forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1876 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1876 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis member access expressions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#include "clang/Sema/Overload.h"
 | 
						|
#include "clang/AST/ASTLambda.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
 | 
						|
 | 
						|
/// Determines if the given class is provably not derived from all of
 | 
						|
/// the prospective base classes.
 | 
						|
static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
 | 
						|
                                     const BaseSet &Bases) {
 | 
						|
  auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
 | 
						|
    return !Bases.count(Base->getCanonicalDecl());
 | 
						|
  };
 | 
						|
  return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
 | 
						|
}
 | 
						|
 | 
						|
enum IMAKind {
 | 
						|
  /// The reference is definitely not an instance member access.
 | 
						|
  IMA_Static,
 | 
						|
 | 
						|
  /// The reference may be an implicit instance member access.
 | 
						|
  IMA_Mixed,
 | 
						|
 | 
						|
  /// The reference may be to an instance member, but it might be invalid if
 | 
						|
  /// so, because the context is not an instance method.
 | 
						|
  IMA_Mixed_StaticContext,
 | 
						|
 | 
						|
  /// The reference may be to an instance member, but it is invalid if
 | 
						|
  /// so, because the context is from an unrelated class.
 | 
						|
  IMA_Mixed_Unrelated,
 | 
						|
 | 
						|
  /// The reference is definitely an implicit instance member access.
 | 
						|
  IMA_Instance,
 | 
						|
 | 
						|
  /// The reference may be to an unresolved using declaration.
 | 
						|
  IMA_Unresolved,
 | 
						|
 | 
						|
  /// The reference is a contextually-permitted abstract member reference.
 | 
						|
  IMA_Abstract,
 | 
						|
 | 
						|
  /// The reference may be to an unresolved using declaration and the
 | 
						|
  /// context is not an instance method.
 | 
						|
  IMA_Unresolved_StaticContext,
 | 
						|
 | 
						|
  // The reference refers to a field which is not a member of the containing
 | 
						|
  // class, which is allowed because we're in C++11 mode and the context is
 | 
						|
  // unevaluated.
 | 
						|
  IMA_Field_Uneval_Context,
 | 
						|
 | 
						|
  /// All possible referrents are instance members and the current
 | 
						|
  /// context is not an instance method.
 | 
						|
  IMA_Error_StaticContext,
 | 
						|
 | 
						|
  /// All possible referrents are instance members of an unrelated
 | 
						|
  /// class.
 | 
						|
  IMA_Error_Unrelated
 | 
						|
};
 | 
						|
 | 
						|
/// The given lookup names class member(s) and is not being used for
 | 
						|
/// an address-of-member expression.  Classify the type of access
 | 
						|
/// according to whether it's possible that this reference names an
 | 
						|
/// instance member.  This is best-effort in dependent contexts; it is okay to
 | 
						|
/// conservatively answer "yes", in which case some errors will simply
 | 
						|
/// not be caught until template-instantiation.
 | 
						|
static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
 | 
						|
                                            const LookupResult &R) {
 | 
						|
  assert(!R.empty() && (*R.begin())->isCXXClassMember());
 | 
						|
 | 
						|
  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
 | 
						|
 | 
						|
  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
 | 
						|
    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
 | 
						|
 | 
						|
  if (R.isUnresolvableResult())
 | 
						|
    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
 | 
						|
 | 
						|
  // Collect all the declaring classes of instance members we find.
 | 
						|
  bool hasNonInstance = false;
 | 
						|
  bool isField = false;
 | 
						|
  BaseSet Classes;
 | 
						|
  for (NamedDecl *D : R) {
 | 
						|
    // Look through any using decls.
 | 
						|
    D = D->getUnderlyingDecl();
 | 
						|
 | 
						|
    if (D->isCXXInstanceMember()) {
 | 
						|
      isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
 | 
						|
                 isa<IndirectFieldDecl>(D);
 | 
						|
 | 
						|
      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
 | 
						|
      Classes.insert(R->getCanonicalDecl());
 | 
						|
    } else
 | 
						|
      hasNonInstance = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't find any instance members, it can't be an implicit
 | 
						|
  // member reference.
 | 
						|
  if (Classes.empty())
 | 
						|
    return IMA_Static;
 | 
						|
 | 
						|
  // C++11 [expr.prim.general]p12:
 | 
						|
  //   An id-expression that denotes a non-static data member or non-static
 | 
						|
  //   member function of a class can only be used:
 | 
						|
  //   (...)
 | 
						|
  //   - if that id-expression denotes a non-static data member and it
 | 
						|
  //     appears in an unevaluated operand.
 | 
						|
  //
 | 
						|
  // This rule is specific to C++11.  However, we also permit this form
 | 
						|
  // in unevaluated inline assembly operands, like the operand to a SIZE.
 | 
						|
  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
 | 
						|
  assert(!AbstractInstanceResult);
 | 
						|
  switch (SemaRef.ExprEvalContexts.back().Context) {
 | 
						|
  case Sema::ExpressionEvaluationContext::Unevaluated:
 | 
						|
  case Sema::ExpressionEvaluationContext::UnevaluatedList:
 | 
						|
    if (isField && SemaRef.getLangOpts().CPlusPlus11)
 | 
						|
      AbstractInstanceResult = IMA_Field_Uneval_Context;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
 | 
						|
    AbstractInstanceResult = IMA_Abstract;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::ExpressionEvaluationContext::DiscardedStatement:
 | 
						|
  case Sema::ExpressionEvaluationContext::ConstantEvaluated:
 | 
						|
  case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
 | 
						|
  case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the current context is not an instance method, it can't be
 | 
						|
  // an implicit member reference.
 | 
						|
  if (isStaticContext) {
 | 
						|
    if (hasNonInstance)
 | 
						|
      return IMA_Mixed_StaticContext;
 | 
						|
 | 
						|
    return AbstractInstanceResult ? AbstractInstanceResult
 | 
						|
                                  : IMA_Error_StaticContext;
 | 
						|
  }
 | 
						|
 | 
						|
  CXXRecordDecl *contextClass;
 | 
						|
  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
 | 
						|
    contextClass = MD->getParent()->getCanonicalDecl();
 | 
						|
  else
 | 
						|
    contextClass = cast<CXXRecordDecl>(DC);
 | 
						|
 | 
						|
  // [class.mfct.non-static]p3:
 | 
						|
  // ...is used in the body of a non-static member function of class X,
 | 
						|
  // if name lookup (3.4.1) resolves the name in the id-expression to a
 | 
						|
  // non-static non-type member of some class C [...]
 | 
						|
  // ...if C is not X or a base class of X, the class member access expression
 | 
						|
  // is ill-formed.
 | 
						|
  if (R.getNamingClass() &&
 | 
						|
      contextClass->getCanonicalDecl() !=
 | 
						|
        R.getNamingClass()->getCanonicalDecl()) {
 | 
						|
    // If the naming class is not the current context, this was a qualified
 | 
						|
    // member name lookup, and it's sufficient to check that we have the naming
 | 
						|
    // class as a base class.
 | 
						|
    Classes.clear();
 | 
						|
    Classes.insert(R.getNamingClass()->getCanonicalDecl());
 | 
						|
  }
 | 
						|
 | 
						|
  // If we can prove that the current context is unrelated to all the
 | 
						|
  // declaring classes, it can't be an implicit member reference (in
 | 
						|
  // which case it's an error if any of those members are selected).
 | 
						|
  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
 | 
						|
    return hasNonInstance ? IMA_Mixed_Unrelated :
 | 
						|
           AbstractInstanceResult ? AbstractInstanceResult :
 | 
						|
                                    IMA_Error_Unrelated;
 | 
						|
 | 
						|
  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose a reference to a field with no object available.
 | 
						|
static void diagnoseInstanceReference(Sema &SemaRef,
 | 
						|
                                      const CXXScopeSpec &SS,
 | 
						|
                                      NamedDecl *Rep,
 | 
						|
                                      const DeclarationNameInfo &nameInfo) {
 | 
						|
  SourceLocation Loc = nameInfo.getLoc();
 | 
						|
  SourceRange Range(Loc);
 | 
						|
  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
 | 
						|
 | 
						|
  // Look through using shadow decls and aliases.
 | 
						|
  Rep = Rep->getUnderlyingDecl();
 | 
						|
 | 
						|
  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
 | 
						|
  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
 | 
						|
  CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
 | 
						|
  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
 | 
						|
 | 
						|
  bool InStaticMethod = Method && Method->isStatic();
 | 
						|
  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
 | 
						|
 | 
						|
  if (IsField && InStaticMethod)
 | 
						|
    // "invalid use of member 'x' in static member function"
 | 
						|
    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
 | 
						|
        << Range << nameInfo.getName();
 | 
						|
  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
 | 
						|
           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
 | 
						|
    // Unqualified lookup in a non-static member function found a member of an
 | 
						|
    // enclosing class.
 | 
						|
    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
 | 
						|
      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
 | 
						|
  else if (IsField)
 | 
						|
    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
 | 
						|
      << nameInfo.getName() << Range;
 | 
						|
  else
 | 
						|
    SemaRef.Diag(Loc, diag::err_member_call_without_object)
 | 
						|
      << Range;
 | 
						|
}
 | 
						|
 | 
						|
/// Builds an expression which might be an implicit member expression.
