forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			10864 lines
		
	
	
		
			436 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
			
		
		
	
	
			10864 lines
		
	
	
		
			436 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
| //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for C++ templates.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "TreeTransform.h"
 | |
| #include "clang/AST/ASTConsumer.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclFriend.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/RecursiveASTVisitor.h"
 | |
| #include "clang/AST/TypeVisitor.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/LangOptions.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Basic/Stack.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/Overload.h"
 | |
| #include "clang/Sema/ParsedTemplate.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/Template.h"
 | |
| #include "clang/Sema/TemplateDeduction.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| 
 | |
| #include <iterator>
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| // Exported for use by Parser.
 | |
| SourceRange
 | |
| clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
 | |
|                               unsigned N) {
 | |
|   if (!N) return SourceRange();
 | |
|   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
 | |
| }
 | |
| 
 | |
| unsigned Sema::getTemplateDepth(Scope *S) const {
 | |
|   unsigned Depth = 0;
 | |
| 
 | |
|   // Each template parameter scope represents one level of template parameter
 | |
|   // depth.
 | |
|   for (Scope *TempParamScope = S->getTemplateParamParent();
 | |
|        TempParamScope && !Depth;
 | |
|        TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
 | |
|     ++Depth;
 | |
|   }
 | |
| 
 | |
|   // Note that there are template parameters with the given depth.
 | |
|   auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
 | |
| 
 | |
|   // Look for parameters of an enclosing generic lambda. We don't create a
 | |
|   // template parameter scope for these.
 | |
|   for (FunctionScopeInfo *FSI : getFunctionScopes()) {
 | |
|     if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
 | |
|       if (!LSI->TemplateParams.empty()) {
 | |
|         ParamsAtDepth(LSI->AutoTemplateParameterDepth);
 | |
|         break;
 | |
|       }
 | |
|       if (LSI->GLTemplateParameterList) {
 | |
|         ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Look for parameters of an enclosing terse function template. We don't
 | |
|   // create a template parameter scope for these either.
 | |
|   for (const InventedTemplateParameterInfo &Info :
 | |
|        getInventedParameterInfos()) {
 | |
|     if (!Info.TemplateParams.empty()) {
 | |
|       ParamsAtDepth(Info.AutoTemplateParameterDepth);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Depth;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the declaration found is acceptable as the name
 | |
| /// of a template and, if so, return that template declaration. Otherwise,
 | |
| /// returns null.
 | |
| ///
 | |
| /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
 | |
| /// is true. In all other cases it will return a TemplateDecl (or null).
 | |
| NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
 | |
|                                        bool AllowFunctionTemplates,
 | |
|                                        bool AllowDependent) {
 | |
|   D = D->getUnderlyingDecl();
 | |
| 
 | |
|   if (isa<TemplateDecl>(D)) {
 | |
|     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
 | |
|       return nullptr;
 | |
| 
 | |
|     return D;
 | |
|   }
 | |
| 
 | |
|   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
 | |
|     // C++ [temp.local]p1:
 | |
|     //   Like normal (non-template) classes, class templates have an
 | |
|     //   injected-class-name (Clause 9). The injected-class-name
 | |
|     //   can be used with or without a template-argument-list. When
 | |
|     //   it is used without a template-argument-list, it is
 | |
|     //   equivalent to the injected-class-name followed by the
 | |
|     //   template-parameters of the class template enclosed in
 | |
|     //   <>. When it is used with a template-argument-list, it
 | |
|     //   refers to the specified class template specialization,
 | |
|     //   which could be the current specialization or another
 | |
|     //   specialization.
 | |
|     if (Record->isInjectedClassName()) {
 | |
|       Record = cast<CXXRecordDecl>(Record->getDeclContext());
 | |
|       if (Record->getDescribedClassTemplate())
 | |
|         return Record->getDescribedClassTemplate();
 | |
| 
 | |
|       if (ClassTemplateSpecializationDecl *Spec
 | |
|             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
 | |
|         return Spec->getSpecializedTemplate();
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // 'using Dependent::foo;' can resolve to a template name.
 | |
|   // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
 | |
|   // injected-class-name).
 | |
|   if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
 | |
|     return D;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void Sema::FilterAcceptableTemplateNames(LookupResult &R,
 | |
|                                          bool AllowFunctionTemplates,
 | |
|                                          bool AllowDependent) {
 | |
|   LookupResult::Filter filter = R.makeFilter();
 | |
|   while (filter.hasNext()) {
 | |
|     NamedDecl *Orig = filter.next();
 | |
|     if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
 | |
|       filter.erase();
 | |
|   }
 | |
|   filter.done();
 | |
| }
 | |
| 
 | |
| bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
 | |
|                                          bool AllowFunctionTemplates,
 | |
|                                          bool AllowDependent,
 | |
|                                          bool AllowNonTemplateFunctions) {
 | |
|   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
 | |
|     if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
 | |
|       return true;
 | |
|     if (AllowNonTemplateFunctions &&
 | |
|         isa<FunctionDecl>((*I)->getUnderlyingDecl()))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| TemplateNameKind Sema::isTemplateName(Scope *S,
 | |
|                                       CXXScopeSpec &SS,
 | |
|                                       bool hasTemplateKeyword,
 | |
|                                       const UnqualifiedId &Name,
 | |
|                                       ParsedType ObjectTypePtr,
 | |
|                                       bool EnteringContext,
 | |
|                                       TemplateTy &TemplateResult,
 | |
|                                       bool &MemberOfUnknownSpecialization) {
 | |
|   assert(getLangOpts().CPlusPlus && "No template names in C!");
 | |
| 
 | |
|   DeclarationName TName;
 | |
|   MemberOfUnknownSpecialization = false;
 | |
| 
 | |
|   switch (Name.getKind()) {
 | |
|   case UnqualifiedIdKind::IK_Identifier:
 | |
|     TName = DeclarationName(Name.Identifier);
 | |
|     break;
 | |
| 
 | |
|   case UnqualifiedIdKind::IK_OperatorFunctionId:
 | |
|     TName = Context.DeclarationNames.getCXXOperatorName(
 | |
|                                               Name.OperatorFunctionId.Operator);
 | |
|     break;
 | |
| 
 | |
|   case UnqualifiedIdKind::IK_LiteralOperatorId:
 | |
|     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     return TNK_Non_template;
 | |
|   }
 | |
| 
 | |
|   QualType ObjectType = ObjectTypePtr.get();
 | |
| 
 | |
|   AssumedTemplateKind AssumedTemplate;
 | |
|   LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
 | |
|   if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
 | |
|                          MemberOfUnknownSpecialization, SourceLocation(),
 | |
|                          &AssumedTemplate))
 | |
|     return TNK_Non_template;
 | |
| 
 | |
|   if (AssumedTemplate != AssumedTemplateKind::None) {
 | |
|     TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
 | |
|     // Let the parser know whether we found nothing or found functions; if we
 | |
|     // found nothing, we want to more carefully check whether this is actually
 | |
|     // a function template name versus some other kind of undeclared identifier.
 | |
|     return AssumedTemplate == AssumedTemplateKind::FoundNothing
 | |
|                ? TNK_Undeclared_template
 | |
|                : TNK_Function_template;
 | |
|   }
 | |
| 
 | |
|   if (R.empty())
 | |
|     return TNK_Non_template;
 | |
| 
 | |
|   NamedDecl *D = nullptr;
 | |
|   if (R.isAmbiguous()) {
 | |
|     // If we got an ambiguity involving a non-function template, treat this
 | |
|     // as a template name, and pick an arbitrary template for error recovery.
 | |
|     bool AnyFunctionTemplates = false;
 | |
|     for (NamedDecl *FoundD : R) {
 | |
|       if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
 | |
|         if (isa<FunctionTemplateDecl>(FoundTemplate))
 | |
|           AnyFunctionTemplates = true;
 | |
|         else {
 | |
|           D = FoundTemplate;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we didn't find any templates at all, this isn't a template name.
 | |
|     // Leave the ambiguity for a later lookup to diagnose.
 | |
|     if (!D && !AnyFunctionTemplates) {
 | |
|       R.suppressDiagnostics();
 | |
|       return TNK_Non_template;
 | |
|     }
 | |
| 
 | |
|     // If the only templates were function templates, filter out the rest.
 | |
|     // We'll diagnose the ambiguity later.
 | |
|     if (!D)
 | |
|       FilterAcceptableTemplateNames(R);
 | |
|   }
 | |
| 
 | |
|   // At this point, we have either picked a single template name declaration D
 | |
|   // or we have a non-empty set of results R containing either one template name
 | |
|   // declaration or a set of function templates.
 | |
| 
 | |
|   TemplateName Template;
 | |
|   TemplateNameKind TemplateKind;
 | |
| 
 | |
|   unsigned ResultCount = R.end() - R.begin();
 | |
|   if (!D && ResultCount > 1) {
 | |
|     // We assume that we'll preserve the qualifier from a function
 | |
|     // template name in other ways.
 | |
|     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
 | |
|     TemplateKind = TNK_Function_template;
 | |
| 
 | |
|     // We'll do this lookup again later.
 | |
|     R.suppressDiagnostics();
 | |
|   } else {
 | |
|     if (!D) {
 | |
|       D = getAsTemplateNameDecl(*R.begin());
 | |
|       assert(D && "unambiguous result is not a template name");
 | |
|     }
 | |
| 
 | |
|     if (isa<UnresolvedUsingValueDecl>(D)) {
 | |
|       // We don't yet know whether this is a template-name or not.
 | |
|       MemberOfUnknownSpecialization = true;
 | |
|       return TNK_Non_template;
 | |
|     }
 | |
| 
 | |
|     TemplateDecl *TD = cast<TemplateDecl>(D);
 | |
| 
 | |
|     if (SS.isSet() && !SS.isInvalid()) {
 | |
|       NestedNameSpecifier *Qualifier = SS.getScopeRep();
 | |
|       Template = Context.getQualifiedTemplateName(Qualifier,
 | |
|                                                   hasTemplateKeyword, TD);
 | |
|     } else {
 | |
|       Template = TemplateName(TD);
 | |
|     }
 | |
| 
 | |
|     if (isa<FunctionTemplateDecl>(TD)) {
 | |
|       TemplateKind = TNK_Function_template;
 | |
| 
 | |
|       // We'll do this lookup again later.
 | |
|       R.suppressDiagnostics();
 | |
|     } else {
 | |
|       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
 | |
|              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
 | |
|              isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
 | |
|       TemplateKind =
 | |
|           isa<VarTemplateDecl>(TD) ? TNK_Var_template :
 | |
|           isa<ConceptDecl>(TD) ? TNK_Concept_template :
 | |
|           TNK_Type_template;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TemplateResult = TemplateTy::make(Template);
 | |
|   return TemplateKind;
 | |
| }
 | |
| 
 | |
| bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
 | |
|                                 SourceLocation NameLoc,
 | |
|                                 ParsedTemplateTy *Template) {
 | |
|   CXXScopeSpec SS;
 | |
|   bool MemberOfUnknownSpecialization = false;
 | |
| 
 | |
|   // We could use redeclaration lookup here, but we don't need to: the
 | |
|   // syntactic form of a deduction guide is enough to identify it even
 | |
|   // if we can't look up the template name at all.
 | |
|   LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
 | |
|   if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
 | |
|                          /*EnteringContext*/ false,
 | |
|                          MemberOfUnknownSpecialization))
 | |
|     return false;
 | |
| 
 | |
|   if (R.empty()) return false;
 | |
|   if (R.isAmbiguous()) {
 | |
|     // FIXME: Diagnose an ambiguity if we find at least one template.
 | |
|     R.suppressDiagnostics();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We only treat template-names that name type templates as valid deduction
 | |
|   // guide names.
 | |
|   TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
 | |
|   if (!TD || !getAsTypeTemplateDecl(TD))
 | |
|     return false;
 | |
| 
 | |
|   if (Template)
 | |
|     *Template = TemplateTy::make(TemplateName(TD));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
 | |
|                                        SourceLocation IILoc,
 | |
|                                        Scope *S,
 | |
|                                        const CXXScopeSpec *SS,
 | |
|                                        TemplateTy &SuggestedTemplate,
 | |
|                                        TemplateNameKind &SuggestedKind) {
 | |
|   // We can't recover unless there's a dependent scope specifier preceding the
 | |
|   // template name.
 | |
|   // FIXME: Typo correction?
 | |
|   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
 | |
|       computeDeclContext(*SS))
 | |
|     return false;
 | |
| 
 | |
|   // The code is missing a 'template' keyword prior to the dependent template
 | |
|   // name.
 | |
|   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
 | |
|   Diag(IILoc, diag::err_template_kw_missing)
 | |
|     << Qualifier << II.getName()
 | |
|     << FixItHint::CreateInsertion(IILoc, "template ");
 | |
|   SuggestedTemplate
 | |
|     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
 | |
|   SuggestedKind = TNK_Dependent_template_name;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Sema::LookupTemplateName(LookupResult &Found,
 | |
|                               Scope *S, CXXScopeSpec &SS,
 | |
|                               QualType ObjectType,
 | |
|                               bool EnteringContext,
 | |
|                               bool &MemberOfUnknownSpecialization,
 | |
|                               SourceLocation TemplateKWLoc,
 | |
|                               AssumedTemplateKind *ATK) {
 | |
|   if (ATK)
 | |
|     *ATK = AssumedTemplateKind::None;
 | |
| 
 | |
|   Found.setTemplateNameLookup(true);
 | |
| 
 | |
|   // Determine where to perform name lookup
 | |
|   MemberOfUnknownSpecialization = false;
 | |
|   DeclContext *LookupCtx = nullptr;
 | |
|   bool IsDependent = false;
 | |
|   if (!ObjectType.isNull()) {
 | |
|     // This nested-name-specifier occurs in a member access expression, e.g.,
 | |
|     // x->B::f, and we are looking into the type of the object.
 | |
|     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
 | |
|     LookupCtx = computeDeclContext(ObjectType);
 | |
|     IsDependent = !LookupCtx && ObjectType->isDependentType();
 | |
|     assert((IsDependent || !ObjectType->isIncompleteType() ||
 | |
|             ObjectType->castAs<TagType>()->isBeingDefined()) &&
 | |
|            "Caller should have completed object type");
 | |
| 
 | |
|     // Template names cannot appear inside an Objective-C class or object type
 | |
|     // or a vector type.
 | |
|     //
 | |
|     // FIXME: This is wrong. For example:
 | |
|     //
 | |
|     //   template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
 | |
|     //   Vec<int> vi;
 | |
|     //   vi.Vec<int>::~Vec<int>();
 | |
|     //
 | |
|     // ... should be accepted but we will not treat 'Vec' as a template name
 | |
|     // here. The right thing to do would be to check if the name is a valid
 | |
|     // vector component name, and look up a template name if not. And similarly
 | |
|     // for lookups into Objective-C class and object types, where the same
 | |
|     // problem can arise.
 | |
|     if (ObjectType->isObjCObjectOrInterfaceType() ||
 | |
|         ObjectType->isVectorType()) {
 | |
|       Found.clear();
 | |
|       return false;
 | |
|     }
 | |
|   } else if (SS.isSet()) {
 | |
|     // This nested-name-specifier occurs after another nested-name-specifier,
 | |
|     // so long into the context associated with the prior nested-name-specifier.
 | |
|     LookupCtx = computeDeclContext(SS, EnteringContext);
 | |
|     IsDependent = !LookupCtx;
 | |
| 
 | |
|     // The declaration context must be complete.
 | |
|     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   bool ObjectTypeSearchedInScope = false;
 | |
|   bool AllowFunctionTemplatesInLookup = true;
 | |
|   if (LookupCtx) {
 | |
|     // Perform "qualified" name lookup into the declaration context we
 | |
|     // computed, which is either the type of the base of a member access
 | |
|     // expression or the declaration context associated with a prior
 | |
|     // nested-name-specifier.
 | |
|     LookupQualifiedName(Found, LookupCtx);
 | |
| 
 | |
|     // FIXME: The C++ standard does not clearly specify what happens in the
 | |
|     // case where the object type is dependent, and implementations vary. In
 | |
|     // Clang, we treat a name after a . or -> as a template-name if lookup
 | |
|     // finds a non-dependent member or member of the current instantiation that
 | |
|     // is a type template, or finds no such members and lookup in the context
 | |
|     // of the postfix-expression finds a type template. In the latter case, the
 | |
|     // name is nonetheless dependent, and we may resolve it to a member of an
 | |
|     // unknown specialization when we come to instantiate the template.
 | |
|     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
 | |
|   }
 | |
| 
 | |
|   if (!SS.isSet() && (ObjectType.isNull() || Found.empty())) {
 | |
|     // C++ [basic.lookup.classref]p1:
 | |
|     //   In a class member access expression (5.2.5), if the . or -> token is
 | |
|     //   immediately followed by an identifier followed by a <, the
 | |
|     //   identifier must be looked up to determine whether the < is the
 | |
|     //   beginning of a template argument list (14.2) or a less-than operator.
 | |
|     //   The identifier is first looked up in the class of the object
 | |
|     //   expression. If the identifier is not found, it is then looked up in
 | |
|     //   the context of the entire postfix-expression and shall name a class
 | |
|     //   template.
 | |
|     if (S)
 | |
|       LookupName(Found, S);
 | |
| 
 | |
|     if (!ObjectType.isNull()) {
 | |
|       //  FIXME: We should filter out all non-type templates here, particularly
 | |
|       //  variable templates and concepts. But the exclusion of alias templates
 | |
|       //  and template template parameters is a wording defect.
 | |
|       AllowFunctionTemplatesInLookup = false;
 | |
|       ObjectTypeSearchedInScope = true;
 | |
|     }
 | |
| 
 | |
|     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
 | |
|   }
 | |
| 
 | |
|   if (Found.isAmbiguous())
 | |
|     return false;
 | |
| 
 | |
|   if (ATK && !SS.isSet() && ObjectType.isNull() && TemplateKWLoc.isInvalid()) {
 | |
|     // C++2a [temp.names]p2:
 | |
|     //   A name is also considered to refer to a template if it is an
 | |
|     //   unqualified-id followed by a < and name lookup finds either one or more
 | |
|     //   functions or finds nothing.
 | |
|     //
 | |
|     // To keep our behavior consistent, we apply the "finds nothing" part in
 | |
|     // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
 | |
|     // successfully form a call to an undeclared template-id.
 | |
|     bool AllFunctions =
 | |
|         getLangOpts().CPlusPlus2a &&
 | |
|         std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) {
 | |
|           return isa<FunctionDecl>(ND->getUnderlyingDecl());
 | |
|         });
 | |
|     if (AllFunctions || (Found.empty() && !IsDependent)) {
 | |
|       // If lookup found any functions, or if this is a name that can only be
 | |
|       // used for a function, then strongly assume this is a function
 | |
|       // template-id.
 | |
|       *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
 | |
|                  ? AssumedTemplateKind::FoundNothing
 | |
|                  : AssumedTemplateKind::FoundFunctions;
 | |
|       Found.clear();
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Found.empty() && !IsDependent) {
 | |
|     // If we did not find any names, attempt to correct any typos.
 | |
|     DeclarationName Name = Found.getLookupName();
 | |
|     Found.clear();
 | |
|     // Simple filter callback that, for keywords, only accepts the C++ *_cast
 | |
|     DefaultFilterCCC FilterCCC{};
 | |
|     FilterCCC.WantTypeSpecifiers = false;
 | |
|     FilterCCC.WantExpressionKeywords = false;
 | |
|     FilterCCC.WantRemainingKeywords = false;
 | |
|     FilterCCC.WantCXXNamedCasts = true;
 | |
|     if (TypoCorrection Corrected =
 | |
|             CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
 | |
|                         &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
 | |
|       if (auto *ND = Corrected.getFoundDecl())
 | |
|         Found.addDecl(ND);
 | |
|       FilterAcceptableTemplateNames(Found);
 | |
|       if (Found.isAmbiguous()) {
 | |
|         Found.clear();
 | |
|       } else if (!Found.empty()) {
 | |
|         Found.setLookupName(Corrected.getCorrection());
 | |
|         if (LookupCtx) {
 | |
|           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | |
|           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
 | |
|                                   Name.getAsString() == CorrectedStr;
 | |
|           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
 | |
|                                     << Name << LookupCtx << DroppedSpecifier
 | |
|                                     << SS.getRange());
 | |
|         } else {
 | |
|           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NamedDecl *ExampleLookupResult =
 | |
|       Found.empty() ? nullptr : Found.getRepresentativeDecl();
 | |
|   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
 | |
|   if (Found.empty()) {
 | |
|     if (IsDependent) {
 | |
|       MemberOfUnknownSpecialization = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If a 'template' keyword was used, a lookup that finds only non-template
 | |
|     // names is an error.
 | |
|     if (ExampleLookupResult && TemplateKWLoc.isValid()) {
 | |
|       Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
 | |
|         << Found.getLookupName() << SS.getRange();
 | |
|       Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
 | |
|            diag::note_template_kw_refers_to_non_template)
 | |
|           << Found.getLookupName();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
 | |
|       !getLangOpts().CPlusPlus11) {
 | |
|     // C++03 [basic.lookup.classref]p1:
 | |
|     //   [...] If the lookup in the class of the object expression finds a
 | |
|     //   template, the name is also looked up in the context of the entire
 | |
|     //   postfix-expression and [...]
 | |
|     //
 | |
|     // Note: C++11 does not perform this second lookup.
 | |
|     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
 | |
|                             LookupOrdinaryName);
 | |
|     FoundOuter.setTemplateNameLookup(true);
 | |
|     LookupName(FoundOuter, S);
 | |
|     // FIXME: We silently accept an ambiguous lookup here, in violation of
 | |
|     // [basic.lookup]/1.
 | |
|     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
 | |
| 
 | |
|     NamedDecl *OuterTemplate;
 | |
|     if (FoundOuter.empty()) {
 | |
|       //   - if the name is not found, the name found in the class of the
 | |
|       //     object expression is used, otherwise
 | |
|     } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
 | |
|                !(OuterTemplate =
 | |
|                      getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
 | |
|       //   - if the name is found in the context of the entire
 | |
|       //     postfix-expression and does not name a class template, the name
 | |
|       //     found in the class of the object expression is used, otherwise
 | |
|       FoundOuter.clear();
 | |
|     } else if (!Found.isSuppressingDiagnostics()) {
 | |
|       //   - if the name found is a class template, it must refer to the same
 | |
|       //     entity as the one found in the class of the object expression,
 | |
|       //     otherwise the program is ill-formed.
 | |
|       if (!Found.isSingleResult() ||
 | |
|           getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
 | |
|               OuterTemplate->getCanonicalDecl()) {
 | |
|         Diag(Found.getNameLoc(),
 | |
|              diag::ext_nested_name_member_ref_lookup_ambiguous)
 | |
|           << Found.getLookupName()
 | |
|           << ObjectType;
 | |
|         Diag(Found.getRepresentativeDecl()->getLocation(),
 | |
|              diag::note_ambig_member_ref_object_type)
 | |
|           << ObjectType;
 | |
|         Diag(FoundOuter.getFoundDecl()->getLocation(),
 | |
|              diag::note_ambig_member_ref_scope);
 | |
| 
 | |
|         // Recover by taking the template that we found in the object
 | |
|         // expression's type.
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
 | |
|                                               SourceLocation Less,
 | |
|                                               SourceLocation Greater) {
 | |
|   if (TemplateName.isInvalid())
 | |
|     return;
 | |
| 
 | |
|   DeclarationNameInfo NameInfo;
 | |
|   CXXScopeSpec SS;
 | |
|   LookupNameKind LookupKind;
 | |
| 
 | |
|   DeclContext *LookupCtx = nullptr;
 | |
|   NamedDecl *Found = nullptr;
 | |
|   bool MissingTemplateKeyword = false;
 | |
| 
 | |
|   // Figure out what name we looked up.
 | |
|   if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
 | |
|     NameInfo = DRE->getNameInfo();
 | |
|     SS.Adopt(DRE->getQualifierLoc());
 | |
|     LookupKind = LookupOrdinaryName;
 | |
|     Found = DRE->getFoundDecl();
 | |
|   } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
 | |
|     NameInfo = ME->getMemberNameInfo();
 | |
|     SS.Adopt(ME->getQualifierLoc());
 | |
|     LookupKind = LookupMemberName;
 | |
|     LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
 | |
|     Found = ME->getMemberDecl();
 | |
|   } else if (auto *DSDRE =
 | |
|                  dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
 | |
|     NameInfo = DSDRE->getNameInfo();
 | |
|     SS.Adopt(DSDRE->getQualifierLoc());
 | |
|     MissingTemplateKeyword = true;
 | |
|   } else if (auto *DSME =
 | |
|                  dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
 | |
|     NameInfo = DSME->getMemberNameInfo();
 | |
|     SS.Adopt(DSME->getQualifierLoc());
 | |
|     MissingTemplateKeyword = true;
 | |
|   } else {
 | |
|     llvm_unreachable("unexpected kind of potential template name");
 | |
|   }
 | |
| 
 | |
|   // If this is a dependent-scope lookup, diagnose that the 'template' keyword
 | |
|   // was missing.
 | |
|   if (MissingTemplateKeyword) {
 | |
|     Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
 | |
|         << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Try to correct the name by looking for templates and C++ named casts.
 | |
|   struct TemplateCandidateFilter : CorrectionCandidateCallback {
 | |
|     Sema &S;
 | |
|     TemplateCandidateFilter(Sema &S) : S(S) {
 | |
|       WantTypeSpecifiers = false;
 | |
|       WantExpressionKeywords = false;
 | |
|       WantRemainingKeywords = false;
 | |
|       WantCXXNamedCasts = true;
 | |
|     };
 | |
|     bool ValidateCandidate(const TypoCorrection &Candidate) override {
 | |
|       if (auto *ND = Candidate.getCorrectionDecl())
 | |
|         return S.getAsTemplateNameDecl(ND);
 | |
|       return Candidate.isKeyword();
 | |
|     }
 | |
| 
 | |
|     std::unique_ptr<CorrectionCandidateCallback> clone() override {
 | |
|       return std::make_unique<TemplateCandidateFilter>(*this);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   TemplateCandidateFilter CCC(*this);
 | |
|   if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
 | |
|                                              CTK_ErrorRecovery, LookupCtx)) {
 | |
|     auto *ND = Corrected.getFoundDecl();
 | |
|     if (ND)
 | |
|       ND = getAsTemplateNameDecl(ND);
 | |
|     if (ND || Corrected.isKeyword()) {
 | |
|       if (LookupCtx) {
 | |
|         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | |
|         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
 | |
|                                 Name.getAsString() == CorrectedStr;
 | |
|         diagnoseTypo(Corrected,
 | |
|                      PDiag(diag::err_non_template_in_member_template_id_suggest)
 | |
|                          << Name << LookupCtx << DroppedSpecifier
 | |
|                          << SS.getRange(), false);
 | |
|       } else {
 | |
|         diagnoseTypo(Corrected,
 | |
|                      PDiag(diag::err_non_template_in_template_id_suggest)
 | |
|                          << Name, false);
 | |
|       }
 | |
|       if (Found)
 | |
|         Diag(Found->getLocation(),
 | |
|              diag::note_non_template_in_template_id_found);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
 | |
|     << Name << SourceRange(Less, Greater);
 | |
|   if (Found)
 | |
|     Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
 | |
| }
 | |
| 
 | |
| /// ActOnDependentIdExpression - Handle a dependent id-expression that
 | |
| /// was just parsed.  This is only possible with an explicit scope
 | |
| /// specifier naming a dependent type.
 | |
| ExprResult
 | |
| Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
 | |
|                                  SourceLocation TemplateKWLoc,
 | |
|                                  const DeclarationNameInfo &NameInfo,
 | |
|                                  bool isAddressOfOperand,
 | |
|                            const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   DeclContext *DC = getFunctionLevelDeclContext();
 | |
| 
 | |
|   // C++11 [expr.prim.general]p12:
 | |
|   //   An id-expression that denotes a non-static data member or non-static
 | |
|   //   member function of a class can only be used:
 | |
|   //   (...)
 | |
|   //   - if that id-expression denotes a non-static data member and it
 | |
|   //     appears in an unevaluated operand.
 | |
|   //
 | |
|   // If this might be the case, form a DependentScopeDeclRefExpr instead of a
 | |
|   // CXXDependentScopeMemberExpr. The former can instantiate to either
 | |
|   // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
 | |
|   // always a MemberExpr.
 | |
|   bool MightBeCxx11UnevalField =
 | |
|       getLangOpts().CPlusPlus11 && isUnevaluatedContext();
 | |
| 
 | |
|   // Check if the nested name specifier is an enum type.
 | |
|   bool IsEnum = false;
 | |
|   if (NestedNameSpecifier *NNS = SS.getScopeRep())
 | |
|     IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
 | |
| 
 | |
|   if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
 | |
|       isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
 | |
|     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
 | |
| 
 | |
|     // Since the 'this' expression is synthesized, we don't need to
 | |
|     // perform the double-lookup check.
 | |
|     NamedDecl *FirstQualifierInScope = nullptr;
 | |
| 
 | |
|     return CXXDependentScopeMemberExpr::Create(
 | |
|         Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
 | |
|         /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
 | |
|         FirstQualifierInScope, NameInfo, TemplateArgs);
 | |
|   }
 | |
| 
 | |
|   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
 | |
|                                 SourceLocation TemplateKWLoc,
 | |
|                                 const DeclarationNameInfo &NameInfo,
 | |
|                                 const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
 | |
|   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | |
|   if (!QualifierLoc)
 | |
|     return ExprError();
 | |
| 
 | |
|   return DependentScopeDeclRefExpr::Create(
 | |
|       Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Determine whether we would be unable to instantiate this template (because
 | |
| /// it either has no definition, or is in the process of being instantiated).
 | |
| bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
 | |
|                                           NamedDecl *Instantiation,
 | |
|                                           bool InstantiatedFromMember,
 | |
|                                           const NamedDecl *Pattern,
 | |
|                                           const NamedDecl *PatternDef,
 | |
|                                           TemplateSpecializationKind TSK,
 | |
|                                           bool Complain /*= true*/) {
 | |
|   assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
 | |
|          isa<VarDecl>(Instantiation));
 | |
| 
 | |
|   bool IsEntityBeingDefined = false;
 | |
|   if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
 | |
|     IsEntityBeingDefined = TD->isBeingDefined();
 | |
| 
 | |
|   if (PatternDef && !IsEntityBeingDefined) {
 | |
|     NamedDecl *SuggestedDef = nullptr;
 | |
|     if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
 | |
|                               /*OnlyNeedComplete*/false)) {
 | |
|       // If we're allowed to diagnose this and recover, do so.
 | |
|       bool Recover = Complain && !isSFINAEContext();
 | |
|       if (Complain)
 | |
|         diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
 | |
|                               Sema::MissingImportKind::Definition, Recover);
 | |
|       return !Recover;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
 | |
|     return true;
 | |
| 
 | |
|   llvm::Optional<unsigned> Note;
 | |
|   QualType InstantiationTy;
 | |
|   if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
 | |
|     InstantiationTy = Context.getTypeDeclType(TD);
 | |
|   if (PatternDef) {
 | |
|     Diag(PointOfInstantiation,
 | |
|          diag::err_template_instantiate_within_definition)
 | |
|       << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
 | |
|       << InstantiationTy;
 | |
|     // Not much point in noting the template declaration here, since
 | |
|     // we're lexically inside it.
 | |
|     Instantiation->setInvalidDecl();
 | |
|   } else if (InstantiatedFromMember) {
 | |
|     if (isa<FunctionDecl>(Instantiation)) {
 | |
|       Diag(PointOfInstantiation,
 | |
|            diag::err_explicit_instantiation_undefined_member)
 | |
|         << /*member function*/ 1 << Instantiation->getDeclName()
 | |
|         << Instantiation->getDeclContext();
 | |
|       Note = diag::note_explicit_instantiation_here;
 | |
|     } else {
 | |
|       assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
 | |
|       Diag(PointOfInstantiation,
 | |
|            diag::err_implicit_instantiate_member_undefined)
 | |
|         << InstantiationTy;
 | |
|       Note = diag::note_member_declared_at;
 | |
|     }
 | |
|   } else {
 | |
|     if (isa<FunctionDecl>(Instantiation)) {
 | |
|       Diag(PointOfInstantiation,
 | |
|            diag::err_explicit_instantiation_undefined_func_template)
 | |
|         << Pattern;
 | |
|       Note = diag::note_explicit_instantiation_here;
 | |
|     } else if (isa<TagDecl>(Instantiation)) {
 | |
|       Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
 | |
|         << (TSK != TSK_ImplicitInstantiation)
 | |
|         << InstantiationTy;
 | |
|       Note = diag::note_template_decl_here;
 | |
|     } else {
 | |
|       assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
 | |
|       if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
 | |
|         Diag(PointOfInstantiation,
 | |
|              diag::err_explicit_instantiation_undefined_var_template)
 | |
|           << Instantiation;
 | |
|         Instantiation->setInvalidDecl();
 | |
|       } else
 | |
|         Diag(PointOfInstantiation,
 | |
|              diag::err_explicit_instantiation_undefined_member)
 | |
|           << /*static data member*/ 2 << Instantiation->getDeclName()
 | |
|           << Instantiation->getDeclContext();
 | |
|       Note = diag::note_explicit_instantiation_here;
 | |
|     }
 | |
|   }
 | |
|   if (Note) // Diagnostics were emitted.
 | |
|     Diag(Pattern->getLocation(), Note.getValue());
 | |
| 
 | |
|   // In general, Instantiation isn't marked invalid to get more than one
 | |
|   // error for multiple undefined instantiations. But the code that does
 | |
|   // explicit declaration -> explicit definition conversion can't handle
 | |
|   // invalid declarations, so mark as invalid in that case.
 | |
|   if (TSK == TSK_ExplicitInstantiationDeclaration)
 | |
|     Instantiation->setInvalidDecl();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
 | |
| /// that the template parameter 'PrevDecl' is being shadowed by a new
 | |
| /// declaration at location Loc. Returns true to indicate that this is
 | |
| /// an error, and false otherwise.
 | |
| void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
 | |
|   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
 | |
| 
 | |
|   // C++ [temp.local]p4:
 | |
|   //   A template-parameter shall not be redeclared within its
 | |
|   //   scope (including nested scopes).
 | |
|   //
 | |
|   // Make this a warning when MSVC compatibility is requested.
 | |
|   unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
 | |
|                                              : diag::err_template_param_shadow;
 | |
|   Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
 | |
|   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
 | |
| }
 | |
| 
 | |
| /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
 | |
| /// the parameter D to reference the templated declaration and return a pointer
 | |
| /// to the template declaration. Otherwise, do nothing to D and return null.
