forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			7884 lines
		
	
	
		
			267 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			7884 lines
		
	
	
		
			267 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements decl-related attribute processing.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/ASTConsumer.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/ASTMutationListener.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/Mangle.h"
 | 
						|
#include "clang/AST/RecursiveASTVisitor.h"
 | 
						|
#include "clang/Basic/CharInfo.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetBuiltins.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/DelayedDiagnostic.h"
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
namespace AttributeLangSupport {
 | 
						|
  enum LANG {
 | 
						|
    C,
 | 
						|
    Cpp,
 | 
						|
    ObjC
 | 
						|
  };
 | 
						|
} // end namespace AttributeLangSupport
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Helper functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isFunctionOrMethod - Return true if the given decl has function
 | 
						|
/// type (function or function-typed variable) or an Objective-C
 | 
						|
/// method.
 | 
						|
static bool isFunctionOrMethod(const Decl *D) {
 | 
						|
  return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the given decl has function type (function or
 | 
						|
/// function-typed variable) or an Objective-C method or a block.
 | 
						|
static bool isFunctionOrMethodOrBlock(const Decl *D) {
 | 
						|
  return isFunctionOrMethod(D) || isa<BlockDecl>(D);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the given decl has a declarator that should have
 | 
						|
/// been processed by Sema::GetTypeForDeclarator.
 | 
						|
static bool hasDeclarator(const Decl *D) {
 | 
						|
  // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
 | 
						|
  return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
 | 
						|
         isa<ObjCPropertyDecl>(D);
 | 
						|
}
 | 
						|
 | 
						|
/// hasFunctionProto - Return true if the given decl has a argument
 | 
						|
/// information. This decl should have already passed
 | 
						|
/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
 | 
						|
static bool hasFunctionProto(const Decl *D) {
 | 
						|
  if (const FunctionType *FnTy = D->getFunctionType())
 | 
						|
    return isa<FunctionProtoType>(FnTy);
 | 
						|
  return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
 | 
						|
}
 | 
						|
 | 
						|
/// getFunctionOrMethodNumParams - Return number of function or method
 | 
						|
/// parameters. It is an error to call this on a K&R function (use
 | 
						|
/// hasFunctionProto first).
 | 
						|
static unsigned getFunctionOrMethodNumParams(const Decl *D) {
 | 
						|
  if (const FunctionType *FnTy = D->getFunctionType())
 | 
						|
    return cast<FunctionProtoType>(FnTy)->getNumParams();
 | 
						|
  if (const auto *BD = dyn_cast<BlockDecl>(D))
 | 
						|
    return BD->getNumParams();
 | 
						|
  return cast<ObjCMethodDecl>(D)->param_size();
 | 
						|
}
 | 
						|
 | 
						|
static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
 | 
						|
                                                   unsigned Idx) {
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    return FD->getParamDecl(Idx);
 | 
						|
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
 | 
						|
    return MD->getParamDecl(Idx);
 | 
						|
  if (const auto *BD = dyn_cast<BlockDecl>(D))
 | 
						|
    return BD->getParamDecl(Idx);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
 | 
						|
  if (const FunctionType *FnTy = D->getFunctionType())
 | 
						|
    return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
 | 
						|
  if (const auto *BD = dyn_cast<BlockDecl>(D))
 | 
						|
    return BD->getParamDecl(Idx)->getType();
 | 
						|
 | 
						|
  return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
 | 
						|
}
 | 
						|
 | 
						|
static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
 | 
						|
  if (auto *PVD = getFunctionOrMethodParam(D, Idx))
 | 
						|
    return PVD->getSourceRange();
 | 
						|
  return SourceRange();
 | 
						|
}
 | 
						|
 | 
						|
static QualType getFunctionOrMethodResultType(const Decl *D) {
 | 
						|
  if (const FunctionType *FnTy = D->getFunctionType())
 | 
						|
    return FnTy->getReturnType();
 | 
						|
  return cast<ObjCMethodDecl>(D)->getReturnType();
 | 
						|
}
 | 
						|
 | 
						|
static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    return FD->getReturnTypeSourceRange();
 | 
						|
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
 | 
						|
    return MD->getReturnTypeSourceRange();
 | 
						|
  return SourceRange();
 | 
						|
}
 | 
						|
 | 
						|
static bool isFunctionOrMethodVariadic(const Decl *D) {
 | 
						|
  if (const FunctionType *FnTy = D->getFunctionType())
 | 
						|
    return cast<FunctionProtoType>(FnTy)->isVariadic();
 | 
						|
  if (const auto *BD = dyn_cast<BlockDecl>(D))
 | 
						|
    return BD->isVariadic();
 | 
						|
  return cast<ObjCMethodDecl>(D)->isVariadic();
 | 
						|
}
 | 
						|
 | 
						|
static bool isInstanceMethod(const Decl *D) {
 | 
						|
  if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
 | 
						|
    return MethodDecl->isInstance();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
 | 
						|
  const auto *PT = T->getAs<ObjCObjectPointerType>();
 | 
						|
  if (!PT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
 | 
						|
  if (!Cls)
 | 
						|
    return false;
 | 
						|
 | 
						|
  IdentifierInfo* ClsName = Cls->getIdentifier();
 | 
						|
 | 
						|
  // FIXME: Should we walk the chain of classes?
 | 
						|
  return ClsName == &Ctx.Idents.get("NSString") ||
 | 
						|
         ClsName == &Ctx.Idents.get("NSMutableString");
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
 | 
						|
  const auto *PT = T->getAs<PointerType>();
 | 
						|
  if (!PT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const auto *RT = PT->getPointeeType()->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const RecordDecl *RD = RT->getDecl();
 | 
						|
  if (RD->getTagKind() != TTK_Struct)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
 | 
						|
  // FIXME: Include the type in the argument list.
 | 
						|
  return AL.getNumArgs() + AL.hasParsedType();
 | 
						|
}
 | 
						|
 | 
						|
template <typename Compare>
 | 
						|
static bool checkAttributeNumArgsImpl(Sema &S, const ParsedAttr &AL,
 | 
						|
                                      unsigned Num, unsigned Diag,
 | 
						|
                                      Compare Comp) {
 | 
						|
  if (Comp(getNumAttributeArgs(AL), Num)) {
 | 
						|
    S.Diag(AL.getLoc(), Diag) << AL << Num;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the attribute has exactly as many args as Num. May
 | 
						|
/// output an error.
 | 
						|
static bool checkAttributeNumArgs(Sema &S, const ParsedAttr &AL, unsigned Num) {
 | 
						|
  return checkAttributeNumArgsImpl(S, AL, Num,
 | 
						|
                                   diag::err_attribute_wrong_number_arguments,
 | 
						|
                                   std::not_equal_to<unsigned>());
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the attribute has at least as many args as Num. May
 | 
						|
/// output an error.
 | 
						|
static bool checkAttributeAtLeastNumArgs(Sema &S, const ParsedAttr &AL,
 | 
						|
                                         unsigned Num) {
 | 
						|
  return checkAttributeNumArgsImpl(S, AL, Num,
 | 
						|
                                   diag::err_attribute_too_few_arguments,
 | 
						|
                                   std::less<unsigned>());
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the attribute has at most as many args as Num. May
 | 
						|
/// output an error.
 | 
						|
static bool checkAttributeAtMostNumArgs(Sema &S, const ParsedAttr &AL,
 | 
						|
                                        unsigned Num) {
 | 
						|
  return checkAttributeNumArgsImpl(S, AL, Num,
 | 
						|
                                   diag::err_attribute_too_many_arguments,
 | 
						|
                                   std::greater<unsigned>());
 | 
						|
}
 | 
						|
 | 
						|
/// A helper function to provide Attribute Location for the Attr types
 | 
						|
/// AND the ParsedAttr.
 | 
						|
template <typename AttrInfo>
 | 
						|
static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation>
 | 
						|
getAttrLoc(const AttrInfo &AL) {
 | 
						|
  return AL.getLocation();
 | 
						|
}
 | 
						|
static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
 | 
						|
 | 
						|
/// If Expr is a valid integer constant, get the value of the integer
 | 
						|
/// expression and return success or failure. May output an error.
 | 
						|
///
 | 
						|
/// Negative argument is implicitly converted to unsigned, unless
 | 
						|
/// \p StrictlyUnsigned is true.
 | 
						|
template <typename AttrInfo>
 | 
						|
static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
 | 
						|
                                uint32_t &Val, unsigned Idx = UINT_MAX,
 | 
						|
                                bool StrictlyUnsigned = false) {
 | 
						|
  llvm::APSInt I(32);
 | 
						|
  if (Expr->isTypeDependent() || Expr->isValueDependent() ||
 | 
						|
      !Expr->isIntegerConstantExpr(I, S.Context)) {
 | 
						|
    if (Idx != UINT_MAX)
 | 
						|
      S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
 | 
						|
          << &AI << Idx << AANT_ArgumentIntegerConstant
 | 
						|
          << Expr->getSourceRange();
 | 
						|
    else
 | 
						|
      S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
 | 
						|
          << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!I.isIntN(32)) {
 | 
						|
    S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
 | 
						|
        << I.toString(10, false) << 32 << /* Unsigned */ 1;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (StrictlyUnsigned && I.isSigned() && I.isNegative()) {
 | 
						|
    S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
 | 
						|
        << &AI << /*non-negative*/ 1;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Val = (uint32_t)I.getZExtValue();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Wrapper around checkUInt32Argument, with an extra check to be sure
 | 
						|
/// that the result will fit into a regular (signed) int. All args have the same
 | 
						|
/// purpose as they do in checkUInt32Argument.
 | 
						|
template <typename AttrInfo>
 | 
						|
static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
 | 
						|
                                     int &Val, unsigned Idx = UINT_MAX) {
 | 
						|
  uint32_t UVal;
 | 
						|
  if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
 | 
						|
    llvm::APSInt I(32); // for toString
 | 
						|
    I = UVal;
 | 
						|
    S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
 | 
						|
        << I.toString(10, false) << 32 << /* Unsigned */ 0;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Val = UVal;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose mutually exclusive attributes when present on a given
 | 
						|
/// declaration. Returns true if diagnosed.
 | 
						|
template <typename AttrTy>
 | 
						|
static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (const auto *A = D->getAttr<AttrTy>()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
 | 
						|
    S.Diag(A->getLocation(), diag::note_conflicting_attribute);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template <typename AttrTy>
 | 
						|
static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
 | 
						|
  if (const auto *A = D->getAttr<AttrTy>()) {
 | 
						|
    S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
 | 
						|
                                                                      << A;
 | 
						|
    S.Diag(A->getLocation(), diag::note_conflicting_attribute);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if IdxExpr is a valid parameter index for a function or
 | 
						|
/// instance method D.  May output an error.
 | 
						|
///
 | 
						|
/// \returns true if IdxExpr is a valid index.
 | 
						|
template <typename AttrInfo>
 | 
						|
static bool checkFunctionOrMethodParameterIndex(
 | 
						|
    Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
 | 
						|
    const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
 | 
						|
  assert(isFunctionOrMethodOrBlock(D));
 | 
						|
 | 
						|
  // In C++ the implicit 'this' function parameter also counts.
 | 
						|
  // Parameters are counted from one.
 | 
						|
  bool HP = hasFunctionProto(D);
 | 
						|
  bool HasImplicitThisParam = isInstanceMethod(D);
 | 
						|
  bool IV = HP && isFunctionOrMethodVariadic(D);
 | 
						|
  unsigned NumParams =
 | 
						|
      (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
 | 
						|
 | 
						|
  llvm::APSInt IdxInt;
 | 
						|
  if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
 | 
						|
      !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
 | 
						|
    S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
 | 
						|
        << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
 | 
						|
        << IdxExpr->getSourceRange();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned IdxSource = IdxInt.getLimitedValue(UINT_MAX);
 | 
						|
  if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
 | 
						|
    S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
 | 
						|
        << &AI << AttrArgNum << IdxExpr->getSourceRange();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (HasImplicitThisParam && !CanIndexImplicitThis) {
 | 
						|
    if (IdxSource == 1) {
 | 
						|
      S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
 | 
						|
          << &AI << IdxExpr->getSourceRange();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Idx = ParamIdx(IdxSource, D);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
 | 
						|
/// If not emit an error and return false. If the argument is an identifier it
 | 
						|
/// will emit an error with a fixit hint and treat it as if it was a string
 | 
						|
/// literal.
 | 
						|
bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
 | 
						|
                                          StringRef &Str,
 | 
						|
                                          SourceLocation *ArgLocation) {
 | 
						|
  // Look for identifiers. If we have one emit a hint to fix it to a literal.
 | 
						|
  if (AL.isArgIdent(ArgNum)) {
 | 
						|
    IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
 | 
						|
    Diag(Loc->Loc, diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentString
 | 
						|
        << FixItHint::CreateInsertion(Loc->Loc, "\"")
 | 
						|
        << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
 | 
						|
    Str = Loc->Ident->getName();
 | 
						|
    if (ArgLocation)
 | 
						|
      *ArgLocation = Loc->Loc;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now check for an actual string literal.
 | 
						|
  Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
 | 
						|
  const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
 | 
						|
  if (ArgLocation)
 | 
						|
    *ArgLocation = ArgExpr->getBeginLoc();
 | 
						|
 | 
						|
  if (!Literal || !Literal->isAscii()) {
 | 
						|
    Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentString;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Str = Literal->getString();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Applies the given attribute to the Decl without performing any
 | 
						|
/// additional semantic checking.
 | 
						|
template <typename AttrType>
 | 
						|
static void handleSimpleAttribute(Sema &S, Decl *D,
 | 
						|
                                  const AttributeCommonInfo &CI) {
 | 
						|
  D->addAttr(::new (S.Context) AttrType(S.Context, CI));
 | 
						|
}
 | 
						|
 | 
						|
template <typename... DiagnosticArgs>
 | 
						|
static const Sema::SemaDiagnosticBuilder&
 | 
						|
appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
 | 
						|
  return Bldr;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, typename... DiagnosticArgs>
 | 
						|
static const Sema::SemaDiagnosticBuilder&
 | 
						|
appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
 | 
						|
                  DiagnosticArgs &&... ExtraArgs) {
 | 
						|
  return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
 | 
						|
                           std::forward<DiagnosticArgs>(ExtraArgs)...);
 | 
						|
}
 | 
						|
 | 
						|
/// Add an attribute {@code AttrType} to declaration {@code D}, provided that
 | 
						|
/// {@code PassesCheck} is true.
 | 
						|
/// Otherwise, emit diagnostic {@code DiagID}, passing in all parameters
 | 
						|
/// specified in {@code ExtraArgs}.
 | 
						|
template <typename AttrType, typename... DiagnosticArgs>
 | 
						|
static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
 | 
						|
                                            const AttributeCommonInfo &CI,
 | 
						|
                                            bool PassesCheck, unsigned DiagID,
 | 
						|
                                            DiagnosticArgs &&... ExtraArgs) {
 | 
						|
  if (!PassesCheck) {
 | 
						|
    Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
 | 
						|
    appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  handleSimpleAttribute<AttrType>(S, D, CI);
 | 
						|
}
 | 
						|
 | 
						|
template <typename AttrType>
 | 
						|
static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
 | 
						|
                                                const ParsedAttr &AL) {
 | 
						|
  handleSimpleAttribute<AttrType>(S, D, AL);
 | 
						|
}
 | 
						|
 | 
						|
/// Applies the given attribute to the Decl so long as the Decl doesn't
 | 
						|
/// already have one of the given incompatible attributes.
 | 
						|
template <typename AttrType, typename IncompatibleAttrType,
 | 
						|
          typename... IncompatibleAttrTypes>
 | 
						|
static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
 | 
						|
                                                const ParsedAttr &AL) {
 | 
						|
  if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL))
 | 
						|
    return;
 | 
						|
  handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D,
 | 
						|
                                                                          AL);
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the passed-in expression is of type int or bool.
 | 
						|
static bool isIntOrBool(Expr *Exp) {
 | 
						|
  QualType QT = Exp->getType();
 | 
						|
  return QT->isBooleanType() || QT->isIntegerType();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Check to see if the type is a smart pointer of some kind.  We assume
 | 
						|
// it's a smart pointer if it defines both operator-> and operator*.
 | 
						|
static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
 | 
						|
  auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
 | 
						|
                                          OverloadedOperatorKind Op) {
 | 
						|
    DeclContextLookupResult Result =
 | 
						|
        Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
 | 
						|
    return !Result.empty();
 | 
						|
  };
 | 
						|
 | 
						|
  const RecordDecl *Record = RT->getDecl();
 | 
						|
  bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
 | 
						|
  bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
 | 
						|
  if (foundStarOperator && foundArrowOperator)
 | 
						|
    return true;
 | 
						|
 | 
						|
  const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
 | 
						|
  if (!CXXRecord)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto BaseSpecifier : CXXRecord->bases()) {
 | 
						|
    if (!foundStarOperator)
 | 
						|
      foundStarOperator = IsOverloadedOperatorPresent(
 | 
						|
          BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
 | 
						|
    if (!foundArrowOperator)
 | 
						|
      foundArrowOperator = IsOverloadedOperatorPresent(
 | 
						|
          BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
 | 
						|
  }
 | 
						|
 | 
						|
  if (foundStarOperator && foundArrowOperator)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if passed in Decl is a pointer type.
 | 
						|
/// Note that this function may produce an error message.
 | 
						|
/// \return true if the Decl is a pointer type; false otherwise
 | 
						|
static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
 | 
						|
                                       const ParsedAttr &AL) {
 | 
						|
  const auto *VD = cast<ValueDecl>(D);
 | 
						|
  QualType QT = VD->getType();
 | 
						|
  if (QT->isAnyPointerType())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const auto *RT = QT->getAs<RecordType>()) {
 | 
						|
    // If it's an incomplete type, it could be a smart pointer; skip it.
 | 
						|
    // (We don't want to force template instantiation if we can avoid it,
 | 
						|
    // since that would alter the order in which templates are instantiated.)
 | 
						|
    if (RT->isIncompleteType())
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (threadSafetyCheckIsSmartPointer(S, RT))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks that the passed in QualType either is of RecordType or points
 | 
						|
/// to RecordType. Returns the relevant RecordType, null if it does not exit.
 | 
						|
static const RecordType *getRecordType(QualType QT) {
 | 
						|
  if (const auto *RT = QT->getAs<RecordType>())
 | 
						|
    return RT;
 | 
						|
 | 
						|
  // Now check if we point to record type.
 | 
						|
  if (const auto *PT = QT->getAs<PointerType>())
 | 
						|
    return PT->getPointeeType()->getAs<RecordType>();
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
template <typename AttrType>
 | 
						|
static bool checkRecordDeclForAttr(const RecordDecl *RD) {
 | 
						|
  // Check if the record itself has the attribute.
 | 
						|
  if (RD->hasAttr<AttrType>())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Else check if any base classes have the attribute.
 | 
						|
  if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
 | 
						|
    CXXBasePaths BPaths(false, false);
 | 
						|
    if (CRD->lookupInBases(
 | 
						|
            [](const CXXBaseSpecifier *BS, CXXBasePath &) {
 | 
						|
              const auto &Ty = *BS->getType();
 | 
						|
              // If it's type-dependent, we assume it could have the attribute.
 | 
						|
              if (Ty.isDependentType())
 | 
						|
                return true;
 | 
						|
              return Ty.castAs<RecordType>()->getDecl()->hasAttr<AttrType>();
 | 
						|
            },
 | 
						|
            BPaths, true))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
 | 
						|
  const RecordType *RT = getRecordType(Ty);
 | 
						|
 | 
						|
  if (!RT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't check for the capability if the class hasn't been defined yet.
 | 
						|
  if (RT->isIncompleteType())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Allow smart pointers to be used as capability objects.
 | 
						|
  // FIXME -- Check the type that the smart pointer points to.
 | 
						|
  if (threadSafetyCheckIsSmartPointer(S, RT))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
static bool checkTypedefTypeForCapability(QualType Ty) {
 | 
						|
  const auto *TD = Ty->getAs<TypedefType>();
 | 
						|
  if (!TD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  TypedefNameDecl *TN = TD->getDecl();
 | 
						|
  if (!TN)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return TN->hasAttr<CapabilityAttr>();
 | 
						|
}
 | 
						|
 | 
						|
static bool typeHasCapability(Sema &S, QualType Ty) {
 | 
						|
  if (checkTypedefTypeForCapability(Ty))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (checkRecordTypeForCapability(S, Ty))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
 | 
						|
  // Capability expressions are simple expressions involving the boolean logic
 | 
						|
  // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
 | 
						|
  // a DeclRefExpr is found, its type should be checked to determine whether it
 | 
						|
  // is a capability or not.
 | 
						|
 | 
						|
  if (const auto *E = dyn_cast<CastExpr>(Ex))
 | 
						|
    return isCapabilityExpr(S, E->getSubExpr());
 | 
						|
  else if (const auto *E = dyn_cast<ParenExpr>(Ex))
 | 
						|
    return isCapabilityExpr(S, E->getSubExpr());
 | 
						|
  else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
 | 
						|
    if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
 | 
						|
        E->getOpcode() == UO_Deref)
 | 
						|
      return isCapabilityExpr(S, E->getSubExpr());
 | 
						|
    return false;
 | 
						|
  } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
 | 
						|
    if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
 | 
						|
      return isCapabilityExpr(S, E->getLHS()) &&
 | 
						|
             isCapabilityExpr(S, E->getRHS());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return typeHasCapability(S, Ex->getType());
 | 
						|
}
 | 
						|
 | 
						|
/// Checks that all attribute arguments, starting from Sidx, resolve to
 | 
						|
/// a capability object.
 | 
						|
/// \param Sidx The attribute argument index to start checking with.
 | 
						|
/// \param ParamIdxOk Whether an argument can be indexing into a function
 | 
						|
/// parameter list.
 | 
						|
static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
 | 
						|
                                           const ParsedAttr &AL,
 | 
						|
                                           SmallVectorImpl<Expr *> &Args,
 | 
						|
                                           unsigned Sidx = 0,
 | 
						|
                                           bool ParamIdxOk = false) {
 | 
						|
  if (Sidx == AL.getNumArgs()) {
 | 
						|
    // If we don't have any capability arguments, the attribute implicitly
 | 
						|
    // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
 | 
						|
    // a non-static method, and that the class is a (scoped) capability.
 | 
						|
    const auto *MD = dyn_cast<const CXXMethodDecl>(D);
 | 
						|
    if (MD && !MD->isStatic()) {
 | 
						|
      const CXXRecordDecl *RD = MD->getParent();
 | 
						|
      // FIXME -- need to check this again on template instantiation
 | 
						|
      if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
 | 
						|
          !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
 | 
						|
        S.Diag(AL.getLoc(),
 | 
						|
               diag::warn_thread_attribute_not_on_capability_member)
 | 
						|
            << AL << MD->getParent();
 | 
						|
    } else {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
 | 
						|
          << AL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
 | 
						|
    Expr *ArgExp = AL.getArgAsExpr(Idx);
 | 
						|
 | 
						|
    if (ArgExp->isTypeDependent()) {
 | 
						|
      // FIXME -- need to check this again on template instantiation
 | 
						|
      Args.push_back(ArgExp);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
 | 
						|
      if (StrLit->getLength() == 0 ||
 | 
						|
          (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
 | 
						|
        // Pass empty strings to the analyzer without warnings.
 | 
						|
        // Treat "*" as the universal lock.
 | 
						|
        Args.push_back(ArgExp);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // We allow constant strings to be used as a placeholder for expressions
 | 
						|
      // that are not valid C++ syntax, but warn that they are ignored.
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
 | 
						|
      Args.push_back(ArgExp);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    QualType ArgTy = ArgExp->getType();
 | 
						|
 | 
						|
    // A pointer to member expression of the form  &MyClass::mu is treated
 | 
						|
    // specially -- we need to look at the type of the member.
 | 
						|
    if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
 | 
						|
      if (UOp->getOpcode() == UO_AddrOf)
 | 
						|
        if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
 | 
						|
          if (DRE->getDecl()->isCXXInstanceMember())
 | 
						|
            ArgTy = DRE->getDecl()->getType();
 | 
						|
 | 
						|
    // First see if we can just cast to record type, or pointer to record type.
 | 
						|
    const RecordType *RT = getRecordType(ArgTy);
 | 
						|
 | 
						|
    // Now check if we index into a record type function param.
 | 
						|
    if(!RT && ParamIdxOk) {
 | 
						|
      const auto *FD = dyn_cast<FunctionDecl>(D);
 | 
						|
      const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
 | 
						|
      if(FD && IL) {
 | 
						|
        unsigned int NumParams = FD->getNumParams();
 | 
						|
        llvm::APInt ArgValue = IL->getValue();
 | 
						|
        uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
 | 
						|
        uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
 | 
						|
        if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
 | 
						|
          S.Diag(AL.getLoc(),
 | 
						|
                 diag::err_attribute_argument_out_of_bounds_extra_info)
 | 
						|
              << AL << Idx + 1 << NumParams;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the type does not have a capability, see if the components of the
 | 
						|
    // expression have capabilities. This allows for writing C code where the
 | 
						|
    // capability may be on the type, and the expression is a capability
 | 
						|
    // boolean logic expression. Eg) requires_capability(A || B && !C)
 | 
						|
    if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
 | 
						|
          << AL << ArgTy;
 | 
						|
 | 
						|
    Args.push_back(ArgExp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Attribute Implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!threadSafetyCheckIsPointer(S, D, AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
 | 
						|
                                     Expr *&Arg) {
 | 
						|
  SmallVector<Expr *, 1> Args;
 | 
						|
  // check that all arguments are lockable objects
 | 
						|
  checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
 | 
						|
  unsigned Size = Args.size();
 | 
						|
  if (Size != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Arg = Args[0];
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  Expr *Arg = nullptr;
 | 
						|
  if (!checkGuardedByAttrCommon(S, D, AL, Arg))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
 | 
						|
}
 | 
						|
 | 
						|
static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  Expr *Arg = nullptr;
 | 
						|
  if (!checkGuardedByAttrCommon(S, D, AL, Arg))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!threadSafetyCheckIsPointer(S, D, AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
 | 
						|
}
 | 
						|
 | 
						|
static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
 | 
						|
                                        SmallVectorImpl<Expr *> &Args) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that this attribute only applies to lockable types.
 | 
						|
  QualType QT = cast<ValueDecl>(D)->getType();
 | 
						|
  if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that all arguments are lockable objects.
 | 
						|
  checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
 | 
						|
  if (Args.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  SmallVector<Expr *, 1> Args;
 | 
						|
  if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
 | 
						|
    return;
 | 
						|
 | 
						|
  Expr **StartArg = &Args[0];
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  SmallVector<Expr *, 1> Args;
 | 
						|
  if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
 | 
						|
    return;
 | 
						|
 | 
						|
  Expr **StartArg = &Args[0];
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
 | 
						|
}
 | 
						|
 | 
						|
static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
 | 
						|
                                   SmallVectorImpl<Expr *> &Args) {
 | 
						|
  // zero or more arguments ok
 | 
						|
  // check that all arguments are lockable objects
 | 
						|
  checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  SmallVector<Expr *, 1> Args;
 | 
						|
  if (!checkLockFunAttrCommon(S, D, AL, Args))
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned Size = Args.size();
 | 
						|
  Expr **StartArg = Size == 0 ? nullptr : &Args[0];
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 AssertSharedLockAttr(S.Context, AL, StartArg, Size));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
 | 
						|
                                          const ParsedAttr &AL) {
 | 
						|
  SmallVector<Expr *, 1> Args;
 | 
						|
  if (!checkLockFunAttrCommon(S, D, AL, Args))
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned Size = Args.size();
 | 
						|
  Expr **StartArg = Size == 0 ? nullptr : &Args[0];
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
 | 
						|
}
 | 
						|
 | 
						|
/// Checks to be sure that the given parameter number is in bounds, and
 | 
						|
/// is an integral type. Will emit appropriate diagnostics if this returns
 | 
						|
/// false.
 | 
						|
///
 | 
						|
/// AttrArgNo is used to actually retrieve the argument, so it's base-0.