 | 
						|
ExprResult
 | 
						|
Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
 | 
						|
                                      SourceLocation TemplateKWLoc,
 | 
						|
                                      LookupResult &R,
 | 
						|
                                const TemplateArgumentListInfo *TemplateArgs,
 | 
						|
                                      const Scope *S) {
 | 
						|
  switch (ClassifyImplicitMemberAccess(*this, R)) {
 | 
						|
  case IMA_Instance:
 | 
						|
    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
 | 
						|
 | 
						|
  case IMA_Mixed:
 | 
						|
  case IMA_Mixed_Unrelated:
 | 
						|
  case IMA_Unresolved:
 | 
						|
    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
 | 
						|
                                   S);
 | 
						|
 | 
						|
  case IMA_Field_Uneval_Context:
 | 
						|
    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
 | 
						|
      << R.getLookupNameInfo().getName();
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case IMA_Static:
 | 
						|
  case IMA_Abstract:
 | 
						|
  case IMA_Mixed_StaticContext:
 | 
						|
  case IMA_Unresolved_StaticContext:
 | 
						|
    if (TemplateArgs || TemplateKWLoc.isValid())
 | 
						|
      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
 | 
						|
    return BuildDeclarationNameExpr(SS, R, false);
 | 
						|
 | 
						|
  case IMA_Error_StaticContext:
 | 
						|
  case IMA_Error_Unrelated:
 | 
						|
    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
 | 
						|
                              R.getLookupNameInfo());
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unexpected instance member access kind");
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether input char is from rgba component set.
 | 
						|
static bool
 | 
						|
IsRGBA(char c) {
 | 
						|
  switch (c) {
 | 
						|
  case 'r':
 | 
						|
  case 'g':
 | 
						|
  case 'b':
 | 
						|
  case 'a':
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// OpenCL v1.1, s6.1.7
 | 
						|
// The component swizzle length must be in accordance with the acceptable
 | 
						|
// vector sizes.
 | 
						|
static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
 | 
						|
{
 | 
						|
  return (len >= 1 && len <= 4) || len == 8 || len == 16;
 | 
						|
}
 | 
						|
 | 
						|
/// Check an ext-vector component access expression.
 | 
						|
///
 | 
						|
/// VK should be set in advance to the value kind of the base
 | 
						|
/// expression.
 | 
						|
static QualType
 | 
						|
CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
 | 
						|
                        SourceLocation OpLoc, const IdentifierInfo *CompName,
 | 
						|
                        SourceLocation CompLoc) {
 | 
						|
  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
 | 
						|
  // see FIXME there.
 | 
						|
  //
 | 
						|
  // FIXME: This logic can be greatly simplified by splitting it along
 | 
						|
  // halving/not halving and reworking the component checking.
 | 
						|
  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
 | 
						|
 | 
						|
  // The vector accessor can't exceed the number of elements.
 | 
						|
  const char *compStr = CompName->getNameStart();
 | 
						|
 | 
						|
  // This flag determines whether or not the component is one of the four
 | 
						|
  // special names that indicate a subset of exactly half the elements are
 | 
						|
  // to be selected.
 | 
						|
  bool HalvingSwizzle = false;
 | 
						|
 | 
						|
  // This flag determines whether or not CompName has an 's' char prefix,
 | 
						|
  // indicating that it is a string of hex values to be used as vector indices.
 | 
						|
  bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
 | 
						|
 | 
						|
  bool HasRepeated = false;
 | 
						|
  bool HasIndex[16] = {};
 | 
						|
 | 
						|
  int Idx;
 | 
						|
 | 
						|
  // Check that we've found one of the special components, or that the component
 | 
						|
  // names must come from the same set.
 | 
						|
  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
 | 
						|
      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
 | 
						|
    HalvingSwizzle = true;
 | 
						|
  } else if (!HexSwizzle &&
 | 
						|
             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
 | 
						|
    bool HasRGBA = IsRGBA(*compStr);
 | 
						|
    do {
 | 
						|
      // Ensure that xyzw and rgba components don't intermingle.
 | 
						|
      if (HasRGBA != IsRGBA(*compStr))
 | 
						|
        break;
 | 
						|
      if (HasIndex[Idx]) HasRepeated = true;
 | 
						|
      HasIndex[Idx] = true;
 | 
						|
      compStr++;
 | 
						|
    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
 | 
						|
 | 
						|
    // Emit a warning if an rgba selector is used earlier than OpenCL 2.2
 | 
						|
    if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
 | 
						|
      if (S.getLangOpts().OpenCL && S.getLangOpts().OpenCLVersion < 220) {
 | 
						|
        const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
 | 
						|
        S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
 | 
						|
          << StringRef(DiagBegin, 1)
 | 
						|
          << S.getLangOpts().OpenCLVersion << SourceRange(CompLoc);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (HexSwizzle) compStr++;
 | 
						|
    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
 | 
						|
      if (HasIndex[Idx]) HasRepeated = true;
 | 
						|
      HasIndex[Idx] = true;
 | 
						|
      compStr++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!HalvingSwizzle && *compStr) {
 | 
						|
    // We didn't get to the end of the string. This means the component names
 | 
						|
    // didn't come from the same set *or* we encountered an illegal name.
 | 
						|
    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
 | 
						|
      << StringRef(compStr, 1) << SourceRange(CompLoc);
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure no component accessor exceeds the width of the vector type it
 | 
						|
  // operates on.
 | 
						|
  if (!HalvingSwizzle) {
 | 
						|
    compStr = CompName->getNameStart();
 | 
						|
 | 
						|
    if (HexSwizzle)
 | 
						|
      compStr++;
 | 
						|
 | 
						|
    while (*compStr) {
 | 
						|
      if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
 | 
						|
        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
 | 
						|
          << baseType << SourceRange(CompLoc);
 | 
						|
        return QualType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // OpenCL mode requires swizzle length to be in accordance with accepted
 | 
						|
  // sizes. Clang however supports arbitrary lengths for other languages.
 | 
						|
  if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
 | 
						|
    unsigned SwizzleLength = CompName->getLength();
 | 
						|
 | 
						|
    if (HexSwizzle)
 | 
						|
      SwizzleLength--;
 | 
						|
 | 
						|
    if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
 | 
						|
      S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
 | 
						|
        << SwizzleLength << SourceRange(CompLoc);
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The component accessor looks fine - now we need to compute the actual type.
 | 
						|
  // The vector type is implied by the component accessor. For example,
 | 
						|
  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
 | 
						|
  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
 | 
						|
  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
 | 
						|
  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
 | 
						|
                                     : CompName->getLength();
 | 
						|
  if (HexSwizzle)
 | 
						|
    CompSize--;
 | 
						|
 | 
						|
  if (CompSize == 1)
 | 
						|
    return vecType->getElementType();
 | 
						|
 | 
						|
  if (HasRepeated) VK = VK_RValue;
 | 
						|
 | 
						|
  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
 | 
						|
  // Now look up the TypeDefDecl from the vector type. Without this,
 | 
						|
  // diagostics look bad. We want extended vector types to appear built-in.
 | 
						|
  for (Sema::ExtVectorDeclsType::iterator
 | 
						|
         I = S.ExtVectorDecls.begin(S.getExternalSource()),
 | 
						|
         E = S.ExtVectorDecls.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if ((*I)->getUnderlyingType() == VT)
 | 
						|
      return S.Context.getTypedefType(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  return VT; // should never get here (a typedef type should always be found).
 | 
						|
}
 | 
						|
 | 
						|
static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
 | 
						|
                                                IdentifierInfo *Member,
 | 
						|
                                                const Selector &Sel,
 | 
						|
                                                ASTContext &Context) {
 | 
						|
  if (Member)
 | 
						|
    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
 | 
						|
            Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
 | 
						|
      return PD;
 | 
						|
  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
 | 
						|
    return OMD;
 | 
						|
 | 
						|
  for (const auto *I : PDecl->protocols()) {
 | 
						|
    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
 | 
						|
                                                           Context))
 | 
						|
      return D;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
 | 
						|
                                      IdentifierInfo *Member,
 | 
						|
                                      const Selector &Sel,
 | 
						|
                                      ASTContext &Context) {
 | 
						|
  // Check protocols on qualified interfaces.
 | 
						|
  Decl *GDecl = nullptr;
 | 
						|
  for (const auto *I : QIdTy->quals()) {
 | 
						|
    if (Member)
 | 
						|
      if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
 | 
						|
              Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
 | 
						|
        GDecl = PD;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    // Also must look for a getter or setter name which uses property syntax.
 | 
						|
    if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
 | 
						|
      GDecl = OMD;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!GDecl) {
 | 
						|
    for (const auto *I : QIdTy->quals()) {
 | 
						|
      // Search in the protocol-qualifier list of current protocol.
 | 
						|
      GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
 | 
						|
      if (GDecl)
 | 
						|
        return GDecl;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return GDecl;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
 | 
						|
                               bool IsArrow, SourceLocation OpLoc,
 | 
						|
                               const CXXScopeSpec &SS,
 | 
						|
                               SourceLocation TemplateKWLoc,
 | 
						|
                               NamedDecl *FirstQualifierInScope,
 | 
						|
                               const DeclarationNameInfo &NameInfo,
 | 
						|
                               const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  // Even in dependent contexts, try to diagnose base expressions with
 | 
						|
  // obviously wrong types, e.g.:
 | 
						|
  //
 | 
						|
  // T* t;
 | 
						|
  // t.f;
 | 
						|
  //
 | 
						|
  // In Obj-C++, however, the above expression is valid, since it could be
 | 
						|
  // accessing the 'f' property if T is an Obj-C interface. The extra check
 | 
						|
  // allows this, while still reporting an error if T is a struct pointer.
