfield << ED;
 | |
|         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
 | |
|         SourceRange TypeRange =
 | |
|             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
 | |
|         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
 | |
|             << SignedEnum << TypeRange;
 | |
|       }
 | |
| 
 | |
|       // Compute the required bitwidth. If the enum has negative values, we need
 | |
|       // one more bit than the normal number of positive bits to represent the
 | |
|       // sign bit.
 | |
|       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
 | |
|                                                   ED->getNumNegativeBits())
 | |
|                                        : ED->getNumPositiveBits();
 | |
| 
 | |
|       // Check the bitwidth.
 | |
|       if (BitsNeeded > FieldWidth) {
 | |
|         Expr *WidthExpr = Bitfield->getBitWidth();
 | |
|         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
 | |
|             << Bitfield << ED;
 | |
|         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
 | |
|             << BitsNeeded << ED << WidthExpr->getSourceRange();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   llvm::APSInt Value = Result.Val.getInt();
 | |
| 
 | |
|   unsigned OriginalWidth = Value.getBitWidth();
 | |
| 
 | |
|   if (!Value.isSigned() || Value.isNegative())
 | |
|     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
 | |
|       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
 | |
|         OriginalWidth = Value.getMinSignedBits();
 | |
| 
 | |
|   if (OriginalWidth <= FieldWidth)
 | |
|     return false;
 | |
| 
 | |
|   // Compute the value which the bitfield will contain.
 | |
|   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
 | |
|   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
 | |
| 
 | |
|   // Check whether the stored value is equal to the original value.
 | |
|   TruncatedValue = TruncatedValue.extend(OriginalWidth);
 | |
|   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
 | |
|     return false;
 | |
| 
 | |
|   // Special-case bitfields of width 1: booleans are naturally 0/1, and
 | |
|   // therefore don't strictly fit into a signed bitfield of width 1.
 | |
|   if (FieldWidth == 1 && Value == 1)
 | |
|     return false;
 | |
| 
 | |
|   std::string PrettyValue = Value.toString(10);
 | |
|   std::string PrettyTrunc = TruncatedValue.toString(10);
 | |
| 
 | |
|   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
 | |
|     << PrettyValue << PrettyTrunc << OriginalInit->getType()
 | |
|     << Init->getSourceRange();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Analyze the given simple or compound assignment for warning-worthy
 | |
| /// operations.
 | |
| static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
 | |
|   // Just recurse on the LHS.
 | |
|   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
 | |
| 
 | |
|   // We want to recurse on the RHS as normal unless we're assigning to
 | |
|   // a bitfield.
 | |
|   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
 | |
|     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
 | |
|                                   E->getOperatorLoc())) {
 | |
|       // Recurse, ignoring any implicit conversions on the RHS.
 | |
|       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
 | |
|                                         E->getOperatorLoc());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
 | |
| 
 | |
|   // Diagnose implicitly sequentially-consistent atomic assignment.
 | |
|   if (E->getLHS()->getType()->isAtomicType())
 | |
|     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
 | |
| static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
 | |
|                             SourceLocation CContext, unsigned diag,
 | |
|                             bool pruneControlFlow = false) {
 | |
|   if (pruneControlFlow) {
 | |
|     S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | |
|                           S.PDiag(diag)
 | |
|                               << SourceType << T << E->getSourceRange()
 | |
|                               << SourceRange(CContext));
 | |
|     return;
 | |
|   }
 | |
|   S.Diag(E->getExprLoc(), diag)
 | |
|     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
 | |
| static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
 | |
|                             SourceLocation CContext,
 | |
|                             unsigned diag, bool pruneControlFlow = false) {
 | |
|   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
 | |
| }
 | |
| 
 | |
| static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
 | |
|   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
 | |
|       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
 | |
| }
 | |
| 
 | |
| static void adornObjCBoolConversionDiagWithTernaryFixit(
 | |
|     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
 | |
|   Expr *Ignored = SourceExpr->IgnoreImplicit();
 | |
|   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
 | |
|     Ignored = OVE->getSourceExpr();
 | |
|   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
 | |
|                      isa<BinaryOperator>(Ignored) ||
 | |
|                      isa<CXXOperatorCallExpr>(Ignored);
 | |
|   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
 | |
|   if (NeedsParens)
 | |
|     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
 | |
|             << FixItHint::CreateInsertion(EndLoc, ")");
 | |
|   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit cast from a floating point value to an integer value.
 | |
| static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
 | |
|                                     SourceLocation CContext) {
 | |
|   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
 | |
|   const bool PruneWarnings = S.inTemplateInstantiation();
 | |
| 
 | |
|   Expr *InnerE = E->IgnoreParenImpCasts();
 | |
|   // We also want to warn on, e.g., "int i = -1.234"
 | |
|   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
 | |
|     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
 | |
|       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
 | |
| 
 | |
|   const bool IsLiteral =
 | |
|       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
 | |
| 
 | |
|   llvm::APFloat Value(0.0);
 | |
|   bool IsConstant =
 | |
|     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
 | |
|   if (!IsConstant) {
 | |
|     if (isObjCSignedCharBool(S, T)) {
 | |
|       return adornObjCBoolConversionDiagWithTernaryFixit(
 | |
|           S, E,
 | |
|           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
 | |
|               << E->getType());
 | |
|     }
 | |
| 
 | |
|     return DiagnoseImpCast(S, E, T, CContext,
 | |
|                            diag::warn_impcast_float_integer, PruneWarnings);
 | |
|   }
 | |
| 
 | |
|   bool isExact = false;
 | |
| 
 | |
|   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
 | |
|                             T->hasUnsignedIntegerRepresentation());
 | |
|   llvm::APFloat::opStatus Result = Value.convertToInteger(
 | |
|       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
 | |
| 
 | |
|   // FIXME: Force the precision of the source value down so we don't print
 | |
|   // digits which are usually useless (we don't really care here if we
 | |
|   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
 | |
|   // would automatically print the shortest representation, but it's a bit
 | |
|   // tricky to implement.
 | |
|   SmallString<16> PrettySourceValue;
 | |
|   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
 | |
|   precision = (precision * 59 + 195) / 196;
 | |
|   Value.toString(PrettySourceValue, precision);
 | |
| 
 | |
|   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
 | |
|     return adornObjCBoolConversionDiagWithTernaryFixit(
 | |
|         S, E,
 | |
|         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
 | |
|             << PrettySourceValue);
 | |
|   }
 | |
| 
 | |
|   if (Result == llvm::APFloat::opOK && isExact) {
 | |
|     if (IsLiteral) return;
 | |
|     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
 | |
|                            PruneWarnings);
 | |
|   }
 | |
| 
 | |
|   // Conversion of a floating-point value to a non-bool integer where the
 | |
|   // integral part cannot be represented by the integer type is undefined.
 | |
|   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
 | |
|     return DiagnoseImpCast(
 | |
|         S, E, T, CContext,
 | |
|         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
 | |
|                   : diag::warn_impcast_float_to_integer_out_of_range,
 | |
|         PruneWarnings);
 | |
| 
 | |
|   unsigned DiagID = 0;
 | |
|   if (IsLiteral) {
 | |
|     // Warn on floating point literal to integer.
 | |
|     DiagID = diag::warn_impcast_literal_float_to_integer;
 | |
|   } else if (IntegerValue == 0) {
 | |
|     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
 | |
|       return DiagnoseImpCast(S, E, T, CContext,
 | |
|                              diag::warn_impcast_float_integer, PruneWarnings);
 | |
|     }
 | |
|     // Warn on non-zero to zero conversion.
 | |
|     DiagID = diag::warn_impcast_float_to_integer_zero;
 | |
|   } else {
 | |
|     if (IntegerValue.isUnsigned()) {
 | |
|       if (!IntegerValue.isMaxValue()) {
 | |
|         return DiagnoseImpCast(S, E, T, CContext,
 | |
|                                diag::warn_impcast_float_integer, PruneWarnings);
 | |
|       }
 | |
|     } else {  // IntegerValue.isSigned()
 | |
|       if (!IntegerValue.isMaxSignedValue() &&
 | |
|           !IntegerValue.isMinSignedValue()) {
 | |
|         return DiagnoseImpCast(S, E, T, CContext,
 | |
|                                diag::warn_impcast_float_integer, PruneWarnings);
 | |
|       }
 | |
|     }
 | |
|     // Warn on evaluatable floating point expression to integer conversion.
 | |
|     DiagID = diag::warn_impcast_float_to_integer;
 | |
|   }
 | |
| 
 | |
|   SmallString<16> PrettyTargetValue;
 | |
|   if (IsBool)
 | |
|     PrettyTargetValue = Value.isZero() ? "false" : "true";
 | |
|   else
 | |
|     IntegerValue.toString(PrettyTargetValue);
 | |
| 
 | |
|   if (PruneWarnings) {
 | |
|     S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | |
|                           S.PDiag(DiagID)
 | |
|                               << E->getType() << T.getUnqualifiedType()
 | |
|                               << PrettySourceValue << PrettyTargetValue
 | |
|                               << E->getSourceRange() << SourceRange(CContext));
 | |
|   } else {
 | |
|     S.Diag(E->getExprLoc(), DiagID)
 | |
|         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
 | |
|         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Analyze the given compound assignment for the possible losing of
 | |
| /// floating-point precision.
 | |
| static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
 | |
|   assert(isa<CompoundAssignOperator>(E) &&
 | |
|          "Must be compound assignment operation");
 | |
|   // Recurse on the LHS and RHS in here
 | |
|   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
 | |
|   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
 | |
| 
 | |
|   if (E->getLHS()->getType()->isAtomicType())
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
 | |
| 
 | |
|   // Now check the outermost expression
 | |
|   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
 | |
|   const auto *RBT = cast<CompoundAssignOperator>(E)
 | |
|                         ->getComputationResultType()
 | |
|                         ->getAs<BuiltinType>();
 | |
| 
 | |
|   // The below checks assume source is floating point.
 | |
|   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
 | |
| 
 | |
|   // If source is floating point but target is an integer.
 | |
|   if (ResultBT->isInteger())
 | |
|     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
 | |
|                            E->getExprLoc(), diag::warn_impcast_float_integer);
 | |
| 
 | |
|   if (!ResultBT->isFloatingPoint())
 | |
|     return;
 | |
| 
 | |
|   // If both source and target are floating points, warn about losing precision.
 | |
|   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
 | |
|       QualType(ResultBT, 0), QualType(RBT, 0));
 | |
|   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
 | |
|     // warn about dropping FP rank.
 | |
|     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
 | |
|                     diag::warn_impcast_float_result_precision);
 | |
| }
 | |
| 
 | |
| static std::string PrettyPrintInRange(const llvm::APSInt &Value,
 | |
|                                       IntRange Range) {
 | |
|   if (!Range.Width) return "0";
 | |
| 
 | |
|   llvm::APSInt ValueInRange = Value;
 | |
|   ValueInRange.setIsSigned(!Range.NonNegative);
 | |
|   ValueInRange = ValueInRange.trunc(Range.Width);
 | |
|   return ValueInRange.toString(10);
 | |
| }
 | |
| 
 | |
| static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
 | |
|   if (!isa<ImplicitCastExpr>(Ex))
 | |
|     return false;
 | |
| 
 | |
|   Expr *InnerE = Ex->IgnoreParenImpCasts();
 | |
|   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
 | |
|   const Type *Source =
 | |
|     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
 | |
|   if (Target->isDependentType())
 | |
|     return false;
 | |
| 
 | |
|   const BuiltinType *FloatCandidateBT =
 | |
|     dyn_cast<BuiltinType>(ToBool ? Source : Target);
 | |
|   const Type *BoolCandidateType = ToBool ? Target : Source;
 | |
| 
 | |
|   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
 | |
|           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
 | |
| }
 | |
| 
 | |
| static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
 | |
|                                              SourceLocation CC) {
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
|   for (unsigned i = 0; i < NumArgs; ++i) {
 | |
|     Expr *CurrA = TheCall->getArg(i);
 | |
|     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
 | |
|       continue;
 | |
| 
 | |
|     bool IsSwapped = ((i > 0) &&
 | |
|         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
 | |
|     IsSwapped |= ((i < (NumArgs - 1)) &&
 | |
|         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
 | |
|     if (IsSwapped) {
 | |
|       // Warn on this floating-point to bool conversion.
 | |
|       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
 | |
|                       CurrA->getType(), CC,
 | |
|                       diag::warn_impcast_floating_point_to_bool);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
 | |
|                                    SourceLocation CC) {
 | |
|   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
 | |
|                         E->getExprLoc()))
 | |
|     return;
 | |
| 
 | |
|   // Don't warn on functions which have return type nullptr_t.
 | |
|   if (isa<CallExpr>(E))
 | |
|     return;
 | |
| 
 | |
|   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
 | |
|   const Expr::NullPointerConstantKind NullKind =
 | |
|       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
 | |
|   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
 | |
|     return;
 | |
| 
 | |
|   // Return if target type is a safe conversion.
 | |
|   if (T->isAnyPointerType() || T->isBlockPointerType() ||
 | |
|       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
 | |
|     return;
 | |
| 
 | |
|   SourceLocation Loc = E->getSourceRange().getBegin();
 | |
| 
 | |
|   // Venture through the macro stacks to get to the source of macro arguments.
 | |
|   // The new location is a better location than the complete location that was
 | |
|   // passed in.
 | |
|   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
 | |
|   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
 | |
| 
 | |
|   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
 | |
|   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
 | |
|     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
 | |
|         Loc, S.SourceMgr, S.getLangOpts());
 | |
|     if (MacroName == "NULL")
 | |
|       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
 | |
|   }
 | |
| 
 | |
|   // Only warn if the null and context location are in the same macro expansion.
 | |
|   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
 | |
|     return;
 | |
| 
 | |
|   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
 | |
|       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
 | |
|       << FixItHint::CreateReplacement(Loc,
 | |
|                                       S.getFixItZeroLiteralForType(T, Loc));
 | |
| }
 | |
| 
 | |
| static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
 | |
|                                   ObjCArrayLiteral *ArrayLiteral);
 | |
| 
 | |
| static void
 | |
| checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
 | |
|                            ObjCDictionaryLiteral *DictionaryLiteral);
 | |
| 
 | |
| /// Check a single element within a collection literal against the
 | |
| /// target element type.
 | |
| static void checkObjCCollectionLiteralElement(Sema &S,
 | |
|                                               QualType TargetElementType,
 | |
|                                               Expr *Element,
 | |
|                                               unsigned ElementKind) {
 | |
|   // Skip a bitcast to 'id' or qualified 'id'.
 | |
|   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
 | |
|     if (ICE->getCastKind() == CK_BitCast &&
 | |
|         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
 | |
|       Element = ICE->getSubExpr();
 | |
|   }
 | |
| 
 | |
|   QualType ElementType = Element->getType();
 | |
|   ExprResult ElementResult(Element);
 | |
|   if (ElementType->getAs<ObjCObjectPointerType>() &&
 | |
|       S.CheckSingleAssignmentConstraints(TargetElementType,
 | |
|                                          ElementResult,
 | |
|                                          false, false)
 | |
|         != Sema::Compatible) {
 | |
|     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
 | |
|         << ElementType << ElementKind << TargetElementType
 | |
|         << Element->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
 | |
|     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
 | |
|   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
 | |
|     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
 | |
| }
 | |
| 
 | |
| /// Check an Objective-C array literal being converted to the given
 | |
| /// target type.
 | |
| static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
 | |
|                                   ObjCArrayLiteral *ArrayLiteral) {
 | |
|   if (!S.NSArrayDecl)
 | |
|     return;
 | |
| 
 | |
|   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
 | |
|   if (!TargetObjCPtr)
 | |
|     return;
 | |
| 
 | |
|   if (TargetObjCPtr->isUnspecialized() ||
 | |
|       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
 | |
|         != S.NSArrayDecl->getCanonicalDecl())
 | |
|     return;
 | |
| 
 | |
|   auto TypeArgs = TargetObjCPtr->getTypeArgs();
 | |
|   if (TypeArgs.size() != 1)
 | |
|     return;
 | |
| 
 | |
|   QualType TargetElementType = TypeArgs[0];
 | |
|   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
 | |
|     checkObjCCollectionLiteralElement(S, TargetElementType,
 | |
|                                       ArrayLiteral->getElement(I),
 | |
|                                       0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check an Objective-C dictionary literal being converted to the given
 | |
| /// target type.
 | |
| static void
 | |
| checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
 | |
|                            ObjCDictionaryLiteral *DictionaryLiteral) {
 | |
|   if (!S.NSDictionaryDecl)
 | |
|     return;
 | |
| 
 | |
|   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
 | |
|   if (!TargetObjCPtr)
 | |
|     return;
 | |
| 
 | |
|   if (TargetObjCPtr->isUnspecialized() ||
 | |
|       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
 | |
|         != S.NSDictionaryDecl->getCanonicalDecl())
 | |
|     return;
 | |
| 
 | |
|   auto TypeArgs = TargetObjCPtr->getTypeArgs();
 | |
|   if (TypeArgs.size() != 2)
 | |
|     return;
 | |
| 
 | |
|   QualType TargetKeyType = TypeArgs[0];
 | |
|   QualType TargetObjectType = TypeArgs[1];
 | |
|   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
 | |
|     auto Element = DictionaryLiteral->getKeyValueElement(I);
 | |
|     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
 | |
|     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Helper function to filter out cases for constant width constant conversion.
 | |
| // Don't warn on char array initialization or for non-decimal values.
 | |
| static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
 | |
|                                           SourceLocation CC) {
 | |
|   // If initializing from a constant, and the constant starts with '0',
 | |
|   // then it is a binary, octal, or hexadecimal.  Allow these constants
 | |
|   // to fill all the bits, even if there is a sign change.
 | |
|   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
 | |
|     const char FirstLiteralCharacter =
 | |
|         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
 | |
|     if (FirstLiteralCharacter == '0')
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If the CC location points to a '{', and the type is char, then assume
 | |
|   // assume it is an array initialization.