 | 
						|
template <typename AttrInfo>
 | 
						|
static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD,
 | 
						|
                                    const AttrInfo &AI, unsigned AttrArgNo) {
 | 
						|
  assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
 | 
						|
  Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
 | 
						|
  ParamIdx Idx;
 | 
						|
  if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg,
 | 
						|
                                           Idx))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex());
 | 
						|
  if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) {
 | 
						|
    SourceLocation SrcLoc = AttrArg->getBeginLoc();
 | 
						|
    S.Diag(SrcLoc, diag::err_attribute_integers_only)
 | 
						|
        << AI << Param->getSourceRange();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
 | 
						|
      !checkAttributeAtMostNumArgs(S, AL, 2))
 | 
						|
    return;
 | 
						|
 | 
						|
  const auto *FD = cast<FunctionDecl>(D);
 | 
						|
  if (!FD->getReturnType()->isPointerType()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const Expr *SizeExpr = AL.getArgAsExpr(0);
 | 
						|
  int SizeArgNoVal;
 | 
						|
  // Parameter indices are 1-indexed, hence Index=1
 | 
						|
  if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
 | 
						|
    return;
 | 
						|
  if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0))
 | 
						|
    return;
 | 
						|
  ParamIdx SizeArgNo(SizeArgNoVal, D);
 | 
						|
 | 
						|
  ParamIdx NumberArgNo;
 | 
						|
  if (AL.getNumArgs() == 2) {
 | 
						|
    const Expr *NumberExpr = AL.getArgAsExpr(1);
 | 
						|
    int Val;
 | 
						|
    // Parameter indices are 1-based, hence Index=2
 | 
						|
    if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
 | 
						|
      return;
 | 
						|
    if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1))
 | 
						|
      return;
 | 
						|
    NumberArgNo = ParamIdx(Val, D);
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
 | 
						|
}
 | 
						|
 | 
						|
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
 | 
						|
                                      SmallVectorImpl<Expr *> &Args) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isIntOrBool(AL.getArgAsExpr(0))) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
        << AL << 1 << AANT_ArgumentIntOrBool;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // check that all arguments are lockable objects
 | 
						|
  checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
 | 
						|
                                            const ParsedAttr &AL) {
 | 
						|
  SmallVector<Expr*, 2> Args;
 | 
						|
  if (!checkTryLockFunAttrCommon(S, D, AL, Args))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
 | 
						|
      S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
 | 
						|
                                               const ParsedAttr &AL) {
 | 
						|
  SmallVector<Expr*, 2> Args;
 | 
						|
  if (!checkTryLockFunAttrCommon(S, D, AL, Args))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
 | 
						|
      S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // check that the argument is lockable object
 | 
						|
  SmallVector<Expr*, 1> Args;
 | 
						|
  checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
 | 
						|
  unsigned Size = Args.size();
 | 
						|
  if (Size == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
 | 
						|
}
 | 
						|
 | 
						|
static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  // check that all arguments are lockable objects
 | 
						|
  SmallVector<Expr*, 1> Args;
 | 
						|
  checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
 | 
						|
  unsigned Size = Args.size();
 | 
						|
  if (Size == 0)
 | 
						|
    return;
 | 
						|
  Expr **StartArg = &Args[0];
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 LocksExcludedAttr(S.Context, AL, StartArg, Size));
 | 
						|
}
 | 
						|
 | 
						|
static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
 | 
						|
                                       Expr *&Cond, StringRef &Msg) {
 | 
						|
  Cond = AL.getArgAsExpr(0);
 | 
						|
  if (!Cond->isTypeDependent()) {
 | 
						|
    ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
 | 
						|
    if (Converted.isInvalid())
 | 
						|
      return false;
 | 
						|
    Cond = Converted.get();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Msg.empty())
 | 
						|
    Msg = "<no message provided>";
 | 
						|
 | 
						|
  SmallVector<PartialDiagnosticAt, 8> Diags;
 | 
						|
  if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
 | 
						|
      !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
 | 
						|
                                                Diags)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
 | 
						|
    for (const PartialDiagnosticAt &PDiag : Diags)
 | 
						|
      S.Diag(PDiag.first, PDiag.second);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
 | 
						|
 | 
						|
  Expr *Cond;
 | 
						|
  StringRef Msg;
 | 
						|
  if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
 | 
						|
    D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Determines if a given Expr references any of the given function's
 | 
						|
/// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
 | 
						|
class ArgumentDependenceChecker
 | 
						|
    : public RecursiveASTVisitor<ArgumentDependenceChecker> {
 | 
						|
#ifndef NDEBUG
 | 
						|
  const CXXRecordDecl *ClassType;
 | 
						|
#endif
 | 
						|
  llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
 | 
						|
  bool Result;
 | 
						|
 | 
						|
public:
 | 
						|
  ArgumentDependenceChecker(const FunctionDecl *FD) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
 | 
						|
      ClassType = MD->getParent();
 | 
						|
    else
 | 
						|
      ClassType = nullptr;
 | 
						|
#endif
 | 
						|
    Parms.insert(FD->param_begin(), FD->param_end());
 | 
						|
  }
 | 
						|
 | 
						|
  bool referencesArgs(Expr *E) {
 | 
						|
    Result = false;
 | 
						|
    TraverseStmt(E);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitCXXThisExpr(CXXThisExpr *E) {
 | 
						|
    assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
 | 
						|
           "`this` doesn't refer to the enclosing class?");
 | 
						|
    Result = true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitDeclRefExpr(DeclRefExpr *DRE) {
 | 
						|
    if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
 | 
						|
      if (Parms.count(PVD)) {
 | 
						|
        Result = true;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
 | 
						|
 | 
						|
  Expr *Cond;
 | 
						|
  StringRef Msg;
 | 
						|
  if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
 | 
						|
    return;
 | 
						|
 | 
						|
  StringRef DiagTypeStr;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
 | 
						|
    return;
 | 
						|
 | 
						|
  DiagnoseIfAttr::DiagnosticType DiagType;
 | 
						|
  if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
 | 
						|
    S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
 | 
						|
           diag::err_diagnose_if_invalid_diagnostic_type);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool ArgDependent = false;
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
 | 
						|
  D->addAttr(::new (S.Context) DiagnoseIfAttr(
 | 
						|
      S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
 | 
						|
}
 | 
						|
 | 
						|
static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  static constexpr const StringRef kWildcard = "*";
 | 
						|
 | 
						|
  llvm::SmallVector<StringRef, 16> Names;
 | 
						|
  bool HasWildcard = false;
 | 
						|
 | 
						|
  const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
 | 
						|
    if (Name == kWildcard)
 | 
						|
      HasWildcard = true;
 | 
						|
    Names.push_back(Name);
 | 
						|
  };
 | 
						|
 | 
						|
  // Add previously defined attributes.
 | 
						|
  if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
 | 
						|
    for (StringRef BuiltinName : NBA->builtinNames())
 | 
						|
      AddBuiltinName(BuiltinName);
 | 
						|
 | 
						|
  // Add current attributes.
 | 
						|
  if (AL.getNumArgs() == 0)
 | 
						|
    AddBuiltinName(kWildcard);
 | 
						|
  else
 | 
						|
    for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
 | 
						|
      StringRef BuiltinName;
 | 
						|
      SourceLocation LiteralLoc;
 | 
						|
      if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
 | 
						|
        return;
 | 
						|
 | 
						|
      if (Builtin::Context::isBuiltinFunc(BuiltinName))
 | 
						|
        AddBuiltinName(BuiltinName);
 | 
						|
      else
 | 
						|
        S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
 | 
						|
            << BuiltinName << AL.getAttrName()->getName();
 | 
						|
    }
 | 
						|
 | 
						|
  // Repeating the same attribute is fine.
 | 
						|
  llvm::sort(Names);
 | 
						|
  Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
 | 
						|
 | 
						|
  // Empty no_builtin must be on its own.
 | 
						|
  if (HasWildcard && Names.size() > 1)
 | 
						|
    S.Diag(D->getLocation(),
 | 
						|
           diag::err_attribute_no_builtin_wildcard_or_builtin_name)
 | 
						|
        << AL.getAttrName()->getName();
 | 
						|
 | 
						|
  if (D->hasAttr<NoBuiltinAttr>())
 | 
						|
    D->dropAttr<NoBuiltinAttr>();
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (D->hasAttr<PassObjectSizeAttr>()) {
 | 
						|
    S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *E = AL.getArgAsExpr(0);
 | 
						|
  uint32_t Type;
 | 
						|
  if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
 | 
						|
    return;
 | 
						|
 | 
						|
  // pass_object_size's argument is passed in as the second argument of
 | 
						|
  // __builtin_object_size. So, it has the same constraints as that second
 | 
						|
  // argument; namely, it must be in the range [0, 3].
 | 
						|
  if (Type > 3) {
 | 
						|
    S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
 | 
						|
        << AL << 0 << 3 << E->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // pass_object_size is only supported on constant pointer parameters; as a
 | 
						|
  // kindness to users, we allow the parameter to be non-const for declarations.
 | 
						|
  // At this point, we have no clue if `D` belongs to a function declaration or
 | 
						|
  // definition, so we defer the constness check until later.
 | 
						|
  if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
 | 
						|
    S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
 | 
						|
}
 | 
						|
 | 
						|
static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  ConsumableAttr::ConsumedState DefaultState;
 | 
						|
 | 
						|
  if (AL.isArgIdent(0)) {
 | 
						|
    IdentifierLoc *IL = AL.getArgAsIdent(0);
 | 
						|
    if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
 | 
						|
                                                   DefaultState)) {
 | 
						|
      S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
 | 
						|
                                                               << IL->Ident;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
 | 
						|
}
 | 
						|
 | 
						|
static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
 | 
						|
                                    const ParsedAttr &AL) {
 | 
						|
  QualType ThisType = MD->getThisType()->getPointeeType();
 | 
						|
 | 
						|
  if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
 | 
						|
    if (!RD->hasAttr<ConsumableAttr>()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) <<
 | 
						|
        RD->getNameAsString();
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<CallableWhenAttr::ConsumedState, 3> States;
 | 
						|
  for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
 | 
						|
    CallableWhenAttr::ConsumedState CallableState;
 | 
						|
 | 
						|
    StringRef StateString;
 | 
						|
    SourceLocation Loc;
 | 
						|
    if (AL.isArgIdent(ArgIndex)) {
 | 
						|
      IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
 | 
						|
      StateString = Ident->Ident->getName();
 | 
						|
      Loc = Ident->Loc;
 | 
						|
    } else {
 | 
						|
      if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
 | 
						|
                                                     CallableState)) {
 | 
						|
      S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    States.push_back(CallableState);
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 CallableWhenAttr(S.Context, AL, States.data(), States.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  ParamTypestateAttr::ConsumedState ParamState;
 | 
						|
 | 
						|
  if (AL.isArgIdent(0)) {
 | 
						|
    IdentifierLoc *Ident = AL.getArgAsIdent(0);
 | 
						|
    StringRef StateString = Ident->Ident->getName();
 | 
						|
 | 
						|
    if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
 | 
						|
                                                       ParamState)) {
 | 
						|
      S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
 | 
						|
          << AL << StateString;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: This check is currently being done in the analysis.  It can be
 | 
						|
  //        enabled here only after the parser propagates attributes at
 | 
						|
  //        template specialization definition, not declaration.
 | 
						|
  //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
 | 
						|
  //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
 | 
						|
  //
 | 
						|
  //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
 | 
						|
  //    S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
 | 
						|
  //      ReturnType.getAsString();
 | 
						|
  //    return;
 | 
						|
  //}
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
 | 
						|
}
 | 
						|
 | 
						|
static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  ReturnTypestateAttr::ConsumedState ReturnState;
 | 
						|
 | 
						|
  if (AL.isArgIdent(0)) {
 | 
						|
    IdentifierLoc *IL = AL.getArgAsIdent(0);
 | 
						|
    if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
 | 
						|
                                                        ReturnState)) {
 | 
						|
      S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
 | 
						|
                                                               << IL->Ident;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: This check is currently being done in the analysis.  It can be
 | 
						|
  //        enabled here only after the parser propagates attributes at
 | 
						|
  //        template specialization definition, not declaration.
 | 
						|
  //QualType ReturnType;
 | 
						|
  //
 | 
						|
  //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
 | 
						|
  //  ReturnType = Param->getType();
 | 
						|
  //
 | 
						|
  //} else if (const CXXConstructorDecl *Constructor =
 | 
						|
  //             dyn_cast<CXXConstructorDecl>(D)) {
 | 
						|
  //  ReturnType = Constructor->getThisType()->getPointeeType();
 | 
						|
  //
 | 
						|
  //} else {
 | 
						|
  //
 | 
						|
  //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
 | 
						|
  //}
 | 
						|
  //
 | 
						|
  //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
 | 
						|
  //
 | 
						|
  //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
 | 
						|
  //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
 | 
						|
  //      ReturnType.getAsString();
 | 
						|
  //    return;
 | 
						|
  //}
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
 | 
						|
}
 | 
						|
 | 
						|
static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  SetTypestateAttr::ConsumedState NewState;
 | 
						|
  if (AL.isArgIdent(0)) {
 | 
						|
    IdentifierLoc *Ident = AL.getArgAsIdent(0);
 | 
						|
    StringRef Param = Ident->Ident->getName();
 | 
						|
    if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
 | 
						|
      S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
 | 
						|
                                                                  << Param;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
 | 
						|
}
 | 
						|
 | 
						|
static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  TestTypestateAttr::ConsumedState TestState;
 | 
						|
  if (AL.isArgIdent(0)) {
 | 
						|
    IdentifierLoc *Ident = AL.getArgAsIdent(0);
 | 
						|
    StringRef Param = Ident->Ident->getName();
 | 
						|
    if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
 | 
						|
      S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
 | 
						|
                                                                  << Param;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
 | 
						|
}
 | 
						|
 | 
						|
static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Remember this typedef decl, we will need it later for diagnostics.
 | 
						|
  S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
 | 
						|
}
 | 
						|
 | 
						|
static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (auto *TD = dyn_cast<TagDecl>(D))
 | 
						|
    TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
 | 
						|
  else if (auto *FD = dyn_cast<FieldDecl>(D)) {
 | 
						|
    bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
 | 
						|
                                !FD->getType()->isIncompleteType() &&
 | 
						|
                                FD->isBitField() &&
 | 
						|
                                S.Context.getTypeAlign(FD->getType()) <= 8);
 | 
						|
 | 
						|
    if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
 | 
						|
      if (BitfieldByteAligned)
 | 
						|
        // The PS4 target needs to maintain ABI backwards compatibility.
 | 
						|
        S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
 | 
						|
            << AL << FD->getType();
 | 
						|
      else
 | 
						|
        FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
 | 
						|
    } else {
 | 
						|
      // Report warning about changed offset in the newer compiler versions.
 | 
						|
      if (BitfieldByteAligned)
 | 
						|
        S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
 | 
						|
 | 
						|
      FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
 | 
						|
    }
 | 
						|
 | 
						|
  } else
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
 | 
						|
}
 | 
						|
 | 
						|
static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // The IBOutlet/IBOutletCollection attributes only apply to instance
 | 
						|
  // variables or properties of Objective-C classes.  The outlet must also
 | 
						|
  // have an object reference type.
 | 
						|
  if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
 | 
						|
    if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
 | 
						|
          << AL << VD->getType() << 0;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
 | 
						|
    if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
 | 
						|
          << AL << PD->getType() << 1;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkIBOutletCommon(S, D, AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
 | 
						|
  // The iboutletcollection attribute can have zero or one arguments.
 | 
						|
  if (AL.getNumArgs() > 1) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!checkIBOutletCommon(S, D, AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  ParsedType PT;
 | 
						|
 | 
						|
  if (AL.hasParsedType())
 | 
						|
    PT = AL.getTypeArg();
 | 
						|
  else {
 | 
						|
    PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
 | 
						|
                       S.getScopeForContext(D->getDeclContext()->getParent()));
 | 
						|
    if (!PT) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  TypeSourceInfo *QTLoc = nullptr;
 | 
						|
  QualType QT = S.GetTypeFromParser(PT, &QTLoc);
 | 
						|
  if (!QTLoc)
 | 
						|
    QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
 | 
						|
 | 
						|
  // Diagnose use of non-object type in iboutletcollection attribute.
 | 
						|
  // FIXME. Gnu attribute extension ignores use of builtin types in
 | 
						|
  // attributes. So, __attribute__((iboutletcollection(char))) will be
 | 
						|
  // treated as __attribute__((iboutletcollection())).
 | 
						|
  if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
 | 
						|
    S.Diag(AL.getLoc(),
 | 
						|
           QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
 | 
						|
                               : diag::err_iboutletcollection_type) << QT;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
 | 
						|
  if (RefOkay) {
 | 
						|
    if (T->isReferenceType())
 | 
						|
      return true;
 | 
						|
  } else {
 | 
						|
    T = T.getNonReferenceType();
 | 
						|
  }
 | 
						|
 | 
						|
  // The nonnull attribute, and other similar attributes, can be applied to a
 | 
						|
  // transparent union that contains a pointer type.
 | 
						|
  if (const RecordType *UT = T->getAsUnionType()) {
 | 
						|
    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
 | 
						|
      RecordDecl *UD = UT->getDecl();
 | 
						|
      for (const auto *I : UD->fields()) {
 | 
						|
        QualType QT = I->getType();
 | 
						|
        if (QT->isAnyPointerType() || QT->isBlockPointerType())
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return T->isAnyPointerType() || T->isBlockPointerType();
 | 
						|
}
 | 
						|
 | 
						|
static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
 | 
						|
                                SourceRange AttrParmRange,
 | 
						|
                                SourceRange TypeRange,
 | 
						|
                                bool isReturnValue = false) {
 | 
						|
  if (!S.isValidPointerAttrType(T)) {
 | 
						|
    if (isReturnValue)
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
 | 
						|
          << AL << AttrParmRange << TypeRange;
 | 
						|
    else
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
 | 
						|
          << AL << AttrParmRange << TypeRange << 0;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  SmallVector<ParamIdx, 8> NonNullArgs;
 | 
						|
  for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
 | 
						|
    Expr *Ex = AL.getArgAsExpr(I);
 | 
						|
    ParamIdx Idx;
 | 
						|
    if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Is the function argument a pointer type?
 | 
						|
    if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
 | 
						|
        !attrNonNullArgCheck(
 | 
						|
            S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
 | 
						|
            Ex->getSourceRange(),
 | 
						|
            getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
 | 
						|
      continue;
 | 
						|
 | 
						|
    NonNullArgs.push_back(Idx);
 | 
						|
  }
 | 
						|
 | 
						|
  // If no arguments were specified to __attribute__((nonnull)) then all pointer
 | 
						|
  // arguments have a nonnull attribute; warn if there aren't any. Skip this
 | 
						|
  // check if the attribute came from a macro expansion or a template
 | 
						|
  // instantiation.
 | 
						|
  if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
 | 
						|
      !S.inTemplateInstantiation()) {
 | 
						|
    bool AnyPointers = isFunctionOrMethodVariadic(D);
 | 
						|
    for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
 | 
						|
         I != E && !AnyPointers; ++I) {
 | 
						|
      QualType T = getFunctionOrMethodParamType(D, I);
 | 
						|
      if (T->isDependentType() || S.isValidPointerAttrType(T))
 | 
						|
        AnyPointers = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!AnyPointers)
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
 | 
						|
  }
 | 
						|
 | 
						|
  ParamIdx *Start = NonNullArgs.data();
 | 
						|
  unsigned Size = NonNullArgs.size();
 | 
						|
  llvm::array_pod_sort(Start, Start + Size);
 | 
						|
  D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
 | 
						|
}
 | 
						|
 | 
						|
static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
 | 
						|
                                       const ParsedAttr &AL) {
 | 
						|
  if (AL.getNumArgs() > 0) {
 | 
						|
    if (D->getFunctionType()) {
 | 
						|
      handleNonNullAttr(S, D, AL);
 | 
						|
    } else {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
 | 
						|
        << D->getSourceRange();
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Is the argument a pointer type?
 | 
						|
  if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
 | 
						|
                           D->getSourceRange()))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
 | 
						|
}
 | 
						|
 | 
						|
static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  QualType ResultType = getFunctionOrMethodResultType(D);
 | 
						|
  SourceRange SR = getFunctionOrMethodResultSourceRange(D);
 | 
						|
  if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
 | 
						|
                           /* isReturnValue */ true))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (D->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  // noescape only applies to pointer types.
 | 
						|
  QualType T = cast<ParmVarDecl>(D)->getType();
 | 
						|
  if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
 | 
						|
        << AL << AL.getRange() << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  Expr *E = AL.getArgAsExpr(0),
 | 
						|
       *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
 | 
						|
  S.AddAssumeAlignedAttr(D, AL, E, OE);
 | 
						|
}
 | 
						|
 | 
						|
static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
 | 
						|
                                Expr *OE) {
 | 
						|
  QualType ResultType = getFunctionOrMethodResultType(D);
 | 
						|
  SourceRange SR = getFunctionOrMethodResultSourceRange(D);
 | 
						|
 | 
						|
  AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
 | 
						|
  SourceLocation AttrLoc = TmpAttr.getLocation();
 | 
						|
 | 
						|
  if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
 | 
						|
    Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
 | 
						|
        << &TmpAttr << TmpAttr.getRange() << SR;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!E->isValueDependent()) {
 | 
						|
    llvm::APSInt I(64);
 | 
						|
    if (!E->isIntegerConstantExpr(I, Context)) {
 | 
						|
      if (OE)
 | 
						|
        Diag(AttrLoc, diag::err_attribute_argument_n_type)
 | 
						|
          << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
 | 
						|
          << E->getSourceRange();
 | 
						|
      else
 | 
						|
        Diag(AttrLoc, diag::err_attribute_argument_type)
 | 
						|
          << &TmpAttr << AANT_ArgumentIntegerConstant
 | 
						|
          << E->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!I.isPowerOf2()) {
 | 
						|
      Diag(AttrLoc, diag::err_alignment_not_power_of_two)
 | 
						|
        << E->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (I > Sema::MaximumAlignment)
 | 
						|
      Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
 | 
						|
          << CI.getRange() << Sema::MaximumAlignment;
 | 
						|
  }
 | 
						|
 | 
						|
  if (OE) {
 | 
						|
    if (!OE->isValueDependent()) {
 | 
						|
      llvm::APSInt I(64);
 | 
						|
      if (!OE->isIntegerConstantExpr(I, Context)) {
 | 
						|
        Diag(AttrLoc, diag::err_attribute_argument_n_type)
 | 
						|
          << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
 | 
						|
          << OE->getSourceRange();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                             Expr *ParamExpr) {
 | 
						|
  QualType ResultType = getFunctionOrMethodResultType(D);
 | 
						|
 | 
						|
  AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
 | 
						|
  SourceLocation AttrLoc = CI.getLoc();
 | 
						|
 | 
						|
  if (!ResultType->isDependentType() &&
 | 
						|
      !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
 | 
						|
    Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
 | 
						|
        << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ParamIdx Idx;
 | 
						|
  const auto *FuncDecl = cast<FunctionDecl>(D);
 | 
						|
  if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
 | 
						|
                                           /*AttrArgNum=*/1, ParamExpr, Idx))
 | 
						|
    return;
 | 
						|
 | 
						|
  QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
 | 
						|
  if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
 | 
						|
      !Ty->isAlignValT()) {
 | 
						|
    Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
 | 
						|
        << &TmpAttr
 | 
						|
        << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
 | 
						|
}
 | 
						|
 | 
						|
/// Normalize the attribute, __foo__ becomes foo.
 | 
						|
/// Returns true if normalization was applied.
 | 
						|
static bool normalizeName(StringRef &AttrName) {
 | 
						|
  if (AttrName.size() > 4 && AttrName.startswith("__") &&
 | 
						|
      AttrName.endswith("__")) {
 | 
						|
    AttrName = AttrName.drop_front(2).drop_back(2);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // This attribute must be applied to a function declaration. The first
 | 
						|
  // argument to the attribute must be an identifier, the name of the resource,
 | 
						|
  // for example: malloc. The following arguments must be argument indexes, the
 | 
						|
  // arguments must be of integer type for Returns, otherwise of pointer type.
 | 
						|
  // The difference between Holds and Takes is that a pointer may still be used
 | 
						|
  // after being held. free() should be __attribute((ownership_takes)), whereas
 | 
						|
  // a list append function may well be __attribute((ownership_holds)).
 | 
						|
 | 
						|
  if (!AL.isArgIdent(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
        << AL << 1 << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out our Kind.
 | 
						|
  OwnershipAttr::OwnershipKind K =
 | 
						|
      OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
 | 
						|
 | 
						|
  // Check arguments.
 | 
						|
  switch (K) {
 | 
						|
  case OwnershipAttr::Takes:
 | 
						|
  case OwnershipAttr::Holds:
 | 
						|
    if (AL.getNumArgs() < 2) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case OwnershipAttr::Returns:
 | 
						|
    if (AL.getNumArgs() > 2) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
 | 
						|
 | 
						|
  StringRef ModuleName = Module->getName();
 | 
						|
  if (normalizeName(ModuleName)) {
 | 
						|
    Module = &S.PP.getIdentifierTable().get(ModuleName);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<ParamIdx, 8> OwnershipArgs;
 | 
						|
  for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
 | 
						|
    Expr *Ex = AL.getArgAsExpr(i);
 | 
						|
    ParamIdx Idx;
 | 
						|
    if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Is the function argument a pointer type?
 | 
						|
    QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
 | 
						|
    int Err = -1;  // No error
 | 
						|
    switch (K) {
 | 
						|
      case OwnershipAttr::Takes:
 | 
						|
      case OwnershipAttr::Holds:
 | 
						|
        if (!T->isAnyPointerType() && !T->isBlockPointerType())
 | 
						|
          Err = 0;
 | 
						|
        break;
 | 
						|
      case OwnershipAttr::Returns:
 | 
						|
        if (!T->isIntegerType())
 | 
						|
          Err = 1;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (-1 != Err) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
 | 
						|
                                                    << Ex->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check we don't have a conflict with another ownership attribute.
 | 
						|
    for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
 | 
						|
      // Cannot have two ownership attributes of different kinds for the same
 | 
						|
      // index.
 | 
						|
      if (I->getOwnKind() != K && I->args_end() !=
 | 
						|
          std::find(I->args_begin(), I->args_end(), Idx)) {
 | 
						|
        S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
 | 
						|
        return;
 | 
						|
      } else if (K == OwnershipAttr::Returns &&
 | 
						|
                 I->getOwnKind() == OwnershipAttr::Returns) {
 | 
						|
        // A returns attribute conflicts with any other returns attribute using
 | 
						|
        // a different index.
 | 
						|
        if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
 | 
						|
          S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
 | 
						|
              << I->args_begin()->getSourceIndex();
 | 
						|
          if (I->args_size())
 | 
						|
            S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
 | 
						|
                << Idx.getSourceIndex() << Ex->getSourceRange();
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    OwnershipArgs.push_back(Idx);
 | 
						|
  }
 | 
						|
 | 
						|
  ParamIdx *Start = OwnershipArgs.data();
 | 
						|
  unsigned Size = OwnershipArgs.size();
 | 
						|
  llvm::array_pod_sort(Start, Start + Size);
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 OwnershipAttr(S.Context, AL, Module, Start, Size));
 | 
						|
}
 | 
						|
 | 
						|
static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Check the attribute arguments.
 | 
						|
  if (AL.getNumArgs() > 1) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // gcc rejects
 | 
						|
  // class c {
 | 
						|
  //   static int a __attribute__((weakref ("v2")));
 | 
						|
  //   static int b() __attribute__((weakref ("f3")));
 | 
						|
  // };
 | 
						|
  // and ignores the attributes of
 | 
						|
  // void f(void) {
 | 
						|
  //   static int a __attribute__((weakref ("v2")));
 | 
						|
  // }
 | 
						|
  // we reject them
 | 
						|
  const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
 | 
						|
  if (!Ctx->isFileContext()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
 | 
						|
        << cast<NamedDecl>(D);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The GCC manual says
 | 
						|
  //
 | 
						|
  // At present, a declaration to which `weakref' is attached can only
 | 
						|
  // be `static'.
 | 
						|
  //
 | 
						|
  // It also says
 | 
						|
  //
 | 
						|
  // Without a TARGET,
 | 
						|
  // given as an argument to `weakref' or to `alias', `weakref' is
 | 
						|
  // equivalent to `weak'.
 | 
						|
  //
 | 
						|
  // gcc 4.4.1 will accept
 | 
						|
  // int a7 __attribute__((weakref));
 | 
						|
  // as
 | 
						|
  // int a7 __attribute__((weak));
 | 
						|
  // This looks like a bug in gcc. We reject that for now. We should revisit
 | 
						|
  // it if this behaviour is actually used.
 | 
						|
 | 
						|
  // GCC rejects
 | 
						|
  // static ((alias ("y"), weakref)).
 | 
						|
  // Should we? How to check that weakref is before or after alias?
 | 
						|
 | 
						|
  // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
 | 
						|
  // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
 | 
						|
  // StringRef parameter it was given anyway.
 | 
						|
  StringRef Str;
 | 
						|
  if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
 | 
						|
    // GCC will accept anything as the argument of weakref. Should we
 | 
						|
    // check for an existing decl?
 | 
						|
    D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  StringRef Str;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Aliases should be on declarations, not definitions.
 | 
						|
  const auto *FD = cast<FunctionDecl>(D);
 | 
						|
  if (FD->isThisDeclarationADefinition()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  StringRef Str;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
 | 
						|
  }
 | 
						|
 | 
						|
  // Aliases should be on declarations, not definitions.
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (FD->isThisDeclarationADefinition()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    const auto *VD = cast<VarDecl>(D);
 | 
						|
    if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark target used to prevent unneeded-internal-declaration warnings.
 | 
						|
  if (!S.LangOpts.CPlusPlus) {
 | 
						|
    // FIXME: demangle Str for C++, as the attribute refers to the mangled
 | 
						|
    // linkage name, not the pre-mangled identifier.
 | 
						|
    const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
 | 
						|
    LookupResult LR(S, target, Sema::LookupOrdinaryName);
 | 
						|
    if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
 | 
						|
      for (NamedDecl *ND : LR)
 | 
						|
        ND->markUsed(S.Context);
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
 | 
						|
}
 | 
						|
 | 
						|
static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  StringRef Model;
 | 
						|
  SourceLocation LiteralLoc;
 | 
						|
  // Check that it is a string.