 | 
						|
  if (!IsArrow) {
 | 
						|
    const PointerType *PT = BaseType->getAs<PointerType>();
 | 
						|
    if (PT && (!getLangOpts().ObjC ||
 | 
						|
               PT->getPointeeType()->isRecordType())) {
 | 
						|
      assert(BaseExpr && "cannot happen with implicit member accesses");
 | 
						|
      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
 | 
						|
        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(BaseType->isDependentType() ||
 | 
						|
         NameInfo.getName().isDependentName() ||
 | 
						|
         isDependentScopeSpecifier(SS));
 | 
						|
 | 
						|
  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
 | 
						|
  // must have pointer type, and the accessed type is the pointee.
 | 
						|
  return CXXDependentScopeMemberExpr::Create(
 | 
						|
      Context, BaseExpr, BaseType, IsArrow, OpLoc,
 | 
						|
      SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
 | 
						|
      NameInfo, TemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
/// We know that the given qualified member reference points only to
 | 
						|
/// declarations which do not belong to the static type of the base
 | 
						|
/// expression.  Diagnose the problem.
 | 
						|
static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
 | 
						|
                                             Expr *BaseExpr,
 | 
						|
                                             QualType BaseType,
 | 
						|
                                             const CXXScopeSpec &SS,
 | 
						|
                                             NamedDecl *rep,
 | 
						|
                                       const DeclarationNameInfo &nameInfo) {
 | 
						|
  // If this is an implicit member access, use a different set of
 | 
						|
  // diagnostics.
 | 
						|
  if (!BaseExpr)
 | 
						|
    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
 | 
						|
 | 
						|
  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
 | 
						|
    << SS.getRange() << rep << BaseType;
 | 
						|
}
 | 
						|
 | 
						|
// Check whether the declarations we found through a nested-name
 | 
						|
// specifier in a member expression are actually members of the base
 | 
						|
// type.  The restriction here is:
 | 
						|
//
 | 
						|
//   C++ [expr.ref]p2:
 | 
						|
//     ... In these cases, the id-expression shall name a
 | 
						|
//     member of the class or of one of its base classes.
 | 
						|
//
 | 
						|
// So it's perfectly legitimate for the nested-name specifier to name
 | 
						|
// an unrelated class, and for us to find an overload set including
 | 
						|
// decls from classes which are not superclasses, as long as the decl
 | 
						|
// we actually pick through overload resolution is from a superclass.
 | 
						|
bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
 | 
						|
                                         QualType BaseType,
 | 
						|
                                         const CXXScopeSpec &SS,
 | 
						|
                                         const LookupResult &R) {
 | 
						|
  CXXRecordDecl *BaseRecord =
 | 
						|
    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
 | 
						|
  if (!BaseRecord) {
 | 
						|
    // We can't check this yet because the base type is still
 | 
						|
    // dependent.
 | 
						|
    assert(BaseType->isDependentType());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | 
						|
    // If this is an implicit member reference and we find a
 | 
						|
    // non-instance member, it's not an error.
 | 
						|
    if (!BaseExpr && !(*I)->isCXXInstanceMember())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Note that we use the DC of the decl, not the underlying decl.
 | 
						|
    DeclContext *DC = (*I)->getDeclContext();
 | 
						|
    while (DC->isTransparentContext())
 | 
						|
      DC = DC->getParent();
 | 
						|
 | 
						|
    if (!DC->isRecord())
 | 
						|
      continue;
 | 
						|
 | 
						|
    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
 | 
						|
    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
 | 
						|
        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
 | 
						|
                                   R.getRepresentativeDecl(),
 | 
						|
                                   R.getLookupNameInfo());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Callback to only accept typo corrections that are either a ValueDecl or a
 | 
						|
// FunctionTemplateDecl and are declared in the current record or, for a C++
 | 
						|
// classes, one of its base classes.
 | 
						|
class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
 | 
						|
public:
 | 
						|
  explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
 | 
						|
      : Record(RTy->getDecl()) {
 | 
						|
    // Don't add bare keywords to the consumer since they will always fail
 | 
						|
    // validation by virtue of not being associated with any decls.
 | 
						|
    WantTypeSpecifiers = false;
 | 
						|
    WantExpressionKeywords = false;
 | 
						|
    WantCXXNamedCasts = false;
 | 
						|
    WantFunctionLikeCasts = false;
 | 
						|
    WantRemainingKeywords = false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool ValidateCandidate(const TypoCorrection &candidate) override {
 | 
						|
    NamedDecl *ND = candidate.getCorrectionDecl();
 | 
						|
    // Don't accept candidates that cannot be member functions, constants,
 | 
						|
    // variables, or templates.
 | 
						|
    if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Accept candidates that occur in the current record.
 | 
						|
    if (Record->containsDecl(ND))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
 | 
						|
      // Accept candidates that occur in any of the current class' base classes.
 | 
						|
      for (const auto &BS : RD->bases()) {
 | 
						|
        if (const RecordType *BSTy =
 | 
						|
                dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
 | 
						|
          if (BSTy->getDecl()->containsDecl(ND))
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<CorrectionCandidateCallback> clone() override {
 | 
						|
    return std::make_unique<RecordMemberExprValidatorCCC>(*this);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  const RecordDecl *const Record;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
 | 
						|
                                     Expr *BaseExpr,
 | 
						|
                                     const RecordType *RTy,
 | 
						|
                                     SourceLocation OpLoc, bool IsArrow,
 | 
						|
                                     CXXScopeSpec &SS, bool HasTemplateArgs,
 | 
						|
                                     SourceLocation TemplateKWLoc,
 | 
						|
                                     TypoExpr *&TE) {
 | 
						|
  SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
 | 
						|
  RecordDecl *RDecl = RTy->getDecl();
 | 
						|
  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
 | 
						|
      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
 | 
						|
                                  diag::err_typecheck_incomplete_tag,
 | 
						|
                                  BaseRange))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (HasTemplateArgs || TemplateKWLoc.isValid()) {
 | 
						|
    // LookupTemplateName doesn't expect these both to exist simultaneously.
 | 
						|
    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
 | 
						|
 | 
						|
    bool MOUS;
 | 
						|
    return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
 | 
						|
                                      TemplateKWLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  DeclContext *DC = RDecl;
 | 
						|
  if (SS.isSet()) {
 | 
						|
    // If the member name was a qualified-id, look into the
 | 
						|
    // nested-name-specifier.
 | 
						|
    DC = SemaRef.computeDeclContext(SS, false);
 | 
						|
 | 
						|
    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
 | 
						|
      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
 | 
						|
          << SS.getRange() << DC;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
 | 
						|
 | 
						|
    if (!isa<TypeDecl>(DC)) {
 | 
						|
      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
 | 
						|
          << DC << SS.getRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The record definition is complete, now look up the member.
 | 
						|
  SemaRef.LookupQualifiedName(R, DC, SS);
 | 
						|
 | 
						|
  if (!R.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  DeclarationName Typo = R.getLookupName();
 | 
						|
  SourceLocation TypoLoc = R.getNameLoc();
 | 
						|
 | 
						|
  struct QueryState {
 | 
						|
    Sema &SemaRef;
 | 
						|
    DeclarationNameInfo NameInfo;
 | 
						|
    Sema::LookupNameKind LookupKind;
 | 
						|
    Sema::RedeclarationKind Redecl;
 | 
						|
  };
 | 
						|
  QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
 | 
						|
                  R.redeclarationKind()};
 | 
						|
  RecordMemberExprValidatorCCC CCC(RTy);
 | 
						|
  TE = SemaRef.CorrectTypoDelayed(
 | 
						|
      R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
 | 
						|
      [=, &SemaRef](const TypoCorrection &TC) {
 | 
						|
        if (TC) {
 | 
						|
          assert(!TC.isKeyword() &&
 | 
						|
                 "Got a keyword as a correction for a member!");
 | 
						|
          bool DroppedSpecifier =
 | 
						|
              TC.WillReplaceSpecifier() &&
 | 
						|
              Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
 | 
						|
          SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
 | 
						|
                                       << Typo << DC << DroppedSpecifier
 | 
						|
                                       << SS.getRange());
 | 
						|
        } else {
 | 
						|
          SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
 | 
						|
        }
 | 
						|
      },
 | 
						|
      [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
 | 
						|
        LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
 | 
						|
        R.clear(); // Ensure there's no decls lingering in the shared state.