 | |
|   if (CC.isValid() && T->isCharType()) {
 | |
|     const char FirstContextCharacter =
 | |
|         S.getSourceManager().getCharacterData(CC)[0];
 | |
|     if (FirstContextCharacter == '{')
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static const IntegerLiteral *getIntegerLiteral(Expr *E) {
 | |
|   const auto *IL = dyn_cast<IntegerLiteral>(E);
 | |
|   if (!IL) {
 | |
|     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (UO->getOpcode() == UO_Minus)
 | |
|         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return IL;
 | |
| }
 | |
| 
 | |
| static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
 | |
|   E = E->IgnoreParenImpCasts();
 | |
|   SourceLocation ExprLoc = E->getExprLoc();
 | |
| 
 | |
|   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     BinaryOperator::Opcode Opc = BO->getOpcode();
 | |
|     Expr::EvalResult Result;
 | |
|     // Do not diagnose unsigned shifts.
 | |
|     if (Opc == BO_Shl) {
 | |
|       const auto *LHS = getIntegerLiteral(BO->getLHS());
 | |
|       const auto *RHS = getIntegerLiteral(BO->getRHS());
 | |
|       if (LHS && LHS->getValue() == 0)
 | |
|         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
 | |
|       else if (!E->isValueDependent() && LHS && RHS &&
 | |
|                RHS->getValue().isNonNegative() &&
 | |
|                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
 | |
|         S.Diag(ExprLoc, diag::warn_left_shift_always)
 | |
|             << (Result.Val.getInt() != 0);
 | |
|       else if (E->getType()->isSignedIntegerType())
 | |
|         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
 | |
|     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
 | |
|     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
 | |
|     if (!LHS || !RHS)
 | |
|       return;
 | |
|     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
 | |
|         (RHS->getValue() == 0 || RHS->getValue() == 1))
 | |
|       // Do not diagnose common idioms.
 | |
|       return;
 | |
|     if (LHS->getValue() != 0 && RHS->getValue() != 0)
 | |
|       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
 | |
|                                     SourceLocation CC,
 | |
|                                     bool *ICContext = nullptr,
 | |
|                                     bool IsListInit = false) {
 | |
|   if (E->isTypeDependent() || E->isValueDependent()) return;
 | |
| 
 | |
|   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
 | |
|   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
 | |
|   if (Source == Target) return;
 | |
|   if (Target->isDependentType()) return;
 | |
| 
 | |
|   // If the conversion context location is invalid don't complain. We also
 | |
|   // don't want to emit a warning if the issue occurs from the expansion of
 | |
|   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
 | |
|   // delay this check as long as possible. Once we detect we are in that
 | |
|   // scenario, we just return.
 | |
|   if (CC.isInvalid())
 | |
|     return;
 | |
| 
 | |
|   if (Source->isAtomicType())
 | |
|     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
 | |
| 
 | |
|   // Diagnose implicit casts to bool.
 | |
|   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
 | |
|     if (isa<StringLiteral>(E))
 | |
|       // Warn on string literal to bool.  Checks for string literals in logical
 | |
|       // and expressions, for instance, assert(0 && "error here"), are
 | |
|       // prevented by a check in AnalyzeImplicitConversions().
 | |
|       return DiagnoseImpCast(S, E, T, CC,
 | |
|                              diag::warn_impcast_string_literal_to_bool);
 | |
|     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
 | |
|         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
 | |
|       // This covers the literal expressions that evaluate to Objective-C
 | |
|       // objects.
 | |
|       return DiagnoseImpCast(S, E, T, CC,
 | |
|                              diag::warn_impcast_objective_c_literal_to_bool);
 | |
|     }
 | |
|     if (Source->isPointerType() || Source->canDecayToPointerType()) {
 | |
|       // Warn on pointer to bool conversion that is always true.
 | |
|       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
 | |
|                                      SourceRange(CC));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
 | |
|   // is a typedef for signed char (macOS), then that constant value has to be 1
 | |
|   // or 0.
 | |
|   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
 | |
|     Expr::EvalResult Result;
 | |
|     if (E->EvaluateAsInt(Result, S.getASTContext(),
 | |
|                          Expr::SE_AllowSideEffects)) {
 | |
|       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
 | |
|         adornObjCBoolConversionDiagWithTernaryFixit(
 | |
|             S, E,
 | |
|             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
 | |
|                 << Result.Val.getInt().toString(10));
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check implicit casts from Objective-C collection literals to specialized
 | |
|   // collection types, e.g., NSArray<NSString *> *.
 | |
|   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
 | |
|     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
 | |
|   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
 | |
|     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
 | |
| 
 | |
|   // Strip vector types.
 | |
|   if (isa<VectorType>(Source)) {
 | |
|     if (!isa<VectorType>(Target)) {
 | |
|       if (S.SourceMgr.isInSystemMacro(CC))
 | |
|         return;
 | |
|       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
 | |
|     }
 | |
| 
 | |
|     // If the vector cast is cast between two vectors of the same size, it is
 | |
|     // a bitcast, not a conversion.
 | |
|     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
 | |
|       return;
 | |
| 
 | |
|     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
 | |
|     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
 | |
|   }
 | |
|   if (auto VecTy = dyn_cast<VectorType>(Target))
 | |
|     Target = VecTy->getElementType().getTypePtr();
 | |
| 
 | |
|   // Strip complex types.
 | |
|   if (isa<ComplexType>(Source)) {
 | |
|     if (!isa<ComplexType>(Target)) {
 | |
|       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
 | |
|         return;
 | |
| 
 | |
|       return DiagnoseImpCast(S, E, T, CC,
 | |
|                              S.getLangOpts().CPlusPlus
 | |
|                                  ? diag::err_impcast_complex_scalar
 | |
|                                  : diag::warn_impcast_complex_scalar);
 | |
|     }
 | |
| 
 | |
|     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
 | |
|     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
 | |
|   }
 | |
| 
 | |
|   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
 | |
|   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
 | |
| 
 | |
|   // If the source is floating point...
 | |
|   if (SourceBT && SourceBT->isFloatingPoint()) {
 | |
|     // ...and the target is floating point...
 | |
|     if (TargetBT && TargetBT->isFloatingPoint()) {
 | |
|       // ...then warn if we're dropping FP rank.
 | |
| 
 | |
|       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
 | |
|           QualType(SourceBT, 0), QualType(TargetBT, 0));
 | |
|       if (Order > 0) {
 | |
|         // Don't warn about float constants that are precisely
 | |
|         // representable in the target type.
 | |
|         Expr::EvalResult result;
 | |
|         if (E->EvaluateAsRValue(result, S.Context)) {
 | |
|           // Value might be a float, a float vector, or a float complex.
 | |
|           if (IsSameFloatAfterCast(result.Val,
 | |
|                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
 | |
|                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (S.SourceMgr.isInSystemMacro(CC))
 | |
|           return;
 | |
| 
 | |
|         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
 | |
|       }
 | |
|       // ... or possibly if we're increasing rank, too
 | |
|       else if (Order < 0) {
 | |
|         if (S.SourceMgr.isInSystemMacro(CC))
 | |
|           return;
 | |
| 
 | |
|         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If the target is integral, always warn.
 | |
|     if (TargetBT && TargetBT->isInteger()) {
 | |
|       if (S.SourceMgr.isInSystemMacro(CC))
 | |
|         return;
 | |
| 
 | |
|       DiagnoseFloatingImpCast(S, E, T, CC);
 | |
|     }
 | |
| 
 | |
|     // Detect the case where a call result is converted from floating-point to
 | |
|     // to bool, and the final argument to the call is converted from bool, to
 | |
|     // discover this typo:
 | |
|     //
 | |
|     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
 | |
|     //
 | |
|     // FIXME: This is an incredibly special case; is there some more general
 | |
|     // way to detect this class of misplaced-parentheses bug?
 | |
|     if (Target->isBooleanType() && isa<CallExpr>(E)) {
 | |
|       // Check last argument of function call to see if it is an
 | |
|       // implicit cast from a type matching the type the result
 | |
|       // is being cast to.
 | |
|       CallExpr *CEx = cast<CallExpr>(E);
 | |
|       if (unsigned NumArgs = CEx->getNumArgs()) {
 | |
|         Expr *LastA = CEx->getArg(NumArgs - 1);
 | |
|         Expr *InnerE = LastA->IgnoreParenImpCasts();
 | |
|         if (isa<ImplicitCastExpr>(LastA) &&
 | |
|             InnerE->getType()->isBooleanType()) {
 | |
|           // Warn on this floating-point to bool conversion
 | |
|           DiagnoseImpCast(S, E, T, CC,
 | |
|                           diag::warn_impcast_floating_point_to_bool);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Valid casts involving fixed point types should be accounted for here.
 | |
|   if (Source->isFixedPointType()) {
 | |
|     if (Target->isUnsaturatedFixedPointType()) {
 | |
|       Expr::EvalResult Result;
 | |
|       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
 | |
|                                   S.isConstantEvaluated())) {
 | |
|         APFixedPoint Value = Result.Val.getFixedPoint();
 | |
|         APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
 | |
|         APFixedPoint MinVal = S.Context.getFixedPointMin(T);
 | |
|         if (Value > MaxVal || Value < MinVal) {
 | |
|           S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | |
|                                 S.PDiag(diag::warn_impcast_fixed_point_range)
 | |
|                                     << Value.toString() << T
 | |
|                                     << E->getSourceRange()
 | |
|                                     << clang::SourceRange(CC));
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     } else if (Target->isIntegerType()) {
 | |
|       Expr::EvalResult Result;
 | |
|       if (!S.isConstantEvaluated() &&
 | |
|           E->EvaluateAsFixedPoint(Result, S.Context,
 | |
|                                   Expr::SE_AllowSideEffects)) {
 | |
|         APFixedPoint FXResult = Result.Val.getFixedPoint();
 | |
| 
 | |
|         bool Overflowed;
 | |
|         llvm::APSInt IntResult = FXResult.convertToInt(
 | |
|             S.Context.getIntWidth(T),
 | |
|             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
 | |
| 
 | |
|         if (Overflowed) {
 | |
|           S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | |
|                                 S.PDiag(diag::warn_impcast_fixed_point_range)
 | |
|                                     << FXResult.toString() << T
 | |
|                                     << E->getSourceRange()
 | |
|                                     << clang::SourceRange(CC));
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else if (Target->isUnsaturatedFixedPointType()) {
 | |
|     if (Source->isIntegerType()) {
 | |
|       Expr::EvalResult Result;
 | |
|       if (!S.isConstantEvaluated() &&
 | |
|           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
 | |
|         llvm::APSInt Value = Result.Val.getInt();
 | |
| 
 | |
|         bool Overflowed;
 | |
|         APFixedPoint IntResult = APFixedPoint::getFromIntValue(
 | |
|             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
 | |
| 
 | |
|         if (Overflowed) {
 | |
|           S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | |
|                                 S.PDiag(diag::warn_impcast_fixed_point_range)
 | |
|                                     << Value.toString(/*Radix=*/10) << T
 | |
|                                     << E->getSourceRange()
 | |
|                                     << clang::SourceRange(CC));
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are casting an integer type to a floating point type without
 | |
|   // initialization-list syntax, we might lose accuracy if the floating
 | |
|   // point type has a narrower significand than the integer type.
 | |
|   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
 | |
|       TargetBT->isFloatingType() && !IsListInit) {
 | |
|     // Determine the number of precision bits in the source integer type.
 | |
|     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated());
 | |
|     unsigned int SourcePrecision = SourceRange.Width;
 | |
| 
 | |
|     // Determine the number of precision bits in the
 | |
|     // target floating point type.
 | |
|     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
 | |
|         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
 | |
| 
 | |
|     if (SourcePrecision > 0 && TargetPrecision > 0 &&
 | |
|         SourcePrecision > TargetPrecision) {
 | |
| 
 | |
|       llvm::APSInt SourceInt;
 | |
|       if (E->isIntegerConstantExpr(SourceInt, S.Context)) {
 | |
|         // If the source integer is a constant, convert it to the target
 | |
|         // floating point type. Issue a warning if the value changes
 | |
|         // during the whole conversion.
 | |
|         llvm::APFloat TargetFloatValue(
 | |
|             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
 | |
|         llvm::APFloat::opStatus ConversionStatus =
 | |
|             TargetFloatValue.convertFromAPInt(
 | |
|                 SourceInt, SourceBT->isSignedInteger(),
 | |
|                 llvm::APFloat::rmNearestTiesToEven);
 | |
| 
 | |
|         if (ConversionStatus != llvm::APFloat::opOK) {
 | |
|           std::string PrettySourceValue = SourceInt.toString(10);
 | |
|           SmallString<32> PrettyTargetValue;
 | |
|           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
 | |
| 
 | |
|           S.DiagRuntimeBehavior(
 | |
|               E->getExprLoc(), E,
 | |
|               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
 | |
|                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
 | |
|                   << E->getSourceRange() << clang::SourceRange(CC));
 | |
|         }
 | |
|       } else {
 | |
|         // Otherwise, the implicit conversion may lose precision.
 | |
|         DiagnoseImpCast(S, E, T, CC,
 | |
|                         diag::warn_impcast_integer_float_precision);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DiagnoseNullConversion(S, E, T, CC);
 | |
| 
 | |
|   S.DiscardMisalignedMemberAddress(Target, E);
 | |
| 
 | |
|   if (Target->isBooleanType())
 | |
|     DiagnoseIntInBoolContext(S, E);
 | |
| 
 | |
|   if (!Source->isIntegerType() || !Target->isIntegerType())
 | |
|     return;
 | |
| 
 | |
|   // TODO: remove this early return once the false positives for constant->bool
 | |
|   // in templates, macros, etc, are reduced or removed.
 | |
|   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
 | |
|     return;
 | |
| 
 | |
|   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
 | |
|       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
 | |
|     return adornObjCBoolConversionDiagWithTernaryFixit(
 | |
|         S, E,
 | |
|         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
 | |
|             << E->getType());
 | |
|   }
 | |
| 
 | |
|   IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated());
 | |
|   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
 | |
| 
 | |
|   if (SourceRange.Width > TargetRange.Width) {
 | |
|     // If the source is a constant, use a default-on diagnostic.
 | |
|     // TODO: this should happen for bitfield stores, too.
 | |
|     Expr::EvalResult Result;
 | |
|     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
 | |
|                          S.isConstantEvaluated())) {
 | |
|       llvm::APSInt Value(32);
 | |
|       Value = Result.Val.getInt();
 | |
| 
 | |
|       if (S.SourceMgr.isInSystemMacro(CC))
 | |
|         return;
 | |
| 
 | |
|       std::string PrettySourceValue = Value.toString(10);
 | |
|       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
 | |
| 
 | |
|       S.DiagRuntimeBehavior(
 | |
|           E->getExprLoc(), E,
 | |
|           S.PDiag(diag::warn_impcast_integer_precision_constant)
 | |
|               << PrettySourceValue << PrettyTargetValue << E->getType() << T
 | |
|               << E->getSourceRange() << clang::SourceRange(CC));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
 | |
|     if (S.SourceMgr.isInSystemMacro(CC))
 | |
|       return;
 | |
| 
 | |
|     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
 | |
|       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
 | |
|                              /* pruneControlFlow */ true);
 | |
|     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
 | |
|   }
 | |
| 
 | |
|   if (TargetRange.Width > SourceRange.Width) {
 | |
|     if (auto *UO = dyn_cast<UnaryOperator>(E))
 | |
|       if (UO->getOpcode() == UO_Minus)
 | |
|         if (Source->isUnsignedIntegerType()) {
 | |
|           if (Target->isUnsignedIntegerType())
 | |
|             return DiagnoseImpCast(S, E, T, CC,
 | |
|                                    diag::warn_impcast_high_order_zero_bits);
 | |
|           if (Target->isSignedIntegerType())
 | |
|             return DiagnoseImpCast(S, E, T, CC,
 | |
|                                    diag::warn_impcast_nonnegative_result);
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative &&
 | |
|       SourceRange.NonNegative && Source->isSignedIntegerType()) {
 | |
|     // Warn when doing a signed to signed conversion, warn if the positive
 | |
|     // source value is exactly the width of the target type, which will
 | |
|     // cause a negative value to be stored.
 | |
| 
 | |
|     Expr::EvalResult Result;
 | |
|     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
 | |
|         !S.SourceMgr.isInSystemMacro(CC)) {
 | |
|       llvm::APSInt Value = Result.Val.getInt();
 | |
|       if (isSameWidthConstantConversion(S, E, T, CC)) {
 | |
|         std::string PrettySourceValue = Value.toString(10);
 | |
|         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
 | |
| 
 | |
|         S.DiagRuntimeBehavior(
 | |
|             E->getExprLoc(), E,
 | |
|             S.PDiag(diag::warn_impcast_integer_precision_constant)
 | |
|                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
 | |
|                 << E->getSourceRange() << clang::SourceRange(CC));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Fall through for non-constants to give a sign conversion warning.
 | |
|   }
 | |
| 
 | |
|   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
 | |
|       (!TargetRange.NonNegative && SourceRange.NonNegative &&
 | |
|        SourceRange.Width == TargetRange.Width)) {
 | |
|     if (S.SourceMgr.isInSystemMacro(CC))
 | |
|       return;
 | |
| 
 | |
|     unsigned DiagID = diag::warn_impcast_integer_sign;
 | |
| 
 | |
|     // Traditionally, gcc has warned about this under -Wsign-compare.
 | |
|     // We also want to warn about it in -Wconversion.
 | |
|     // So if -Wconversion is off, use a completely identical diagnostic
 | |
|     // in the sign-compare group.
 | |
|     // The conditional-checking code will
 | |
|     if (ICContext) {
 | |
|       DiagID = diag::warn_impcast_integer_sign_conditional;
 | |
|       *ICContext = true;
 | |
|     }
 | |
| 
 | |
|     return DiagnoseImpCast(S, E, T, CC, DiagID);
 | |
|   }
 | |
| 
 | |
|   // Diagnose conversions between different enumeration types.
 | |
|   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
 | |
|   // type, to give us better diagnostics.