 | |
| TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
 | |
|   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
 | |
|     D = Temp->getTemplatedDecl();
 | |
|     return Temp;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
 | |
|                                              SourceLocation EllipsisLoc) const {
 | |
|   assert(Kind == Template &&
 | |
|          "Only template template arguments can be pack expansions here");
 | |
|   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
 | |
|          "Template template argument pack expansion without packs");
 | |
|   ParsedTemplateArgument Result(*this);
 | |
|   Result.EllipsisLoc = EllipsisLoc;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
 | |
|                                             const ParsedTemplateArgument &Arg) {
 | |
| 
 | |
|   switch (Arg.getKind()) {
 | |
|   case ParsedTemplateArgument::Type: {
 | |
|     TypeSourceInfo *DI;
 | |
|     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
 | |
|     if (!DI)
 | |
|       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
 | |
|     return TemplateArgumentLoc(TemplateArgument(T), DI);
 | |
|   }
 | |
| 
 | |
|   case ParsedTemplateArgument::NonType: {
 | |
|     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
 | |
|     return TemplateArgumentLoc(TemplateArgument(E), E);
 | |
|   }
 | |
| 
 | |
|   case ParsedTemplateArgument::Template: {
 | |
|     TemplateName Template = Arg.getAsTemplate().get();
 | |
|     TemplateArgument TArg;
 | |
|     if (Arg.getEllipsisLoc().isValid())
 | |
|       TArg = TemplateArgument(Template, Optional<unsigned int>());
 | |
|     else
 | |
|       TArg = Template;
 | |
|     return TemplateArgumentLoc(TArg,
 | |
|                                Arg.getScopeSpec().getWithLocInContext(
 | |
|                                                               SemaRef.Context),
 | |
|                                Arg.getLocation(),
 | |
|                                Arg.getEllipsisLoc());
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled parsed template argument");
 | |
| }
 | |
| 
 | |
| /// Translates template arguments as provided by the parser
 | |
| /// into template arguments used by semantic analysis.
 | |
| void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
 | |
|                                       TemplateArgumentListInfo &TemplateArgs) {
 | |
|  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
 | |
|    TemplateArgs.addArgument(translateTemplateArgument(*this,
 | |
|                                                       TemplateArgsIn[I]));
 | |
| }
 | |
| 
 | |
| static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
 | |
|                                                  SourceLocation Loc,
 | |
|                                                  IdentifierInfo *Name) {
 | |
|   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
 | |
|       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
 | |
|   if (PrevDecl && PrevDecl->isTemplateParameter())
 | |
|     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
 | |
| }
 | |
| 
 | |
| /// Convert a parsed type into a parsed template argument. This is mostly
 | |
| /// trivial, except that we may have parsed a C++17 deduced class template
 | |
| /// specialization type, in which case we should form a template template
 | |
| /// argument instead of a type template argument.
 | |
| ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
 | |
|   TypeSourceInfo *TInfo;
 | |
|   QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
 | |
|   if (T.isNull())
 | |
|     return ParsedTemplateArgument();
 | |
|   assert(TInfo && "template argument with no location");
 | |
| 
 | |
|   // If we might have formed a deduced template specialization type, convert
 | |
|   // it to a template template argument.
 | |
|   if (getLangOpts().CPlusPlus17) {
 | |
|     TypeLoc TL = TInfo->getTypeLoc();
 | |
|     SourceLocation EllipsisLoc;
 | |
|     if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
 | |
|       EllipsisLoc = PET.getEllipsisLoc();
 | |
|       TL = PET.getPatternLoc();
 | |
|     }
 | |
| 
 | |
|     CXXScopeSpec SS;
 | |
|     if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
 | |
|       SS.Adopt(ET.getQualifierLoc());
 | |
|       TL = ET.getNamedTypeLoc();
 | |
|     }
 | |
| 
 | |
|     if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
 | |
|       TemplateName Name = DTST.getTypePtr()->getTemplateName();
 | |
|       if (SS.isSet())
 | |
|         Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
 | |
|                                                 /*HasTemplateKeyword*/ false,
 | |
|                                                 Name.getAsTemplateDecl());
 | |
|       ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
 | |
|                                     DTST.getTemplateNameLoc());
 | |
|       if (EllipsisLoc.isValid())
 | |
|         Result = Result.getTemplatePackExpansion(EllipsisLoc);
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This is a normal type template argument. Note, if the type template
 | |
|   // argument is an injected-class-name for a template, it has a dual nature
 | |
|   // and can be used as either a type or a template. We handle that in
 | |
|   // convertTypeTemplateArgumentToTemplate.
 | |
|   return ParsedTemplateArgument(ParsedTemplateArgument::Type,
 | |
|                                 ParsedType.get().getAsOpaquePtr(),
 | |
|                                 TInfo->getTypeLoc().getBeginLoc());
 | |
| }
 | |
| 
 | |
| /// ActOnTypeParameter - Called when a C++ template type parameter
 | |
| /// (e.g., "typename T") has been parsed. Typename specifies whether
 | |
| /// the keyword "typename" was used to declare the type parameter
 | |
| /// (otherwise, "class" was used), and KeyLoc is the location of the
 | |
| /// "class" or "typename" keyword. ParamName is the name of the
 | |
| /// parameter (NULL indicates an unnamed template parameter) and
 | |
| /// ParamNameLoc is the location of the parameter name (if any).
 | |
| /// If the type parameter has a default argument, it will be added
 | |
| /// later via ActOnTypeParameterDefault.
 | |
| NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
 | |
|                                     SourceLocation EllipsisLoc,
 | |
|                                     SourceLocation KeyLoc,
 | |
|                                     IdentifierInfo *ParamName,
 | |
|                                     SourceLocation ParamNameLoc,
 | |
|                                     unsigned Depth, unsigned Position,
 | |
|                                     SourceLocation EqualLoc,
 | |
|                                     ParsedType DefaultArg,
 | |
|                                     bool HasTypeConstraint) {
 | |
|   assert(S->isTemplateParamScope() &&
 | |
|          "Template type parameter not in template parameter scope!");
 | |
| 
 | |
|   bool IsParameterPack = EllipsisLoc.isValid();
 | |
|   TemplateTypeParmDecl *Param
 | |
|     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
 | |
|                                    KeyLoc, ParamNameLoc, Depth, Position,
 | |
|                                    ParamName, Typename, IsParameterPack,
 | |
|                                    HasTypeConstraint);
 | |
|   Param->setAccess(AS_public);
 | |
| 
 | |
|   if (Param->isParameterPack())
 | |
|     if (auto *LSI = getEnclosingLambda())
 | |
|       LSI->LocalPacks.push_back(Param);
 | |
| 
 | |
|   if (ParamName) {
 | |
|     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
 | |
| 
 | |
|     // Add the template parameter into the current scope.
 | |
|     S->AddDecl(Param);
 | |
|     IdResolver.AddDecl(Param);
 | |
|   }
 | |
| 
 | |
|   // C++0x [temp.param]p9:
 | |
|   //   A default template-argument may be specified for any kind of
 | |
|   //   template-parameter that is not a template parameter pack.
 | |
|   if (DefaultArg && IsParameterPack) {
 | |
|     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
 | |
|     DefaultArg = nullptr;
 | |
|   }
 | |
| 
 | |
|   // Handle the default argument, if provided.
 | |
|   if (DefaultArg) {
 | |
|     TypeSourceInfo *DefaultTInfo;
 | |
|     GetTypeFromParser(DefaultArg, &DefaultTInfo);
 | |
| 
 | |
|     assert(DefaultTInfo && "expected source information for type");
 | |
| 
 | |
|     // Check for unexpanded parameter packs.
 | |
|     if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
 | |
|                                         UPPC_DefaultArgument))
 | |
|       return Param;
 | |
| 
 | |
|     // Check the template argument itself.
 | |
|     if (CheckTemplateArgument(Param, DefaultTInfo)) {
 | |
|       Param->setInvalidDecl();
 | |
|       return Param;
 | |
|     }
 | |
| 
 | |
|     Param->setDefaultArgument(DefaultTInfo);
 | |
|   }
 | |
| 
 | |
|   return Param;
 | |
| }
 | |
| 
 | |
| /// Convert the parser's template argument list representation into our form.
 | |
| static TemplateArgumentListInfo
 | |
| makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
 | |
|   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
 | |
|                                         TemplateId.RAngleLoc);
 | |
|   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
 | |
|                                      TemplateId.NumArgs);
 | |
|   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
 | |
|   return TemplateArgs;
 | |
| }
 | |
| 
 | |
| bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
 | |
|                                TemplateIdAnnotation *TypeConstr,
 | |
|                                TemplateTypeParmDecl *ConstrainedParameter,
 | |
|                                SourceLocation EllipsisLoc) {
 | |
|   ConceptDecl *CD =
 | |
|       cast<ConceptDecl>(TypeConstr->Template.get().getAsTemplateDecl());
 | |
| 
 | |
|   // C++2a [temp.param]p4:
 | |
|   //     [...] The concept designated by a type-constraint shall be a type
 | |
|   //     concept ([temp.concept]).
 | |
|   if (!CD->isTypeConcept()) {
 | |
|     Diag(TypeConstr->TemplateNameLoc,
 | |
|          diag::err_type_constraint_non_type_concept);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
 | |
| 
 | |
|   if (!WereArgsSpecified &&
 | |
|       CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
 | |
|     Diag(TypeConstr->TemplateNameLoc,
 | |
|          diag::err_type_constraint_missing_arguments) << CD;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   TemplateArgumentListInfo TemplateArgs;
 | |
|   if (TypeConstr->LAngleLoc.isValid()) {
 | |
|     TemplateArgs =
 | |
|         makeTemplateArgumentListInfo(*this, *TypeConstr);
 | |
|   }
 | |
|   return AttachTypeConstraint(
 | |
|       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
 | |
|       DeclarationNameInfo(DeclarationName(TypeConstr->Name),
 | |
|                           TypeConstr->TemplateNameLoc), CD,
 | |
|       TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
 | |
|       ConstrainedParameter, EllipsisLoc);
 | |
| }
 | |
| 
 | |
| template<typename ArgumentLocAppender>
 | |
| static ExprResult formImmediatelyDeclaredConstraint(
 | |
|     Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
 | |
|     ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
 | |
|     SourceLocation RAngleLoc, QualType ConstrainedType,
 | |
|     SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
 | |
|     SourceLocation EllipsisLoc) {
 | |
| 
 | |
|   TemplateArgumentListInfo ConstraintArgs;
 | |
|   ConstraintArgs.addArgument(
 | |
|     S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
 | |
|                                     /*NTTPType=*/QualType(), ParamNameLoc));
 | |
| 
 | |
|   ConstraintArgs.setRAngleLoc(RAngleLoc);
 | |
|   ConstraintArgs.setLAngleLoc(LAngleLoc);
 | |
|   Appender(ConstraintArgs);
 | |
| 
 | |
|   // C++2a [temp.param]p4:
 | |
|   //     [...] This constraint-expression E is called the immediately-declared
 | |
|   //     constraint of T. [...]
 | |
|   CXXScopeSpec SS;
 | |
|   SS.Adopt(NS);
 | |
|   ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
 | |
|       SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
 | |
|       /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
 | |
|   if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
 | |
|     return ImmediatelyDeclaredConstraint;
 | |
| 
 | |
|   // C++2a [temp.param]p4:
 | |
|   //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
 | |
|   //
 | |
|   // We have the following case:
 | |
|   //
 | |
|   // template<typename T> concept C1 = true;
 | |
|   // template<C1... T> struct s1;
 | |
|   //
 | |
|   // The constraint: (C1<T> && ...)
 | |
|   return S.BuildCXXFoldExpr(/*LParenLoc=*/SourceLocation(),
 | |
|                             ImmediatelyDeclaredConstraint.get(), BO_LAnd,
 | |
|                             EllipsisLoc, /*RHS=*/nullptr,
 | |
|                             /*RParenLoc=*/SourceLocation(),
 | |
|                             /*NumExpansions=*/None);
 | |
| }
 | |
| 
 | |
| /// Attach a type-constraint to a template parameter.
 | |
| /// \returns true if an error occured. This can happen if the
 | |
| /// immediately-declared constraint could not be formed (e.g. incorrect number
 | |
| /// of arguments for the named concept).
 | |
| bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
 | |
|                                 DeclarationNameInfo NameInfo,
 | |
|                                 ConceptDecl *NamedConcept,
 | |
|                                 const TemplateArgumentListInfo *TemplateArgs,
 | |
|                                 TemplateTypeParmDecl *ConstrainedParameter,
 | |
|                                 SourceLocation EllipsisLoc) {
 | |
|   // C++2a [temp.param]p4:
 | |
|   //     [...] If Q is of the form C<A1, ..., An>, then let E' be
 | |
|   //     C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
 | |
|   const ASTTemplateArgumentListInfo *ArgsAsWritten =
 | |
|     TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
 | |
|                                                        *TemplateArgs) : nullptr;
 | |
| 
 | |
|   QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
 | |
| 
 | |
|   ExprResult ImmediatelyDeclaredConstraint =
 | |
|       formImmediatelyDeclaredConstraint(
 | |
|           *this, NS, NameInfo, NamedConcept,
 | |
|           TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
 | |
|           TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
 | |
|           ParamAsArgument, ConstrainedParameter->getLocation(),
 | |
|           [&] (TemplateArgumentListInfo &ConstraintArgs) {
 | |
|             if (TemplateArgs)
 | |
|               for (const auto &ArgLoc : TemplateArgs->arguments())
 | |
|                 ConstraintArgs.addArgument(ArgLoc);
 | |
|           }, EllipsisLoc);
 | |
|   if (ImmediatelyDeclaredConstraint.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   ConstrainedParameter->setTypeConstraint(NS, NameInfo,
 | |
|                                           /*FoundDecl=*/NamedConcept,
 | |
|                                           NamedConcept, ArgsAsWritten,
 | |
|                                           ImmediatelyDeclaredConstraint.get());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP,
 | |
|                                 SourceLocation EllipsisLoc) {
 | |
|   if (NTTP->getType() != TL.getType() ||
 | |
|       TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
 | |
|     Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
 | |
|          diag::err_unsupported_placeholder_constraint)
 | |
|        << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   // FIXME: Concepts: This should be the type of the placeholder, but this is
 | |
|   // unclear in the wording right now.
 | |
|   DeclRefExpr *Ref = BuildDeclRefExpr(NTTP, NTTP->getType(), VK_RValue,
 | |
|                                       NTTP->getLocation());
 | |
|   if (!Ref)
 | |
|     return true;
 | |
|   ExprResult ImmediatelyDeclaredConstraint =
 | |
|       formImmediatelyDeclaredConstraint(
 | |
|           *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
 | |
|           TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
 | |
|           BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(),
 | |
|           [&] (TemplateArgumentListInfo &ConstraintArgs) {
 | |
|             for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
 | |
|               ConstraintArgs.addArgument(TL.getArgLoc(I));
 | |
|           }, EllipsisLoc);
 | |
|   if (ImmediatelyDeclaredConstraint.isInvalid() ||
 | |
|      !ImmediatelyDeclaredConstraint.isUsable())
 | |
|     return true;
 | |
| 
 | |
|   NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check that the type of a non-type template parameter is
 | |
| /// well-formed.
 | |
| ///
 | |
| /// \returns the (possibly-promoted) parameter type if valid;
 | |
| /// otherwise, produces a diagnostic and returns a NULL type.
 | |
| QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
 | |
|                                                  SourceLocation Loc) {
 | |
|   if (TSI->getType()->isUndeducedType()) {
 | |
|     // C++17 [temp.dep.expr]p3:
 | |
|     //   An id-expression is type-dependent if it contains
 | |
|     //    - an identifier associated by name lookup with a non-type
 | |
|     //      template-parameter declared with a type that contains a
 | |
|     //      placeholder type (7.1.7.4),
 | |
|     TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
 | |
|   }
 | |
| 
 | |
|   return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
 | |
| }
 | |
| 
 | |
| QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
 | |
|                                                  SourceLocation Loc) {
 | |
|   // We don't allow variably-modified types as the type of non-type template
 | |
|   // parameters.
 | |
|   if (T->isVariablyModifiedType()) {
 | |
|     Diag(Loc, diag::err_variably_modified_nontype_template_param)
 | |
|       << T;
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.param]p4:
 | |
|   //
 | |
|   // A non-type template-parameter shall have one of the following
 | |
|   // (optionally cv-qualified) types:
 | |
|   //
 | |
|   //       -- integral or enumeration type,
 | |
|   if (T->isIntegralOrEnumerationType() ||
 | |
|       //   -- pointer to object or pointer to function,
 | |
|       T->isPointerType() ||
 | |
|       //   -- reference to object or reference to function,
 | |
|       T->isReferenceType() ||
 | |
|       //   -- pointer to member,
 | |
|       T->isMemberPointerType() ||
 | |
|       //   -- std::nullptr_t.
 | |
|       T->isNullPtrType() ||
 | |
|       // Allow use of auto in template parameter declarations.
 | |
|       T->isUndeducedType()) {
 | |
|     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
 | |
|     // are ignored when determining its type.
 | |
|     return T.getUnqualifiedType();
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.param]p8:
 | |
|   //
 | |
|   //   A non-type template-parameter of type "array of T" or
 | |
|   //   "function returning T" is adjusted to be of type "pointer to
 | |
|   //   T" or "pointer to function returning T", respectively.
 | |
|   if (T->isArrayType() || T->isFunctionType())
 | |
|     return Context.getDecayedType(T);
 | |
| 
 | |
|   // If T is a dependent type, we can't do the check now, so we
 | |
|   // assume that it is well-formed. Note that stripping off the
 | |
|   // qualifiers here is not really correct if T turns out to be
 | |
|   // an array type, but we'll recompute the type everywhere it's
 | |
|   // used during instantiation, so that should be OK. (Using the
 | |
|   // qualified type is equally wrong.)
 | |
|   if (T->isDependentType())
 | |
|     return T.getUnqualifiedType();
 | |
| 
 | |
|   Diag(Loc, diag::err_template_nontype_parm_bad_type)
 | |
|     << T;
 | |
| 
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
 | |
|                                           unsigned Depth,
 | |
|                                           unsigned Position,
 | |
|                                           SourceLocation EqualLoc,
 | |
|                                           Expr *Default) {
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
| 
 | |
|   // Check that we have valid decl-specifiers specified.
 | |
|   auto CheckValidDeclSpecifiers = [this, &D] {
 | |
|     // C++ [temp.param]
 | |
|     // p1
 | |
|     //   template-parameter:
 | |
|     //     ...
 | |
|     //     parameter-declaration
 | |
|     // p2
 | |
|     //   ... A storage class shall not be specified in a template-parameter
 | |
|     //   declaration.
 | |
|     // [dcl.typedef]p1:
 | |
|     //   The typedef specifier [...] shall not be used in the decl-specifier-seq
 | |
|     //   of a parameter-declaration
 | |
|     const DeclSpec &DS = D.getDeclSpec();
 | |
|     auto EmitDiag = [this](SourceLocation Loc) {
 | |
|       Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
 | |
|           << FixItHint::CreateRemoval(Loc);
 | |
|     };
 | |
|     if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
 | |
|       EmitDiag(DS.getStorageClassSpecLoc());
 | |
| 
 | |
|     if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
 | |
|       EmitDiag(DS.getThreadStorageClassSpecLoc());
 | |
| 
 | |
|     // [dcl.inline]p1:
 | |
|     //   The inline specifier can be applied only to the declaration or
 | |
|     //   definition of a variable or function.
 | |
| 
 | |
|     if (DS.isInlineSpecified())
 | |
|       EmitDiag(DS.getInlineSpecLoc());
 | |
| 
 | |
|     // [dcl.constexpr]p1:
 | |
|     //   The constexpr specifier shall be applied only to the definition of a
 | |
|     //   variable or variable template or the declaration of a function or
 | |
|     //   function template.
 | |
| 
 | |
|     if (DS.hasConstexprSpecifier())
 | |
|       EmitDiag(DS.getConstexprSpecLoc());
 | |
| 
 | |
|     // [dcl.fct.spec]p1:
 | |
|     //   Function-specifiers can be used only in function declarations.
 | |
| 
 | |
|     if (DS.isVirtualSpecified())
 | |
|       EmitDiag(DS.getVirtualSpecLoc());
 | |
| 
 | |
|     if (DS.hasExplicitSpecifier())
 | |
|       EmitDiag(DS.getExplicitSpecLoc());
 | |
| 
 | |
|     if (DS.isNoreturnSpecified())
 | |
|       EmitDiag(DS.getNoreturnSpecLoc());
 | |
|   };
 | |
| 
 | |
|   CheckValidDeclSpecifiers();
 | |
| 
 | |
|   if (TInfo->getType()->isUndeducedType()) {
 | |
|     Diag(D.getIdentifierLoc(),
 | |
|          diag::warn_cxx14_compat_template_nontype_parm_auto_type)
 | |
|       << QualType(TInfo->getType()->getContainedAutoType(), 0);
 | |
|   }
 | |
| 
 | |
|   assert(S->isTemplateParamScope() &&
 | |
|          "Non-type template parameter not in template parameter scope!");
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
 | |
|   if (T.isNull()) {
 | |
|     T = Context.IntTy; // Recover with an 'int' type.
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   CheckFunctionOrTemplateParamDeclarator(S, D);
 | |
| 
 | |
|   IdentifierInfo *ParamName = D.getIdentifier();
 | |
|   bool IsParameterPack = D.hasEllipsis();
 | |
|   NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
 | |
|       Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
 | |
|       D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
 | |
|       TInfo);
 | |
|   Param->setAccess(AS_public);
 | |
| 
 | |
|   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
 | |
|     if (TL.isConstrained())
 | |
|       if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc()))
 | |
|         Invalid = true;
 | |
| 
 | |
|   if (Invalid)
 | |
|     Param->setInvalidDecl();
 | |
| 
 | |
|   if (Param->isParameterPack())
 | |
|     if (auto *LSI = getEnclosingLambda())
 | |
|       LSI->LocalPacks.push_back(Param);
 | |
| 
 | |
|   if (ParamName) {
 | |
|     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
 | |
|                                          ParamName);
 | |
| 
 | |
|     // Add the template parameter into the current scope.
 | |
|     S->AddDecl(Param);
 | |
|     IdResolver.AddDecl(Param);
 | |
|   }
 | |
| 
 | |
|   // C++0x [temp.param]p9:
 | |
|   //   A default template-argument may be specified for any kind of
 | |
|   //   template-parameter that is not a template parameter pack.
 | |
|   if (Default && IsParameterPack) {
 | |
|     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
 | |
|     Default = nullptr;
 | |
|   }
 | |
| 
 | |
|   // Check the well-formedness of the default template argument, if provided.
 | |
|   if (Default) {
 | |
|     // Check for unexpanded parameter packs.
 | |
|     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
 | |
|       return Param;
 | |
| 
 | |
|     TemplateArgument Converted;
 | |
|     ExprResult DefaultRes =
 | |
|         CheckTemplateArgument(Param, Param->getType(), Default, Converted);
 | |
|     if (DefaultRes.isInvalid()) {
 | |
|       Param->setInvalidDecl();
 | |
|       return Param;
 | |
|     }
 | |
|     Default = DefaultRes.get();
 | |
| 
 | |
|     Param->setDefaultArgument(Default);
 | |
|   }
 | |
| 
 | |
|   return Param;
 | |
| }
 | |
| 
 | |
| /// ActOnTemplateTemplateParameter - Called when a C++ template template
 | |
| /// parameter (e.g. T in template <template \<typename> class T> class array)
 | |
| /// has been parsed. S is the current scope.
 | |
| NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
 | |
|                                            SourceLocation TmpLoc,
 | |
|                                            TemplateParameterList *Params,
 | |
|                                            SourceLocation EllipsisLoc,
 | |
|                                            IdentifierInfo *Name,
 | |
|                                            SourceLocation NameLoc,
 | |
|                                            unsigned Depth,
 | |
|                                            unsigned Position,
 | |
|                                            SourceLocation EqualLoc,
 | |
|                                            ParsedTemplateArgument Default) {
 | |
|   assert(S->isTemplateParamScope() &&
 | |
|          "Template template parameter not in template parameter scope!");
 | |
| 
 | |
|   // Construct the parameter object.
 | |
|   bool IsParameterPack = EllipsisLoc.isValid();
 | |
|   TemplateTemplateParmDecl *Param =
 | |
|     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
 | |
|                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
 | |
|                                      Depth, Position, IsParameterPack,
 | |
|                                      Name, Params);
 | |
|   Param->setAccess(AS_public);
 | |
| 
 | |
|   if (Param->isParameterPack())
 | |
|     if (auto *LSI = getEnclosingLambda())
 | |
|       LSI->LocalPacks.push_back(Param);
 | |
| 
 | |
|   // If the template template parameter has a name, then link the identifier
 | |
|   // into the scope and lookup mechanisms.
 | |
|   if (Name) {
 | |
|     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
 | |
| 
 | |
|     S->AddDecl(Param);
 | |
|     IdResolver.AddDecl(Param);
 | |
|   }
 | |
| 
 | |
|   if (Params->size() == 0) {
 | |
|     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
 | |
|     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
 | |
|     Param->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // C++0x [temp.param]p9:
 | |
|   //   A default template-argument may be specified for any kind of
 | |
|   //   template-parameter that is not a template parameter pack.
 | |
|   if (IsParameterPack && !Default.isInvalid()) {
 | |
|     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
 | |
|     Default = ParsedTemplateArgument();
 | |
|   }
 | |
| 
 | |
|   if (!Default.isInvalid()) {
 | |
|     // Check only that we have a template template argument. We don't want to
 | |
|     // try to check well-formedness now, because our template template parameter
 | |
|     // might have dependent types in its template parameters, which we wouldn't
 | |
|     // be able to match now.
 | |
|     //
 | |
|     // If none of the template template parameter's template arguments mention
 | |
|     // other template parameters, we could actually perform more checking here.
 | |
|     // However, it isn't worth doing.
 | |
|     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
 | |
|     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
 | |
|       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
 | |
|         << DefaultArg.getSourceRange();
 | |
|       return Param;
 | |
|     }
 | |
| 
 | |
|     // Check for unexpanded parameter packs.
 | |
|     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
 | |
|                                         DefaultArg.getArgument().getAsTemplate(),
 | |
|                                         UPPC_DefaultArgument))
 | |
|       return Param;
 | |
| 
 | |
|     Param->setDefaultArgument(Context, DefaultArg);
 | |
|   }
 | |
| 
 | |
|   return Param;
 | |
| }
 | |
| 
 | |
| /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
 | |
| /// constrained by RequiresClause, that contains the template parameters in
 | |
| /// Params.
 | |
| TemplateParameterList *
 | |
| Sema::ActOnTemplateParameterList(unsigned Depth,
 | |
|                                  SourceLocation ExportLoc,
 | |
|                                  SourceLocation TemplateLoc,
 | |
|                                  SourceLocation LAngleLoc,
 | |
|                                  ArrayRef<NamedDecl *> Params,
 | |
|                                  SourceLocation RAngleLoc,
 | |
|                                  Expr *RequiresClause) {
 | |
|   if (ExportLoc.isValid())
 | |
|     Diag(ExportLoc, diag::warn_template_export_unsupported);
 | |
| 
 | |
|   return TemplateParameterList::Create(
 | |
|       Context, TemplateLoc, LAngleLoc,
 | |
|       llvm::makeArrayRef(Params.data(), Params.size()),
 | |
|       RAngleLoc, RequiresClause);
 | |
| }
 | |
| 
 | |
| static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
 | |
|                                    const CXXScopeSpec &SS) {
 | |
|   if (SS.isSet())
 | |
|     T->setQualifierInfo(SS.getWithLocInContext(S.Context));
 | |
| }
 | |
| 
 | |
| DeclResult Sema::CheckClassTemplate(
 | |
|     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
 | |
|     CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
 | |
|     const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
 | |
|     AccessSpecifier AS, SourceLocation ModulePrivateLoc,
 | |
|     SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
 | |
|     TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
 | |
|   assert(TemplateParams && TemplateParams->size() > 0 &&
 | |
|          "No template parameters");
 | |
|   assert(TUK != TUK_Reference && "Can only declare or define class templates");
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   // Check that we can declare a template here.
 | |
|   if (CheckTemplateDeclScope(S, TemplateParams))
 | |
|     return true;
 | |
| 
 | |
|   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | |
|   assert(Kind != TTK_Enum && "can't build template of enumerated type");
 | |
| 
 | |
|   // There is no such thing as an unnamed class template.
 | |
|   if (!Name) {
 | |
|     Diag(KWLoc, diag::err_template_unnamed_class);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Find any previous declaration with this name. For a friend with no
 | |
|   // scope explicitly specified, we only look for tag declarations (per
 | |
|   // C++11 [basic.lookup.elab]p2).
 | |
|   DeclContext *SemanticContext;
 | |
|   LookupResult Previous(*this, Name, NameLoc,
 | |
|                         (SS.isEmpty() && TUK == TUK_Friend)
 | |
|                           ? LookupTagName : LookupOrdinaryName,
 | |
|                         forRedeclarationInCurContext());
 | |
|   if (SS.isNotEmpty() && !SS.isInvalid()) {
 | |
|     SemanticContext = computeDeclContext(SS, true);
 | |
|     if (!SemanticContext) {
 | |
|       // FIXME: Horrible, horrible hack! We can't currently represent this
 | |
|       // in the AST, and historically we have just ignored such friend
 | |
|       // class templates, so don't complain here.
 | |
|       Diag(NameLoc, TUK == TUK_Friend
 | |
|                         ? diag::warn_template_qualified_friend_ignored
 | |
|                         : diag::err_template_qualified_declarator_no_match)
 | |
|           << SS.getScopeRep() << SS.getRange();
 | |
|       return TUK != TUK_Friend;
 | |
|     }
 | |
| 
 | |
|     if (RequireCompleteDeclContext(SS, SemanticContext))
 | |
|       return true;
 | |
| 
 | |
|     // If we're adding a template to a dependent context, we may need to
 | |
|     // rebuilding some of the types used within the template parameter list,
 | |
|     // now that we know what the current instantiation is.
 | |
|     if (SemanticContext->isDependentContext()) {
 | |
|       ContextRAII SavedContext(*this, SemanticContext);
 | |
|       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
 | |
|         Invalid = true;
 | |
|     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
 | |
|       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
 | |
| 
 | |
|     LookupQualifiedName(Previous, SemanticContext);
 | |
|   } else {
 | |
|     SemanticContext = CurContext;
 | |
| 
 | |
|     // C++14 [class.mem]p14:
 | |
|     //   If T is the name of a class, then each of the following shall have a
 | |
|     //   name different from T:
 | |
|     //    -- every member template of class T
 | |
|     if (TUK != TUK_Friend &&
 | |
|         DiagnoseClassNameShadow(SemanticContext,
 | |
|                                 DeclarationNameInfo(Name, NameLoc)))
 | |
|       return true;
 | |
| 
 | |
|     LookupName(Previous, S);
 | |
|   }
 | |
| 
 | |
|   if (Previous.isAmbiguous())
 | |
|     return true;
 | |
| 
 | |
|   NamedDecl *PrevDecl = nullptr;
 | |
|   if (Previous.begin() != Previous.end())
 | |
|     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
 | |
| 
 | |
|   if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | |
|     // Maybe we will complain about the shadowed template parameter.
 | |
|     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
 | |
|     // Just pretend that we didn't see the previous declaration.
 | |
|     PrevDecl = nullptr;
 | |
|   }
 | |
| 
 | |
|   // If there is a previous declaration with the same name, check
 | |
|   // whether this is a valid redeclaration.
 | |
|   ClassTemplateDecl *PrevClassTemplate =
 | |
|       dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
 | |
| 
 | |
|   // We may have found the injected-class-name of a class template,
 | |
|   // class template partial specialization, or class template specialization.
 | |
|   // In these cases, grab the template that is being defined or specialized.
 | |
|   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
 | |
|       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
 | |
|     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
 | |
|     PrevClassTemplate
 | |
|       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
 | |
|     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
 | |
|       PrevClassTemplate
 | |
|         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
 | |
|             ->getSpecializedTemplate();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TUK == TUK_Friend) {
 | |
|     // C++ [namespace.memdef]p3:
 | |
|     //   [...] When looking for a prior declaration of a class or a function
 | |
|     //   declared as a friend, and when the name of the friend class or
 | |
|     //   function is neither a qualified name nor a template-id, scopes outside
 | |
|     //   the innermost enclosing namespace scope are not considered.
 | |
|     if (!SS.isSet()) {
 | |
|       DeclContext *OutermostContext = CurContext;
 | |
|       while (!OutermostContext->isFileContext())
 | |
|         OutermostContext = OutermostContext->getLookupParent();
 | |
| 
 | |
|       if (PrevDecl &&
 | |
|           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
 | |
|            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
 | |
|         SemanticContext = PrevDecl->getDeclContext();
 | |
|       } else {
 | |
|         // Declarations in outer scopes don't matter. However, the outermost
 | |
|         // context we computed is the semantic context for our new
 | |
|         // declaration.
 | |
|         PrevDecl = PrevClassTemplate = nullptr;
 | |
|         SemanticContext = OutermostContext;
 | |
| 
 | |
|         // Check that the chosen semantic context doesn't already contain a
 | |
|         // declaration of this name as a non-tag type.
 | |
|         Previous.clear(LookupOrdinaryName);
 | |
|         DeclContext *LookupContext = SemanticContext;
 | |
|         while (LookupContext->isTransparentContext())
 | |
|           LookupContext = LookupContext->getLookupParent();
 | |
|         LookupQualifiedName(Previous, LookupContext);
 | |
| 
 | |
|         if (Previous.isAmbiguous())
 | |
|           return true;
 | |
| 
 | |
|         if (Previous.begin() != Previous.end())
 | |
|           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
 | |
|       }
 | |
|     }
 | |
|   } else if (PrevDecl &&
 | |
|              !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
 | |
|                             S, SS.isValid()))
 | |
|     PrevDecl = PrevClassTemplate = nullptr;
 | |
| 
 | |
|   if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
 | |
|           PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
 | |
|     if (SS.isEmpty() &&
 | |
|         !(PrevClassTemplate &&
 | |
|           PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
 | |
|               SemanticContext->getRedeclContext()))) {
 | |
|       Diag(KWLoc, diag::err_using_decl_conflict_reverse);
 | |
|       Diag(Shadow->getTargetDecl()->getLocation(),
 | |
|            diag::note_using_decl_target);
 | |
|       Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
 | |
|       // Recover by ignoring the old declaration.
 | |
|       PrevDecl = PrevClassTemplate = nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PrevClassTemplate) {
 | |
|     // Ensure that the template parameter lists are compatible. Skip this check
 | |
|     // for a friend in a dependent context: the template parameter list itself
 | |
|     // could be dependent.
 | |
|     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
 | |
|         !TemplateParameterListsAreEqual(TemplateParams,
 | |
|                                    PrevClassTemplate->getTemplateParameters(),
 | |
|                                         /*Complain=*/true,
 | |
|                                         TPL_TemplateMatch))
 | |
|       return true;
 | |
| 
 | |
|     // C++ [temp.class]p4:
 | |
|     //   In a redeclaration, partial specialization, explicit
 | |
|     //   specialization or explicit instantiation of a class template,
 | |
|     //   the class-key shall agree in kind with the original class
 | |
|     //   template declaration (7.1.5.3).
 | |
|     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
 | |
|     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
 | |
|                                       TUK == TUK_Definition,  KWLoc, Name)) {
 | |
|       Diag(KWLoc, diag::err_use_with_wrong_tag)
 | |
|         << Name
 | |
|         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
 | |
|       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
 | |
|       Kind = PrevRecordDecl->getTagKind();
 | |
|     }
 | |
| 
 | |
|     // Check for redefinition of this class template.
 | |
|     if (TUK == TUK_Definition) {
 | |
|       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
 | |
|         // If we have a prior definition that is not visible, treat this as
 | |
|         // simply making that previous definition visible.
 | |
|         NamedDecl *Hidden = nullptr;
 | |
|         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
 | |
|           SkipBody->ShouldSkip = true;
 | |
|           SkipBody->Previous = Def;
 | |
|           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
 | |
|           assert(Tmpl && "original definition of a class template is not a "
 | |
|                          "class template?");
 | |
|           makeMergedDefinitionVisible(Hidden);
 | |
|           makeMergedDefinitionVisible(Tmpl);
 | |
|         } else {
 | |
|           Diag(NameLoc, diag::err_redefinition) << Name;
 | |
|           Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|           // FIXME: Would it make sense to try to "forget" the previous
 | |
|           // definition, as part of error recovery?