 | 
						|
        R.suppressDiagnostics();
 | 
						|
        R.setLookupName(TC.getCorrection());
 | 
						|
        for (NamedDecl *ND : TC)
 | 
						|
          R.addDecl(ND);
 | 
						|
        R.resolveKind();
 | 
						|
        return SemaRef.BuildMemberReferenceExpr(
 | 
						|
            BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
 | 
						|
            nullptr, R, nullptr, nullptr);
 | 
						|
      },
 | 
						|
      Sema::CTK_ErrorRecovery, DC);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
 | 
						|
                                   ExprResult &BaseExpr, bool &IsArrow,
 | 
						|
                                   SourceLocation OpLoc, CXXScopeSpec &SS,
 | 
						|
                                   Decl *ObjCImpDecl, bool HasTemplateArgs,
 | 
						|
                                   SourceLocation TemplateKWLoc);
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
 | 
						|
                               SourceLocation OpLoc, bool IsArrow,
 | 
						|
                               CXXScopeSpec &SS,
 | 
						|
                               SourceLocation TemplateKWLoc,
 | 
						|
                               NamedDecl *FirstQualifierInScope,
 | 
						|
                               const DeclarationNameInfo &NameInfo,
 | 
						|
                               const TemplateArgumentListInfo *TemplateArgs,
 | 
						|
                               const Scope *S,
 | 
						|
                               ActOnMemberAccessExtraArgs *ExtraArgs) {
 | 
						|
  if (BaseType->isDependentType() ||
 | 
						|
      (SS.isSet() && isDependentScopeSpecifier(SS)))
 | 
						|
    return ActOnDependentMemberExpr(Base, BaseType,
 | 
						|
                                    IsArrow, OpLoc,
 | 
						|
                                    SS, TemplateKWLoc, FirstQualifierInScope,
 | 
						|
                                    NameInfo, TemplateArgs);
 | 
						|
 | 
						|
  LookupResult R(*this, NameInfo, LookupMemberName);
 | 
						|
 | 
						|
  // Implicit member accesses.
 | 
						|
  if (!Base) {
 | 
						|
    TypoExpr *TE = nullptr;
 | 
						|
    QualType RecordTy = BaseType;
 | 
						|
    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
 | 
						|
    if (LookupMemberExprInRecord(
 | 
						|
            *this, R, nullptr, RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
 | 
						|
            SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
 | 
						|
      return ExprError();
 | 
						|
    if (TE)
 | 
						|
      return TE;
 | 
						|
 | 
						|
  // Explicit member accesses.
 | 
						|
  } else {
 | 
						|
    ExprResult BaseResult = Base;
 | 
						|
    ExprResult Result =
 | 
						|
        LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
 | 
						|
                         ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
 | 
						|
                         TemplateArgs != nullptr, TemplateKWLoc);
 | 
						|
 | 
						|
    if (BaseResult.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    Base = BaseResult.get();
 | 
						|
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (Result.get())
 | 
						|
      return Result;
 | 
						|
 | 
						|
    // LookupMemberExpr can modify Base, and thus change BaseType
 | 
						|
    BaseType = Base->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildMemberReferenceExpr(Base, BaseType,
 | 
						|
                                  OpLoc, IsArrow, SS, TemplateKWLoc,
 | 
						|
                                  FirstQualifierInScope, R, TemplateArgs, S,
 | 
						|
                                  false, ExtraArgs);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
 | 
						|
                                               SourceLocation loc,
 | 
						|
                                               IndirectFieldDecl *indirectField,
 | 
						|
                                               DeclAccessPair foundDecl,
 | 
						|
                                               Expr *baseObjectExpr,
 | 
						|
                                               SourceLocation opLoc) {
 | 
						|
  // First, build the expression that refers to the base object.
 | 
						|
 | 
						|
  // Case 1:  the base of the indirect field is not a field.
 | 
						|
  VarDecl *baseVariable = indirectField->getVarDecl();
 | 
						|
  CXXScopeSpec EmptySS;
 | 
						|
  if (baseVariable) {
 | 
						|
    assert(baseVariable->getType()->isRecordType());
 | 
						|
 | 
						|
    // In principle we could have a member access expression that
 | 
						|
    // accesses an anonymous struct/union that's a static member of
 | 
						|
    // the base object's class.  However, under the current standard,
 | 
						|
    // static data members cannot be anonymous structs or unions.
 | 
						|
    // Supporting this is as easy as building a MemberExpr here.
 | 
						|
    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
 | 
						|
 | 
						|
    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
 | 
						|
 | 
						|
    ExprResult result
 | 
						|
      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
 | 
						|
    if (result.isInvalid()) return ExprError();
 | 
						|
 | 
						|
    baseObjectExpr = result.get();
 | 
						|
  }
 | 
						|
 | 
						|
  assert((baseVariable || baseObjectExpr) &&
 | 
						|
         "referencing anonymous struct/union without a base variable or "
 | 
						|
         "expression");
 | 
						|
 | 
						|
  // Build the implicit member references to the field of the
 | 
						|
  // anonymous struct/union.
 | 
						|
  Expr *result = baseObjectExpr;
 | 
						|
  IndirectFieldDecl::chain_iterator
 | 
						|
  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
 | 
						|
 | 
						|
  // Case 2: the base of the indirect field is a field and the user
 | 
						|
  // wrote a member expression.
 | 
						|
  if (!baseVariable) {
 | 
						|
    FieldDecl *field = cast<FieldDecl>(*FI);
 | 
						|
 | 
						|
    bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
 | 
						|
 | 
						|
    // Make a nameInfo that properly uses the anonymous name.
 | 
						|
    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
 | 
						|
 | 
						|
    // Build the first member access in the chain with full information.
 | 
						|
    result =
 | 
						|
        BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
 | 
						|
                                SS, field, foundDecl, memberNameInfo)
 | 
						|
            .get();
 | 
						|
    if (!result)
 | 
						|
      return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // In all cases, we should now skip the first declaration in the chain.
 | 
						|
  ++FI;
 | 
						|
 | 
						|
  while (FI != FEnd) {
 | 
						|
    FieldDecl *field = cast<FieldDecl>(*FI++);
 | 
						|
 | 
						|
    // FIXME: these are somewhat meaningless
 | 
						|
    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
 | 
						|
    DeclAccessPair fakeFoundDecl =
 | 
						|
        DeclAccessPair::make(field, field->getAccess());
 | 
						|
 | 
						|
    result =
 | 
						|
        BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
 | 
						|
                                (FI == FEnd ? SS : EmptySS), field,
 | 
						|
                                fakeFoundDecl, memberNameInfo)
 | 
						|
            .get();
 | 
						|
  }
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
static ExprResult
 | 
						|
BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
 | 
						|
                       const CXXScopeSpec &SS,
 | 
						|
                       MSPropertyDecl *PD,
 | 
						|
                       const DeclarationNameInfo &NameInfo) {
 | 
						|
  // Property names are always simple identifiers and therefore never
 | 
						|
  // require any interesting additional storage.
 | 
						|
  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
 | 
						|
                                           S.Context.PseudoObjectTy, VK_LValue,
 | 
						|
                                           SS.getWithLocInContext(S.Context),
 | 
						|
                                           NameInfo.getLoc());
 | 
						|
}
 | 
						|
 | 
						|
MemberExpr *Sema::BuildMemberExpr(
 | 
						|
    Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
 | 
						|
    SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
 | 
						|
    bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
 | 
						|
    QualType Ty, ExprValueKind VK, ExprObjectKind OK,
 | 
						|
    const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  NestedNameSpecifierLoc NNS =
 | 
						|
      SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
 | 
						|
  return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
 | 
						|
                         FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
 | 
						|
                         VK, OK, TemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
MemberExpr *Sema::BuildMemberExpr(
 | 
						|
    Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
 | 
						|
    SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
 | 
						|
    bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
 | 
						|
    QualType Ty, ExprValueKind VK, ExprObjectKind OK,
 | 
						|
    const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  assert((!IsArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
 | 
						|
  MemberExpr *E =
 | 
						|
      MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
 | 
						|
                         Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
 | 
						|
                         VK, OK, getNonOdrUseReasonInCurrentContext(Member));
 | 
						|
  E->setHadMultipleCandidates(HadMultipleCandidates);
 | 
						|
  MarkMemberReferenced(E);
 | 
						|
 | 
						|
  // C++ [except.spec]p17:
 | 
						|
  //   An exception-specification is considered to be needed when:
 | 
						|
  //   - in an expression the function is the unique lookup result or the
 | 
						|
  //     selected member of a set of overloaded functions
 | 
						|
  if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
 | 
						|
    if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
 | 
						|
      if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT))
 | 
						|
        E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine if the given scope is within a function-try-block handler.
 | 
						|
static bool IsInFnTryBlockHandler(const Scope *S) {
 | 
						|
  // Walk the scope stack until finding a FnTryCatchScope, or leave the
 | 
						|
  // function scope. If a FnTryCatchScope is found, check whether the TryScope
 | 
						|
  // flag is set. If it is not, it's a function-try-block handler.
 | 
						|
  for (; S != S->getFnParent(); S = S->getParent()) {
 | 
						|
    if (S->getFlags() & Scope::FnTryCatchScope)
 | 
						|
      return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
VarDecl *
 | 
						|
Sema::getVarTemplateSpecialization(VarTemplateDecl *VarTempl,
 | 
						|
                      const TemplateArgumentListInfo *TemplateArgs,
 | 
						|
                      const DeclarationNameInfo &MemberNameInfo,
 | 
						|
                      SourceLocation TemplateKWLoc) {
 | 
						|
  if (!TemplateArgs) {
 | 
						|
    diagnoseMissingTemplateArguments(TemplateName(VarTempl),
 | 
						|
                                     MemberNameInfo.getBeginLoc());
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc,
 | 
						|
                                        MemberNameInfo.getLoc(), *TemplateArgs);
 | 
						|
  if (VDecl.isInvalid())
 | 
						|
    return nullptr;
 | 
						|
  VarDecl *Var = cast<VarDecl>(VDecl.get());
 | 
						|
  if (!Var->getTemplateSpecializationKind())
 | 
						|
    Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
 | 
						|
                                       MemberNameInfo.getLoc());
 | 
						|
  return Var;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
 | 
						|
                               SourceLocation OpLoc, bool IsArrow,
 | 
						|
                               const CXXScopeSpec &SS,
 | 
						|
                               SourceLocation TemplateKWLoc,
 | 
						|
                               NamedDecl *FirstQualifierInScope,
 | 
						|
                               LookupResult &R,
 | 
						|
                               const TemplateArgumentListInfo *TemplateArgs,
 | 
						|
                               const Scope *S,
 | 
						|
                               bool SuppressQualifierCheck,
 | 
						|
                               ActOnMemberAccessExtraArgs *ExtraArgs) {
 | 
						|
  QualType BaseType = BaseExprType;
 | 
						|
  if (IsArrow) {
 | 
						|
    assert(BaseType->isPointerType());
 | 
						|
    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
 | 
						|
  }
 | 
						|
  R.setBaseObjectType(BaseType);
 | 
						|
 | 
						|
  // C++1z [expr.ref]p2:
 | 
						|
  //   For the first option (dot) the first expression shall be a glvalue [...]