 | |
|   QualType SourceType = E->getType();
 | |
|   if (!S.getLangOpts().CPlusPlus) {
 | |
|     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | |
|       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
 | |
|         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
 | |
|         SourceType = S.Context.getTypeDeclType(Enum);
 | |
|         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
 | |
|     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
 | |
|       if (SourceEnum->getDecl()->hasNameForLinkage() &&
 | |
|           TargetEnum->getDecl()->hasNameForLinkage() &&
 | |
|           SourceEnum != TargetEnum) {
 | |
|         if (S.SourceMgr.isInSystemMacro(CC))
 | |
|           return;
 | |
| 
 | |
|         return DiagnoseImpCast(S, E, SourceType, T, CC,
 | |
|                                diag::warn_impcast_different_enum_types);
 | |
|       }
 | |
| }
 | |
| 
 | |
| static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
 | |
|                                      SourceLocation CC, QualType T);
 | |
| 
 | |
| static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
 | |
|                                     SourceLocation CC, bool &ICContext) {
 | |
|   E = E->IgnoreParenImpCasts();
 | |
| 
 | |
|   if (isa<ConditionalOperator>(E))
 | |
|     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
 | |
| 
 | |
|   AnalyzeImplicitConversions(S, E, CC);
 | |
|   if (E->getType() != T)
 | |
|     return CheckImplicitConversion(S, E, T, CC, &ICContext);
 | |
| }
 | |
| 
 | |
| static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
 | |
|                                      SourceLocation CC, QualType T) {
 | |
|   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
 | |
| 
 | |
|   bool Suspicious = false;
 | |
|   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
 | |
|   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
 | |
| 
 | |
|   if (T->isBooleanType())
 | |
|     DiagnoseIntInBoolContext(S, E);
 | |
| 
 | |
|   // If -Wconversion would have warned about either of the candidates
 | |
|   // for a signedness conversion to the context type...
 | |
|   if (!Suspicious) return;
 | |
| 
 | |
|   // ...but it's currently ignored...
 | |
|   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
 | |
|     return;
 | |
| 
 | |
|   // ...then check whether it would have warned about either of the
 | |
|   // candidates for a signedness conversion to the condition type.
 | |
|   if (E->getType() == T) return;
 | |
| 
 | |
|   Suspicious = false;
 | |
|   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
 | |
|                           E->getType(), CC, &Suspicious);
 | |
|   if (!Suspicious)
 | |
|     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
 | |
|                             E->getType(), CC, &Suspicious);
 | |
| }
 | |
| 
 | |
| /// Check conversion of given expression to boolean.
 | |
| /// Input argument E is a logical expression.
 | |
| static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
 | |
|   if (S.getLangOpts().Bool)
 | |
|     return;
 | |
|   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
 | |
|     return;
 | |
|   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
 | |
| }
 | |
| 
 | |
| /// AnalyzeImplicitConversions - Find and report any interesting
 | |
| /// implicit conversions in the given expression.  There are a couple
 | |
| /// of competing diagnostics here, -Wconversion and -Wsign-compare.
 | |
| static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
 | |
|                                        bool IsListInit/*= false*/) {
 | |
|   QualType T = OrigE->getType();
 | |
|   Expr *E = OrigE->IgnoreParenImpCasts();
 | |
| 
 | |
|   // Propagate whether we are in a C++ list initialization expression.
 | |
|   // If so, we do not issue warnings for implicit int-float conversion
 | |
|   // precision loss, because C++11 narrowing already handles it.
 | |
|   IsListInit =
 | |
|       IsListInit || (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
 | |
| 
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   Expr *SourceExpr = E;
 | |
|   // Examine, but don't traverse into the source expression of an
 | |
|   // OpaqueValueExpr, since it may have multiple parents and we don't want to
 | |
|   // emit duplicate diagnostics. Its fine to examine the form or attempt to
 | |
|   // evaluate it in the context of checking the specific conversion to T though.
 | |
|   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
 | |
|     if (auto *Src = OVE->getSourceExpr())
 | |
|       SourceExpr = Src;
 | |
| 
 | |
|   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
 | |
|     if (UO->getOpcode() == UO_Not &&
 | |
|         UO->getSubExpr()->isKnownToHaveBooleanValue())
 | |
|       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
 | |
|           << OrigE->getSourceRange() << T->isBooleanType()
 | |
|           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
 | |
| 
 | |
|   // For conditional operators, we analyze the arguments as if they
 | |
|   // were being fed directly into the output.
 | |
|   if (auto *CO = dyn_cast<ConditionalOperator>(SourceExpr)) {
 | |
|     CheckConditionalOperator(S, CO, CC, T);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check implicit argument conversions for function calls.
 | |
|   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
 | |
|     CheckImplicitArgumentConversions(S, Call, CC);
 | |
| 
 | |
|   // Go ahead and check any implicit conversions we might have skipped.
 | |
|   // The non-canonical typecheck is just an optimization;
 | |
|   // CheckImplicitConversion will filter out dead implicit conversions.
 | |
|   if (SourceExpr->getType() != T)
 | |
|     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
 | |
| 
 | |
|   // Now continue drilling into this expression.
 | |
| 
 | |
|   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
 | |
|     // The bound subexpressions in a PseudoObjectExpr are not reachable
 | |
|     // as transitive children.
 | |
|     // FIXME: Use a more uniform representation for this.
 | |
|     for (auto *SE : POE->semantics())
 | |
|       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
 | |
|         AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC, IsListInit);
 | |
|   }
 | |
| 
 | |
|   // Skip past explicit casts.
 | |
|   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
 | |
|     E = CE->getSubExpr()->IgnoreParenImpCasts();
 | |
|     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
 | |
|       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
 | |
|     return AnalyzeImplicitConversions(S, E, CC, IsListInit);
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     // Do a somewhat different check with comparison operators.
 | |
|     if (BO->isComparisonOp())
 | |
|       return AnalyzeComparison(S, BO);
 | |
| 
 | |
|     // And with simple assignments.
 | |
|     if (BO->getOpcode() == BO_Assign)
 | |
|       return AnalyzeAssignment(S, BO);
 | |
|     // And with compound assignments.
 | |
|     if (BO->isAssignmentOp())
 | |
|       return AnalyzeCompoundAssignment(S, BO);
 | |
|   }
 | |
| 
 | |
|   // These break the otherwise-useful invariant below.  Fortunately,
 | |
|   // we don't really need to recurse into them, because any internal
 | |
|   // expressions should have been analyzed already when they were
 | |
|   // built into statements.
 | |
|   if (isa<StmtExpr>(E)) return;
 | |
| 
 | |
|   // Don't descend into unevaluated contexts.
 | |
|   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
 | |
| 
 | |
|   // Now just recurse over the expression's children.
 | |
|   CC = E->getExprLoc();
 | |
|   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
 | |
|   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
 | |
|   for (Stmt *SubStmt : E->children()) {
 | |
|     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
 | |
|     if (!ChildExpr)
 | |
|       continue;
 | |
| 
 | |
|     if (IsLogicalAndOperator &&
 | |
|         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
 | |
|       // Ignore checking string literals that are in logical and operators.
 | |
|       // This is a common pattern for asserts.
 | |
|       continue;
 | |
|     AnalyzeImplicitConversions(S, ChildExpr, CC, IsListInit);
 | |
|   }
 | |
| 
 | |
|   if (BO && BO->isLogicalOp()) {
 | |
|     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
 | |
|     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
 | |
|       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
 | |
| 
 | |
|     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
 | |
|     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
 | |
|       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
 | |
|   }
 | |
| 
 | |
|   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
 | |
|     if (U->getOpcode() == UO_LNot) {
 | |
|       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
 | |
|     } else if (U->getOpcode() != UO_AddrOf) {
 | |
|       if (U->getSubExpr()->getType()->isAtomicType())
 | |
|         S.Diag(U->getSubExpr()->getBeginLoc(),
 | |
|                diag::warn_atomic_implicit_seq_cst);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Diagnose integer type and any valid implicit conversion to it.
 | |
| static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
 | |
|   // Taking into account implicit conversions,
 | |
|   // allow any integer.
 | |
|   if (!E->getType()->isIntegerType()) {
 | |
|     S.Diag(E->getBeginLoc(),
 | |
|            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
 | |
|     return true;
 | |
|   }
 | |
|   // Potentially emit standard warnings for implicit conversions if enabled
 | |
|   // using -Wconversion.
 | |
|   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
 | |
| // Returns true when emitting a warning about taking the address of a reference.
 | |
| static bool CheckForReference(Sema &SemaRef, const Expr *E,
 | |
|                               const PartialDiagnostic &PD) {
 | |
|   E = E->IgnoreParenImpCasts();
 | |
| 
 | |
|   const FunctionDecl *FD = nullptr;
 | |
| 
 | |
|   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
 | |
|     if (!DRE->getDecl()->getType()->isReferenceType())
 | |
|       return false;
 | |
|   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
 | |
|     if (!M->getMemberDecl()->getType()->isReferenceType())
 | |
|       return false;
 | |
|   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
 | |
|     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
 | |
|       return false;
 | |
|     FD = Call->getDirectCallee();
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   SemaRef.Diag(E->getExprLoc(), PD);
 | |
| 
 | |
|   // If possible, point to location of function.
 | |
|   if (FD) {
 | |
|     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Returns true if the SourceLocation is expanded from any macro body.
 | |
| // Returns false if the SourceLocation is invalid, is from not in a macro
 | |
| // expansion, or is from expanded from a top-level macro argument.
 | |
| static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
 | |
|   if (Loc.isInvalid())
 | |
|     return false;
 | |
| 
 | |
|   while (Loc.isMacroID()) {
 | |
|     if (SM.isMacroBodyExpansion(Loc))
 | |
|       return true;
 | |
|     Loc = SM.getImmediateMacroCallerLoc(Loc);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Diagnose pointers that are always non-null.
 | |
| /// \param E the expression containing the pointer
 | |
| /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
 | |
| /// compared to a null pointer
 | |
| /// \param IsEqual True when the comparison is equal to a null pointer
 | |
| /// \param Range Extra SourceRange to highlight in the diagnostic
 | |
| void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
 | |
|                                         Expr::NullPointerConstantKind NullKind,
 | |
|                                         bool IsEqual, SourceRange Range) {
 | |
|   if (!E)
 | |
|     return;
 | |
| 
 | |
|   // Don't warn inside macros.
 | |
|   if (E->getExprLoc().isMacroID()) {
 | |
|     const SourceManager &SM = getSourceManager();
 | |
|     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
 | |
|         IsInAnyMacroBody(SM, Range.getBegin()))
 | |
|       return;
 | |
|   }
 | |
|   E = E->IgnoreImpCasts();
 | |
| 
 | |
|   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
 | |
| 
 | |
|   if (isa<CXXThisExpr>(E)) {
 | |
|     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
 | |
|                                 : diag::warn_this_bool_conversion;
 | |
|     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   bool IsAddressOf = false;
 | |
| 
 | |
|   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|     if (UO->getOpcode() != UO_AddrOf)
 | |
|       return;
 | |
|     IsAddressOf = true;
 | |
|     E = UO->getSubExpr();
 | |
|   }
 | |
| 
 | |
|   if (IsAddressOf) {
 | |
|     unsigned DiagID = IsCompare
 | |
|                           ? diag::warn_address_of_reference_null_compare
 | |
|                           : diag::warn_address_of_reference_bool_conversion;
 | |
|     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
 | |
|                                          << IsEqual;
 | |
|     if (CheckForReference(*this, E, PD)) {
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
 | |
|     bool IsParam = isa<NonNullAttr>(NonnullAttr);
 | |
|     std::string Str;
 | |
|     llvm::raw_string_ostream S(Str);
 | |
|     E->printPretty(S, nullptr, getPrintingPolicy());
 | |
|     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
 | |
|                                 : diag::warn_cast_nonnull_to_bool;
 | |
|     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
 | |
|       << E->getSourceRange() << Range << IsEqual;
 | |
|     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
 | |
|   };
 | |
| 
 | |
|   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
 | |
|   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
 | |
|     if (auto *Callee = Call->getDirectCallee()) {
 | |
|       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
 | |
|         ComplainAboutNonnullParamOrCall(A);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Expect to find a single Decl.  Skip anything more complicated.
 | |
|   ValueDecl *D = nullptr;
 | |
|   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
 | |
|     D = R->getDecl();
 | |
|   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
 | |
|     D = M->getMemberDecl();
 | |
|   }
 | |
| 
 | |
|   // Weak Decls can be null.
 | |
|   if (!D || D->isWeak())
 | |
|     return;
 | |
| 
 | |
|   // Check for parameter decl with nonnull attribute
 | |
|   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
 | |
|     if (getCurFunction() &&
 | |
|         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
 | |
|       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
 | |
|         ComplainAboutNonnullParamOrCall(A);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
 | |
|         // Skip function template not specialized yet.
 | |
|         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
 | |
|           return;
 | |
|         auto ParamIter = llvm::find(FD->parameters(), PV);
 | |
|         assert(ParamIter != FD->param_end());
 | |
|         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
 | |
| 
 | |
|         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
 | |
|           if (!NonNull->args_size()) {
 | |
|               ComplainAboutNonnullParamOrCall(NonNull);
 | |
|               return;
 | |
|           }
 | |
| 
 | |
|           for (const ParamIdx &ArgNo : NonNull->args()) {
 | |
|             if (ArgNo.getASTIndex() == ParamNo) {
 | |
|               ComplainAboutNonnullParamOrCall(NonNull);
 | |
|               return;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   QualType T = D->getType();
 | |
|   const bool IsArray = T->isArrayType();
 | |
|   const bool IsFunction = T->isFunctionType();
 | |
| 
 | |
|   // Address of function is used to silence the function warning.
 | |
|   if (IsAddressOf && IsFunction) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Found nothing.
 | |
|   if (!IsAddressOf && !IsFunction && !IsArray)
 | |
|     return;
 | |
| 
 | |
|   // Pretty print the expression for the diagnostic.
 | |
|   std::string Str;
 | |
|   llvm::raw_string_ostream S(Str);
 | |
|   E->printPretty(S, nullptr, getPrintingPolicy());
 | |
| 
 | |
|   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
 | |
|                               : diag::warn_impcast_pointer_to_bool;
 | |
|   enum {
 | |
|     AddressOf,
 | |
|     FunctionPointer,
 | |
|     ArrayPointer
 | |
|   } DiagType;
 | |
|   if (IsAddressOf)
 | |
|     DiagType = AddressOf;
 | |
|   else if (IsFunction)
 | |
|     DiagType = FunctionPointer;
 | |
|   else if (IsArray)
 | |
|     DiagType = ArrayPointer;
 | |
|   else
 | |
|     llvm_unreachable("Could not determine diagnostic.");
 | |
|   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
 | |
|                                 << Range << IsEqual;
 | |
| 
 | |
|   if (!IsFunction)
 | |
|     return;
 | |
| 
 | |
|   // Suggest '&' to silence the function warning.
 | |
|   Diag(E->getExprLoc(), diag::note_function_warning_silence)
 | |
|       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
 | |
| 
 | |
|   // Check to see if '()' fixit should be emitted.
 | |
|   QualType ReturnType;
 | |
|   UnresolvedSet<4> NonTemplateOverloads;
 | |
|   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
 | |
|   if (ReturnType.isNull())
 | |
|     return;
 | |
| 
 | |
|   if (IsCompare) {
 | |
|     // There are two cases here.  If there is null constant, the only suggest
 | |
|     // for a pointer return type.  If the null is 0, then suggest if the return
 | |
|     // type is a pointer or an integer type.
 | |
|     if (!ReturnType->isPointerType()) {
 | |
|       if (NullKind == Expr::NPCK_ZeroExpression ||
 | |
|           NullKind == Expr::NPCK_ZeroLiteral) {
 | |
|         if (!ReturnType->isIntegerType())
 | |
|           return;
 | |
|       } else {
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   } else { // !IsCompare
 | |
|     // For function to bool, only suggest if the function pointer has bool
 | |
|     // return type.
 | |
|     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
 | |
|       return;
 | |
|   }
 | |
|   Diag(E->getExprLoc(), diag::note_function_to_function_call)
 | |
|       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
 | |
| }
 | |
| 
 | |
| /// Diagnoses "dangerous" implicit conversions within the given
 | |
| /// expression (which is a full expression).  Implements -Wconversion
 | |
| /// and -Wsign-compare.
 | |
| ///
 | |
| /// \param CC the "context" location of the implicit conversion, i.e.
 | |
| ///   the most location of the syntactic entity requiring the implicit
 | |
| ///   conversion
 | |
| void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
 | |
|   // Don't diagnose in unevaluated contexts.
 | |
|   if (isUnevaluatedContext())
 | |
|     return;
 | |
| 
 | |
|   // Don't diagnose for value- or type-dependent expressions.