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else if (PrevDecl) {
 | |
|     // C++ [temp]p5:
 | |
|     //   A class template shall not have the same name as any other
 | |
|     //   template, class, function, object, enumeration, enumerator,
 | |
|     //   namespace, or type in the same scope (3.3), except as specified
 | |
|     //   in (14.5.4).
 | |
|     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
 | |
|     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check the template parameter list of this declaration, possibly
 | |
|   // merging in the template parameter list from the previous class
 | |
|   // template declaration. Skip this check for a friend in a dependent
 | |
|   // context, because the template parameter list might be dependent.
 | |
|   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
 | |
|       CheckTemplateParameterList(
 | |
|           TemplateParams,
 | |
|           PrevClassTemplate
 | |
|               ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
 | |
|               : nullptr,
 | |
|           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
 | |
|            SemanticContext->isDependentContext())
 | |
|               ? TPC_ClassTemplateMember
 | |
|               : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
 | |
|           SkipBody))
 | |
|     Invalid = true;
 | |
| 
 | |
|   if (SS.isSet()) {
 | |
|     // If the name of the template was qualified, we must be defining the
 | |
|     // template out-of-line.
 | |
|     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
 | |
|       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
 | |
|                                       : diag::err_member_decl_does_not_match)
 | |
|         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
 | |
|       Invalid = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a templated friend in a dependent context we should not put it
 | |
|   // on the redecl chain. In some cases, the templated friend can be the most
 | |
|   // recent declaration tricking the template instantiator to make substitutions
 | |
|   // there.
 | |
|   // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
 | |
|   bool ShouldAddRedecl
 | |
|     = !(TUK == TUK_Friend && CurContext->isDependentContext());
 | |
| 
 | |
|   CXXRecordDecl *NewClass =
 | |
|     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
 | |
|                           PrevClassTemplate && ShouldAddRedecl ?
 | |
|                             PrevClassTemplate->getTemplatedDecl() : nullptr,
 | |
|                           /*DelayTypeCreation=*/true);
 | |
|   SetNestedNameSpecifier(*this, NewClass, SS);
 | |
|   if (NumOuterTemplateParamLists > 0)
 | |
|     NewClass->setTemplateParameterListsInfo(
 | |
|         Context, llvm::makeArrayRef(OuterTemplateParamLists,
 | |
|                                     NumOuterTemplateParamLists));
 | |
| 
 | |
|   // Add alignment attributes if necessary; these attributes are checked when
 | |
|   // the ASTContext lays out the structure.
 | |
|   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
 | |
|     AddAlignmentAttributesForRecord(NewClass);
 | |
|     AddMsStructLayoutForRecord(NewClass);
 | |
|   }
 | |
| 
 | |
|   ClassTemplateDecl *NewTemplate
 | |
|     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
 | |
|                                 DeclarationName(Name), TemplateParams,
 | |
|                                 NewClass);
 | |
| 
 | |
|   if (ShouldAddRedecl)
 | |
|     NewTemplate->setPreviousDecl(PrevClassTemplate);
 | |
| 
 | |
|   NewClass->setDescribedClassTemplate(NewTemplate);
 | |
| 
 | |
|   if (ModulePrivateLoc.isValid())
 | |
|     NewTemplate->setModulePrivate();
 | |
| 
 | |
|   // Build the type for the class template declaration now.
 | |
|   QualType T = NewTemplate->getInjectedClassNameSpecialization();
 | |
|   T = Context.getInjectedClassNameType(NewClass, T);
 | |
|   assert(T->isDependentType() && "Class template type is not dependent?");
 | |
|   (void)T;
 | |
| 
 | |
|   // If we are providing an explicit specialization of a member that is a
 | |
|   // class template, make a note of that.
 | |
|   if (PrevClassTemplate &&
 | |
|       PrevClassTemplate->getInstantiatedFromMemberTemplate())
 | |
|     PrevClassTemplate->setMemberSpecialization();
 | |
| 
 | |
|   // Set the access specifier.
 | |
|   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
 | |
|     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
 | |
| 
 | |
|   // Set the lexical context of these templates
 | |
|   NewClass->setLexicalDeclContext(CurContext);
 | |
|   NewTemplate->setLexicalDeclContext(CurContext);
 | |
| 
 | |
|   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
 | |
|     NewClass->startDefinition();
 | |
| 
 | |
|   ProcessDeclAttributeList(S, NewClass, Attr);
 | |
| 
 | |
|   if (PrevClassTemplate)
 | |
|     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
 | |
| 
 | |
|   AddPushedVisibilityAttribute(NewClass);
 | |
|   inferGslOwnerPointerAttribute(NewClass);
 | |
| 
 | |
|   if (TUK != TUK_Friend) {
 | |
|     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
 | |
|     Scope *Outer = S;
 | |
|     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
 | |
|       Outer = Outer->getParent();
 | |
|     PushOnScopeChains(NewTemplate, Outer);
 | |
|   } else {
 | |
|     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
 | |
|       NewTemplate->setAccess(PrevClassTemplate->getAccess());
 | |
|       NewClass->setAccess(PrevClassTemplate->getAccess());
 | |
|     }
 | |
| 
 | |
|     NewTemplate->setObjectOfFriendDecl();
 | |
| 
 | |
|     // Friend templates are visible in fairly strange ways.
 | |
|     if (!CurContext->isDependentContext()) {
 | |
|       DeclContext *DC = SemanticContext->getRedeclContext();
 | |
|       DC->makeDeclVisibleInContext(NewTemplate);
 | |
|       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
 | |
|         PushOnScopeChains(NewTemplate, EnclosingScope,
 | |
|                           /* AddToContext = */ false);
 | |
|     }
 | |
| 
 | |
|     FriendDecl *Friend = FriendDecl::Create(
 | |
|         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
 | |
|     Friend->setAccess(AS_public);
 | |
|     CurContext->addDecl(Friend);
 | |
|   }
 | |
| 
 | |
|   if (PrevClassTemplate)
 | |
|     CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
 | |
| 
 | |
|   if (Invalid) {
 | |
|     NewTemplate->setInvalidDecl();
 | |
|     NewClass->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   ActOnDocumentableDecl(NewTemplate);
 | |
| 
 | |
|   if (SkipBody && SkipBody->ShouldSkip)
 | |
|     return SkipBody->Previous;
 | |
| 
 | |
|   return NewTemplate;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// Tree transform to "extract" a transformed type from a class template's
 | |
| /// constructor to a deduction guide.
 | |
| class ExtractTypeForDeductionGuide
 | |
|   : public TreeTransform<ExtractTypeForDeductionGuide> {
 | |
| public:
 | |
|   typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
 | |
|   ExtractTypeForDeductionGuide(Sema &SemaRef) : Base(SemaRef) {}
 | |
| 
 | |
|   TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
 | |
| 
 | |
|   QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
 | |
|     return TransformType(
 | |
|         TLB,
 | |
|         TL.getTypedefNameDecl()->getTypeSourceInfo()->getTypeLoc());
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Transform to convert portions of a constructor declaration into the
 | |
| /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
 | |
| struct ConvertConstructorToDeductionGuideTransform {
 | |
|   ConvertConstructorToDeductionGuideTransform(Sema &S,
 | |
|                                               ClassTemplateDecl *Template)
 | |
|       : SemaRef(S), Template(Template) {}
 | |
| 
 | |
|   Sema &SemaRef;
 | |
|   ClassTemplateDecl *Template;
 | |
| 
 | |
|   DeclContext *DC = Template->getDeclContext();
 | |
|   CXXRecordDecl *Primary = Template->getTemplatedDecl();
 | |
|   DeclarationName DeductionGuideName =
 | |
|       SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
 | |
| 
 | |
|   QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
 | |
| 
 | |
|   // Index adjustment to apply to convert depth-1 template parameters into
 | |
|   // depth-0 template parameters.
 | |
|   unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
 | |
| 
 | |
|   /// Transform a constructor declaration into a deduction guide.
 | |
|   NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
 | |
|                                   CXXConstructorDecl *CD) {
 | |
|     SmallVector<TemplateArgument, 16> SubstArgs;
 | |
| 
 | |
|     LocalInstantiationScope Scope(SemaRef);
 | |
| 
 | |
|     // C++ [over.match.class.deduct]p1:
 | |
|     // -- For each constructor of the class template designated by the
 | |
|     //    template-name, a function template with the following properties:
 | |
| 
 | |
|     //    -- The template parameters are the template parameters of the class
 | |
|     //       template followed by the template parameters (including default
 | |
|     //       template arguments) of the constructor, if any.
 | |
|     TemplateParameterList *TemplateParams = Template->getTemplateParameters();
 | |
|     if (FTD) {
 | |
|       TemplateParameterList *InnerParams = FTD->getTemplateParameters();
 | |
|       SmallVector<NamedDecl *, 16> AllParams;
 | |
|       AllParams.reserve(TemplateParams->size() + InnerParams->size());
 | |
|       AllParams.insert(AllParams.begin(),
 | |
|                        TemplateParams->begin(), TemplateParams->end());
 | |
|       SubstArgs.reserve(InnerParams->size());
 | |
| 
 | |
|       // Later template parameters could refer to earlier ones, so build up
 | |
|       // a list of substituted template arguments as we go.
 | |
|       for (NamedDecl *Param : *InnerParams) {
 | |
|         MultiLevelTemplateArgumentList Args;
 | |
|         Args.addOuterTemplateArguments(SubstArgs);
 | |
|         Args.addOuterRetainedLevel();
 | |
|         NamedDecl *NewParam = transformTemplateParameter(Param, Args);
 | |
|         if (!NewParam)
 | |
|           return nullptr;
 | |
|         AllParams.push_back(NewParam);
 | |
|         SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
 | |
|             SemaRef.Context.getInjectedTemplateArg(NewParam)));
 | |
|       }
 | |
|       TemplateParams = TemplateParameterList::Create(
 | |
|           SemaRef.Context, InnerParams->getTemplateLoc(),
 | |
|           InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
 | |
|           /*FIXME: RequiresClause*/ nullptr);
 | |
|     }
 | |
| 
 | |
|     // If we built a new template-parameter-list, track that we need to
 | |
|     // substitute references to the old parameters into references to the
 | |
|     // new ones.
 | |
|     MultiLevelTemplateArgumentList Args;
 | |
|     if (FTD) {
 | |
|       Args.addOuterTemplateArguments(SubstArgs);
 | |
|       Args.addOuterRetainedLevel();
 | |
|     }
 | |
| 
 | |
|     FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
 | |
|                                    .getAsAdjusted<FunctionProtoTypeLoc>();
 | |
|     assert(FPTL && "no prototype for constructor declaration");
 | |
| 
 | |
|     // Transform the type of the function, adjusting the return type and
 | |
|     // replacing references to the old parameters with references to the
 | |
|     // new ones.
 | |
|     TypeLocBuilder TLB;
 | |
|     SmallVector<ParmVarDecl*, 8> Params;
 | |
|     QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args);
 | |
|     if (NewType.isNull())
 | |
|       return nullptr;
 | |
|     TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
 | |
| 
 | |
|     return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(),
 | |
|                                NewTInfo, CD->getBeginLoc(), CD->getLocation(),
 | |
|                                CD->getEndLoc());
 | |
|   }
 | |
| 
 | |
|   /// Build a deduction guide with the specified parameter types.
 | |
|   NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
 | |
|     SourceLocation Loc = Template->getLocation();
 | |
| 
 | |
|     // Build the requested type.
 | |
|     FunctionProtoType::ExtProtoInfo EPI;
 | |
|     EPI.HasTrailingReturn = true;
 | |
|     QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
 | |
|                                                 DeductionGuideName, EPI);
 | |
|     TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
 | |
| 
 | |
|     FunctionProtoTypeLoc FPTL =
 | |
|         TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
 | |
| 
 | |
|     // Build the parameters, needed during deduction / substitution.
 | |
|     SmallVector<ParmVarDecl*, 4> Params;
 | |
|     for (auto T : ParamTypes) {
 | |
|       ParmVarDecl *NewParam = ParmVarDecl::Create(
 | |
|           SemaRef.Context, DC, Loc, Loc, nullptr, T,
 | |
|           SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
 | |
|       NewParam->setScopeInfo(0, Params.size());
 | |
|       FPTL.setParam(Params.size(), NewParam);
 | |
|       Params.push_back(NewParam);
 | |
|     }
 | |
| 
 | |
|     return buildDeductionGuide(Template->getTemplateParameters(),
 | |
|                                ExplicitSpecifier(), TSI, Loc, Loc, Loc);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Transform a constructor template parameter into a deduction guide template
 | |
|   /// parameter, rebuilding any internal references to earlier parameters and
 | |
|   /// renumbering as we go.
 | |
|   NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
 | |
|                                         MultiLevelTemplateArgumentList &Args) {
 | |
|     if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
 | |
|       // TemplateTypeParmDecl's index cannot be changed after creation, so
 | |
|       // substitute it directly.
 | |
|       auto *NewTTP = TemplateTypeParmDecl::Create(
 | |
|           SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
 | |
|           /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
 | |
|           TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
 | |
|           TTP->isParameterPack(), TTP->hasTypeConstraint(),
 | |
|           TTP->isExpandedParameterPack() ?
 | |
|           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
 | |
|       if (const auto *TC = TTP->getTypeConstraint()) {
 | |
|         TemplateArgumentListInfo TransformedArgs;
 | |
|         const auto *ArgsAsWritten = TC->getTemplateArgsAsWritten();
 | |
|         if (!ArgsAsWritten ||
 | |
|             SemaRef.Subst(ArgsAsWritten->getTemplateArgs(),
 | |
|                           ArgsAsWritten->NumTemplateArgs, TransformedArgs,
 | |
|                           Args))
 | |
|           SemaRef.AttachTypeConstraint(
 | |
|               TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(),
 | |
|               TC->getNamedConcept(), ArgsAsWritten ? &TransformedArgs : nullptr,
 | |
|               NewTTP,
 | |
|               NewTTP->isParameterPack()
 | |
|                  ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
 | |
|                      ->getEllipsisLoc()
 | |
|                  : SourceLocation());
 | |
|       }
 | |
|       if (TTP->hasDefaultArgument()) {
 | |
|         TypeSourceInfo *InstantiatedDefaultArg =
 | |
|             SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
 | |
|                               TTP->getDefaultArgumentLoc(), TTP->getDeclName());
 | |
|         if (InstantiatedDefaultArg)
 | |
|           NewTTP->setDefaultArgument(InstantiatedDefaultArg);
 | |
|       }
 | |
|       SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
 | |
|                                                            NewTTP);
 | |
|       return NewTTP;
 | |
|     }
 | |
| 
 | |
|     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
 | |
|       return transformTemplateParameterImpl(TTP, Args);
 | |
| 
 | |
|     return transformTemplateParameterImpl(
 | |
|         cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
 | |
|   }
 | |
|   template<typename TemplateParmDecl>
 | |
|   TemplateParmDecl *
 | |
|   transformTemplateParameterImpl(TemplateParmDecl *OldParam,
 | |
|                                  MultiLevelTemplateArgumentList &Args) {
 | |
|     // Ask the template instantiator to do the heavy lifting for us, then adjust
 | |
|     // the index of the parameter once it's done.
 | |
|     auto *NewParam =
 | |
|         cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
 | |
|     assert(NewParam->getDepth() == 0 && "unexpected template param depth");
 | |
|     NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
 | |
|     return NewParam;
 | |
|   }
 | |
| 
 | |
|   QualType transformFunctionProtoType(TypeLocBuilder &TLB,
 | |
|                                       FunctionProtoTypeLoc TL,
 | |
|                                       SmallVectorImpl<ParmVarDecl*> &Params,
 | |
|                                       MultiLevelTemplateArgumentList &Args) {
 | |
|     SmallVector<QualType, 4> ParamTypes;
 | |
|     const FunctionProtoType *T = TL.getTypePtr();
 | |
| 
 | |
|     //    -- The types of the function parameters are those of the constructor.
 | |
|     for (auto *OldParam : TL.getParams()) {
 | |
|       ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args);
 | |
|       if (!NewParam)
 | |
|         return QualType();
 | |
|       ParamTypes.push_back(NewParam->getType());
 | |
|       Params.push_back(NewParam);
 | |
|     }
 | |
| 
 | |
|     //    -- The return type is the class template specialization designated by
 | |
|     //       the template-name and template arguments corresponding to the
 | |
|     //       template parameters obtained from the class template.
 | |
|     //
 | |
|     // We use the injected-class-name type of the primary template instead.
 | |
|     // This has the convenient property that it is different from any type that
 | |
|     // the user can write in a deduction-guide (because they cannot enter the
 | |
|     // context of the template), so implicit deduction guides can never collide
 | |
|     // with explicit ones.
 | |
|     QualType ReturnType = DeducedType;
 | |
|     TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
 | |
| 
 | |
|     // Resolving a wording defect, we also inherit the variadicness of the
 | |
|     // constructor.
 | |
|     FunctionProtoType::ExtProtoInfo EPI;
 | |
|     EPI.Variadic = T->isVariadic();
 | |
|     EPI.HasTrailingReturn = true;
 | |
| 
 | |
|     QualType Result = SemaRef.BuildFunctionType(
 | |
|         ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
 | |
|     if (Result.isNull())
 | |
|       return QualType();
 | |
| 
 | |
|     FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
 | |
|     NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
 | |
|     NewTL.setLParenLoc(TL.getLParenLoc());
 | |
|     NewTL.setRParenLoc(TL.getRParenLoc());
 | |
|     NewTL.setExceptionSpecRange(SourceRange());
 | |
|     NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
 | |
|     for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
 | |
|       NewTL.setParam(I, Params[I]);
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   ParmVarDecl *
 | |
|   transformFunctionTypeParam(ParmVarDecl *OldParam,
 | |
|                              MultiLevelTemplateArgumentList &Args) {
 | |
|     TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
 | |
|     TypeSourceInfo *NewDI;
 | |
|     if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
 | |
|       // Expand out the one and only element in each inner pack.
 | |
|       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
 | |
|       NewDI =
 | |
|           SemaRef.SubstType(PackTL.getPatternLoc(), Args,
 | |
|                             OldParam->getLocation(), OldParam->getDeclName());
 | |
|       if (!NewDI) return nullptr;
 | |
|       NewDI =
 | |
|           SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
 | |
|                                      PackTL.getTypePtr()->getNumExpansions());
 | |
|     } else
 | |
|       NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
 | |
|                                 OldParam->getDeclName());
 | |
|     if (!NewDI)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Extract the type. This (for instance) replaces references to typedef
 | |
|     // members of the current instantiations with the definitions of those
 | |
|     // typedefs, avoiding triggering instantiation of the deduced type during
 | |
|     // deduction.
 | |
|     NewDI = ExtractTypeForDeductionGuide(SemaRef).transform(NewDI);
 | |
| 
 | |
|     // Resolving a wording defect, we also inherit default arguments from the
 | |
|     // constructor.
 | |
|     ExprResult NewDefArg;
 | |
|     if (OldParam->hasDefaultArg()) {
 | |
|       // We don't care what the value is (we won't use it); just create a
 | |
|       // placeholder to indicate there is a default argument.
 | |
|       QualType ParamTy = NewDI->getType();
 | |
|       NewDefArg = new (SemaRef.Context)
 | |
|           OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
 | |
|                           ParamTy.getNonLValueExprType(SemaRef.Context),
 | |
|                           ParamTy->isLValueReferenceType() ? VK_LValue :
 | |
|                           ParamTy->isRValueReferenceType() ? VK_XValue :
 | |
|                           VK_RValue);
 | |
|     }
 | |
| 
 | |
|     ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
 | |
|                                                 OldParam->getInnerLocStart(),
 | |
|                                                 OldParam->getLocation(),
 | |
|                                                 OldParam->getIdentifier(),
 | |
|                                                 NewDI->getType(),
 | |
|                                                 NewDI,
 | |
|                                                 OldParam->getStorageClass(),
 | |
|                                                 NewDefArg.get());
 | |
|     NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
 | |
|                            OldParam->getFunctionScopeIndex());
 | |
|     SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
 | |
|     return NewParam;
 | |
|   }
 | |
| 
 | |
|   NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams,
 | |
|                                  ExplicitSpecifier ES, TypeSourceInfo *TInfo,
 | |
|                                  SourceLocation LocStart, SourceLocation Loc,
 | |
|                                  SourceLocation LocEnd) {
 | |
|     DeclarationNameInfo Name(DeductionGuideName, Loc);
 | |
|     ArrayRef<ParmVarDecl *> Params =
 | |
|         TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
 | |
| 
 | |
|     // Build the implicit deduction guide template.
 | |
|     auto *Guide =
 | |
|         CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
 | |
|                                       TInfo->getType(), TInfo, LocEnd);
 | |
|     Guide->setImplicit();
 | |
|     Guide->setParams(Params);
 | |
| 
 | |
|     for (auto *Param : Params)
 | |
|       Param->setDeclContext(Guide);
 | |
| 
 | |
|     auto *GuideTemplate = FunctionTemplateDecl::Create(
 | |
|         SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
 | |
|     GuideTemplate->setImplicit();
 | |
|     Guide->setDescribedFunctionTemplate(GuideTemplate);
 | |
| 
 | |
|     if (isa<CXXRecordDecl>(DC)) {
 | |
|       Guide->setAccess(AS_public);
 | |
|       GuideTemplate->setAccess(AS_public);
 | |
|     }
 | |
| 
 | |
|     DC->addDecl(GuideTemplate);
 | |
|     return GuideTemplate;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
 | |
|                                           SourceLocation Loc) {
 | |
|   if (CXXRecordDecl *DefRecord =
 | |
|           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
 | |
|     TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
 | |
|     Template = DescribedTemplate ? DescribedTemplate : Template;
 | |
|   }
 | |
| 
 | |
|   DeclContext *DC = Template->getDeclContext();
 | |
|   if (DC->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   ConvertConstructorToDeductionGuideTransform Transform(
 | |
|       *this, cast<ClassTemplateDecl>(Template));
 | |
|   if (!isCompleteType(Loc, Transform.DeducedType))
 | |
|     return;
 | |
| 
 | |
|   // Check whether we've already declared deduction guides for this template.
 | |
|   // FIXME: Consider storing a flag on the template to indicate this.
 | |
|   auto Existing = DC->lookup(Transform.DeductionGuideName);
 | |
|   for (auto *D : Existing)
 | |
|     if (D->isImplicit())
 | |
|       return;
 | |
| 
 | |
|   // In case we were expanding a pack when we attempted to declare deduction
 | |
|   // guides, turn off pack expansion for everything we're about to do.
 | |
|   ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
 | |
|   // Create a template instantiation record to track the "instantiation" of
 | |
|   // constructors into deduction guides.
 | |
|   // FIXME: Add a kind for this to give more meaningful diagnostics. But can
 | |
|   // this substitution process actually fail?
 | |
|   InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
 | |
|   if (BuildingDeductionGuides.isInvalid())
 | |
|     return;
 | |
| 
 | |
|   // Convert declared constructors into deduction guide templates.
 | |
|   // FIXME: Skip constructors for which deduction must necessarily fail (those
 | |
|   // for which some class template parameter without a default argument never
 | |
|   // appears in a deduced context).
 | |
|   bool AddedAny = false;
 | |
|   for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
 | |
|     D = D->getUnderlyingDecl();
 | |
|     if (D->isInvalidDecl() || D->isImplicit())
 | |
|       continue;
 | |
|     D = cast<NamedDecl>(D->getCanonicalDecl());
 | |
| 
 | |
|     auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
 | |
|     auto *CD =
 | |
|         dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
 | |
|     // Class-scope explicit specializations (MS extension) do not result in
 | |
|     // deduction guides.
 | |
|     if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
 | |
|       continue;
 | |
| 
 | |
|     Transform.transformConstructor(FTD, CD);
 | |
|     AddedAny = true;
 | |
|   }
 | |
| 
 | |
|   // C++17 [over.match.class.deduct]
 | |
|   //    --  If C is not defined or does not declare any constructors, an
 | |
|   //    additional function template derived as above from a hypothetical
 | |
|   //    constructor C().
 | |
|   if (!AddedAny)
 | |
|     Transform.buildSimpleDeductionGuide(None);
 | |
| 
 | |
|   //    -- An additional function template derived as above from a hypothetical
 | |
|   //    constructor C(C), called the copy deduction candidate.
 | |
|   cast<CXXDeductionGuideDecl>(
 | |
|       cast<FunctionTemplateDecl>(
 | |
|           Transform.buildSimpleDeductionGuide(Transform.DeducedType))
 | |
|           ->getTemplatedDecl())
 | |
|       ->setIsCopyDeductionCandidate();
 | |
| }
 | |
| 
 | |
| /// Diagnose the presence of a default template argument on a
 | |
| /// template parameter, which is ill-formed in certain contexts.
 | |
| ///
 | |
| /// \returns true if the default template argument should be dropped.
 | |
| static bool DiagnoseDefaultTemplateArgument(Sema &S,
 | |
|                                             Sema::TemplateParamListContext TPC,
 | |
|                                             SourceLocation ParamLoc,
 | |
|                                             SourceRange DefArgRange) {
 | |
|   switch (TPC) {
 | |
|   case Sema::TPC_ClassTemplate:
 | |
|   case Sema::TPC_VarTemplate:
 | |
|   case Sema::TPC_TypeAliasTemplate:
 | |
|     return false;
 | |
| 
 | |
|   case Sema::TPC_FunctionTemplate:
 | |
|   case Sema::TPC_FriendFunctionTemplateDefinition:
 | |
|     // C++ [temp.param]p9:
 | |
|     //   A default template-argument shall not be specified in a
 | |
|     //   function template declaration or a function template
 | |
|     //   definition [...]
 | |
|     //   If a friend function template declaration specifies a default
 | |
|     //   template-argument, that declaration shall be a definition and shall be
 | |
|     //   the only declaration of the function template in the translation unit.
 | |
|     // (C++98/03 doesn't have this wording; see DR226).
 | |
|     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
 | |
|          diag::warn_cxx98_compat_template_parameter_default_in_function_template
 | |
|            : diag::ext_template_parameter_default_in_function_template)
 | |
|       << DefArgRange;
 | |
|     return false;
 | |
| 
 | |
|   case Sema::TPC_ClassTemplateMember:
 | |
|     // C++0x [temp.param]p9:
 | |
|     //   A default template-argument shall not be specified in the
 | |
|     //   template-parameter-lists of the definition of a member of a
 | |
|     //   class template that appears outside of the member's class.
 | |
|     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
 | |
|       << DefArgRange;
 | |
|     return true;
 | |
| 
 | |
|   case Sema::TPC_FriendClassTemplate:
 | |
|   case Sema::TPC_FriendFunctionTemplate:
 | |
|     // C++ [temp.param]p9:
 | |
|     //   A default template-argument shall not be specified in a
 | |
|     //   friend template declaration.
 | |
|     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
 | |
|       << DefArgRange;
 | |
|     return true;
 | |
| 
 | |
|     // FIXME: C++0x [temp.param]p9 allows default template-arguments
 | |
|     // for friend function templates if there is only a single
 | |
|     // declaration (and it is a definition). Strange!
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid TemplateParamListContext!");
 | |
| }
 | |
| 
 | |
| /// Check for unexpanded parameter packs within the template parameters
 | |
| /// of a template template parameter, recursively.
 | |
| static bool DiagnoseUnexpandedParameterPacks(Sema &S,
 | |
|                                              TemplateTemplateParmDecl *TTP) {
 | |
|   // A template template parameter which is a parameter pack is also a pack
 | |
|   // expansion.
 | |
|   if (TTP->isParameterPack())
 | |
|     return false;
 | |
| 
 | |
|   TemplateParameterList *Params = TTP->getTemplateParameters();
 | |
|   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
 | |
|     NamedDecl *P = Params->getParam(I);
 | |
|     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
 | |
|       if (!TTP->isParameterPack())
 | |
|         if (const TypeConstraint *TC = TTP->getTypeConstraint())
 | |
|           if (TC->hasExplicitTemplateArgs())
 | |
|             for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
 | |
|               if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
 | |
|                                                     Sema::UPPC_TypeConstraint))
 | |
|                 return true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
 | |
|       if (!NTTP->isParameterPack() &&
 | |
|           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
 | |
|                                             NTTP->getTypeSourceInfo(),
 | |
|                                       Sema::UPPC_NonTypeTemplateParameterType))
 | |
|         return true;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (TemplateTemplateParmDecl *InnerTTP
 | |
|                                         = dyn_cast<TemplateTemplateParmDecl>(P))
 | |
|       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
 | |
|         return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Checks the validity of a template parameter list, possibly
 | |
| /// considering the template parameter list from a previous
 | |
| /// declaration.
 | |
| ///
 | |
| /// If an "old" template parameter list is provided, it must be
 | |
| /// equivalent (per TemplateParameterListsAreEqual) to the "new"
 | |
| /// template parameter list.
 | |
| ///
 | |
| /// \param NewParams Template parameter list for a new template
 | |
| /// declaration. This template parameter list will be updated with any
 | |
| /// default arguments that are carried through from the previous
 | |
| /// template parameter list.
 | |
| ///
 | |
| /// \param OldParams If provided, template parameter list from a
 | |
| /// previous declaration of the same template. Default template
 | |
| /// arguments will be merged from the old template parameter list to
 | |
| /// the new template parameter list.
 | |
| ///
 | |
| /// \param TPC Describes the context in which we are checking the given
 | |
| /// template parameter list.
 | |
| ///
 | |
| /// \param SkipBody If we might have already made a prior merged definition
 | |
| /// of this template visible, the corresponding body-skipping information.
 | |
| /// Default argument redefinition is not an error when skipping such a body,
 | |
| /// because (under the ODR) we can assume the default arguments are the same
 | |
| /// as the prior merged definition.
 | |
| ///
 | |
| /// \returns true if an error occurred, false otherwise.
 | |
| bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
 | |
|                                       TemplateParameterList *OldParams,
 | |
|                                       TemplateParamListContext TPC,
 | |
|                                       SkipBodyInfo *SkipBody) {
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   // C++ [temp.param]p10:
 | |
|   //   The set of default template-arguments available for use with a
 | |
|   //   template declaration or definition is obtained by merging the
 | |
|   //   default arguments from the definition (if in scope) and all
 | |
|   //   declarations in scope in the same way default function
 | |
|   //   arguments are (8.3.6).
 | |
|   bool SawDefaultArgument = false;
 | |
|   SourceLocation PreviousDefaultArgLoc;
 | |
| 
 | |
|   // Dummy initialization to avoid warnings.
 | |
|   TemplateParameterList::iterator OldParam = NewParams->end();
 | |
|   if (OldParams)
 | |
|     OldParam = OldParams->begin();
 | |
| 
 | |
|   bool RemoveDefaultArguments = false;
 | |
|   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
 | |
|                                     NewParamEnd = NewParams->end();
 | |
|        NewParam != NewParamEnd; ++NewParam) {
 | |
|     // Variables used to diagnose redundant default arguments
 | |
|     bool RedundantDefaultArg = false;
 | |
|     SourceLocation OldDefaultLoc;
 | |
|     SourceLocation NewDefaultLoc;
 | |
| 
 | |
|     // Variable used to diagnose missing default arguments
 | |
|     bool MissingDefaultArg = false;
 | |
| 
 | |
|     // Variable used to diagnose non-final parameter packs
 | |
|     bool SawParameterPack = false;
 | |
| 
 | |
|     if (TemplateTypeParmDecl *NewTypeParm
 | |
|           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
 | |
|       // Check the presence of a default argument here.
 | |
|       if (NewTypeParm->hasDefaultArgument() &&
 | |
|           DiagnoseDefaultTemplateArgument(*this, TPC,
 | |
|                                           NewTypeParm->getLocation(),
 | |
|                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
 | |
|                                                        .getSourceRange()))
 | |
|         NewTypeParm->removeDefaultArgument();
 | |
| 
 | |
|       // Merge default arguments for template type parameters.
 | |
|       TemplateTypeParmDecl *OldTypeParm
 | |
|           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
 | |
|       if (NewTypeParm->isParameterPack()) {
 | |
|         assert(!NewTypeParm->hasDefaultArgument() &&
 | |
|                "Parameter packs can't have a default argument!");
 | |
|         SawParameterPack = true;
 | |
|       } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
 | |
|                  NewTypeParm->hasDefaultArgument() &&
 | |
|                  (!SkipBody || !SkipBody->ShouldSkip)) {
 | |
|         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
 | |
|         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
 | |
|         SawDefaultArgument = true;
 | |
|         RedundantDefaultArg = true;
 | |
|         PreviousDefaultArgLoc = NewDefaultLoc;
 | |
|       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
 | |
|         // Merge the default argument from the old declaration to the
 | |
|         // new declaration.
 | |
|         NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
 | |
|         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
 | |
|       } else if (NewTypeParm->hasDefaultArgument()) {
 | |
|         SawDefaultArgument = true;
 | |
|         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
 | |
|       } else if (SawDefaultArgument)
 | |
|         MissingDefaultArg = true;
 | |
|     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
 | |
|                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
 | |
|       // Check for unexpanded parameter packs.
 | |
|       if (!NewNonTypeParm->isParameterPack() &&
 | |
|           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
 | |
|                                           NewNonTypeParm->getTypeSourceInfo(),
 | |
|                                           UPPC_NonTypeTemplateParameterType)) {
 | |
|         Invalid = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check the presence of a default argument here.