 | 
						|
  if (!IsArrow && BaseExpr && BaseExpr->isRValue()) {
 | 
						|
    ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
 | 
						|
    if (Converted.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    BaseExpr = Converted.get();
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
 | 
						|
  DeclarationName MemberName = MemberNameInfo.getName();
 | 
						|
  SourceLocation MemberLoc = MemberNameInfo.getLoc();
 | 
						|
 | 
						|
  if (R.isAmbiguous())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // [except.handle]p10: Referring to any non-static member or base class of an
 | 
						|
  // object in the handler for a function-try-block of a constructor or
 | 
						|
  // destructor for that object results in undefined behavior.
 | 
						|
  const auto *FD = getCurFunctionDecl();
 | 
						|
  if (S && BaseExpr && FD &&
 | 
						|
      (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
 | 
						|
      isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
 | 
						|
      IsInFnTryBlockHandler(S))
 | 
						|
    Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
 | 
						|
        << isa<CXXDestructorDecl>(FD);
 | 
						|
 | 
						|
  if (R.empty()) {
 | 
						|
    // Rederive where we looked up.
 | 
						|
    DeclContext *DC = (SS.isSet()
 | 
						|
                       ? computeDeclContext(SS, false)
 | 
						|
                       : BaseType->castAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
    if (ExtraArgs) {
 | 
						|
      ExprResult RetryExpr;
 | 
						|
      if (!IsArrow && BaseExpr) {
 | 
						|
        SFINAETrap Trap(*this, true);
 | 
						|
        ParsedType ObjectType;
 | 
						|
        bool MayBePseudoDestructor = false;
 | 
						|
        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
 | 
						|
                                                 OpLoc, tok::arrow, ObjectType,
 | 
						|
                                                 MayBePseudoDestructor);
 | 
						|
        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
 | 
						|
          CXXScopeSpec TempSS(SS);
 | 
						|
          RetryExpr = ActOnMemberAccessExpr(
 | 
						|
              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
 | 
						|
              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
 | 
						|
        }
 | 
						|
        if (Trap.hasErrorOccurred())
 | 
						|
          RetryExpr = ExprError();
 | 
						|
      }
 | 
						|
      if (RetryExpr.isUsable()) {
 | 
						|
        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
 | 
						|
          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
 | 
						|
        return RetryExpr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Diag(R.getNameLoc(), diag::err_no_member)
 | 
						|
      << MemberName << DC
 | 
						|
      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose lookups that find only declarations from a non-base
 | 
						|
  // type.  This is possible for either qualified lookups (which may
 | 
						|
  // have been qualified with an unrelated type) or implicit member
 | 
						|
  // expressions (which were found with unqualified lookup and thus
 | 
						|
  // may have come from an enclosing scope).  Note that it's okay for
 | 
						|
  // lookup to find declarations from a non-base type as long as those
 | 
						|
  // aren't the ones picked by overload resolution.
 | 
						|
  if ((SS.isSet() || !BaseExpr ||
 | 
						|
       (isa<CXXThisExpr>(BaseExpr) &&
 | 
						|
        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
 | 
						|
      !SuppressQualifierCheck &&
 | 
						|
      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Construct an unresolved result if we in fact got an unresolved
 | 
						|
  // result.
 | 
						|
  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
 | 
						|
    // Suppress any lookup-related diagnostics; we'll do these when we
 | 
						|
    // pick a member.
 | 
						|
    R.suppressDiagnostics();
 | 
						|
 | 
						|
    UnresolvedMemberExpr *MemExpr
 | 
						|
      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
 | 
						|
                                     BaseExpr, BaseExprType,
 | 
						|
                                     IsArrow, OpLoc,
 | 
						|
                                     SS.getWithLocInContext(Context),
 | 
						|
                                     TemplateKWLoc, MemberNameInfo,
 | 
						|
                                     TemplateArgs, R.begin(), R.end());
 | 
						|
 | 
						|
    return MemExpr;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(R.isSingleResult());
 | 
						|
  DeclAccessPair FoundDecl = R.begin().getPair();
 | 
						|
  NamedDecl *MemberDecl = R.getFoundDecl();
 | 
						|
 | 
						|
  // FIXME: diagnose the presence of template arguments now.
 | 
						|
 | 
						|
  // If the decl being referenced had an error, return an error for this
 | 
						|
  // sub-expr without emitting another error, in order to avoid cascading
 | 
						|
  // error cases.
 | 
						|
  if (MemberDecl->isInvalidDecl())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Handle the implicit-member-access case.
 | 
						|
  if (!BaseExpr) {
 | 
						|
    // If this is not an instance member, convert to a non-member access.
 | 
						|
    if (!MemberDecl->isCXXInstanceMember()) {
 | 
						|
      // If this is a variable template, get the instantiated variable
 | 
						|
      // declaration corresponding to the supplied template arguments
 | 
						|
      // (while emitting diagnostics as necessary) that will be referenced
 | 
						|
      // by this expression.
 | 
						|
      assert((!TemplateArgs || isa<VarTemplateDecl>(MemberDecl)) &&
 | 
						|
             "How did we get template arguments here sans a variable template");
 | 
						|
      if (isa<VarTemplateDecl>(MemberDecl)) {
 | 
						|
        MemberDecl = getVarTemplateSpecialization(
 | 
						|
            cast<VarTemplateDecl>(MemberDecl), TemplateArgs,
 | 
						|
            R.getLookupNameInfo(), TemplateKWLoc);
 | 
						|
        if (!MemberDecl)
 | 
						|
          return ExprError();
 | 
						|
      }
 | 
						|
      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
 | 
						|
                                      FoundDecl, TemplateArgs);
 | 
						|
    }
 | 
						|
    SourceLocation Loc = R.getNameLoc();
 | 
						|
    if (SS.getRange().isValid())
 | 
						|
      Loc = SS.getRange().getBegin();
 | 
						|
    BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the use of this member.
 | 
						|
  if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
 | 
						|
    return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
 | 
						|
                                   MemberNameInfo);
 | 
						|
 | 
						|
  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
 | 
						|
    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
 | 
						|
                                  MemberNameInfo);
 | 
						|
 | 
						|
  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
 | 
						|
    // We may have found a field within an anonymous union or struct
 | 
						|
    // (C++ [class.union]).
 | 
						|
    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
 | 
						|
                                                    FoundDecl, BaseExpr,
 | 
						|
                                                    OpLoc);
 | 
						|
 | 
						|
  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
 | 
						|
    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
 | 
						|
                           FoundDecl, /*HadMultipleCandidates=*/false,
 | 
						|
                           MemberNameInfo, Var->getType().getNonReferenceType(),
 | 
						|
                           VK_LValue, OK_Ordinary);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
 | 
						|
    ExprValueKind valueKind;
 | 
						|
    QualType type;
 | 
						|
    if (MemberFn->isInstance()) {
 | 
						|
      valueKind = VK_RValue;
 | 
						|
      type = Context.BoundMemberTy;
 | 
						|
    } else {
 | 
						|
      valueKind = VK_LValue;
 | 
						|
      type = MemberFn->getType();
 | 
						|
    }
 | 
						|
 | 
						|
    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
 | 
						|
                           MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
 | 
						|
                           MemberNameInfo, type, valueKind, OK_Ordinary);
 | 
						|
  }
 | 
						|
  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
 | 
						|
 | 
						|
  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
 | 
						|
    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
 | 
						|
                           FoundDecl, /*HadMultipleCandidates=*/false,
 | 
						|
                           MemberNameInfo, Enum->getType(), VK_RValue,
 | 
						|
                           OK_Ordinary);
 | 
						|
  }
 | 
						|
  if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
 | 
						|
    if (VarDecl *Var = getVarTemplateSpecialization(
 | 
						|
            VarTempl, TemplateArgs, MemberNameInfo, TemplateKWLoc))
 | 
						|
      return BuildMemberExpr(
 | 
						|
          BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, FoundDecl,
 | 
						|
          /*HadMultipleCandidates=*/false, MemberNameInfo,
 | 
						|
          Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // We found something that we didn't expect. Complain.