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check that the value.
 | 
						|
  if (Model != "global-dynamic" && Model != "local-dynamic"
 | 
						|
      && Model != "initial-exec" && Model != "local-exec") {
 | 
						|
    S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
 | 
						|
}
 | 
						|
 | 
						|
static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  QualType ResultType = getFunctionOrMethodResultType(D);
 | 
						|
  if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
 | 
						|
    D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
 | 
						|
      << AL << getFunctionOrMethodResultSourceRange(D);
 | 
						|
}
 | 
						|
 | 
						|
static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  FunctionDecl *FD = cast<FunctionDecl>(D);
 | 
						|
 | 
						|
  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
    if (MD->getParent()->isLambda()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<IdentifierInfo *, 8> CPUs;
 | 
						|
  for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
 | 
						|
    if (!AL.isArgIdent(ArgNo)) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
 | 
						|
          << AL << AANT_ArgumentIdentifier;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
 | 
						|
    StringRef CPUName = CPUArg->Ident->getName().trim();
 | 
						|
 | 
						|
    if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
 | 
						|
      S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
 | 
						|
          << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    const TargetInfo &Target = S.Context.getTargetInfo();
 | 
						|
    if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
 | 
						|
          return Target.CPUSpecificManglingCharacter(CPUName) ==
 | 
						|
                 Target.CPUSpecificManglingCharacter(Cur->getName());
 | 
						|
        })) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    CPUs.push_back(CPUArg->Ident);
 | 
						|
  }
 | 
						|
 | 
						|
  FD->setIsMultiVersion(true);
 | 
						|
  if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
 | 
						|
    D->addAttr(::new (S.Context)
 | 
						|
                   CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
 | 
						|
  else
 | 
						|
    D->addAttr(::new (S.Context)
 | 
						|
                   CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (S.LangOpts.CPlusPlus) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
 | 
						|
        << AL << AttributeLangSupport::Cpp;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CommonAttr *CA = S.mergeCommonAttr(D, AL))
 | 
						|
    D->addAttr(CA);
 | 
						|
}
 | 
						|
 | 
						|
static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (AL.isDeclspecAttribute()) {
 | 
						|
    const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
 | 
						|
    const auto &Arch = Triple.getArch();
 | 
						|
    if (Arch != llvm::Triple::x86 &&
 | 
						|
        (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
 | 
						|
          << AL << Triple.getArchName();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
 | 
						|
  if (hasDeclarator(D)) return;
 | 
						|
 | 
						|
  if (!isa<ObjCMethodDecl>(D)) {
 | 
						|
    S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << Attrs << ExpectedFunctionOrMethod;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
 | 
						|
}
 | 
						|
 | 
						|
static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
 | 
						|
  if (!S.getLangOpts().CFProtectionBranch)
 | 
						|
    S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
 | 
						|
  else
 | 
						|
    handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
 | 
						|
  if (!checkAttributeNumArgs(*this, Attrs, 0)) {
 | 
						|
    Attrs.setInvalid();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
 | 
						|
  // Check whether the attribute is valid on the current target.
 | 
						|
  if (!AL.existsInTarget(Context.getTargetInfo())) {
 | 
						|
    Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL;
 | 
						|
    AL.setInvalid();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
 | 
						|
  // The checking path for 'noreturn' and 'analyzer_noreturn' are different
 | 
						|
  // because 'analyzer_noreturn' does not impact the type.
 | 
						|
  if (!isFunctionOrMethodOrBlock(D)) {
 | 
						|
    ValueDecl *VD = dyn_cast<ValueDecl>(D);
 | 
						|
    if (!VD || (!VD->getType()->isBlockPointerType() &&
 | 
						|
                !VD->getType()->isFunctionPointerType())) {
 | 
						|
      S.Diag(AL.getLoc(), AL.isCXX11Attribute()
 | 
						|
                              ? diag::err_attribute_wrong_decl_type
 | 
						|
                              : diag::warn_attribute_wrong_decl_type)
 | 
						|
          << AL << ExpectedFunctionMethodOrBlock;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
// PS3 PPU-specific.
 | 
						|
static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  /*
 | 
						|
    Returning a Vector Class in Registers
 | 
						|
 | 
						|
    According to the PPU ABI specifications, a class with a single member of
 | 
						|
    vector type is returned in memory when used as the return value of a
 | 
						|
    function.
 | 
						|
    This results in inefficient code when implementing vector classes. To return
 | 
						|
    the value in a single vector register, add the vecreturn attribute to the
 | 
						|
    class definition. This attribute is also applicable to struct types.
 | 
						|
 | 
						|
    Example:
 | 
						|
 | 
						|
    struct Vector
 | 
						|
    {
 | 
						|
      __vector float xyzw;
 | 
						|
    } __attribute__((vecreturn));
 | 
						|
 | 
						|
    Vector Add(Vector lhs, Vector rhs)
 | 
						|
    {
 | 
						|
      Vector result;
 | 
						|
      result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
 | 
						|
      return result; // This will be returned in a register
 | 
						|
    }
 | 
						|
  */
 | 
						|
  if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const auto *R = cast<RecordDecl>(D);
 | 
						|
  int count = 0;
 | 
						|
 | 
						|
  if (!isa<CXXRecordDecl>(R)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!cast<CXXRecordDecl>(R)->isPOD()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto *I : R->fields()) {
 | 
						|
    if ((count == 1) || !I->getType()->isVectorType()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    count++;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
 | 
						|
                                 const ParsedAttr &AL) {
 | 
						|
  if (isa<ParmVarDecl>(D)) {
 | 
						|
    // [[carries_dependency]] can only be applied to a parameter if it is a
 | 
						|
    // parameter of a function declaration or lambda.
 | 
						|
    if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
 | 
						|
      S.Diag(AL.getLoc(),
 | 
						|
             diag::err_carries_dependency_param_not_function_decl);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
 | 
						|
 | 
						|
  // If this is spelled as the standard C++17 attribute, but not in C++17, warn
 | 
						|
  // about using it as an extension.
 | 
						|
  if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
 | 
						|
    S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  uint32_t priority = ConstructorAttr::DefaultPriority;
 | 
						|
  if (AL.getNumArgs() &&
 | 
						|
      !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
 | 
						|
}
 | 
						|
 | 
						|
static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  uint32_t priority = DestructorAttr::DefaultPriority;
 | 
						|
  if (AL.getNumArgs() &&
 | 
						|
      !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
 | 
						|
}
 | 
						|
 | 
						|
template <typename AttrTy>
 | 
						|
static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Handle the case where the attribute has a text message.
 | 
						|
  StringRef Str;
 | 
						|
  if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
 | 
						|
                                          const ParsedAttr &AL) {
 | 
						|
  if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
 | 
						|
        << AL << AL.getRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
 | 
						|
                                  IdentifierInfo *Platform,
 | 
						|
                                  VersionTuple Introduced,
 | 
						|
                                  VersionTuple Deprecated,
 | 
						|
                                  VersionTuple Obsoleted) {
 | 
						|
  StringRef PlatformName
 | 
						|
    = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
 | 
						|
  if (PlatformName.empty())
 | 
						|
    PlatformName = Platform->getName();
 | 
						|
 | 
						|
  // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
 | 
						|
  // of these steps are needed).
 | 
						|
  if (!Introduced.empty() && !Deprecated.empty() &&
 | 
						|
      !(Introduced <= Deprecated)) {
 | 
						|
    S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
 | 
						|
      << 1 << PlatformName << Deprecated.getAsString()
 | 
						|
      << 0 << Introduced.getAsString();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Introduced.empty() && !Obsoleted.empty() &&
 | 
						|
      !(Introduced <= Obsoleted)) {
 | 
						|
    S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
 | 
						|
      << 2 << PlatformName << Obsoleted.getAsString()
 | 
						|
      << 0 << Introduced.getAsString();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Deprecated.empty() && !Obsoleted.empty() &&
 | 
						|
      !(Deprecated <= Obsoleted)) {
 | 
						|
    S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
 | 
						|
      << 2 << PlatformName << Obsoleted.getAsString()
 | 
						|
      << 1 << Deprecated.getAsString();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the two versions match.
 | 
						|
///
 | 
						|
/// If either version tuple is empty, then they are assumed to match. If
 | 
						|
/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
 | 
						|
static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
 | 
						|
                          bool BeforeIsOkay) {
 | 
						|
  if (X.empty() || Y.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (X == Y)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (BeforeIsOkay && X < Y)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
AvailabilityAttr *Sema::mergeAvailabilityAttr(
 | 
						|
    NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
 | 
						|
    bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
 | 
						|
    VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
 | 
						|
    bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
 | 
						|
    int Priority) {
 | 
						|
  VersionTuple MergedIntroduced = Introduced;
 | 
						|
  VersionTuple MergedDeprecated = Deprecated;
 | 
						|
  VersionTuple MergedObsoleted = Obsoleted;
 | 
						|
  bool FoundAny = false;
 | 
						|
  bool OverrideOrImpl = false;
 | 
						|
  switch (AMK) {
 | 
						|
  case AMK_None:
 | 
						|
  case AMK_Redeclaration:
 | 
						|
    OverrideOrImpl = false;
 | 
						|
    break;
 | 
						|
 | 
						|
  case AMK_Override:
 | 
						|
  case AMK_ProtocolImplementation:
 | 
						|
    OverrideOrImpl = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (D->hasAttrs()) {
 | 
						|
    AttrVec &Attrs = D->getAttrs();
 | 
						|
    for (unsigned i = 0, e = Attrs.size(); i != e;) {
 | 
						|
      const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
 | 
						|
      if (!OldAA) {
 | 
						|
        ++i;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      IdentifierInfo *OldPlatform = OldAA->getPlatform();
 | 
						|
      if (OldPlatform != Platform) {
 | 
						|
        ++i;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If there is an existing availability attribute for this platform that
 | 
						|
      // has a lower priority use the existing one and discard the new
 | 
						|
      // attribute.
 | 
						|
      if (OldAA->getPriority() < Priority)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      // If there is an existing attribute for this platform that has a higher
 | 
						|
      // priority than the new attribute then erase the old one and continue
 | 
						|
      // processing the attributes.
 | 
						|
      if (OldAA->getPriority() > Priority) {
 | 
						|
        Attrs.erase(Attrs.begin() + i);
 | 
						|
        --e;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      FoundAny = true;
 | 
						|
      VersionTuple OldIntroduced = OldAA->getIntroduced();
 | 
						|
      VersionTuple OldDeprecated = OldAA->getDeprecated();
 | 
						|
      VersionTuple OldObsoleted = OldAA->getObsoleted();
 | 
						|
      bool OldIsUnavailable = OldAA->getUnavailable();
 | 
						|
 | 
						|
      if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
 | 
						|
          !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
 | 
						|
          !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
 | 
						|
          !(OldIsUnavailable == IsUnavailable ||
 | 
						|
            (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
 | 
						|
        if (OverrideOrImpl) {
 | 
						|
          int Which = -1;
 | 
						|
          VersionTuple FirstVersion;
 | 
						|
          VersionTuple SecondVersion;
 | 
						|
          if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
 | 
						|
            Which = 0;
 | 
						|
            FirstVersion = OldIntroduced;
 | 
						|
            SecondVersion = Introduced;
 | 
						|
          } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
 | 
						|
            Which = 1;
 | 
						|
            FirstVersion = Deprecated;
 | 
						|
            SecondVersion = OldDeprecated;
 | 
						|
          } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
 | 
						|
            Which = 2;
 | 
						|
            FirstVersion = Obsoleted;
 | 
						|
            SecondVersion = OldObsoleted;
 | 
						|
          }
 | 
						|
 | 
						|
          if (Which == -1) {
 | 
						|
            Diag(OldAA->getLocation(),
 | 
						|
                 diag::warn_mismatched_availability_override_unavail)
 | 
						|
              << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
 | 
						|
              << (AMK == AMK_Override);
 | 
						|
          } else {
 | 
						|
            Diag(OldAA->getLocation(),
 | 
						|
                 diag::warn_mismatched_availability_override)
 | 
						|
              << Which
 | 
						|
              << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
 | 
						|
              << FirstVersion.getAsString() << SecondVersion.getAsString()
 | 
						|
              << (AMK == AMK_Override);
 | 
						|
          }
 | 
						|
          if (AMK == AMK_Override)
 | 
						|
            Diag(CI.getLoc(), diag::note_overridden_method);
 | 
						|
          else
 | 
						|
            Diag(CI.getLoc(), diag::note_protocol_method);
 | 
						|
        } else {
 | 
						|
          Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
 | 
						|
          Diag(CI.getLoc(), diag::note_previous_attribute);
 | 
						|
        }
 | 
						|
 | 
						|
        Attrs.erase(Attrs.begin() + i);
 | 
						|
        --e;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      VersionTuple MergedIntroduced2 = MergedIntroduced;
 | 
						|
      VersionTuple MergedDeprecated2 = MergedDeprecated;
 | 
						|
      VersionTuple MergedObsoleted2 = MergedObsoleted;
 | 
						|
 | 
						|
      if (MergedIntroduced2.empty())
 | 
						|
        MergedIntroduced2 = OldIntroduced;
 | 
						|
      if (MergedDeprecated2.empty())
 | 
						|
        MergedDeprecated2 = OldDeprecated;
 | 
						|
      if (MergedObsoleted2.empty())
 | 
						|
        MergedObsoleted2 = OldObsoleted;
 | 
						|
 | 
						|
      if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
 | 
						|
                                MergedIntroduced2, MergedDeprecated2,
 | 
						|
                                MergedObsoleted2)) {
 | 
						|
        Attrs.erase(Attrs.begin() + i);
 | 
						|
        --e;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      MergedIntroduced = MergedIntroduced2;
 | 
						|
      MergedDeprecated = MergedDeprecated2;
 | 
						|
      MergedObsoleted = MergedObsoleted2;
 | 
						|
      ++i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (FoundAny &&
 | 
						|
      MergedIntroduced == Introduced &&
 | 
						|
      MergedDeprecated == Deprecated &&
 | 
						|
      MergedObsoleted == Obsoleted)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Only create a new attribute if !OverrideOrImpl, but we want to do
 | 
						|
  // the checking.
 | 
						|
  if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
 | 
						|
                             MergedDeprecated, MergedObsoleted) &&
 | 
						|
      !OverrideOrImpl) {
 | 
						|
    auto *Avail = ::new (Context) AvailabilityAttr(
 | 
						|
        Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
 | 
						|
        Message, IsStrict, Replacement, Priority);
 | 
						|
    Avail->setImplicit(Implicit);
 | 
						|
    return Avail;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkAttributeNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
  IdentifierLoc *Platform = AL.getArgAsIdent(0);
 | 
						|
 | 
						|
  IdentifierInfo *II = Platform->Ident;
 | 
						|
  if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
 | 
						|
    S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
 | 
						|
      << Platform->Ident;
 | 
						|
 | 
						|
  auto *ND = dyn_cast<NamedDecl>(D);
 | 
						|
  if (!ND) // We warned about this already, so just return.
 | 
						|
    return;
 | 
						|
 | 
						|
  AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
 | 
						|
  AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
 | 
						|
  AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
 | 
						|
  bool IsUnavailable = AL.getUnavailableLoc().isValid();
 | 
						|
  bool IsStrict = AL.getStrictLoc().isValid();
 | 
						|
  StringRef Str;
 | 
						|
  if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
 | 
						|
    Str = SE->getString();
 | 
						|
  StringRef Replacement;
 | 
						|
  if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
 | 
						|
    Replacement = SE->getString();
 | 
						|
 | 
						|
  if (II->isStr("swift")) {
 | 
						|
    if (Introduced.isValid() || Obsoleted.isValid() ||
 | 
						|
        (!IsUnavailable && !Deprecated.isValid())) {
 | 
						|
      S.Diag(AL.getLoc(),
 | 
						|
             diag::warn_availability_swift_unavailable_deprecated_only);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  int PriorityModifier = AL.isPragmaClangAttribute()
 | 
						|
                             ? Sema::AP_PragmaClangAttribute
 | 
						|
                             : Sema::AP_Explicit;
 | 
						|
  AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
 | 
						|
      ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
 | 
						|
      Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
 | 
						|
      Sema::AMK_None, PriorityModifier);
 | 
						|
  if (NewAttr)
 | 
						|
    D->addAttr(NewAttr);
 | 
						|
 | 
						|
  // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
 | 
						|
  // matches before the start of the watchOS platform.
 | 
						|
  if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
 | 
						|
    IdentifierInfo *NewII = nullptr;
 | 
						|
    if (II->getName() == "ios")
 | 
						|
      NewII = &S.Context.Idents.get("watchos");
 | 
						|
    else if (II->getName() == "ios_app_extension")
 | 
						|
      NewII = &S.Context.Idents.get("watchos_app_extension");
 | 
						|
 | 
						|
    if (NewII) {
 | 
						|
        auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
 | 
						|
          if (Version.empty())
 | 
						|
            return Version;
 | 
						|
          auto Major = Version.getMajor();
 | 
						|
          auto NewMajor = Major >= 9 ? Major - 7 : 0;
 | 
						|
          if (NewMajor >= 2) {
 | 
						|
            if (Version.getMinor().hasValue()) {
 | 
						|
              if (Version.getSubminor().hasValue())
 | 
						|
                return VersionTuple(NewMajor, Version.getMinor().getValue(),
 | 
						|
                                    Version.getSubminor().getValue());
 | 
						|
              else
 | 
						|
                return VersionTuple(NewMajor, Version.getMinor().getValue());
 | 
						|
            }
 | 
						|
            return VersionTuple(NewMajor);
 | 
						|
          }
 | 
						|
 | 
						|
          return VersionTuple(2, 0);
 | 
						|
        };
 | 
						|
 | 
						|
        auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
 | 
						|
        auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
 | 
						|
        auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
 | 
						|
 | 
						|
        AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
 | 
						|
            ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
 | 
						|
            NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
 | 
						|
            Sema::AMK_None,
 | 
						|
            PriorityModifier + Sema::AP_InferredFromOtherPlatform);
 | 
						|
        if (NewAttr)
 | 
						|
          D->addAttr(NewAttr);
 | 
						|
      }
 | 
						|
  } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
 | 
						|
    // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
 | 
						|
    // matches before the start of the tvOS platform.
 | 
						|
    IdentifierInfo *NewII = nullptr;
 | 
						|
    if (II->getName() == "ios")
 | 
						|
      NewII = &S.Context.Idents.get("tvos");
 | 
						|
    else if (II->getName() == "ios_app_extension")
 | 
						|
      NewII = &S.Context.Idents.get("tvos_app_extension");
 | 
						|
 | 
						|
    if (NewII) {
 | 
						|
      AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
 | 
						|
          ND, AL, NewII, true /*Implicit*/, Introduced.Version,
 | 
						|
          Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict,
 | 
						|
          Replacement, Sema::AMK_None,
 | 
						|
          PriorityModifier + Sema::AP_InferredFromOtherPlatform);
 | 
						|
      if (NewAttr)
 | 
						|
        D->addAttr(NewAttr);
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
 | 
						|
                                           const ParsedAttr &AL) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
  assert(checkAttributeAtMostNumArgs(S, AL, 3) &&
 | 
						|
         "Invalid number of arguments in an external_source_symbol attribute");
 | 
						|
 | 
						|
  StringRef Language;
 | 
						|
  if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
 | 
						|
    Language = SE->getString();
 | 
						|
  StringRef DefinedIn;
 | 
						|
  if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
 | 
						|
    DefinedIn = SE->getString();
 | 
						|
  bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
 | 
						|
      S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                              typename T::VisibilityType value) {
 | 
						|
  T *existingAttr = D->getAttr<T>();
 | 
						|
  if (existingAttr) {
 | 
						|
    typename T::VisibilityType existingValue = existingAttr->getVisibility();
 | 
						|
    if (existingValue == value)
 | 
						|
      return nullptr;
 | 
						|
    S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
 | 
						|
    S.Diag(CI.getLoc(), diag::note_previous_attribute);
 | 
						|
    D->dropAttr<T>();
 | 
						|
  }
 | 
						|
  return ::new (S.Context) T(S.Context, CI, value);
 | 
						|
}
 | 
						|
 | 
						|
VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
 | 
						|
                                          const AttributeCommonInfo &CI,
 | 
						|
                                          VisibilityAttr::VisibilityType Vis) {
 | 
						|
  return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
 | 
						|
}
 | 
						|
 | 
						|
TypeVisibilityAttr *
 | 
						|
Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                              TypeVisibilityAttr::VisibilityType Vis) {
 | 
						|
  return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
 | 
						|
}
 | 
						|
 | 
						|
static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
 | 
						|
                                 bool isTypeVisibility) {
 | 
						|
  // Visibility attributes don't mean anything on a typedef.
 | 
						|
  if (isa<TypedefNameDecl>(D)) {
 | 
						|
    S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // 'type_visibility' can only go on a type or namespace.
 | 
						|
  if (isTypeVisibility &&
 | 
						|
      !(isa<TagDecl>(D) ||
 | 
						|
        isa<ObjCInterfaceDecl>(D) ||
 | 
						|
        isa<NamespaceDecl>(D))) {
 | 
						|
    S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
 | 
						|
        << AL << ExpectedTypeOrNamespace;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the argument is a string literal.
 | 
						|
  StringRef TypeStr;
 | 
						|
  SourceLocation LiteralLoc;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  VisibilityAttr::VisibilityType type;
 | 
						|
  if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
 | 
						|
    S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
 | 
						|
                                                                << TypeStr;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Complain about attempts to use protected visibility on targets
 | 
						|
  // (like Darwin) that don't support it.
 | 
						|
  if (type == VisibilityAttr::Protected &&
 | 
						|
      !S.Context.getTargetInfo().hasProtectedVisibility()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
 | 
						|
    type = VisibilityAttr::Default;
 | 
						|
  }
 | 
						|
 | 
						|
  Attr *newAttr;
 | 
						|
  if (isTypeVisibility) {
 | 
						|
    newAttr = S.mergeTypeVisibilityAttr(
 | 
						|
        D, AL, (TypeVisibilityAttr::VisibilityType)type);
 | 
						|
  } else {
 | 
						|
    newAttr = S.mergeVisibilityAttr(D, AL, type);
 | 
						|
  }
 | 
						|
  if (newAttr)
 | 
						|
    D->addAttr(newAttr);
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // objc_direct cannot be set on methods declared in the context of a protocol
 | 
						|
  if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
 | 
						|
    handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
 | 
						|
  } else {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
 | 
						|
                                        const ParsedAttr &AL) {
 | 
						|
  if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
 | 
						|
    handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
 | 
						|
  } else {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  const auto *M = cast<ObjCMethodDecl>(D);
 | 
						|
  if (!AL.isArgIdent(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
        << AL << 1 << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierLoc *IL = AL.getArgAsIdent(0);
 | 
						|
  ObjCMethodFamilyAttr::FamilyKind F;
 | 
						|
  if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
 | 
						|
    S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (F == ObjCMethodFamilyAttr::OMF_init &&
 | 
						|
      !M->getReturnType()->isObjCObjectPointerType()) {
 | 
						|
    S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
 | 
						|
        << M->getReturnType();
 | 
						|
    // Ignore the attribute.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
 | 
						|
    QualType T = TD->getUnderlyingType();
 | 
						|
    if (!T->isCARCBridgableType()) {
 | 
						|
      S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
 | 
						|
    QualType T = PD->getType();
 | 
						|
    if (!T->isCARCBridgableType()) {
 | 
						|
      S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // It is okay to include this attribute on properties, e.g.:
 | 
						|
    //
 | 
						|
    //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
 | 
						|
    //
 | 
						|
    // In this case it follows tradition and suppresses an error in the above
 | 
						|
    // case.
 | 
						|
    S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
 | 
						|
  }
 | 
						|
  D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
 | 
						|
    QualType T = TD->getUnderlyingType();
 | 
						|
    if (!T->isObjCObjectPointerType()) {
 | 
						|
      S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!AL.isArgIdent(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
        << AL << 1 << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
 | 
						|
  BlocksAttr::BlockType type;
 | 
						|
  if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
 | 
						|
}
 | 
						|
 | 
						|
static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
 | 
						|
  if (AL.getNumArgs() > 0) {
 | 
						|
    Expr *E = AL.getArgAsExpr(0);
 | 
						|
    llvm::APSInt Idx(32);
 | 
						|
    if (E->isTypeDependent() || E->isValueDependent() ||
 | 
						|
        !E->isIntegerConstantExpr(Idx, S.Context)) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
          << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Idx.isSigned() && Idx.isNegative()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
 | 
						|
        << E->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    sentinel = Idx.getZExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
 | 
						|
  if (AL.getNumArgs() > 1) {
 | 
						|
    Expr *E = AL.getArgAsExpr(1);
 | 
						|
    llvm::APSInt Idx(32);
 | 
						|
    if (E->isTypeDependent() || E->isValueDependent() ||
 | 
						|
        !E->isIntegerConstantExpr(Idx, S.Context)) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
          << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    nullPos = Idx.getZExtValue();
 | 
						|
 | 
						|
    if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
 | 
						|
      // FIXME: This error message could be improved, it would be nice
 | 
						|
      // to say what the bounds actually are.
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
 | 
						|
        << E->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    const FunctionType *FT = FD->getType()->castAs<FunctionType>();
 | 
						|
    if (isa<FunctionNoProtoType>(FT)) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!cast<FunctionProtoType>(FT)->isVariadic()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
 | 
						|
    if (!MD->isVariadic()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
 | 
						|
    if (!BD->isVariadic()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (const auto *V = dyn_cast<VarDecl>(D)) {
 | 
						|
    QualType Ty = V->getType();
 | 
						|
    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
 | 
						|
      const FunctionType *FT = Ty->isFunctionPointerType()
 | 
						|
       ? D->getFunctionType()
 | 
						|
       : Ty->castAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
 | 
						|
      if (!cast<FunctionProtoType>(FT)->isVariadic()) {
 | 
						|
        int m = Ty->isFunctionPointerType() ? 0 : 1;
 | 
						|
        S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
 | 
						|
          << AL << ExpectedFunctionMethodOrBlock;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << AL << ExpectedFunctionMethodOrBlock;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
 | 
						|
}
 | 
						|
 | 
						|
static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (D->getFunctionType() &&
 | 
						|
      D->getFunctionType()->getReturnType()->isVoidType() &&
 | 
						|
      !isa<CXXConstructorDecl>(D)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
 | 
						|
    if (MD->getReturnType()->isVoidType()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  if ((AL.isCXX11Attribute() || AL.isC2xAttribute()) && !AL.getScopeName()) {
 | 
						|
    // If this is spelled as the standard C++17 attribute, but not in C++17,
 | 
						|
    // warn about using it as an extension. If there are attribute arguments,
 | 
						|
    // then claim it's a C++2a extension instead.
 | 
						|
    // FIXME: If WG14 does not seem likely to adopt the same feature, add an
 | 
						|
    // extension warning for C2x mode.
 | 
						|
    const LangOptions &LO = S.getLangOpts();
 | 
						|
    if (AL.getNumArgs() == 1) {
 | 
						|
      if (LO.CPlusPlus && !LO.CPlusPlus2a)
 | 
						|
        S.Diag(AL.getLoc(), diag::ext_cxx2a_attr) << AL;
 | 
						|
 | 
						|
      // Since this this is spelled [[nodiscard]], get the optional string
 | 
						|
      // literal. If in C++ mode, but not in C++2a mode, diagnose as an
 | 
						|
      // extension.
 | 
						|
      // FIXME: C2x should support this feature as well, even as an extension.
 | 
						|
      if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
 | 
						|
        return;
 | 
						|
    } else if (LO.CPlusPlus && !LO.CPlusPlus17)
 | 
						|
      S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
 | 
						|
}
 | 
						|
 | 
						|
static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // weak_import only applies to variable & function declarations.
 | 
						|
  bool isDef = false;
 | 
						|
  if (!D->canBeWeakImported(isDef)) {
 | 
						|
    if (isDef)
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
 | 
						|
        << "weak_import";
 | 
						|
    else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
 | 
						|
             (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
 | 
						|
              (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
 | 
						|
      // Nothing to warn about here.
 | 
						|
    } else
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
 | 
						|
          << AL << ExpectedVariableOrFunction;
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
// Handles reqd_work_group_size and work_group_size_hint.
 | 
						|
template <typename WorkGroupAttr>
 | 
						|
static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  uint32_t WGSize[3];
 | 
						|
  for (unsigned i = 0; i < 3; ++i) {
 | 
						|
    const Expr *E = AL.getArgAsExpr(i);
 | 
						|
    if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
 | 
						|
                             /*StrictlyUnsigned=*/true))
 | 
						|
      return;
 | 
						|
    if (WGSize[i] == 0) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
 | 
						|
          << AL << E->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
 | 
						|
  if (Existing && !(Existing->getXDim() == WGSize[0] &&
 | 
						|
                    Existing->getYDim() == WGSize[1] &&
 | 
						|
                    Existing->getZDim() == WGSize[2]))
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
 | 
						|
}
 | 
						|
 | 
						|
// Handles intel_reqd_sub_group_size.
 | 
						|
static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  uint32_t SGSize;
 | 
						|
  const Expr *E = AL.getArgAsExpr(0);
 | 
						|
  if (!checkUInt32Argument(S, AL, E, SGSize))
 | 
						|
    return;
 | 
						|
  if (SGSize == 0) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
 | 
						|
        << AL << E->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  OpenCLIntelReqdSubGroupSizeAttr *Existing =
 | 
						|
      D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
 | 
						|
  if (Existing && Existing->getSubGroupSize() != SGSize)
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
 | 
						|
}
 | 
						|
 | 
						|
static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!AL.hasParsedType()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  TypeSourceInfo *ParmTSI = nullptr;
 | 
						|
  QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
 | 
						|
  assert(ParmTSI && "no type source info for attribute argument");
 | 
						|
 | 
						|
  if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
 | 
						|
      (ParmType->isBooleanType() ||
 | 
						|
       !ParmType->isIntegralType(S.getASTContext()))) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
 | 
						|
    if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
 | 
						|
}
 | 
						|
 | 
						|
SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                                    StringRef Name) {
 | 
						|
  // Explicit or partial specializations do not inherit
 | 
						|
  // the section attribute from the primary template.
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
 | 
						|
        FD->isFunctionTemplateSpecialization())
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
  if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
 | 
						|
    if (ExistingAttr->getName() == Name)
 | 
						|
      return nullptr;
 | 
						|
    Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
 | 
						|
         << 1 /*section*/;
 | 
						|
    Diag(CI.getLoc(), diag::note_previous_attribute);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  return ::new (Context) SectionAttr(Context, CI, Name);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
 | 
						|
  std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
 | 
						|
  if (!Error.empty()) {
 | 
						|
    Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error
 | 
						|
         << 1 /*'section'*/;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Make sure that there is a string literal as the sections's single
 | 
						|
  // argument.
 | 
						|
  StringRef Str;
 | 
						|
  SourceLocation LiteralLoc;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!S.checkSectionName(LiteralLoc, Str))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If the target wants to validate the section specifier, make it happen.
 | 
						|
  std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
 | 
						|
  if (!Error.empty()) {
 | 
						|
    S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
 | 
						|
    << Error;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
 | 
						|
  if (NewAttr)
 | 
						|
    D->addAttr(NewAttr);
 | 
						|
}
 | 
						|
 | 
						|
// This is used for `__declspec(code_seg("segname"))` on a decl.
 | 
						|
// `#pragma code_seg("segname")` uses checkSectionName() instead.
 | 
						|
static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
 | 
						|
                             StringRef CodeSegName) {
 | 
						|
  std::string Error =
 | 
						|
      S.Context.getTargetInfo().isValidSectionSpecifier(CodeSegName);
 | 
						|
  if (!Error.empty()) {
 | 
						|
    S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
 | 
						|
        << Error << 0 /*'code-seg'*/;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                                    StringRef Name) {
 | 
						|
  // Explicit or partial specializations do not inherit
 | 
						|
  // the code_seg attribute from the primary template.