 | |
|       if (NewNonTypeParm->hasDefaultArgument() &&
 | |
|           DiagnoseDefaultTemplateArgument(*this, TPC,
 | |
|                                           NewNonTypeParm->getLocation(),
 | |
|                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
 | |
|         NewNonTypeParm->removeDefaultArgument();
 | |
|       }
 | |
| 
 | |
|       // Merge default arguments for non-type template parameters
 | |
|       NonTypeTemplateParmDecl *OldNonTypeParm
 | |
|         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
 | |
|       if (NewNonTypeParm->isParameterPack()) {
 | |
|         assert(!NewNonTypeParm->hasDefaultArgument() &&
 | |
|                "Parameter packs can't have a default argument!");
 | |
|         if (!NewNonTypeParm->isPackExpansion())
 | |
|           SawParameterPack = true;
 | |
|       } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
 | |
|                  NewNonTypeParm->hasDefaultArgument() &&
 | |
|                  (!SkipBody || !SkipBody->ShouldSkip)) {
 | |
|         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
 | |
|         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
 | |
|         SawDefaultArgument = true;
 | |
|         RedundantDefaultArg = true;
 | |
|         PreviousDefaultArgLoc = NewDefaultLoc;
 | |
|       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
 | |
|         // Merge the default argument from the old declaration to the
 | |
|         // new declaration.
 | |
|         NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
 | |
|         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
 | |
|       } else if (NewNonTypeParm->hasDefaultArgument()) {
 | |
|         SawDefaultArgument = true;
 | |
|         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
 | |
|       } else if (SawDefaultArgument)
 | |
|         MissingDefaultArg = true;
 | |
|     } else {
 | |
|       TemplateTemplateParmDecl *NewTemplateParm
 | |
|         = cast<TemplateTemplateParmDecl>(*NewParam);
 | |
| 
 | |
|       // Check for unexpanded parameter packs, recursively.
 | |
|       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
 | |
|         Invalid = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check the presence of a default argument here.
 | |
|       if (NewTemplateParm->hasDefaultArgument() &&
 | |
|           DiagnoseDefaultTemplateArgument(*this, TPC,
 | |
|                                           NewTemplateParm->getLocation(),
 | |
|                      NewTemplateParm->getDefaultArgument().getSourceRange()))
 | |
|         NewTemplateParm->removeDefaultArgument();
 | |
| 
 | |
|       // Merge default arguments for template template parameters
 | |
|       TemplateTemplateParmDecl *OldTemplateParm
 | |
|         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
 | |
|       if (NewTemplateParm->isParameterPack()) {
 | |
|         assert(!NewTemplateParm->hasDefaultArgument() &&
 | |
|                "Parameter packs can't have a default argument!");
 | |
|         if (!NewTemplateParm->isPackExpansion())
 | |
|           SawParameterPack = true;
 | |
|       } else if (OldTemplateParm &&
 | |
|                  hasVisibleDefaultArgument(OldTemplateParm) &&
 | |
|                  NewTemplateParm->hasDefaultArgument() &&
 | |
|                  (!SkipBody || !SkipBody->ShouldSkip)) {
 | |
|         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
 | |
|         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
 | |
|         SawDefaultArgument = true;
 | |
|         RedundantDefaultArg = true;
 | |
|         PreviousDefaultArgLoc = NewDefaultLoc;
 | |
|       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
 | |
|         // Merge the default argument from the old declaration to the
 | |
|         // new declaration.
 | |
|         NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
 | |
|         PreviousDefaultArgLoc
 | |
|           = OldTemplateParm->getDefaultArgument().getLocation();
 | |
|       } else if (NewTemplateParm->hasDefaultArgument()) {
 | |
|         SawDefaultArgument = true;
 | |
|         PreviousDefaultArgLoc
 | |
|           = NewTemplateParm->getDefaultArgument().getLocation();
 | |
|       } else if (SawDefaultArgument)
 | |
|         MissingDefaultArg = true;
 | |
|     }
 | |
| 
 | |
|     // C++11 [temp.param]p11:
 | |
|     //   If a template parameter of a primary class template or alias template
 | |
|     //   is a template parameter pack, it shall be the last template parameter.
 | |
|     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
 | |
|         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
 | |
|          TPC == TPC_TypeAliasTemplate)) {
 | |
|       Diag((*NewParam)->getLocation(),
 | |
|            diag::err_template_param_pack_must_be_last_template_parameter);
 | |
|       Invalid = true;
 | |
|     }
 | |
| 
 | |
|     if (RedundantDefaultArg) {
 | |
|       // C++ [temp.param]p12:
 | |
|       //   A template-parameter shall not be given default arguments
 | |
|       //   by two different declarations in the same scope.
 | |
|       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
 | |
|       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
 | |
|       Invalid = true;
 | |
|     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
 | |
|       // C++ [temp.param]p11:
 | |
|       //   If a template-parameter of a class template has a default
 | |
|       //   template-argument, each subsequent template-parameter shall either
 | |
|       //   have a default template-argument supplied or be a template parameter
 | |
|       //   pack.
 | |
|       Diag((*NewParam)->getLocation(),
 | |
|            diag::err_template_param_default_arg_missing);
 | |
|       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
 | |
|       Invalid = true;
 | |
|       RemoveDefaultArguments = true;
 | |
|     }
 | |
| 
 | |
|     // If we have an old template parameter list that we're merging
 | |
|     // in, move on to the next parameter.
 | |
|     if (OldParams)
 | |
|       ++OldParam;
 | |
|   }
 | |
| 
 | |
|   // We were missing some default arguments at the end of the list, so remove
 | |
|   // all of the default arguments.
 | |
|   if (RemoveDefaultArguments) {
 | |
|     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
 | |
|                                       NewParamEnd = NewParams->end();
 | |
|          NewParam != NewParamEnd; ++NewParam) {
 | |
|       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
 | |
|         TTP->removeDefaultArgument();
 | |
|       else if (NonTypeTemplateParmDecl *NTTP
 | |
|                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
 | |
|         NTTP->removeDefaultArgument();
 | |
|       else
 | |
|         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Invalid;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// A class which looks for a use of a certain level of template
 | |
| /// parameter.
 | |
| struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
 | |
|   typedef RecursiveASTVisitor<DependencyChecker> super;
 | |
| 
 | |
|   unsigned Depth;
 | |
| 
 | |
|   // Whether we're looking for a use of a template parameter that makes the
 | |
|   // overall construct type-dependent / a dependent type. This is strictly
 | |
|   // best-effort for now; we may fail to match at all for a dependent type
 | |
|   // in some cases if this is set.
 | |
|   bool IgnoreNonTypeDependent;
 | |
| 
 | |
|   bool Match;
 | |
|   SourceLocation MatchLoc;
 | |
| 
 | |
|   DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
 | |
|       : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
 | |
|         Match(false) {}
 | |
| 
 | |
|   DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
 | |
|       : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
 | |
|     NamedDecl *ND = Params->getParam(0);
 | |
|     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
 | |
|       Depth = PD->getDepth();
 | |
|     } else if (NonTypeTemplateParmDecl *PD =
 | |
|                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
 | |
|       Depth = PD->getDepth();
 | |
|     } else {
 | |
|       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
 | |
|     if (ParmDepth >= Depth) {
 | |
|       Match = true;
 | |
|       MatchLoc = Loc;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
 | |
|     // Prune out non-type-dependent expressions if requested. This can
 | |
|     // sometimes result in us failing to find a template parameter reference
 | |
|     // (if a value-dependent expression creates a dependent type), but this
 | |
|     // mode is best-effort only.
 | |
|     if (auto *E = dyn_cast_or_null<Expr>(S))
 | |
|       if (IgnoreNonTypeDependent && !E->isTypeDependent())
 | |
|         return true;
 | |
|     return super::TraverseStmt(S, Q);
 | |
|   }
 | |
| 
 | |
|   bool TraverseTypeLoc(TypeLoc TL) {
 | |
|     if (IgnoreNonTypeDependent && !TL.isNull() &&
 | |
|         !TL.getType()->isDependentType())
 | |
|       return true;
 | |
|     return super::TraverseTypeLoc(TL);
 | |
|   }
 | |
| 
 | |
|   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
 | |
|     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
 | |
|   }
 | |
| 
 | |
|   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
 | |
|     // For a best-effort search, keep looking until we find a location.
 | |
|     return IgnoreNonTypeDependent || !Matches(T->getDepth());
 | |
|   }
 | |
| 
 | |
|   bool TraverseTemplateName(TemplateName N) {
 | |
|     if (TemplateTemplateParmDecl *PD =
 | |
|           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
 | |
|       if (Matches(PD->getDepth()))
 | |
|         return false;
 | |
|     return super::TraverseTemplateName(N);
 | |
|   }
 | |
| 
 | |
|   bool VisitDeclRefExpr(DeclRefExpr *E) {
 | |
|     if (NonTypeTemplateParmDecl *PD =
 | |
|           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
 | |
|       if (Matches(PD->getDepth(), E->getExprLoc()))
 | |
|         return false;
 | |
|     return super::VisitDeclRefExpr(E);
 | |
|   }
 | |
| 
 | |
|   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
 | |
|     return TraverseType(T->getReplacementType());
 | |
|   }
 | |
| 
 | |
|   bool
 | |
|   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
 | |
|     return TraverseTemplateArgument(T->getArgumentPack());
 | |
|   }
 | |
| 
 | |
|   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
 | |
|     return TraverseType(T->getInjectedSpecializationType());
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Determines whether a given type depends on the given parameter
 | |
| /// list.
 | |
| static bool
 | |
| DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
 | |
|   if (!Params->size())
 | |
|     return false;
 | |
| 
 | |
|   DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
 | |
|   Checker.TraverseType(T);
 | |
|   return Checker.Match;
 | |
| }
 | |
| 
 | |
| // Find the source range corresponding to the named type in the given
 | |
| // nested-name-specifier, if any.
 | |
| static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
 | |
|                                                        QualType T,
 | |
|                                                        const CXXScopeSpec &SS) {
 | |
|   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
 | |
|   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
 | |
|     if (const Type *CurType = NNS->getAsType()) {
 | |
|       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
 | |
|         return NNSLoc.getTypeLoc().getSourceRange();
 | |
|     } else
 | |
|       break;
 | |
| 
 | |
|     NNSLoc = NNSLoc.getPrefix();
 | |
|   }
 | |
| 
 | |
|   return SourceRange();
 | |
| }
 | |
| 
 | |
| /// Match the given template parameter lists to the given scope
 | |
| /// specifier, returning the template parameter list that applies to the
 | |
| /// name.
 | |
| ///
 | |
| /// \param DeclStartLoc the start of the declaration that has a scope
 | |
| /// specifier or a template parameter list.
 | |
| ///
 | |
| /// \param DeclLoc The location of the declaration itself.
 | |
| ///
 | |
| /// \param SS the scope specifier that will be matched to the given template
 | |
| /// parameter lists. This scope specifier precedes a qualified name that is
 | |
| /// being declared.
 | |
| ///
 | |
| /// \param TemplateId The template-id following the scope specifier, if there
 | |
| /// is one. Used to check for a missing 'template<>'.
 | |
| ///
 | |
| /// \param ParamLists the template parameter lists, from the outermost to the
 | |
| /// innermost template parameter lists.
 | |
| ///
 | |
| /// \param IsFriend Whether to apply the slightly different rules for
 | |
| /// matching template parameters to scope specifiers in friend
 | |
| /// declarations.
 | |
| ///
 | |
| /// \param IsMemberSpecialization will be set true if the scope specifier
 | |
| /// denotes a fully-specialized type, and therefore this is a declaration of
 | |
| /// a member specialization.
 | |
| ///
 | |
| /// \returns the template parameter list, if any, that corresponds to the
 | |
| /// name that is preceded by the scope specifier @p SS. This template
 | |
| /// parameter list may have template parameters (if we're declaring a
 | |
| /// template) or may have no template parameters (if we're declaring a
 | |
| /// template specialization), or may be NULL (if what we're declaring isn't
 | |
| /// itself a template).
 | |
| TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
 | |
|     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
 | |
|     TemplateIdAnnotation *TemplateId,
 | |
|     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
 | |
|     bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
 | |
|   IsMemberSpecialization = false;
 | |
|   Invalid = false;
 | |
| 
 | |
|   // The sequence of nested types to which we will match up the template
 | |
|   // parameter lists. We first build this list by starting with the type named
 | |
|   // by the nested-name-specifier and walking out until we run out of types.
 | |
|   SmallVector<QualType, 4> NestedTypes;
 | |
|   QualType T;
 | |
|   if (SS.getScopeRep()) {
 | |
|     if (CXXRecordDecl *Record
 | |
|               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
 | |
|       T = Context.getTypeDeclType(Record);
 | |
|     else
 | |
|       T = QualType(SS.getScopeRep()->getAsType(), 0);
 | |
|   }
 | |
| 
 | |
|   // If we found an explicit specialization that prevents us from needing
 | |
|   // 'template<>' headers, this will be set to the location of that
 | |
|   // explicit specialization.
 | |
|   SourceLocation ExplicitSpecLoc;
 | |
| 
 | |
|   while (!T.isNull()) {
 | |
|     NestedTypes.push_back(T);
 | |
| 
 | |
|     // Retrieve the parent of a record type.
 | |
|     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
 | |
|       // If this type is an explicit specialization, we're done.
 | |
|       if (ClassTemplateSpecializationDecl *Spec
 | |
|           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
 | |
|         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
 | |
|             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
 | |
|           ExplicitSpecLoc = Spec->getLocation();
 | |
|           break;
 | |
|         }
 | |
|       } else if (Record->getTemplateSpecializationKind()
 | |
|                                                 == TSK_ExplicitSpecialization) {
 | |
|         ExplicitSpecLoc = Record->getLocation();
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
 | |
|         T = Context.getTypeDeclType(Parent);
 | |
|       else
 | |
|         T = QualType();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (const TemplateSpecializationType *TST
 | |
|                                      = T->getAs<TemplateSpecializationType>()) {
 | |
|       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
 | |
|         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
 | |
|           T = Context.getTypeDeclType(Parent);
 | |
|         else
 | |
|           T = QualType();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Look one step prior in a dependent template specialization type.
 | |
|     if (const DependentTemplateSpecializationType *DependentTST
 | |
|                           = T->getAs<DependentTemplateSpecializationType>()) {
 | |
|       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
 | |
|         T = QualType(NNS->getAsType(), 0);
 | |
|       else
 | |
|         T = QualType();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Look one step prior in a dependent name type.
 | |
|     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
 | |
|       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
 | |
|         T = QualType(NNS->getAsType(), 0);
 | |
|       else
 | |
|         T = QualType();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Retrieve the parent of an enumeration type.
 | |
|     if (const EnumType *EnumT = T->getAs<EnumType>()) {
 | |
|       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
 | |
|       // check here.
 | |
|       EnumDecl *Enum = EnumT->getDecl();
 | |
| 
 | |
|       // Get to the parent type.
 | |
|       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
 | |
|         T = Context.getTypeDeclType(Parent);
 | |
|       else
 | |
|         T = QualType();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     T = QualType();
 | |
|   }
 | |
|   // Reverse the nested types list, since we want to traverse from the outermost
 | |
|   // to the innermost while checking template-parameter-lists.
 | |
|   std::reverse(NestedTypes.begin(), NestedTypes.end());
 | |
| 
 | |
|   // C++0x [temp.expl.spec]p17:
 | |
|   //   A member or a member template may be nested within many
 | |
|   //   enclosing class templates. In an explicit specialization for
 | |
|   //   such a member, the member declaration shall be preceded by a
 | |
|   //   template<> for each enclosing class template that is
 | |
|   //   explicitly specialized.
 | |
|   bool SawNonEmptyTemplateParameterList = false;
 | |
| 
 | |
|   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
 | |
|     if (SawNonEmptyTemplateParameterList) {
 | |
|       if (!SuppressDiagnostic)
 | |
|         Diag(DeclLoc, diag::err_specialize_member_of_template)
 | |
|           << !Recovery << Range;
 | |
|       Invalid = true;
 | |
|       IsMemberSpecialization = false;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
 | |
|     // Check that we can have an explicit specialization here.
 | |
|     if (CheckExplicitSpecialization(Range, true))
 | |
|       return true;
 | |
| 
 | |
|     // We don't have a template header, but we should.
 | |
|     SourceLocation ExpectedTemplateLoc;
 | |
|     if (!ParamLists.empty())
 | |
|       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
 | |
|     else
 | |
|       ExpectedTemplateLoc = DeclStartLoc;
 | |
| 
 | |
|     if (!SuppressDiagnostic)
 | |
|       Diag(DeclLoc, diag::err_template_spec_needs_header)
 | |
|         << Range
 | |
|         << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   unsigned ParamIdx = 0;
 | |
|   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
 | |
|        ++TypeIdx) {
 | |
|     T = NestedTypes[TypeIdx];
 | |
| 
 | |
|     // Whether we expect a 'template<>' header.
 | |
|     bool NeedEmptyTemplateHeader = false;
 | |
| 
 | |
|     // Whether we expect a template header with parameters.
 | |
|     bool NeedNonemptyTemplateHeader = false;
 | |
| 
 | |
|     // For a dependent type, the set of template parameters that we
 | |
|     // expect to see.
 | |
|     TemplateParameterList *ExpectedTemplateParams = nullptr;
 | |
| 
 | |
|     // C++0x [temp.expl.spec]p15:
 | |
|     //   A member or a member template may be nested within many enclosing
 | |
|     //   class templates. In an explicit specialization for such a member, the
 | |
|     //   member declaration shall be preceded by a template<> for each
 | |
|     //   enclosing class template that is explicitly specialized.
 | |
|     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
 | |
|       if (ClassTemplatePartialSpecializationDecl *Partial
 | |
|             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
 | |
|         ExpectedTemplateParams = Partial->getTemplateParameters();
 | |
|         NeedNonemptyTemplateHeader = true;
 | |
|       } else if (Record->isDependentType()) {
 | |
|         if (Record->getDescribedClassTemplate()) {
 | |
|           ExpectedTemplateParams = Record->getDescribedClassTemplate()
 | |
|                                                       ->getTemplateParameters();
 | |
|           NeedNonemptyTemplateHeader = true;
 | |
|         }
 | |
|       } else if (ClassTemplateSpecializationDecl *Spec
 | |
|                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
 | |
|         // C++0x [temp.expl.spec]p4:
 | |
|         //   Members of an explicitly specialized class template are defined
 | |
|         //   in the same manner as members of normal classes, and not using
 | |
|         //   the template<> syntax.
 | |
|         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
 | |
|           NeedEmptyTemplateHeader = true;
 | |
|         else
 | |
|           continue;
 | |
|       } else if (Record->getTemplateSpecializationKind()) {
 | |
|         if (Record->getTemplateSpecializationKind()
 | |
|                                                 != TSK_ExplicitSpecialization &&
 | |
|             TypeIdx == NumTypes - 1)
 | |
|           IsMemberSpecialization = true;
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
|     } else if (const TemplateSpecializationType *TST
 | |
|                                      = T->getAs<TemplateSpecializationType>()) {
 | |
|       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
 | |
|         ExpectedTemplateParams = Template->getTemplateParameters();
 | |
|         NeedNonemptyTemplateHeader = true;
 | |
|       }
 | |
|     } else if (T->getAs<DependentTemplateSpecializationType>()) {
 | |
|       // FIXME:  We actually could/should check the template arguments here
 | |
|       // against the corresponding template parameter list.
 | |
|       NeedNonemptyTemplateHeader = false;
 | |
|     }
 | |
| 
 | |
|     // C++ [temp.expl.spec]p16:
 | |
|     //   In an explicit specialization declaration for a member of a class
 | |
|     //   template or a member template that ap- pears in namespace scope, the
 | |
|     //   member template and some of its enclosing class templates may remain
 | |
|     //   unspecialized, except that the declaration shall not explicitly
 | |
|     //   specialize a class member template if its en- closing class templates
 | |
|     //   are not explicitly specialized as well.
 | |
|     if (ParamIdx < ParamLists.size()) {
 | |
|       if (ParamLists[ParamIdx]->size() == 0) {
 | |
|         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
 | |
|                                         false))
 | |
|           return nullptr;
 | |
|       } else
 | |
|         SawNonEmptyTemplateParameterList = true;
 | |
|     }
 | |
| 
 | |
|     if (NeedEmptyTemplateHeader) {
 | |
|       // If we're on the last of the types, and we need a 'template<>' header
 | |
|       // here, then it's a member specialization.
 | |
|       if (TypeIdx == NumTypes - 1)
 | |
|         IsMemberSpecialization = true;
 | |
| 
 | |
|       if (ParamIdx < ParamLists.size()) {
 | |
|         if (ParamLists[ParamIdx]->size() > 0) {
 | |
|           // The header has template parameters when it shouldn't. Complain.
 | |
|           if (!SuppressDiagnostic)
 | |
|             Diag(ParamLists[ParamIdx]->getTemplateLoc(),
 | |
|                  diag::err_template_param_list_matches_nontemplate)
 | |
|               << T
 | |
|               << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
 | |
|                              ParamLists[ParamIdx]->getRAngleLoc())
 | |
|               << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
 | |
|           Invalid = true;
 | |
|           return nullptr;
 | |
|         }
 | |
| 
 | |
|         // Consume this template header.
 | |
|         ++ParamIdx;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (!IsFriend)
 | |
|         if (DiagnoseMissingExplicitSpecialization(
 | |
|                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
 | |
|           return nullptr;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (NeedNonemptyTemplateHeader) {
 | |
|       // In friend declarations we can have template-ids which don't
 | |
|       // depend on the corresponding template parameter lists.  But
 | |
|       // assume that empty parameter lists are supposed to match this
 | |
|       // template-id.
 | |
|       if (IsFriend && T->isDependentType()) {
 | |
|         if (ParamIdx < ParamLists.size() &&
 | |
|             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
 | |
|           ExpectedTemplateParams = nullptr;
 | |
|         else
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       if (ParamIdx < ParamLists.size()) {
 | |
|         // Check the template parameter list, if we can.
 | |
|         if (ExpectedTemplateParams &&
 | |
|             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
 | |
|                                             ExpectedTemplateParams,
 | |
|                                             !SuppressDiagnostic, TPL_TemplateMatch))
 | |
|           Invalid = true;
 | |
| 
 | |
|         if (!Invalid &&
 | |
|             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
 | |
|                                        TPC_ClassTemplateMember))
 | |
|           Invalid = true;
 | |
| 
 | |
|         ++ParamIdx;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (!SuppressDiagnostic)
 | |
|         Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
 | |
|           << T
 | |
|           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
 | |
|       Invalid = true;
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there were at least as many template-ids as there were template
 | |
|   // parameter lists, then there are no template parameter lists remaining for
 | |
|   // the declaration itself.
 | |
|   if (ParamIdx >= ParamLists.size()) {
 | |
|     if (TemplateId && !IsFriend) {
 | |
|       // We don't have a template header for the declaration itself, but we
 | |
|       // should.
 | |
|       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
 | |
|                                                         TemplateId->RAngleLoc));
 | |
| 
 | |
|       // Fabricate an empty template parameter list for the invented header.
 | |
|       return TemplateParameterList::Create(Context, SourceLocation(),
 | |
|                                            SourceLocation(), None,
 | |
|                                            SourceLocation(), nullptr);
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If there were too many template parameter lists, complain about that now.
 | |
|   if (ParamIdx < ParamLists.size() - 1) {
 | |
|     bool HasAnyExplicitSpecHeader = false;
 | |
|     bool AllExplicitSpecHeaders = true;
 | |
|     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
 | |
|       if (ParamLists[I]->size() == 0)
 | |
|         HasAnyExplicitSpecHeader = true;
 | |
|       else
 | |
|         AllExplicitSpecHeaders = false;
 | |
|     }
 | |
| 
 | |
|     if (!SuppressDiagnostic)
 | |
|       Diag(ParamLists[ParamIdx]->getTemplateLoc(),
 | |
|            AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
 | |
|                                   : diag::err_template_spec_extra_headers)
 | |
|           << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
 | |
|                          ParamLists[ParamLists.size() - 2]->getRAngleLoc());
 | |
| 
 | |
|     // If there was a specialization somewhere, such that 'template<>' is
 | |
|     // not required, and there were any 'template<>' headers, note where the
 | |
|     // specialization occurred.
 | |
|     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
 | |
|         !SuppressDiagnostic)
 | |
|       Diag(ExplicitSpecLoc,
 | |
|            diag::note_explicit_template_spec_does_not_need_header)
 | |
|         << NestedTypes.back();
 | |
| 
 | |
|     // We have a template parameter list with no corresponding scope, which
 | |
|     // means that the resulting template declaration can't be instantiated
 | |
|     // properly (we'll end up with dependent nodes when we shouldn't).
 | |
|     if (!AllExplicitSpecHeaders)
 | |
|       Invalid = true;
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.expl.spec]p16:
 | |
|   //   In an explicit specialization declaration for a member of a class
 | |
|   //   template or a member template that ap- pears in namespace scope, the
 | |
|   //   member template and some of its enclosing class templates may remain
 | |
|   //   unspecialized, except that the declaration shall not explicitly
 | |
|   //   specialize a class member template if its en- closing class templates
 | |
|   //   are not explicitly specialized as well.
 | |
|   if (ParamLists.back()->size() == 0 &&
 | |
|       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
 | |
|                                   false))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Return the last template parameter list, which corresponds to the
 | |
|   // entity being declared.
 | |
|   return ParamLists.back();
 | |
| }
 | |
| 
 | |
| void Sema::NoteAllFoundTemplates(TemplateName Name) {
 | |
|   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
 | |
|     Diag(Template->getLocation(), diag::note_template_declared_here)
 | |
|         << (isa<FunctionTemplateDecl>(Template)
 | |
|                 ? 0
 | |
|                 : isa<ClassTemplateDecl>(Template)
 | |
|                       ? 1
 | |
|                       : isa<VarTemplateDecl>(Template)
 | |
|                             ? 2
 | |
|                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
 | |
|         << Template->getDeclName();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
 | |
|     for (OverloadedTemplateStorage::iterator I = OST->begin(),
 | |
|                                           IEnd = OST->end();
 | |
|          I != IEnd; ++I)
 | |
|       Diag((*I)->getLocation(), diag::note_template_declared_here)
 | |
|         << 0 << (*I)->getDeclName();
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static QualType
 | |
| checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
 | |
|                            const SmallVectorImpl<TemplateArgument> &Converted,
 | |
|                            SourceLocation TemplateLoc,
 | |
|                            TemplateArgumentListInfo &TemplateArgs) {
 | |
|   ASTContext &Context = SemaRef.getASTContext();
 | |
|   switch (BTD->getBuiltinTemplateKind()) {
 | |
|   case BTK__make_integer_seq: {
 | |
|     // Specializations of __make_integer_seq<S, T, N> are treated like
 | |
|     // S<T, 0, ..., N-1>.
 | |
| 
 | |
|     // C++14 [inteseq.intseq]p1:
 | |
|     //   T shall be an integer type.
 | |
|     if (!Converted[1].getAsType()->isIntegralType(Context)) {
 | |
|       SemaRef.Diag(TemplateArgs[1].getLocation(),
 | |
|                    diag::err_integer_sequence_integral_element_type);
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     // C++14 [inteseq.make]p1:
 | |
|     //   If N is negative the program is ill-formed.
 | |
|     TemplateArgument NumArgsArg = Converted[2];
 | |
|     llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
 | |
|     if (NumArgs < 0) {
 | |
|       SemaRef.Diag(TemplateArgs[2].getLocation(),
 | |
|                    diag::err_integer_sequence_negative_length);
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     QualType ArgTy = NumArgsArg.getIntegralType();
 | |
|     TemplateArgumentListInfo SyntheticTemplateArgs;
 | |
|     // The type argument gets reused as the first template argument in the
 | |
|     // synthetic template argument list.
 | |
|     SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
 | |
|     // Expand N into 0 ... N-1.
 | |
|     for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
 | |
|          I < NumArgs; ++I) {
 | |
|       TemplateArgument TA(Context, I, ArgTy);
 | |
|       SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
 | |
|           TA, ArgTy, TemplateArgs[2].getLocation()));
 | |
|     }
 | |
|     // The first template argument will be reused as the template decl that
 | |
|     // our synthetic template arguments will be applied to.
 | |
|     return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
 | |
|                                        TemplateLoc, SyntheticTemplateArgs);
 | |
|   }
 | |
| 
 | |
|   case BTK__type_pack_element:
 | |
|     // Specializations of
 | |
|     //    __type_pack_element<Index, T_1, ..., T_N>
 | |
|     // are treated like T_Index.
 | |
|     assert(Converted.size() == 2 &&
 | |
|       "__type_pack_element should be given an index and a parameter pack");
 | |
| 
 | |
|     // If the Index is out of bounds, the program is ill-formed.
 | |
|     TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
 | |
|     llvm::APSInt Index = IndexArg.getAsIntegral();
 | |
|     assert(Index >= 0 && "the index used with __type_pack_element should be of "
 | |
|                          "type std::size_t, and hence be non-negative");
 | |
|     if (Index >= Ts.pack_size()) {
 | |
|       SemaRef.Diag(TemplateArgs[0].getLocation(),
 | |
|                    diag::err_type_pack_element_out_of_bounds);
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     // We simply return the type at index `Index`.
 | |
|     auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
 | |
|     return Nth->getAsType();
 | |
|   }
 | |
|   llvm_unreachable("unexpected BuiltinTemplateDecl!");
 | |
| }
 | |
| 
 | |
| /// Determine whether this alias template is "enable_if_t".
 | |
| static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
 | |
|   return AliasTemplate->getName().equals("enable_if_t");
 | |
| }
 | |
| 
 | |
| /// Collect all of the separable terms in the given condition, which
 | |
| /// might be a conjunction.
 | |
| ///
 | |
| /// FIXME: The right answer is to convert the logical expression into
 | |
| /// disjunctive normal form, so we can find the first failed term
 | |
| /// within each possible clause.
 | |
| static void collectConjunctionTerms(Expr *Clause,
 | |
|                                     SmallVectorImpl<Expr *> &Terms) {
 | |
|   if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
 | |
|     if (BinOp->getOpcode() == BO_LAnd) {
 | |
|       collectConjunctionTerms(BinOp->getLHS(), Terms);
 | |
|       collectConjunctionTerms(BinOp->getRHS(), Terms);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Terms.push_back(Clause);
 | |
| }
 | |
| 
 | |
| // The ranges-v3 library uses an odd pattern of a top-level "||" with
 | |
| // a left-hand side that is value-dependent but never true. Identify
 | |
| // the idiom and ignore that term.
 | |
| static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
 | |
|   // Top-level '||'.
 | |
|   auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
 | |
|   if (!BinOp) return Cond;
 | |
| 
 | |
|   if (BinOp->getOpcode() != BO_LOr) return Cond;
 | |
| 
 | |
|   // With an inner '==' that has a literal on the right-hand side.
 | |
|   Expr *LHS = BinOp->getLHS();
 | |
|   auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
 | |
|   if (!InnerBinOp) return Cond;
 | |
| 
 | |
|   if (InnerBinOp->getOpcode() != BO_EQ ||
 | |
|       !isa<IntegerLiteral>(InnerBinOp->getRHS()))
 | |
|     return Cond;
 | |
| 
 | |
|   // If the inner binary operation came from a macro expansion named
 | |
|   // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
 | |
|   // of the '||', which is the real, user-provided condition.
 | |
|   SourceLocation Loc = InnerBinOp->getExprLoc();
 | |
|   if (!Loc.isMacroID()) return Cond;
 | |
| 
 | |
|   StringRef MacroName = PP.getImmediateMacroName(Loc);
 | |
|   if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
 | |
|     return BinOp->getRHS();
 | |
| 
 | |
|   return Cond;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
 | |
| // within failing boolean expression, such as substituting template parameters
 | |
| // for actual types.
 | |
| class FailedBooleanConditionPrinterHelper : public PrinterHelper {
 | |
| public:
 | |
|   explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
 | |
|       : Policy(P) {}
 | |
| 
 | |
|   bool handledStmt(Stmt *E, raw_ostream &OS) override {
 | |
|     const auto *DR = dyn_cast<DeclRefExpr>(E);
 | |
|     if (DR && DR->getQualifier()) {
 | |
|       // If this is a qualified name, expand the template arguments in nested
 | |
|       // qualifiers.
 | |
|       DR->getQualifier()->print(OS, Policy, true);
 | |
|       // Then print the decl itself.
 | |
|       const ValueDecl *VD = DR->getDecl();
 | |
|       OS << VD->getName();
 | |
|       if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
 | |
|         // This is a template variable, print the expanded template arguments.
 | |
|         printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   const PrintingPolicy Policy;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| std::pair<Expr *, std::string>
 | |
| Sema::findFailedBooleanCondition(Expr *Cond) {
 | |
|   Cond = lookThroughRangesV3Condition(PP, Cond);
 | |
| 
 | |
|   // Separate out all of the terms in a conjunction.
 | |
|   SmallVector<Expr *, 4> Terms;
 | |
|   collectConjunctionTerms(Cond, Terms);
 | |
| 
 | |
|   // Determine which term failed.
 | |
|   Expr *FailedCond = nullptr;
 | |
|   for (Expr *Term : Terms) {
 | |
|     Expr *TermAsWritten = Term->IgnoreParenImpCasts();
 | |
| 
 | |
|     // Literals are uninteresting.
 | |
|     if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
 | |
|         isa<IntegerLiteral>(TermAsWritten))
 | |
|       continue;
 | |
| 
 | |
|     // The initialization of the parameter from the argument is
 | |
|     // a constant-evaluated context.
 | |
|     EnterExpressionEvaluationContext ConstantEvaluated(
 | |
|       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
 | |
| 
 | |
|     bool Succeeded;
 | |
|     if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
 | |
|         !Succeeded) {
 | |
|       FailedCond = TermAsWritten;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!FailedCond)
 | |
|     FailedCond = Cond->IgnoreParenImpCasts();
 | |
| 
 | |
|   std::string Description;
 | |
|   {
 | |
|     llvm::raw_string_ostream Out(Description);
 | |
|     PrintingPolicy Policy = getPrintingPolicy();
 | |
|     Policy.PrintCanonicalTypes = true;
 | |
|     FailedBooleanConditionPrinterHelper Helper(Policy);
 | |
|     FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
 | |
|   }
 | |
|   return { FailedCond, Description };
 | |
| }
 | |
| 
 | |
| QualType Sema::CheckTemplateIdType(TemplateName Name,
 | |
|                                    SourceLocation TemplateLoc,
 | |
|                                    TemplateArgumentListInfo &TemplateArgs) {
 | |
|   DependentTemplateName *DTN
 | |
|     = Name.getUnderlying().getAsDependentTemplateName();
 | |
|   if (DTN && DTN->isIdentifier())
 | |
|     // When building a template-id where the template-name is dependent,
 | |
|     // assume the template is a type template. Either our assumption is
 | |
|     // correct, or the code is ill-formed and will be diagnosed when the
 | |
|     // dependent name is substituted.