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   // Check for array bounds violations in cases where the check isn't triggered
 | |
|   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
 | |
|   // ArraySubscriptExpr is on the RHS of a variable initialization.
 | |
|   CheckArrayAccess(E);
 | |
| 
 | |
|   // This is not the right CC for (e.g.) a variable initialization.
 | |
|   AnalyzeImplicitConversions(*this, E, CC);
 | |
| }
 | |
| 
 | |
| /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
 | |
| /// Input argument E is a logical expression.
 | |
| void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
 | |
|   ::CheckBoolLikeConversion(*this, E, CC);
 | |
| }
 | |
| 
 | |
| /// Diagnose when expression is an integer constant expression and its evaluation
 | |
| /// results in integer overflow
 | |
| void Sema::CheckForIntOverflow (Expr *E) {
 | |
|   // Use a work list to deal with nested struct initializers.
 | |
|   SmallVector<Expr *, 2> Exprs(1, E);
 | |
| 
 | |
|   do {
 | |
|     Expr *OriginalE = Exprs.pop_back_val();
 | |
|     Expr *E = OriginalE->IgnoreParenCasts();
 | |
| 
 | |
|     if (isa<BinaryOperator>(E)) {
 | |
|       E->EvaluateForOverflow(Context);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
 | |
|       Exprs.append(InitList->inits().begin(), InitList->inits().end());
 | |
|     else if (isa<ObjCBoxedExpr>(OriginalE))
 | |
|       E->EvaluateForOverflow(Context);
 | |
|     else if (auto Call = dyn_cast<CallExpr>(E))
 | |
|       Exprs.append(Call->arg_begin(), Call->arg_end());
 | |
|     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
 | |
|       Exprs.append(Message->arg_begin(), Message->arg_end());
 | |
|   } while (!Exprs.empty());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Visitor for expressions which looks for unsequenced operations on the
 | |
| /// same object.
 | |
| class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
 | |
|   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
 | |
| 
 | |
|   /// A tree of sequenced regions within an expression. Two regions are
 | |
|   /// unsequenced if one is an ancestor or a descendent of the other. When we
 | |
|   /// finish processing an expression with sequencing, such as a comma
 | |
|   /// expression, we fold its tree nodes into its parent, since they are
 | |
|   /// unsequenced with respect to nodes we will visit later.
 | |
|   class SequenceTree {
 | |
|     struct Value {
 | |
|       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
 | |
|       unsigned Parent : 31;
 | |
|       unsigned Merged : 1;
 | |
|     };
 | |
|     SmallVector<Value, 8> Values;
 | |
| 
 | |
|   public:
 | |
|     /// A region within an expression which may be sequenced with respect
 | |
|     /// to some other region.
 | |
|     class Seq {
 | |
|       friend class SequenceTree;
 | |
| 
 | |
|       unsigned Index;
 | |
| 
 | |
|       explicit Seq(unsigned N) : Index(N) {}
 | |
| 
 | |
|     public:
 | |
|       Seq() : Index(0) {}
 | |
|     };
 | |
| 
 | |
|     SequenceTree() { Values.push_back(Value(0)); }
 | |
|     Seq root() const { return Seq(0); }
 | |
| 
 | |
|     /// Create a new sequence of operations, which is an unsequenced
 | |
|     /// subset of \p Parent. This sequence of operations is sequenced with
 | |
|     /// respect to other children of \p Parent.
 | |
|     Seq allocate(Seq Parent) {
 | |
|       Values.push_back(Value(Parent.Index));
 | |
|       return Seq(Values.size() - 1);
 | |
|     }
 | |
| 
 | |
|     /// Merge a sequence of operations into its parent.
 | |
|     void merge(Seq S) {
 | |
|       Values[S.Index].Merged = true;
 | |
|     }
 | |
| 
 | |
|     /// Determine whether two operations are unsequenced. This operation
 | |
|     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
 | |
|     /// should have been merged into its parent as appropriate.
 | |
|     bool isUnsequenced(Seq Cur, Seq Old) {
 | |
|       unsigned C = representative(Cur.Index);
 | |
|       unsigned Target = representative(Old.Index);
 | |
|       while (C >= Target) {
 | |
|         if (C == Target)
 | |
|           return true;
 | |
|         C = Values[C].Parent;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// Pick a representative for a sequence.
 | |
|     unsigned representative(unsigned K) {
 | |
|       if (Values[K].Merged)
 | |
|         // Perform path compression as we go.
 | |
|         return Values[K].Parent = representative(Values[K].Parent);
 | |
|       return K;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// An object for which we can track unsequenced uses.
 | |
|   using Object = const NamedDecl *;
 | |
| 
 | |
|   /// Different flavors of object usage which we track. We only track the
 | |
|   /// least-sequenced usage of each kind.
 | |
|   enum UsageKind {
 | |
|     /// A read of an object. Multiple unsequenced reads are OK.
 | |
|     UK_Use,
 | |
| 
 | |
|     /// A modification of an object which is sequenced before the value
 | |
|     /// computation of the expression, such as ++n in C++.
 | |
|     UK_ModAsValue,
 | |
| 
 | |
|     /// A modification of an object which is not sequenced before the value
 | |
|     /// computation of the expression, such as n++.
 | |
|     UK_ModAsSideEffect,
 | |
| 
 | |
|     UK_Count = UK_ModAsSideEffect + 1
 | |
|   };
 | |
| 
 | |
|   /// Bundle together a sequencing region and the expression corresponding
 | |
|   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
 | |
|   struct Usage {
 | |
|     const Expr *UsageExpr;
 | |
|     SequenceTree::Seq Seq;
 | |
| 
 | |
|     Usage() : UsageExpr(nullptr), Seq() {}
 | |
|   };
 | |
| 
 | |
|   struct UsageInfo {
 | |
|     Usage Uses[UK_Count];
 | |
| 
 | |
|     /// Have we issued a diagnostic for this object already?
 | |
|     bool Diagnosed;
 | |
| 
 | |
|     UsageInfo() : Uses(), Diagnosed(false) {}
 | |
|   };
 | |
|   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
 | |
| 
 | |
|   Sema &SemaRef;
 | |
| 
 | |
|   /// Sequenced regions within the expression.
 | |
|   SequenceTree Tree;
 | |
| 
 | |
|   /// Declaration modifications and references which we have seen.
 | |
|   UsageInfoMap UsageMap;
 | |
| 
 | |
|   /// The region we are currently within.
 | |
|   SequenceTree::Seq Region;
 | |
| 
 | |
|   /// Filled in with declarations which were modified as a side-effect
 | |
|   /// (that is, post-increment operations).
 | |
|   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
 | |
| 
 | |
|   /// Expressions to check later. We defer checking these to reduce
 | |
|   /// stack usage.
 | |
|   SmallVectorImpl<const Expr *> &WorkList;
 | |
| 
 | |
|   /// RAII object wrapping the visitation of a sequenced subexpression of an
 | |
|   /// expression. At the end of this process, the side-effects of the evaluation
 | |
|   /// become sequenced with respect to the value computation of the result, so
 | |
|   /// we downgrade any UK_ModAsSideEffect within the evaluation to
 | |
|   /// UK_ModAsValue.
 | |
|   struct SequencedSubexpression {
 | |
|     SequencedSubexpression(SequenceChecker &Self)
 | |
|       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
 | |
|       Self.ModAsSideEffect = &ModAsSideEffect;
 | |
|     }
 | |
| 
 | |
|     ~SequencedSubexpression() {
 | |
|       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
 | |
|         // Add a new usage with usage kind UK_ModAsValue, and then restore
 | |
|         // the previous usage with UK_ModAsSideEffect (thus clearing it if
 | |
|         // the previous one was empty).
 | |
|         UsageInfo &UI = Self.UsageMap[M.first];
 | |
|         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
 | |
|         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
 | |
|         SideEffectUsage = M.second;
 | |
|       }
 | |
|       Self.ModAsSideEffect = OldModAsSideEffect;
 | |
|     }
 | |
| 
 | |
|     SequenceChecker &Self;
 | |
|     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
 | |
|     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
 | |
|   };
 | |
| 
 | |
|   /// RAII object wrapping the visitation of a subexpression which we might
 | |
|   /// choose to evaluate as a constant. If any subexpression is evaluated and
 | |
|   /// found to be non-constant, this allows us to suppress the evaluation of
 | |
|   /// the outer expression.
 | |
|   class EvaluationTracker {
 | |
|   public:
 | |
|     EvaluationTracker(SequenceChecker &Self)
 | |
|         : Self(Self), Prev(Self.EvalTracker) {
 | |
|       Self.EvalTracker = this;
 | |
|     }
 | |
| 
 | |
|     ~EvaluationTracker() {
 | |
|       Self.EvalTracker = Prev;
 | |
|       if (Prev)
 | |
|         Prev->EvalOK &= EvalOK;
 | |
|     }
 | |
| 
 | |
|     bool evaluate(const Expr *E, bool &Result) {
 | |
|       if (!EvalOK || E->isValueDependent())
 | |
|         return false;
 | |
|       EvalOK = E->EvaluateAsBooleanCondition(
 | |
|           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
 | |
|       return EvalOK;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     SequenceChecker &Self;
 | |
|     EvaluationTracker *Prev;
 | |
|     bool EvalOK = true;
 | |
|   } *EvalTracker = nullptr;
 | |
| 
 | |
|   /// Find the object which is produced by the specified expression,
 | |
|   /// if any.
 | |
|   Object getObject(const Expr *E, bool Mod) const {
 | |
|     E = E->IgnoreParenCasts();
 | |
|     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
 | |
|         return getObject(UO->getSubExpr(), Mod);
 | |
|     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|       if (BO->getOpcode() == BO_Comma)
 | |
|         return getObject(BO->getRHS(), Mod);
 | |
|       if (Mod && BO->isAssignmentOp())
 | |
|         return getObject(BO->getLHS(), Mod);
 | |
|     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
 | |
|       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
 | |
|       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
 | |
|         return ME->getMemberDecl();
 | |
|     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | |
|       // FIXME: If this is a reference, map through to its value.
 | |
|       return DRE->getDecl();
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   /// Note that an object \p O was modified or used by an expression
 | |
|   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
 | |
|   /// the object \p O as obtained via the \p UsageMap.
 | |
|   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
 | |
|     // Get the old usage for the given object and usage kind.
 | |
|     Usage &U = UI.Uses[UK];
 | |
|     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
 | |
|       // If we have a modification as side effect and are in a sequenced
 | |
|       // subexpression, save the old Usage so that we can restore it later
 | |
|       // in SequencedSubexpression::~SequencedSubexpression.
 | |
|       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
 | |
|         ModAsSideEffect->push_back(std::make_pair(O, U));
 | |
|       // Then record the new usage with the current sequencing region.
 | |
|       U.UsageExpr = UsageExpr;
 | |
|       U.Seq = Region;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Check whether a modification or use of an object \p O in an expression
 | |
|   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
 | |
|   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
 | |
|   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
 | |
|   /// usage and false we are checking for a mod-use unsequenced usage.
 | |
|   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
 | |
|                   UsageKind OtherKind, bool IsModMod) {
 | |
|     if (UI.Diagnosed)
 | |
|       return;
 | |
| 
 | |
|     const Usage &U = UI.Uses[OtherKind];
 | |
|     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
 | |
|       return;
 | |
| 
 | |
|     const Expr *Mod = U.UsageExpr;
 | |
|     const Expr *ModOrUse = UsageExpr;
 | |
|     if (OtherKind == UK_Use)
 | |
|       std::swap(Mod, ModOrUse);
 | |
| 
 | |
|     SemaRef.DiagRuntimeBehavior(
 | |
|         Mod->getExprLoc(), {Mod, ModOrUse},
 | |
|         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
 | |
|                                : diag::warn_unsequenced_mod_use)
 | |
|             << O << SourceRange(ModOrUse->getExprLoc()));
 | |
|     UI.Diagnosed = true;
 | |
|   }
 | |
| 
 | |
|   // A note on note{Pre, Post}{Use, Mod}:
 | |
|   //
 | |
|   // (It helps to follow the algorithm with an expression such as
 | |
|   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
 | |
|   //  operations before C++17 and both are well-defined in C++17).
 | |
|   //
 | |
|   // When visiting a node which uses/modify an object we first call notePreUse
 | |
|   // or notePreMod before visiting its sub-expression(s). At this point the
 | |
|   // children of the current node have not yet been visited and so the eventual
 | |
|   // uses/modifications resulting from the children of the current node have not
 | |
|   // been recorded yet.
 | |
|   //
 | |
|   // We then visit the children of the current node. After that notePostUse or
 | |
|   // notePostMod is called. These will 1) detect an unsequenced modification
 | |
|   // as side effect (as in "k++ + k") and 2) add a new usage with the
 | |
|   // appropriate usage kind.
 | |
|   //
 | |
|   // We also have to be careful that some operation sequences modification as
 | |
|   // side effect as well (for example: || or ,). To account for this we wrap
 | |
|   // the visitation of such a sub-expression (for example: the LHS of || or ,)
 | |
|   // with SequencedSubexpression. SequencedSubexpression is an RAII object
 | |
|   // which record usages which are modifications as side effect, and then
 | |
|   // downgrade them (or more accurately restore the previous usage which was a
 | |
|   // modification as side effect) when exiting the scope of the sequenced
 | |
|   // subexpression.
 | |
| 
 | |
|   void notePreUse(Object O, const Expr *UseExpr) {
 | |
|     UsageInfo &UI = UsageMap[O];
 | |
|     // Uses conflict with other modifications.
 | |
|     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
 | |
|   }
 | |
| 
 | |
|   void notePostUse(Object O, const Expr *UseExpr) {
 | |
|     UsageInfo &UI = UsageMap[O];
 | |
|     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
 | |
|                /*IsModMod=*/false);
 | |
|     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
 | |
|   }
 | |
| 
 | |
|   void notePreMod(Object O, const Expr *ModExpr) {
 | |
|     UsageInfo &UI = UsageMap[O];
 | |
|     // Modifications conflict with other modifications and with uses.
 | |
|     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
 | |
|     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
 | |
|   }
 | |
| 
 | |
|   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
 | |
|     UsageInfo &UI = UsageMap[O];
 | |
|     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
 | |
|                /*IsModMod=*/true);
 | |
|     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   SequenceChecker(Sema &S, const Expr *E,
 | |
|                   SmallVectorImpl<const Expr *> &WorkList)
 | |
|       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
 | |
|     Visit(E);
 | |
|     // Silence a -Wunused-private-field since WorkList is now unused.
 | |
|     // TODO: Evaluate if it can be used, and if not remove it.
 | |
|     (void)this->WorkList;
 | |
|   }
 | |
| 
 | |
|   void VisitStmt(const Stmt *S) {
 | |
|     // Skip all statements which aren't expressions for now.
 | |
|   }
 | |
| 
 | |
|   void VisitExpr(const Expr *E) {
 | |
|     // By default, just recurse to evaluated subexpressions.
 | |
|     Base::VisitStmt(E);
 | |
|   }
 | |
| 
 | |
|   void VisitCastExpr(const CastExpr *E) {
 | |
|     Object O = Object();
 | |
|     if (E->getCastKind() == CK_LValueToRValue)
 | |
|       O = getObject(E->getSubExpr(), false);
 | |
| 
 | |
|     if (O)
 | |
|       notePreUse(O, E);
 | |
|     VisitExpr(E);
 | |
|     if (O)
 | |
|       notePostUse(O, E);
 | |
|   }
 | |
| 
 | |
|   void VisitSequencedExpressions(const Expr *SequencedBefore,
 | |
|                                  const Expr *SequencedAfter) {
 | |
|     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
 | |
|     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
 | |
|     SequenceTree::Seq OldRegion = Region;
 | |
| 
 | |
|     {
 | |
|       SequencedSubexpression SeqBefore(*this);
 | |
|       Region = BeforeRegion;
 | |
|       Visit(SequencedBefore);
 | |
|     }
 | |
| 
 | |
|     Region = AfterRegion;
 | |
|     Visit(SequencedAfter);
 | |
| 
 | |
|     Region = OldRegion;
 | |
| 
 | |
|     Tree.merge(BeforeRegion);
 | |
|     Tree.merge(AfterRegion);
 | |
|   }
 | |
| 
 | |
|   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
 | |
|     // C++17 [expr.sub]p1:
 | |
|     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
 | |
|     //   expression E1 is sequenced before the expression E2.
 | |
|     if (SemaRef.getLangOpts().CPlusPlus17)
 | |
|       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
 | |
|     else {
 | |
|       Visit(ASE->getLHS());
 | |
|       Visit(ASE->getRHS());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
 | |
|   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
 | |
|   void VisitBinPtrMem(const BinaryOperator *BO) {
 | |
|     // C++17 [expr.mptr.oper]p4:
 | |
|     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
 | |
|     //  the expression E1 is sequenced before the expression E2.
 | |
|     if (SemaRef.getLangOpts().CPlusPlus17)
 | |
|       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
 | |
|     else {
 | |
|       Visit(BO->getLHS());
 | |
|       Visit(BO->getRHS());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
 | |
|   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
 | |
|   void VisitBinShlShr(const BinaryOperator *BO) {
 | |
|     // C++17 [expr.shift]p4:
 | |
|     //  The expression E1 is sequenced before the expression E2.
 | |
|     if (SemaRef.getLangOpts().CPlusPlus17)
 | |
|       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
 | |
|     else {
 | |
|       Visit(BO->getLHS());
 | |
|       Visit(BO->getRHS());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitBinComma(const BinaryOperator *BO) {
 | |
|     // C++11 [expr.comma]p1:
 | |
|     //   Every value computation and side effect associated with the left
 | |
|     //   expression is sequenced before every value computation and side
 | |
|     //   effect associated with the right expression.
 | |
|     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
 | |
|   }
 | |
| 
 | |
|   void VisitBinAssign(const BinaryOperator *BO) {
 | |
|     SequenceTree::Seq RHSRegion;
 | |
|     SequenceTree::Seq LHSRegion;
 | |
|     if (SemaRef.getLangOpts().CPlusPlus17) {
 | |
|       RHSRegion = Tree.allocate(Region);
 | |
|       LHSRegion = Tree.allocate(Region);
 | |
|     } else {
 | |
|       RHSRegion = Region;
 | |
|       LHSRegion = Region;
 | |
|     }
 | |
|     SequenceTree::Seq OldRegion = Region;
 | |
| 
 | |
|     // C++11 [expr.ass]p1:
 | |
|     //  [...] the assignment is sequenced after the value computation
 | |
|     //  of the right and left operands, [...]
 | |
|     //
 | |
|     // so check it before inspecting the operands and update the
 | |
|     // map afterwards.
 | |
|     Object O = getObject(BO->getLHS(), /*Mod=*/true);
 | |
|     if (O)
 | |
|       notePreMod(O, BO);
 | |
| 
 | |
|     if (SemaRef.getLangOpts().CPlusPlus17) {
 | |
|       // C++17 [expr.ass]p1:
 | |
|       //  [...] The right operand is sequenced before the left operand. [...]
 | |
|       {
 | |
|         SequencedSubexpression SeqBefore(*this);
 | |
|         Region = RHSRegion;
 | |
|         Visit(BO->getRHS());
 | |
|       }
 | |
| 
 | |
|       Region = LHSRegion;
 | |
|       Visit(BO->getLHS());
 | |
| 
 | |
|       if (O && isa<CompoundAssignOperator>(BO))
 | |
|         notePostUse(O, BO);
 | |
| 
 | |
|     } else {
 | |
|       // C++11 does not specify any sequencing between the LHS and RHS.