 | 
						|
  if (isa<TypeDecl>(MemberDecl))
 | 
						|
    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
 | 
						|
      << MemberName << BaseType << int(IsArrow);
 | 
						|
  else
 | 
						|
    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
 | 
						|
      << MemberName << BaseType << int(IsArrow);
 | 
						|
 | 
						|
  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
 | 
						|
    << MemberName;
 | 
						|
  R.suppressDiagnostics();
 | 
						|
  return ExprError();
 | 
						|
}
 | 
						|
 | 
						|
/// Given that normal member access failed on the given expression,
 | 
						|
/// and given that the expression's type involves builtin-id or
 | 
						|
/// builtin-Class, decide whether substituting in the redefinition
 | 
						|
/// types would be profitable.  The redefinition type is whatever
 | 
						|
/// this translation unit tried to typedef to id/Class;  we store
 | 
						|
/// it to the side and then re-use it in places like this.
 | 
						|
static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
 | 
						|
  const ObjCObjectPointerType *opty
 | 
						|
    = base.get()->getType()->getAs<ObjCObjectPointerType>();
 | 
						|
  if (!opty) return false;
 | 
						|
 | 
						|
  const ObjCObjectType *ty = opty->getObjectType();
 | 
						|
 | 
						|
  QualType redef;
 | 
						|
  if (ty->isObjCId()) {
 | 
						|
    redef = S.Context.getObjCIdRedefinitionType();
 | 
						|
  } else if (ty->isObjCClass()) {
 | 
						|
    redef = S.Context.getObjCClassRedefinitionType();
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do the substitution as long as the redefinition type isn't just a
 | 
						|
  // possibly-qualified pointer to builtin-id or builtin-Class again.
 | 
						|
  opty = redef->getAs<ObjCObjectPointerType>();
 | 
						|
  if (opty && !opty->getObjectType()->getInterface())
 | 
						|
    return false;
 | 
						|
 | 
						|
  base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isRecordType(QualType T) {
 | 
						|
  return T->isRecordType();
 | 
						|
}
 | 
						|
static bool isPointerToRecordType(QualType T) {
 | 
						|
  if (const PointerType *PT = T->getAs<PointerType>())
 | 
						|
    return PT->getPointeeType()->isRecordType();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Perform conversions on the LHS of a member access expression.
 | 
						|
ExprResult
 | 
						|
Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
 | 
						|
  if (IsArrow && !Base->getType()->isFunctionType())
 | 
						|
    return DefaultFunctionArrayLvalueConversion(Base);
 | 
						|
 | 
						|
  return CheckPlaceholderExpr(Base);
 | 
						|
}
 | 
						|
 | 
						|
/// Look up the given member of the given non-type-dependent
 | 
						|
/// expression.  This can return in one of two ways:
 | 
						|
///  * If it returns a sentinel null-but-valid result, the caller will
 | 
						|
///    assume that lookup was performed and the results written into
 | 
						|
///    the provided structure.  It will take over from there.
 | 
						|
///  * Otherwise, the returned expression will be produced in place of
 | 
						|
///    an ordinary member expression.
 | 
						|
///
 | 
						|
/// The ObjCImpDecl bit is a gross hack that will need to be properly
 | 
						|
/// fixed for ObjC++.
 | 
						|
static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
 | 
						|
                                   ExprResult &BaseExpr, bool &IsArrow,
 | 
						|
                                   SourceLocation OpLoc, CXXScopeSpec &SS,
 | 
						|
                                   Decl *ObjCImpDecl, bool HasTemplateArgs,
 | 
						|
                                   SourceLocation TemplateKWLoc) {
 | 
						|
  assert(BaseExpr.get() && "no base expression");
 | 
						|
 | 
						|
  // Perform default conversions.
 | 
						|
  BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
 | 
						|
  if (BaseExpr.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  QualType BaseType = BaseExpr.get()->getType();
 | 
						|
  assert(!BaseType->isDependentType());
 | 
						|
 | 
						|
  DeclarationName MemberName = R.getLookupName();
 | 
						|
  SourceLocation MemberLoc = R.getNameLoc();
 | 
						|
 | 
						|
  // For later type-checking purposes, turn arrow accesses into dot
 | 
						|
  // accesses.  The only access type we support that doesn't follow
 | 
						|
  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
 | 
						|
  // and those never use arrows, so this is unaffected.
 | 
						|
  if (IsArrow) {
 | 
						|
    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
 | 
						|
      BaseType = Ptr->getPointeeType();
 | 
						|
    else if (const ObjCObjectPointerType *Ptr
 | 
						|
               = BaseType->getAs<ObjCObjectPointerType>())
 | 
						|
      BaseType = Ptr->getPointeeType();
 | 
						|
    else if (BaseType->isRecordType()) {
 | 
						|
      // Recover from arrow accesses to records, e.g.:
 | 
						|
      //   struct MyRecord foo;
 | 
						|
      //   foo->bar
 | 
						|
      // This is actually well-formed in C++ if MyRecord has an
 | 
						|
      // overloaded operator->, but that should have been dealt with
 | 
						|
      // by now--or a diagnostic message already issued if a problem
 | 
						|
      // was encountered while looking for the overloaded operator->.
 | 
						|
      if (!S.getLangOpts().CPlusPlus) {
 | 
						|
        S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | 
						|
          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
 | 
						|
          << FixItHint::CreateReplacement(OpLoc, ".");
 | 
						|
      }
 | 
						|
      IsArrow = false;
 | 
						|
    } else if (BaseType->isFunctionType()) {
 | 
						|
      goto fail;
 | 
						|
    } else {
 | 
						|
      S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
 | 
						|
        << BaseType << BaseExpr.get()->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle field access to simple records.
 | 
						|
  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
 | 
						|
    TypoExpr *TE = nullptr;
 | 
						|
    if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
 | 
						|
                                 HasTemplateArgs, TemplateKWLoc, TE))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // Returning valid-but-null is how we indicate to the caller that
 | 
						|
    // the lookup result was filled in. If typo correction was attempted and
 | 
						|
    // failed, the lookup result will have been cleared--that combined with the
 | 
						|
    // valid-but-null ExprResult will trigger the appropriate diagnostics.
 | 
						|
    return ExprResult(TE);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle ivar access to Objective-C objects.
 | 
						|
  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
 | 
						|
    if (!SS.isEmpty() && !SS.isInvalid()) {
 | 
						|
      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
 | 
						|
        << 1 << SS.getScopeRep()
 | 
						|
        << FixItHint::CreateRemoval(SS.getRange());
 | 
						|
      SS.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
 | 
						|
 | 
						|
    // There are three cases for the base type:
 | 
						|
    //   - builtin id (qualified or unqualified)
 | 
						|
    //   - builtin Class (qualified or unqualified)
 | 
						|
    //   - an interface
 | 
						|
    ObjCInterfaceDecl *IDecl = OTy->getInterface();
 | 
						|
    if (!IDecl) {
 | 
						|
      if (S.getLangOpts().ObjCAutoRefCount &&
 | 
						|
          (OTy->isObjCId() || OTy->isObjCClass()))
 | 
						|
        goto fail;
 | 
						|
      // There's an implicit 'isa' ivar on all objects.
 | 
						|
      // But we only actually find it this way on objects of type 'id',
 | 
						|
      // apparently.
 | 
						|
      if (OTy->isObjCId() && Member->isStr("isa"))
 | 
						|
        return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
 | 
						|
                                           OpLoc, S.Context.getObjCClassType());
 | 
						|
      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
 | 
						|
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | 
						|
                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
 | 
						|
      goto fail;
 | 
						|
    }
 | 
						|
 | 
						|
    if (S.RequireCompleteType(OpLoc, BaseType,
 | 
						|
                              diag::err_typecheck_incomplete_tag,
 | 
						|
                              BaseExpr.get()))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    ObjCInterfaceDecl *ClassDeclared = nullptr;
 | 
						|
    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
 | 
						|
 | 
						|
    if (!IV) {
 | 
						|
      // Attempt to correct for typos in ivar names.
 | 
						|
      DeclFilterCCC<ObjCIvarDecl> Validator{};
 | 
						|
      Validator.IsObjCIvarLookup = IsArrow;
 | 
						|
      if (TypoCorrection Corrected = S.CorrectTypo(
 | 
						|
              R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
 | 
						|
              Validator, Sema::CTK_ErrorRecovery, IDecl)) {
 | 
						|
        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
 | 
						|
        S.diagnoseTypo(
 | 
						|
            Corrected,
 | 
						|
            S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
 | 
						|
                << IDecl->getDeclName() << MemberName);
 | 
						|
 | 
						|
        // Figure out the class that declares the ivar.
 | 
						|
        assert(!ClassDeclared);
 | 
						|
 | 
						|
        Decl *D = cast<Decl>(IV->getDeclContext());
 | 
						|
        if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
 | 
						|
          D = Category->getClassInterface();
 | 
						|
 | 
						|
        if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
 | 
						|
          ClassDeclared = Implementation->getClassInterface();
 | 
						|
        else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
 | 
						|
          ClassDeclared = Interface;
 | 
						|
 | 
						|
        assert(ClassDeclared && "cannot query interface");
 | 
						|
      } else {
 | 
						|
        if (IsArrow &&
 | 
						|
            IDecl->FindPropertyDeclaration(
 | 
						|
                Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
 | 
						|
          S.Diag(MemberLoc, diag::err_property_found_suggest)
 | 
						|
              << Member << BaseExpr.get()->getType()
 | 
						|
              << FixItHint::CreateReplacement(OpLoc, ".");
 | 
						|
          return ExprError();
 | 
						|
        }
 | 
						|
 | 
						|
        S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
 | 
						|
            << IDecl->getDeclName() << MemberName
 | 
						|
            << BaseExpr.get()->getSourceRange();
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ClassDeclared);
 | 
						|
 | 
						|
    // If the decl being referenced had an error, return an error for this
 | 
						|
    // sub-expr without emitting another error, in order to avoid cascading
 | 
						|
    // error cases.