 | |
|     return Context.getDependentTemplateSpecializationType(ETK_None,
 | |
|                                                           DTN->getQualifier(),
 | |
|                                                           DTN->getIdentifier(),
 | |
|                                                           TemplateArgs);
 | |
| 
 | |
|   TemplateDecl *Template = Name.getAsTemplateDecl();
 | |
|   if (!Template || isa<FunctionTemplateDecl>(Template) ||
 | |
|       isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
 | |
|     // We might have a substituted template template parameter pack. If so,
 | |
|     // build a template specialization type for it.
 | |
|     if (Name.getAsSubstTemplateTemplateParmPack())
 | |
|       return Context.getTemplateSpecializationType(Name, TemplateArgs);
 | |
| 
 | |
|     Diag(TemplateLoc, diag::err_template_id_not_a_type)
 | |
|       << Name;
 | |
|     NoteAllFoundTemplates(Name);
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // Check that the template argument list is well-formed for this
 | |
|   // template.
 | |
|   SmallVector<TemplateArgument, 4> Converted;
 | |
|   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
 | |
|                                 false, Converted,
 | |
|                                 /*UpdateArgsWithConversion=*/true))
 | |
|     return QualType();
 | |
| 
 | |
|   QualType CanonType;
 | |
| 
 | |
|   bool InstantiationDependent = false;
 | |
|   if (TypeAliasTemplateDecl *AliasTemplate =
 | |
|           dyn_cast<TypeAliasTemplateDecl>(Template)) {
 | |
| 
 | |
|     // Find the canonical type for this type alias template specialization.
 | |
|     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
 | |
|     if (Pattern->isInvalidDecl())
 | |
|       return QualType();
 | |
| 
 | |
|     TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
 | |
|                                            Converted);
 | |
| 
 | |
|     // Only substitute for the innermost template argument list.
 | |
|     MultiLevelTemplateArgumentList TemplateArgLists;
 | |
|     TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
 | |
|     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
 | |
|     for (unsigned I = 0; I < Depth; ++I)
 | |
|       TemplateArgLists.addOuterTemplateArguments(None);
 | |
| 
 | |
|     LocalInstantiationScope Scope(*this);
 | |
|     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
 | |
|     if (Inst.isInvalid())
 | |
|       return QualType();
 | |
| 
 | |
|     CanonType = SubstType(Pattern->getUnderlyingType(),
 | |
|                           TemplateArgLists, AliasTemplate->getLocation(),
 | |
|                           AliasTemplate->getDeclName());
 | |
|     if (CanonType.isNull()) {
 | |
|       // If this was enable_if and we failed to find the nested type
 | |
|       // within enable_if in a SFINAE context, dig out the specific
 | |
|       // enable_if condition that failed and present that instead.
 | |
|       if (isEnableIfAliasTemplate(AliasTemplate)) {
 | |
|         if (auto DeductionInfo = isSFINAEContext()) {
 | |
|           if (*DeductionInfo &&
 | |
|               (*DeductionInfo)->hasSFINAEDiagnostic() &&
 | |
|               (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
 | |
|                 diag::err_typename_nested_not_found_enable_if &&
 | |
|               TemplateArgs[0].getArgument().getKind()
 | |
|                 == TemplateArgument::Expression) {
 | |
|             Expr *FailedCond;
 | |
|             std::string FailedDescription;
 | |
|             std::tie(FailedCond, FailedDescription) =
 | |
|               findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
 | |
| 
 | |
|             // Remove the old SFINAE diagnostic.
 | |
|             PartialDiagnosticAt OldDiag =
 | |
|               {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
 | |
|             (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
 | |
| 
 | |
|             // Add a new SFINAE diagnostic specifying which condition
 | |
|             // failed.
 | |
|             (*DeductionInfo)->addSFINAEDiagnostic(
 | |
|               OldDiag.first,
 | |
|               PDiag(diag::err_typename_nested_not_found_requirement)
 | |
|                 << FailedDescription
 | |
|                 << FailedCond->getSourceRange());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return QualType();
 | |
|     }
 | |
|   } else if (Name.isDependent() ||
 | |
|              TemplateSpecializationType::anyDependentTemplateArguments(
 | |
|                TemplateArgs, InstantiationDependent)) {
 | |
|     // This class template specialization is a dependent
 | |
|     // type. Therefore, its canonical type is another class template
 | |
|     // specialization type that contains all of the converted
 | |
|     // arguments in canonical form. This ensures that, e.g., A<T> and
 | |
|     // A<T, T> have identical types when A is declared as:
 | |
|     //
 | |
|     //   template<typename T, typename U = T> struct A;
 | |
|     CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
 | |
| 
 | |
|     // This might work out to be a current instantiation, in which
 | |
|     // case the canonical type needs to be the InjectedClassNameType.
 | |
|     //
 | |
|     // TODO: in theory this could be a simple hashtable lookup; most
 | |
|     // changes to CurContext don't change the set of current
 | |
|     // instantiations.
 | |
|     if (isa<ClassTemplateDecl>(Template)) {
 | |
|       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
 | |
|         // If we get out to a namespace, we're done.
 | |
|         if (Ctx->isFileContext()) break;
 | |
| 
 | |
|         // If this isn't a record, keep looking.
 | |
|         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
 | |
|         if (!Record) continue;
 | |
| 
 | |
|         // Look for one of the two cases with InjectedClassNameTypes
 | |
|         // and check whether it's the same template.
 | |
|         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
 | |
|             !Record->getDescribedClassTemplate())
 | |
|           continue;
 | |
| 
 | |
|         // Fetch the injected class name type and check whether its
 | |
|         // injected type is equal to the type we just built.
 | |
|         QualType ICNT = Context.getTypeDeclType(Record);
 | |
|         QualType Injected = cast<InjectedClassNameType>(ICNT)
 | |
|           ->getInjectedSpecializationType();
 | |
| 
 | |
|         if (CanonType != Injected->getCanonicalTypeInternal())
 | |
|           continue;
 | |
| 
 | |
|         // If so, the canonical type of this TST is the injected
 | |
|         // class name type of the record we just found.
 | |
|         assert(ICNT.isCanonical());
 | |
|         CanonType = ICNT;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   } else if (ClassTemplateDecl *ClassTemplate
 | |
|                = dyn_cast<ClassTemplateDecl>(Template)) {
 | |
|     // Find the class template specialization declaration that
 | |
|     // corresponds to these arguments.
 | |
|     void *InsertPos = nullptr;
 | |
|     ClassTemplateSpecializationDecl *Decl
 | |
|       = ClassTemplate->findSpecialization(Converted, InsertPos);
 | |
|     if (!Decl) {
 | |
|       // This is the first time we have referenced this class template
 | |
|       // specialization. Create the canonical declaration and add it to
 | |
|       // the set of specializations.
 | |
|       Decl = ClassTemplateSpecializationDecl::Create(
 | |
|           Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
 | |
|           ClassTemplate->getDeclContext(),
 | |
|           ClassTemplate->getTemplatedDecl()->getBeginLoc(),
 | |
|           ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
 | |
|       ClassTemplate->AddSpecialization(Decl, InsertPos);
 | |
|       if (ClassTemplate->isOutOfLine())
 | |
|         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
 | |
|     }
 | |
| 
 | |
|     if (Decl->getSpecializationKind() == TSK_Undeclared) {
 | |
|       MultiLevelTemplateArgumentList TemplateArgLists;
 | |
|       TemplateArgLists.addOuterTemplateArguments(Converted);
 | |
|       InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(),
 | |
|                               Decl);
 | |
|     }
 | |
| 
 | |
|     // Diagnose uses of this specialization.
 | |
|     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
 | |
| 
 | |
|     CanonType = Context.getTypeDeclType(Decl);
 | |
|     assert(isa<RecordType>(CanonType) &&
 | |
|            "type of non-dependent specialization is not a RecordType");
 | |
|   } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
 | |
|     CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
 | |
|                                            TemplateArgs);
 | |
|   }
 | |
| 
 | |
|   // Build the fully-sugared type for this class template
 | |
|   // specialization, which refers back to the class template
 | |
|   // specialization we created or found.
 | |
|   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
 | |
| }
 | |
| 
 | |
| void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
 | |
|                                            TemplateNameKind &TNK,
 | |
|                                            SourceLocation NameLoc,
 | |
|                                            IdentifierInfo *&II) {
 | |
|   assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
 | |
| 
 | |
|   TemplateName Name = ParsedName.get();
 | |
|   auto *ATN = Name.getAsAssumedTemplateName();
 | |
|   assert(ATN && "not an assumed template name");
 | |
|   II = ATN->getDeclName().getAsIdentifierInfo();
 | |
| 
 | |
|   if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
 | |
|     // Resolved to a type template name.
 | |
|     ParsedName = TemplateTy::make(Name);
 | |
|     TNK = TNK_Type_template;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
 | |
|                                             SourceLocation NameLoc,
 | |
|                                             bool Diagnose) {
 | |
|   // We assumed this undeclared identifier to be an (ADL-only) function
 | |
|   // template name, but it was used in a context where a type was required.
 | |
|   // Try to typo-correct it now.
 | |
|   AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
 | |
|   assert(ATN && "not an assumed template name");
 | |
| 
 | |
|   LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
 | |
|   struct CandidateCallback : CorrectionCandidateCallback {
 | |
|     bool ValidateCandidate(const TypoCorrection &TC) override {
 | |
|       return TC.getCorrectionDecl() &&
 | |
|              getAsTypeTemplateDecl(TC.getCorrectionDecl());
 | |
|     }
 | |
|     std::unique_ptr<CorrectionCandidateCallback> clone() override {
 | |
|       return std::make_unique<CandidateCallback>(*this);
 | |
|     }
 | |
|   } FilterCCC;
 | |
| 
 | |
|   TypoCorrection Corrected =
 | |
|       CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
 | |
|                   FilterCCC, CTK_ErrorRecovery);
 | |
|   if (Corrected && Corrected.getFoundDecl()) {
 | |
|     diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
 | |
|                                 << ATN->getDeclName());
 | |
|     Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Diagnose)
 | |
|     Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| TypeResult Sema::ActOnTemplateIdType(
 | |
|     Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
 | |
|     TemplateTy TemplateD, IdentifierInfo *TemplateII,
 | |
|     SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
 | |
|     ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
 | |
|     bool IsCtorOrDtorName, bool IsClassName) {
 | |
|   if (SS.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
 | |
|     DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
 | |
| 
 | |
|     // C++ [temp.res]p3:
 | |
|     //   A qualified-id that refers to a type and in which the
 | |
|     //   nested-name-specifier depends on a template-parameter (14.6.2)
 | |
|     //   shall be prefixed by the keyword typename to indicate that the
 | |
|     //   qualified-id denotes a type, forming an
 | |
|     //   elaborated-type-specifier (7.1.5.3).
 | |
|     if (!LookupCtx && isDependentScopeSpecifier(SS)) {
 | |
|       Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
 | |
|         << SS.getScopeRep() << TemplateII->getName();
 | |
|       // Recover as if 'typename' were specified.
 | |
|       // FIXME: This is not quite correct recovery as we don't transform SS
 | |
|       // into the corresponding dependent form (and we don't diagnose missing
 | |
|       // 'template' keywords within SS as a result).
 | |
|       return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
 | |
|                                TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
 | |
|                                TemplateArgsIn, RAngleLoc);
 | |
|     }
 | |
| 
 | |
|     // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
 | |
|     // it's not actually allowed to be used as a type in most cases. Because
 | |
|     // we annotate it before we know whether it's valid, we have to check for
 | |
|     // this case here.
 | |
|     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
 | |
|     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
 | |
|       Diag(TemplateIILoc,
 | |
|            TemplateKWLoc.isInvalid()
 | |
|                ? diag::err_out_of_line_qualified_id_type_names_constructor
 | |
|                : diag::ext_out_of_line_qualified_id_type_names_constructor)
 | |
|         << TemplateII << 0 /*injected-class-name used as template name*/
 | |
|         << 1 /*if any keyword was present, it was 'template'*/;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TemplateName Template = TemplateD.get();
 | |
|   if (Template.getAsAssumedTemplateName() &&
 | |
|       resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
 | |
|     return true;
 | |
| 
 | |
|   // Translate the parser's template argument list in our AST format.
 | |
|   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | |
|   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | |
| 
 | |
|   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
 | |
|     QualType T
 | |
|       = Context.getDependentTemplateSpecializationType(ETK_None,
 | |
|                                                        DTN->getQualifier(),
 | |
|                                                        DTN->getIdentifier(),
 | |
|                                                        TemplateArgs);
 | |
|     // Build type-source information.
 | |
|     TypeLocBuilder TLB;
 | |
|     DependentTemplateSpecializationTypeLoc SpecTL
 | |
|       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
 | |
|     SpecTL.setElaboratedKeywordLoc(SourceLocation());
 | |
|     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | |
|     SpecTL.setTemplateNameLoc(TemplateIILoc);
 | |
|     SpecTL.setLAngleLoc(LAngleLoc);
 | |
|     SpecTL.setRAngleLoc(RAngleLoc);
 | |
|     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
 | |
|       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | |
|     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
 | |
|   }
 | |
| 
 | |
|   QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
 | |
|   if (Result.isNull())
 | |
|     return true;
 | |
| 
 | |
|   // Build type-source information.
 | |
|   TypeLocBuilder TLB;
 | |
|   TemplateSpecializationTypeLoc SpecTL
 | |
|     = TLB.push<TemplateSpecializationTypeLoc>(Result);
 | |
|   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | |
|   SpecTL.setTemplateNameLoc(TemplateIILoc);
 | |
|   SpecTL.setLAngleLoc(LAngleLoc);
 | |
|   SpecTL.setRAngleLoc(RAngleLoc);
 | |
|   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
 | |
|     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
 | |
| 
 | |
|   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
 | |
|   // constructor or destructor name (in such a case, the scope specifier
 | |
|   // will be attached to the enclosing Decl or Expr node).
 | |
|   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
 | |
|     // Create an elaborated-type-specifier containing the nested-name-specifier.
 | |
|     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
 | |
|     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
 | |
|     ElabTL.setElaboratedKeywordLoc(SourceLocation());
 | |
|     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|   }
 | |
| 
 | |
|   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
 | |
| }
 | |
| 
 | |
| TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
 | |
|                                         TypeSpecifierType TagSpec,
 | |
|                                         SourceLocation TagLoc,
 | |
|                                         CXXScopeSpec &SS,
 | |
|                                         SourceLocation TemplateKWLoc,
 | |
|                                         TemplateTy TemplateD,
 | |
|                                         SourceLocation TemplateLoc,
 | |
|                                         SourceLocation LAngleLoc,
 | |
|                                         ASTTemplateArgsPtr TemplateArgsIn,
 | |
|                                         SourceLocation RAngleLoc) {
 | |
|   TemplateName Template = TemplateD.get();
 | |
| 
 | |
|   // Translate the parser's template argument list in our AST format.
 | |
|   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | |
|   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | |
| 
 | |
|   // Determine the tag kind
 | |
|   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | |
|   ElaboratedTypeKeyword Keyword
 | |
|     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
 | |
| 
 | |
|   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
 | |
|     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
 | |
|                                                           DTN->getQualifier(),
 | |
|                                                           DTN->getIdentifier(),
 | |
|                                                                 TemplateArgs);
 | |
| 
 | |
|     // Build type-source information.
 | |
|     TypeLocBuilder TLB;
 | |
|     DependentTemplateSpecializationTypeLoc SpecTL
 | |
|       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
 | |
|     SpecTL.setElaboratedKeywordLoc(TagLoc);
 | |
|     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | |
|     SpecTL.setTemplateNameLoc(TemplateLoc);
 | |
|     SpecTL.setLAngleLoc(LAngleLoc);
 | |
|     SpecTL.setRAngleLoc(RAngleLoc);
 | |
|     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
 | |
|       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | |
|     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
 | |
|   }
 | |
| 
 | |
|   if (TypeAliasTemplateDecl *TAT =
 | |
|         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
 | |
|     // C++0x [dcl.type.elab]p2:
 | |
|     //   If the identifier resolves to a typedef-name or the simple-template-id
 | |
|     //   resolves to an alias template specialization, the
 | |
|     //   elaborated-type-specifier is ill-formed.
 | |
|     Diag(TemplateLoc, diag::err_tag_reference_non_tag)
 | |
|         << TAT << NTK_TypeAliasTemplate << TagKind;
 | |
|     Diag(TAT->getLocation(), diag::note_declared_at);
 | |
|   }
 | |
| 
 | |
|   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
 | |
|   if (Result.isNull())
 | |
|     return TypeResult(true);
 | |
| 
 | |
|   // Check the tag kind
 | |
|   if (const RecordType *RT = Result->getAs<RecordType>()) {
 | |
|     RecordDecl *D = RT->getDecl();
 | |
| 
 | |
|     IdentifierInfo *Id = D->getIdentifier();
 | |
|     assert(Id && "templated class must have an identifier");
 | |
| 
 | |
|     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
 | |
|                                       TagLoc, Id)) {
 | |
|       Diag(TagLoc, diag::err_use_with_wrong_tag)
 | |
|         << Result
 | |
|         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
 | |
|       Diag(D->getLocation(), diag::note_previous_use);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Provide source-location information for the template specialization.
 | |
|   TypeLocBuilder TLB;
 | |
|   TemplateSpecializationTypeLoc SpecTL
 | |
|     = TLB.push<TemplateSpecializationTypeLoc>(Result);
 | |
|   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | |
|   SpecTL.setTemplateNameLoc(TemplateLoc);
 | |
|   SpecTL.setLAngleLoc(LAngleLoc);
 | |
|   SpecTL.setRAngleLoc(RAngleLoc);
 | |
|   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
 | |
|     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
 | |
| 
 | |
|   // Construct an elaborated type containing the nested-name-specifier (if any)
 | |
|   // and tag keyword.
 | |
|   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
 | |
|   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
 | |
|   ElabTL.setElaboratedKeywordLoc(TagLoc);
 | |
|   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
 | |
| }
 | |
| 
 | |
| static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
 | |
|                                              NamedDecl *PrevDecl,
 | |
|                                              SourceLocation Loc,
 | |
|                                              bool IsPartialSpecialization);
 | |
| 
 | |
| static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
 | |
| 
 | |
| static bool isTemplateArgumentTemplateParameter(
 | |
|     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
 | |
|   switch (Arg.getKind()) {
 | |
|   case TemplateArgument::Null:
 | |
|   case TemplateArgument::NullPtr:
 | |
|   case TemplateArgument::Integral:
 | |
|   case TemplateArgument::Declaration:
 | |
|   case TemplateArgument::Pack:
 | |
|   case TemplateArgument::TemplateExpansion:
 | |
|     return false;
 | |
| 
 | |
|   case TemplateArgument::Type: {
 | |
|     QualType Type = Arg.getAsType();
 | |
|     const TemplateTypeParmType *TPT =
 | |
|         Arg.getAsType()->getAs<TemplateTypeParmType>();
 | |
|     return TPT && !Type.hasQualifiers() &&
 | |
|            TPT->getDepth() == Depth && TPT->getIndex() == Index;
 | |
|   }
 | |
| 
 | |
|   case TemplateArgument::Expression: {
 | |
|     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
 | |
|     if (!DRE || !DRE->getDecl())
 | |
|       return false;
 | |
|     const NonTypeTemplateParmDecl *NTTP =
 | |
|         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
 | |
|     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
 | |
|   }
 | |
| 
 | |
|   case TemplateArgument::Template:
 | |
|     const TemplateTemplateParmDecl *TTP =
 | |
|         dyn_cast_or_null<TemplateTemplateParmDecl>(
 | |
|             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
 | |
|     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
 | |
|   }
 | |
|   llvm_unreachable("unexpected kind of template argument");
 | |
| }
 | |
| 
 | |
| static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
 | |
|                                     ArrayRef<TemplateArgument> Args) {
 | |
|   if (Params->size() != Args.size())
 | |
|     return false;
 | |
| 
 | |
|   unsigned Depth = Params->getDepth();
 | |
| 
 | |
|   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
 | |
|     TemplateArgument Arg = Args[I];
 | |
| 
 | |
|     // If the parameter is a pack expansion, the argument must be a pack
 | |
|     // whose only element is a pack expansion.
 | |
|     if (Params->getParam(I)->isParameterPack()) {
 | |
|       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
 | |
|           !Arg.pack_begin()->isPackExpansion())
 | |
|         return false;
 | |
|       Arg = Arg.pack_begin()->getPackExpansionPattern();
 | |
|     }
 | |
| 
 | |
|     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template<typename PartialSpecDecl>
 | |
| static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
 | |
|   if (Partial->getDeclContext()->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   // FIXME: Get the TDK from deduction in order to provide better diagnostics
 | |
|   // for non-substitution-failure issues?
 | |
|   TemplateDeductionInfo Info(Partial->getLocation());
 | |
|   if (S.isMoreSpecializedThanPrimary(Partial, Info))
 | |
|     return;
 | |
| 
 | |
|   auto *Template = Partial->getSpecializedTemplate();
 | |
|   S.Diag(Partial->getLocation(),
 | |
|          diag::ext_partial_spec_not_more_specialized_than_primary)
 | |
|       << isa<VarTemplateDecl>(Template);
 | |
| 
 | |
|   if (Info.hasSFINAEDiagnostic()) {
 | |
|     PartialDiagnosticAt Diag = {SourceLocation(),
 | |
|                                 PartialDiagnostic::NullDiagnostic()};
 | |
|     Info.takeSFINAEDiagnostic(Diag);
 | |
|     SmallString<128> SFINAEArgString;
 | |
|     Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
 | |
|     S.Diag(Diag.first,
 | |
|            diag::note_partial_spec_not_more_specialized_than_primary)
 | |
|       << SFINAEArgString;
 | |
|   }
 | |
| 
 | |
|   S.Diag(Template->getLocation(), diag::note_template_decl_here);
 | |
|   SmallVector<const Expr *, 3> PartialAC, TemplateAC;
 | |
|   Template->getAssociatedConstraints(TemplateAC);
 | |
|   Partial->getAssociatedConstraints(PartialAC);
 | |
|   S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
 | |
|                                                   TemplateAC);
 | |
| }
 | |
| 
 | |
| static void
 | |
| noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
 | |
|                            const llvm::SmallBitVector &DeducibleParams) {
 | |
|   for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
 | |
|     if (!DeducibleParams[I]) {
 | |
|       NamedDecl *Param = TemplateParams->getParam(I);
 | |
|       if (Param->getDeclName())
 | |
|         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
 | |
|             << Param->getDeclName();
 | |
|       else
 | |
|         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
 | |
|             << "(anonymous)";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| template<typename PartialSpecDecl>
 | |
| static void checkTemplatePartialSpecialization(Sema &S,
 | |
|                                                PartialSpecDecl *Partial) {
 | |
|   // C++1z [temp.class.spec]p8: (DR1495)
 | |
|   //   - The specialization shall be more specialized than the primary
 | |
|   //     template (14.5.5.2).
 | |
|   checkMoreSpecializedThanPrimary(S, Partial);
 | |
| 
 | |
|   // C++ [temp.class.spec]p8: (DR1315)
 | |
|   //   - Each template-parameter shall appear at least once in the
 | |
|   //     template-id outside a non-deduced context.
 | |
|   // C++1z [temp.class.spec.match]p3 (P0127R2)
 | |
|   //   If the template arguments of a partial specialization cannot be
 | |
|   //   deduced because of the structure of its template-parameter-list
 | |
|   //   and the template-id, the program is ill-formed.
 | |
|   auto *TemplateParams = Partial->getTemplateParameters();
 | |
|   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
 | |
|   S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
 | |
|                                TemplateParams->getDepth(), DeducibleParams);
 | |
| 
 | |
|   if (!DeducibleParams.all()) {
 | |
|     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
 | |
|     S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
 | |
|       << isa<VarTemplatePartialSpecializationDecl>(Partial)
 | |
|       << (NumNonDeducible > 1)
 | |
|       << SourceRange(Partial->getLocation(),
 | |
|                      Partial->getTemplateArgsAsWritten()->RAngleLoc);
 | |
|     noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::CheckTemplatePartialSpecialization(
 | |
|     ClassTemplatePartialSpecializationDecl *Partial) {
 | |
|   checkTemplatePartialSpecialization(*this, Partial);
 | |
| }
 | |
| 
 | |
| void Sema::CheckTemplatePartialSpecialization(
 | |
|     VarTemplatePartialSpecializationDecl *Partial) {
 | |
|   checkTemplatePartialSpecialization(*this, Partial);
 | |
| }
 | |
| 
 | |
| void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
 | |
|   // C++1z [temp.param]p11:
 | |
|   //   A template parameter of a deduction guide template that does not have a
 | |
|   //   default-argument shall be deducible from the parameter-type-list of the
 | |
|   //   deduction guide template.
 | |
|   auto *TemplateParams = TD->getTemplateParameters();
 | |
|   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
 | |
|   MarkDeducedTemplateParameters(TD, DeducibleParams);
 | |
|   for (unsigned I = 0; I != TemplateParams->size(); ++I) {
 | |
|     // A parameter pack is deducible (to an empty pack).
 | |
|     auto *Param = TemplateParams->getParam(I);
 | |
|     if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
 | |
|       DeducibleParams[I] = true;
 | |
|   }
 | |
| 
 | |
|   if (!DeducibleParams.all()) {
 | |
|     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
 | |
|     Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
 | |
|       << (NumNonDeducible > 1);
 | |
|     noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
 | |
|   }
 | |
| }
 | |
| 
 | |
| DeclResult Sema::ActOnVarTemplateSpecialization(
 | |
|     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
 | |
|     TemplateParameterList *TemplateParams, StorageClass SC,
 | |
|     bool IsPartialSpecialization) {
 | |
|   // D must be variable template id.
 | |
|   assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
 | |
|          "Variable template specialization is declared with a template it.");
 | |
| 
 | |
|   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
 | |
|   TemplateArgumentListInfo TemplateArgs =
 | |
|       makeTemplateArgumentListInfo(*this, *TemplateId);
 | |
|   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
 | |
|   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
 | |
|   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
 | |
| 
 | |
|   TemplateName Name = TemplateId->Template.get();
 | |
| 
 | |
|   // The template-id must name a variable template.
 | |
|   VarTemplateDecl *VarTemplate =
 | |
|       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
 | |
|   if (!VarTemplate) {
 | |
|     NamedDecl *FnTemplate;
 | |
|     if (auto *OTS = Name.getAsOverloadedTemplate())
 | |
|       FnTemplate = *OTS->begin();
 | |
|     else
 | |
|       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
 | |
|     if (FnTemplate)
 | |
|       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
 | |
|                << FnTemplate->getDeclName();
 | |
|     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
 | |
|              << IsPartialSpecialization;
 | |
|   }
 | |
| 
 | |
|   // Check for unexpanded parameter packs in any of the template arguments.
 | |
|   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | |
|     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
 | |
|                                         UPPC_PartialSpecialization))
 | |
|       return true;
 | |
| 
 | |
|   // Check that the template argument list is well-formed for this
 | |
|   // template.
 | |
|   SmallVector<TemplateArgument, 4> Converted;
 | |
|   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
 | |
|                                 false, Converted,
 | |
|                                 /*UpdateArgsWithConversion=*/true))
 | |
|     return true;
 | |
| 
 | |
|   // Find the variable template (partial) specialization declaration that
 | |
|   // corresponds to these arguments.
 | |
|   if (IsPartialSpecialization) {
 | |
|     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
 | |
|                                                TemplateArgs.size(), Converted))
 | |
|       return true;
 | |
| 
 | |
|     // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
 | |
|     // also do them during instantiation.
 | |
|     bool InstantiationDependent;
 | |
|     if (!Name.isDependent() &&
 | |
|         !TemplateSpecializationType::anyDependentTemplateArguments(
 | |
|             TemplateArgs.arguments(),
 | |
|             InstantiationDependent)) {
 | |
|       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
 | |
|           << VarTemplate->getDeclName();
 | |
|       IsPartialSpecialization = false;
 | |
|     }
 | |
| 
 | |
|     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
 | |
|                                 Converted) &&
 | |
|         (!Context.getLangOpts().CPlusPlus2a ||
 | |
|          !TemplateParams->hasAssociatedConstraints())) {
 | |
|       // C++ [temp.class.spec]p9b3:
 | |
|       //
 | |
|       //   -- The argument list of the specialization shall not be identical
 | |
|       //      to the implicit argument list of the primary template.
 | |
|       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
 | |
|         << /*variable template*/ 1
 | |
|         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
 | |
|         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
 | |
|       // FIXME: Recover from this by treating the declaration as a redeclaration
 | |
|       // of the primary template.
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   VarTemplateSpecializationDecl *PrevDecl = nullptr;
 | |
| 
 | |
|   if (IsPartialSpecialization)
 | |
|     PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams,
 | |
|                                                       InsertPos);
 | |
|   else
 | |
|     PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
 | |
| 
 | |
|   VarTemplateSpecializationDecl *Specialization = nullptr;
 | |
| 
 | |
|   // Check whether we can declare a variable template specialization in
 | |
|   // the current scope.
 | |
|   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
 | |
|                                        TemplateNameLoc,
 | |
|                                        IsPartialSpecialization))
 | |
|     return true;
 | |
| 
 | |
|   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
 | |
|     // Since the only prior variable template specialization with these
 | |
|     // arguments was referenced but not declared,  reuse that
 | |
|     // declaration node as our own, updating its source location and
 | |
|     // the list of outer template parameters to reflect our new declaration.
 | |
|     Specialization = PrevDecl;
 | |
|     Specialization->setLocation(TemplateNameLoc);
 | |
|     PrevDecl = nullptr;
 | |
|   } else if (IsPartialSpecialization) {
 | |
|     // Create a new class template partial specialization declaration node.
 | |
|     VarTemplatePartialSpecializationDecl *PrevPartial =
 | |
|         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
 | |
|     VarTemplatePartialSpecializationDecl *Partial =
 | |
|         VarTemplatePartialSpecializationDecl::Create(
 | |
|             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
 | |
|             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
 | |
|             Converted, TemplateArgs);
 | |
| 
 | |
|     if (!PrevPartial)
 | |
|       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
 | |
|     Specialization = Partial;
 | |
| 
 | |
|     // If we are providing an explicit specialization of a member variable
 | |
|     // template specialization, make a note of that.
 | |
|     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
 | |
|       PrevPartial->setMemberSpecialization();
 | |
| 
 | |
|     CheckTemplatePartialSpecialization(Partial);
 | |
|   } else {
 | |
|     // Create a new class template specialization declaration node for
 | |
|     // this explicit specialization or friend declaration.
 | |
|     Specialization = VarTemplateSpecializationDecl::Create(
 | |
|         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
 | |
|         VarTemplate, DI->getType(), DI, SC, Converted);
 | |
|     Specialization->setTemplateArgsInfo(TemplateArgs);
 | |
| 
 | |
|     if (!PrevDecl)
 | |
|       VarTemplate->AddSpecialization(Specialization, InsertPos);
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.expl.spec]p6:
 | |
|   //   If a template, a member template or the member of a class template is
 | |
|   //   explicitly specialized then that specialization shall be declared
 | |
|   //   before the first use of that specialization that would cause an implicit
 | |
|   //   instantiation to take place, in every translation unit in which such a
 | |
|   //   use occurs; no diagnostic is required.
 | |
|   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
 | |
|     bool Okay = false;
 | |
|     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | |
|       // Is there any previous explicit specialization declaration?
 | |
|       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
 | |
|         Okay = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!Okay) {
 | |
|       SourceRange Range(TemplateNameLoc, RAngleLoc);
 | |
|       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
 | |
|           << Name << Range;
 | |
| 
 | |
|       Diag(PrevDecl->getPointOfInstantiation(),
 | |
|            diag::note_instantiation_required_here)
 | |
|           << (PrevDecl->getTemplateSpecializationKind() !=
 | |
|               TSK_ImplicitInstantiation);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
 | |
|   Specialization->setLexicalDeclContext(CurContext);
 | |
| 
 | |
|   // Add the specialization into its lexical context, so that it can
 | |
|   // be seen when iterating through the list of declarations in that
 | |
|   // context. However, specializations are not found by name lookup.
 | |
|   CurContext->addDecl(Specialization);
 | |
| 
 | |
|   // Note that this is an explicit specialization.
 | |
|   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     // Check that this isn't a redefinition of this specialization,
 | |
|     // merging with previous declarations.
 | |
|     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
 | |
|                           forRedeclarationInCurContext());
 | |
|     PrevSpec.addDecl(PrevDecl);
 | |
|     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
 | |
|   } else if (Specialization->isStaticDataMember() &&
 | |
|              Specialization->isOutOfLine()) {
 | |
|     Specialization->setAccess(VarTemplate->getAccess());
 | |
|   }
 | |
| 
 | |
|   return Specialization;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// A partial specialization whose template arguments have matched
 | |
| /// a given template-id.
 | |
| struct PartialSpecMatchResult {
 | |
|   VarTemplatePartialSpecializationDecl *Partial;
 | |
|   TemplateArgumentList *Args;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| DeclResult
 | |
| Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
 | |
|                          SourceLocation TemplateNameLoc,
 | |
|                          const TemplateArgumentListInfo &TemplateArgs) {
 | |
|   assert(Template && "A variable template id without template?");
 | |
| 
 | |
|   // Check that the template argument list is well-formed for this template.
 | |
|   SmallVector<TemplateArgument, 4> Converted;
 | |
|   if (CheckTemplateArgumentList(
 | |
|           Template, TemplateNameLoc,
 | |
|           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
 | |
|           Converted, /*UpdateArgsWithConversion=*/true))
 | |
|     return true;
 | |
| 
 | |
|   // Find the variable template specialization declaration that
 | |
|   // corresponds to these arguments.
 | |
|   void *InsertPos = nullptr;
 | |
|   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
 | |
|           Converted, InsertPos)) {
 | |
|     checkSpecializationVisibility(TemplateNameLoc, Spec);
 | |
|     // If we already have a variable template specialization, return it.
 | |
|     return Spec;
 | |
|   }
 | |
| 
 | |
|   // This is the first time we have referenced this variable template
 | |
|   // specialization. Create the canonical declaration and add it to
 | |
|   // the set of specializations, based on the closest partial specialization
 | |
|   // that it represents. That is,
 | |
|   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
 | |
|   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
 | |
|                                        Converted);
 | |
|   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
 | |
|   bool AmbiguousPartialSpec = false;
 | |
|   typedef PartialSpecMatchResult MatchResult;
 | |
|   SmallVector<MatchResult, 4> Matched;
 | |
|   SourceLocation PointOfInstantiation = TemplateNameLoc;
 | |
|   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
 | |
|                                             /*ForTakingAddress=*/false);
 | |
| 
 | |
|   // 1. Attempt to find the closest partial specialization that this
 | |
|   // specializes, if any.