 | |
|       Region = LHSRegion;
 | |
|       Visit(BO->getLHS());
 | |
| 
 | |
|       if (O && isa<CompoundAssignOperator>(BO))
 | |
|         notePostUse(O, BO);
 | |
| 
 | |
|       Region = RHSRegion;
 | |
|       Visit(BO->getRHS());
 | |
|     }
 | |
| 
 | |
|     // C++11 [expr.ass]p1:
 | |
|     //  the assignment is sequenced [...] before the value computation of the
 | |
|     //  assignment expression.
 | |
|     // C11 6.5.16/3 has no such rule.
 | |
|     Region = OldRegion;
 | |
|     if (O)
 | |
|       notePostMod(O, BO,
 | |
|                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
 | |
|                                                   : UK_ModAsSideEffect);
 | |
|     if (SemaRef.getLangOpts().CPlusPlus17) {
 | |
|       Tree.merge(RHSRegion);
 | |
|       Tree.merge(LHSRegion);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
 | |
|     VisitBinAssign(CAO);
 | |
|   }
 | |
| 
 | |
|   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
 | |
|   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
 | |
|   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
 | |
|     Object O = getObject(UO->getSubExpr(), true);
 | |
|     if (!O)
 | |
|       return VisitExpr(UO);
 | |
| 
 | |
|     notePreMod(O, UO);
 | |
|     Visit(UO->getSubExpr());
 | |
|     // C++11 [expr.pre.incr]p1:
 | |
|     //   the expression ++x is equivalent to x+=1
 | |
|     notePostMod(O, UO,
 | |
|                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
 | |
|                                                 : UK_ModAsSideEffect);
 | |
|   }
 | |
| 
 | |
|   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
 | |
|   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
 | |
|   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
 | |
|     Object O = getObject(UO->getSubExpr(), true);
 | |
|     if (!O)
 | |
|       return VisitExpr(UO);
 | |
| 
 | |
|     notePreMod(O, UO);
 | |
|     Visit(UO->getSubExpr());
 | |
|     notePostMod(O, UO, UK_ModAsSideEffect);
 | |
|   }
 | |
| 
 | |
|   void VisitBinLOr(const BinaryOperator *BO) {
 | |
|     // C++11 [expr.log.or]p2:
 | |
|     //  If the second expression is evaluated, every value computation and
 | |
|     //  side effect associated with the first expression is sequenced before
 | |
|     //  every value computation and side effect associated with the
 | |
|     //  second expression.
 | |
|     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
 | |
|     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
 | |
|     SequenceTree::Seq OldRegion = Region;
 | |
| 
 | |
|     EvaluationTracker Eval(*this);
 | |
|     {
 | |
|       SequencedSubexpression Sequenced(*this);
 | |
|       Region = LHSRegion;
 | |
|       Visit(BO->getLHS());
 | |
|     }
 | |
| 
 | |
|     // C++11 [expr.log.or]p1:
 | |
|     //  [...] the second operand is not evaluated if the first operand
 | |
|     //  evaluates to true.
 | |
|     bool EvalResult = false;
 | |
|     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
 | |
|     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
 | |
|     if (ShouldVisitRHS) {
 | |
|       Region = RHSRegion;
 | |
|       Visit(BO->getRHS());
 | |
|     }
 | |
| 
 | |
|     Region = OldRegion;
 | |
|     Tree.merge(LHSRegion);
 | |
|     Tree.merge(RHSRegion);
 | |
|   }
 | |
| 
 | |
|   void VisitBinLAnd(const BinaryOperator *BO) {
 | |
|     // C++11 [expr.log.and]p2:
 | |
|     //  If the second expression is evaluated, every value computation and
 | |
|     //  side effect associated with the first expression is sequenced before
 | |
|     //  every value computation and side effect associated with the
 | |
|     //  second expression.
 | |
|     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
 | |
|     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
 | |
|     SequenceTree::Seq OldRegion = Region;
 | |
| 
 | |
|     EvaluationTracker Eval(*this);
 | |
|     {
 | |
|       SequencedSubexpression Sequenced(*this);
 | |
|       Region = LHSRegion;
 | |
|       Visit(BO->getLHS());
 | |
|     }
 | |
| 
 | |
|     // C++11 [expr.log.and]p1:
 | |
|     //  [...] the second operand is not evaluated if the first operand is false.
 | |
|     bool EvalResult = false;
 | |
|     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
 | |
|     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
 | |
|     if (ShouldVisitRHS) {
 | |
|       Region = RHSRegion;
 | |
|       Visit(BO->getRHS());
 | |
|     }
 | |
| 
 | |
|     Region = OldRegion;
 | |
|     Tree.merge(LHSRegion);
 | |
|     Tree.merge(RHSRegion);
 | |
|   }
 | |
| 
 | |
|   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
 | |
|     // C++11 [expr.cond]p1:
 | |
|     //  [...] Every value computation and side effect associated with the first
 | |
|     //  expression is sequenced before every value computation and side effect
 | |
|     //  associated with the second or third expression.
 | |
|     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
 | |
| 
 | |
|     // No sequencing is specified between the true and false expression.
 | |
|     // However since exactly one of both is going to be evaluated we can
 | |
|     // consider them to be sequenced. This is needed to avoid warning on
 | |
|     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
 | |
|     // both the true and false expressions because we can't evaluate x.
 | |
|     // This will still allow us to detect an expression like (pre C++17)
 | |
|     // "(x ? y += 1 : y += 2) = y".
 | |
|     //
 | |
|     // We don't wrap the visitation of the true and false expression with
 | |
|     // SequencedSubexpression because we don't want to downgrade modifications
 | |
|     // as side effect in the true and false expressions after the visition
 | |
|     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
 | |
|     // not warn between the two "y++", but we should warn between the "y++"
 | |
|     // and the "y".
 | |
|     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
 | |
|     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
 | |
|     SequenceTree::Seq OldRegion = Region;
 | |
| 
 | |
|     EvaluationTracker Eval(*this);
 | |
|     {
 | |
|       SequencedSubexpression Sequenced(*this);
 | |
|       Region = ConditionRegion;
 | |
|       Visit(CO->getCond());
 | |
|     }
 | |
| 
 | |
|     // C++11 [expr.cond]p1:
 | |
|     // [...] The first expression is contextually converted to bool (Clause 4).
 | |
|     // It is evaluated and if it is true, the result of the conditional
 | |
|     // expression is the value of the second expression, otherwise that of the
 | |
|     // third expression. Only one of the second and third expressions is
 | |
|     // evaluated. [...]
 | |
|     bool EvalResult = false;
 | |
|     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
 | |
|     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
 | |
|     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
 | |
|     if (ShouldVisitTrueExpr) {
 | |
|       Region = TrueRegion;
 | |
|       Visit(CO->getTrueExpr());
 | |
|     }
 | |
|     if (ShouldVisitFalseExpr) {
 | |
|       Region = FalseRegion;
 | |
|       Visit(CO->getFalseExpr());
 | |
|     }
 | |
| 
 | |
|     Region = OldRegion;
 | |
|     Tree.merge(ConditionRegion);
 | |
|     Tree.merge(TrueRegion);
 | |
|     Tree.merge(FalseRegion);
 | |
|   }
 | |
| 
 | |
|   void VisitCallExpr(const CallExpr *CE) {
 | |
|     // C++11 [intro.execution]p15:
 | |
|     //   When calling a function [...], every value computation and side effect
 | |
|     //   associated with any argument expression, or with the postfix expression
 | |
|     //   designating the called function, is sequenced before execution of every
 | |
|     //   expression or statement in the body of the function [and thus before
 | |
|     //   the value computation of its result].
 | |
|     SequencedSubexpression Sequenced(*this);
 | |
|     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(),
 | |
|                                         [&] { Base::VisitCallExpr(CE); });
 | |
| 
 | |
|     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
 | |
|   }
 | |
| 
 | |
|   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
 | |
|     // This is a call, so all subexpressions are sequenced before the result.
 | |
|     SequencedSubexpression Sequenced(*this);
 | |
| 
 | |
|     if (!CCE->isListInitialization())
 | |
|       return VisitExpr(CCE);
 | |
| 
 | |
|     // In C++11, list initializations are sequenced.
 | |
|     SmallVector<SequenceTree::Seq, 32> Elts;
 | |
|     SequenceTree::Seq Parent = Region;
 | |
|     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
 | |
|                                               E = CCE->arg_end();
 | |
|          I != E; ++I) {
 | |
|       Region = Tree.allocate(Parent);
 | |
|       Elts.push_back(Region);
 | |
|       Visit(*I);
 | |
|     }
 | |
| 
 | |
|     // Forget that the initializers are sequenced.
 | |
|     Region = Parent;
 | |
|     for (unsigned I = 0; I < Elts.size(); ++I)
 | |
|       Tree.merge(Elts[I]);
 | |
|   }
 | |
| 
 | |
|   void VisitInitListExpr(const InitListExpr *ILE) {
 | |
|     if (!SemaRef.getLangOpts().CPlusPlus11)
 | |
|       return VisitExpr(ILE);
 | |
| 
 | |
|     // In C++11, list initializations are sequenced.
 | |
|     SmallVector<SequenceTree::Seq, 32> Elts;
 | |
|     SequenceTree::Seq Parent = Region;
 | |
|     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
 | |
|       const Expr *E = ILE->getInit(I);
 | |
|       if (!E)
 | |
|         continue;
 | |
|       Region = Tree.allocate(Parent);
 | |
|       Elts.push_back(Region);
 | |
|       Visit(E);
 | |
|     }
 | |
| 
 | |
|     // Forget that the initializers are sequenced.
 | |
|     Region = Parent;
 | |
|     for (unsigned I = 0; I < Elts.size(); ++I)
 | |
|       Tree.merge(Elts[I]);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| void Sema::CheckUnsequencedOperations(const Expr *E) {
 | |
|   SmallVector<const Expr *, 8> WorkList;
 | |
|   WorkList.push_back(E);
 | |
|   while (!WorkList.empty()) {
 | |
|     const Expr *Item = WorkList.pop_back_val();
 | |
|     SequenceChecker(*this, Item, WorkList);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
 | |
|                               bool IsConstexpr) {
 | |
|   llvm::SaveAndRestore<bool> ConstantContext(
 | |
|       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
 | |
|   CheckImplicitConversions(E, CheckLoc);
 | |
|   if (!E->isInstantiationDependent())
 | |
|     CheckUnsequencedOperations(E);
 | |
|   if (!IsConstexpr && !E->isValueDependent())
 | |
|     CheckForIntOverflow(E);
 | |
|   DiagnoseMisalignedMembers();
 | |
| }
 | |
| 
 | |
| void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
 | |
|                                        FieldDecl *BitField,
 | |
|                                        Expr *Init) {
 | |
|   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
 | |
| }
 | |
| 
 | |
| static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
 | |
|                                          SourceLocation Loc) {
 | |
|   if (!PType->isVariablyModifiedType())
 | |
|     return;
 | |
|   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
 | |
|     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
 | |
|     return;
 | |
|   }
 | |
|   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
 | |
|     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
 | |
|     return;
 | |
|   }
 | |
|   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
 | |
|     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const ArrayType *AT = S.Context.getAsArrayType(PType);
 | |
|   if (!AT)
 | |
|     return;
 | |
| 
 | |
|   if (AT->getSizeModifier() != ArrayType::Star) {
 | |
|     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   S.Diag(Loc, diag::err_array_star_in_function_definition);
 | |
| }
 | |
| 
 | |
| /// CheckParmsForFunctionDef - Check that the parameters of the given
 | |
| /// function are appropriate for the definition of a function. This
 | |
| /// takes care of any checks that cannot be performed on the
 | |
| /// declaration itself, e.g., that the types of each of the function
 | |
| /// parameters are complete.
 | |
| bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
 | |
|                                     bool CheckParameterNames) {
 | |
|   bool HasInvalidParm = false;
 | |
|   for (ParmVarDecl *Param : Parameters) {
 | |
|     // C99 6.7.5.3p4: the parameters in a parameter type list in a
 | |
|     // function declarator that is part of a function definition of
 | |
|     // that function shall not have incomplete type.
 | |
|     //
 | |
|     // This is also C++ [dcl.fct]p6.
 | |
|     if (!Param->isInvalidDecl() &&
 | |
|         RequireCompleteType(Param->getLocation(), Param->getType(),
 | |
|                             diag::err_typecheck_decl_incomplete_type)) {
 | |
|       Param->setInvalidDecl();
 | |
|       HasInvalidParm = true;
 | |
|     }
 | |
| 
 | |
|     // C99 6.9.1p5: If the declarator includes a parameter type list, the
 | |
|     // declaration of each parameter shall include an identifier.
 | |
|     if (CheckParameterNames &&
 | |
|         Param->getIdentifier() == nullptr &&
 | |
|         !Param->isImplicit() &&
 | |
|         !getLangOpts().CPlusPlus)
 | |
|       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
 | |
| 
 | |
|     // C99 6.7.5.3p12:
 | |
|     //   If the function declarator is not part of a definition of that
 | |
|     //   function, parameters may have incomplete type and may use the [*]
 | |
|     //   notation in their sequences of declarator specifiers to specify
 | |
|     //   variable length array types.
 | |
|     QualType PType = Param->getOriginalType();
 | |
|     // FIXME: This diagnostic should point the '[*]' if source-location
 | |
|     // information is added for it.
 | |
|     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
 | |
| 
 | |
|     // If the parameter is a c++ class type and it has to be destructed in the
 | |
|     // callee function, declare the destructor so that it can be called by the
 | |
|     // callee function. Do not perform any direct access check on the dtor here.
 | |
|     if (!Param->isInvalidDecl()) {
 | |
|       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
 | |
|         if (!ClassDecl->isInvalidDecl() &&
 | |
|             !ClassDecl->hasIrrelevantDestructor() &&
 | |
|             !ClassDecl->isDependentContext() &&
 | |
|             ClassDecl->isParamDestroyedInCallee()) {
 | |
|           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
 | |
|           MarkFunctionReferenced(Param->getLocation(), Destructor);
 | |
|           DiagnoseUseOfDecl(Destructor, Param->getLocation());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Parameters with the pass_object_size attribute only need to be marked
 | |
|     // constant at function definitions. Because we lack information about
 | |
|     // whether we're on a declaration or definition when we're instantiating the
 | |
|     // attribute, we need to check for constness here.
 | |
|     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
 | |
|       if (!Param->getType().isConstQualified())
 | |
|         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
 | |
|             << Attr->getSpelling() << 1;
 | |
| 
 | |
|     // Check for parameter names shadowing fields from the class.
 | |
|     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
 | |
|       // The owning context for the parameter should be the function, but we
 | |
|       // want to see if this function's declaration context is a record.
 | |
|       DeclContext *DC = Param->getDeclContext();
 | |
|       if (DC && DC->isFunctionOrMethod()) {
 | |
|         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
 | |
|           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
 | |
|                                      RD, /*DeclIsField*/ false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return HasInvalidParm;
 | |
| }
 | |
| 
 | |
| /// A helper function to get the alignment of a Decl referred to by DeclRefExpr
 | |
| /// or MemberExpr.
 | |
| static CharUnits getDeclAlign(Expr *E, CharUnits TypeAlign,
 | |
|                               ASTContext &Context) {
 | |
|   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
 | |
|     return Context.getDeclAlign(DRE->getDecl());
 | |
| 
 | |
|   if (const auto *ME = dyn_cast<MemberExpr>(E))
 | |
|     return Context.getDeclAlign(ME->getMemberDecl());
 | |
| 
 | |
|   return TypeAlign;
 | |
| }
 | |
| 
 | |
| /// CheckCastAlign - Implements -Wcast-align, which warns when a
 | |
| /// pointer cast increases the alignment requirements.
 | |
| void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
 | |
|   // This is actually a lot of work to potentially be doing on every
 | |
|   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
 | |
|   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
 | |
|     return;
 | |
| 
 | |
|   // Ignore dependent types.
 | |
|   if (T->isDependentType() || Op->getType()->isDependentType())
 | |
|     return;
 | |
| 
 | |
|   // Require that the destination be a pointer type.
 | |
|   const PointerType *DestPtr = T->getAs<PointerType>();
 | |
|   if (!DestPtr) return;
 | |
| 
 | |
|   // If the destination has alignment 1, we're done.
 | |
|   QualType DestPointee = DestPtr->getPointeeType();
 | |
|   if (DestPointee->isIncompleteType()) return;
 | |
|   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
 | |
|   if (DestAlign.isOne()) return;
 | |
| 
 | |
|   // Require that the source be a pointer type.
 | |
|   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
 | |
|   if (!SrcPtr) return;
 | |
|   QualType SrcPointee = SrcPtr->getPointeeType();
 | |
| 
 | |
|   // Whitelist casts from cv void*.  We already implicitly
 | |
|   // whitelisted casts to cv void*, since they have alignment 1.
 | |
|   // Also whitelist casts involving incomplete types, which implicitly
 | |
|   // includes 'void'.
 | |
|   if (SrcPointee->isIncompleteType()) return;
 | |
| 
 | |
|   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
 | |
| 
 | |
|   if (auto *CE = dyn_cast<CastExpr>(Op)) {
 | |
|     if (CE->getCastKind() == CK_ArrayToPointerDecay)
 | |
|       SrcAlign = getDeclAlign(CE->getSubExpr(), SrcAlign, Context);
 | |
|   } else if (auto *UO = dyn_cast<UnaryOperator>(Op)) {
 | |
|     if (UO->getOpcode() == UO_AddrOf)
 | |
|       SrcAlign = getDeclAlign(UO->getSubExpr(), SrcAlign, Context);
 | |
|   }
 | |
| 
 | |
|   if (SrcAlign >= DestAlign) return;
 | |
| 
 | |
|   Diag(TRange.getBegin(), diag::warn_cast_align)
 | |
|     << Op->getType() << T
 | |
|     << static_cast<unsigned>(SrcAlign.getQuantity())
 | |
|     << static_cast<unsigned>(DestAlign.getQuantity())
 | |
|     << TRange << Op->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// Check whether this array fits the idiom of a size-one tail padded
 | |
| /// array member of a struct.
 | |
| ///
 | |
| /// We avoid emitting out-of-bounds access warnings for such arrays as they are
 | |
| /// commonly used to emulate flexible arrays in C89 code.