 | 
						|
    if (IV->isInvalidDecl())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // Check whether we can reference this field.
 | 
						|
    if (S.DiagnoseUseOfDecl(IV, MemberLoc))
 | 
						|
      return ExprError();
 | 
						|
    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
 | 
						|
        IV->getAccessControl() != ObjCIvarDecl::Package) {
 | 
						|
      ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
 | 
						|
      if (ObjCMethodDecl *MD = S.getCurMethodDecl())
 | 
						|
        ClassOfMethodDecl =  MD->getClassInterface();
 | 
						|
      else if (ObjCImpDecl && S.getCurFunctionDecl()) {
 | 
						|
        // Case of a c-function declared inside an objc implementation.
 | 
						|
        // FIXME: For a c-style function nested inside an objc implementation
 | 
						|
        // class, there is no implementation context available, so we pass
 | 
						|
        // down the context as argument to this routine. Ideally, this context
 | 
						|
        // need be passed down in the AST node and somehow calculated from the
 | 
						|
        // AST for a function decl.
 | 
						|
        if (ObjCImplementationDecl *IMPD =
 | 
						|
              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
 | 
						|
          ClassOfMethodDecl = IMPD->getClassInterface();
 | 
						|
        else if (ObjCCategoryImplDecl* CatImplClass =
 | 
						|
                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
 | 
						|
          ClassOfMethodDecl = CatImplClass->getClassInterface();
 | 
						|
      }
 | 
						|
      if (!S.getLangOpts().DebuggerSupport) {
 | 
						|
        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
 | 
						|
          if (!declaresSameEntity(ClassDeclared, IDecl) ||
 | 
						|
              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
 | 
						|
            S.Diag(MemberLoc, diag::err_private_ivar_access)
 | 
						|
              << IV->getDeclName();
 | 
						|
        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
 | 
						|
          // @protected
 | 
						|
          S.Diag(MemberLoc, diag::err_protected_ivar_access)
 | 
						|
              << IV->getDeclName();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    bool warn = true;
 | 
						|
    if (S.getLangOpts().ObjCWeak) {
 | 
						|
      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
 | 
						|
      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
 | 
						|
        if (UO->getOpcode() == UO_Deref)
 | 
						|
          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
 | 
						|
 | 
						|
      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
 | 
						|
        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
 | 
						|
          S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
 | 
						|
          warn = false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (warn) {
 | 
						|
      if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
 | 
						|
        ObjCMethodFamily MF = MD->getMethodFamily();
 | 
						|
        warn = (MF != OMF_init && MF != OMF_dealloc &&
 | 
						|
                MF != OMF_finalize &&
 | 
						|
                !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
 | 
						|
      }
 | 
						|
      if (warn)
 | 
						|
        S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
 | 
						|
    }
 | 
						|
 | 
						|
    ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
 | 
						|
        IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
 | 
						|
        IsArrow);
 | 
						|
 | 
						|
    if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
 | 
						|
      if (!S.isUnevaluatedContext() &&
 | 
						|
          !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
 | 
						|
        S.getCurFunction()->recordUseOfWeak(Result);
 | 
						|
    }
 | 
						|
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Objective-C property access.
 | 
						|
  const ObjCObjectPointerType *OPT;
 | 
						|
  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
 | 
						|
    if (!SS.isEmpty() && !SS.isInvalid()) {
 | 
						|
      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
 | 
						|
          << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
 | 
						|
      SS.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    // This actually uses the base as an r-value.
 | 
						|
    BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
 | 
						|
    if (BaseExpr.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    assert(S.Context.hasSameUnqualifiedType(BaseType,
 | 
						|
                                            BaseExpr.get()->getType()));
 | 
						|
 | 
						|
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
 | 
						|
 | 
						|
    const ObjCObjectType *OT = OPT->getObjectType();
 | 
						|
 | 
						|
    // id, with and without qualifiers.
 | 
						|
    if (OT->isObjCId()) {
 | 
						|
      // Check protocols on qualified interfaces.
 | 
						|
      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
 | 
						|
      if (Decl *PMDecl =
 | 
						|
              FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
 | 
						|
        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
 | 
						|
          // Check the use of this declaration
 | 
						|
          if (S.DiagnoseUseOfDecl(PD, MemberLoc))
 | 
						|
            return ExprError();
 | 
						|
 | 
						|
          return new (S.Context)
 | 
						|
              ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
 | 
						|
                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
 | 
						|
        }
 | 
						|
 | 
						|
        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
 | 
						|
          Selector SetterSel =
 | 
						|
            SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
 | 
						|
                                                   S.PP.getSelectorTable(),
 | 
						|
                                                   Member);
 | 
						|
          ObjCMethodDecl *SMD = nullptr;
 | 
						|
          if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
 | 
						|
                                                     /*Property id*/ nullptr,
 | 
						|
                                                     SetterSel, S.Context))
 | 
						|
            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
 | 
						|
 | 
						|
          return new (S.Context)
 | 
						|
              ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
 | 
						|
                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Use of id.member can only be for a property reference. Do not
 | 
						|
      // use the 'id' redefinition in this case.
 | 
						|
      if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
 | 
						|
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | 
						|
                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
 | 
						|
 | 
						|
      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
 | 
						|
                         << MemberName << BaseType);
 | 
						|
    }
 | 
						|
 | 
						|
    // 'Class', unqualified only.
 | 
						|
    if (OT->isObjCClass()) {
 | 
						|
      // Only works in a method declaration (??!).
 | 
						|
      ObjCMethodDecl *MD = S.getCurMethodDecl();
 | 
						|
      if (!MD) {
 | 
						|
        if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
 | 
						|
          return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | 
						|
                                  ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
 | 
						|
 | 
						|
        goto fail;
 | 
						|
      }
 | 
						|
 | 
						|
      // Also must look for a getter name which uses property syntax.
 | 
						|
      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
 | 
						|
      ObjCInterfaceDecl *IFace = MD->getClassInterface();
 | 
						|
      if (!IFace)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
      ObjCMethodDecl *Getter;
 | 
						|
      if ((Getter = IFace->lookupClassMethod(Sel))) {
 | 
						|
        // Check the use of this method.
 | 
						|
        if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
 | 
						|
          return ExprError();
 | 
						|
      } else
 | 
						|
        Getter = IFace->lookupPrivateMethod(Sel, false);
 | 
						|
      // If we found a getter then this may be a valid dot-reference, we
 | 
						|
      // will look for the matching setter, in case it is needed.
 | 
						|
      Selector SetterSel =
 | 
						|
        SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
 | 
						|
                                               S.PP.getSelectorTable(),
 | 
						|
                                               Member);
 | 
						|
      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
 | 
						|
      if (!Setter) {
 | 
						|
        // If this reference is in an @implementation, also check for 'private'
 | 
						|
        // methods.
 | 
						|
        Setter = IFace->lookupPrivateMethod(SetterSel, false);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      if (Getter || Setter) {
 | 
						|
        return new (S.Context) ObjCPropertyRefExpr(
 | 
						|
            Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
 | 
						|
            OK_ObjCProperty, MemberLoc, BaseExpr.get());
 | 
						|
      }
 | 
						|
 | 
						|
      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
 | 
						|
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | 
						|
                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
 | 
						|
 | 
						|
      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
 | 
						|
                         << MemberName << BaseType);
 | 
						|
    }
 | 
						|
 | 
						|
    // Normal property access.
 | 
						|
    return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
 | 
						|
                                       MemberLoc, SourceLocation(), QualType(),
 | 
						|
                                       false);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle 'field access' to vectors, such as 'V.xx'.
 | 
						|
  if (BaseType->isExtVectorType()) {
 | 
						|
    // FIXME: this expr should store IsArrow.
 | 
						|
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
 | 
						|
    ExprValueKind VK;
 | 
						|
    if (IsArrow)
 | 
						|
      VK = VK_LValue;
 | 
						|
    else {
 | 
						|
      if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
 | 
						|
        VK = POE->getSyntacticForm()->getValueKind();
 | 
						|
      else
 | 
						|
        VK = BaseExpr.get()->getValueKind();
 | 
						|
    }
 | 
						|
 | 
						|
    QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
 | 
						|
                                           Member, MemberLoc);
 | 
						|
    if (ret.isNull())
 | 
						|
      return ExprError();
 | 
						|
    Qualifiers BaseQ =
 | 
						|
        S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
 | 
						|
    ret = S.Context.getQualifiedType(ret, BaseQ);
 | 
						|
 | 
						|
    return new (S.Context)
 | 
						|
        ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust builtin-sel to the appropriate redefinition type if that's
 | 
						|
  // not just a pointer to builtin-sel again.
 | 
						|
  if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
 | 
						|
      !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
 | 
						|
    BaseExpr = S.ImpCastExprToType(
 | 
						|
        BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
 | 
						|
    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | 
						|
                            ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  // Failure cases.
 | 
						|
 fail:
 | 
						|
 | 
						|
  // Recover from dot accesses to pointers, e.g.:
 | 
						|
  //   type *foo;
 | 
						|
  //   foo.bar
 | 
						|
  // This is actually well-formed in two cases:
 | 
						|
  //   - 'type' is an Objective C type
 | 
						|
  //   - 'bar' is a pseudo-destructor name which happens to refer to
 | 
						|
  //     the appropriate pointer type
 | 
						|
  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
 | 
						|
    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
 | 
						|
        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
 | 
						|
      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | 
						|
          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
 | 
						|
          << FixItHint::CreateReplacement(OpLoc, "->");
 | 
						|
 | 
						|
      // Recurse as an -> access.