 | |
|   // If any of the template arguments is dependent, then this is probably
 | |
|   // a placeholder for an incomplete declarative context; which must be
 | |
|   // complete by instantiation time. Thus, do not search through the partial
 | |
|   // specializations yet.
 | |
|   // TODO: Unify with InstantiateClassTemplateSpecialization()?
 | |
|   //       Perhaps better after unification of DeduceTemplateArguments() and
 | |
|   //       getMoreSpecializedPartialSpecialization().
 | |
|   bool InstantiationDependent = false;
 | |
|   if (!TemplateSpecializationType::anyDependentTemplateArguments(
 | |
|           TemplateArgs, InstantiationDependent)) {
 | |
| 
 | |
|     SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
 | |
|     Template->getPartialSpecializations(PartialSpecs);
 | |
| 
 | |
|     for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
 | |
|       VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
 | |
|       TemplateDeductionInfo Info(FailedCandidates.getLocation());
 | |
| 
 | |
|       if (TemplateDeductionResult Result =
 | |
|               DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
 | |
|         // Store the failed-deduction information for use in diagnostics, later.
 | |
|         // TODO: Actually use the failed-deduction info?
 | |
|         FailedCandidates.addCandidate().set(
 | |
|             DeclAccessPair::make(Template, AS_public), Partial,
 | |
|             MakeDeductionFailureInfo(Context, Result, Info));
 | |
|         (void)Result;
 | |
|       } else {
 | |
|         Matched.push_back(PartialSpecMatchResult());
 | |
|         Matched.back().Partial = Partial;
 | |
|         Matched.back().Args = Info.take();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Matched.size() >= 1) {
 | |
|       SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
 | |
|       if (Matched.size() == 1) {
 | |
|         //   -- If exactly one matching specialization is found, the
 | |
|         //      instantiation is generated from that specialization.
 | |
|         // We don't need to do anything for this.
 | |
|       } else {
 | |
|         //   -- If more than one matching specialization is found, the
 | |
|         //      partial order rules (14.5.4.2) are used to determine
 | |
|         //      whether one of the specializations is more specialized
 | |
|         //      than the others. If none of the specializations is more
 | |
|         //      specialized than all of the other matching
 | |
|         //      specializations, then the use of the variable template is
 | |
|         //      ambiguous and the program is ill-formed.
 | |
|         for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
 | |
|                                                    PEnd = Matched.end();
 | |
|              P != PEnd; ++P) {
 | |
|           if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
 | |
|                                                       PointOfInstantiation) ==
 | |
|               P->Partial)
 | |
|             Best = P;
 | |
|         }
 | |
| 
 | |
|         // Determine if the best partial specialization is more specialized than
 | |
|         // the others.
 | |
|         for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
 | |
|                                                    PEnd = Matched.end();
 | |
|              P != PEnd; ++P) {
 | |
|           if (P != Best && getMoreSpecializedPartialSpecialization(
 | |
|                                P->Partial, Best->Partial,
 | |
|                                PointOfInstantiation) != Best->Partial) {
 | |
|             AmbiguousPartialSpec = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Instantiate using the best variable template partial specialization.
 | |
|       InstantiationPattern = Best->Partial;
 | |
|       InstantiationArgs = Best->Args;
 | |
|     } else {
 | |
|       //   -- If no match is found, the instantiation is generated
 | |
|       //      from the primary template.
 | |
|       // InstantiationPattern = Template->getTemplatedDecl();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // 2. Create the canonical declaration.
 | |
|   // Note that we do not instantiate a definition until we see an odr-use
 | |
|   // in DoMarkVarDeclReferenced().
 | |
|   // FIXME: LateAttrs et al.?
 | |
|   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
 | |
|       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
 | |
|       Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
 | |
|   if (!Decl)
 | |
|     return true;
 | |
| 
 | |
|   if (AmbiguousPartialSpec) {
 | |
|     // Partial ordering did not produce a clear winner. Complain.
 | |
|     Decl->setInvalidDecl();
 | |
|     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
 | |
|         << Decl;
 | |
| 
 | |
|     // Print the matching partial specializations.
 | |
|     for (MatchResult P : Matched)
 | |
|       Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
 | |
|           << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
 | |
|                                              *P.Args);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (VarTemplatePartialSpecializationDecl *D =
 | |
|           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
 | |
|     Decl->setInstantiationOf(D, InstantiationArgs);
 | |
| 
 | |
|   checkSpecializationVisibility(TemplateNameLoc, Decl);
 | |
| 
 | |
|   assert(Decl && "No variable template specialization?");
 | |
|   return Decl;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
 | |
|                          const DeclarationNameInfo &NameInfo,
 | |
|                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
 | |
|                          const TemplateArgumentListInfo *TemplateArgs) {
 | |
| 
 | |
|   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
 | |
|                                        *TemplateArgs);
 | |
|   if (Decl.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   VarDecl *Var = cast<VarDecl>(Decl.get());
 | |
|   if (!Var->getTemplateSpecializationKind())
 | |
|     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
 | |
|                                        NameInfo.getLoc());
 | |
| 
 | |
|   // Build an ordinary singleton decl ref.
 | |
|   return BuildDeclarationNameExpr(SS, NameInfo, Var,
 | |
|                                   /*FoundD=*/nullptr, TemplateArgs);
 | |
| }
 | |
| 
 | |
| void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
 | |
|                                             SourceLocation Loc) {
 | |
|   Diag(Loc, diag::err_template_missing_args)
 | |
|     << (int)getTemplateNameKindForDiagnostics(Name) << Name;
 | |
|   if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
 | |
|     Diag(TD->getLocation(), diag::note_template_decl_here)
 | |
|       << TD->getTemplateParameters()->getSourceRange();
 | |
|   }
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
 | |
|                              SourceLocation TemplateKWLoc,
 | |
|                              const DeclarationNameInfo &ConceptNameInfo,
 | |
|                              NamedDecl *FoundDecl,
 | |
|                              ConceptDecl *NamedConcept,
 | |
|                              const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   assert(NamedConcept && "A concept template id without a template?");
 | |
| 
 | |
|   llvm::SmallVector<TemplateArgument, 4> Converted;
 | |
|   if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(),
 | |
|                            const_cast<TemplateArgumentListInfo&>(*TemplateArgs),
 | |
|                                 /*PartialTemplateArgs=*/false, Converted,
 | |
|                                 /*UpdateArgsWithConversion=*/false))
 | |
|     return ExprError();
 | |
| 
 | |
|   ConstraintSatisfaction Satisfaction;
 | |
|   bool AreArgsDependent = false;
 | |
|   for (TemplateArgument &Arg : Converted) {
 | |
|     if (Arg.isDependent()) {
 | |
|       AreArgsDependent = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!AreArgsDependent &&
 | |
|       CheckConstraintSatisfaction(NamedConcept,
 | |
|                                   {NamedConcept->getConstraintExpr()},
 | |
|                                   Converted,
 | |
|                                   SourceRange(SS.isSet() ? SS.getBeginLoc() :
 | |
|                                                        ConceptNameInfo.getLoc(),
 | |
|                                                 TemplateArgs->getRAngleLoc()),
 | |
|                                     Satisfaction))
 | |
|       return ExprError();
 | |
| 
 | |
|   return ConceptSpecializationExpr::Create(Context,
 | |
|       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
 | |
|       TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
 | |
|       ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted,
 | |
|       AreArgsDependent ? nullptr : &Satisfaction);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
 | |
|                                      SourceLocation TemplateKWLoc,
 | |
|                                      LookupResult &R,
 | |
|                                      bool RequiresADL,
 | |
|                                  const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   // FIXME: Can we do any checking at this point? I guess we could check the
 | |
|   // template arguments that we have against the template name, if the template
 | |
|   // name refers to a single template. That's not a terribly common case,
 | |
|   // though.
 | |
|   // foo<int> could identify a single function unambiguously
 | |
|   // This approach does NOT work, since f<int>(1);
 | |
|   // gets resolved prior to resorting to overload resolution
 | |
|   // i.e., template<class T> void f(double);
 | |
|   //       vs template<class T, class U> void f(U);
 | |
| 
 | |
|   // These should be filtered out by our callers.
 | |
|   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
 | |
| 
 | |
|   // Non-function templates require a template argument list.
 | |
|   if (auto *TD = R.getAsSingle<TemplateDecl>()) {
 | |
|     if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
 | |
|       diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto AnyDependentArguments = [&]() -> bool {
 | |
|     bool InstantiationDependent;
 | |
|     return TemplateArgs &&
 | |
|            TemplateSpecializationType::anyDependentTemplateArguments(
 | |
|                *TemplateArgs, InstantiationDependent);
 | |
|   };
 | |
| 
 | |
|   // In C++1y, check variable template ids.
 | |
|   if (R.getAsSingle<VarTemplateDecl>() && !AnyDependentArguments()) {
 | |
|     return CheckVarTemplateId(SS, R.getLookupNameInfo(),
 | |
|                               R.getAsSingle<VarTemplateDecl>(),
 | |
|                               TemplateKWLoc, TemplateArgs);
 | |
|   }
 | |
| 
 | |
|   if (R.getAsSingle<ConceptDecl>()) {
 | |
|     return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
 | |
|                                   R.getFoundDecl(),
 | |
|                                   R.getAsSingle<ConceptDecl>(), TemplateArgs);
 | |
|   }
 | |
| 
 | |
|   // We don't want lookup warnings at this point.
 | |
|   R.suppressDiagnostics();
 | |
| 
 | |
|   UnresolvedLookupExpr *ULE
 | |
|     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
 | |
|                                    SS.getWithLocInContext(Context),
 | |
|                                    TemplateKWLoc,
 | |
|                                    R.getLookupNameInfo(),
 | |
|                                    RequiresADL, TemplateArgs,
 | |
|                                    R.begin(), R.end());
 | |
| 
 | |
|   return ULE;
 | |
| }
 | |
| 
 | |
| // We actually only call this from template instantiation.
 | |
| ExprResult
 | |
| Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
 | |
|                                    SourceLocation TemplateKWLoc,
 | |
|                                    const DeclarationNameInfo &NameInfo,
 | |
|                              const TemplateArgumentListInfo *TemplateArgs) {
 | |
| 
 | |
|   assert(TemplateArgs || TemplateKWLoc.isValid());
 | |
|   DeclContext *DC;
 | |
|   if (!(DC = computeDeclContext(SS, false)) ||
 | |
|       DC->isDependentContext() ||
 | |
|       RequireCompleteDeclContext(SS, DC))
 | |
|     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
 | |
| 
 | |
|   bool MemberOfUnknownSpecialization;
 | |
|   LookupResult R(*this, NameInfo, LookupOrdinaryName);
 | |
|   if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
 | |
|                          /*Entering*/false, MemberOfUnknownSpecialization,
 | |
|                          TemplateKWLoc))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (R.isAmbiguous())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (R.empty()) {
 | |
|     Diag(NameInfo.getLoc(), diag::err_no_member)
 | |
|       << NameInfo.getName() << DC << SS.getRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
 | |
|     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
 | |
|       << SS.getScopeRep()
 | |
|       << NameInfo.getName().getAsString() << SS.getRange();
 | |
|     Diag(Temp->getLocation(), diag::note_referenced_class_template);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
 | |
| }
 | |
| 
 | |
| /// Form a dependent template name.
 | |
| ///
 | |
| /// This action forms a dependent template name given the template
 | |
| /// name and its (presumably dependent) scope specifier. For
 | |
| /// example, given "MetaFun::template apply", the scope specifier \p
 | |
| /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
 | |
| /// of the "template" keyword, and "apply" is the \p Name.
 | |
| TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
 | |
|                                                   CXXScopeSpec &SS,
 | |
|                                                   SourceLocation TemplateKWLoc,
 | |
|                                                   const UnqualifiedId &Name,
 | |
|                                                   ParsedType ObjectType,
 | |
|                                                   bool EnteringContext,
 | |
|                                                   TemplateTy &Result,
 | |
|                                                   bool AllowInjectedClassName) {
 | |
|   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
 | |
|     Diag(TemplateKWLoc,
 | |
|          getLangOpts().CPlusPlus11 ?
 | |
|            diag::warn_cxx98_compat_template_outside_of_template :
 | |
|            diag::ext_template_outside_of_template)
 | |
|       << FixItHint::CreateRemoval(TemplateKWLoc);
 | |
| 
 | |
|   DeclContext *LookupCtx = nullptr;
 | |
|   if (SS.isSet())
 | |
|     LookupCtx = computeDeclContext(SS, EnteringContext);
 | |
|   if (!LookupCtx && ObjectType)
 | |
|     LookupCtx = computeDeclContext(ObjectType.get());
 | |
|   if (LookupCtx) {
 | |
|     // C++0x [temp.names]p5:
 | |
|     //   If a name prefixed by the keyword template is not the name of
 | |
|     //   a template, the program is ill-formed. [Note: the keyword
 | |
|     //   template may not be applied to non-template members of class
 | |
|     //   templates. -end note ] [ Note: as is the case with the
 | |
|     //   typename prefix, the template prefix is allowed in cases
 | |
|     //   where it is not strictly necessary; i.e., when the
 | |
|     //   nested-name-specifier or the expression on the left of the ->
 | |
|     //   or . is not dependent on a template-parameter, or the use
 | |
|     //   does not appear in the scope of a template. -end note]
 | |
|     //
 | |
|     // Note: C++03 was more strict here, because it banned the use of
 | |
|     // the "template" keyword prior to a template-name that was not a
 | |
|     // dependent name. C++ DR468 relaxed this requirement (the
 | |
|     // "template" keyword is now permitted). We follow the C++0x
 | |
|     // rules, even in C++03 mode with a warning, retroactively applying the DR.
 | |
|     bool MemberOfUnknownSpecialization;
 | |
|     TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
 | |
|                                           ObjectType, EnteringContext, Result,
 | |
|                                           MemberOfUnknownSpecialization);
 | |
|     if (TNK == TNK_Non_template && MemberOfUnknownSpecialization) {
 | |
|       // This is a dependent template. Handle it below.
 | |
|     } else if (TNK == TNK_Non_template) {
 | |
|       // Do the lookup again to determine if this is a "nothing found" case or
 | |
|       // a "not a template" case. FIXME: Refactor isTemplateName so we don't
 | |
|       // need to do this.
 | |
|       DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
 | |
|       LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
 | |
|                      LookupOrdinaryName);
 | |
|       bool MOUS;
 | |
|       if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext,
 | |
|                               MOUS, TemplateKWLoc) && !R.isAmbiguous())
 | |
|         Diag(Name.getBeginLoc(), diag::err_no_member)
 | |
|             << DNI.getName() << LookupCtx << SS.getRange();
 | |
|       return TNK_Non_template;
 | |
|     } else {
 | |
|       // We found something; return it.
 | |
|       auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx);
 | |
|       if (!AllowInjectedClassName && SS.isSet() && LookupRD &&
 | |
|           Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
 | |
|           Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
 | |
|         // C++14 [class.qual]p2:
 | |
|         //   In a lookup in which function names are not ignored and the
 | |
|         //   nested-name-specifier nominates a class C, if the name specified
 | |
|         //   [...] is the injected-class-name of C, [...] the name is instead
 | |
|         //   considered to name the constructor
 | |
|         //
 | |
|         // We don't get here if naming the constructor would be valid, so we
 | |
|         // just reject immediately and recover by treating the
 | |
|         // injected-class-name as naming the template.
 | |
|         Diag(Name.getBeginLoc(),
 | |
|              diag::ext_out_of_line_qualified_id_type_names_constructor)
 | |
|             << Name.Identifier
 | |
|             << 0 /*injected-class-name used as template name*/
 | |
|             << 1 /*'template' keyword was used*/;
 | |
|       }
 | |
|       return TNK;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NestedNameSpecifier *Qualifier = SS.getScopeRep();
 | |
| 
 | |
|   switch (Name.getKind()) {
 | |
|   case UnqualifiedIdKind::IK_Identifier:
 | |
|     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
 | |
|                                                               Name.Identifier));
 | |
|     return TNK_Dependent_template_name;
 | |
| 
 | |
|   case UnqualifiedIdKind::IK_OperatorFunctionId:
 | |
|     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
 | |
|                                              Name.OperatorFunctionId.Operator));
 | |
|     return TNK_Function_template;
 | |
| 
 | |
|   case UnqualifiedIdKind::IK_LiteralOperatorId:
 | |
|     llvm_unreachable("literal operator id cannot have a dependent scope");
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   Diag(Name.getBeginLoc(), diag::err_template_kw_refers_to_non_template)
 | |
|       << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
 | |
|       << TemplateKWLoc;
 | |
|   return TNK_Non_template;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
 | |
|                                      TemplateArgumentLoc &AL,
 | |
|                           SmallVectorImpl<TemplateArgument> &Converted) {
 | |
|   const TemplateArgument &Arg = AL.getArgument();
 | |
|   QualType ArgType;
 | |
|   TypeSourceInfo *TSI = nullptr;
 | |
| 
 | |
|   // Check template type parameter.
 | |
|   switch(Arg.getKind()) {
 | |
|   case TemplateArgument::Type:
 | |
|     // C++ [temp.arg.type]p1:
 | |
|     //   A template-argument for a template-parameter which is a
 | |
|     //   type shall be a type-id.
 | |
|     ArgType = Arg.getAsType();
 | |
|     TSI = AL.getTypeSourceInfo();
 | |
|     break;
 | |
|   case TemplateArgument::Template:
 | |
|   case TemplateArgument::TemplateExpansion: {
 | |
|     // We have a template type parameter but the template argument
 | |
|     // is a template without any arguments.
 | |
|     SourceRange SR = AL.getSourceRange();
 | |
|     TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
 | |
|     diagnoseMissingTemplateArguments(Name, SR.getEnd());
 | |
|     return true;
 | |
|   }
 | |
|   case TemplateArgument::Expression: {
 | |
|     // We have a template type parameter but the template argument is an
 | |
|     // expression; see if maybe it is missing the "typename" keyword.
 | |
|     CXXScopeSpec SS;
 | |
|     DeclarationNameInfo NameInfo;
 | |
| 
 | |
|     if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
 | |
|       SS.Adopt(ArgExpr->getQualifierLoc());
 | |
|       NameInfo = ArgExpr->getNameInfo();
 | |
|     } else if (DependentScopeDeclRefExpr *ArgExpr =
 | |
|                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
 | |
|       SS.Adopt(ArgExpr->getQualifierLoc());
 | |
|       NameInfo = ArgExpr->getNameInfo();
 | |
|     } else if (CXXDependentScopeMemberExpr *ArgExpr =
 | |
|                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
 | |
|       if (ArgExpr->isImplicitAccess()) {
 | |
|         SS.Adopt(ArgExpr->getQualifierLoc());
 | |
|         NameInfo = ArgExpr->getMemberNameInfo();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
 | |
|       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
 | |
|       LookupParsedName(Result, CurScope, &SS);
 | |
| 
 | |
|       if (Result.getAsSingle<TypeDecl>() ||
 | |
|           Result.getResultKind() ==
 | |
|               LookupResult::NotFoundInCurrentInstantiation) {
 | |
|         // Suggest that the user add 'typename' before the NNS.
 | |
|         SourceLocation Loc = AL.getSourceRange().getBegin();
 | |
|         Diag(Loc, getLangOpts().MSVCCompat
 | |
|                       ? diag::ext_ms_template_type_arg_missing_typename
 | |
|                       : diag::err_template_arg_must_be_type_suggest)
 | |
|             << FixItHint::CreateInsertion(Loc, "typename ");
 | |
|         Diag(Param->getLocation(), diag::note_template_param_here);
 | |
| 
 | |
|         // Recover by synthesizing a type using the location information that we
 | |
|         // already have.
 | |
|         ArgType =
 | |
|             Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
 | |
|         TypeLocBuilder TLB;
 | |
|         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
 | |
|         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
 | |
|         TL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|         TL.setNameLoc(NameInfo.getLoc());
 | |
|         TSI = TLB.getTypeSourceInfo(Context, ArgType);
 | |
| 
 | |
|         // Overwrite our input TemplateArgumentLoc so that we can recover
 | |
|         // properly.
 | |
|         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
 | |
|                                  TemplateArgumentLocInfo(TSI));
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // fallthrough
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
|   default: {
 | |
|     // We have a template type parameter but the template argument
 | |
|     // is not a type.
 | |
|     SourceRange SR = AL.getSourceRange();
 | |
|     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
 | |
|     Diag(Param->getLocation(), diag::note_template_param_here);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (CheckTemplateArgument(Param, TSI))
 | |
|     return true;
 | |
| 
 | |
|   // Add the converted template type argument.
 | |
|   ArgType = Context.getCanonicalType(ArgType);
 | |
| 
 | |
|   // Objective-C ARC:
 | |
|   //   If an explicitly-specified template argument type is a lifetime type
 | |
|   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
 | |
|   if (getLangOpts().ObjCAutoRefCount &&
 | |
|       ArgType->isObjCLifetimeType() &&
 | |
|       !ArgType.getObjCLifetime()) {
 | |
|     Qualifiers Qs;
 | |
|     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
 | |
|     ArgType = Context.getQualifiedType(ArgType, Qs);
 | |
|   }
 | |
| 
 | |
|   Converted.push_back(TemplateArgument(ArgType));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Substitute template arguments into the default template argument for
 | |
| /// the given template type parameter.
 | |
| ///
 | |
| /// \param SemaRef the semantic analysis object for which we are performing
 | |
| /// the substitution.
 | |
| ///
 | |
| /// \param Template the template that we are synthesizing template arguments
 | |
| /// for.
 | |
| ///
 | |
| /// \param TemplateLoc the location of the template name that started the
 | |
| /// template-id we are checking.
 | |
| ///
 | |
| /// \param RAngleLoc the location of the right angle bracket ('>') that
 | |
| /// terminates the template-id.
 | |
| ///
 | |
| /// \param Param the template template parameter whose default we are
 | |
| /// substituting into.
 | |
| ///
 | |
| /// \param Converted the list of template arguments provided for template
 | |
| /// parameters that precede \p Param in the template parameter list.
 | |
| /// \returns the substituted template argument, or NULL if an error occurred.
 | |
| static TypeSourceInfo *
 | |
| SubstDefaultTemplateArgument(Sema &SemaRef,
 | |
|                              TemplateDecl *Template,
 | |
|                              SourceLocation TemplateLoc,
 | |
|                              SourceLocation RAngleLoc,
 | |
|                              TemplateTypeParmDecl *Param,
 | |
|                              SmallVectorImpl<TemplateArgument> &Converted) {
 | |
|   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
 | |
| 
 | |
|   // If the argument type is dependent, instantiate it now based
 | |
|   // on the previously-computed template arguments.
 | |
|   if (ArgType->getType()->isInstantiationDependentType()) {
 | |
|     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
 | |
|                                      Param, Template, Converted,
 | |
|                                      SourceRange(TemplateLoc, RAngleLoc));
 | |
|     if (Inst.isInvalid())
 | |
|       return nullptr;
 | |
| 
 | |
|     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
 | |
| 
 | |
|     // Only substitute for the innermost template argument list.
 | |
|     MultiLevelTemplateArgumentList TemplateArgLists;
 | |
|     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
 | |
|     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
 | |
|       TemplateArgLists.addOuterTemplateArguments(None);
 | |
| 
 | |
|     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
 | |
|     ArgType =
 | |
|         SemaRef.SubstType(ArgType, TemplateArgLists,
 | |
|                           Param->getDefaultArgumentLoc(), Param->getDeclName());
 | |
|   }
 | |
| 
 | |
|   return ArgType;
 | |
| }
 | |
| 
 | |
| /// Substitute template arguments into the default template argument for
 | |
| /// the given non-type template parameter.
 | |
| ///
 | |
| /// \param SemaRef the semantic analysis object for which we are performing
 | |
| /// the substitution.
 | |
| ///
 | |
| /// \param Template the template that we are synthesizing template arguments
 | |
| /// for.
 | |
| ///
 | |
| /// \param TemplateLoc the location of the template name that started the
 | |
| /// template-id we are checking.
 | |
| ///
 | |
| /// \param RAngleLoc the location of the right angle bracket ('>') that
 | |
| /// terminates the template-id.
 | |
| ///
 | |
| /// \param Param the non-type template parameter whose default we are
 | |
| /// substituting into.
 | |
| ///
 | |
| /// \param Converted the list of template arguments provided for template
 | |
| /// parameters that precede \p Param in the template parameter list.
 | |
| ///
 | |
| /// \returns the substituted template argument, or NULL if an error occurred.
 | |
| static ExprResult
 | |
| SubstDefaultTemplateArgument(Sema &SemaRef,
 | |
|                              TemplateDecl *Template,
 | |
|                              SourceLocation TemplateLoc,
 | |
|                              SourceLocation RAngleLoc,
 | |
|                              NonTypeTemplateParmDecl *Param,
 | |
|                         SmallVectorImpl<TemplateArgument> &Converted) {
 | |
|   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
 | |
|                                    Param, Template, Converted,
 | |
|                                    SourceRange(TemplateLoc, RAngleLoc));
 | |
|   if (Inst.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
 | |
| 
 | |
|   // Only substitute for the innermost template argument list.
 | |
|   MultiLevelTemplateArgumentList TemplateArgLists;
 | |
|   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
 | |
|   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
 | |
|     TemplateArgLists.addOuterTemplateArguments(None);
 | |
| 
 | |
|   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
 | |
|   EnterExpressionEvaluationContext ConstantEvaluated(
 | |
|       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
 | |
|   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
 | |
| }
 | |
| 
 | |
| /// Substitute template arguments into the default template argument for
 | |
| /// the given template template parameter.
 | |
| ///
 | |
| /// \param SemaRef the semantic analysis object for which we are performing
 | |
| /// the substitution.
 | |
| ///
 | |
| /// \param Template the template that we are synthesizing template arguments
 | |
| /// for.
 | |
| ///
 | |
| /// \param TemplateLoc the location of the template name that started the
 | |
| /// template-id we are checking.
 | |
| ///
 | |
| /// \param RAngleLoc the location of the right angle bracket ('>') that
 | |
| /// terminates the template-id.
 | |
| ///
 | |
| /// \param Param the template template parameter whose default we are
 | |
| /// substituting into.
 | |
| ///
 | |
| /// \param Converted the list of template arguments provided for template
 | |
| /// parameters that precede \p Param in the template parameter list.
 | |
| ///
 | |
| /// \param QualifierLoc Will be set to the nested-name-specifier (with
 | |
| /// source-location information) that precedes the template name.
 | |
| ///
 | |
| /// \returns the substituted template argument, or NULL if an error occurred.
 | |
| static TemplateName
 | |
| SubstDefaultTemplateArgument(Sema &SemaRef,
 | |
|                              TemplateDecl *Template,
 | |
|                              SourceLocation TemplateLoc,
 | |
|                              SourceLocation RAngleLoc,
 | |
|                              TemplateTemplateParmDecl *Param,
 | |
|                        SmallVectorImpl<TemplateArgument> &Converted,
 | |
|                              NestedNameSpecifierLoc &QualifierLoc) {
 | |
|   Sema::InstantiatingTemplate Inst(
 | |
|       SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
 | |
|       SourceRange(TemplateLoc, RAngleLoc));
 | |
|   if (Inst.isInvalid())
 | |
|     return TemplateName();
 | |
| 
 | |
|   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
 | |
| 
 | |
|   // Only substitute for the innermost template argument list.
 | |
|   MultiLevelTemplateArgumentList TemplateArgLists;
 | |
|   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
 | |
|   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
 | |
|     TemplateArgLists.addOuterTemplateArguments(None);
 | |
| 
 | |
|   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
 | |
|   // Substitute into the nested-name-specifier first,
 | |
|   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
 | |
|   if (QualifierLoc) {
 | |
|     QualifierLoc =
 | |
|         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
 | |
|     if (!QualifierLoc)
 | |
|       return TemplateName();
 | |
|   }
 | |
| 
 | |
|   return SemaRef.SubstTemplateName(
 | |
|              QualifierLoc,
 | |
|              Param->getDefaultArgument().getArgument().getAsTemplate(),
 | |
|              Param->getDefaultArgument().getTemplateNameLoc(),
 | |
|              TemplateArgLists);
 | |
| }
 | |
| 
 | |
| /// If the given template parameter has a default template
 | |
| /// argument, substitute into that default template argument and
 | |
| /// return the corresponding template argument.
 | |
| TemplateArgumentLoc
 | |
| Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
 | |
|                                               SourceLocation TemplateLoc,
 | |
|                                               SourceLocation RAngleLoc,
 | |
|                                               Decl *Param,
 | |
|                                               SmallVectorImpl<TemplateArgument>
 | |
|                                                 &Converted,
 | |
|                                               bool &HasDefaultArg) {
 | |
|   HasDefaultArg = false;
 | |
| 
 | |
|   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
 | |
|     if (!hasVisibleDefaultArgument(TypeParm))
 | |
|       return TemplateArgumentLoc();
 | |
| 
 | |
|     HasDefaultArg = true;
 | |
|     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
 | |
|                                                       TemplateLoc,
 | |
|                                                       RAngleLoc,
 | |
|                                                       TypeParm,
 | |
|                                                       Converted);
 | |
|     if (DI)
 | |
|       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
 | |
| 
 | |
|     return TemplateArgumentLoc();
 | |
|   }
 | |
| 
 | |
|   if (NonTypeTemplateParmDecl *NonTypeParm
 | |
|         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | |
|     if (!hasVisibleDefaultArgument(NonTypeParm))
 | |
|       return TemplateArgumentLoc();
 | |
| 
 | |
|     HasDefaultArg = true;
 | |
|     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
 | |
|                                                   TemplateLoc,
 | |
|                                                   RAngleLoc,
 | |
|                                                   NonTypeParm,
 | |
|                                                   Converted);
 | |
|     if (Arg.isInvalid())
 | |
|       return TemplateArgumentLoc();
 | |
| 
 | |
|     Expr *ArgE = Arg.getAs<Expr>();
 | |
|     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
 | |
|   }
 | |
| 
 | |
|   TemplateTemplateParmDecl *TempTempParm
 | |
|     = cast<TemplateTemplateParmDecl>(Param);
 | |
|   if (!hasVisibleDefaultArgument(TempTempParm))
 | |
|     return TemplateArgumentLoc();
 | |
| 
 | |
|   HasDefaultArg = true;
 | |
|   NestedNameSpecifierLoc QualifierLoc;
 | |
|   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
 | |
|                                                     TemplateLoc,
 | |
|                                                     RAngleLoc,
 | |
|                                                     TempTempParm,
 | |
|                                                     Converted,
 | |
|                                                     QualifierLoc);
 | |
|   if (TName.isNull())
 | |
|     return TemplateArgumentLoc();
 | |
| 
 | |
|   return TemplateArgumentLoc(TemplateArgument(TName),
 | |
|                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
 | |
|                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
 | |
| }
 | |
| 
 | |
| /// Convert a template-argument that we parsed as a type into a template, if
 | |
| /// possible. C++ permits injected-class-names to perform dual service as
 | |
| /// template template arguments and as template type arguments.
 | |
| static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) {
 | |
|   // Extract and step over any surrounding nested-name-specifier.
 | |
|   NestedNameSpecifierLoc QualLoc;
 | |
|   if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
 | |
|     if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
 | |
|       return TemplateArgumentLoc();
 | |
| 
 | |
|     QualLoc = ETLoc.getQualifierLoc();
 | |
|     TLoc = ETLoc.getNamedTypeLoc();
 | |
|   }
 | |
| 
 | |
|   // If this type was written as an injected-class-name, it can be used as a
 | |
|   // template template argument.
 | |
|   if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
 | |
|     return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(),
 | |
|                                QualLoc, InjLoc.getNameLoc());
 | |
| 
 | |
|   // If this type was written as an injected-class-name, it may have been
 | |
|   // converted to a RecordType during instantiation. If the RecordType is
 | |
|   // *not* wrapped in a TemplateSpecializationType and denotes a class
 | |
|   // template specialization, it must have come from an injected-class-name.
 | |
|   if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
 | |
|     if (auto *CTSD =
 | |
|             dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
 | |
|       return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()),
 | |
|                                  QualLoc, RecLoc.getNameLoc());
 | |
| 
 | |
|   return TemplateArgumentLoc();
 | |
| }
 | |
| 
 | |
| /// Check that the given template argument corresponds to the given
 | |
| /// template parameter.
 | |
| ///
 | |
| /// \param Param The template parameter against which the argument will be
 | |
| /// checked.
 | |
| ///
 | |
| /// \param Arg The template argument, which may be updated due to conversions.
 | |
| ///
 | |
| /// \param Template The template in which the template argument resides.
 | |
| ///
 | |
| /// \param TemplateLoc The location of the template name for the template
 | |
| /// whose argument list we're matching.
 | |
| ///
 | |
| /// \param RAngleLoc The location of the right angle bracket ('>') that closes
 | |
| /// the template argument list.
 | |
| ///
 | |
| /// \param ArgumentPackIndex The index into the argument pack where this
 | |
| /// argument will be placed. Only valid if the parameter is a parameter pack.
 | |
| ///
 | |
| /// \param Converted The checked, converted argument will be added to the
 | |
| /// end of this small vector.
 | |
| ///
 | |
| /// \param CTAK Describes how we arrived at this particular template argument:
 | |
| /// explicitly written, deduced, etc.
 | |
| ///
 | |
| /// \returns true on error, false otherwise.
 | |
| bool Sema::CheckTemplateArgument(NamedDecl *Param,
 | |
|                                  TemplateArgumentLoc &Arg,
 | |
|                                  NamedDecl *Template,
 | |
|                                  SourceLocation TemplateLoc,
 | |
|                                  SourceLocation RAngleLoc,
 | |
|                                  unsigned ArgumentPackIndex,
 | |
|                             SmallVectorImpl<TemplateArgument> &Converted,
 | |
|                                  CheckTemplateArgumentKind CTAK) {
 | |
|   // Check template type parameters.
 | |
|   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
 | |
|     return CheckTemplateTypeArgument(TTP, Arg, Converted);
 | |
| 
 | |
|   // Check non-type template parameters.
 | |
|   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | |
|     // Do substitution on the type of the non-type template parameter
 | |
|     // with the template arguments we've seen thus far.  But if the
 | |
|     // template has a dependent context then we cannot substitute yet.
 | |
|     QualType NTTPType = NTTP->getType();
 | |
|     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
 | |
|       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
 | |
| 
 | |
|     if (NTTPType->isInstantiationDependentType() &&
 | |
|         !isa<TemplateTemplateParmDecl>(Template) &&
 | |
|         !Template->getDeclContext()->isDependentContext()) {
 | |
|       // Do substitution on the type of the non-type template parameter.