 | |
| static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
 | |
|                                     const NamedDecl *ND) {
 | |
|   if (Size != 1 || !ND) return false;
 | |
| 
 | |
|   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
 | |
|   if (!FD) return false;
 | |
| 
 | |
|   // Don't consider sizes resulting from macro expansions or template argument
 | |
|   // substitution to form C89 tail-padded arrays.
 | |
| 
 | |
|   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
 | |
|   while (TInfo) {
 | |
|     TypeLoc TL = TInfo->getTypeLoc();
 | |
|     // Look through typedefs.
 | |
|     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
 | |
|       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
 | |
|       TInfo = TDL->getTypeSourceInfo();
 | |
|       continue;
 | |
|     }
 | |
|     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
 | |
|       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
 | |
|       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
 | |
|         return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
 | |
|   if (!RD) return false;
 | |
|   if (RD->isUnion()) return false;
 | |
|   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|     if (!CRD->isStandardLayout()) return false;
 | |
|   }
 | |
| 
 | |
|   // See if this is the last field decl in the record.
 | |
|   const Decl *D = FD;
 | |
|   while ((D = D->getNextDeclInContext()))
 | |
|     if (isa<FieldDecl>(D))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
 | |
|                             const ArraySubscriptExpr *ASE,
 | |
|                             bool AllowOnePastEnd, bool IndexNegated) {
 | |
|   // Already diagnosed by the constant evaluator.
 | |
|   if (isConstantEvaluated())
 | |
|     return;
 | |
| 
 | |
|   IndexExpr = IndexExpr->IgnoreParenImpCasts();
 | |
|   if (IndexExpr->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   const Type *EffectiveType =
 | |
|       BaseExpr->getType()->getPointeeOrArrayElementType();
 | |
|   BaseExpr = BaseExpr->IgnoreParenCasts();
 | |
|   const ConstantArrayType *ArrayTy =
 | |
|       Context.getAsConstantArrayType(BaseExpr->getType());
 | |
| 
 | |
|   if (!ArrayTy)
 | |
|     return;
 | |
| 
 | |
|   const Type *BaseType = ArrayTy->getElementType().getTypePtr();
 | |
|   if (EffectiveType->isDependentType() || BaseType->isDependentType())
 | |
|     return;
 | |
| 
 | |
|   Expr::EvalResult Result;
 | |
|   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
 | |
|     return;
 | |
| 
 | |
|   llvm::APSInt index = Result.Val.getInt();
 | |
|   if (IndexNegated)
 | |
|     index = -index;
 | |
| 
 | |
|   const NamedDecl *ND = nullptr;
 | |
|   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
 | |
|     ND = DRE->getDecl();
 | |
|   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
 | |
|     ND = ME->getMemberDecl();
 | |
| 
 | |
|   if (index.isUnsigned() || !index.isNegative()) {
 | |
|     // It is possible that the type of the base expression after
 | |
|     // IgnoreParenCasts is incomplete, even though the type of the base
 | |
|     // expression before IgnoreParenCasts is complete (see PR39746 for an
 | |
|     // example). In this case we have no information about whether the array
 | |
|     // access exceeds the array bounds. However we can still diagnose an array
 | |
|     // access which precedes the array bounds.
 | |
|     if (BaseType->isIncompleteType())
 | |
|       return;
 | |
| 
 | |
|     llvm::APInt size = ArrayTy->getSize();
 | |
|     if (!size.isStrictlyPositive())
 | |
|       return;
 | |
| 
 | |
|     if (BaseType != EffectiveType) {
 | |
|       // Make sure we're comparing apples to apples when comparing index to size
 | |
|       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
 | |
|       uint64_t array_typesize = Context.getTypeSize(BaseType);
 | |
|       // Handle ptrarith_typesize being zero, such as when casting to void*
 | |
|       if (!ptrarith_typesize) ptrarith_typesize = 1;
 | |
|       if (ptrarith_typesize != array_typesize) {
 | |
|         // There's a cast to a different size type involved
 | |
|         uint64_t ratio = array_typesize / ptrarith_typesize;
 | |
|         // TODO: Be smarter about handling cases where array_typesize is not a
 | |
|         // multiple of ptrarith_typesize
 | |
|         if (ptrarith_typesize * ratio == array_typesize)
 | |
|           size *= llvm::APInt(size.getBitWidth(), ratio);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (size.getBitWidth() > index.getBitWidth())
 | |
|       index = index.zext(size.getBitWidth());
 | |
|     else if (size.getBitWidth() < index.getBitWidth())
 | |
|       size = size.zext(index.getBitWidth());
 | |
| 
 | |
|     // For array subscripting the index must be less than size, but for pointer
 | |
|     // arithmetic also allow the index (offset) to be equal to size since
 | |
|     // computing the next address after the end of the array is legal and
 | |
|     // commonly done e.g. in C++ iterators and range-based for loops.
 | |
|     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
 | |
|       return;
 | |
| 
 | |
|     // Also don't warn for arrays of size 1 which are members of some
 | |
|     // structure. These are often used to approximate flexible arrays in C89
 | |
|     // code.
 | |
|     if (IsTailPaddedMemberArray(*this, size, ND))
 | |
|       return;
 | |
| 
 | |
|     // Suppress the warning if the subscript expression (as identified by the
 | |
|     // ']' location) and the index expression are both from macro expansions
 | |
|     // within a system header.
 | |
|     if (ASE) {
 | |
|       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
 | |
|           ASE->getRBracketLoc());
 | |
|       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
 | |
|         SourceLocation IndexLoc =
 | |
|             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
 | |
|         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
 | |
|           return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
 | |
|     if (ASE)
 | |
|       DiagID = diag::warn_array_index_exceeds_bounds;
 | |
| 
 | |
|     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
 | |
|                         PDiag(DiagID) << index.toString(10, true)
 | |
|                                       << size.toString(10, true)
 | |
|                                       << (unsigned)size.getLimitedValue(~0U)
 | |
|                                       << IndexExpr->getSourceRange());
 | |
|   } else {
 | |
|     unsigned DiagID = diag::warn_array_index_precedes_bounds;
 | |
|     if (!ASE) {
 | |
|       DiagID = diag::warn_ptr_arith_precedes_bounds;
 | |
|       if (index.isNegative()) index = -index;
 | |
|     }
 | |
| 
 | |
|     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
 | |
|                         PDiag(DiagID) << index.toString(10, true)
 | |
|                                       << IndexExpr->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   if (!ND) {
 | |
|     // Try harder to find a NamedDecl to point at in the note.
 | |
|     while (const ArraySubscriptExpr *ASE =
 | |
|            dyn_cast<ArraySubscriptExpr>(BaseExpr))
 | |
|       BaseExpr = ASE->getBase()->IgnoreParenCasts();
 | |
|     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
 | |
|       ND = DRE->getDecl();
 | |
|     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
 | |
|       ND = ME->getMemberDecl();
 | |
|   }
 | |
| 
 | |
|   if (ND)
 | |
|     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
 | |
|                         PDiag(diag::note_array_declared_here)
 | |
|                             << ND->getDeclName());
 | |
| }
 | |
| 
 | |
| void Sema::CheckArrayAccess(const Expr *expr) {
 | |
|   int AllowOnePastEnd = 0;
 | |
|   while (expr) {
 | |
|     expr = expr->IgnoreParenImpCasts();
 | |
|     switch (expr->getStmtClass()) {
 | |
|       case Stmt::ArraySubscriptExprClass: {
 | |
|         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
 | |
|         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
 | |
|                          AllowOnePastEnd > 0);
 | |
|         expr = ASE->getBase();
 | |
|         break;
 | |
|       }
 | |
|       case Stmt::MemberExprClass: {
 | |
|         expr = cast<MemberExpr>(expr)->getBase();
 | |
|         break;
 | |
|       }
 | |
|       case Stmt::OMPArraySectionExprClass: {
 | |
|         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
 | |
|         if (ASE->getLowerBound())
 | |
|           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
 | |
|                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
 | |
|         return;
 | |
|       }
 | |
|       case Stmt::UnaryOperatorClass: {
 | |
|         // Only unwrap the * and & unary operators
 | |
|         const UnaryOperator *UO = cast<UnaryOperator>(expr);
 | |
|         expr = UO->getSubExpr();
 | |
|         switch (UO->getOpcode()) {
 | |
|           case UO_AddrOf:
 | |
|             AllowOnePastEnd++;
 | |
|             break;
 | |
|           case UO_Deref:
 | |
|             AllowOnePastEnd--;
 | |
|             break;
 | |
|           default:
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case Stmt::ConditionalOperatorClass: {
 | |
|         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
 | |
|         if (const Expr *lhs = cond->getLHS())
 | |
|           CheckArrayAccess(lhs);
 | |
|         if (const Expr *rhs = cond->getRHS())
 | |
|           CheckArrayAccess(rhs);
 | |
|         return;
 | |
|       }
 | |
|       case Stmt::CXXOperatorCallExprClass: {
 | |
|         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
 | |
|         for (const auto *Arg : OCE->arguments())
 | |
|           CheckArrayAccess(Arg);
 | |
|         return;
 | |
|       }
 | |
|       default:
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Objective-C retain cycles ----------------------------------//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct RetainCycleOwner {
 | |
|   VarDecl *Variable = nullptr;
 | |
|   SourceRange Range;
 | |
|   SourceLocation Loc;
 | |
|   bool Indirect = false;
 | |
| 
 | |
|   RetainCycleOwner() = default;
 | |
| 
 | |
|   void setLocsFrom(Expr *e) {
 | |
|     Loc = e->getExprLoc();
 | |
|     Range = e->getSourceRange();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| /// Consider whether capturing the given variable can possibly lead to
 | |
| /// a retain cycle.
 | |
| static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
 | |
|   // In ARC, it's captured strongly iff the variable has __strong
 | |
|   // lifetime.  In MRR, it's captured strongly if the variable is
 | |
|   // __block and has an appropriate type.
 | |
|   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
 | |
|     return false;
 | |
| 
 | |
|   owner.Variable = var;
 | |
|   if (ref)
 | |
|     owner.setLocsFrom(ref);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
 | |
|   while (true) {
 | |
|     e = e->IgnoreParens();
 | |
|     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
 | |
|       switch (cast->getCastKind()) {
 | |
|       case CK_BitCast:
 | |
|       case CK_LValueBitCast:
 | |
|       case CK_LValueToRValue:
 | |
|       case CK_ARCReclaimReturnedObject:
 | |
|         e = cast->getSubExpr();
 | |
|         continue;
 | |
| 
 | |
|       default:
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
 | |
|       ObjCIvarDecl *ivar = ref->getDecl();
 | |
|       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
 | |
|         return false;
 | |
| 
 | |
|       // Try to find a retain cycle in the base.
 | |
|       if (!findRetainCycleOwner(S, ref->getBase(), owner))
 | |
|         return false;
 | |
| 
 | |
|       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
 | |
|       owner.Indirect = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
 | |
|       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
 | |
|       if (!var) return false;
 | |
|       return considerVariable(var, ref, owner);
 | |
|     }
 | |
| 
 | |
|     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
 | |
|       if (member->isArrow()) return false;
 | |
| 
 | |
|       // Don't count this as an indirect ownership.
 | |
|       e = member->getBase();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
 | |
|       // Only pay attention to pseudo-objects on property references.
 | |
|       ObjCPropertyRefExpr *pre
 | |
|         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
 | |
|                                               ->IgnoreParens());
 | |
|       if (!pre) return false;
 | |
|       if (pre->isImplicitProperty()) return false;
 | |
|       ObjCPropertyDecl *property = pre->getExplicitProperty();
 | |
|       if (!property->isRetaining() &&
 | |
|           !(property->getPropertyIvarDecl() &&
 | |
|             property->getPropertyIvarDecl()->getType()
 | |
|               .getObjCLifetime() == Qualifiers::OCL_Strong))
 | |
|           return false;
 | |
| 
 | |
|       owner.Indirect = true;
 | |
|       if (pre->isSuperReceiver()) {
 | |
|         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
 | |
|         if (!owner.Variable)
 | |
|           return false;
 | |
|         owner.Loc = pre->getLocation();
 | |
|         owner.Range = pre->getSourceRange();
 | |
|         return true;
 | |
|       }
 | |
|       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
 | |
|                               ->getSourceExpr());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Array ivars?
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
 | |
|     ASTContext &Context;
 | |
|     VarDecl *Variable;
 | |
|     Expr *Capturer = nullptr;
 | |
|     bool VarWillBeReased = false;
 | |
| 
 | |
|     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
 | |
|         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
 | |
|           Context(Context), Variable(variable) {}
 | |
| 
 | |
|     void VisitDeclRefExpr(DeclRefExpr *ref) {
 | |
|       if (ref->getDecl() == Variable && !Capturer)
 | |
|         Capturer = ref;
 | |
|     }
 | |
| 
 | |
|     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
 | |
|       if (Capturer) return;
 | |
|       Visit(ref->getBase());
 | |
|       if (Capturer && ref->isFreeIvar())
 | |
|         Capturer = ref;
 | |
|     }
 | |
| 
 | |
|     void VisitBlockExpr(BlockExpr *block) {
 | |
|       // Look inside nested blocks
 | |
|       if (block->getBlockDecl()->capturesVariable(Variable))
 | |
|         Visit(block->getBlockDecl()->getBody());
 | |
|     }
 | |
| 
 | |
|     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
 | |
|       if (Capturer) return;
 | |
|       if (OVE->getSourceExpr())
 | |
|         Visit(OVE->getSourceExpr());
 | |
|     }
 | |
| 
 | |
|     void VisitBinaryOperator(BinaryOperator *BinOp) {
 | |
|       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
 | |
|         return;
 | |
|       Expr *LHS = BinOp->getLHS();
 | |
|       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
 | |
|         if (DRE->getDecl() != Variable)
 | |
|           return;
 | |
|         if (Expr *RHS = BinOp->getRHS()) {
 | |
|           RHS = RHS->IgnoreParenCasts();
 | |
|           llvm::APSInt Value;
 | |
|           VarWillBeReased =
 | |
|             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| /// Check whether the given argument is a block which captures a
 | |
| /// variable.
 | |
| static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
 | |
|   assert(owner.Variable && owner.Loc.isValid());
 | |
| 
 | |
|   e = e->IgnoreParenCasts();
 | |
| 
 | |
|   // Look through [^{...} copy] and Block_copy(^{...}).
 | |
|   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
 | |
|     Selector Cmd = ME->getSelector();
 | |
|     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
 | |
|       e = ME->getInstanceReceiver();
 | |
|       if (!e)
 | |
|         return nullptr;
 | |
|       e = e->IgnoreParenCasts();
 | |
|     }
 | |
|   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
 | |
|     if (CE->getNumArgs() == 1) {
 | |
|       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
 | |
|       if (Fn) {
 | |
|         const IdentifierInfo *FnI = Fn->getIdentifier();
 | |
|         if (FnI && FnI->isStr("_Block_copy")) {
 | |
|           e = CE->getArg(0)->IgnoreParenCasts();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BlockExpr *block = dyn_cast<BlockExpr>(e);
 | |
|   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
 | |
|     return nullptr;
 | |
| 
 | |
|   FindCaptureVisitor visitor(S.Context, owner.Variable);
 | |
|   visitor.Visit(block->getBlockDecl()->getBody());
 | |
|   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
 | |
| }
 | |
| 
 | |
| static void diagnoseRetainCycle(Sema &S, Expr *capturer,
 | |
|                                 RetainCycleOwner &owner) {
 | |
|   assert(capturer);
 | |
|   assert(owner.Variable && owner.Loc.isValid());
 | |
| 
 | |
|   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
 | |
|     << owner.Variable << capturer->getSourceRange();
 | |
|   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
 | |
|     << owner.Indirect << owner.Range;
 | |
| }
 | |
| 
 | |
| /// Check for a keyword selector that starts with the word 'add' or
 | |
| /// 'set'.
 | |
| static bool isSetterLikeSelector(Selector sel) {
 | |
|   if (sel.isUnarySelector()) return false;
 | |
| 
 | |
|   StringRef str = sel.getNameForSlot(0);
 | |
|   while (!str.empty() && str.front() == '_') str = str.substr(1);
 | |
|   if (str.startswith("set"))
 | |
|     str = str.substr(3);
 | |
|   else if (str.startswith("add")) {
 | |
|     // Specially whitelist 'addOperationWithBlock:'.