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (FD->isFunctionTemplateSpecialization())
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
  if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
 | 
						|
    if (ExistingAttr->getName() == Name)
 | 
						|
      return nullptr;
 | 
						|
    Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
 | 
						|
         << 0 /*codeseg*/;
 | 
						|
    Diag(CI.getLoc(), diag::note_previous_attribute);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  return ::new (Context) CodeSegAttr(Context, CI, Name);
 | 
						|
}
 | 
						|
 | 
						|
static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  StringRef Str;
 | 
						|
  SourceLocation LiteralLoc;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
 | 
						|
    return;
 | 
						|
  if (!checkCodeSegName(S, LiteralLoc, Str))
 | 
						|
    return;
 | 
						|
  if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
 | 
						|
    if (!ExistingAttr->isImplicit()) {
 | 
						|
      S.Diag(AL.getLoc(),
 | 
						|
             ExistingAttr->getName() == Str
 | 
						|
             ? diag::warn_duplicate_codeseg_attribute
 | 
						|
             : diag::err_conflicting_codeseg_attribute);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    D->dropAttr<CodeSegAttr>();
 | 
						|
  }
 | 
						|
  if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
 | 
						|
    D->addAttr(CSA);
 | 
						|
}
 | 
						|
 | 
						|
// Check for things we'd like to warn about. Multiversioning issues are
 | 
						|
// handled later in the process, once we know how many exist.
 | 
						|
bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
 | 
						|
  enum FirstParam { Unsupported, Duplicate };
 | 
						|
  enum SecondParam { None, Architecture };
 | 
						|
  for (auto Str : {"tune=", "fpmath="})
 | 
						|
    if (AttrStr.find(Str) != StringRef::npos)
 | 
						|
      return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
 | 
						|
             << Unsupported << None << Str;
 | 
						|
 | 
						|
  ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
 | 
						|
 | 
						|
  if (!ParsedAttrs.Architecture.empty() &&
 | 
						|
      !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
 | 
						|
    return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
 | 
						|
           << Unsupported << Architecture << ParsedAttrs.Architecture;
 | 
						|
 | 
						|
  if (ParsedAttrs.DuplicateArchitecture)
 | 
						|
    return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
 | 
						|
           << Duplicate << None << "arch=";
 | 
						|
 | 
						|
  for (const auto &Feature : ParsedAttrs.Features) {
 | 
						|
    auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
 | 
						|
    if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
 | 
						|
      return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
 | 
						|
             << Unsupported << None << CurFeature;
 | 
						|
  }
 | 
						|
 | 
						|
  TargetInfo::BranchProtectionInfo BPI;
 | 
						|
  StringRef Error;
 | 
						|
  if (!ParsedAttrs.BranchProtection.empty() &&
 | 
						|
      !Context.getTargetInfo().validateBranchProtection(
 | 
						|
          ParsedAttrs.BranchProtection, BPI, Error)) {
 | 
						|
    if (Error.empty())
 | 
						|
      return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
 | 
						|
             << Unsupported << None << "branch-protection";
 | 
						|
    else
 | 
						|
      return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
 | 
						|
             << Error;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  StringRef Str;
 | 
						|
  SourceLocation LiteralLoc;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
 | 
						|
      S.checkTargetAttr(LiteralLoc, Str))
 | 
						|
    return;
 | 
						|
 | 
						|
  TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
 | 
						|
  D->addAttr(NewAttr);
 | 
						|
}
 | 
						|
 | 
						|
static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  Expr *E = AL.getArgAsExpr(0);
 | 
						|
  uint32_t VecWidth;
 | 
						|
  if (!checkUInt32Argument(S, AL, E, VecWidth)) {
 | 
						|
    AL.setInvalid();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
 | 
						|
  if (Existing && Existing->getVectorWidth() != VecWidth) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
 | 
						|
}
 | 
						|
 | 
						|
static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  Expr *E = AL.getArgAsExpr(0);
 | 
						|
  SourceLocation Loc = E->getExprLoc();
 | 
						|
  FunctionDecl *FD = nullptr;
 | 
						|
  DeclarationNameInfo NI;
 | 
						|
 | 
						|
  // gcc only allows for simple identifiers. Since we support more than gcc, we
 | 
						|
  // will warn the user.
 | 
						|
  if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
 | 
						|
    if (DRE->hasQualifier())
 | 
						|
      S.Diag(Loc, diag::warn_cleanup_ext);
 | 
						|
    FD = dyn_cast<FunctionDecl>(DRE->getDecl());
 | 
						|
    NI = DRE->getNameInfo();
 | 
						|
    if (!FD) {
 | 
						|
      S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
 | 
						|
        << NI.getName();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
 | 
						|
    if (ULE->hasExplicitTemplateArgs())
 | 
						|
      S.Diag(Loc, diag::warn_cleanup_ext);
 | 
						|
    FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
 | 
						|
    NI = ULE->getNameInfo();
 | 
						|
    if (!FD) {
 | 
						|
      S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
 | 
						|
        << NI.getName();
 | 
						|
      if (ULE->getType() == S.Context.OverloadTy)
 | 
						|
        S.NoteAllOverloadCandidates(ULE);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (FD->getNumParams() != 1) {
 | 
						|
    S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
 | 
						|
      << NI.getName();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We're currently more strict than GCC about what function types we accept.
 | 
						|
  // If this ever proves to be a problem it should be easy to fix.
 | 
						|
  QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
 | 
						|
  QualType ParamTy = FD->getParamDecl(0)->getType();
 | 
						|
  if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
 | 
						|
                                   ParamTy, Ty) != Sema::Compatible) {
 | 
						|
    S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
 | 
						|
      << NI.getName() << ParamTy << Ty;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
 | 
						|
}
 | 
						|
 | 
						|
static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
 | 
						|
                                        const ParsedAttr &AL) {
 | 
						|
  if (!AL.isArgIdent(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
        << AL << 0 << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  EnumExtensibilityAttr::Kind ExtensibilityKind;
 | 
						|
  IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
 | 
						|
  if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
 | 
						|
                                               ExtensibilityKind)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
 | 
						|
}
 | 
						|
 | 
						|
/// Handle __attribute__((format_arg((idx)))) attribute based on
 | 
						|
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
 | 
						|
static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  Expr *IdxExpr = AL.getArgAsExpr(0);
 | 
						|
  ParamIdx Idx;
 | 
						|
  if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Make sure the format string is really a string.
 | 
						|
  QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
 | 
						|
 | 
						|
  bool NotNSStringTy = !isNSStringType(Ty, S.Context);
 | 
						|
  if (NotNSStringTy &&
 | 
						|
      !isCFStringType(Ty, S.Context) &&
 | 
						|
      (!Ty->isPointerType() ||
 | 
						|
       !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_format_attribute_not)
 | 
						|
        << "a string type" << IdxExpr->getSourceRange()
 | 
						|
        << getFunctionOrMethodParamRange(D, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  Ty = getFunctionOrMethodResultType(D);
 | 
						|
  if (!isNSStringType(Ty, S.Context) &&
 | 
						|
      !isCFStringType(Ty, S.Context) &&
 | 
						|
      (!Ty->isPointerType() ||
 | 
						|
       !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
 | 
						|
        << (NotNSStringTy ? "string type" : "NSString")
 | 
						|
        << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
 | 
						|
}
 | 
						|
 | 
						|
enum FormatAttrKind {
 | 
						|
  CFStringFormat,
 | 
						|
  NSStringFormat,
 | 
						|
  StrftimeFormat,
 | 
						|
  SupportedFormat,
 | 
						|
  IgnoredFormat,
 | 
						|
  InvalidFormat
 | 
						|
};
 | 
						|
 | 
						|
/// getFormatAttrKind - Map from format attribute names to supported format
 | 
						|
/// types.
 | 
						|
static FormatAttrKind getFormatAttrKind(StringRef Format) {
 | 
						|
  return llvm::StringSwitch<FormatAttrKind>(Format)
 | 
						|
      // Check for formats that get handled specially.
 | 
						|
      .Case("NSString", NSStringFormat)
 | 
						|
      .Case("CFString", CFStringFormat)
 | 
						|
      .Case("strftime", StrftimeFormat)
 | 
						|
 | 
						|
      // Otherwise, check for supported formats.
 | 
						|
      .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
 | 
						|
      .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
 | 
						|
      .Case("kprintf", SupportedFormat)         // OpenBSD.
 | 
						|
      .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
 | 
						|
      .Case("os_trace", SupportedFormat)
 | 
						|
      .Case("os_log", SupportedFormat)
 | 
						|
 | 
						|
      .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
 | 
						|
      .Default(InvalidFormat);
 | 
						|
}
 | 
						|
 | 
						|
/// Handle __attribute__((init_priority(priority))) attributes based on
 | 
						|
/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
 | 
						|
static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!S.getLangOpts().CPlusPlus) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.getCurFunctionOrMethodDecl()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
 | 
						|
    AL.setInvalid();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  QualType T = cast<VarDecl>(D)->getType();
 | 
						|
  if (S.Context.getAsArrayType(T))
 | 
						|
    T = S.Context.getBaseElementType(T);
 | 
						|
  if (!T->getAs<RecordType>()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
 | 
						|
    AL.setInvalid();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *E = AL.getArgAsExpr(0);
 | 
						|
  uint32_t prioritynum;
 | 
						|
  if (!checkUInt32Argument(S, AL, E, prioritynum)) {
 | 
						|
    AL.setInvalid();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (prioritynum < 101 || prioritynum > 65535) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
 | 
						|
        << E->getSourceRange() << AL << 101 << 65535;
 | 
						|
    AL.setInvalid();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
 | 
						|
}
 | 
						|
 | 
						|
FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                                  IdentifierInfo *Format, int FormatIdx,
 | 
						|
                                  int FirstArg) {
 | 
						|
  // Check whether we already have an equivalent format attribute.
 | 
						|
  for (auto *F : D->specific_attrs<FormatAttr>()) {
 | 
						|
    if (F->getType() == Format &&
 | 
						|
        F->getFormatIdx() == FormatIdx &&
 | 
						|
        F->getFirstArg() == FirstArg) {
 | 
						|
      // If we don't have a valid location for this attribute, adopt the
 | 
						|
      // location.
 | 
						|
      if (F->getLocation().isInvalid())
 | 
						|
        F->setRange(CI.getRange());
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
 | 
						|
}
 | 
						|
 | 
						|
/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
 | 
						|
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
 | 
						|
static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!AL.isArgIdent(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
        << AL << 1 << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // In C++ the implicit 'this' function parameter also counts, and they are
 | 
						|
  // counted from one.
 | 
						|
  bool HasImplicitThisParam = isInstanceMethod(D);
 | 
						|
  unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
 | 
						|
 | 
						|
  IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
 | 
						|
  StringRef Format = II->getName();
 | 
						|
 | 
						|
  if (normalizeName(Format)) {
 | 
						|
    // If we've modified the string name, we need a new identifier for it.
 | 
						|
    II = &S.Context.Idents.get(Format);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for supported formats.
 | 
						|
  FormatAttrKind Kind = getFormatAttrKind(Format);
 | 
						|
 | 
						|
  if (Kind == IgnoredFormat)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Kind == InvalidFormat) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
 | 
						|
        << AL << II->getName();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // checks for the 2nd argument
 | 
						|
  Expr *IdxExpr = AL.getArgAsExpr(1);
 | 
						|
  uint32_t Idx;
 | 
						|
  if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Idx < 1 || Idx > NumArgs) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
 | 
						|
        << AL << 2 << IdxExpr->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Do we need to bounds check?
 | 
						|
  unsigned ArgIdx = Idx - 1;
 | 
						|
 | 
						|
  if (HasImplicitThisParam) {
 | 
						|
    if (ArgIdx == 0) {
 | 
						|
      S.Diag(AL.getLoc(),
 | 
						|
             diag::err_format_attribute_implicit_this_format_string)
 | 
						|
        << IdxExpr->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    ArgIdx--;
 | 
						|
  }
 | 
						|
 | 
						|
  // make sure the format string is really a string
 | 
						|
  QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
 | 
						|
 | 
						|
  if (Kind == CFStringFormat) {
 | 
						|
    if (!isCFStringType(Ty, S.Context)) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_format_attribute_not)
 | 
						|
        << "a CFString" << IdxExpr->getSourceRange()
 | 
						|
        << getFunctionOrMethodParamRange(D, ArgIdx);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (Kind == NSStringFormat) {
 | 
						|
    // FIXME: do we need to check if the type is NSString*?  What are the
 | 
						|
    // semantics?
 | 
						|
    if (!isNSStringType(Ty, S.Context)) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_format_attribute_not)
 | 
						|
        << "an NSString" << IdxExpr->getSourceRange()
 | 
						|
        << getFunctionOrMethodParamRange(D, ArgIdx);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (!Ty->isPointerType() ||
 | 
						|
             !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_format_attribute_not)
 | 
						|
      << "a string type" << IdxExpr->getSourceRange()
 | 
						|
      << getFunctionOrMethodParamRange(D, ArgIdx);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // check the 3rd argument
 | 
						|
  Expr *FirstArgExpr = AL.getArgAsExpr(2);
 | 
						|
  uint32_t FirstArg;
 | 
						|
  if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
 | 
						|
    return;
 | 
						|
 | 
						|
  // check if the function is variadic if the 3rd argument non-zero
 | 
						|
  if (FirstArg != 0) {
 | 
						|
    if (isFunctionOrMethodVariadic(D)) {
 | 
						|
      ++NumArgs; // +1 for ...
 | 
						|
    } else {
 | 
						|
      S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // strftime requires FirstArg to be 0 because it doesn't read from any
 | 
						|
  // variable the input is just the current time + the format string.
 | 
						|
  if (Kind == StrftimeFormat) {
 | 
						|
    if (FirstArg != 0) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
 | 
						|
        << FirstArgExpr->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  // if 0 it disables parameter checking (to use with e.g. va_list)
 | 
						|
  } else if (FirstArg != 0 && FirstArg != NumArgs) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
 | 
						|
        << AL << 3 << FirstArgExpr->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
 | 
						|
  if (NewAttr)
 | 
						|
    D->addAttr(NewAttr);
 | 
						|
}
 | 
						|
 | 
						|
/// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
 | 
						|
static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // The index that identifies the callback callee is mandatory.
 | 
						|
  if (AL.getNumArgs() == 0) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
 | 
						|
        << AL.getRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool HasImplicitThisParam = isInstanceMethod(D);
 | 
						|
  int32_t NumArgs = getFunctionOrMethodNumParams(D);
 | 
						|
 | 
						|
  FunctionDecl *FD = D->getAsFunction();
 | 
						|
  assert(FD && "Expected a function declaration!");
 | 
						|
 | 
						|
  llvm::StringMap<int> NameIdxMapping;
 | 
						|
  NameIdxMapping["__"] = -1;
 | 
						|
 | 
						|
  NameIdxMapping["this"] = 0;
 | 
						|
 | 
						|
  int Idx = 1;
 | 
						|
  for (const ParmVarDecl *PVD : FD->parameters())
 | 
						|
    NameIdxMapping[PVD->getName()] = Idx++;
 | 
						|
 | 
						|
  auto UnknownName = NameIdxMapping.end();
 | 
						|
 | 
						|
  SmallVector<int, 8> EncodingIndices;
 | 
						|
  for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
 | 
						|
    SourceRange SR;
 | 
						|
    int32_t ArgIdx;
 | 
						|
 | 
						|
    if (AL.isArgIdent(I)) {
 | 
						|
      IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
 | 
						|
      auto It = NameIdxMapping.find(IdLoc->Ident->getName());
 | 
						|
      if (It == UnknownName) {
 | 
						|
        S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
 | 
						|
            << IdLoc->Ident << IdLoc->Loc;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      SR = SourceRange(IdLoc->Loc);
 | 
						|
      ArgIdx = It->second;
 | 
						|
    } else if (AL.isArgExpr(I)) {
 | 
						|
      Expr *IdxExpr = AL.getArgAsExpr(I);
 | 
						|
 | 
						|
      // If the expression is not parseable as an int32_t we have a problem.
 | 
						|
      if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
 | 
						|
                               false)) {
 | 
						|
        S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
 | 
						|
            << AL << (I + 1) << IdxExpr->getSourceRange();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check oob, excluding the special values, 0 and -1.
 | 
						|
      if (ArgIdx < -1 || ArgIdx > NumArgs) {
 | 
						|
        S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
 | 
						|
            << AL << (I + 1) << IdxExpr->getSourceRange();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      SR = IdxExpr->getSourceRange();
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Unexpected ParsedAttr argument type!");
 | 
						|
    }
 | 
						|
 | 
						|
    if (ArgIdx == 0 && !HasImplicitThisParam) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
 | 
						|
          << (I + 1) << SR;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Adjust for the case we do not have an implicit "this" parameter. In this
 | 
						|
    // case we decrease all positive values by 1 to get LLVM argument indices.
 | 
						|
    if (!HasImplicitThisParam && ArgIdx > 0)
 | 
						|
      ArgIdx -= 1;
 | 
						|
 | 
						|
    EncodingIndices.push_back(ArgIdx);
 | 
						|
  }
 | 
						|
 | 
						|
  int CalleeIdx = EncodingIndices.front();
 | 
						|
  // Check if the callee index is proper, thus not "this" and not "unknown".
 | 
						|
  // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
 | 
						|
  // is false and positive if "HasImplicitThisParam" is true.
 | 
						|
  if (CalleeIdx < (int)HasImplicitThisParam) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
 | 
						|
        << AL.getRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the callee type, note the index adjustment as the AST doesn't contain
 | 
						|
  // the this type (which the callee cannot reference anyway!).
 | 
						|
  const Type *CalleeType =
 | 
						|
      getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
 | 
						|
          .getTypePtr();
 | 
						|
  if (!CalleeType || !CalleeType->isFunctionPointerType()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
 | 
						|
        << AL.getRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const Type *CalleeFnType =
 | 
						|
      CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
 | 
						|
 | 
						|
  // TODO: Check the type of the callee arguments.
 | 
						|
 | 
						|
  const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
 | 
						|
  if (!CalleeFnProtoType) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
 | 
						|
        << AL.getRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
 | 
						|
        << AL << (unsigned)(EncodingIndices.size() - 1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
 | 
						|
        << AL << (unsigned)(EncodingIndices.size() - 1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CalleeFnProtoType->isVariadic()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not allow multiple callback attributes.
 | 
						|
  if (D->hasAttr<CallbackAttr>()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) CallbackAttr(
 | 
						|
      S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Try to find the underlying union declaration.
 | 
						|
  RecordDecl *RD = nullptr;
 | 
						|
  const auto *TD = dyn_cast<TypedefNameDecl>(D);
 | 
						|
  if (TD && TD->getUnderlyingType()->isUnionType())
 | 
						|
    RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
 | 
						|
  else
 | 
						|
    RD = dyn_cast<RecordDecl>(D);
 | 
						|
 | 
						|
  if (!RD || !RD->isUnion()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
 | 
						|
                                                              << ExpectedUnion;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!RD->isCompleteDefinition()) {
 | 
						|
    if (!RD->isBeingDefined())
 | 
						|
      S.Diag(AL.getLoc(),
 | 
						|
             diag::warn_transparent_union_attribute_not_definition);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  RecordDecl::field_iterator Field = RD->field_begin(),
 | 
						|
                          FieldEnd = RD->field_end();
 | 
						|
  if (Field == FieldEnd) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  FieldDecl *FirstField = *Field;
 | 
						|
  QualType FirstType = FirstField->getType();
 | 
						|
  if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
 | 
						|
    S.Diag(FirstField->getLocation(),
 | 
						|
           diag::warn_transparent_union_attribute_floating)
 | 
						|
      << FirstType->isVectorType() << FirstType;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (FirstType->isIncompleteType())
 | 
						|
    return;
 | 
						|
  uint64_t FirstSize = S.Context.getTypeSize(FirstType);
 | 
						|
  uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
 | 
						|
  for (; Field != FieldEnd; ++Field) {
 | 
						|
    QualType FieldType = Field->getType();
 | 
						|
    if (FieldType->isIncompleteType())
 | 
						|
      return;
 | 
						|
    // FIXME: this isn't fully correct; we also need to test whether the
 | 
						|
    // members of the union would all have the same calling convention as the
 | 
						|
    // first member of the union. Checking just the size and alignment isn't
 | 
						|
    // sufficient (consider structs passed on the stack instead of in registers
 | 
						|
    // as an example).
 | 
						|
    if (S.Context.getTypeSize(FieldType) != FirstSize ||
 | 
						|
        S.Context.getTypeAlign(FieldType) > FirstAlign) {
 | 
						|
      // Warn if we drop the attribute.
 | 
						|
      bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
 | 
						|
      unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
 | 
						|
                                 : S.Context.getTypeAlign(FieldType);
 | 
						|
      S.Diag(Field->getLocation(),
 | 
						|
          diag::warn_transparent_union_attribute_field_size_align)
 | 
						|
        << isSize << Field->getDeclName() << FieldBits;
 | 
						|
      unsigned FirstBits = isSize? FirstSize : FirstAlign;
 | 
						|
      S.Diag(FirstField->getLocation(),
 | 
						|
             diag::note_transparent_union_first_field_size_align)
 | 
						|
        << isSize << FirstBits;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Make sure that there is a string literal as the annotation's single
 | 
						|
  // argument.
 | 
						|
  StringRef Str;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't duplicate annotations that are already set.
 | 
						|
  for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
 | 
						|
    if (I->getAnnotation() == Str)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) AnnotateAttr(S.Context, AL, Str));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
 | 
						|
  AlignValueAttr TmpAttr(Context, CI, E);
 | 
						|
  SourceLocation AttrLoc = CI.getLoc();
 | 
						|
 | 
						|
  QualType T;
 | 
						|
  if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
 | 
						|
    T = TD->getUnderlyingType();
 | 
						|
  else if (const auto *VD = dyn_cast<ValueDecl>(D))
 | 
						|
    T = VD->getType();
 | 
						|
  else
 | 
						|
    llvm_unreachable("Unknown decl type for align_value");
 | 
						|
 | 
						|
  if (!T->isDependentType() && !T->isAnyPointerType() &&
 | 
						|
      !T->isReferenceType() && !T->isMemberPointerType()) {
 | 
						|
    Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
 | 
						|
      << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!E->isValueDependent()) {
 | 
						|
    llvm::APSInt Alignment;
 | 
						|
    ExprResult ICE
 | 
						|
      = VerifyIntegerConstantExpression(E, &Alignment,
 | 
						|
          diag::err_align_value_attribute_argument_not_int,
 | 
						|
            /*AllowFold*/ false);
 | 
						|
    if (ICE.isInvalid())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (!Alignment.isPowerOf2()) {
 | 
						|
      Diag(AttrLoc, diag::err_alignment_not_power_of_two)
 | 
						|
        << E->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Save dependent expressions in the AST to be instantiated.
 | 
						|
  D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // check the attribute arguments.
 | 
						|
  if (AL.getNumArgs() > 1) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (AL.getNumArgs() == 0) {
 | 
						|
    D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *E = AL.getArgAsExpr(0);
 | 
						|
  if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
 | 
						|
    S.Diag(AL.getEllipsisLoc(),
 | 
						|
           diag::err_pack_expansion_without_parameter_packs);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
 | 
						|
    return;
 | 
						|
 | 
						|
  S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
 | 
						|
                          bool IsPackExpansion) {
 | 
						|
  AlignedAttr TmpAttr(Context, CI, true, E);
 | 
						|
  SourceLocation AttrLoc = CI.getLoc();
 | 
						|
 | 
						|
  // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
 | 
						|
  if (TmpAttr.isAlignas()) {
 | 
						|
    // C++11 [dcl.align]p1:
 | 
						|
    //   An alignment-specifier may be applied to a variable or to a class
 | 
						|
    //   data member, but it shall not be applied to a bit-field, a function
 | 
						|
    //   parameter, the formal parameter of a catch clause, or a variable
 | 
						|
    //   declared with the register storage class specifier. An
 | 
						|
    //   alignment-specifier may also be applied to the declaration of a class
 | 
						|
    //   or enumeration type.
 | 
						|
    // C11 6.7.5/2:
 | 
						|
    //   An alignment attribute shall not be specified in a declaration of
 | 
						|
    //   a typedef, or a bit-field, or a function, or a parameter, or an
 | 
						|
    //   object declared with the register storage-class specifier.
 | 
						|
    int DiagKind = -1;
 | 
						|
    if (isa<ParmVarDecl>(D)) {
 | 
						|
      DiagKind = 0;
 | 
						|
    } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
      if (VD->getStorageClass() == SC_Register)
 | 
						|
        DiagKind = 1;
 | 
						|
      if (VD->isExceptionVariable())
 | 
						|
        DiagKind = 2;
 | 
						|
    } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
 | 
						|
      if (FD->isBitField())
 | 
						|
        DiagKind = 3;
 | 
						|
    } else if (!isa<TagDecl>(D)) {
 | 
						|
      Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
 | 
						|
        << (TmpAttr.isC11() ? ExpectedVariableOrField
 | 
						|
                            : ExpectedVariableFieldOrTag);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (DiagKind != -1) {
 | 
						|
      Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
 | 
						|
        << &TmpAttr << DiagKind;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (E->isValueDependent()) {
 | 
						|
    // We can't support a dependent alignment on a non-dependent type,
 | 
						|
    // because we have no way to model that a type is "alignment-dependent"
 | 
						|
    // but not dependent in any other way.
 | 
						|
    if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
 | 
						|
      if (!TND->getUnderlyingType()->isDependentType()) {
 | 
						|
        Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
 | 
						|
            << E->getSourceRange();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Save dependent expressions in the AST to be instantiated.
 | 
						|
    AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
 | 
						|
    AA->setPackExpansion(IsPackExpansion);
 | 
						|
    D->addAttr(AA);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Cache the number on the AL object?
 | 
						|
  llvm::APSInt Alignment;
 | 
						|
  ExprResult ICE
 | 
						|
    = VerifyIntegerConstantExpression(E, &Alignment,
 | 
						|
        diag::err_aligned_attribute_argument_not_int,
 | 
						|
        /*AllowFold*/ false);
 | 
						|
  if (ICE.isInvalid())
 | 
						|
    return;
 | 
						|
 | 
						|
  uint64_t AlignVal = Alignment.getZExtValue();
 | 
						|
 | 
						|
  // C++11 [dcl.align]p2:
 | 
						|
  //   -- if the constant expression evaluates to zero, the alignment
 | 
						|
  //      specifier shall have no effect
 | 
						|
  // C11 6.7.5p6:
 | 
						|
  //   An alignment specification of zero has no effect.
 | 
						|
  if (!(TmpAttr.isAlignas() && !Alignment)) {
 | 
						|
    if (!llvm::isPowerOf2_64(AlignVal)) {
 | 
						|
      Diag(AttrLoc, diag::err_alignment_not_power_of_two)
 | 
						|
        << E->getSourceRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned MaximumAlignment = Sema::MaximumAlignment;
 | 
						|
  if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
 | 
						|
    MaximumAlignment = std::min(MaximumAlignment, 8192u);
 | 
						|
  if (AlignVal > MaximumAlignment) {
 | 
						|
    Diag(AttrLoc, diag::err_attribute_aligned_too_great)
 | 
						|
        << MaximumAlignment << E->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Context.getTargetInfo().isTLSSupported()) {
 | 
						|
    unsigned MaxTLSAlign =
 | 
						|
        Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
 | 
						|
            .getQuantity();
 | 
						|
    const auto *VD = dyn_cast<VarDecl>(D);
 | 
						|
    if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD &&
 | 
						|
        VD->getTLSKind() != VarDecl::TLS_None) {
 | 
						|
      Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
 | 
						|
          << (unsigned)AlignVal << VD << MaxTLSAlign;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
 | 
						|
  AA->setPackExpansion(IsPackExpansion);
 | 
						|
  D->addAttr(AA);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                          TypeSourceInfo *TS, bool IsPackExpansion) {
 | 
						|
  // FIXME: Cache the number on the AL object if non-dependent?
 | 
						|
  // FIXME: Perform checking of type validity
 | 
						|
  AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
 | 
						|
  AA->setPackExpansion(IsPackExpansion);
 | 
						|
  D->addAttr(AA);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckAlignasUnderalignment(Decl *D) {
 | 
						|
  assert(D->hasAttrs() && "no attributes on decl");
 | 
						|
 | 
						|
  QualType UnderlyingTy, DiagTy;
 | 
						|
  if (const auto *VD = dyn_cast<ValueDecl>(D)) {
 | 
						|
    UnderlyingTy = DiagTy = VD->getType();
 | 
						|
  } else {
 | 
						|
    UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
 | 
						|
    if (const auto *ED = dyn_cast<EnumDecl>(D))
 | 
						|
      UnderlyingTy = ED->getIntegerType();
 | 
						|
  }
 | 
						|
  if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
 | 
						|
    return;
 | 
						|
 | 
						|
  // C++11 [dcl.align]p5, C11 6.7.5/4:
 | 
						|
  //   The combined effect of all alignment attributes in a declaration shall
 | 
						|
  //   not specify an alignment that is less strict than the alignment that
 | 
						|
  //   would otherwise be required for the entity being declared.
 | 
						|
  AlignedAttr *AlignasAttr = nullptr;
 | 
						|
  AlignedAttr *LastAlignedAttr = nullptr;
 | 
						|
  unsigned Align = 0;
 | 
						|
  for (auto *I : D->specific_attrs<AlignedAttr>()) {
 | 
						|
    if (I->isAlignmentDependent())
 | 
						|
      return;
 | 
						|
    if (I->isAlignas())
 | 
						|
      AlignasAttr = I;
 | 
						|
    Align = std::max(Align, I->getAlignment(Context));
 | 
						|
    LastAlignedAttr = I;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Align && DiagTy->isSizelessType()) {
 | 
						|
    Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
 | 
						|
        << LastAlignedAttr << DiagTy;
 | 
						|
  } else if (AlignasAttr && Align) {
 | 
						|
    CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
 | 
						|
    CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
 | 
						|
    if (NaturalAlign > RequestedAlign)
 | 
						|
      Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
 | 
						|
        << DiagTy << (unsigned)NaturalAlign.getQuantity();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::checkMSInheritanceAttrOnDefinition(
 | 
						|
    CXXRecordDecl *RD, SourceRange Range, bool BestCase,
 | 
						|
    MSInheritanceModel ExplicitModel) {
 | 
						|
  assert(RD->hasDefinition() && "RD has no definition!");
 | 
						|
 | 
						|
  // We may not have seen base specifiers or any virtual methods yet.  We will
 | 
						|
  // have to wait until the record is defined to catch any mismatches.
 | 
						|
  if (!RD->getDefinition()->isCompleteDefinition())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The unspecified model never matches what a definition could need.