 | |
|       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
 | |
|                                  NTTP, Converted,
 | |
|                                  SourceRange(TemplateLoc, RAngleLoc));
 | |
|       if (Inst.isInvalid())
 | |
|         return true;
 | |
| 
 | |
|       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | |
|                                         Converted);
 | |
| 
 | |
|       // If the parameter is a pack expansion, expand this slice of the pack.
 | |
|       if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
 | |
|         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
 | |
|                                                            ArgumentPackIndex);
 | |
|         NTTPType = SubstType(PET->getPattern(),
 | |
|                              MultiLevelTemplateArgumentList(TemplateArgs),
 | |
|                              NTTP->getLocation(),
 | |
|                              NTTP->getDeclName());
 | |
|       } else {
 | |
|         NTTPType = SubstType(NTTPType,
 | |
|                              MultiLevelTemplateArgumentList(TemplateArgs),
 | |
|                              NTTP->getLocation(),
 | |
|                              NTTP->getDeclName());
 | |
|       }
 | |
| 
 | |
|       // If that worked, check the non-type template parameter type
 | |
|       // for validity.
 | |
|       if (!NTTPType.isNull())
 | |
|         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
 | |
|                                                      NTTP->getLocation());
 | |
|       if (NTTPType.isNull())
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     switch (Arg.getArgument().getKind()) {
 | |
|     case TemplateArgument::Null:
 | |
|       llvm_unreachable("Should never see a NULL template argument here");
 | |
| 
 | |
|     case TemplateArgument::Expression: {
 | |
|       TemplateArgument Result;
 | |
|       unsigned CurSFINAEErrors = NumSFINAEErrors;
 | |
|       ExprResult Res =
 | |
|         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
 | |
|                               Result, CTAK);
 | |
|       if (Res.isInvalid())
 | |
|         return true;
 | |
|       // If the current template argument causes an error, give up now.
 | |
|       if (CurSFINAEErrors < NumSFINAEErrors)
 | |
|         return true;
 | |
| 
 | |
|       // If the resulting expression is new, then use it in place of the
 | |
|       // old expression in the template argument.
 | |
|       if (Res.get() != Arg.getArgument().getAsExpr()) {
 | |
|         TemplateArgument TA(Res.get());
 | |
|         Arg = TemplateArgumentLoc(TA, Res.get());
 | |
|       }
 | |
| 
 | |
|       Converted.push_back(Result);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TemplateArgument::Declaration:
 | |
|     case TemplateArgument::Integral:
 | |
|     case TemplateArgument::NullPtr:
 | |
|       // We've already checked this template argument, so just copy
 | |
|       // it to the list of converted arguments.
 | |
|       Converted.push_back(Arg.getArgument());
 | |
|       break;
 | |
| 
 | |
|     case TemplateArgument::Template:
 | |
|     case TemplateArgument::TemplateExpansion:
 | |
|       // We were given a template template argument. It may not be ill-formed;
 | |
|       // see below.
 | |
|       if (DependentTemplateName *DTN
 | |
|             = Arg.getArgument().getAsTemplateOrTemplatePattern()
 | |
|                                               .getAsDependentTemplateName()) {
 | |
|         // We have a template argument such as \c T::template X, which we
 | |
|         // parsed as a template template argument. However, since we now
 | |
|         // know that we need a non-type template argument, convert this
 | |
|         // template name into an expression.
 | |
| 
 | |
|         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
 | |
|                                      Arg.getTemplateNameLoc());
 | |
| 
 | |
|         CXXScopeSpec SS;
 | |
|         SS.Adopt(Arg.getTemplateQualifierLoc());
 | |
|         // FIXME: the template-template arg was a DependentTemplateName,
 | |
|         // so it was provided with a template keyword. However, its source
 | |
|         // location is not stored in the template argument structure.
 | |
|         SourceLocation TemplateKWLoc;
 | |
|         ExprResult E = DependentScopeDeclRefExpr::Create(
 | |
|             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
 | |
|             nullptr);
 | |
| 
 | |
|         // If we parsed the template argument as a pack expansion, create a
 | |
|         // pack expansion expression.
 | |
|         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
 | |
|           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
 | |
|           if (E.isInvalid())
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         TemplateArgument Result;
 | |
|         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
 | |
|         if (E.isInvalid())
 | |
|           return true;
 | |
| 
 | |
|         Converted.push_back(Result);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // We have a template argument that actually does refer to a class
 | |
|       // template, alias template, or template template parameter, and
 | |
|       // therefore cannot be a non-type template argument.
 | |
|       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
 | |
|         << Arg.getSourceRange();
 | |
| 
 | |
|       Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       return true;
 | |
| 
 | |
|     case TemplateArgument::Type: {
 | |
|       // We have a non-type template parameter but the template
 | |
|       // argument is a type.
 | |
| 
 | |
|       // C++ [temp.arg]p2:
 | |
|       //   In a template-argument, an ambiguity between a type-id and
 | |
|       //   an expression is resolved to a type-id, regardless of the
 | |
|       //   form of the corresponding template-parameter.
 | |
|       //
 | |
|       // We warn specifically about this case, since it can be rather
 | |
|       // confusing for users.
 | |
|       QualType T = Arg.getArgument().getAsType();
 | |
|       SourceRange SR = Arg.getSourceRange();
 | |
|       if (T->isFunctionType())
 | |
|         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
 | |
|       else
 | |
|         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
 | |
|       Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case TemplateArgument::Pack:
 | |
|       llvm_unreachable("Caller must expand template argument packs");
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Check template template parameters.
 | |
|   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
 | |
| 
 | |
|   TemplateParameterList *Params = TempParm->getTemplateParameters();
 | |
|   if (TempParm->isExpandedParameterPack())
 | |
|     Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
 | |
| 
 | |
|   // Substitute into the template parameter list of the template
 | |
|   // template parameter, since previously-supplied template arguments
 | |
|   // may appear within the template template parameter.
 | |
|   //
 | |
|   // FIXME: Skip this if the parameters aren't instantiation-dependent.
 | |
|   {
 | |
|     // Set up a template instantiation context.
 | |
|     LocalInstantiationScope Scope(*this);
 | |
|     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
 | |
|                                TempParm, Converted,
 | |
|                                SourceRange(TemplateLoc, RAngleLoc));
 | |
|     if (Inst.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
 | |
|     Params = SubstTemplateParams(Params, CurContext,
 | |
|                                  MultiLevelTemplateArgumentList(TemplateArgs));
 | |
|     if (!Params)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // C++1z [temp.local]p1: (DR1004)
 | |
|   //   When [the injected-class-name] is used [...] as a template-argument for
 | |
|   //   a template template-parameter [...] it refers to the class template
 | |
|   //   itself.
 | |
|   if (Arg.getArgument().getKind() == TemplateArgument::Type) {
 | |
|     TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
 | |
|         Arg.getTypeSourceInfo()->getTypeLoc());
 | |
|     if (!ConvertedArg.getArgument().isNull())
 | |
|       Arg = ConvertedArg;
 | |
|   }
 | |
| 
 | |
|   switch (Arg.getArgument().getKind()) {
 | |
|   case TemplateArgument::Null:
 | |
|     llvm_unreachable("Should never see a NULL template argument here");
 | |
| 
 | |
|   case TemplateArgument::Template:
 | |
|   case TemplateArgument::TemplateExpansion:
 | |
|     if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
 | |
|       return true;
 | |
| 
 | |
|     Converted.push_back(Arg.getArgument());
 | |
|     break;
 | |
| 
 | |
|   case TemplateArgument::Expression:
 | |
|   case TemplateArgument::Type:
 | |
|     // We have a template template parameter but the template
 | |
|     // argument does not refer to a template.
 | |
|     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
 | |
|       << getLangOpts().CPlusPlus11;
 | |
|     return true;
 | |
| 
 | |
|   case TemplateArgument::Declaration:
 | |
|     llvm_unreachable("Declaration argument with template template parameter");
 | |
|   case TemplateArgument::Integral:
 | |
|     llvm_unreachable("Integral argument with template template parameter");
 | |
|   case TemplateArgument::NullPtr:
 | |
|     llvm_unreachable("Null pointer argument with template template parameter");
 | |
| 
 | |
|   case TemplateArgument::Pack:
 | |
|     llvm_unreachable("Caller must expand template argument packs");
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check whether the template parameter is a pack expansion, and if so,
 | |
| /// determine the number of parameters produced by that expansion. For instance:
 | |
| ///
 | |
| /// \code
 | |
| /// template<typename ...Ts> struct A {
 | |
| ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
 | |
| /// };
 | |
| /// \endcode
 | |
| ///
 | |
| /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
 | |
| /// is not a pack expansion, so returns an empty Optional.
 | |
| static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
 | |
|   if (TemplateTypeParmDecl *TTP
 | |
|         = dyn_cast<TemplateTypeParmDecl>(Param)) {
 | |
|     if (TTP->isExpandedParameterPack())
 | |
|       return TTP->getNumExpansionParameters();
 | |
|   }
 | |
| 
 | |
|   if (NonTypeTemplateParmDecl *NTTP
 | |
|         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | |
|     if (NTTP->isExpandedParameterPack())
 | |
|       return NTTP->getNumExpansionTypes();
 | |
|   }
 | |
| 
 | |
|   if (TemplateTemplateParmDecl *TTP
 | |
|         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
 | |
|     if (TTP->isExpandedParameterPack())
 | |
|       return TTP->getNumExpansionTemplateParameters();
 | |
|   }
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| /// Diagnose a missing template argument.
 | |
| template<typename TemplateParmDecl>
 | |
| static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
 | |
|                                     TemplateDecl *TD,
 | |
|                                     const TemplateParmDecl *D,
 | |
|                                     TemplateArgumentListInfo &Args) {
 | |
|   // Dig out the most recent declaration of the template parameter; there may be
 | |
|   // declarations of the template that are more recent than TD.
 | |
|   D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
 | |
|                                  ->getTemplateParameters()
 | |
|                                  ->getParam(D->getIndex()));
 | |
| 
 | |
|   // If there's a default argument that's not visible, diagnose that we're
 | |
|   // missing a module import.
 | |
|   llvm::SmallVector<Module*, 8> Modules;
 | |
|   if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
 | |
|     S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
 | |
|                             D->getDefaultArgumentLoc(), Modules,
 | |
|                             Sema::MissingImportKind::DefaultArgument,
 | |
|                             /*Recover*/true);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: If there's a more recent default argument that *is* visible,
 | |
|   // diagnose that it was declared too late.
 | |
| 
 | |
|   TemplateParameterList *Params = TD->getTemplateParameters();
 | |
| 
 | |
|   S.Diag(Loc, diag::err_template_arg_list_different_arity)
 | |
|     << /*not enough args*/0
 | |
|     << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
 | |
|     << TD;
 | |
|   S.Diag(TD->getLocation(), diag::note_template_decl_here)
 | |
|     << Params->getSourceRange();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check that the given template argument list is well-formed
 | |
| /// for specializing the given template.
 | |
| bool Sema::CheckTemplateArgumentList(
 | |
|     TemplateDecl *Template, SourceLocation TemplateLoc,
 | |
|     TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
 | |
|     SmallVectorImpl<TemplateArgument> &Converted,
 | |
|     bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
 | |
| 
 | |
|   if (ConstraintsNotSatisfied)
 | |
|     *ConstraintsNotSatisfied = false;
 | |
| 
 | |
|   // Make a copy of the template arguments for processing.  Only make the
 | |
|   // changes at the end when successful in matching the arguments to the
 | |
|   // template.
 | |
|   TemplateArgumentListInfo NewArgs = TemplateArgs;
 | |
| 
 | |
|   // Make sure we get the template parameter list from the most
 | |
|   // recentdeclaration, since that is the only one that has is guaranteed to
 | |
|   // have all the default template argument information.
 | |
|   TemplateParameterList *Params =
 | |
|       cast<TemplateDecl>(Template->getMostRecentDecl())
 | |
|           ->getTemplateParameters();
 | |
| 
 | |
|   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
 | |
| 
 | |
|   // C++ [temp.arg]p1:
 | |
|   //   [...] The type and form of each template-argument specified in
 | |
|   //   a template-id shall match the type and form specified for the
 | |
|   //   corresponding parameter declared by the template in its
 | |
|   //   template-parameter-list.
 | |
|   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
 | |
|   SmallVector<TemplateArgument, 2> ArgumentPack;
 | |
|   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
 | |
|   LocalInstantiationScope InstScope(*this, true);
 | |
|   for (TemplateParameterList::iterator Param = Params->begin(),
 | |
|                                        ParamEnd = Params->end();
 | |
|        Param != ParamEnd; /* increment in loop */) {
 | |
|     // If we have an expanded parameter pack, make sure we don't have too
 | |
|     // many arguments.
 | |
|     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
 | |
|       if (*Expansions == ArgumentPack.size()) {
 | |
|         // We're done with this parameter pack. Pack up its arguments and add
 | |
|         // them to the list.
 | |
|         Converted.push_back(
 | |
|             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
 | |
|         ArgumentPack.clear();
 | |
| 
 | |
|         // This argument is assigned to the next parameter.
 | |
|         ++Param;
 | |
|         continue;
 | |
|       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
 | |
|         // Not enough arguments for this parameter pack.
 | |
|         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
 | |
|           << /*not enough args*/0
 | |
|           << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
 | |
|           << Template;
 | |
|         Diag(Template->getLocation(), diag::note_template_decl_here)
 | |
|           << Params->getSourceRange();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ArgIdx < NumArgs) {
 | |
|       // Check the template argument we were given.
 | |
|       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
 | |
|                                 TemplateLoc, RAngleLoc,
 | |
|                                 ArgumentPack.size(), Converted))
 | |
|         return true;
 | |
| 
 | |
|       bool PackExpansionIntoNonPack =
 | |
|           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
 | |
|           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
 | |
|       if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
 | |
|                                        isa<ConceptDecl>(Template))) {
 | |
|         // Core issue 1430: we have a pack expansion as an argument to an
 | |
|         // alias template, and it's not part of a parameter pack. This
 | |
|         // can't be canonicalized, so reject it now.
 | |
|         // As for concepts - we cannot normalize constraints where this
 | |
|         // situation exists.
 | |
|         Diag(NewArgs[ArgIdx].getLocation(),
 | |
|              diag::err_template_expansion_into_fixed_list)
 | |
|           << (isa<ConceptDecl>(Template) ? 1 : 0)
 | |
|           << NewArgs[ArgIdx].getSourceRange();
 | |
|         Diag((*Param)->getLocation(), diag::note_template_param_here);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // We're now done with this argument.
 | |
|       ++ArgIdx;
 | |
| 
 | |
|       if ((*Param)->isTemplateParameterPack()) {
 | |
|         // The template parameter was a template parameter pack, so take the
 | |
|         // deduced argument and place it on the argument pack. Note that we
 | |
|         // stay on the same template parameter so that we can deduce more
 | |
|         // arguments.
 | |
|         ArgumentPack.push_back(Converted.pop_back_val());
 | |
|       } else {
 | |
|         // Move to the next template parameter.
 | |
|         ++Param;
 | |
|       }
 | |
| 
 | |
|       // If we just saw a pack expansion into a non-pack, then directly convert
 | |
|       // the remaining arguments, because we don't know what parameters they'll
 | |
|       // match up with.
 | |
|       if (PackExpansionIntoNonPack) {
 | |
|         if (!ArgumentPack.empty()) {
 | |
|           // If we were part way through filling in an expanded parameter pack,
 | |
|           // fall back to just producing individual arguments.
 | |
|           Converted.insert(Converted.end(),
 | |
|                            ArgumentPack.begin(), ArgumentPack.end());
 | |
|           ArgumentPack.clear();
 | |
|         }
 | |
| 
 | |
|         while (ArgIdx < NumArgs) {
 | |
|           Converted.push_back(NewArgs[ArgIdx].getArgument());
 | |
|           ++ArgIdx;
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we're checking a partial template argument list, we're done.
 | |
|     if (PartialTemplateArgs) {
 | |
|       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
 | |
|         Converted.push_back(
 | |
|             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If we have a template parameter pack with no more corresponding
 | |
|     // arguments, just break out now and we'll fill in the argument pack below.
 | |
|     if ((*Param)->isTemplateParameterPack()) {
 | |
|       assert(!getExpandedPackSize(*Param) &&
 | |
|              "Should have dealt with this already");
 | |
| 
 | |
|       // A non-expanded parameter pack before the end of the parameter list
 | |
|       // only occurs for an ill-formed template parameter list, unless we've
 | |
|       // got a partial argument list for a function template, so just bail out.
 | |
|       if (Param + 1 != ParamEnd)
 | |
|         return true;
 | |
| 
 | |
|       Converted.push_back(
 | |
|           TemplateArgument::CreatePackCopy(Context, ArgumentPack));
 | |
|       ArgumentPack.clear();
 | |
| 
 | |
|       ++Param;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check whether we have a default argument.
 | |
|     TemplateArgumentLoc Arg;
 | |
| 
 | |
|     // Retrieve the default template argument from the template
 | |
|     // parameter. For each kind of template parameter, we substitute the
 | |
|     // template arguments provided thus far and any "outer" template arguments
 | |
|     // (when the template parameter was part of a nested template) into
 | |
|     // the default argument.
 | |
|     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
 | |
|       if (!hasVisibleDefaultArgument(TTP))
 | |
|         return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
 | |
|                                        NewArgs);
 | |
| 
 | |
|       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
 | |
|                                                              Template,
 | |
|                                                              TemplateLoc,
 | |
|                                                              RAngleLoc,
 | |
|                                                              TTP,
 | |
|                                                              Converted);
 | |
|       if (!ArgType)
 | |
|         return true;
 | |
| 
 | |
|       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
 | |
|                                 ArgType);
 | |
|     } else if (NonTypeTemplateParmDecl *NTTP
 | |
|                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
 | |
|       if (!hasVisibleDefaultArgument(NTTP))
 | |
|         return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
 | |
|                                        NewArgs);
 | |
| 
 | |
|       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
 | |
|                                                               TemplateLoc,
 | |
|                                                               RAngleLoc,
 | |
|                                                               NTTP,
 | |
|                                                               Converted);
 | |
|       if (E.isInvalid())
 | |
|         return true;
 | |
| 
 | |
|       Expr *Ex = E.getAs<Expr>();
 | |
|       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
 | |
|     } else {
 | |
|       TemplateTemplateParmDecl *TempParm
 | |
|         = cast<TemplateTemplateParmDecl>(*Param);
 | |
| 
 | |
|       if (!hasVisibleDefaultArgument(TempParm))
 | |
|         return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
 | |
|                                        NewArgs);
 | |
| 
 | |
|       NestedNameSpecifierLoc QualifierLoc;
 | |
|       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
 | |
|                                                        TemplateLoc,
 | |
|                                                        RAngleLoc,
 | |
|                                                        TempParm,
 | |
|                                                        Converted,
 | |
|                                                        QualifierLoc);
 | |
|       if (Name.isNull())
 | |
|         return true;
 | |
| 
 | |
|       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
 | |
|                            TempParm->getDefaultArgument().getTemplateNameLoc());
 | |
|     }
 | |
| 
 | |
|     // Introduce an instantiation record that describes where we are using
 | |
|     // the default template argument. We're not actually instantiating a
 | |
|     // template here, we just create this object to put a note into the
 | |
|     // context stack.
 | |
|     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
 | |
|                                SourceRange(TemplateLoc, RAngleLoc));
 | |
|     if (Inst.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     // Check the default template argument.
 | |
|     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
 | |
|                               RAngleLoc, 0, Converted))
 | |
|       return true;
 | |
| 
 | |
|     // Core issue 150 (assumed resolution): if this is a template template
 | |
|     // parameter, keep track of the default template arguments from the
 | |
|     // template definition.
 | |
|     if (isTemplateTemplateParameter)
 | |
|       NewArgs.addArgument(Arg);
 | |
| 
 | |
|     // Move to the next template parameter and argument.
 | |
|     ++Param;
 | |
|     ++ArgIdx;
 | |
|   }
 | |
| 
 | |
|   // If we're performing a partial argument substitution, allow any trailing
 | |
|   // pack expansions; they might be empty. This can happen even if
 | |
|   // PartialTemplateArgs is false (the list of arguments is complete but
 | |
|   // still dependent).
 | |
|   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
 | |
|       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
 | |
|     while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
 | |
|       Converted.push_back(NewArgs[ArgIdx++].getArgument());
 | |
|   }
 | |
| 
 | |
|   // If we have any leftover arguments, then there were too many arguments.
 | |
|   // Complain and fail.
 | |
|   if (ArgIdx < NumArgs) {
 | |
|     Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
 | |
|         << /*too many args*/1
 | |
|         << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
 | |
|         << Template
 | |
|         << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
 | |
|     Diag(Template->getLocation(), diag::note_template_decl_here)
 | |
|         << Params->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // No problems found with the new argument list, propagate changes back
 | |
|   // to caller.
 | |
|   if (UpdateArgsWithConversions)
 | |
|     TemplateArgs = std::move(NewArgs);
 | |
| 
 | |
|   if (!PartialTemplateArgs &&
 | |
|       EnsureTemplateArgumentListConstraints(
 | |
|         Template, Converted, SourceRange(TemplateLoc,
 | |
|                                          TemplateArgs.getRAngleLoc()))) {
 | |
|     if (ConstraintsNotSatisfied)
 | |
|       *ConstraintsNotSatisfied = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class UnnamedLocalNoLinkageFinder
 | |
|     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
 | |
|   {
 | |
|     Sema &S;
 | |
|     SourceRange SR;
 | |
| 
 | |
|     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
 | |
| 
 | |
|   public:
 | |
|     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
 | |
| 
 | |
|     bool Visit(QualType T) {
 | |
|       return T.isNull() ? false : inherited::Visit(T.getTypePtr());
 | |
|     }
 | |
| 
 | |
| #define TYPE(Class, Parent) \
 | |
|     bool Visit##Class##Type(const Class##Type *);
 | |
| #define ABSTRACT_TYPE(Class, Parent) \
 | |
|     bool Visit##Class##Type(const Class##Type *) { return false; }
 | |
| #define NON_CANONICAL_TYPE(Class, Parent) \
 | |
|     bool Visit##Class##Type(const Class##Type *) { return false; }
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
| 
 | |
|     bool VisitTagDecl(const TagDecl *Tag);
 | |
|     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
 | |
|   return Visit(T->getElementType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
 | |
|   return Visit(T->getPointeeType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
 | |
|                                                     const BlockPointerType* T) {
 | |
|   return Visit(T->getPointeeType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
 | |
|                                                 const LValueReferenceType* T) {
 | |
|   return Visit(T->getPointeeType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
 | |
|                                                 const RValueReferenceType* T) {
 | |
|   return Visit(T->getPointeeType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
 | |
|                                                   const MemberPointerType* T) {
 | |
|   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
 | |
|                                                   const ConstantArrayType* T) {
 | |
|   return Visit(T->getElementType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
 | |
|                                                  const IncompleteArrayType* T) {
 | |
|   return Visit(T->getElementType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
 | |
|                                                    const VariableArrayType* T) {
 | |
|   return Visit(T->getElementType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
 | |
|                                             const DependentSizedArrayType* T) {
 | |
|   return Visit(T->getElementType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
 | |
|                                          const DependentSizedExtVectorType* T) {
 | |
|   return Visit(T->getElementType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
 | |
|     const DependentAddressSpaceType *T) {
 | |
|   return Visit(T->getPointeeType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
 | |
|   return Visit(T->getElementType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
 | |
|     const DependentVectorType *T) {
 | |
|   return Visit(T->getElementType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
 | |
|   return Visit(T->getElementType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
 | |
|                                                   const FunctionProtoType* T) {
 | |
|   for (const auto &A : T->param_types()) {
 | |
|     if (Visit(A))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return Visit(T->getReturnType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
 | |
|                                                const FunctionNoProtoType* T) {
 | |
|   return Visit(T->getReturnType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
 | |
|                                                   const UnresolvedUsingType*) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
 | |
|   return Visit(T->getUnderlyingType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
 | |
|                                                     const UnaryTransformType*) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
 | |
|   return Visit(T->getDeducedType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
 | |
|     const DeducedTemplateSpecializationType *T) {
 | |
|   return Visit(T->getDeducedType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
 | |
|   return VisitTagDecl(T->getDecl());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
 | |
|   return VisitTagDecl(T->getDecl());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
 | |
|                                                  const TemplateTypeParmType*) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
 | |
|                                         const SubstTemplateTypeParmPackType *) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
 | |
|                                             const TemplateSpecializationType*) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
 | |
|                                               const InjectedClassNameType* T) {
 | |
|   return VisitTagDecl(T->getDecl());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
 | |
|                                                    const DependentNameType* T) {
 | |
|   return VisitNestedNameSpecifier(T->getQualifier());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
 | |
|                                  const DependentTemplateSpecializationType* T) {
 | |
|   return VisitNestedNameSpecifier(T->getQualifier());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
 | |
|                                                    const PackExpansionType* T) {
 | |
|   return Visit(T->getPattern());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
 | |
|                                                    const ObjCInterfaceType *) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
 | |
|                                                 const ObjCObjectPointerType *) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
 | |
|   return Visit(T->getValueType());
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
 | |
|   if (Tag->getDeclContext()->isFunctionOrMethod()) {
 | |
|     S.Diag(SR.getBegin(),
 | |
|            S.getLangOpts().CPlusPlus11 ?
 | |
|              diag::warn_cxx98_compat_template_arg_local_type :
 | |
|              diag::ext_template_arg_local_type)
 | |
|       << S.Context.getTypeDeclType(Tag) << SR;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!Tag->hasNameForLinkage()) {
 | |
|     S.Diag(SR.getBegin(),
 | |
|            S.getLangOpts().CPlusPlus11 ?
 | |
|              diag::warn_cxx98_compat_template_arg_unnamed_type :
 | |
|              diag::ext_template_arg_unnamed_type) << SR;
 | |
|     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
 | |
|                                                     NestedNameSpecifier *NNS) {
 | |
|   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
 | |
|     return true;
 | |
| 
 | |
|   switch (NNS->getKind()) {
 | |
|   case NestedNameSpecifier::Identifier:
 | |
|   case NestedNameSpecifier::Namespace:
 | |
|   case NestedNameSpecifier::NamespaceAlias:
 | |
|   case NestedNameSpecifier::Global:
 | |
|   case NestedNameSpecifier::Super:
 | |
|     return false;
 | |
| 
 | |
|   case NestedNameSpecifier::TypeSpec:
 | |
|   case NestedNameSpecifier::TypeSpecWithTemplate:
 | |
|     return Visit(QualType(NNS->getAsType(), 0));
 | |
|   }
 | |
|   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
 | |
| }
 | |
| 
 | |
| /// Check a template argument against its corresponding
 | |
| /// template type parameter.
 | |
| ///
 | |
| /// This routine implements the semantics of C++ [temp.arg.type]. It
 | |
| /// returns true if an error occurred, and false otherwise.
 | |
| bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
 | |
|                                  TypeSourceInfo *ArgInfo) {
 | |
|   assert(ArgInfo && "invalid TypeSourceInfo");
 | |
|   QualType Arg = ArgInfo->getType();
 | |
|   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
 | |
| 
 | |
|   if (Arg->isVariablyModifiedType()) {
 | |
|     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
 | |
|   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
 | |
|     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
 | |
|   }
 | |
| 
 | |
|   // C++03 [temp.arg.type]p2:
 | |
|   //   A local type, a type with no linkage, an unnamed type or a type
 | |
|   //   compounded from any of these types shall not be used as a
 | |
|   //   template-argument for a template type-parameter.
 | |
|   //
 | |
|   // C++11 allows these, and even in C++03 we allow them as an extension with
 | |
|   // a warning.
 | |
|   if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
 | |
|     UnnamedLocalNoLinkageFinder Finder(*this, SR);
 | |
|     (void)Finder.Visit(Context.getCanonicalType(Arg));
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| enum NullPointerValueKind {
 | |
|   NPV_NotNullPointer,
 | |
|   NPV_NullPointer,
 | |
|   NPV_Error
 | |
| };
 | |
| 
 | |
| /// Determine whether the given template argument is a null pointer
 | |
| /// value of the appropriate type.
 | |
| static NullPointerValueKind
 | |
| isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
 | |
|                                    QualType ParamType, Expr *Arg,
 | |
|                                    Decl *Entity = nullptr) {
 | |
|   if (Arg->isValueDependent() || Arg->isTypeDependent())
 | |
|     return NPV_NotNullPointer;
 | |
| 
 | |
|   // dllimport'd entities aren't constant but are available inside of template
 | |
|   // arguments.
 | |
|   if (Entity && Entity->hasAttr<DLLImportAttr>())
 | |
|     return NPV_NotNullPointer;
 | |
| 
 | |
|   if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
 | |
|     llvm_unreachable(
 | |
|         "Incomplete parameter type in isNullPointerValueTemplateArgument!");
 | |
| 
 | |
|   if (!S.getLangOpts().CPlusPlus11)
 | |
|     return NPV_NotNullPointer;
 | |
| 
 | |
|   // Determine whether we have a constant expression.
 | |
|   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
 | |
|   if (ArgRV.isInvalid())
 | |
|     return NPV_Error;
 | |
|   Arg = ArgRV.get();
 | |
| 
 | |
|   Expr::EvalResult EvalResult;
 | |
|   SmallVector<PartialDiagnosticAt, 8> Notes;
 | |
|   EvalResult.Diag = &Notes;
 | |
|   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
 | |
|       EvalResult.HasSideEffects) {
 | |
|     SourceLocation DiagLoc = Arg->getExprLoc();
 | |
| 
 | |
|     // If our only note is the usual "invalid subexpression" note, just point
 | |
|     // the caret at its location rather than producing an essentially
 | |
|     // redundant note.
 | |
|     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
 | |
|         diag::note_invalid_subexpr_in_const_expr) {
 | |
|       DiagLoc = Notes[0].first;
 | |
|       Notes.clear();
 | |
|     }
 | |
| 
 | |
|     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
 | |
|       << Arg->getType() << Arg->getSourceRange();
 | |
|     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
 | |
|       S.Diag(Notes[I].first, Notes[I].second);
 | |
| 
 | |
|     S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|     return NPV_Error;
 | |
|   }
 | |
| 
 | |
|   // C++11 [temp.arg.nontype]p1:
 | |
|   //   - an address constant expression of type std::nullptr_t
 | |
|   if (Arg->getType()->isNullPtrType())
 | |
|     return NPV_NullPointer;
 | |
| 
 | |
|   //   - a constant expression that evaluates to a null pointer value (4.10); or
 | |
|   //   - a constant expression that evaluates to a null member pointer value
 | |
|   //     (4.11); or
 | |
|   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
 | |
|       (EvalResult.Val.isMemberPointer() &&
 | |
|        !EvalResult.Val.getMemberPointerDecl())) {
 | |
|     // If our expression has an appropriate type, we've succeeded.
 | |
|     bool ObjCLifetimeConversion;
 | |
|     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
 | |
|         S.IsQualificationConversion(Arg->getType(), ParamType, false,
 | |
|                                      ObjCLifetimeConversion))
 | |
|       return NPV_NullPointer;
 | |
| 
 | |
|     // The types didn't match, but we know we got a null pointer; complain,
 | |
|     // then recover as if the types were correct.
 | |
|     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
 | |
|       << Arg->getType() << ParamType << Arg->getSourceRange();
 | |
|     S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|     return NPV_NullPointer;
 | |
|   }
 | |
| 
 | |
|   // If we don't have a null pointer value, but we do have a NULL pointer
 | |
|   // constant, suggest a cast to the appropriate type.
 | |
|   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
 | |
|     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
 | |
|     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
 | |
|         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
 | |
|         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
 | |
|                                       ")");
 | |
|     S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|     return NPV_NullPointer;
 | |
|   }
 | |
| 
 | |
|   // FIXME: If we ever want to support general, address-constant expressions
 | |
|   // as non-type template arguments, we should return the ExprResult here to
 | |
|   // be interpreted by the caller.
 | |
|   return NPV_NotNullPointer;
 | |
| }
 | |
| 
 | |
| /// Checks whether the given template argument is compatible with its
 | |
| /// template parameter.
 | |
| static bool CheckTemplateArgumentIsCompatibleWithParameter(
 | |
|     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
 | |
|     Expr *Arg, QualType ArgType) {
 | |
|   bool ObjCLifetimeConversion;
 | |
|   if (ParamType->isPointerType() &&
 | |
|       !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
 | |
|       S.IsQualificationConversion(ArgType, ParamType, false,
 | |
|                                   ObjCLifetimeConversion)) {
 | |
|     // For pointer-to-object types, qualification conversions are
 | |
|     // permitted.
 | |
|   } else {
 | |
|     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
 | |
|       if (!ParamRef->getPointeeType()->isFunctionType()) {
 | |
|         // C++ [temp.arg.nontype]p5b3:
 | |
|         //   For a non-type template-parameter of type reference to
 | |
|         //   object, no conversions apply. The type referred to by the
 | |
|         //   reference may be more cv-qualified than the (otherwise
 | |
|         //   identical) type of the template- argument. The
 | |
|         //   template-parameter is bound directly to the
 | |
|         //   template-argument, which shall be an lvalue.
 | |
| 
 | |
|         // FIXME: Other qualifiers?
 | |
|         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
 | |
|         unsigned ArgQuals = ArgType.getCVRQualifiers();
 | |
| 
 | |
|         if ((ParamQuals | ArgQuals) != ParamQuals) {
 | |
|           S.Diag(Arg->getBeginLoc(),
 | |
|                  diag::err_template_arg_ref_bind_ignores_quals)
 | |
|               << ParamType << Arg->getType() << Arg->getSourceRange();
 | |
|           S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // At this point, the template argument refers to an object or
 | |
|     // function with external linkage. We now need to check whether the
 | |
|     // argument and parameter types are compatible.
 | |
|     if (!S.Context.hasSameUnqualifiedType(ArgType,
 | |
|                                           ParamType.getNonReferenceType())) {
 | |
|       // We can't perform this conversion or binding.
 | |
|       if (ParamType->isReferenceType())
 | |
|         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
 | |
|             << ParamType << ArgIn->getType() << Arg->getSourceRange();
 | |
|       else
 | |
|         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
 | |
|             << ArgIn->getType() << ParamType << Arg->getSourceRange();
 | |
|       S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Checks whether the given template argument is the address
 | |
| /// of an object or function according to C++ [temp.arg.nontype]p1.
 | |
| static bool
 | |
| CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
 | |
|                                                NonTypeTemplateParmDecl *Param,
 | |
|                                                QualType ParamType,
 | |
|                                                Expr *ArgIn,
 | |
|                                                TemplateArgument &Converted) {
 | |
|   bool Invalid = false;
 | |
|   Expr *Arg = ArgIn;
 | |
|   QualType ArgType = Arg->getType();
 | |
| 
 | |
|   bool AddressTaken = false;
 | |
|   SourceLocation AddrOpLoc;
 | |
|   if (S.getLangOpts().MicrosoftExt) {
 | |
|     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
 | |
|     // dereference and address-of operators.