 | |
|     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
 | |
|       return false;
 | |
|     str = str.substr(3);
 | |
|   }
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   if (str.empty()) return true;
 | |
|   return !isLowercase(str.front());
 | |
| }
 | |
| 
 | |
| static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
 | |
|                                                     ObjCMessageExpr *Message) {
 | |
|   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
 | |
|                                                 Message->getReceiverInterface(),
 | |
|                                                 NSAPI::ClassId_NSMutableArray);
 | |
|   if (!IsMutableArray) {
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   Selector Sel = Message->getSelector();
 | |
| 
 | |
|   Optional<NSAPI::NSArrayMethodKind> MKOpt =
 | |
|     S.NSAPIObj->getNSArrayMethodKind(Sel);
 | |
|   if (!MKOpt) {
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   NSAPI::NSArrayMethodKind MK = *MKOpt;
 | |
| 
 | |
|   switch (MK) {
 | |
|     case NSAPI::NSMutableArr_addObject:
 | |
|     case NSAPI::NSMutableArr_insertObjectAtIndex:
 | |
|     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
 | |
|       return 0;
 | |
|     case NSAPI::NSMutableArr_replaceObjectAtIndex:
 | |
|       return 1;
 | |
| 
 | |
|     default:
 | |
|       return None;
 | |
|   }
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static
 | |
| Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
 | |
|                                                   ObjCMessageExpr *Message) {
 | |
|   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
 | |
|                                             Message->getReceiverInterface(),
 | |
|                                             NSAPI::ClassId_NSMutableDictionary);
 | |
|   if (!IsMutableDictionary) {
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   Selector Sel = Message->getSelector();
 | |
| 
 | |
|   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
 | |
|     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
 | |
|   if (!MKOpt) {
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
 | |
| 
 | |
|   switch (MK) {
 | |
|     case NSAPI::NSMutableDict_setObjectForKey:
 | |
|     case NSAPI::NSMutableDict_setValueForKey:
 | |
|     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
 | |
|       return 0;
 | |
| 
 | |
|     default:
 | |
|       return None;
 | |
|   }
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
 | |
|   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
 | |
|                                                 Message->getReceiverInterface(),
 | |
|                                                 NSAPI::ClassId_NSMutableSet);
 | |
| 
 | |
|   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
 | |
|                                             Message->getReceiverInterface(),
 | |
|                                             NSAPI::ClassId_NSMutableOrderedSet);
 | |
|   if (!IsMutableSet && !IsMutableOrderedSet) {
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   Selector Sel = Message->getSelector();
 | |
| 
 | |
|   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
 | |
|   if (!MKOpt) {
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   NSAPI::NSSetMethodKind MK = *MKOpt;
 | |
| 
 | |
|   switch (MK) {
 | |
|     case NSAPI::NSMutableSet_addObject:
 | |
|     case NSAPI::NSOrderedSet_setObjectAtIndex:
 | |
|     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
 | |
|     case NSAPI::NSOrderedSet_insertObjectAtIndex:
 | |
|       return 0;
 | |
|     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
 | |
|       return 1;
 | |
|   }
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
 | |
|   if (!Message->isInstanceMessage()) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Optional<int> ArgOpt;
 | |
| 
 | |
|   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
 | |
|       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
 | |
|       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   int ArgIndex = *ArgOpt;
 | |
| 
 | |
|   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
 | |
|   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
 | |
|     Arg = OE->getSourceExpr()->IgnoreImpCasts();
 | |
|   }
 | |
| 
 | |
|   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
 | |
|     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
 | |
|       if (ArgRE->isObjCSelfExpr()) {
 | |
|         Diag(Message->getSourceRange().getBegin(),
 | |
|              diag::warn_objc_circular_container)
 | |
|           << ArgRE->getDecl() << StringRef("'super'");
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
 | |
| 
 | |
|     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
 | |
|       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
 | |
|     }
 | |
| 
 | |
|     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
 | |
|       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
 | |
|         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
 | |
|           ValueDecl *Decl = ReceiverRE->getDecl();
 | |
|           Diag(Message->getSourceRange().getBegin(),
 | |
|                diag::warn_objc_circular_container)
 | |
|             << Decl << Decl;
 | |
|           if (!ArgRE->isObjCSelfExpr()) {
 | |
|             Diag(Decl->getLocation(),
 | |
|                  diag::note_objc_circular_container_declared_here)
 | |
|               << Decl;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
 | |
|       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
 | |
|         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
 | |
|           ObjCIvarDecl *Decl = IvarRE->getDecl();
 | |
|           Diag(Message->getSourceRange().getBegin(),
 | |
|                diag::warn_objc_circular_container)
 | |
|             << Decl << Decl;
 | |
|           Diag(Decl->getLocation(),
 | |
|                diag::note_objc_circular_container_declared_here)
 | |
|             << Decl;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check a message send to see if it's likely to cause a retain cycle.
 | |
| void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
 | |
|   // Only check instance methods whose selector looks like a setter.
 | |
|   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
 | |
|     return;
 | |
| 
 | |
|   // Try to find a variable that the receiver is strongly owned by.
 | |
|   RetainCycleOwner owner;
 | |
|   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
 | |
|     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
 | |
|       return;
 | |
|   } else {
 | |
|     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
 | |
|     owner.Variable = getCurMethodDecl()->getSelfDecl();
 | |
|     owner.Loc = msg->getSuperLoc();
 | |
|     owner.Range = msg->getSuperLoc();
 | |
|   }
 | |
| 
 | |
|   // Check whether the receiver is captured by any of the arguments.
 | |
|   const ObjCMethodDecl *MD = msg->getMethodDecl();
 | |
|   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
 | |
|     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
 | |
|       // noescape blocks should not be retained by the method.
 | |
|       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
 | |
|         continue;
 | |
|       return diagnoseRetainCycle(*this, capturer, owner);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check a property assign to see if it's likely to cause a retain cycle.
 | |
| void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
 | |
|   RetainCycleOwner owner;
 | |
|   if (!findRetainCycleOwner(*this, receiver, owner))
 | |
|     return;
 | |
| 
 | |
|   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
 | |
|     diagnoseRetainCycle(*this, capturer, owner);
 | |
| }
 | |
| 
 | |
| void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
 | |
|   RetainCycleOwner Owner;
 | |
|   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
 | |
|     return;
 | |
| 
 | |
|   // Because we don't have an expression for the variable, we have to set the
 | |
|   // location explicitly here.
 | |
|   Owner.Loc = Var->getLocation();
 | |
|   Owner.Range = Var->getSourceRange();
 | |
| 
 | |
|   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
 | |
|     diagnoseRetainCycle(*this, Capturer, Owner);
 | |
| }
 | |
| 
 | |
| static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
 | |
|                                      Expr *RHS, bool isProperty) {
 | |
|   // Check if RHS is an Objective-C object literal, which also can get
 | |
|   // immediately zapped in a weak reference.  Note that we explicitly
 | |
|   // allow ObjCStringLiterals, since those are designed to never really die.
 | |
|   RHS = RHS->IgnoreParenImpCasts();
 | |
| 
 | |
|   // This enum needs to match with the 'select' in
 | |
|   // warn_objc_arc_literal_assign (off-by-1).
 | |
|   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
 | |
|   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
 | |
|     return false;
 | |
| 
 | |
|   S.Diag(Loc, diag::warn_arc_literal_assign)
 | |
|     << (unsigned) Kind
 | |
|     << (isProperty ? 0 : 1)
 | |
|     << RHS->getSourceRange();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
 | |
|                                     Qualifiers::ObjCLifetime LT,
 | |
|                                     Expr *RHS, bool isProperty) {
 | |
|   // Strip off any implicit cast added to get to the one ARC-specific.
 | |
|   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
 | |
|     if (cast->getCastKind() == CK_ARCConsumeObject) {
 | |
|       S.Diag(Loc, diag::warn_arc_retained_assign)
 | |
|         << (LT == Qualifiers::OCL_ExplicitNone)
 | |
|         << (isProperty ? 0 : 1)
 | |
|         << RHS->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
|     RHS = cast->getSubExpr();
 | |
|   }
 | |
| 
 | |
|   if (LT == Qualifiers::OCL_Weak &&
 | |
|       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::checkUnsafeAssigns(SourceLocation Loc,
 | |
|                               QualType LHS, Expr *RHS) {
 | |
|   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
 | |
| 
 | |
|   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
 | |
|     return false;
 | |
| 
 | |
|   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
 | |
|                               Expr *LHS, Expr *RHS) {
 | |
|   QualType LHSType;
 | |
|   // PropertyRef on LHS type need be directly obtained from
 | |
|   // its declaration as it has a PseudoType.
 | |
|   ObjCPropertyRefExpr *PRE
 | |
|     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
 | |
|   if (PRE && !PRE->isImplicitProperty()) {
 | |
|     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
 | |
|     if (PD)
 | |
|       LHSType = PD->getType();
 | |
|   }
 | |
| 
 | |
|   if (LHSType.isNull())
 | |
|     LHSType = LHS->getType();
 | |
| 
 | |
|   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
 | |
| 
 | |
|   if (LT == Qualifiers::OCL_Weak) {
 | |
|     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
 | |
|       getCurFunction()->markSafeWeakUse(LHS);
 | |
|   }
 | |
| 
 | |
|   if (checkUnsafeAssigns(Loc, LHSType, RHS))
 | |
|     return;
 | |
| 
 | |
|   // FIXME. Check for other life times.
 | |
|   if (LT != Qualifiers::OCL_None)
 | |
|     return;
 | |
| 
 | |
|   if (PRE) {
 | |
|     if (PRE->isImplicitProperty())
 | |
|       return;
 | |
|     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
 | |
|     if (!PD)
 | |
|       return;
 | |
| 
 | |
|     unsigned Attributes = PD->getPropertyAttributes();
 | |
|     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
 | |
|       // when 'assign' attribute was not explicitly specified
 | |
|       // by user, ignore it and rely on property type itself
 | |
|       // for lifetime info.
 | |
|       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
 | |
|       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
 | |
|           LHSType->isObjCRetainableType())
 | |
|         return;
 | |
| 
 | |
|       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
 | |
|         if (cast->getCastKind() == CK_ARCConsumeObject) {
 | |
|           Diag(Loc, diag::warn_arc_retained_property_assign)
 | |
|           << RHS->getSourceRange();
 | |
|           return;
 | |
|         }
 | |
|         RHS = cast->getSubExpr();
 | |
|       }
 | |
|     }
 | |
|     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
 | |
|       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
 | |
| 
 | |
| static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
 | |
|                                         SourceLocation StmtLoc,
 | |
|                                         const NullStmt *Body) {
 | |
|   // Do not warn if the body is a macro that expands to nothing, e.g:
 | |
|   //
 | |
|   // #define CALL(x)
 | |
|   // if (condition)
 | |
|   //   CALL(0);
 | |
|   if (Body->hasLeadingEmptyMacro())
 | |
|     return false;
 | |
| 
 | |
|   // Get line numbers of statement and body.
 | |
|   bool StmtLineInvalid;
 | |
|   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
 | |
|                                                       &StmtLineInvalid);
 | |
|   if (StmtLineInvalid)
 | |
|     return false;
 | |
| 
 | |
|   bool BodyLineInvalid;
 | |
|   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
 | |
|                                                       &BodyLineInvalid);
 | |
|   if (BodyLineInvalid)
 | |
|     return false;
 | |
| 
 | |
|   // Warn if null statement and body are on the same line.
 | |
|   if (StmtLine != BodyLine)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
 | |
|                                  const Stmt *Body,
 | |
|                                  unsigned DiagID) {
 | |
|   // Since this is a syntactic check, don't emit diagnostic for template
 | |
|   // instantiations, this just adds noise.
 | |
|   if (CurrentInstantiationScope)
 | |
|     return;
 | |
| 
 | |
|   // The body should be a null statement.
 | |
|   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
 | |
|   if (!NBody)
 | |
|     return;
 | |
| 
 | |
|   // Do the usual checks.
 | |
|   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
 | |
|     return;
 | |
| 
 | |
|   Diag(NBody->getSemiLoc(), DiagID);
 | |
|   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
 | |
|                                  const Stmt *PossibleBody) {
 | |
|   assert(!CurrentInstantiationScope); // Ensured by caller
 | |
| 
 | |
|   SourceLocation StmtLoc;
 | |
|   const Stmt *Body;
 | |
|   unsigned DiagID;
 | |
|   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
 | |
|     StmtLoc = FS->getRParenLoc();
 | |
|     Body = FS->getBody();
 | |
|     DiagID = diag::warn_empty_for_body;
 | |
|   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
 | |
|     StmtLoc = WS->getCond()->getSourceRange().getEnd();
 | |
|     Body = WS->getBody();
 | |
|     DiagID = diag::warn_empty_while_body;
 | |
|   } else
 | |
|     return; // Neither `for' nor `while'.
 | |
| 
 | |
|   // The body should be a null statement.
 | |
|   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
 | |
|   if (!NBody)
 | |
|     return;
 | |
| 
 | |
|   // Skip expensive checks if diagnostic is disabled.
 | |
|   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
 | |
|     return;
 | |
| 
 | |
|   // Do the usual checks.
 | |
|   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
 | |
|     return;
 | |
| 
 | |
|   // `for(...);' and `while(...);' are popular idioms, so in order to keep
 | |
|   // noise level low, emit diagnostics only if for/while is followed by a
 | |
|   // CompoundStmt, e.g.:
 | |
|   //    for (int i = 0; i < n; i++);
 | |
|   //    {
 | |
|   //      a(i);
 | |
|   //    }
 | |
|   // or if for/while is followed by a statement with more indentation
 | |
|   // than for/while itself:
 | |
|   //    for (int i = 0; i < n; i++);
 | |
|   //      a(i);
 | |
|   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
 | |
|   if (!ProbableTypo) {
 | |
|     bool BodyColInvalid;
 | |
|     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
 | |
|         PossibleBody->getBeginLoc(), &BodyColInvalid);
 | |
|     if (BodyColInvalid)
 | |
|       return;
 | |
| 
 | |
|     bool StmtColInvalid;
 | |
|     unsigned StmtCol =
 | |
|         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
 | |
|     if (StmtColInvalid)
 | |
|       return;
 | |
| 
 | |
|     if (BodyCol > StmtCol)
 | |
|       ProbableTypo = true;
 | |
|   }
 | |
| 
 | |
|   if (ProbableTypo) {
 | |
|     Diag(NBody->getSemiLoc(), DiagID);
 | |
|     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Warn on self move with std::move. -------------------------===//
 | |
| 
 | |
| /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
 | |
| void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
 | |
|                              SourceLocation OpLoc) {
 | |
|   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
 | |
|     return;
 | |
| 
 | |
|   if (inTemplateInstantiation())
 | |
|     return;
 | |
| 
 | |
|   // Strip parens and casts away.
 | |
|   LHSExpr = LHSExpr->IgnoreParenImpCasts();
 | |
|   RHSExpr = RHSExpr->IgnoreParenImpCasts();
 | |
| 
 | |
|   // Check for a call expression
 | |
|   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
 | |
|   if (!CE || CE->getNumArgs() != 1)
 | |
|     return;
 | |
| 
 | |
|   // Check for a call to std::move
 | |
|   if (!CE->isCallToStdMove())
 | |
|     return;
 | |
| 
 | |
|   // Get argument from std::move
 | |
|   RHSExpr = CE->getArg(0);
 | |
| 
 | |
|   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
 | |
|   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
 | |
| 
 | |
|   // Two DeclRefExpr's, check that the decls are the same.
 | |
|   if (LHSDeclRef && RHSDeclRef) {
 | |
|     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
 | |
|       return;
 | |
|     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
 | |
|         RHSDeclRef->getDecl()->getCanonicalDecl())
 | |
|       return;
 | |
| 
 | |
|     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
 | |
|                                         << LHSExpr->getSourceRange()
 | |
|                                         << RHSExpr->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Member variables require a different approach to check for self moves.
 | |
|   // MemberExpr's are the same if every nested MemberExpr refers to the same
 | |
|   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
 | |
|   // the base Expr's are CXXThisExpr's.
 | |
|   const Expr *LHSBase = LHSExpr;
 | |
|   const Expr *RHSBase = RHSExpr;
 | |
|   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
 | |
|   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
 | |
|   if (!LHSME || !RHSME)
 | |
|     return;
 | |
| 
 | |
|   while (LHSME && RHSME) {
 | |
|     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
 | |
|         RHSME->getMemberDecl()->getCanonicalDecl())
 | |
|       return;
 | |
| 
 | |
|     LHSBase = LHSME->getBase();
 | |
|     RHSBase = RHSME->getBase();
 | |
|     LHSME = dyn_cast<MemberExpr>(LHSBase);
 | |
|     RHSME = dyn_cast<MemberExpr>(RHSBase);
 | |
|   }
 | |
| 
 | |
|   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
 | |
|   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
 | |
|   if (LHSDeclRef && RHSDeclRef) {
 | |
|     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
 | |
|       return;
 | |
|     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
 | |
|         RHSDeclRef->getDecl()->getCanonicalDecl())
 | |
|       return;
 | |
| 
 | |
|     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
 | |
|                                         << LHSExpr->getSourceRange()
 | |
|                                         << RHSExpr->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
 | |
|     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
 | |
|                                         << LHSExpr->getSourceRange()
 | |
|                                         << RHSExpr->getSourceRange();
 | |
| }
 | |
| 
 | |
| //===--- Layout compatibility ----------------------------------------------//
 | |
| 
 | |
| static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
 | |
| 
 | |
| /// Check if two enumeration types are layout-compatible.
 | |
| static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
 | |
|   // C++11 [dcl.enum] p8:
 | |
|   // Two enumeration types are layout-compatible if they have the same
 | |
|   // underlying type.
 | |
|   return ED1->isComplete() && ED2->isComplete() &&
 | |
|          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
 | |
| }
 | |
| 
 | |
| /// Check if two fields are layout-compatible.
 | |
| static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
 | |
|                                FieldDecl *Field2) {
 | |
|   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
 | |
|     return false;
 | |
| 
 | |
|   if (Field1->isBitField() != Field2->isBitField())
 | |
|     return false;
 | |
| 
 | |
|   if (Field1->isBitField()) {
 | |
|     // Make sure that the bit-fields are the same length.
 | |
|     unsigned Bits1 = Field1->getBitWidthValue(C);
 | |
|     unsigned Bits2 = Field2->getBitWidthValue(C);
 | |
| 
 | |
|     if (Bits1 != Bits2)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check if two standard-layout structs are layout-compatible.
 | |
| /// (C++11 [class.mem] p17)
 | |
| static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
 | |
|                                      RecordDecl *RD2) {
 | |
|   // If both records are C++ classes, check that base classes match.
 | |
|   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
 | |
|     // If one of records is a CXXRecordDecl we are in C++ mode,
 | |
|     // thus the other one is a CXXRecordDecl, too.
 | |
|     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
 | |
|     // Check number of base classes.
 | |
|     if (D1CXX->getNumBases() != D2CXX->getNumBases())
 | |
|       return false;
 | |
| 
 | |
|     // Check the base classes.
 | |
|     for (CXXRecordDecl::base_class_const_iterator
 | |
|                Base1 = D1CXX->bases_begin(),
 | |
|            BaseEnd1 = D1CXX->bases_end(),
 | |
|               Base2 = D2CXX->bases_begin();
 | |
|          Base1 != BaseEnd1;
 | |
|          ++Base1, ++Base2) {
 | |
|       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
 | |
|         return false;
 | |
|     }
 | |
|   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
 | |
|     // If only RD2 is a C++ class, it should have zero base classes.
 | |
|     if (D2CXX->getNumBases() > 0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check the fields.