 | 
						|
  if (ExplicitModel == MSInheritanceModel::Unspecified)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (BestCase) {
 | 
						|
    if (RD->calculateInheritanceModel() == ExplicitModel)
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (RD->calculateInheritanceModel() <= ExplicitModel)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
 | 
						|
      << 0 /*definition*/;
 | 
						|
  Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
 | 
						|
      << RD->getNameAsString();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// parseModeAttrArg - Parses attribute mode string and returns parsed type
 | 
						|
/// attribute.
 | 
						|
static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
 | 
						|
                             bool &IntegerMode, bool &ComplexMode) {
 | 
						|
  IntegerMode = true;
 | 
						|
  ComplexMode = false;
 | 
						|
  switch (Str.size()) {
 | 
						|
  case 2:
 | 
						|
    switch (Str[0]) {
 | 
						|
    case 'Q':
 | 
						|
      DestWidth = 8;
 | 
						|
      break;
 | 
						|
    case 'H':
 | 
						|
      DestWidth = 16;
 | 
						|
      break;
 | 
						|
    case 'S':
 | 
						|
      DestWidth = 32;
 | 
						|
      break;
 | 
						|
    case 'D':
 | 
						|
      DestWidth = 64;
 | 
						|
      break;
 | 
						|
    case 'X':
 | 
						|
      DestWidth = 96;
 | 
						|
      break;
 | 
						|
    case 'T':
 | 
						|
      DestWidth = 128;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (Str[1] == 'F') {
 | 
						|
      IntegerMode = false;
 | 
						|
    } else if (Str[1] == 'C') {
 | 
						|
      IntegerMode = false;
 | 
						|
      ComplexMode = true;
 | 
						|
    } else if (Str[1] != 'I') {
 | 
						|
      DestWidth = 0;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 4:
 | 
						|
    // FIXME: glibc uses 'word' to define register_t; this is narrower than a
 | 
						|
    // pointer on PIC16 and other embedded platforms.
 | 
						|
    if (Str == "word")
 | 
						|
      DestWidth = S.Context.getTargetInfo().getRegisterWidth();
 | 
						|
    else if (Str == "byte")
 | 
						|
      DestWidth = S.Context.getTargetInfo().getCharWidth();
 | 
						|
    break;
 | 
						|
  case 7:
 | 
						|
    if (Str == "pointer")
 | 
						|
      DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
 | 
						|
    break;
 | 
						|
  case 11:
 | 
						|
    if (Str == "unwind_word")
 | 
						|
      DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// handleModeAttr - This attribute modifies the width of a decl with primitive
 | 
						|
/// type.
 | 
						|
///
 | 
						|
/// Despite what would be logical, the mode attribute is a decl attribute, not a
 | 
						|
/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
 | 
						|
/// HImode, not an intermediate pointer.
 | 
						|
static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // This attribute isn't documented, but glibc uses it.  It changes
 | 
						|
  // the width of an int or unsigned int to the specified size.
 | 
						|
  if (!AL.isArgIdent(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
 | 
						|
 | 
						|
  S.AddModeAttr(D, AL, Name);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                       IdentifierInfo *Name, bool InInstantiation) {
 | 
						|
  StringRef Str = Name->getName();
 | 
						|
  normalizeName(Str);
 | 
						|
  SourceLocation AttrLoc = CI.getLoc();
 | 
						|
 | 
						|
  unsigned DestWidth = 0;
 | 
						|
  bool IntegerMode = true;
 | 
						|
  bool ComplexMode = false;
 | 
						|
  llvm::APInt VectorSize(64, 0);
 | 
						|
  if (Str.size() >= 4 && Str[0] == 'V') {
 | 
						|
    // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
 | 
						|
    size_t StrSize = Str.size();
 | 
						|
    size_t VectorStringLength = 0;
 | 
						|
    while ((VectorStringLength + 1) < StrSize &&
 | 
						|
           isdigit(Str[VectorStringLength + 1]))
 | 
						|
      ++VectorStringLength;
 | 
						|
    if (VectorStringLength &&
 | 
						|
        !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
 | 
						|
        VectorSize.isPowerOf2()) {
 | 
						|
      parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
 | 
						|
                       IntegerMode, ComplexMode);
 | 
						|
      // Avoid duplicate warning from template instantiation.
 | 
						|
      if (!InInstantiation)
 | 
						|
        Diag(AttrLoc, diag::warn_vector_mode_deprecated);
 | 
						|
    } else {
 | 
						|
      VectorSize = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!VectorSize)
 | 
						|
    parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode);
 | 
						|
 | 
						|
  // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
 | 
						|
  // and friends, at least with glibc.
 | 
						|
  // FIXME: Make sure floating-point mappings are accurate
 | 
						|
  // FIXME: Support XF and TF types
 | 
						|
  if (!DestWidth) {
 | 
						|
    Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType OldTy;
 | 
						|
  if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
 | 
						|
    OldTy = TD->getUnderlyingType();
 | 
						|
  else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
 | 
						|
    // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
 | 
						|
    // Try to get type from enum declaration, default to int.
 | 
						|
    OldTy = ED->getIntegerType();
 | 
						|
    if (OldTy.isNull())
 | 
						|
      OldTy = Context.IntTy;
 | 
						|
  } else
 | 
						|
    OldTy = cast<ValueDecl>(D)->getType();
 | 
						|
 | 
						|
  if (OldTy->isDependentType()) {
 | 
						|
    D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Base type can also be a vector type (see PR17453).
 | 
						|
  // Distinguish between base type and base element type.
 | 
						|
  QualType OldElemTy = OldTy;
 | 
						|
  if (const auto *VT = OldTy->getAs<VectorType>())
 | 
						|
    OldElemTy = VT->getElementType();
 | 
						|
 | 
						|
  // GCC allows 'mode' attribute on enumeration types (even incomplete), except
 | 
						|
  // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
 | 
						|
  // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
 | 
						|
  if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
 | 
						|
      VectorSize.getBoolValue()) {
 | 
						|
    Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  bool IntegralOrAnyEnumType =
 | 
						|
      OldElemTy->isIntegralOrEnumerationType() || OldElemTy->getAs<EnumType>();
 | 
						|
 | 
						|
  if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
 | 
						|
      !IntegralOrAnyEnumType)
 | 
						|
    Diag(AttrLoc, diag::err_mode_not_primitive);
 | 
						|
  else if (IntegerMode) {
 | 
						|
    if (!IntegralOrAnyEnumType)
 | 
						|
      Diag(AttrLoc, diag::err_mode_wrong_type);
 | 
						|
  } else if (ComplexMode) {
 | 
						|
    if (!OldElemTy->isComplexType())
 | 
						|
      Diag(AttrLoc, diag::err_mode_wrong_type);
 | 
						|
  } else {
 | 
						|
    if (!OldElemTy->isFloatingType())
 | 
						|
      Diag(AttrLoc, diag::err_mode_wrong_type);
 | 
						|
  }
 | 
						|
 | 
						|
  QualType NewElemTy;
 | 
						|
 | 
						|
  if (IntegerMode)
 | 
						|
    NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
 | 
						|
                                              OldElemTy->isSignedIntegerType());
 | 
						|
  else
 | 
						|
    NewElemTy = Context.getRealTypeForBitwidth(DestWidth);
 | 
						|
 | 
						|
  if (NewElemTy.isNull()) {
 | 
						|
    Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ComplexMode) {
 | 
						|
    NewElemTy = Context.getComplexType(NewElemTy);
 | 
						|
  }
 | 
						|
 | 
						|
  QualType NewTy = NewElemTy;
 | 
						|
  if (VectorSize.getBoolValue()) {
 | 
						|
    NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
 | 
						|
                                  VectorType::GenericVector);
 | 
						|
  } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
 | 
						|
    // Complex machine mode does not support base vector types.
 | 
						|
    if (ComplexMode) {
 | 
						|
      Diag(AttrLoc, diag::err_complex_mode_vector_type);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    unsigned NumElements = Context.getTypeSize(OldElemTy) *
 | 
						|
                           OldVT->getNumElements() /
 | 
						|
                           Context.getTypeSize(NewElemTy);
 | 
						|
    NewTy =
 | 
						|
        Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewTy.isNull()) {
 | 
						|
    Diag(AttrLoc, diag::err_mode_wrong_type);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Install the new type.
 | 
						|
  if (auto *TD = dyn_cast<TypedefNameDecl>(D))
 | 
						|
    TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
 | 
						|
  else if (auto *ED = dyn_cast<EnumDecl>(D))
 | 
						|
    ED->setIntegerType(NewTy);
 | 
						|
  else
 | 
						|
    cast<ValueDecl>(D)->setType(NewTy);
 | 
						|
 | 
						|
  D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
 | 
						|
}
 | 
						|
 | 
						|
static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
 | 
						|
                                              const AttributeCommonInfo &CI,
 | 
						|
                                              const IdentifierInfo *Ident) {
 | 
						|
  if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
 | 
						|
    Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
 | 
						|
    Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (D->hasAttr<AlwaysInlineAttr>())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) AlwaysInlineAttr(Context, CI);
 | 
						|
}
 | 
						|
 | 
						|
CommonAttr *Sema::mergeCommonAttr(Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) CommonAttr(Context, AL);
 | 
						|
}
 | 
						|
 | 
						|
CommonAttr *Sema::mergeCommonAttr(Decl *D, const CommonAttr &AL) {
 | 
						|
  if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) CommonAttr(Context, AL);
 | 
						|
}
 | 
						|
 | 
						|
InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
 | 
						|
                                                    const ParsedAttr &AL) {
 | 
						|
  if (const auto *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    // Attribute applies to Var but not any subclass of it (like ParmVar,
 | 
						|
    // ImplicitParm or VarTemplateSpecialization).
 | 
						|
    if (VD->getKind() != Decl::Var) {
 | 
						|
      Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
 | 
						|
          << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
 | 
						|
                                            : ExpectedVariableOrFunction);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    // Attribute does not apply to non-static local variables.
 | 
						|
    if (VD->hasLocalStorage()) {
 | 
						|
      Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) InternalLinkageAttr(Context, AL);
 | 
						|
}
 | 
						|
InternalLinkageAttr *
 | 
						|
Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
 | 
						|
  if (const auto *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    // Attribute applies to Var but not any subclass of it (like ParmVar,
 | 
						|
    // ImplicitParm or VarTemplateSpecialization).
 | 
						|
    if (VD->getKind() != Decl::Var) {
 | 
						|
      Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
 | 
						|
          << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
 | 
						|
                                             : ExpectedVariableOrFunction);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    // Attribute does not apply to non-static local variables.
 | 
						|
    if (VD->hasLocalStorage()) {
 | 
						|
      Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) InternalLinkageAttr(Context, AL);
 | 
						|
}
 | 
						|
 | 
						|
MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
 | 
						|
  if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
 | 
						|
    Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
 | 
						|
    Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (D->hasAttr<MinSizeAttr>())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) MinSizeAttr(Context, CI);
 | 
						|
}
 | 
						|
 | 
						|
NoSpeculativeLoadHardeningAttr *Sema::mergeNoSpeculativeLoadHardeningAttr(
 | 
						|
    Decl *D, const NoSpeculativeLoadHardeningAttr &AL) {
 | 
						|
  if (checkAttrMutualExclusion<SpeculativeLoadHardeningAttr>(*this, D, AL))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) NoSpeculativeLoadHardeningAttr(Context, AL);
 | 
						|
}
 | 
						|
 | 
						|
OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
 | 
						|
                                              const AttributeCommonInfo &CI) {
 | 
						|
  if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
 | 
						|
    Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
 | 
						|
    Diag(CI.getLoc(), diag::note_conflicting_attribute);
 | 
						|
    D->dropAttr<AlwaysInlineAttr>();
 | 
						|
  }
 | 
						|
  if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
 | 
						|
    Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
 | 
						|
    Diag(CI.getLoc(), diag::note_conflicting_attribute);
 | 
						|
    D->dropAttr<MinSizeAttr>();
 | 
						|
  }
 | 
						|
 | 
						|
  if (D->hasAttr<OptimizeNoneAttr>())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) OptimizeNoneAttr(Context, CI);
 | 
						|
}
 | 
						|
 | 
						|
SpeculativeLoadHardeningAttr *Sema::mergeSpeculativeLoadHardeningAttr(
 | 
						|
    Decl *D, const SpeculativeLoadHardeningAttr &AL) {
 | 
						|
  if (checkAttrMutualExclusion<NoSpeculativeLoadHardeningAttr>(*this, D, AL))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) SpeculativeLoadHardeningAttr(Context, AL);
 | 
						|
}
 | 
						|
 | 
						|
static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (AlwaysInlineAttr *Inline =
 | 
						|
          S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
 | 
						|
    D->addAttr(Inline);
 | 
						|
}
 | 
						|
 | 
						|
static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
 | 
						|
    D->addAttr(MinSize);
 | 
						|
}
 | 
						|
 | 
						|
static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
 | 
						|
    D->addAttr(Optnone);
 | 
						|
}
 | 
						|
 | 
						|
static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL))
 | 
						|
    return;
 | 
						|
  const auto *VD = cast<VarDecl>(D);
 | 
						|
  if (!VD->hasGlobalStorage()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_cuda_nonglobal_constant);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL))
 | 
						|
    return;
 | 
						|
  const auto *VD = cast<VarDecl>(D);
 | 
						|
  // extern __shared__ is only allowed on arrays with no length (e.g.
 | 
						|
  // "int x[]").
 | 
						|
  if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
 | 
						|
      !isa<IncompleteArrayType>(VD->getType())) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
 | 
						|
      S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
 | 
						|
          << S.CurrentCUDATarget())
 | 
						|
    return;
 | 
						|
  D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL) ||
 | 
						|
      checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL)) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  const auto *FD = cast<FunctionDecl>(D);
 | 
						|
  if (!FD->getReturnType()->isVoidType() &&
 | 
						|
      !FD->getReturnType()->getAs<AutoType>() &&
 | 
						|
      !FD->getReturnType()->isInstantiationDependentType()) {
 | 
						|
    SourceRange RTRange = FD->getReturnTypeSourceRange();
 | 
						|
    S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
 | 
						|
        << FD->getType()
 | 
						|
        << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
 | 
						|
                              : FixItHint());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
 | 
						|
    if (Method->isInstance()) {
 | 
						|
      S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
 | 
						|
          << Method;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
 | 
						|
  }
 | 
						|
  // Only warn for "inline" when compiling for host, to cut down on noise.
 | 
						|
  if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
 | 
						|
    S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  const auto *Fn = cast<FunctionDecl>(D);
 | 
						|
  if (!Fn->isInlineSpecified()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (hasDeclarator(D)) return;
 | 
						|
 | 
						|
  // Diagnostic is emitted elsewhere: here we store the (valid) AL
 | 
						|
  // in the Decl node for syntactic reasoning, e.g., pretty-printing.
 | 
						|
  CallingConv CC;
 | 
						|
  if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!isa<ObjCMethodDecl>(D)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << AL << ExpectedFunctionOrMethod;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (AL.getKind()) {
 | 
						|
  case ParsedAttr::AT_FastCall:
 | 
						|
    D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_StdCall:
 | 
						|
    D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_ThisCall:
 | 
						|
    D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_CDecl:
 | 
						|
    D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_Pascal:
 | 
						|
    D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_SwiftCall:
 | 
						|
    D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_VectorCall:
 | 
						|
    D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_MSABI:
 | 
						|
    D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_SysVABI:
 | 
						|
    D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_RegCall:
 | 
						|
    D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_Pcs: {
 | 
						|
    PcsAttr::PCSType PCS;
 | 
						|
    switch (CC) {
 | 
						|
    case CC_AAPCS:
 | 
						|
      PCS = PcsAttr::AAPCS;
 | 
						|
      break;
 | 
						|
    case CC_AAPCS_VFP:
 | 
						|
      PCS = PcsAttr::AAPCS_VFP;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("unexpected calling convention in pcs attribute");
 | 
						|
    }
 | 
						|
 | 
						|
    D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ParsedAttr::AT_AArch64VectorPcs:
 | 
						|
    D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_IntelOclBicc:
 | 
						|
    D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_PreserveMost:
 | 
						|
    D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  case ParsedAttr::AT_PreserveAll:
 | 
						|
    D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
 | 
						|
    return;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unexpected attribute kind");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  std::vector<StringRef> DiagnosticIdentifiers;
 | 
						|
  for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
 | 
						|
    StringRef RuleName;
 | 
						|
 | 
						|
    if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
 | 
						|
      return;
 | 
						|
 | 
						|
    // FIXME: Warn if the rule name is unknown. This is tricky because only
 | 
						|
    // clang-tidy knows about available rules.
 | 
						|
    DiagnosticIdentifiers.push_back(RuleName);
 | 
						|
  }
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
 | 
						|
                              DiagnosticIdentifiers.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  TypeSourceInfo *DerefTypeLoc = nullptr;
 | 
						|
  QualType ParmType;
 | 
						|
  if (AL.hasParsedType()) {
 | 
						|
    ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
 | 
						|
 | 
						|
    unsigned SelectIdx = ~0U;
 | 
						|
    if (ParmType->isReferenceType())
 | 
						|
      SelectIdx = 0;
 | 
						|
    else if (ParmType->isArrayType())
 | 
						|
      SelectIdx = 1;
 | 
						|
 | 
						|
    if (SelectIdx != ~0U) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
 | 
						|
          << SelectIdx << AL;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // To check if earlier decl attributes do not conflict the newly parsed ones
 | 
						|
  // we always add (and check) the attribute to the cannonical decl.
 | 
						|
  D = D->getCanonicalDecl();
 | 
						|
  if (AL.getKind() == ParsedAttr::AT_Owner) {
 | 
						|
    if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
 | 
						|
      return;
 | 
						|
    if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
 | 
						|
      const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
 | 
						|
                                          ? OAttr->getDerefType().getTypePtr()
 | 
						|
                                          : nullptr;
 | 
						|
      if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
 | 
						|
        S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
 | 
						|
            << AL << OAttr;
 | 
						|
        S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    for (Decl *Redecl : D->redecls()) {
 | 
						|
      Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
 | 
						|
      return;
 | 
						|
    if (const auto *PAttr = D->getAttr<PointerAttr>()) {
 | 
						|
      const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
 | 
						|
                                          ? PAttr->getDerefType().getTypePtr()
 | 
						|
                                          : nullptr;
 | 
						|
      if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
 | 
						|
        S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
 | 
						|
            << AL << PAttr;
 | 
						|
        S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    for (Decl *Redecl : D->redecls()) {
 | 
						|
      Redecl->addAttr(::new (S.Context)
 | 
						|
                          PointerAttr(S.Context, AL, DerefTypeLoc));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
 | 
						|
                                const FunctionDecl *FD) {
 | 
						|
  if (Attrs.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Attrs.hasProcessingCache()) {
 | 
						|
    CC = (CallingConv) Attrs.getProcessingCache();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
 | 
						|
  if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) {
 | 
						|
    Attrs.setInvalid();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: diagnose uses of these conventions on the wrong target.
 | 
						|
  switch (Attrs.getKind()) {
 | 
						|
  case ParsedAttr::AT_CDecl:
 | 
						|
    CC = CC_C;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_FastCall:
 | 
						|
    CC = CC_X86FastCall;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_StdCall:
 | 
						|
    CC = CC_X86StdCall;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ThisCall:
 | 
						|
    CC = CC_X86ThisCall;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Pascal:
 | 
						|
    CC = CC_X86Pascal;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_SwiftCall:
 | 
						|
    CC = CC_Swift;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_VectorCall:
 | 
						|
    CC = CC_X86VectorCall;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AArch64VectorPcs:
 | 
						|
    CC = CC_AArch64VectorCall;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_RegCall:
 | 
						|
    CC = CC_X86RegCall;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_MSABI:
 | 
						|
    CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
 | 
						|
                                                             CC_Win64;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_SysVABI:
 | 
						|
    CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
 | 
						|
                                                             CC_C;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Pcs: {
 | 
						|
    StringRef StrRef;
 | 
						|
    if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
 | 
						|
      Attrs.setInvalid();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (StrRef == "aapcs") {
 | 
						|
      CC = CC_AAPCS;
 | 
						|
      break;
 | 
						|
    } else if (StrRef == "aapcs-vfp") {
 | 
						|
      CC = CC_AAPCS_VFP;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Attrs.setInvalid();
 | 
						|
    Diag(Attrs.getLoc(), diag::err_invalid_pcs);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case ParsedAttr::AT_IntelOclBicc:
 | 
						|
    CC = CC_IntelOclBicc;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_PreserveMost:
 | 
						|
    CC = CC_PreserveMost;
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_PreserveAll:
 | 
						|
    CC = CC_PreserveAll;
 | 
						|
    break;
 | 
						|
  default: llvm_unreachable("unexpected attribute kind");
 | 
						|
  }
 | 
						|
 | 
						|
  TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
 | 
						|
  const TargetInfo &TI = Context.getTargetInfo();
 | 
						|
  // CUDA functions may have host and/or device attributes which indicate
 | 
						|
  // their targeted execution environment, therefore the calling convention
 | 
						|
  // of functions in CUDA should be checked against the target deduced based
 | 
						|
  // on their host/device attributes.
 | 
						|
  if (LangOpts.CUDA) {
 | 
						|
    auto *Aux = Context.getAuxTargetInfo();
 | 
						|
    auto CudaTarget = IdentifyCUDATarget(FD);
 | 
						|
    bool CheckHost = false, CheckDevice = false;
 | 
						|
    switch (CudaTarget) {
 | 
						|
    case CFT_HostDevice:
 | 
						|
      CheckHost = true;
 | 
						|
      CheckDevice = true;
 | 
						|
      break;
 | 
						|
    case CFT_Host:
 | 
						|
      CheckHost = true;
 | 
						|
      break;
 | 
						|
    case CFT_Device:
 | 
						|
    case CFT_Global:
 | 
						|
      CheckDevice = true;
 | 
						|
      break;
 | 
						|
    case CFT_InvalidTarget:
 | 
						|
      llvm_unreachable("unexpected cuda target");
 | 
						|
    }
 | 
						|
    auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
 | 
						|
    auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
 | 
						|
    if (CheckHost && HostTI)
 | 
						|
      A = HostTI->checkCallingConvention(CC);
 | 
						|
    if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
 | 
						|
      A = DeviceTI->checkCallingConvention(CC);
 | 
						|
  } else {
 | 
						|
    A = TI.checkCallingConvention(CC);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (A) {
 | 
						|
  case TargetInfo::CCCR_OK:
 | 
						|
    break;
 | 
						|
 | 
						|
  case TargetInfo::CCCR_Ignore:
 | 
						|
    // Treat an ignored convention as if it was an explicit C calling convention
 | 
						|
    // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
 | 
						|
    // that command line flags that change the default convention to
 | 
						|
    // __vectorcall don't affect declarations marked __stdcall.
 | 
						|
    CC = CC_C;
 | 
						|
    break;
 | 
						|
 | 
						|
  case TargetInfo::CCCR_Error:
 | 
						|
    Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
 | 
						|
        << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
 | 
						|
    break;
 | 
						|
 | 
						|
  case TargetInfo::CCCR_Warning: {
 | 
						|
    Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
 | 
						|
        << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
 | 
						|
 | 
						|
    // This convention is not valid for the target. Use the default function or
 | 
						|
    // method calling convention.
 | 
						|
    bool IsCXXMethod = false, IsVariadic = false;
 | 
						|
    if (FD) {
 | 
						|
      IsCXXMethod = FD->isCXXInstanceMember();
 | 
						|
      IsVariadic = FD->isVariadic();
 | 
						|
    }
 | 
						|
    CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  Attrs.setProcessingCache((unsigned) CC);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Pointer-like types in the default address space.
 | 
						|
static bool isValidSwiftContextType(QualType Ty) {
 | 
						|
  if (!Ty->hasPointerRepresentation())
 | 
						|
    return Ty->isDependentType();
 | 
						|
  return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
 | 
						|
}
 | 
						|
 | 
						|
/// Pointers and references in the default address space.
 | 
						|
static bool isValidSwiftIndirectResultType(QualType Ty) {
 | 
						|
  if (const auto *PtrType = Ty->getAs<PointerType>()) {
 | 
						|
    Ty = PtrType->getPointeeType();
 | 
						|
  } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
 | 
						|
    Ty = RefType->getPointeeType();
 | 
						|
  } else {
 | 
						|
    return Ty->isDependentType();
 | 
						|
  }
 | 
						|
  return Ty.getAddressSpace() == LangAS::Default;
 | 
						|
}
 | 
						|
 | 
						|
/// Pointers and references to pointers in the default address space.
 | 
						|
static bool isValidSwiftErrorResultType(QualType Ty) {
 | 
						|
  if (const auto *PtrType = Ty->getAs<PointerType>()) {
 | 
						|
    Ty = PtrType->getPointeeType();
 | 
						|
  } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
 | 
						|
    Ty = RefType->getPointeeType();
 | 
						|
  } else {
 | 
						|
    return Ty->isDependentType();
 | 
						|
  }
 | 
						|
  if (!Ty.getQualifiers().empty())
 | 
						|
    return false;
 | 
						|
  return isValidSwiftContextType(Ty);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                               ParameterABI abi) {
 | 
						|
 | 
						|
  QualType type = cast<ParmVarDecl>(D)->getType();
 | 
						|
 | 
						|
  if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
 | 
						|
    if (existingAttr->getABI() != abi) {
 | 
						|
      Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
 | 
						|
          << getParameterABISpelling(abi) << existingAttr;
 | 
						|
      Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  switch (abi) {
 | 
						|
  case ParameterABI::Ordinary:
 | 
						|
    llvm_unreachable("explicit attribute for ordinary parameter ABI?");
 | 
						|
 | 
						|
  case ParameterABI::SwiftContext:
 | 
						|
    if (!isValidSwiftContextType(type)) {
 | 
						|
      Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
 | 
						|
          << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
 | 
						|
    }
 | 
						|
    D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
 | 
						|
    return;
 | 
						|
 | 
						|
  case ParameterABI::SwiftErrorResult:
 | 
						|
    if (!isValidSwiftErrorResultType(type)) {
 | 
						|
      Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
 | 
						|
          << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
 | 
						|
    }
 | 
						|
    D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
 | 
						|
    return;
 | 
						|
 | 
						|
  case ParameterABI::SwiftIndirectResult:
 | 
						|
    if (!isValidSwiftIndirectResultType(type)) {
 | 
						|
      Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
 | 
						|
          << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
 | 
						|
    }
 | 
						|
    D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad parameter ABI attribute");
 | 
						|
}
 | 
						|
 | 
						|
/// Checks a regparm attribute, returning true if it is ill-formed and
 | 
						|
/// otherwise setting numParams to the appropriate value.
 | 
						|
bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
 | 
						|
  if (AL.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!checkAttributeNumArgs(*this, AL, 1)) {
 | 
						|
    AL.setInvalid();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  uint32_t NP;
 | 
						|
  Expr *NumParamsExpr = AL.getArgAsExpr(0);
 | 
						|
  if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
 | 
						|
    AL.setInvalid();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Context.getTargetInfo().getRegParmMax() == 0) {
 | 
						|
    Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
 | 
						|
      << NumParamsExpr->getSourceRange();
 | 
						|
    AL.setInvalid();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  numParams = NP;
 | 
						|
  if (numParams > Context.getTargetInfo().getRegParmMax()) {
 | 
						|
    Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
 | 
						|
      << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
 | 
						|
    AL.setInvalid();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Checks whether an argument of launch_bounds attribute is
 | 
						|
// acceptable, performs implicit conversion to Rvalue, and returns
 | 
						|
// non-nullptr Expr result on success. Otherwise, it returns nullptr
 | 
						|
// and may output an error.
 | 
						|
static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
 | 
						|
                                     const CUDALaunchBoundsAttr &AL,
 | 
						|
                                     const unsigned Idx) {
 | 
						|
  if (S.DiagnoseUnexpandedParameterPack(E))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Accept template arguments for now as they depend on something else.
 | 
						|
  // We'll get to check them when they eventually get instantiated.
 | 
						|
  if (E->isValueDependent())
 | 
						|
    return E;
 | 
						|
 | 
						|
  llvm::APSInt I(64);
 | 
						|
  if (!E->isIntegerConstantExpr(I, S.Context)) {
 | 
						|
    S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
 | 
						|
        << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  // Make sure we can fit it in 32 bits.
 | 
						|
  if (!I.isIntN(32)) {
 | 
						|
    S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false)
 | 
						|
                                                     << 32 << /* Unsigned */ 1;
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  if (I < 0)
 | 
						|
    S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
 | 
						|
        << &AL << Idx << E->getSourceRange();
 | 
						|
 | 
						|
  // We may need to perform implicit conversion of the argument.
 | 
						|
  InitializedEntity Entity = InitializedEntity::InitializeParameter(
 | 
						|
      S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
 | 
						|
  ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
 | 
						|
  assert(!ValArg.isInvalid() &&
 | 
						|
         "Unexpected PerformCopyInitialization() failure.");
 | 
						|
 | 
						|
  return ValArg.getAs<Expr>();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                               Expr *MaxThreads, Expr *MinBlocks) {
 | 
						|
  CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
 | 
						|
  MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
 | 
						|
  if (MaxThreads == nullptr)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (MinBlocks) {
 | 
						|
    MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
 | 
						|
    if (MinBlocks == nullptr)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (Context)
 | 
						|
                 CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
 | 
						|
}
 | 
						|
 | 
						|
static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
 | 
						|
      !checkAttributeAtMostNumArgs(S, AL, 2))
 | 
						|
    return;
 | 
						|
 | 
						|
  S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
 | 
						|
                        AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
 | 
						|
}
 | 
						|
 | 
						|
static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
 | 
						|
                                          const ParsedAttr &AL) {
 | 
						|
  if (!AL.isArgIdent(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
        << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ParamIdx ArgumentIdx;
 | 
						|
  if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
 | 
						|
                                           ArgumentIdx))
 | 
						|
    return;
 | 
						|
 | 
						|
  ParamIdx TypeTagIdx;
 | 
						|
  if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
 | 
						|
                                           TypeTagIdx))
 | 
						|
    return;
 | 
						|
 | 
						|
  bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
 | 
						|
  if (IsPointer) {
 | 
						|
    // Ensure that buffer has a pointer type.