 | 
						|
      IsArrow = true;
 | 
						|
      return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | 
						|
                              ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the user is trying to apply -> or . to a function name, it's probably
 | 
						|
  // because they forgot parentheses to call that function.
 | 
						|
  if (S.tryToRecoverWithCall(
 | 
						|
          BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
 | 
						|
          /*complain*/ false,
 | 
						|
          IsArrow ? &isPointerToRecordType : &isRecordType)) {
 | 
						|
    if (BaseExpr.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
 | 
						|
    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
 | 
						|
                            ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
 | 
						|
    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
 | 
						|
 | 
						|
  return ExprError();
 | 
						|
}
 | 
						|
 | 
						|
/// The main callback when the parser finds something like
 | 
						|
///   expression . [nested-name-specifier] identifier
 | 
						|
///   expression -> [nested-name-specifier] identifier
 | 
						|
/// where 'identifier' encompasses a fairly broad spectrum of
 | 
						|
/// possibilities, including destructor and operator references.
 | 
						|
///
 | 
						|
/// \param OpKind either tok::arrow or tok::period
 | 
						|
/// \param ObjCImpDecl the current Objective-C \@implementation
 | 
						|
///   decl; this is an ugly hack around the fact that Objective-C
 | 
						|
///   \@implementations aren't properly put in the context chain
 | 
						|
ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
 | 
						|
                                       SourceLocation OpLoc,
 | 
						|
                                       tok::TokenKind OpKind,
 | 
						|
                                       CXXScopeSpec &SS,
 | 
						|
                                       SourceLocation TemplateKWLoc,
 | 
						|
                                       UnqualifiedId &Id,
 | 
						|
                                       Decl *ObjCImpDecl) {
 | 
						|
  if (SS.isSet() && SS.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Warn about the explicit constructor calls Microsoft extension.
 | 
						|
  if (getLangOpts().MicrosoftExt &&
 | 
						|
      Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
 | 
						|
    Diag(Id.getSourceRange().getBegin(),
 | 
						|
         diag::ext_ms_explicit_constructor_call);
 | 
						|
 | 
						|
  TemplateArgumentListInfo TemplateArgsBuffer;
 | 
						|
 | 
						|
  // Decompose the name into its component parts.
 | 
						|
  DeclarationNameInfo NameInfo;
 | 
						|
  const TemplateArgumentListInfo *TemplateArgs;
 | 
						|
  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
 | 
						|
                         NameInfo, TemplateArgs);
 | 
						|
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
  bool IsArrow = (OpKind == tok::arrow);
 | 
						|
 | 
						|
  NamedDecl *FirstQualifierInScope
 | 
						|
    = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
 | 
						|
 | 
						|
  // This is a postfix expression, so get rid of ParenListExprs.
 | 
						|
  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
 | 
						|
  if (Result.isInvalid()) return ExprError();
 | 
						|
  Base = Result.get();
 | 
						|
 | 
						|
  if (Base->getType()->isDependentType() || Name.isDependentName() ||
 | 
						|
      isDependentScopeSpecifier(SS)) {
 | 
						|
    return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
 | 
						|
                                    TemplateKWLoc, FirstQualifierInScope,
 | 
						|
                                    NameInfo, TemplateArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
 | 
						|
  ExprResult Res = BuildMemberReferenceExpr(
 | 
						|
      Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
 | 
						|
      FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
 | 
						|
 | 
						|
  if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
 | 
						|
    CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
 | 
						|
  QualType ResultTy = E->getType();
 | 
						|
 | 
						|
  // Do not warn on member accesses to arrays since this returns an array
 | 
						|
  // lvalue and does not actually dereference memory.
 | 
						|
  if (isa<ArrayType>(ResultTy))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (E->isArrow()) {
 | 
						|
    if (const auto *Ptr = dyn_cast<PointerType>(
 | 
						|
            E->getBase()->getType().getDesugaredType(Context))) {
 | 
						|
      if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
 | 
						|
        ExprEvalContexts.back().PossibleDerefs.insert(E);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
 | 
						|
                              SourceLocation OpLoc, const CXXScopeSpec &SS,
 | 
						|
                              FieldDecl *Field, DeclAccessPair FoundDecl,
 | 
						|
                              const DeclarationNameInfo &MemberNameInfo) {
 | 
						|
  // x.a is an l-value if 'a' has a reference type. Otherwise:
 | 
						|
  // x.a is an l-value/x-value/pr-value if the base is (and note
 | 
						|
  //   that *x is always an l-value), except that if the base isn't
 | 
						|
  //   an ordinary object then we must have an rvalue.
 | 
						|
  ExprValueKind VK = VK_LValue;
 | 
						|
  ExprObjectKind OK = OK_Ordinary;
 | 
						|
  if (!IsArrow) {
 | 
						|
    if (BaseExpr->getObjectKind() == OK_Ordinary)
 | 
						|
      VK = BaseExpr->getValueKind();
 | 
						|
    else
 | 
						|
      VK = VK_RValue;
 | 
						|
  }
 | 
						|
  if (VK != VK_RValue && Field->isBitField())
 | 
						|
    OK = OK_BitField;
 | 
						|
 | 
						|
  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
 | 
						|
  QualType MemberType = Field->getType();
 | 
						|
  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
 | 
						|
    MemberType = Ref->getPointeeType();
 | 
						|
    VK = VK_LValue;
 | 
						|
  } else {
 | 
						|
    QualType BaseType = BaseExpr->getType();
 | 
						|
    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
 | 
						|
 | 
						|
    Qualifiers BaseQuals = BaseType.getQualifiers();
 | 
						|
 | 
						|
    // GC attributes are never picked up by members.
 | 
						|
    BaseQuals.removeObjCGCAttr();
 | 
						|
 | 
						|
    // CVR attributes from the base are picked up by members,
 | 
						|
    // except that 'mutable' members don't pick up 'const'.
 | 
						|
    if (Field->isMutable()) BaseQuals.removeConst();
 | 
						|
 | 
						|
    Qualifiers MemberQuals =
 | 
						|
        Context.getCanonicalType(MemberType).getQualifiers();
 | 
						|
 | 
						|
    assert(!MemberQuals.hasAddressSpace());
 | 
						|
 | 
						|
    Qualifiers Combined = BaseQuals + MemberQuals;
 | 
						|
    if (Combined != MemberQuals)
 | 
						|
      MemberType = Context.getQualifiedType(MemberType, Combined);
 | 
						|
  }
 | 
						|
 | 
						|
  auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
 | 
						|
  if (!(CurMethod && CurMethod->isDefaulted()))
 | 
						|
    UnusedPrivateFields.remove(Field);
 | 
						|
 | 
						|
  ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
 | 
						|
                                                  FoundDecl, Field);
 | 
						|
  if (Base.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Build a reference to a private copy for non-static data members in
 | 
						|
  // non-static member functions, privatized by OpenMP constructs.
 | 
						|
  if (getLangOpts().OpenMP && IsArrow &&
 | 
						|
      !CurContext->isDependentContext() &&
 | 
						|
      isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
 | 
						|
    if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
 | 
						|
      return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
 | 
						|
                                   MemberNameInfo.getLoc());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
 | 
						|
                         /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
 | 
						|
                         /*HadMultipleCandidates=*/false, MemberNameInfo,
 | 
						|
                         MemberType, VK, OK);
 | 
						|
}
 | 
						|
 | 
						|
/// Builds an implicit member access expression.  The current context
 | 
						|
/// is known to be an instance method, and the given unqualified lookup
 | 
						|
/// set is known to contain only instance members, at least one of which
 | 
						|
/// is from an appropriate type.
 | 
						|
ExprResult
 | 
						|
Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
 | 
						|
                              SourceLocation TemplateKWLoc,
 | 
						|
                              LookupResult &R,
 | 
						|
                              const TemplateArgumentListInfo *TemplateArgs,
 | 
						|
                              bool IsKnownInstance, const Scope *S) {
 | 
						|
  assert(!R.empty() && !R.isAmbiguous());
 | 
						|
 | 
						|
  SourceLocation loc = R.getNameLoc();
 | 
						|
 | 
						|
  // If this is known to be an instance access, go ahead and build an
 | 
						|
  // implicit 'this' expression now.
 | 
						|
  // 'this' expression now.
 | 
						|
  QualType ThisTy = getCurrentThisType();
 | 
						|
  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
 | 
						|
 | 
						|
  Expr *baseExpr = nullptr; // null signifies implicit access
 | 
						|
  if (IsKnownInstance) {
 | 
						|
    SourceLocation Loc = R.getNameLoc();
 | 
						|
    if (SS.getRange().isValid())
 | 
						|
      Loc = SS.getRange().getBegin();
 | 
						|
    baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildMemberReferenceExpr(baseExpr, ThisTy,
 | 
						|
                                  /*OpLoc*/ SourceLocation(),
 | 
						|
                                  /*IsArrow*/ true,
 | 
						|
                                  SS, TemplateKWLoc,
 | 
						|
                                  /*FirstQualifierInScope*/ nullptr,
 | 
						|
                                  R, TemplateArgs, S);
 | 
						|
}
 |