 | |
|   RecordDecl::field_iterator Field2 = RD2->field_begin(),
 | |
|                              Field2End = RD2->field_end(),
 | |
|                              Field1 = RD1->field_begin(),
 | |
|                              Field1End = RD1->field_end();
 | |
|   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
 | |
|     if (!isLayoutCompatible(C, *Field1, *Field2))
 | |
|       return false;
 | |
|   }
 | |
|   if (Field1 != Field1End || Field2 != Field2End)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check if two standard-layout unions are layout-compatible.
 | |
| /// (C++11 [class.mem] p18)
 | |
| static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
 | |
|                                     RecordDecl *RD2) {
 | |
|   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
 | |
|   for (auto *Field2 : RD2->fields())
 | |
|     UnmatchedFields.insert(Field2);
 | |
| 
 | |
|   for (auto *Field1 : RD1->fields()) {
 | |
|     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
 | |
|         I = UnmatchedFields.begin(),
 | |
|         E = UnmatchedFields.end();
 | |
| 
 | |
|     for ( ; I != E; ++I) {
 | |
|       if (isLayoutCompatible(C, Field1, *I)) {
 | |
|         bool Result = UnmatchedFields.erase(*I);
 | |
|         (void) Result;
 | |
|         assert(Result);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (I == E)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return UnmatchedFields.empty();
 | |
| }
 | |
| 
 | |
| static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
 | |
|                                RecordDecl *RD2) {
 | |
|   if (RD1->isUnion() != RD2->isUnion())
 | |
|     return false;
 | |
| 
 | |
|   if (RD1->isUnion())
 | |
|     return isLayoutCompatibleUnion(C, RD1, RD2);
 | |
|   else
 | |
|     return isLayoutCompatibleStruct(C, RD1, RD2);
 | |
| }
 | |
| 
 | |
| /// Check if two types are layout-compatible in C++11 sense.
 | |
| static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
 | |
|   if (T1.isNull() || T2.isNull())
 | |
|     return false;
 | |
| 
 | |
|   // C++11 [basic.types] p11:
 | |
|   // If two types T1 and T2 are the same type, then T1 and T2 are
 | |
|   // layout-compatible types.
 | |
|   if (C.hasSameType(T1, T2))
 | |
|     return true;
 | |
| 
 | |
|   T1 = T1.getCanonicalType().getUnqualifiedType();
 | |
|   T2 = T2.getCanonicalType().getUnqualifiedType();
 | |
| 
 | |
|   const Type::TypeClass TC1 = T1->getTypeClass();
 | |
|   const Type::TypeClass TC2 = T2->getTypeClass();
 | |
| 
 | |
|   if (TC1 != TC2)
 | |
|     return false;
 | |
| 
 | |
|   if (TC1 == Type::Enum) {
 | |
|     return isLayoutCompatible(C,
 | |
|                               cast<EnumType>(T1)->getDecl(),
 | |
|                               cast<EnumType>(T2)->getDecl());
 | |
|   } else if (TC1 == Type::Record) {
 | |
|     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
 | |
|       return false;
 | |
| 
 | |
|     return isLayoutCompatible(C,
 | |
|                               cast<RecordType>(T1)->getDecl(),
 | |
|                               cast<RecordType>(T2)->getDecl());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
 | |
| 
 | |
| /// Given a type tag expression find the type tag itself.
 | |
| ///
 | |
| /// \param TypeExpr Type tag expression, as it appears in user's code.
 | |
| ///
 | |
| /// \param VD Declaration of an identifier that appears in a type tag.
 | |
| ///
 | |
| /// \param MagicValue Type tag magic value.
 | |
| ///
 | |
| /// \param isConstantEvaluated wether the evalaution should be performed in
 | |
| 
 | |
| /// constant context.
 | |
| static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
 | |
|                             const ValueDecl **VD, uint64_t *MagicValue,
 | |
|                             bool isConstantEvaluated) {
 | |
|   while(true) {
 | |
|     if (!TypeExpr)
 | |
|       return false;
 | |
| 
 | |
|     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
 | |
| 
 | |
|     switch (TypeExpr->getStmtClass()) {
 | |
|     case Stmt::UnaryOperatorClass: {
 | |
|       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
 | |
|       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
 | |
|         TypeExpr = UO->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     case Stmt::DeclRefExprClass: {
 | |
|       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
 | |
|       *VD = DRE->getDecl();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case Stmt::IntegerLiteralClass: {
 | |
|       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
 | |
|       llvm::APInt MagicValueAPInt = IL->getValue();
 | |
|       if (MagicValueAPInt.getActiveBits() <= 64) {
 | |
|         *MagicValue = MagicValueAPInt.getZExtValue();
 | |
|         return true;
 | |
|       } else
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     case Stmt::BinaryConditionalOperatorClass:
 | |
|     case Stmt::ConditionalOperatorClass: {
 | |
|       const AbstractConditionalOperator *ACO =
 | |
|           cast<AbstractConditionalOperator>(TypeExpr);
 | |
|       bool Result;
 | |
|       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
 | |
|                                                      isConstantEvaluated)) {
 | |
|         if (Result)
 | |
|           TypeExpr = ACO->getTrueExpr();
 | |
|         else
 | |
|           TypeExpr = ACO->getFalseExpr();
 | |
|         continue;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     case Stmt::BinaryOperatorClass: {
 | |
|       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
 | |
|       if (BO->getOpcode() == BO_Comma) {
 | |
|         TypeExpr = BO->getRHS();
 | |
|         continue;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Retrieve the C type corresponding to type tag TypeExpr.
 | |
| ///
 | |
| /// \param TypeExpr Expression that specifies a type tag.
 | |
| ///
 | |
| /// \param MagicValues Registered magic values.
 | |
| ///
 | |
| /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
 | |
| ///        kind.
 | |
| ///
 | |
| /// \param TypeInfo Information about the corresponding C type.
 | |
| ///
 | |
| /// \param isConstantEvaluated wether the evalaution should be performed in
 | |
| /// constant context.
 | |
| ///
 | |
| /// \returns true if the corresponding C type was found.
 | |
| static bool GetMatchingCType(
 | |
|     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
 | |
|     const ASTContext &Ctx,
 | |
|     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
 | |
|         *MagicValues,
 | |
|     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
 | |
|     bool isConstantEvaluated) {
 | |
|   FoundWrongKind = false;
 | |
| 
 | |
|   // Variable declaration that has type_tag_for_datatype attribute.
 | |
|   const ValueDecl *VD = nullptr;
 | |
| 
 | |
|   uint64_t MagicValue;
 | |
| 
 | |
|   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
 | |
|     return false;
 | |
| 
 | |
|   if (VD) {
 | |
|     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
 | |
|       if (I->getArgumentKind() != ArgumentKind) {
 | |
|         FoundWrongKind = true;
 | |
|         return false;
 | |
|       }
 | |
|       TypeInfo.Type = I->getMatchingCType();
 | |
|       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
 | |
|       TypeInfo.MustBeNull = I->getMustBeNull();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!MagicValues)
 | |
|     return false;
 | |
| 
 | |
|   llvm::DenseMap<Sema::TypeTagMagicValue,
 | |
|                  Sema::TypeTagData>::const_iterator I =
 | |
|       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
 | |
|   if (I == MagicValues->end())
 | |
|     return false;
 | |
| 
 | |
|   TypeInfo = I->second;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
 | |
|                                       uint64_t MagicValue, QualType Type,
 | |
|                                       bool LayoutCompatible,
 | |
|                                       bool MustBeNull) {
 | |
|   if (!TypeTagForDatatypeMagicValues)
 | |
|     TypeTagForDatatypeMagicValues.reset(
 | |
|         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
 | |
| 
 | |
|   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
 | |
|   (*TypeTagForDatatypeMagicValues)[Magic] =
 | |
|       TypeTagData(Type, LayoutCompatible, MustBeNull);
 | |
| }
 | |
| 
 | |
| static bool IsSameCharType(QualType T1, QualType T2) {
 | |
|   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
 | |
|   if (!BT1)
 | |
|     return false;
 | |
| 
 | |
|   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
 | |
|   if (!BT2)
 | |
|     return false;
 | |
| 
 | |
|   BuiltinType::Kind T1Kind = BT1->getKind();
 | |
|   BuiltinType::Kind T2Kind = BT2->getKind();
 | |
| 
 | |
|   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
 | |
|          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
 | |
|          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
 | |
|          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
 | |
| }
 | |
| 
 | |
| void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
 | |
|                                     const ArrayRef<const Expr *> ExprArgs,
 | |
|                                     SourceLocation CallSiteLoc) {
 | |
|   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
 | |
|   bool IsPointerAttr = Attr->getIsPointer();
 | |
| 
 | |
|   // Retrieve the argument representing the 'type_tag'.
 | |
|   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
 | |
|   if (TypeTagIdxAST >= ExprArgs.size()) {
 | |
|     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
 | |
|         << 0 << Attr->getTypeTagIdx().getSourceIndex();
 | |
|     return;
 | |
|   }
 | |
|   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
 | |
|   bool FoundWrongKind;
 | |
|   TypeTagData TypeInfo;
 | |
|   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
 | |
|                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
 | |
|                         TypeInfo, isConstantEvaluated())) {
 | |
|     if (FoundWrongKind)
 | |
|       Diag(TypeTagExpr->getExprLoc(),
 | |
|            diag::warn_type_tag_for_datatype_wrong_kind)
 | |
|         << TypeTagExpr->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Retrieve the argument representing the 'arg_idx'.
 | |
|   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
 | |
|   if (ArgumentIdxAST >= ExprArgs.size()) {
 | |
|     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
 | |
|         << 1 << Attr->getArgumentIdx().getSourceIndex();
 | |
|     return;
 | |
|   }
 | |
|   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
 | |
|   if (IsPointerAttr) {
 | |
|     // Skip implicit cast of pointer to `void *' (as a function argument).
 | |
|     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
 | |
|       if (ICE->getType()->isVoidPointerType() &&
 | |
|           ICE->getCastKind() == CK_BitCast)
 | |
|         ArgumentExpr = ICE->getSubExpr();
 | |
|   }
 | |
|   QualType ArgumentType = ArgumentExpr->getType();
 | |
| 
 | |
|   // Passing a `void*' pointer shouldn't trigger a warning.
 | |
|   if (IsPointerAttr && ArgumentType->isVoidPointerType())
 | |
|     return;
 | |
| 
 | |
|   if (TypeInfo.MustBeNull) {
 | |
|     // Type tag with matching void type requires a null pointer.
 | |
|     if (!ArgumentExpr->isNullPointerConstant(Context,
 | |
|                                              Expr::NPC_ValueDependentIsNotNull)) {
 | |
|       Diag(ArgumentExpr->getExprLoc(),
 | |
|            diag::warn_type_safety_null_pointer_required)
 | |
|           << ArgumentKind->getName()
 | |
|           << ArgumentExpr->getSourceRange()
 | |
|           << TypeTagExpr->getSourceRange();
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   QualType RequiredType = TypeInfo.Type;
 | |
|   if (IsPointerAttr)
 | |
|     RequiredType = Context.getPointerType(RequiredType);
 | |
| 
 | |
|   bool mismatch = false;
 | |
|   if (!TypeInfo.LayoutCompatible) {
 | |
|     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
 | |
| 
 | |
|     // C++11 [basic.fundamental] p1:
 | |
|     // Plain char, signed char, and unsigned char are three distinct types.
 | |
|     //
 | |
|     // But we treat plain `char' as equivalent to `signed char' or `unsigned
 | |
|     // char' depending on the current char signedness mode.
 | |
|     if (mismatch)
 | |
|       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
 | |
|                                            RequiredType->getPointeeType())) ||
 | |
|           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
 | |
|         mismatch = false;
 | |
|   } else
 | |
|     if (IsPointerAttr)
 | |
|       mismatch = !isLayoutCompatible(Context,
 | |
|                                      ArgumentType->getPointeeType(),
 | |
|                                      RequiredType->getPointeeType());
 | |
|     else
 | |
|       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
 | |
| 
 | |
|   if (mismatch)
 | |
|     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
 | |
|         << ArgumentType << ArgumentKind
 | |
|         << TypeInfo.LayoutCompatible << RequiredType
 | |
|         << ArgumentExpr->getSourceRange()
 | |
|         << TypeTagExpr->getSourceRange();
 | |
| }
 | |
| 
 | |
| void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
 | |
|                                          CharUnits Alignment) {
 | |
|   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseMisalignedMembers() {
 | |
|   for (MisalignedMember &m : MisalignedMembers) {
 | |
|     const NamedDecl *ND = m.RD;
 | |
|     if (ND->getName().empty()) {
 | |
|       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
 | |
|         ND = TD;
 | |
|     }
 | |
|     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
 | |
|         << m.MD << ND << m.E->getSourceRange();
 | |
|   }
 | |
|   MisalignedMembers.clear();
 | |
| }
 | |
| 
 | |
| void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
 | |
|   E = E->IgnoreParens();
 | |
|   if (!T->isPointerType() && !T->isIntegerType())
 | |
|     return;
 | |
|   if (isa<UnaryOperator>(E) &&
 | |
|       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
 | |
|     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
 | |
|     if (isa<MemberExpr>(Op)) {
 | |
|       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
 | |
|       if (MA != MisalignedMembers.end() &&
 | |
|           (T->isIntegerType() ||
 | |
|            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
 | |
|                                    Context.getTypeAlignInChars(
 | |
|                                        T->getPointeeType()) <= MA->Alignment))))
 | |
|         MisalignedMembers.erase(MA);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::RefersToMemberWithReducedAlignment(
 | |
|     Expr *E,
 | |
|     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
 | |
|         Action) {
 | |
|   const auto *ME = dyn_cast<MemberExpr>(E);
 | |
|   if (!ME)
 | |
|     return;
 | |
| 
 | |
|   // No need to check expressions with an __unaligned-qualified type.
 | |
|   if (E->getType().getQualifiers().hasUnaligned())
 | |
|     return;
 | |
| 
 | |
|   // For a chain of MemberExpr like "a.b.c.d" this list
 | |
|   // will keep FieldDecl's like [d, c, b].
 | |
|   SmallVector<FieldDecl *, 4> ReverseMemberChain;
 | |
|   const MemberExpr *TopME = nullptr;
 | |
|   bool AnyIsPacked = false;
 | |
|   do {
 | |
|     QualType BaseType = ME->getBase()->getType();
 | |
|     if (BaseType->isDependentType())
 | |
|       return;
 | |
|     if (ME->isArrow())
 | |
|       BaseType = BaseType->getPointeeType();
 | |
|     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
 | |
|     if (RD->isInvalidDecl())
 | |
|       return;
 | |
| 
 | |
|     ValueDecl *MD = ME->getMemberDecl();
 | |
|     auto *FD = dyn_cast<FieldDecl>(MD);
 | |
|     // We do not care about non-data members.
 | |
|     if (!FD || FD->isInvalidDecl())
 | |
|       return;
 | |
| 
 | |
|     AnyIsPacked =
 | |
|         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
 | |
|     ReverseMemberChain.push_back(FD);
 | |
| 
 | |
|     TopME = ME;
 | |
|     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
 | |
|   } while (ME);
 | |
|   assert(TopME && "We did not compute a topmost MemberExpr!");
 | |
| 
 | |
|   // Not the scope of this diagnostic.
 | |
|   if (!AnyIsPacked)
 | |
|     return;
 | |
| 
 | |
|   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
 | |
|   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
 | |
|   // TODO: The innermost base of the member expression may be too complicated.
 | |
|   // For now, just disregard these cases. This is left for future
 | |
|   // improvement.
 | |
|   if (!DRE && !isa<CXXThisExpr>(TopBase))
 | |
|       return;
 | |
| 
 | |
|   // Alignment expected by the whole expression.
 | |
|   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
 | |
| 
 | |
|   // No need to do anything else with this case.
 | |
|   if (ExpectedAlignment.isOne())
 | |
|     return;
 | |
| 
 | |
|   // Synthesize offset of the whole access.
 | |
|   CharUnits Offset;
 | |
|   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
 | |
|        I++) {
 | |
|     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
 | |
|   }
 | |
| 
 | |
|   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
 | |
|   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
 | |
|       ReverseMemberChain.back()->getParent()->getTypeForDecl());
 | |
| 
 | |
|   // The base expression of the innermost MemberExpr may give
 | |
|   // stronger guarantees than the class containing the member.
 | |
|   if (DRE && !TopME->isArrow()) {
 | |
|     const ValueDecl *VD = DRE->getDecl();
 | |
|     if (!VD->getType()->isReferenceType())
 | |
|       CompleteObjectAlignment =
 | |
|           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
 | |
|   }
 | |
| 
 | |
|   // Check if the synthesized offset fulfills the alignment.
 | |
|   if (Offset % ExpectedAlignment != 0 ||
 | |
|       // It may fulfill the offset it but the effective alignment may still be
 | |
|       // lower than the expected expression alignment.
 | |
|       CompleteObjectAlignment < ExpectedAlignment) {
 | |
|     // If this happens, we want to determine a sensible culprit of this.
 | |
|     // Intuitively, watching the chain of member expressions from right to
 | |
|     // left, we start with the required alignment (as required by the field
 | |
|     // type) but some packed attribute in that chain has reduced the alignment.
 | |
|     // It may happen that another packed structure increases it again. But if
 | |
|     // we are here such increase has not been enough. So pointing the first
 | |
|     // FieldDecl that either is packed or else its RecordDecl is,
 | |
|     // seems reasonable.
 | |
|     FieldDecl *FD = nullptr;
 | |
|     CharUnits Alignment;
 | |
|     for (FieldDecl *FDI : ReverseMemberChain) {
 | |
|       if (FDI->hasAttr<PackedAttr>() ||
 | |
|           FDI->getParent()->hasAttr<PackedAttr>()) {
 | |
|         FD = FDI;
 | |
|         Alignment = std::min(
 | |
|             Context.getTypeAlignInChars(FD->getType()),
 | |
|             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert(FD && "We did not find a packed FieldDecl!");
 | |
|     Action(E, FD->getParent(), FD, Alignment);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::CheckAddressOfPackedMember(Expr *rhs) {
 | |
|   using namespace std::placeholders;
 | |
| 
 | |
|   RefersToMemberWithReducedAlignment(
 | |
|       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
 | |
|                      _2, _3, _4));
 | |
| }
 |