 | 
						|
    unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
 | 
						|
    if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
 | 
						|
        !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
 | 
						|
      S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
 | 
						|
      IsPointer));
 | 
						|
}
 | 
						|
 | 
						|
static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
 | 
						|
                                         const ParsedAttr &AL) {
 | 
						|
  if (!AL.isArgIdent(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
        << AL << 1 << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!checkAttributeNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!isa<VarDecl>(D)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
 | 
						|
        << AL << ExpectedVariable;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
 | 
						|
  TypeSourceInfo *MatchingCTypeLoc = nullptr;
 | 
						|
  S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
 | 
						|
  assert(MatchingCTypeLoc && "no type source info for attribute argument");
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
 | 
						|
      S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
 | 
						|
      AL.getMustBeNull()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  ParamIdx ArgCount;
 | 
						|
 | 
						|
  if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
 | 
						|
                                           ArgCount,
 | 
						|
                                           true /* CanIndexImplicitThis */))
 | 
						|
    return;
 | 
						|
 | 
						|
  // ArgCount isn't a parameter index [0;n), it's a count [1;n]
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
 | 
						|
}
 | 
						|
 | 
						|
static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
 | 
						|
                                             const ParsedAttr &AL) {
 | 
						|
  uint32_t Count = 0, Offset = 0;
 | 
						|
  if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
 | 
						|
    return;
 | 
						|
  if (AL.getNumArgs() == 2) {
 | 
						|
    Expr *Arg = AL.getArgAsExpr(1);
 | 
						|
    if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
 | 
						|
      return;
 | 
						|
    if (Count < Offset) {
 | 
						|
      S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
 | 
						|
          << &AL << 0 << Count << Arg->getBeginLoc();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct IntrinToName {
 | 
						|
  uint32_t Id;
 | 
						|
  int32_t FullName;
 | 
						|
  int32_t ShortName;
 | 
						|
};
 | 
						|
} // unnamed namespace
 | 
						|
 | 
						|
static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
 | 
						|
                                 ArrayRef<IntrinToName> Map,
 | 
						|
                                 const char *IntrinNames) {
 | 
						|
  if (AliasName.startswith("__arm_"))
 | 
						|
    AliasName = AliasName.substr(6);
 | 
						|
  const IntrinToName *It = std::lower_bound(
 | 
						|
      Map.begin(), Map.end(), BuiltinID,
 | 
						|
      [](const IntrinToName &L, unsigned Id) { return L.Id < Id; });
 | 
						|
  if (It == Map.end() || It->Id != BuiltinID)
 | 
						|
    return false;
 | 
						|
  StringRef FullName(&IntrinNames[It->FullName]);
 | 
						|
  if (AliasName == FullName)
 | 
						|
    return true;
 | 
						|
  if (It->ShortName == -1)
 | 
						|
    return false;
 | 
						|
  StringRef ShortName(&IntrinNames[It->ShortName]);
 | 
						|
  return AliasName == ShortName;
 | 
						|
}
 | 
						|
 | 
						|
static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
 | 
						|
#include "clang/Basic/arm_mve_builtin_aliases.inc"
 | 
						|
  // The included file defines:
 | 
						|
  // - ArrayRef<IntrinToName> Map
 | 
						|
  // - const char IntrinNames[]
 | 
						|
  return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
 | 
						|
}
 | 
						|
 | 
						|
static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
 | 
						|
#include "clang/Basic/arm_cde_builtin_aliases.inc"
 | 
						|
  return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
 | 
						|
}
 | 
						|
 | 
						|
static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!AL.isArgIdent(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
 | 
						|
        << AL << 1 << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
 | 
						|
  unsigned BuiltinID = Ident->getBuiltinID();
 | 
						|
  StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
 | 
						|
 | 
						|
  if (!ArmMveAliasValid(BuiltinID, AliasName) &&
 | 
						|
      !ArmCdeAliasValid(BuiltinID, AliasName)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Checker-specific attribute handlers.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
 | 
						|
  return QT->isDependentType() || QT->isObjCRetainableType();
 | 
						|
}
 | 
						|
 | 
						|
static bool isValidSubjectOfNSAttribute(QualType QT) {
 | 
						|
  return QT->isDependentType() || QT->isObjCObjectPointerType() ||
 | 
						|
         QT->isObjCNSObjectType();
 | 
						|
}
 | 
						|
 | 
						|
static bool isValidSubjectOfCFAttribute(QualType QT) {
 | 
						|
  return QT->isDependentType() || QT->isPointerType() ||
 | 
						|
         isValidSubjectOfNSAttribute(QT);
 | 
						|
}
 | 
						|
 | 
						|
static bool isValidSubjectOfOSAttribute(QualType QT) {
 | 
						|
  if (QT->isDependentType())
 | 
						|
    return true;
 | 
						|
  QualType PT = QT->getPointeeType();
 | 
						|
  return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                            RetainOwnershipKind K,
 | 
						|
                            bool IsTemplateInstantiation) {
 | 
						|
  ValueDecl *VD = cast<ValueDecl>(D);
 | 
						|
  switch (K) {
 | 
						|
  case RetainOwnershipKind::OS:
 | 
						|
    handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
 | 
						|
        *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
 | 
						|
        diag::warn_ns_attribute_wrong_parameter_type,
 | 
						|
        /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
 | 
						|
    return;
 | 
						|
  case RetainOwnershipKind::NS:
 | 
						|
    handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
 | 
						|
        *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
 | 
						|
 | 
						|
        // These attributes are normally just advisory, but in ARC, ns_consumed
 | 
						|
        // is significant.  Allow non-dependent code to contain inappropriate
 | 
						|
        // attributes even in ARC, but require template instantiations to be
 | 
						|
        // set up correctly.
 | 
						|
        ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
 | 
						|
             ? diag::err_ns_attribute_wrong_parameter_type
 | 
						|
             : diag::warn_ns_attribute_wrong_parameter_type),
 | 
						|
        /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
 | 
						|
    return;
 | 
						|
  case RetainOwnershipKind::CF:
 | 
						|
    handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
 | 
						|
        *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
 | 
						|
        diag::warn_ns_attribute_wrong_parameter_type,
 | 
						|
        /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Sema::RetainOwnershipKind
 | 
						|
parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
 | 
						|
  switch (AL.getKind()) {
 | 
						|
  case ParsedAttr::AT_CFConsumed:
 | 
						|
  case ParsedAttr::AT_CFReturnsRetained:
 | 
						|
  case ParsedAttr::AT_CFReturnsNotRetained:
 | 
						|
    return Sema::RetainOwnershipKind::CF;
 | 
						|
  case ParsedAttr::AT_OSConsumesThis:
 | 
						|
  case ParsedAttr::AT_OSConsumed:
 | 
						|
  case ParsedAttr::AT_OSReturnsRetained:
 | 
						|
  case ParsedAttr::AT_OSReturnsNotRetained:
 | 
						|
  case ParsedAttr::AT_OSReturnsRetainedOnZero:
 | 
						|
  case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
 | 
						|
    return Sema::RetainOwnershipKind::OS;
 | 
						|
  case ParsedAttr::AT_NSConsumesSelf:
 | 
						|
  case ParsedAttr::AT_NSConsumed:
 | 
						|
  case ParsedAttr::AT_NSReturnsRetained:
 | 
						|
  case ParsedAttr::AT_NSReturnsNotRetained:
 | 
						|
  case ParsedAttr::AT_NSReturnsAutoreleased:
 | 
						|
    return Sema::RetainOwnershipKind::NS;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Wrong argument supplied");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
 | 
						|
  if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
 | 
						|
      << "'ns_returns_retained'" << 0 << 0;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \return whether the parameter is a pointer to OSObject pointer.
 | 
						|
static bool isValidOSObjectOutParameter(const Decl *D) {
 | 
						|
  const auto *PVD = dyn_cast<ParmVarDecl>(D);
 | 
						|
  if (!PVD)
 | 
						|
    return false;
 | 
						|
  QualType QT = PVD->getType();
 | 
						|
  QualType PT = QT->getPointeeType();
 | 
						|
  return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
 | 
						|
}
 | 
						|
 | 
						|
static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
 | 
						|
                                        const ParsedAttr &AL) {
 | 
						|
  QualType ReturnType;
 | 
						|
  Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
 | 
						|
 | 
						|
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
 | 
						|
    ReturnType = MD->getReturnType();
 | 
						|
  } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
 | 
						|
             (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
 | 
						|
    return; // ignore: was handled as a type attribute
 | 
						|
  } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
 | 
						|
    ReturnType = PD->getType();
 | 
						|
  } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    ReturnType = FD->getReturnType();
 | 
						|
  } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
 | 
						|
    // Attributes on parameters are used for out-parameters,
 | 
						|
    // passed as pointers-to-pointers.
 | 
						|
    unsigned DiagID = K == Sema::RetainOwnershipKind::CF
 | 
						|
            ? /*pointer-to-CF-pointer*/2
 | 
						|
            : /*pointer-to-OSObject-pointer*/3;
 | 
						|
    ReturnType = Param->getType()->getPointeeType();
 | 
						|
    if (ReturnType.isNull()) {
 | 
						|
      S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
 | 
						|
          << AL << DiagID << AL.getRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (AL.isUsedAsTypeAttr()) {
 | 
						|
    return;
 | 
						|
  } else {
 | 
						|
    AttributeDeclKind ExpectedDeclKind;
 | 
						|
    switch (AL.getKind()) {
 | 
						|
    default: llvm_unreachable("invalid ownership attribute");
 | 
						|
    case ParsedAttr::AT_NSReturnsRetained:
 | 
						|
    case ParsedAttr::AT_NSReturnsAutoreleased:
 | 
						|
    case ParsedAttr::AT_NSReturnsNotRetained:
 | 
						|
      ExpectedDeclKind = ExpectedFunctionOrMethod;
 | 
						|
      break;
 | 
						|
 | 
						|
    case ParsedAttr::AT_OSReturnsRetained:
 | 
						|
    case ParsedAttr::AT_OSReturnsNotRetained:
 | 
						|
    case ParsedAttr::AT_CFReturnsRetained:
 | 
						|
    case ParsedAttr::AT_CFReturnsNotRetained:
 | 
						|
      ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << AL.getRange() << AL << ExpectedDeclKind;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool TypeOK;
 | 
						|
  bool Cf;
 | 
						|
  unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
 | 
						|
  switch (AL.getKind()) {
 | 
						|
  default: llvm_unreachable("invalid ownership attribute");
 | 
						|
  case ParsedAttr::AT_NSReturnsRetained:
 | 
						|
    TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
 | 
						|
    Cf = false;
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_NSReturnsAutoreleased:
 | 
						|
  case ParsedAttr::AT_NSReturnsNotRetained:
 | 
						|
    TypeOK = isValidSubjectOfNSAttribute(ReturnType);
 | 
						|
    Cf = false;
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_CFReturnsRetained:
 | 
						|
  case ParsedAttr::AT_CFReturnsNotRetained:
 | 
						|
    TypeOK = isValidSubjectOfCFAttribute(ReturnType);
 | 
						|
    Cf = true;
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_OSReturnsRetained:
 | 
						|
  case ParsedAttr::AT_OSReturnsNotRetained:
 | 
						|
    TypeOK = isValidSubjectOfOSAttribute(ReturnType);
 | 
						|
    Cf = true;
 | 
						|
    ParmDiagID = 3; // Pointer-to-OSObject-pointer
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!TypeOK) {
 | 
						|
    if (AL.isUsedAsTypeAttr())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (isa<ParmVarDecl>(D)) {
 | 
						|
      S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
 | 
						|
          << AL << ParmDiagID << AL.getRange();
 | 
						|
    } else {
 | 
						|
      // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
 | 
						|
      enum : unsigned {
 | 
						|
        Function,
 | 
						|
        Method,
 | 
						|
        Property
 | 
						|
      } SubjectKind = Function;
 | 
						|
      if (isa<ObjCMethodDecl>(D))
 | 
						|
        SubjectKind = Method;
 | 
						|
      else if (isa<ObjCPropertyDecl>(D))
 | 
						|
        SubjectKind = Property;
 | 
						|
      S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
 | 
						|
          << AL << SubjectKind << Cf << AL.getRange();
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (AL.getKind()) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("invalid ownership attribute");
 | 
						|
    case ParsedAttr::AT_NSReturnsAutoreleased:
 | 
						|
      handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
 | 
						|
      return;
 | 
						|
    case ParsedAttr::AT_CFReturnsNotRetained:
 | 
						|
      handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
 | 
						|
      return;
 | 
						|
    case ParsedAttr::AT_NSReturnsNotRetained:
 | 
						|
      handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
 | 
						|
      return;
 | 
						|
    case ParsedAttr::AT_CFReturnsRetained:
 | 
						|
      handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
 | 
						|
      return;
 | 
						|
    case ParsedAttr::AT_NSReturnsRetained:
 | 
						|
      handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
 | 
						|
      return;
 | 
						|
    case ParsedAttr::AT_OSReturnsRetained:
 | 
						|
      handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
 | 
						|
      return;
 | 
						|
    case ParsedAttr::AT_OSReturnsNotRetained:
 | 
						|
      handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
 | 
						|
      return;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
 | 
						|
                                              const ParsedAttr &Attrs) {
 | 
						|
  const int EP_ObjCMethod = 1;
 | 
						|
  const int EP_ObjCProperty = 2;
 | 
						|
 | 
						|
  SourceLocation loc = Attrs.getLoc();
 | 
						|
  QualType resultType;
 | 
						|
  if (isa<ObjCMethodDecl>(D))
 | 
						|
    resultType = cast<ObjCMethodDecl>(D)->getReturnType();
 | 
						|
  else
 | 
						|
    resultType = cast<ObjCPropertyDecl>(D)->getType();
 | 
						|
 | 
						|
  if (!resultType->isReferenceType() &&
 | 
						|
      (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
 | 
						|
    S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
 | 
						|
        << SourceRange(loc) << Attrs
 | 
						|
        << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
 | 
						|
        << /*non-retainable pointer*/ 2;
 | 
						|
 | 
						|
    // Drop the attribute.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
 | 
						|
                                        const ParsedAttr &Attrs) {
 | 
						|
  const auto *Method = cast<ObjCMethodDecl>(D);
 | 
						|
 | 
						|
  const DeclContext *DC = Method->getDeclContext();
 | 
						|
  if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
 | 
						|
    S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
 | 
						|
                                                                      << 0;
 | 
						|
    S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (Method->getMethodFamily() == OMF_dealloc) {
 | 
						|
    S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
 | 
						|
                                                                      << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
 | 
						|
 | 
						|
  if (!Parm) {
 | 
						|
    S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Typedefs only allow objc_bridge(id) and have some additional checking.
 | 
						|
  if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
 | 
						|
    if (!Parm->Ident->isStr("id")) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Only allow 'cv void *'.
 | 
						|
    QualType T = TD->getUnderlyingType();
 | 
						|
    if (!T->isVoidPointerType()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
 | 
						|
                                        const ParsedAttr &AL) {
 | 
						|
  IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
 | 
						|
 | 
						|
  if (!Parm) {
 | 
						|
    S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
 | 
						|
                                        const ParsedAttr &AL) {
 | 
						|
  IdentifierInfo *RelatedClass =
 | 
						|
      AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
 | 
						|
  if (!RelatedClass) {
 | 
						|
    S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  IdentifierInfo *ClassMethod =
 | 
						|
    AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
 | 
						|
  IdentifierInfo *InstanceMethod =
 | 
						|
    AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
 | 
						|
  D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
 | 
						|
      S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
 | 
						|
                                            const ParsedAttr &AL) {
 | 
						|
  DeclContext *Ctx = D->getDeclContext();
 | 
						|
 | 
						|
  // This attribute can only be applied to methods in interfaces or class
 | 
						|
  // extensions.
 | 
						|
  if (!isa<ObjCInterfaceDecl>(Ctx) &&
 | 
						|
      !(isa<ObjCCategoryDecl>(Ctx) &&
 | 
						|
        cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
 | 
						|
    S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCInterfaceDecl *IFace;
 | 
						|
  if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
 | 
						|
    IFace = CatDecl->getClassInterface();
 | 
						|
  else
 | 
						|
    IFace = cast<ObjCInterfaceDecl>(Ctx);
 | 
						|
 | 
						|
  if (!IFace)
 | 
						|
    return;
 | 
						|
 | 
						|
  IFace->setHasDesignatedInitializers();
 | 
						|
  D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  StringRef MetaDataName;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
 | 
						|
    return;
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
 | 
						|
}
 | 
						|
 | 
						|
// When a user wants to use objc_boxable with a union or struct
 | 
						|
// but they don't have access to the declaration (legacy/third-party code)
 | 
						|
// then they can 'enable' this feature with a typedef:
 | 
						|
// typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
 | 
						|
static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  bool notify = false;
 | 
						|
 | 
						|
  auto *RD = dyn_cast<RecordDecl>(D);
 | 
						|
  if (RD && RD->getDefinition()) {
 | 
						|
    RD = RD->getDefinition();
 | 
						|
    notify = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (RD) {
 | 
						|
    ObjCBoxableAttr *BoxableAttr =
 | 
						|
        ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
 | 
						|
    RD->addAttr(BoxableAttr);
 | 
						|
    if (notify) {
 | 
						|
      // we need to notify ASTReader/ASTWriter about
 | 
						|
      // modification of existing declaration
 | 
						|
      if (ASTMutationListener *L = S.getASTMutationListener())
 | 
						|
        L->AddedAttributeToRecord(BoxableAttr, RD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (hasDeclarator(D)) return;
 | 
						|
 | 
						|
  S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
 | 
						|
      << AL.getRange() << AL << ExpectedVariable;
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
 | 
						|
                                          const ParsedAttr &AL) {
 | 
						|
  const auto *VD = cast<ValueDecl>(D);
 | 
						|
  QualType QT = VD->getType();
 | 
						|
 | 
						|
  if (!QT->isDependentType() &&
 | 
						|
      !QT->isObjCLifetimeType()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
 | 
						|
      << QT;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
 | 
						|
 | 
						|
  // If we have no lifetime yet, check the lifetime we're presumably
 | 
						|
  // going to infer.
 | 
						|
  if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
 | 
						|
    Lifetime = QT->getObjCARCImplicitLifetime();
 | 
						|
 | 
						|
  switch (Lifetime) {
 | 
						|
  case Qualifiers::OCL_None:
 | 
						|
    assert(QT->isDependentType() &&
 | 
						|
           "didn't infer lifetime for non-dependent type?");
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_Weak:   // meaningful
 | 
						|
  case Qualifiers::OCL_Strong: // meaningful
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_ExplicitNone:
 | 
						|
  case Qualifiers::OCL_Autoreleasing:
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
 | 
						|
        << (Lifetime == Qualifiers::OCL_Autoreleasing);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Microsoft specific attribute handlers.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                              StringRef Uuid) {
 | 
						|
  if (const auto *UA = D->getAttr<UuidAttr>()) {
 | 
						|
    if (UA->getGuid().equals_lower(Uuid))
 | 
						|
      return nullptr;
 | 
						|
    if (!UA->getGuid().empty()) {
 | 
						|
      Diag(UA->getLocation(), diag::err_mismatched_uuid);
 | 
						|
      Diag(CI.getLoc(), diag::note_previous_uuid);
 | 
						|
      D->dropAttr<UuidAttr>();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ::new (Context) UuidAttr(Context, CI, Uuid);
 | 
						|
}
 | 
						|
 | 
						|
static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!S.LangOpts.CPlusPlus) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
 | 
						|
        << AL << AttributeLangSupport::C;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef StrRef;
 | 
						|
  SourceLocation LiteralLoc;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, StrRef, &LiteralLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
 | 
						|
  // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
 | 
						|
  if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
 | 
						|
    StrRef = StrRef.drop_front().drop_back();
 | 
						|
 | 
						|
  // Validate GUID length.
 | 
						|
  if (StrRef.size() != 36) {
 | 
						|
    S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0; i < 36; ++i) {
 | 
						|
    if (i == 8 || i == 13 || i == 18 || i == 23) {
 | 
						|
      if (StrRef[i] != '-') {
 | 
						|
        S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else if (!isHexDigit(StrRef[i])) {
 | 
						|
      S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
 | 
						|
  // the only thing in the [] list, the [] too), and add an insertion of
 | 
						|
  // __declspec(uuid(...)).  But sadly, neither the SourceLocs of the commas
 | 
						|
  // separating attributes nor of the [ and the ] are in the AST.
 | 
						|
  // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
 | 
						|
  // on cfe-dev.
 | 
						|
  if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
 | 
						|
 | 
						|
  UuidAttr *UA = S.mergeUuidAttr(D, AL, StrRef);
 | 
						|
  if (UA)
 | 
						|
    D->addAttr(UA);
 | 
						|
}
 | 
						|
 | 
						|
static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!S.LangOpts.CPlusPlus) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
 | 
						|
        << AL << AttributeLangSupport::C;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
 | 
						|
      D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
 | 
						|
  if (IA) {
 | 
						|
    D->addAttr(IA);
 | 
						|
    S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  const auto *VD = cast<VarDecl>(D);
 | 
						|
  if (!S.Context.getTargetInfo().isTLSSupported()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_thread_unsupported);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (VD->getTSCSpec() != TSCS_unspecified) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (VD->hasLocalStorage()) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  SmallVector<StringRef, 4> Tags;
 | 
						|
  for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
 | 
						|
    StringRef Tag;
 | 
						|
    if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
 | 
						|
      return;
 | 
						|
    Tags.push_back(Tag);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
 | 
						|
    if (!NS->isInline()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (NS->isAnonymousNamespace()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (AL.getNumArgs() == 0)
 | 
						|
      Tags.push_back(NS->getName());
 | 
						|
  } else if (!checkAttributeAtLeastNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Store tags sorted and without duplicates.
 | 
						|
  llvm::sort(Tags);
 | 
						|
  Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Check the attribute arguments.
 | 
						|
  if (AL.getNumArgs() > 1) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  SourceLocation ArgLoc;
 | 
						|
 | 
						|
  if (AL.getNumArgs() == 0)
 | 
						|
    Str = "";
 | 
						|
  else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  ARMInterruptAttr::InterruptType Kind;
 | 
						|
  if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
 | 
						|
                                                                 << ArgLoc;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
 | 
						|
}
 | 
						|
 | 
						|
static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // MSP430 'interrupt' attribute is applied to
 | 
						|
  // a function with no parameters and void return type.
 | 
						|
  if (!isFunctionOrMethod(D)) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << "'interrupt'" << ExpectedFunctionOrMethod;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
 | 
						|
        << /*MSP430*/ 1 << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!getFunctionOrMethodResultType(D)->isVoidType()) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
 | 
						|
        << /*MSP430*/ 1 << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The attribute takes one integer argument.
 | 
						|
  if (!checkAttributeNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!AL.isArgExpr(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentIntegerConstant;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
 | 
						|
  llvm::APSInt NumParams(32);
 | 
						|
  if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentIntegerConstant
 | 
						|
        << NumParamsExpr->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // The argument should be in range 0..63.
 | 
						|
  unsigned Num = NumParams.getLimitedValue(255);
 | 
						|
  if (Num > 63) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
 | 
						|
        << AL << (int)NumParams.getSExtValue()
 | 
						|
        << NumParamsExpr->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
 | 
						|
  D->addAttr(UsedAttr::CreateImplicit(S.Context));
 | 
						|
}
 | 
						|
 | 
						|
static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Only one optional argument permitted.
 | 
						|
  if (AL.getNumArgs() > 1) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  SourceLocation ArgLoc;
 | 
						|
 | 
						|
  if (AL.getNumArgs() == 0)
 | 
						|
    Str = "";
 | 
						|
  else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Semantic checks for a function with the 'interrupt' attribute for MIPS:
 | 
						|
  // a) Must be a function.
 | 
						|
  // b) Must have no parameters.
 | 
						|
  // c) Must have the 'void' return type.
 | 
						|
  // d) Cannot have the 'mips16' attribute, as that instruction set
 | 
						|
  //    lacks the 'eret' instruction.
 | 
						|
  // e) The attribute itself must either have no argument or one of the
 | 
						|
  //    valid interrupt types, see [MipsInterruptDocs].
 | 
						|
 | 
						|
  if (!isFunctionOrMethod(D)) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << "'interrupt'" << ExpectedFunctionOrMethod;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
 | 
						|
        << /*MIPS*/ 0 << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!getFunctionOrMethodResultType(D)->isVoidType()) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
 | 
						|
        << /*MIPS*/ 0 << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  MipsInterruptAttr::InterruptType Kind;
 | 
						|
  if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
 | 
						|
        << AL << "'" + std::string(Str) + "'";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Semantic checks for a function with the 'interrupt' attribute.
 | 
						|
  // a) Must be a function.
 | 
						|
  // b) Must have the 'void' return type.
 | 
						|
  // c) Must take 1 or 2 arguments.
 | 
						|
  // d) The 1st argument must be a pointer.
 | 
						|
  // e) The 2nd argument (if any) must be an unsigned integer.
 | 
						|
  if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
 | 
						|
      CXXMethodDecl::isStaticOverloadedOperator(
 | 
						|
          cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << AL << ExpectedFunctionWithProtoType;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Interrupt handler must have void return type.
 | 
						|
  if (!getFunctionOrMethodResultType(D)->isVoidType()) {
 | 
						|
    S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
 | 
						|
           diag::err_anyx86_interrupt_attribute)
 | 
						|
        << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
 | 
						|
                ? 0
 | 
						|
                : 1)
 | 
						|
        << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Interrupt handler must have 1 or 2 parameters.
 | 
						|
  unsigned NumParams = getFunctionOrMethodNumParams(D);
 | 
						|
  if (NumParams < 1 || NumParams > 2) {
 | 
						|
    S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
 | 
						|
        << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
 | 
						|
                ? 0
 | 
						|
                : 1)
 | 
						|
        << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // The first argument must be a pointer.
 | 
						|
  if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
 | 
						|
    S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
 | 
						|
           diag::err_anyx86_interrupt_attribute)
 | 
						|
        << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
 | 
						|
                ? 0
 | 
						|
                : 1)
 | 
						|
        << 2;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // The second argument, if present, must be an unsigned integer.
 | 
						|
  unsigned TypeSize =
 | 
						|
      S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
 | 
						|
          ? 64
 | 
						|
          : 32;
 | 
						|
  if (NumParams == 2 &&
 | 
						|
      (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
 | 
						|
       S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
 | 
						|
    S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
 | 
						|
           diag::err_anyx86_interrupt_attribute)
 | 
						|
        << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
 | 
						|
                ? 0
 | 
						|
                : 1)
 | 
						|
        << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
 | 
						|
  D->addAttr(UsedAttr::CreateImplicit(S.Context));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!isFunctionOrMethod(D)) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << "'interrupt'" << ExpectedFunction;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!checkAttributeNumArgs(S, AL, 0))
 | 
						|
    return;
 | 
						|
 | 
						|
  handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
 | 
						|
}
 | 
						|
 | 
						|
static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!isFunctionOrMethod(D)) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << "'signal'" << ExpectedFunction;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!checkAttributeNumArgs(S, AL, 0))
 | 
						|
    return;
 | 
						|
 | 
						|
  handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
 | 
						|
}
 | 
						|
 | 
						|
static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
 | 
						|
  // Add preserve_access_index attribute to all fields and inner records.
 | 
						|
  for (auto D : RD->decls()) {
 | 
						|
    if (D->hasAttr<BPFPreserveAccessIndexAttr>())
 | 
						|
      continue;
 | 
						|
 | 
						|
    D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
 | 
						|
    if (auto *Rec = dyn_cast<RecordDecl>(D))
 | 
						|
      handleBPFPreserveAIRecord(S, Rec);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
 | 
						|
    const ParsedAttr &AL) {
 | 
						|
  auto *Rec = cast<RecordDecl>(D);
 | 
						|
  handleBPFPreserveAIRecord(S, Rec);
 | 
						|
  Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!isFunctionOrMethod(D)) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << "'export_name'" << ExpectedFunction;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *FD = cast<FunctionDecl>(D);
 | 
						|
  if (FD->isThisDeclarationADefinition()) {
 | 
						|
    S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  SourceLocation ArgLoc;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
 | 
						|
  D->addAttr(UsedAttr::CreateImplicit(S.Context));
 | 
						|
}
 | 
						|
 | 
						|
static void handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!isFunctionOrMethod(D)) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << "'import_module'" << ExpectedFunction;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *FD = cast<FunctionDecl>(D);
 | 
						|
  if (FD->isThisDeclarationADefinition()) {
 | 
						|
    S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  SourceLocation ArgLoc;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  FD->addAttr(::new (S.Context)
 | 
						|
                  WebAssemblyImportModuleAttr(S.Context, AL, Str));
 | 
						|
}
 | 
						|
 | 
						|
static void handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!isFunctionOrMethod(D)) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << "'import_name'" << ExpectedFunction;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *FD = cast<FunctionDecl>(D);
 | 
						|
  if (FD->isThisDeclarationADefinition()) {
 | 
						|
    S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  SourceLocation ArgLoc;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
 | 
						|
}
 | 
						|
 | 
						|
static void handleRISCVInterruptAttr(Sema &S, Decl *D,
 | 
						|
                                     const ParsedAttr &AL) {
 | 
						|
  // Warn about repeated attributes.
 | 
						|
  if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
 | 
						|
    S.Diag(AL.getRange().getBegin(),
 | 
						|
      diag::warn_riscv_repeated_interrupt_attribute);
 | 
						|
    S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the attribute argument. Argument is optional.
 | 
						|
  if (!checkAttributeAtMostNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  SourceLocation ArgLoc;
 | 
						|
 | 
						|
  // 'machine'is the default interrupt mode.
 | 
						|
  if (AL.getNumArgs() == 0)
 | 
						|
    Str = "machine";
 | 
						|
  else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Semantic checks for a function with the 'interrupt' attribute:
 | 
						|
  // - Must be a function.
 | 
						|
  // - Must have no parameters.
 | 
						|
  // - Must have the 'void' return type.
 | 
						|
  // - The attribute itself must either have no argument or one of the
 | 
						|
  //   valid interrupt types, see [RISCVInterruptDocs].
 | 
						|
 | 
						|
  if (D->getFunctionType() == nullptr) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
 | 
						|
      << "'interrupt'" << ExpectedFunction;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
 | 
						|
      << /*RISC-V*/ 2 << 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!getFunctionOrMethodResultType(D)->isVoidType()) {
 | 
						|
    S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
 | 
						|
      << /*RISC-V*/ 2 << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  RISCVInterruptAttr::InterruptType Kind;
 | 
						|
  if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
 | 
						|
                                                                 << ArgLoc;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
 | 
						|
}
 | 
						|
 | 
						|
static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Dispatch the interrupt attribute based on the current target.
 | 
						|
  switch (S.Context.getTargetInfo().getTriple().getArch()) {
 | 
						|
  case llvm::Triple::msp430:
 | 
						|
    handleMSP430InterruptAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case llvm::Triple::mipsel:
 | 
						|
  case llvm::Triple::mips:
 | 
						|
    handleMipsInterruptAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case llvm::Triple::x86:
 | 
						|
  case llvm::Triple::x86_64:
 | 
						|
    handleAnyX86InterruptAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case llvm::Triple::avr:
 | 
						|
    handleAVRInterruptAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case llvm::Triple::riscv32:
 | 
						|
  case llvm::Triple::riscv64:
 | 
						|
    handleRISCVInterruptAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    handleARMInterruptAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
 | 
						|
                                      const AMDGPUFlatWorkGroupSizeAttr &Attr) {
 | 
						|
  // Accept template arguments for now as they depend on something else.
 | 
						|
  // We'll get to check them when they eventually get instantiated.
 | 
						|
  if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint32_t Min = 0;
 | 
						|
  if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
 | 
						|
    return true;
 | 
						|
 | 
						|
  uint32_t Max = 0;
 | 
						|
  if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Min == 0 && Max != 0) {
 | 
						|
    S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
 | 
						|
        << &Attr << 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (Min > Max) {
 | 
						|
    S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
 | 
						|
        << &Attr << 1;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
 | 
						|
                                          const AttributeCommonInfo &CI,
 | 
						|
                                          Expr *MinExpr, Expr *MaxExpr) {
 | 
						|
  AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
 | 
						|
 | 
						|
  if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (Context)
 | 
						|
                 AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
 | 
						|
                                              const ParsedAttr &AL) {
 | 
						|
  Expr *MinExpr = AL.getArgAsExpr(0);
 | 
						|
  Expr *MaxExpr = AL.getArgAsExpr(1);
 | 
						|
 | 
						|
  S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
 | 
						|
}
 | 
						|
 | 
						|
static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
 | 
						|
                                           Expr *MaxExpr,
 | 
						|
                                           const AMDGPUWavesPerEUAttr &Attr) {
 | 
						|
  if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
 | 
						|
      (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Accept template arguments for now as they depend on something else.
 | 
						|
  // We'll get to check them when they eventually get instantiated.
 | 
						|
  if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint32_t Min = 0;
 | 
						|
  if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
 | 
						|
    return true;
 | 
						|
 | 
						|
  uint32_t Max = 0;
 | 
						|
  if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Min == 0 && Max != 0) {
 | 
						|
    S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
 | 
						|
        << &Attr << 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (Max != 0 && Min > Max) {
 | 
						|
    S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
 | 
						|
        << &Attr << 1;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                                   Expr *MinExpr, Expr *MaxExpr) {
 | 
						|
  AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
 | 
						|
 | 
						|
  if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (Context)
 | 
						|
                 AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
 | 
						|
      !checkAttributeAtMostNumArgs(S, AL, 2))
 | 
						|
    return;
 | 
						|
 | 
						|
  Expr *MinExpr = AL.getArgAsExpr(0);
 | 
						|
  Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
 | 
						|
 | 
						|
  S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
 | 
						|
}
 | 
						|
 | 
						|
static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  uint32_t NumSGPR = 0;
 | 
						|
  Expr *NumSGPRExpr = AL.getArgAsExpr(0);
 | 
						|
  if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  uint32_t NumVGPR = 0;
 | 
						|
  Expr *NumVGPRExpr = AL.getArgAsExpr(0);
 | 
						|
  if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
 | 
						|
}
 | 
						|
 | 
						|
static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
 | 
						|
                                              const ParsedAttr &AL) {
 | 
						|
  // If we try to apply it to a function pointer, don't warn, but don't
 | 
						|
  // do anything, either. It doesn't matter anyway, because there's nothing
 | 
						|
  // special about calling a force_align_arg_pointer function.
 | 
						|
  const auto *VD = dyn_cast<ValueDecl>(D);
 | 
						|
  if (VD && VD->getType()->isFunctionPointerType())
 | 
						|
    return;
 | 
						|
  // Also don't warn on function pointer typedefs.
 | 
						|
  const auto *TD = dyn_cast<TypedefNameDecl>(D);
 | 
						|
  if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
 | 
						|
    TD->getUnderlyingType()->isFunctionType()))
 | 
						|
    return;
 | 
						|
  // Attribute can only be applied to function types.
 | 
						|
  if (!isa<FunctionDecl>(D)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
 | 
						|
        << AL << ExpectedFunction;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  uint32_t Version;
 | 
						|
  Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
 | 
						|
  if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
 | 
						|
    return;
 | 
						|
 | 
						|
  // TODO: Investigate what happens with the next major version of MSVC.
 | 
						|
  if (Version != LangOptions::MSVC2015 / 100) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
 | 
						|
        << AL << Version << VersionExpr->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The attribute expects a "major" version number like 19, but new versions of
 | 
						|
  // MSVC have moved to updating the "minor", or less significant numbers, so we
 | 
						|
  // have to multiply by 100 now.
 | 
						|
  Version *= 100;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
 | 
						|
}
 | 
						|
 | 
						|
DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
 | 
						|
                                        const AttributeCommonInfo &CI) {
 | 
						|
  if (D->hasAttr<DLLExportAttr>()) {
 | 
						|
    Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (D->hasAttr<DLLImportAttr>())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) DLLImportAttr(Context, CI);
 | 
						|
}
 | 
						|
 | 
						|
DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
 | 
						|
                                        const AttributeCommonInfo &CI) {
 | 
						|
  if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
 | 
						|
    Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
 | 
						|
    D->dropAttr<DLLImportAttr>();
 | 
						|
  }
 | 
						|
 | 
						|
  if (D->hasAttr<DLLExportAttr>())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ::new (Context) DLLExportAttr(Context, CI);
 | 
						|
}
 | 
						|
 | 
						|
static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
 | 
						|
  if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
 | 
						|
      S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
 | 
						|
    S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
 | 
						|
        !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
 | 
						|
      // MinGW doesn't allow dllimport on inline functions.
 | 
						|
      S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
 | 
						|
          << A;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
    if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
 | 
						|
        MD->getParent()->isLambda()) {
 | 
						|
      S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
 | 
						|
                      ? (Attr *)S.mergeDLLExportAttr(D, A)
 | 
						|
                      : (Attr *)S.mergeDLLImportAttr(D, A);
 | 
						|
  if (NewAttr)
 | 
						|
    D->addAttr(NewAttr);
 | 
						|
}
 | 
						|
 | 
						|
MSInheritanceAttr *
 | 
						|
Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
 | 
						|
                             bool BestCase,
 | 
						|
                             MSInheritanceModel Model) {
 | 
						|
  if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
 | 
						|
    if (IA->getInheritanceModel() == Model)
 | 
						|
      return nullptr;
 | 
						|
    Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
 | 
						|
        << 1 /*previous declaration*/;
 | 
						|
    Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
 | 
						|
    D->dropAttr<MSInheritanceAttr>();
 | 
						|
  }
 | 
						|
 | 
						|
  auto *RD = cast<CXXRecordDecl>(D);
 | 
						|
  if (RD->hasDefinition()) {
 | 
						|
    if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
 | 
						|
                                           Model)) {
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
 | 
						|
      Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
 | 
						|
          << 1 /*partial specialization*/;
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    if (RD->getDescribedClassTemplate()) {
 | 
						|
      Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
 | 
						|
          << 0 /*primary template*/;
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
 | 
						|
}
 | 
						|
 | 
						|
static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // The capability attributes take a single string parameter for the name of
 | 
						|
  // the capability they represent. The lockable attribute does not take any
 | 
						|
  // parameters. However, semantically, both attributes represent the same
 | 
						|
  // concept, and so they use the same semantic attribute. Eventually, the
 | 
						|
  // lockable attribute will be removed.
 | 
						|
  //
 | 
						|
  // For backward compatibility, any capability which has no specified string
 | 
						|
  // literal will be considered a "mutex."
 | 
						|
  StringRef N("mutex");
 | 
						|
  SourceLocation LiteralLoc;
 | 
						|
  if (AL.getKind() == ParsedAttr::AT_Capability &&
 | 
						|
      !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  SmallVector<Expr*, 1> Args;
 | 
						|
  if (!checkLockFunAttrCommon(S, D, AL, Args))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
 | 
						|
                                        const ParsedAttr &AL) {
 | 
						|
  SmallVector<Expr*, 1> Args;
 | 
						|
  if (!checkLockFunAttrCommon(S, D, AL, Args))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
 | 
						|
                                                     Args.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
 | 
						|
                                           const ParsedAttr &AL) {
 | 
						|
  SmallVector<Expr*, 2> Args;
 | 
						|
  if (!checkTryLockFunAttrCommon(S, D, AL, Args))
 | 
						|
    return;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
 | 
						|
      S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
 | 
						|
                                        const ParsedAttr &AL) {
 | 
						|
  // Check that all arguments are lockable objects.
 | 
						|
  SmallVector<Expr *, 1> Args;
 | 
						|
  checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
 | 
						|
                                                     Args.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
 | 
						|
                                         const ParsedAttr &AL) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  // check that all arguments are lockable objects
 | 
						|
  SmallVector<Expr*, 1> Args;
 | 
						|
  checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
 | 
						|
  if (Args.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  RequiresCapabilityAttr *RCA = ::new (S.Context)
 | 
						|
      RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
 | 
						|
 | 
						|
  D->addAttr(RCA);
 | 
						|
}
 | 
						|
 | 
						|
static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
 | 
						|
    if (NSD->isAnonymousNamespace()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
 | 
						|
      // Do not want to attach the attribute to the namespace because that will
 | 
						|
      // cause confusing diagnostic reports for uses of declarations within the
 | 
						|
      // namespace.
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the cases where the attribute has a text message.
 | 
						|
  StringRef Str, Replacement;
 | 
						|
  if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
 | 
						|
      !S.checkStringLiteralArgumentAttr(AL, 0, Str))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Only support a single optional message for Declspec and CXX11.
 | 
						|
  if (AL.isDeclspecAttribute() || AL.isCXX11Attribute())
 | 
						|
    checkAttributeAtMostNumArgs(S, AL, 1);
 | 
						|
  else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
 | 
						|
           !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
 | 
						|
    S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
 | 
						|
}
 | 
						|
 | 
						|
static bool isGlobalVar(const Decl *D) {
 | 
						|
  if (const auto *S = dyn_cast<VarDecl>(D))
 | 
						|
    return S->hasGlobalStorage();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (!checkAttributeAtLeastNumArgs(S, AL, 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  std::vector<StringRef> Sanitizers;
 | 
						|
 | 
						|
  for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
 | 
						|
    StringRef SanitizerName;
 | 
						|
    SourceLocation LiteralLoc;
 | 
						|
 | 
						|
    if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
 | 
						|
      return;
 | 
						|
 | 
						|
    if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
 | 
						|
        SanitizerMask())
 | 
						|
      S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
 | 
						|
    else if (isGlobalVar(D) && SanitizerName != "address")
 | 
						|
      S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
 | 
						|
          << AL << ExpectedFunctionOrMethod;
 | 
						|
    Sanitizers.push_back(SanitizerName);
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
 | 
						|
                                              Sanitizers.size()));
 | 
						|
}
 | 
						|
 | 
						|
static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
 | 
						|
                                         const ParsedAttr &AL) {
 | 
						|
  StringRef AttrName = AL.getAttrName()->getName();
 | 
						|
  normalizeName(AttrName);
 | 
						|
  StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
 | 
						|
                                .Case("no_address_safety_analysis", "address")
 | 
						|
                                .Case("no_sanitize_address", "address")
 | 
						|
                                .Case("no_sanitize_thread", "thread")
 | 
						|
                                .Case("no_sanitize_memory", "memory");
 | 
						|
  if (isGlobalVar(D) && SanitizerName != "address")
 | 
						|
    S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
 | 
						|
        << AL << ExpectedFunction;
 | 
						|
 | 
						|
  // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
 | 
						|
  // NoSanitizeAttr object; but we need to calculate the correct spelling list
 | 
						|
  // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
 | 
						|
  // has the same spellings as the index for NoSanitizeAttr. We don't have a
 | 
						|
  // general way to "translate" between the two, so this hack attempts to work
 | 
						|
  // around the issue with hard-coded indicies. This is critical for calling
 | 
						|
  // getSpelling() or prettyPrint() on the resulting semantic attribute object
 | 
						|
  // without failing assertions.
 | 
						|
  unsigned TranslatedSpellingIndex = 0;
 | 
						|
  if (AL.isC2xAttribute() || AL.isCXX11Attribute())
 | 
						|
    TranslatedSpellingIndex = 1;
 | 
						|
 | 
						|
  AttributeCommonInfo Info = AL;
 | 
						|
  Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
 | 
						|
  D->addAttr(::new (S.Context)
 | 
						|
                 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
 | 
						|
}
 | 
						|
 | 
						|
static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
 | 
						|
    D->addAttr(Internal);
 | 
						|
}
 | 
						|
 | 
						|
static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (S.LangOpts.OpenCLVersion != 200)
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
 | 
						|
        << AL << "2.0" << 0;
 | 
						|
  else
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL
 | 
						|
                                                                   << "2.0";
 | 
						|
}
 | 
						|
 | 
						|
/// Handles semantic checking for features that are common to all attributes,
 | 
						|
/// such as checking whether a parameter was properly specified, or the correct
 | 
						|
/// number of arguments were passed, etc.
 | 
						|
static bool handleCommonAttributeFeatures(Sema &S, Decl *D,
 | 
						|
                                          const ParsedAttr &AL) {
 | 
						|
  // Several attributes carry different semantics than the parsing requires, so
 | 
						|
  // those are opted out of the common argument checks.
 | 
						|
  //
 | 
						|
  // We also bail on unknown and ignored attributes because those are handled
 | 
						|
  // as part of the target-specific handling logic.
 | 
						|
  if (AL.getKind() == ParsedAttr::UnknownAttribute)
 | 
						|
    return false;
 | 
						|
  // Check whether the attribute requires specific language extensions to be
 | 
						|
  // enabled.
 | 
						|
  if (!AL.diagnoseLangOpts(S))
 | 
						|
    return true;
 | 
						|
  // Check whether the attribute appertains to the given subject.
 | 
						|
  if (!AL.diagnoseAppertainsTo(S, D))
 | 
						|
    return true;
 | 
						|
  if (AL.hasCustomParsing())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (AL.getMinArgs() == AL.getMaxArgs()) {
 | 
						|
    // If there are no optional arguments, then checking for the argument count
 | 
						|
    // is trivial.
 | 
						|
    if (!checkAttributeNumArgs(S, AL, AL.getMinArgs()))
 | 
						|
      return true;
 | 
						|
  } else {
 | 
						|
    // There are optional arguments, so checking is slightly more involved.
 | 
						|
    if (AL.getMinArgs() &&
 | 
						|
        !checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs()))
 | 
						|
      return true;
 | 
						|
    else if (!AL.hasVariadicArg() && AL.getMaxArgs() &&
 | 
						|
             !checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.CheckAttrTarget(AL))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (D->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if there is only one access qualifier.
 | 
						|
  if (D->hasAttr<OpenCLAccessAttr>()) {
 | 
						|
    if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
 | 
						|
        AL.getSemanticSpelling()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
 | 
						|
          << AL.getAttrName()->getName() << AL.getRange();
 | 
						|
    } else {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
 | 
						|
          << D->getSourceRange();
 | 
						|
      D->setInvalidDecl(true);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an
 | 
						|
  // image object can be read and written.
 | 
						|
  // OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe
 | 
						|
  // object. Using the read_write (or __read_write) qualifier with the pipe
 | 
						|
  // qualifier is a compilation error.
 | 
						|
  if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
 | 
						|
    const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
 | 
						|
    if (AL.getAttrName()->getName().find("read_write") != StringRef::npos) {
 | 
						|
      if ((!S.getLangOpts().OpenCLCPlusPlus &&
 | 
						|
           S.getLangOpts().OpenCLVersion < 200) ||
 | 
						|
          DeclTy->isPipeType()) {
 | 
						|
        S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
 | 
						|
            << AL << PDecl->getType() << DeclTy->isImageType();
 | 
						|
        D->setInvalidDecl(true);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // The 'sycl_kernel' attribute applies only to function templates.
 | 
						|
  const auto *FD = cast<FunctionDecl>(D);
 | 
						|
  const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
 | 
						|
  assert(FT && "Function template is expected");
 | 
						|
 | 
						|
  // Function template must have at least two template parameters.
 | 
						|
  const TemplateParameterList *TL = FT->getTemplateParameters();
 | 
						|
  if (TL->size() < 2) {
 | 
						|
    S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Template parameters must be typenames.
 | 
						|
  for (unsigned I = 0; I < 2; ++I) {
 | 
						|
    const NamedDecl *TParam = TL->getParam(I);
 | 
						|
    if (isa<NonTypeTemplateParmDecl>(TParam)) {
 | 
						|
      S.Diag(FT->getLocation(),
 | 
						|
             diag::warn_sycl_kernel_invalid_template_param_type);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Function must have at least one argument.
 | 
						|
  if (getFunctionOrMethodNumParams(D) != 1) {
 | 
						|
    S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Function must return void.
 | 
						|
  QualType RetTy = getFunctionOrMethodResultType(D);
 | 
						|
  if (!RetTy->isVoidType()) {
 | 
						|
    S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
 | 
						|
}
 | 
						|
 | 
						|
static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
 | 
						|
  if (!cast<VarDecl>(D)->hasGlobalStorage()) {
 | 
						|
    S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
 | 
						|
        << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
 | 
						|
    handleSimpleAttributeWithExclusions<AlwaysDestroyAttr, NoDestroyAttr>(S, D, A);
 | 
						|
  else
 | 
						|
    handleSimpleAttributeWithExclusions<NoDestroyAttr, AlwaysDestroyAttr>(S, D, A);
 | 
						|
}
 | 
						|
 | 
						|
static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
 | 
						|
         "uninitialized is only valid on automatic duration variables");
 | 
						|
  D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
 | 
						|
}
 | 
						|
 | 
						|
static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
 | 
						|
                                        bool DiagnoseFailure) {
 | 
						|
  QualType Ty = VD->getType();
 | 
						|
  if (!Ty->isObjCRetainableType()) {
 | 
						|
    if (DiagnoseFailure) {
 | 
						|
      S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
 | 
						|
          << 0;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
 | 
						|
 | 
						|
  // Sema::inferObjCARCLifetime must run after processing decl attributes
 | 
						|
  // (because __block lowers to an attribute), so if the lifetime hasn't been
 | 
						|
  // explicitly specified, infer it locally now.
 | 
						|
  if (LifetimeQual == Qualifiers::OCL_None)
 | 
						|
    LifetimeQual = Ty->getObjCARCImplicitLifetime();
 | 
						|
 | 
						|
  // The attributes only really makes sense for __strong variables; ignore any
 | 
						|
  // attempts to annotate a parameter with any other lifetime qualifier.
 | 
						|
  if (LifetimeQual != Qualifiers::OCL_Strong) {
 | 
						|
    if (DiagnoseFailure) {
 | 
						|
      S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
 | 
						|
          << 1;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Tampering with the type of a VarDecl here is a bit of a hack, but we need
 | 
						|
  // to ensure that the variable is 'const' so that we can error on
 | 
						|
  // modification, which can otherwise over-release.
 | 
						|
  VD->setType(Ty.withConst());
 | 
						|
  VD->setARCPseudoStrong(true);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
 | 
						|
                                             const ParsedAttr &AL) {
 | 
						|
  if (auto *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
 | 
						|
    if (!VD->hasLocalStorage()) {
 | 
						|
      S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
 | 
						|
          << 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
 | 
						|
      return;
 | 
						|
 | 
						|
    handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If D is a function-like declaration (method, block, or function), then we
 | 
						|
  // make every parameter psuedo-strong.
 | 
						|
  unsigned NumParams =
 | 
						|
      hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0;
 | 
						|
  for (unsigned I = 0; I != NumParams; ++I) {
 | 
						|
    auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
 | 
						|
    QualType Ty = PVD->getType();
 | 
						|
 | 
						|
    // If a user wrote a parameter with __strong explicitly, then assume they
 | 
						|
    // want "real" strong semantics for that parameter. This works because if
 | 
						|
    // the parameter was written with __strong, then the strong qualifier will
 | 
						|
    // be non-local.
 | 
						|
    if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
 | 
						|
        Qualifiers::OCL_Strong)
 | 
						|
      continue;
 | 
						|
 | 
						|
    tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
 | 
						|
  }
 | 
						|
  handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
 | 
						|
}
 | 
						|
 | 
						|
static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Check that the return type is a `typedef int kern_return_t` or a typedef
 | 
						|
  // around it, because otherwise MIG convention checks make no sense.
 | 
						|
  // BlockDecl doesn't store a return type, so it's annoying to check,
 | 
						|
  // so let's skip it for now.
 | 
						|
  if (!isa<BlockDecl>(D)) {
 | 
						|
    QualType T = getFunctionOrMethodResultType(D);
 | 
						|
    bool IsKernReturnT = false;
 | 
						|
    while (const auto *TT = T->getAs<TypedefType>()) {
 | 
						|
      IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
 | 
						|
      T = TT->desugar();
 | 
						|
    }
 | 
						|
    if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
 | 
						|
      S.Diag(D->getBeginLoc(),
 | 
						|
             diag::warn_mig_server_routine_does_not_return_kern_return_t);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
 | 
						|
}
 | 
						|
 | 
						|
static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // Warn if the return type is not a pointer or reference type.
 | 
						|
  if (auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    QualType RetTy = FD->getReturnType();
 | 
						|
    if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
 | 
						|
          << AL.getRange() << RetTy;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
 | 
						|
}
 | 
						|
 | 
						|
static void handeAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  if (AL.isUsedAsTypeAttr())
 | 
						|
    return;
 | 
						|
  // Warn if the parameter is definitely not an output parameter.
 | 
						|
  if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
 | 
						|
    if (PVD->getType()->isIntegerType()) {
 | 
						|
      S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
 | 
						|
          << AL.getRange();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  StringRef Argument;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
 | 
						|
    return;
 | 
						|
  D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
 | 
						|
}
 | 
						|
 | 
						|
template<typename Attr>
 | 
						|
static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  StringRef Argument;
 | 
						|
  if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
 | 
						|
    return;
 | 
						|
  D->addAttr(Attr::Create(S.Context, Argument, AL));
 | 
						|
}
 | 
						|
 | 
						|
static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
 | 
						|
  // The guard attribute takes a single identifier argument.
 | 
						|
 | 
						|
  if (!AL.isArgIdent(0)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
 | 
						|
        << AL << AANT_ArgumentIdentifier;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  CFGuardAttr::GuardArg Arg;
 | 
						|
  IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
 | 
						|
  if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
 | 
						|
    S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Top Level Sema Entry Points
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
 | 
						|
/// the attribute applies to decls.  If the attribute is a type attribute, just
 | 
						|
/// silently ignore it if a GNU attribute.
 | 
						|
static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
 | 
						|
                                 const ParsedAttr &AL,
 | 
						|
                                 bool IncludeCXX11Attributes) {
 | 
						|
  if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Ignore C++11 attributes on declarator chunks: they appertain to the type
 | 
						|
  // instead.
 | 
						|
  if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Unknown attributes are automatically warned on. Target-specific attributes
 | 
						|
  // which do not apply to the current target architecture are treated as
 | 
						|
  // though they were unknown attributes.
 | 
						|
  if (AL.getKind() == ParsedAttr::UnknownAttribute ||
 | 
						|
      !AL.existsInTarget(S.Context.getTargetInfo())) {
 | 
						|
    S.Diag(AL.getLoc(),
 | 
						|
           AL.isDeclspecAttribute()
 | 
						|
               ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
 | 
						|
               : (unsigned)diag::warn_unknown_attribute_ignored)
 | 
						|
        << AL;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (handleCommonAttributeFeatures(S, D, AL))
 | 
						|
    return;
 | 
						|
 | 
						|
  switch (AL.getKind()) {
 | 
						|
  default:
 | 
						|
    if (!AL.isStmtAttr()) {
 | 
						|
      // Type attributes are handled elsewhere; silently move on.
 | 
						|
      assert(AL.isTypeAttr() && "Non-type attribute not handled");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
 | 
						|
        << AL << D->getLocation();
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Interrupt:
 | 
						|
    handleInterruptAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_X86ForceAlignArgPointer:
 | 
						|
    handleX86ForceAlignArgPointerAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_DLLExport:
 | 
						|
  case ParsedAttr::AT_DLLImport:
 | 
						|
    handleDLLAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Mips16:
 | 
						|
    handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr,
 | 
						|
                                        MipsInterruptAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoMips16:
 | 
						|
    handleSimpleAttribute<NoMips16Attr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_MicroMips:
 | 
						|
    handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoMicroMips:
 | 
						|
    handleSimpleAttribute<NoMicroMipsAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_MipsLongCall:
 | 
						|
    handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>(
 | 
						|
        S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_MipsShortCall:
 | 
						|
    handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>(
 | 
						|
        S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
 | 
						|
    handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AMDGPUWavesPerEU:
 | 
						|
    handleAMDGPUWavesPerEUAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AMDGPUNumSGPR:
 | 
						|
    handleAMDGPUNumSGPRAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AMDGPUNumVGPR:
 | 
						|
    handleAMDGPUNumVGPRAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AVRSignal:
 | 
						|
    handleAVRSignalAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_BPFPreserveAccessIndex:
 | 
						|
    handleBPFPreserveAccessIndexAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_WebAssemblyExportName:
 | 
						|
    handleWebAssemblyExportNameAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_WebAssemblyImportModule:
 | 
						|
    handleWebAssemblyImportModuleAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_WebAssemblyImportName:
 | 
						|
    handleWebAssemblyImportNameAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_IBAction:
 | 
						|
    handleSimpleAttribute<IBActionAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_IBOutlet:
 | 
						|
    handleIBOutlet(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_IBOutletCollection:
 | 
						|
    handleIBOutletCollection(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_IFunc:
 | 
						|
    handleIFuncAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Alias:
 | 
						|
    handleAliasAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Aligned:
 | 
						|
    handleAlignedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AlignValue:
 | 
						|
    handleAlignValueAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AllocSize:
 | 
						|
    handleAllocSizeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AlwaysInline:
 | 
						|
    handleAlwaysInlineAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Artificial:
 | 
						|
    handleSimpleAttribute<ArtificialAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AnalyzerNoReturn:
 | 
						|
    handleAnalyzerNoReturnAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_TLSModel:
 | 
						|
    handleTLSModelAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Annotate:
 | 
						|
    handleAnnotateAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Availability:
 | 
						|
    handleAvailabilityAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CarriesDependency:
 | 
						|
    handleDependencyAttr(S, scope, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CPUDispatch:
 | 
						|
  case ParsedAttr::AT_CPUSpecific:
 | 
						|
    handleCPUSpecificAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Common:
 | 
						|
    handleCommonAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CUDAConstant:
 | 
						|
    handleConstantAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_PassObjectSize:
 | 
						|
    handlePassObjectSizeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Constructor:
 | 
						|
    handleConstructorAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CXX11NoReturn:
 | 
						|
    handleSimpleAttribute<CXX11NoReturnAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Deprecated:
 | 
						|
    handleDeprecatedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Destructor:
 | 
						|
    handleDestructorAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_EnableIf:
 | 
						|
    handleEnableIfAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_DiagnoseIf:
 | 
						|
    handleDiagnoseIfAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoBuiltin:
 | 
						|
    handleNoBuiltinAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ExtVectorType:
 | 
						|
    handleExtVectorTypeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ExternalSourceSymbol:
 | 
						|
    handleExternalSourceSymbolAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_MinSize:
 | 
						|
    handleMinSizeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_OptimizeNone:
 | 
						|
    handleOptimizeNoneAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_FlagEnum:
 | 
						|
    handleSimpleAttribute<FlagEnumAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_EnumExtensibility:
 | 
						|
    handleEnumExtensibilityAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Flatten:
 | 
						|
    handleSimpleAttribute<FlattenAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_SYCLKernel:
 | 
						|
    handleSYCLKernelAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Format:
 | 
						|
    handleFormatAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_FormatArg:
 | 
						|
    handleFormatArgAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Callback:
 | 
						|
    handleCallbackAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CUDAGlobal:
 | 
						|
    handleGlobalAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CUDADevice:
 | 
						|
    handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D,
 | 
						|
                                                                        AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CUDAHost:
 | 
						|
    handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_HIPPinnedShadow:
 | 
						|
    handleSimpleAttributeWithExclusions<HIPPinnedShadowAttr, CUDADeviceAttr,
 | 
						|
                                        CUDAConstantAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_GNUInline:
 | 
						|
    handleGNUInlineAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CUDALaunchBounds:
 | 
						|
    handleLaunchBoundsAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Restrict:
 | 
						|
    handleRestrictAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_LifetimeBound:
 | 
						|
    handleSimpleAttribute<LifetimeBoundAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_MayAlias:
 | 
						|
    handleSimpleAttribute<MayAliasAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Mode:
 | 
						|
    handleModeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoAlias:
 | 
						|
    handleSimpleAttribute<NoAliasAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoCommon:
 | 
						|
    handleSimpleAttribute<NoCommonAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoSplitStack:
 | 
						|
    handleSimpleAttribute<NoSplitStackAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoUniqueAddress:
 | 
						|
    handleSimpleAttribute<NoUniqueAddressAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NonNull:
 | 
						|
    if (auto *PVD = dyn_cast<ParmVarDecl>(D))
 | 
						|
      handleNonNullAttrParameter(S, PVD, AL);
 | 
						|
    else
 | 
						|
      handleNonNullAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ReturnsNonNull:
 | 
						|
    handleReturnsNonNullAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoEscape:
 | 
						|
    handleNoEscapeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AssumeAligned:
 | 
						|
    handleAssumeAlignedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AllocAlign:
 | 
						|
    handleAllocAlignAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Overloadable:
 | 
						|
    handleSimpleAttribute<OverloadableAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Ownership:
 | 
						|
    handleOwnershipAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Cold:
 | 
						|
    handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Hot:
 | 
						|
    handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Naked:
 | 
						|
    handleNakedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoReturn:
 | 
						|
    handleNoReturnAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AnyX86NoCfCheck:
 | 
						|
    handleNoCfCheckAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoThrow:
 | 
						|
    if (!AL.isUsedAsTypeAttr())
 | 
						|
      handleSimpleAttribute<NoThrowAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CUDAShared:
 | 
						|
    handleSharedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_VecReturn:
 | 
						|
    handleVecReturnAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCOwnership:
 | 
						|
    handleObjCOwnershipAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCPreciseLifetime:
 | 
						|
    handleObjCPreciseLifetimeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCReturnsInnerPointer:
 | 
						|
    handleObjCReturnsInnerPointerAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCRequiresSuper:
 | 
						|
    handleObjCRequiresSuperAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCBridge:
 | 
						|
    handleObjCBridgeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCBridgeMutable:
 | 
						|
    handleObjCBridgeMutableAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCBridgeRelated:
 | 
						|
    handleObjCBridgeRelatedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCDesignatedInitializer:
 | 
						|
    handleObjCDesignatedInitializer(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCRuntimeName:
 | 
						|
    handleObjCRuntimeName(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCRuntimeVisible:
 | 
						|
    handleSimpleAttribute<ObjCRuntimeVisibleAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCBoxable:
 | 
						|
    handleObjCBoxable(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CFAuditedTransfer:
 | 
						|
    handleSimpleAttributeWithExclusions<CFAuditedTransferAttr,
 | 
						|
                                        CFUnknownTransferAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CFUnknownTransfer:
 | 
						|
    handleSimpleAttributeWithExclusions<CFUnknownTransferAttr,
 | 
						|
                                        CFAuditedTransferAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CFConsumed:
 | 
						|
  case ParsedAttr::AT_NSConsumed:
 | 
						|
  case ParsedAttr::AT_OSConsumed:
 | 
						|
    S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
 | 
						|
                       /*IsTemplateInstantiation=*/false);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NSConsumesSelf:
 | 
						|
    handleSimpleAttribute<NSConsumesSelfAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_OSConsumesThis:
 | 
						|
    handleSimpleAttribute<OSConsumesThisAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_OSReturnsRetainedOnZero:
 | 
						|
    handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
 | 
						|
        S, D, AL, isValidOSObjectOutParameter(D),
 | 
						|
        diag::warn_ns_attribute_wrong_parameter_type,
 | 
						|
        /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
 | 
						|
    handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
 | 
						|
        S, D, AL, isValidOSObjectOutParameter(D),
 | 
						|
        diag::warn_ns_attribute_wrong_parameter_type,
 | 
						|
        /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NSReturnsAutoreleased:
 | 
						|
  case ParsedAttr::AT_NSReturnsNotRetained:
 | 
						|
  case ParsedAttr::AT_NSReturnsRetained:
 | 
						|
  case ParsedAttr::AT_CFReturnsNotRetained:
 | 
						|
  case ParsedAttr::AT_CFReturnsRetained:
 | 
						|
  case ParsedAttr::AT_OSReturnsNotRetained:
 | 
						|
  case ParsedAttr::AT_OSReturnsRetained:
 | 
						|
    handleXReturnsXRetainedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_WorkGroupSizeHint:
 | 
						|
    handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ReqdWorkGroupSize:
 | 
						|
    handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
 | 
						|
    handleSubGroupSize(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_VecTypeHint:
 | 
						|
    handleVecTypeHint(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ConstInit:
 | 
						|
    handleSimpleAttribute<ConstInitAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_InitPriority:
 | 
						|
    handleInitPriorityAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Packed:
 | 
						|
    handlePackedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Section:
 | 
						|
    handleSectionAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_SpeculativeLoadHardening:
 | 
						|
    handleSimpleAttributeWithExclusions<SpeculativeLoadHardeningAttr,
 | 
						|
                                        NoSpeculativeLoadHardeningAttr>(S, D,
 | 
						|
                                                                        AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoSpeculativeLoadHardening:
 | 
						|
    handleSimpleAttributeWithExclusions<NoSpeculativeLoadHardeningAttr,
 | 
						|
                                        SpeculativeLoadHardeningAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CodeSeg:
 | 
						|
    handleCodeSegAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Target:
 | 
						|
    handleTargetAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_MinVectorWidth:
 | 
						|
    handleMinVectorWidthAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Unavailable:
 | 
						|
    handleAttrWithMessage<UnavailableAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ArcWeakrefUnavailable:
 | 
						|
    handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCRootClass:
 | 
						|
    handleSimpleAttribute<ObjCRootClassAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCDirect:
 | 
						|
    handleObjCDirectAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCDirectMembers:
 | 
						|
    handleObjCDirectMembersAttr(S, D, AL);
 | 
						|
    handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCNonLazyClass:
 | 
						|
    handleSimpleAttribute<ObjCNonLazyClassAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCSubclassingRestricted:
 | 
						|
    handleSimpleAttribute<ObjCSubclassingRestrictedAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCClassStub:
 | 
						|
    handleSimpleAttribute<ObjCClassStubAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCExplicitProtocolImpl:
 | 
						|
    handleObjCSuppresProtocolAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCRequiresPropertyDefs:
 | 
						|
    handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Unused:
 | 
						|
    handleUnusedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ReturnsTwice:
 | 
						|
    handleSimpleAttribute<ReturnsTwiceAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NotTailCalled:
 | 
						|
    handleSimpleAttributeWithExclusions<NotTailCalledAttr, AlwaysInlineAttr>(
 | 
						|
        S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_DisableTailCalls:
 | 
						|
    handleSimpleAttributeWithExclusions<DisableTailCallsAttr, NakedAttr>(S, D,
 | 
						|
                                                                         AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Used:
 | 
						|
    handleSimpleAttribute<UsedAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Visibility:
 | 
						|
    handleVisibilityAttr(S, D, AL, false);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_TypeVisibility:
 | 
						|
    handleVisibilityAttr(S, D, AL, true);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_WarnUnused:
 | 
						|
    handleSimpleAttribute<WarnUnusedAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_WarnUnusedResult:
 | 
						|
    handleWarnUnusedResult(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Weak:
 | 
						|
    handleSimpleAttribute<WeakAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_WeakRef:
 | 
						|
    handleWeakRefAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_WeakImport:
 | 
						|
    handleWeakImportAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_TransparentUnion:
 | 
						|
    handleTransparentUnionAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCException:
 | 
						|
    handleSimpleAttribute<ObjCExceptionAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCMethodFamily:
 | 
						|
    handleObjCMethodFamilyAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCNSObject:
 | 
						|
    handleObjCNSObject(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ObjCIndependentClass:
 | 
						|
    handleObjCIndependentClass(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Blocks:
 | 
						|
    handleBlocksAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Sentinel:
 | 
						|
    handleSentinelAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Const:
 | 
						|
    handleSimpleAttribute<ConstAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Pure:
 | 
						|
    handleSimpleAttribute<PureAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Cleanup:
 | 
						|
    handleCleanupAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoDebug:
 | 
						|
    handleNoDebugAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoDuplicate:
 | 
						|
    handleSimpleAttribute<NoDuplicateAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Convergent:
 | 
						|
    handleSimpleAttribute<ConvergentAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoInline:
 | 
						|
    handleSimpleAttribute<NoInlineAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoInstrumentFunction: // Interacts with -pg.
 | 
						|
    handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoStackProtector:
 | 
						|
    // Interacts with -fstack-protector options.
 | 
						|
    handleSimpleAttribute<NoStackProtectorAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CFICanonicalJumpTable:
 | 
						|
    handleSimpleAttribute<CFICanonicalJumpTableAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_StdCall:
 | 
						|
  case ParsedAttr::AT_CDecl:
 | 
						|
  case ParsedAttr::AT_FastCall:
 | 
						|
  case ParsedAttr::AT_ThisCall:
 | 
						|
  case ParsedAttr::AT_Pascal:
 | 
						|
  case ParsedAttr::AT_RegCall:
 | 
						|
  case ParsedAttr::AT_SwiftCall:
 | 
						|
  case ParsedAttr::AT_VectorCall:
 | 
						|
  case ParsedAttr::AT_MSABI:
 | 
						|
  case ParsedAttr::AT_SysVABI:
 | 
						|
  case ParsedAttr::AT_Pcs:
 | 
						|
  case ParsedAttr::AT_IntelOclBicc:
 | 
						|
  case ParsedAttr::AT_PreserveMost:
 | 
						|
  case ParsedAttr::AT_PreserveAll:
 | 
						|
  case ParsedAttr::AT_AArch64VectorPcs:
 | 
						|
    handleCallConvAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Suppress:
 | 
						|
    handleSuppressAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Owner:
 | 
						|
  case ParsedAttr::AT_Pointer:
 | 
						|
    handleLifetimeCategoryAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_OpenCLKernel:
 | 
						|
    handleSimpleAttribute<OpenCLKernelAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_OpenCLAccess:
 | 
						|
    handleOpenCLAccessAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_OpenCLNoSVM:
 | 
						|
    handleOpenCLNoSVMAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_SwiftContext:
 | 
						|
    S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_SwiftErrorResult:
 | 
						|
    S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_SwiftIndirectResult:
 | 
						|
    S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_InternalLinkage:
 | 
						|
    handleInternalLinkageAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ExcludeFromExplicitInstantiation:
 | 
						|
    handleSimpleAttribute<ExcludeFromExplicitInstantiationAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_LTOVisibilityPublic:
 | 
						|
    handleSimpleAttribute<LTOVisibilityPublicAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  // Microsoft attributes:
 | 
						|
  case ParsedAttr::AT_EmptyBases:
 | 
						|
    handleSimpleAttribute<EmptyBasesAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_LayoutVersion:
 | 
						|
    handleLayoutVersion(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_TrivialABI:
 | 
						|
    handleSimpleAttribute<TrivialABIAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_MSNoVTable:
 | 
						|
    handleSimpleAttribute<MSNoVTableAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_MSStruct:
 | 
						|
    handleSimpleAttribute<MSStructAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Uuid:
 | 
						|
    handleUuidAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_MSInheritance:
 | 
						|
    handleMSInheritanceAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_SelectAny:
 | 
						|
    handleSimpleAttribute<SelectAnyAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_Thread:
 | 
						|
    handleDeclspecThreadAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_AbiTag:
 | 
						|
    handleAbiTagAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CFGuard:
 | 
						|
    handleCFGuardAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  // Thread safety attributes:
 | 
						|
  case ParsedAttr::AT_AssertExclusiveLock:
 | 
						|
    handleAssertExclusiveLockAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AssertSharedLock:
 | 
						|
    handleAssertSharedLockAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_GuardedVar:
 | 
						|
    handleSimpleAttribute<GuardedVarAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_PtGuardedVar:
 | 
						|
    handlePtGuardedVarAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ScopedLockable:
 | 
						|
    handleSimpleAttribute<ScopedLockableAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoSanitize:
 | 
						|
    handleNoSanitizeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoSanitizeSpecific:
 | 
						|
    handleNoSanitizeSpecificAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_NoThreadSafetyAnalysis:
 | 
						|
    handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_GuardedBy:
 | 
						|
    handleGuardedByAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_PtGuardedBy:
 | 
						|
    handlePtGuardedByAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ExclusiveTrylockFunction:
 | 
						|
    handleExclusiveTrylockFunctionAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_LockReturned:
 | 
						|
    handleLockReturnedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_LocksExcluded:
 | 
						|
    handleLocksExcludedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_SharedTrylockFunction:
 | 
						|
    handleSharedTrylockFunctionAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AcquiredBefore:
 | 
						|
    handleAcquiredBeforeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AcquiredAfter:
 | 
						|
    handleAcquiredAfterAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  // Capability analysis attributes.
 | 
						|
  case ParsedAttr::AT_Capability:
 | 
						|
  case ParsedAttr::AT_Lockable:
 | 
						|
    handleCapabilityAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_RequiresCapability:
 | 
						|
    handleRequiresCapabilityAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_AssertCapability:
 | 
						|
    handleAssertCapabilityAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AcquireCapability:
 | 
						|
    handleAcquireCapabilityAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ReleaseCapability:
 | 
						|
    handleReleaseCapabilityAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_TryAcquireCapability:
 | 
						|
    handleTryAcquireCapabilityAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  // Consumed analysis attributes.
 | 
						|
  case ParsedAttr::AT_Consumable:
 | 
						|
    handleConsumableAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ConsumableAutoCast:
 | 
						|
    handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ConsumableSetOnRead:
 | 
						|
    handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_CallableWhen:
 | 
						|
    handleCallableWhenAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ParamTypestate:
 | 
						|
    handleParamTypestateAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_ReturnTypestate:
 | 
						|
    handleReturnTypestateAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_SetTypestate:
 | 
						|
    handleSetTypestateAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_TestTypestate:
 | 
						|
    handleTestTypestateAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  // Type safety attributes.
 | 
						|
  case ParsedAttr::AT_ArgumentWithTypeTag:
 | 
						|
    handleArgumentWithTypeTagAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_TypeTagForDatatype:
 | 
						|
    handleTypeTagForDatatypeAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:
 | 
						|
    handleSimpleAttribute<AnyX86NoCallerSavedRegistersAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_RenderScriptKernel:
 | 
						|
    handleSimpleAttribute<RenderScriptKernelAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  // XRay attributes.
 | 
						|
  case ParsedAttr::AT_XRayInstrument:
 | 
						|
    handleSimpleAttribute<XRayInstrumentAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  case ParsedAttr::AT_XRayLogArgs:
 | 
						|
    handleXRayLogArgsAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_PatchableFunctionEntry:
 | 
						|
    handlePatchableFunctionEntryAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  // Move semantics attribute.
 | 
						|
  case ParsedAttr::AT_Reinitializes:
 | 
						|
    handleSimpleAttribute<ReinitializesAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_AlwaysDestroy:
 | 
						|
  case ParsedAttr::AT_NoDestroy:
 | 
						|
    handleDestroyAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_Uninitialized:
 | 
						|
    handleUninitializedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_ObjCExternallyRetained:
 | 
						|
    handleObjCExternallyRetainedAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_MIGServerRoutine:
 | 
						|
    handleMIGServerRoutineAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_MSAllocator:
 | 
						|
    handleMSAllocatorAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_ArmBuiltinAlias:
 | 
						|
    handleArmBuiltinAliasAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_AcquireHandle:
 | 
						|
    handeAcquireHandleAttr(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_ReleaseHandle:
 | 
						|
    handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParsedAttr::AT_UseHandle:
 | 
						|
    handleHandleAttr<UseHandleAttr>(S, D, AL);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
 | 
						|
/// attribute list to the specified decl, ignoring any type attributes.
 | 
						|
void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
 | 
						|
                                    const ParsedAttributesView &AttrList,
 | 
						|
                                    bool IncludeCXX11Attributes) {
 | 
						|
  if (AttrList.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (const ParsedAttr &AL : AttrList)
 | 
						|
    ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes);
 | 
						|
 | 
						|
  // FIXME: We should be able to handle these cases in TableGen.
 | 
						|
  // GCC accepts
 | 
						|
  // static int a9 __attribute__((weakref));
 | 
						|
  // but that looks really pointless. We reject it.
 | 
						|
  if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
 | 
						|
    Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
 | 
						|
        << cast<NamedDecl>(D);
 | 
						|
    D->dropAttr<WeakRefAttr>();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We should be able to handle this in TableGen as well. It would be
 | 
						|
  // good to have a way to specify "these attributes must appear as a group",
 | 
						|
  // for these. Additionally, it would be good to have a way to specify "these
 | 
						|
  // attribute must never appear as a group" for attributes like cold and hot.
 | 
						|
  if (!D->hasAttr<OpenCLKernelAttr>()) {
 | 
						|
    // These attributes cannot be applied to a non-kernel function.
 | 
						|
    if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
 | 
						|
      // FIXME: This emits a different error message than
 | 
						|
      // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
 | 
						|
      Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
 | 
						|
      D->setInvalidDecl();
 | 
						|
    } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
 | 
						|
      Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
 | 
						|
      D->setInvalidDecl();
 | 
						|
    } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
 | 
						|
      Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
 | 
						|
      D->setInvalidDecl();
 | 
						|
    } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
 | 
						|
      Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
 | 
						|
      D->setInvalidDecl();
 | 
						|
    } else if (!D->hasAttr<CUDAGlobalAttr>()) {
 | 
						|
      if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
 | 
						|
        Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
 | 
						|
            << A << ExpectedKernelFunction;
 | 
						|
        D->setInvalidDecl();
 | 
						|
      } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
 | 
						|
        Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
 | 
						|
            << A << ExpectedKernelFunction;
 | 
						|
        D->setInvalidDecl();
 | 
						|
      } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
 | 
						|
        Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
 | 
						|
            << A << ExpectedKernelFunction;
 | 
						|
        D->setInvalidDecl();
 | 
						|
      } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
 | 
						|
        Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
 | 
						|
            << A << ExpectedKernelFunction;
 | 
						|
        D->setInvalidDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Do this check after processing D's attributes because the attribute
 | 
						|
  // objc_method_family can change whether the given method is in the init
 | 
						|
  // family, and it can be applied after objc_designated_initializer. This is a
 | 
						|
  // bit of a hack, but we need it to be compatible with versions of clang that
 | 
						|
  // processed the attribute list in the wrong order.
 | 
						|
  if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
 | 
						|
      cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
 | 
						|
    Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
 | 
						|
    D->dropAttr<ObjCDesignatedInitializerAttr>();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
 | 
						|
// attribute.
 | 
						|
void Sema::ProcessDeclAttributeDelayed(Decl *D,
 | 
						|
                                       const ParsedAttributesView &AttrList) {
 | 
						|
  for (const ParsedAttr &AL : AttrList)
 | 
						|
    if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
 | 
						|
      handleTransparentUnionAttr(*this, D, AL);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // For BPFPreserveAccessIndexAttr, we want to populate the attributes
 | 
						|
  // to fields and inner records as well.
 | 
						|
  if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
 | 
						|
    handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
 | 
						|
}
 | 
						|
 | 
						|
// Annotation attributes are the only attributes allowed after an access
 | 
						|
// specifier.
 | 
						|
bool Sema::ProcessAccessDeclAttributeList(
 | 
						|
    AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
 | 
						|
  for (const ParsedAttr &AL : AttrList) {
 | 
						|
    if (AL.getKind() == ParsedAttr::AT_Annotate) {
 | 
						|
      ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute());
 | 
						|
    } else {
 | 
						|
      Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// checkUnusedDeclAttributes - Check a list of attributes to see if it
 | 
						|
/// contains any decl attributes that we should warn about.
 | 
						|
static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
 | 
						|
  for (const ParsedAttr &AL : A) {
 | 
						|
    // Only warn if the attribute is an unignored, non-type attribute.
 | 
						|
    if (AL.isUsedAsTypeAttr() || AL.isInvalid())
 | 
						|
      continue;
 | 
						|
    if (AL.getKind() == ParsedAttr::IgnoredAttribute)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (AL.getKind() == ParsedAttr::UnknownAttribute) {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
 | 
						|
          << AL << AL.getRange();
 | 
						|
    } else {
 | 
						|
      S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
 | 
						|
                                                            << AL.getRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// checkUnusedDeclAttributes - Given a declarator which is not being
 | 
						|
/// used to build a declaration, complain about any decl attributes
 | 
						|
/// which might be lying around on it.
 | 
						|
void Sema::checkUnusedDeclAttributes(Declarator &D) {
 | 
						|
  ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
 | 
						|
  ::checkUnusedDeclAttributes(*this, D.getAttributes());
 | 
						|
  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
 | 
						|
    ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
 | 
						|
}
 | 
						|
 | 
						|
/// DeclClonePragmaWeak - clone existing decl (maybe definition),
 | 
						|
/// \#pragma weak needs a non-definition decl and source may not have one.
 | 
						|
NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
 | 
						|
                                      SourceLocation Loc) {
 | 
						|
  assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
 | 
						|
  NamedDecl *NewD = nullptr;
 | 
						|
  if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
 | 
						|
    FunctionDecl *NewFD;
 | 
						|
    // FIXME: Missing call to CheckFunctionDeclaration().
 | 
						|
    // FIXME: Mangling?
 | 
						|
    // FIXME: Is the qualifier info correct?
 | 
						|
    // FIXME: Is the DeclContext correct?
 | 
						|
    NewFD = FunctionDecl::Create(
 | 
						|
        FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
 | 
						|
        DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
 | 
						|
        false /*isInlineSpecified*/, FD->hasPrototype(), CSK_unspecified,
 | 
						|
        FD->getTrailingRequiresClause());
 | 
						|
    NewD = NewFD;
 | 
						|
 | 
						|
    if (FD->getQualifier())
 | 
						|
      NewFD->setQualifierInfo(FD->getQualifierLoc());
 | 
						|
 | 
						|
    // Fake up parameter variables; they are declared as if this were
 | 
						|
    // a typedef.
 | 
						|
    QualType FDTy = FD->getType();
 | 
						|
    if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
 | 
						|
      SmallVector<ParmVarDecl*, 16> Params;
 | 
						|
      for (const auto &AI : FT->param_types()) {
 | 
						|
        ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
 | 
						|
        Param->setScopeInfo(0, Params.size());
 | 
						|
        Params.push_back(Param);
 | 
						|
      }
 | 
						|
      NewFD->setParams(Params);
 | 
						|
    }
 | 
						|
  } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
 | 
						|
    NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
 | 
						|
                           VD->getInnerLocStart(), VD->getLocation(), II,
 | 
						|
                           VD->getType(), VD->getTypeSourceInfo(),
 | 
						|
                           VD->getStorageClass());
 | 
						|
    if (VD->getQualifier())
 | 
						|
      cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
 | 
						|
  }
 | 
						|
  return NewD;
 | 
						|
}
 | 
						|
 | 
						|
/// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
 | 
						|
/// applied to it, possibly with an alias.
 | 
						|
void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
 | 
						|
  if (W.getUsed()) return; // only do this once
 | 
						|
  W.setUsed(true);
 | 
						|
  if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
 | 
						|
    IdentifierInfo *NDId = ND->getIdentifier();
 | 
						|
    NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
 | 
						|
    NewD->addAttr(
 | 
						|
        AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
 | 
						|
    NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
 | 
						|
                                           AttributeCommonInfo::AS_Pragma));
 | 
						|
    WeakTopLevelDecl.push_back(NewD);
 | 
						|
    // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
 | 
						|
    // to insert Decl at TU scope, sorry.
 | 
						|
    DeclContext *SavedContext = CurContext;
 | 
						|
    CurContext = Context.getTranslationUnitDecl();
 | 
						|
    NewD->setDeclContext(CurContext);
 | 
						|
    NewD->setLexicalDeclContext(CurContext);
 | 
						|
    PushOnScopeChains(NewD, S);
 | 
						|
    CurContext = SavedContext;
 | 
						|
  } else { // just add weak to existing
 | 
						|
    ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
 | 
						|
                                         AttributeCommonInfo::AS_Pragma));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
 | 
						|
  // It's valid to "forward-declare" #pragma weak, in which case we
 | 
						|
  // have to do this.
 | 
						|
  LoadExternalWeakUndeclaredIdentifiers();
 | 
						|
  if (!WeakUndeclaredIdentifiers.empty()) {
 | 
						|
    NamedDecl *ND = nullptr;
 | 
						|
    if (auto *VD = dyn_cast<VarDecl>(D))
 | 
						|
      if (VD->isExternC())
 | 
						|
        ND = VD;
 | 
						|
    if (auto *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
      if (FD->isExternC())
 | 
						|
        ND = FD;
 | 
						|
    if (ND) {
 | 
						|
      if (IdentifierInfo *Id = ND->getIdentifier()) {
 | 
						|
        auto I = WeakUndeclaredIdentifiers.find(Id);
 | 
						|
        if (I != WeakUndeclaredIdentifiers.end()) {
 | 
						|
          WeakInfo W = I->second;
 | 
						|
          DeclApplyPragmaWeak(S, ND, W);
 | 
						|
          WeakUndeclaredIdentifiers[Id] = W;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
 | 
						|
/// it, apply them to D.  This is a bit tricky because PD can have attributes
 | 
						|
/// specified in many different places, and we need to find and apply them all.
 | 
						|
void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
 | 
						|
  // Apply decl attributes from the DeclSpec if present.
 | 
						|
  if (!PD.getDeclSpec().getAttributes().empty())
 | 
						|
    ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes());
 | 
						|
 | 
						|
  // Walk the declarator structure, applying decl attributes that were in a type
 | 
						|
  // position to the decl itself.  This handles cases like:
 | 
						|
  //   int *__attr__(x)** D;
 | 
						|
  // when X is a decl attribute.
 | 
						|
  for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
 | 
						|
    ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
 | 
						|
                             /*IncludeCXX11Attributes=*/false);
 | 
						|
 | 
						|
  // Finally, apply any attributes on the decl itself.
 | 
						|
  ProcessDeclAttributeList(S, D, PD.getAttributes());
 | 
						|
 | 
						|
  // Apply additional attributes specified by '#pragma clang attribute'.
 | 
						|
  AddPragmaAttributes(S, D);
 | 
						|
}
 | 
						|
 | 
						|
/// Is the given declaration allowed to use a forbidden type?
 | 
						|
/// If so, it'll still be annotated with an attribute that makes it
 | 
						|
/// illegal to actually use.
 | 
						|
static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
 | 
						|
                                   const DelayedDiagnostic &diag,
 | 
						|
                                   UnavailableAttr::ImplicitReason &reason) {
 | 
						|
  // Private ivars are always okay.  Unfortunately, people don't
 | 
						|
  // always properly make their ivars private, even in system headers.
 | 
						|
  // Plus we need to make fields okay, too.
 | 
						|
  if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
 | 
						|
      !isa<FunctionDecl>(D))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Silently accept unsupported uses of __weak in both user and system
 | 
						|
  // declarations when it's been disabled, for ease of integration with
 | 
						|
  // -fno-objc-arc files.  We do have to take some care against attempts
 | 
						|
  // to define such things;  for now, we've only done that for ivars
 | 
						|
  // and properties.
 | 
						|
  if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
 | 
						|
    if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
 | 
						|
        diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
 | 
						|
      reason = UnavailableAttr::IR_ForbiddenWeak;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow all sorts of things in system headers.
 | 
						|
  if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
 | 
						|
    // Currently, all the failures dealt with this way are due to ARC
 | 
						|
    // restrictions.
 | 
						|
    reason = UnavailableAttr::IR_ARCForbiddenType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Handle a delayed forbidden-type diagnostic.
 | 
						|
static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
 | 
						|
                                       Decl *D) {
 | 
						|
  auto Reason = UnavailableAttr::IR_None;
 | 
						|
  if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
 | 
						|
    assert(Reason && "didn't set reason?");
 | 
						|
    D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (S.getLangOpts().ObjCAutoRefCount)
 | 
						|
    if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
      // FIXME: we may want to suppress diagnostics for all
 | 
						|
      // kind of forbidden type messages on unavailable functions.
 | 
						|
      if (FD->hasAttr<UnavailableAttr>() &&
 | 
						|
          DD.getForbiddenTypeDiagnostic() ==
 | 
						|
              diag::err_arc_array_param_no_ownership) {
 | 
						|
        DD.Triggered = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
 | 
						|
      << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
 | 
						|
  DD.Triggered = true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
 | 
						|
  assert(DelayedDiagnostics.getCurrentPool());
 | 
						|
  DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
 | 
						|
  DelayedDiagnostics.popWithoutEmitting(state);
 | 
						|
 | 
						|
  // When delaying diagnostics to run in the context of a parsed
 | 
						|
  // declaration, we only want to actually emit anything if parsing
 | 
						|
  // succeeds.
 | 
						|
  if (!decl) return;
 | 
						|
 | 
						|
  // We emit all the active diagnostics in this pool or any of its
 | 
						|
  // parents.  In general, we'll get one pool for the decl spec
 | 
						|
  // and a child pool for each declarator; in a decl group like:
 | 
						|
  //   deprecated_typedef foo, *bar, baz();
 | 
						|
  // only the declarator pops will be passed decls.  This is correct;
 | 
						|
  // we really do need to consider delayed diagnostics from the decl spec
 | 
						|
  // for each of the different declarations.
 | 
						|
  const DelayedDiagnosticPool *pool = &poppedPool;
 | 
						|
  do {
 | 
						|
    bool AnyAccessFailures = false;
 | 
						|
    for (DelayedDiagnosticPool::pool_iterator
 | 
						|
           i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
 | 
						|
      // This const_cast is a bit lame.  Really, Triggered should be mutable.
 | 
						|
      DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
 | 
						|
      if (diag.Triggered)
 | 
						|
        continue;
 | 
						|
 | 
						|
      switch (diag.Kind) {
 | 
						|
      case DelayedDiagnostic::Availability:
 | 
						|
        // Don't bother giving deprecation/unavailable diagnostics if
 | 
						|
        // the decl is invalid.
 | 
						|
        if (!decl->isInvalidDecl())
 | 
						|
          handleDelayedAvailabilityCheck(diag, decl);
 | 
						|
        break;
 | 
						|
 | 
						|
      case DelayedDiagnostic::Access:
 | 
						|
        // Only produce one access control diagnostic for a structured binding
 | 
						|
        // declaration: we don't need to tell the user that all the fields are
 | 
						|
        // inaccessible one at a time.
 | 
						|
        if (AnyAccessFailures && isa<DecompositionDecl>(decl))
 | 
						|
          continue;
 | 
						|
        HandleDelayedAccessCheck(diag, decl);
 | 
						|
        if (diag.Triggered)
 | 
						|
          AnyAccessFailures = true;
 | 
						|
        break;
 | 
						|
 | 
						|
      case DelayedDiagnostic::ForbiddenType:
 | 
						|
        handleDelayedForbiddenType(*this, diag, decl);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while ((pool = pool->getParent()));
 | 
						|
}
 | 
						|
 | 
						|
/// Given a set of delayed diagnostics, re-emit them as if they had
 | 
						|
/// been delayed in the current context instead of in the given pool.
 | 
						|
/// Essentially, this just moves them to the current pool.
 | 
						|
void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
 | 
						|
  DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
 | 
						|
  assert(curPool && "re-emitting in undelayed context not supported");
 | 
						|
  curPool->steal(pool);
 | 
						|
}
 |