 | |
|     Arg = Arg->IgnoreParenCasts();
 | |
| 
 | |
|     bool ExtWarnMSTemplateArg = false;
 | |
|     UnaryOperatorKind FirstOpKind;
 | |
|     SourceLocation FirstOpLoc;
 | |
|     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | |
|       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
 | |
|       if (UnOpKind == UO_Deref)
 | |
|         ExtWarnMSTemplateArg = true;
 | |
|       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
 | |
|         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
 | |
|         if (!AddrOpLoc.isValid()) {
 | |
|           FirstOpKind = UnOpKind;
 | |
|           FirstOpLoc = UnOp->getOperatorLoc();
 | |
|         }
 | |
|       } else
 | |
|         break;
 | |
|     }
 | |
|     if (FirstOpLoc.isValid()) {
 | |
|       if (ExtWarnMSTemplateArg)
 | |
|         S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
 | |
|             << ArgIn->getSourceRange();
 | |
| 
 | |
|       if (FirstOpKind == UO_AddrOf)
 | |
|         AddressTaken = true;
 | |
|       else if (Arg->getType()->isPointerType()) {
 | |
|         // We cannot let pointers get dereferenced here, that is obviously not a
 | |
|         // constant expression.
 | |
|         assert(FirstOpKind == UO_Deref);
 | |
|         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
 | |
|             << Arg->getSourceRange();
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // See through any implicit casts we added to fix the type.
 | |
|     Arg = Arg->IgnoreImpCasts();
 | |
| 
 | |
|     // C++ [temp.arg.nontype]p1:
 | |
|     //
 | |
|     //   A template-argument for a non-type, non-template
 | |
|     //   template-parameter shall be one of: [...]
 | |
|     //
 | |
|     //     -- the address of an object or function with external
 | |
|     //        linkage, including function templates and function
 | |
|     //        template-ids but excluding non-static class members,
 | |
|     //        expressed as & id-expression where the & is optional if
 | |
|     //        the name refers to a function or array, or if the
 | |
|     //        corresponding template-parameter is a reference; or
 | |
| 
 | |
|     // In C++98/03 mode, give an extension warning on any extra parentheses.
 | |
|     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
 | |
|     bool ExtraParens = false;
 | |
|     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
 | |
|       if (!Invalid && !ExtraParens) {
 | |
|         S.Diag(Arg->getBeginLoc(),
 | |
|                S.getLangOpts().CPlusPlus11
 | |
|                    ? diag::warn_cxx98_compat_template_arg_extra_parens
 | |
|                    : diag::ext_template_arg_extra_parens)
 | |
|             << Arg->getSourceRange();
 | |
|         ExtraParens = true;
 | |
|       }
 | |
| 
 | |
|       Arg = Parens->getSubExpr();
 | |
|     }
 | |
| 
 | |
|     while (SubstNonTypeTemplateParmExpr *subst =
 | |
|                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
 | |
|       Arg = subst->getReplacement()->IgnoreImpCasts();
 | |
| 
 | |
|     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | |
|       if (UnOp->getOpcode() == UO_AddrOf) {
 | |
|         Arg = UnOp->getSubExpr();
 | |
|         AddressTaken = true;
 | |
|         AddrOpLoc = UnOp->getOperatorLoc();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     while (SubstNonTypeTemplateParmExpr *subst =
 | |
|                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
 | |
|       Arg = subst->getReplacement()->IgnoreImpCasts();
 | |
|   }
 | |
| 
 | |
|   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
 | |
|   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
 | |
| 
 | |
|   // If our parameter has pointer type, check for a null template value.
 | |
|   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
 | |
|     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
 | |
|                                                Entity)) {
 | |
|     case NPV_NullPointer:
 | |
|       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
 | |
|       Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
 | |
|                                    /*isNullPtr=*/true);
 | |
|       return false;
 | |
| 
 | |
|     case NPV_Error:
 | |
|       return true;
 | |
| 
 | |
|     case NPV_NotNullPointer:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Stop checking the precise nature of the argument if it is value dependent,
 | |
|   // it should be checked when instantiated.
 | |
|   if (Arg->isValueDependent()) {
 | |
|     Converted = TemplateArgument(ArgIn);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (isa<CXXUuidofExpr>(Arg)) {
 | |
|     if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
 | |
|                                                        ArgIn, Arg, ArgType))
 | |
|       return true;
 | |
| 
 | |
|     Converted = TemplateArgument(ArgIn);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!DRE) {
 | |
|     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
 | |
|         << Arg->getSourceRange();
 | |
|     S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Cannot refer to non-static data members
 | |
|   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
 | |
|     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
 | |
|         << Entity << Arg->getSourceRange();
 | |
|     S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Cannot refer to non-static member functions
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
 | |
|     if (!Method->isStatic()) {
 | |
|       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
 | |
|           << Method << Arg->getSourceRange();
 | |
|       S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
 | |
|   VarDecl *Var = dyn_cast<VarDecl>(Entity);
 | |
| 
 | |
|   // A non-type template argument must refer to an object or function.
 | |
|   if (!Func && !Var) {
 | |
|     // We found something, but we don't know specifically what it is.
 | |
|     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
 | |
|         << Arg->getSourceRange();
 | |
|     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Address / reference template args must have external linkage in C++98.
 | |
|   if (Entity->getFormalLinkage() == InternalLinkage) {
 | |
|     S.Diag(Arg->getBeginLoc(),
 | |
|            S.getLangOpts().CPlusPlus11
 | |
|                ? diag::warn_cxx98_compat_template_arg_object_internal
 | |
|                : diag::ext_template_arg_object_internal)
 | |
|         << !Func << Entity << Arg->getSourceRange();
 | |
|     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
 | |
|       << !Func;
 | |
|   } else if (!Entity->hasLinkage()) {
 | |
|     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
 | |
|         << !Func << Entity << Arg->getSourceRange();
 | |
|     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
 | |
|       << !Func;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Func) {
 | |
|     // If the template parameter has pointer type, the function decays.
 | |
|     if (ParamType->isPointerType() && !AddressTaken)
 | |
|       ArgType = S.Context.getPointerType(Func->getType());
 | |
|     else if (AddressTaken && ParamType->isReferenceType()) {
 | |
|       // If we originally had an address-of operator, but the
 | |
|       // parameter has reference type, complain and (if things look
 | |
|       // like they will work) drop the address-of operator.
 | |
|       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
 | |
|                                             ParamType.getNonReferenceType())) {
 | |
|         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | |
|           << ParamType;
 | |
|         S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | |
|         << ParamType
 | |
|         << FixItHint::CreateRemoval(AddrOpLoc);
 | |
|       S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
| 
 | |
|       ArgType = Func->getType();
 | |
|     }
 | |
|   } else {
 | |
|     // A value of reference type is not an object.
 | |
|     if (Var->getType()->isReferenceType()) {
 | |
|       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
 | |
|           << Var->getType() << Arg->getSourceRange();
 | |
|       S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // A template argument must have static storage duration.
 | |
|     if (Var->getTLSKind()) {
 | |
|       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
 | |
|           << Arg->getSourceRange();
 | |
|       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If the template parameter has pointer type, we must have taken
 | |
|     // the address of this object.
 | |
|     if (ParamType->isReferenceType()) {
 | |
|       if (AddressTaken) {
 | |
|         // If we originally had an address-of operator, but the
 | |
|         // parameter has reference type, complain and (if things look
 | |
|         // like they will work) drop the address-of operator.
 | |
|         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
 | |
|                                             ParamType.getNonReferenceType())) {
 | |
|           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | |
|             << ParamType;
 | |
|           S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | |
|           << ParamType
 | |
|           << FixItHint::CreateRemoval(AddrOpLoc);
 | |
|         S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
| 
 | |
|         ArgType = Var->getType();
 | |
|       }
 | |
|     } else if (!AddressTaken && ParamType->isPointerType()) {
 | |
|       if (Var->getType()->isArrayType()) {
 | |
|         // Array-to-pointer decay.
 | |
|         ArgType = S.Context.getArrayDecayedType(Var->getType());
 | |
|       } else {
 | |
|         // If the template parameter has pointer type but the address of
 | |
|         // this object was not taken, complain and (possibly) recover by
 | |
|         // taking the address of the entity.
 | |
|         ArgType = S.Context.getPointerType(Var->getType());
 | |
|         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
 | |
|           S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
 | |
|               << ParamType;
 | |
|           S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
 | |
|             << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
 | |
| 
 | |
|         S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
 | |
|                                                      Arg, ArgType))
 | |
|     return true;
 | |
| 
 | |
|   // Create the template argument.
 | |
|   Converted =
 | |
|       TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
 | |
|   S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Checks whether the given template argument is a pointer to
 | |
| /// member constant according to C++ [temp.arg.nontype]p1.
 | |
| static bool CheckTemplateArgumentPointerToMember(Sema &S,
 | |
|                                                  NonTypeTemplateParmDecl *Param,
 | |
|                                                  QualType ParamType,
 | |
|                                                  Expr *&ResultArg,
 | |
|                                                  TemplateArgument &Converted) {
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   Expr *Arg = ResultArg;
 | |
|   bool ObjCLifetimeConversion;
 | |
| 
 | |
|   // C++ [temp.arg.nontype]p1:
 | |
|   //
 | |
|   //   A template-argument for a non-type, non-template
 | |
|   //   template-parameter shall be one of: [...]
 | |
|   //
 | |
|   //     -- a pointer to member expressed as described in 5.3.1.
 | |
|   DeclRefExpr *DRE = nullptr;
 | |
| 
 | |
|   // In C++98/03 mode, give an extension warning on any extra parentheses.
 | |
|   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
 | |
|   bool ExtraParens = false;
 | |
|   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
 | |
|     if (!Invalid && !ExtraParens) {
 | |
|       S.Diag(Arg->getBeginLoc(),
 | |
|              S.getLangOpts().CPlusPlus11
 | |
|                  ? diag::warn_cxx98_compat_template_arg_extra_parens
 | |
|                  : diag::ext_template_arg_extra_parens)
 | |
|           << Arg->getSourceRange();
 | |
|       ExtraParens = true;
 | |
|     }
 | |
| 
 | |
|     Arg = Parens->getSubExpr();
 | |
|   }
 | |
| 
 | |
|   while (SubstNonTypeTemplateParmExpr *subst =
 | |
|            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
 | |
|     Arg = subst->getReplacement()->IgnoreImpCasts();
 | |
| 
 | |
|   // A pointer-to-member constant written &Class::member.
 | |
|   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | |
|     if (UnOp->getOpcode() == UO_AddrOf) {
 | |
|       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
 | |
|       if (DRE && !DRE->getQualifier())
 | |
|         DRE = nullptr;
 | |
|     }
 | |
|   }
 | |
|   // A constant of pointer-to-member type.
 | |
|   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
 | |
|     ValueDecl *VD = DRE->getDecl();
 | |
|     if (VD->getType()->isMemberPointerType()) {
 | |
|       if (isa<NonTypeTemplateParmDecl>(VD)) {
 | |
|         if (Arg->isTypeDependent() || Arg->isValueDependent()) {
 | |
|           Converted = TemplateArgument(Arg);
 | |
|         } else {
 | |
|           VD = cast<ValueDecl>(VD->getCanonicalDecl());
 | |
|           Converted = TemplateArgument(VD, ParamType);
 | |
|         }
 | |
|         return Invalid;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     DRE = nullptr;
 | |
|   }
 | |
| 
 | |
|   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
 | |
| 
 | |
|   // Check for a null pointer value.
 | |
|   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
 | |
|                                              Entity)) {
 | |
|   case NPV_Error:
 | |
|     return true;
 | |
|   case NPV_NullPointer:
 | |
|     S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
 | |
|     Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
 | |
|                                  /*isNullPtr*/true);
 | |
|     return false;
 | |
|   case NPV_NotNullPointer:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (S.IsQualificationConversion(ResultArg->getType(),
 | |
|                                   ParamType.getNonReferenceType(), false,
 | |
|                                   ObjCLifetimeConversion)) {
 | |
|     ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
 | |
|                                     ResultArg->getValueKind())
 | |
|                     .get();
 | |
|   } else if (!S.Context.hasSameUnqualifiedType(
 | |
|                  ResultArg->getType(), ParamType.getNonReferenceType())) {
 | |
|     // We can't perform this conversion.
 | |
|     S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
 | |
|         << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
 | |
|     S.Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!DRE)
 | |
|     return S.Diag(Arg->getBeginLoc(),
 | |
|                   diag::err_template_arg_not_pointer_to_member_form)
 | |
|            << Arg->getSourceRange();
 | |
| 
 | |
|   if (isa<FieldDecl>(DRE->getDecl()) ||
 | |
|       isa<IndirectFieldDecl>(DRE->getDecl()) ||
 | |
|       isa<CXXMethodDecl>(DRE->getDecl())) {
 | |
|     assert((isa<FieldDecl>(DRE->getDecl()) ||
 | |
|             isa<IndirectFieldDecl>(DRE->getDecl()) ||
 | |
|             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
 | |
|            "Only non-static member pointers can make it here");
 | |
| 
 | |
|     // Okay: this is the address of a non-static member, and therefore
 | |
|     // a member pointer constant.
 | |
|     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
 | |
|       Converted = TemplateArgument(Arg);
 | |
|     } else {
 | |
|       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
 | |
|       Converted = TemplateArgument(D, ParamType);
 | |
|     }
 | |
|     return Invalid;
 | |
|   }
 | |
| 
 | |
|   // We found something else, but we don't know specifically what it is.
 | |
|   S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
 | |
|       << Arg->getSourceRange();
 | |
|   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check a template argument against its corresponding
 | |
| /// non-type template parameter.
 | |
| ///
 | |
| /// This routine implements the semantics of C++ [temp.arg.nontype].
 | |
| /// If an error occurred, it returns ExprError(); otherwise, it
 | |
| /// returns the converted template argument. \p ParamType is the
 | |
| /// type of the non-type template parameter after it has been instantiated.
 | |
| ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
 | |
|                                        QualType ParamType, Expr *Arg,
 | |
|                                        TemplateArgument &Converted,
 | |
|                                        CheckTemplateArgumentKind CTAK) {
 | |
|   SourceLocation StartLoc = Arg->getBeginLoc();
 | |
| 
 | |
|   // If the parameter type somehow involves auto, deduce the type now.
 | |
|   if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) {
 | |
|     // During template argument deduction, we allow 'decltype(auto)' to
 | |
|     // match an arbitrary dependent argument.
 | |
|     // FIXME: The language rules don't say what happens in this case.
 | |
|     // FIXME: We get an opaque dependent type out of decltype(auto) if the
 | |
|     // expression is merely instantiation-dependent; is this enough?
 | |
|     if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
 | |
|       auto *AT = dyn_cast<AutoType>(ParamType);
 | |
|       if (AT && AT->isDecltypeAuto()) {
 | |
|         Converted = TemplateArgument(Arg);
 | |
|         return Arg;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // When checking a deduced template argument, deduce from its type even if
 | |
|     // the type is dependent, in order to check the types of non-type template
 | |
|     // arguments line up properly in partial ordering.
 | |
|     Optional<unsigned> Depth = Param->getDepth() + 1;
 | |
|     Expr *DeductionArg = Arg;
 | |
|     if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
 | |
|       DeductionArg = PE->getPattern();
 | |
|     if (DeduceAutoType(
 | |
|             Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
 | |
|             DeductionArg, ParamType, Depth,
 | |
|             // We do not check constraints right now because the
 | |
|             // immediately-declared constraint of the auto type is also an
 | |
|             // associated constraint, and will be checked along with the other
 | |
|             // associated constraints after checking the template argument list.
 | |
|             /*IgnoreConstraints=*/true) == DAR_Failed) {
 | |
|       Diag(Arg->getExprLoc(),
 | |
|            diag::err_non_type_template_parm_type_deduction_failure)
 | |
|         << Param->getDeclName() << Param->getType() << Arg->getType()
 | |
|         << Arg->getSourceRange();
 | |
|       Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       return ExprError();
 | |
|     }
 | |
|     // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
 | |
|     // an error. The error message normally references the parameter
 | |
|     // declaration, but here we'll pass the argument location because that's
 | |
|     // where the parameter type is deduced.
 | |
|     ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
 | |
|     if (ParamType.isNull()) {
 | |
|       Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We should have already dropped all cv-qualifiers by now.
 | |
|   assert(!ParamType.hasQualifiers() &&
 | |
|          "non-type template parameter type cannot be qualified");
 | |
| 
 | |
|   if (CTAK == CTAK_Deduced &&
 | |
|       !Context.hasSameType(ParamType.getNonLValueExprType(Context),
 | |
|                            Arg->getType())) {
 | |
|     // FIXME: If either type is dependent, we skip the check. This isn't
 | |
|     // correct, since during deduction we're supposed to have replaced each
 | |
|     // template parameter with some unique (non-dependent) placeholder.
 | |
|     // FIXME: If the argument type contains 'auto', we carry on and fail the
 | |
|     // type check in order to force specific types to be more specialized than
 | |
|     // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
 | |
|     // work.
 | |
|     if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
 | |
|         !Arg->getType()->getContainedAutoType()) {
 | |
|       Converted = TemplateArgument(Arg);
 | |
|       return Arg;
 | |
|     }
 | |
|     // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
 | |
|     // we should actually be checking the type of the template argument in P,
 | |
|     // not the type of the template argument deduced from A, against the
 | |
|     // template parameter type.
 | |
|     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
 | |
|       << Arg->getType()
 | |
|       << ParamType.getUnqualifiedType();
 | |
|     Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // If either the parameter has a dependent type or the argument is
 | |
|   // type-dependent, there's nothing we can check now. The argument only
 | |
|   // contains an unexpanded pack during partial ordering, and there's
 | |
|   // nothing more we can check in that case.
 | |
|   if (ParamType->isDependentType() || Arg->isTypeDependent() ||
 | |
|       Arg->containsUnexpandedParameterPack()) {
 | |
|     // Force the argument to the type of the parameter to maintain invariants.
 | |
|     auto *PE = dyn_cast<PackExpansionExpr>(Arg);
 | |
|     if (PE)
 | |
|       Arg = PE->getPattern();
 | |
|     ExprResult E = ImpCastExprToType(
 | |
|         Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
 | |
|         ParamType->isLValueReferenceType() ? VK_LValue :
 | |
|         ParamType->isRValueReferenceType() ? VK_XValue : VK_RValue);
 | |
|     if (E.isInvalid())
 | |
|       return ExprError();
 | |
|     if (PE) {
 | |
|       // Recreate a pack expansion if we unwrapped one.
 | |
|       E = new (Context)
 | |
|           PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
 | |
|                             PE->getNumExpansions());
 | |
|     }
 | |
|     Converted = TemplateArgument(E.get());
 | |
|     return E;
 | |
|   }
 | |
| 
 | |
|   // The initialization of the parameter from the argument is
 | |
|   // a constant-evaluated context.
 | |
|   EnterExpressionEvaluationContext ConstantEvaluated(
 | |
|       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus17) {
 | |
|     // C++17 [temp.arg.nontype]p1:
 | |
|     //   A template-argument for a non-type template parameter shall be
 | |
|     //   a converted constant expression of the type of the template-parameter.
 | |
|     APValue Value;
 | |
|     ExprResult ArgResult = CheckConvertedConstantExpression(
 | |
|         Arg, ParamType, Value, CCEK_TemplateArg);
 | |
|     if (ArgResult.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     // For a value-dependent argument, CheckConvertedConstantExpression is
 | |
|     // permitted (and expected) to be unable to determine a value.
 | |
|     if (ArgResult.get()->isValueDependent()) {
 | |
|       Converted = TemplateArgument(ArgResult.get());
 | |
|       return ArgResult;
 | |
|     }
 | |
| 
 | |
|     QualType CanonParamType = Context.getCanonicalType(ParamType);
 | |
| 
 | |
|     // Convert the APValue to a TemplateArgument.
 | |
|     switch (Value.getKind()) {
 | |
|     case APValue::None:
 | |
|       assert(ParamType->isNullPtrType());
 | |
|       Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
 | |
|       break;
 | |
|     case APValue::Indeterminate:
 | |
|       llvm_unreachable("result of constant evaluation should be initialized");
 | |
|       break;
 | |
|     case APValue::Int:
 | |
|       assert(ParamType->isIntegralOrEnumerationType());
 | |
|       Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
 | |
|       break;
 | |
|     case APValue::MemberPointer: {
 | |
|       assert(ParamType->isMemberPointerType());
 | |
| 
 | |
|       // FIXME: We need TemplateArgument representation and mangling for these.
 | |
|       if (!Value.getMemberPointerPath().empty()) {
 | |
|         Diag(Arg->getBeginLoc(),
 | |
|              diag::err_template_arg_member_ptr_base_derived_not_supported)
 | |
|             << Value.getMemberPointerDecl() << ParamType
 | |
|             << Arg->getSourceRange();
 | |
|         return ExprError();
 | |
|       }
 | |
| 
 | |
|       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
 | |
|       Converted = VD ? TemplateArgument(VD, CanonParamType)
 | |
|                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
 | |
|       break;
 | |
|     }
 | |
|     case APValue::LValue: {
 | |
|       //   For a non-type template-parameter of pointer or reference type,
 | |
|       //   the value of the constant expression shall not refer to
 | |
|       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
 | |
|              ParamType->isNullPtrType());
 | |
|       // -- a temporary object
 | |
|       // -- a string literal
 | |
|       // -- the result of a typeid expression, or
 | |
|       // -- a predefined __func__ variable
 | |
|       APValue::LValueBase Base = Value.getLValueBase();
 | |
|       auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
 | |
|       if (Base && (!VD || isa<LifetimeExtendedTemporaryDecl>(VD))) {
 | |
|         auto *E = Base.dyn_cast<const Expr *>();
 | |
|         if (E && isa<CXXUuidofExpr>(E)) {
 | |
|           Converted = TemplateArgument(ArgResult.get()->IgnoreImpCasts());
 | |
|           break;
 | |
|         }
 | |
|         Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
 | |
|             << Arg->getSourceRange();
 | |
|         return ExprError();
 | |
|       }
 | |
|       // -- a subobject
 | |
|       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
 | |
|           VD && VD->getType()->isArrayType() &&
 | |
|           Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
 | |
|           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
 | |
|         // Per defect report (no number yet):
 | |
|         //   ... other than a pointer to the first element of a complete array
 | |
|         //       object.
 | |
|       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
 | |
|                  Value.isLValueOnePastTheEnd()) {
 | |
|         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
 | |
|           << Value.getAsString(Context, ParamType);
 | |
|         return ExprError();
 | |
|       }
 | |
|       assert((VD || !ParamType->isReferenceType()) &&
 | |
|              "null reference should not be a constant expression");
 | |
|       assert((!VD || !ParamType->isNullPtrType()) &&
 | |
|              "non-null value of type nullptr_t?");
 | |
|       Converted = VD ? TemplateArgument(VD, CanonParamType)
 | |
|                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
 | |
|       break;
 | |
|     }
 | |
|     case APValue::AddrLabelDiff:
 | |
|       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
 | |
|     case APValue::FixedPoint:
 | |
|     case APValue::Float:
 | |
|     case APValue::ComplexInt:
 | |
|     case APValue::ComplexFloat:
 | |
|     case APValue::Vector:
 | |
|     case APValue::Array:
 | |
|     case APValue::Struct:
 | |
|     case APValue::Union:
 | |
|       llvm_unreachable("invalid kind for template argument");
 | |
|     }
 | |
| 
 | |
|     return ArgResult.get();
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.arg.nontype]p5:
 | |
|   //   The following conversions are performed on each expression used
 | |
|   //   as a non-type template-argument. If a non-type
 | |
|   //   template-argument cannot be converted to the type of the
 | |
|   //   corresponding template-parameter then the program is
 | |
|   //   ill-formed.
 | |
|   if (ParamType->isIntegralOrEnumerationType()) {
 | |
|     // C++11:
 | |
|     //   -- for a non-type template-parameter of integral or
 | |
|     //      enumeration type, conversions permitted in a converted
 | |
|     //      constant expression are applied.
 | |
|     //
 | |
|     // C++98:
 | |
|     //   -- for a non-type template-parameter of integral or
 | |
|     //      enumeration type, integral promotions (4.5) and integral
 | |
|     //      conversions (4.7) are applied.
 | |
| 
 | |
|     if (getLangOpts().CPlusPlus11) {
 | |
|       // C++ [temp.arg.nontype]p1:
 | |
|       //   A template-argument for a non-type, non-template template-parameter
 | |
|       //   shall be one of:
 | |
|       //
 | |
|       //     -- for a non-type template-parameter of integral or enumeration
 | |
|       //        type, a converted constant expression of the type of the
 | |
|       //        template-parameter; or
 | |
|       llvm::APSInt Value;
 | |
|       ExprResult ArgResult =
 | |
|         CheckConvertedConstantExpression(Arg, ParamType, Value,
 | |
|                                          CCEK_TemplateArg);
 | |
|       if (ArgResult.isInvalid())
 | |
|         return ExprError();
 | |
| 
 | |
|       // We can't check arbitrary value-dependent arguments.
 | |
|       if (ArgResult.get()->isValueDependent()) {
 | |
|         Converted = TemplateArgument(ArgResult.get());
 | |
|         return ArgResult;
 | |
|       }
 | |
| 
 | |
|       // Widen the argument value to sizeof(parameter type). This is almost
 | |
|       // always a no-op, except when the parameter type is bool. In
 | |
|       // that case, this may extend the argument from 1 bit to 8 bits.
 | |
|       QualType IntegerType = ParamType;
 | |
|       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
 | |
|         IntegerType = Enum->getDecl()->getIntegerType();
 | |
|       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
 | |
| 
 | |
|       Converted = TemplateArgument(Context, Value,
 | |
|                                    Context.getCanonicalType(ParamType));
 | |
|       return ArgResult;
 | |
|     }
 | |
| 
 | |
|     ExprResult ArgResult = DefaultLvalueConversion(Arg);
 | |
|     if (ArgResult.isInvalid())
 | |
|       return ExprError();
 | |
|     Arg = ArgResult.get();
 | |
| 
 | |
|     QualType ArgType = Arg->getType();
 | |
| 
 | |
|     // C++ [temp.arg.nontype]p1:
 | |
|     //   A template-argument for a non-type, non-template
 | |
|     //   template-parameter shall be one of:
 | |
|     //
 | |
|     //     -- an integral constant-expression of integral or enumeration
 | |
|     //        type; or
 | |
|     //     -- the name of a non-type template-parameter; or
 | |
|     llvm::APSInt Value;
 | |
|     if (!ArgType->isIntegralOrEnumerationType()) {
 | |
|       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
 | |
|           << ArgType << Arg->getSourceRange();
 | |
|       Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       return ExprError();
 | |
|     } else if (!Arg->isValueDependent()) {
 | |
|       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
 | |
|         QualType T;
 | |
| 
 | |
|       public:
 | |
|         TmplArgICEDiagnoser(QualType T) : T(T) { }
 | |
| 
 | |
|         void diagnoseNotICE(Sema &S, SourceLocation Loc,
 | |
|                             SourceRange SR) override {
 | |
|           S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
 | |
|         }
 | |
|       } Diagnoser(ArgType);
 | |
| 
 | |
|       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
 | |
|                                             false).get();
 | |
|       if (!Arg)
 | |
|         return ExprError();
 | |
|     }
 | |
| 
 | |
|     // From here on out, all we care about is the unqualified form
 | |
|     // of the argument type.
 | |
|     ArgType = ArgType.getUnqualifiedType();
 | |
| 
 | |
|     // Try to convert the argument to the parameter's type.
 | |
|     if (Context.hasSameType(ParamType, ArgType)) {
 | |
|       // Okay: no conversion necessary
 | |
|     } else if (ParamType->isBooleanType()) {
 | |
|       // This is an integral-to-boolean conversion.
 | |
|       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
 | |
|     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
 | |
|                !ParamType->isEnumeralType()) {
 | |
|       // This is an integral promotion or conversion.
 | |
|       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
 | |
|     } else {
 | |
|       // We can't perform this conversion.
 | |
|       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
 | |
|           << Arg->getType() << ParamType << Arg->getSourceRange();
 | |
|       Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     // Add the value of this argument to the list of converted
 | |
|     // arguments. We use the bitwidth and signedness of the template
 | |
|     // parameter.
 | |
|     if (Arg->isValueDependent()) {
 | |
|       // The argument is value-dependent. Create a new
 | |
|       // TemplateArgument with the converted expression.
 | |
|       Converted = TemplateArgument(Arg);
 | |
|       return Arg;
 | |
|     }
 | |
| 
 | |
|     QualType IntegerType = Context.getCanonicalType(ParamType);
 | |
|     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
 | |
|       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
 | |
| 
 | |
|     if (ParamType->isBooleanType()) {
 | |
|       // Value must be zero or one.
 | |
|       Value = Value != 0;
 | |
|       unsigned AllowedBits = Context.getTypeSize(IntegerType);
 | |
|       if (Value.getBitWidth() != AllowedBits)
 | |
|         Value = Value.extOrTrunc(AllowedBits);
 | |
|       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
 | |
|     } else {
 | |
|       llvm::APSInt OldValue = Value;
 | |
| 
 | |
|       // Coerce the template argument's value to the value it will have
 | |
|       // based on the template parameter's type.
 | |
|       unsigned AllowedBits = Context.getTypeSize(IntegerType);
 | |
|       if (Value.getBitWidth() != AllowedBits)
 | |
|         Value = Value.extOrTrunc(AllowedBits);
 | |
|       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
 | |
| 
 | |
|       // Complain if an unsigned parameter received a negative value.
 | |
|       if (IntegerType->isUnsignedIntegerOrEnumerationType()
 | |
|                && (OldValue.isSigned() && OldValue.isNegative())) {
 | |
|         Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
 | |
|             << OldValue.toString(10) << Value.toString(10) << Param->getType()
 | |
|             << Arg->getSourceRange();
 | |
|         Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       }
 | |
| 
 | |
|       // Complain if we overflowed the template parameter's type.
 | |
|       unsigned RequiredBits;
 | |
|       if (IntegerType->isUnsignedIntegerOrEnumerationType())
 | |
|         RequiredBits = OldValue.getActiveBits();
 | |
|       else if (OldValue.isUnsigned())
 | |
|         RequiredBits = OldValue.getActiveBits() + 1;
 | |
|       else
 | |
|         RequiredBits = OldValue.getMinSignedBits();
 | |
|       if (RequiredBits > AllowedBits) {
 | |
|         Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
 | |
|             << OldValue.toString(10) << Value.toString(10) << Param->getType()
 | |
|             << Arg->getSourceRange();
 | |
|         Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Converted = TemplateArgument(Context, Value,
 | |
|                                  ParamType->isEnumeralType()
 | |
|                                    ? Context.getCanonicalType(ParamType)
 | |
|                                    : IntegerType);
 | |
|     return Arg;
 | |
|   }
 | |
| 
 | |
|   QualType ArgType = Arg->getType();
 | |
|   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
 | |
| 
 | |
|   // Handle pointer-to-function, reference-to-function, and
 | |
|   // pointer-to-member-function all in (roughly) the same way.
 | |
|   if (// -- For a non-type template-parameter of type pointer to
 | |
|       //    function, only the function-to-pointer conversion (4.3) is
 | |
|       //    applied. If the template-argument represents a set of
 | |
|       //    overloaded functions (or a pointer to such), the matching
 | |
|       //    function is selected from the set (13.4).
 | |
|       (ParamType->isPointerType() &&
 | |
|        ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
 | |
|       // -- For a non-type template-parameter of type reference to
 | |
|       //    function, no conversions apply. If the template-argument
 | |
|       //    represents a set of overloaded functions, the matching
 | |
|       //    function is selected from the set (13.4).
 | |
|       (ParamType->isReferenceType() &&
 | |
|        ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
 | |
|       // -- For a non-type template-parameter of type pointer to
 | |
|       //    member function, no conversions apply. If the
 | |
|       //    template-argument represents a set of overloaded member
 | |
|       //    functions, the matching member function is selected from
 | |
|       //    the set (13.4).
 | |
|       (ParamType->isMemberPointerType() &&
 | |
|        ParamType->castAs<MemberPointerType>()->getPointeeType()
 | |
|          ->isFunctionType())) {
 | |
| 
 | |
|     if (Arg->getType() == Context.OverloadTy) {
 | |
|       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
 | |
|                                                                 true,
 | |
|                                                                 FoundResult)) {
 | |
|         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
 | |
|           return ExprError();
 | |
| 
 | |
|         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
 | |
|         ArgType = Arg->getType();
 | |
|       } else
 | |
|         return ExprError();
 | |
|     }
 | |
| 
 | |
|     if (!ParamType->isMemberPointerType()) {
 | |
|       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
 | |
|                                                          ParamType,
 | |
|                                                          Arg, Converted))
 | |
|         return ExprError();
 | |
|       return Arg;
 | |
|     }
 | |
| 
 | |
|     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
 | |
|                                              Converted))
 | |
|       return ExprError();
 | |
|     return Arg;
 | |
|   }
 | |
| 
 | |
|   if (ParamType->isPointerType()) {
 | |
|     //   -- for a non-type template-parameter of type pointer to
 | |
|     //      object, qualification conversions (4.4) and the
 | |
|     //      array-to-pointer conversion (4.2) are applied.
 | |
|     // C++0x also allows a value of std::nullptr_t.
 | |
|     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
 | |
|            "Only object pointers allowed here");
 | |
| 
 | |
|     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
 | |
|                                                        ParamType,
 | |
|                                                        Arg, Converted))
 | |
|       return ExprError();
 | |
|     return Arg;
 | |
|   }
 | |
| 
 | |
|   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
 | |
|     //   -- For a non-type template-parameter of type reference to
 | |
|     //      object, no conversions apply. The type referred to by the
 | |
|     //      reference may be more cv-qualified than the (otherwise
 | |
|     //      identical) type of the template-argument. The
 | |
|     //      template-parameter is bound directly to the
 | |
|     //      template-argument, which must be an lvalue.
 | |
|     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
 | |
|            "Only object references allowed here");
 | |
| 
 | |
|     if (Arg->getType() == Context.OverloadTy) {
 | |
|       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
 | |
|                                                  ParamRefType->getPointeeType(),
 | |
|                                                                 true,
 | |
|                                                                 FoundResult)) {
 | |
|         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
 | |
|           return ExprError();
 | |
| 
 | |
|         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
 | |
|         ArgType = Arg->getType();
 | |
|       } else
 | |
|         return ExprError();
 | |
|     }
 | |
| 
 | |
|     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
 | |
|                                                        ParamType,
 | |
|                                                        Arg, Converted))
 | |
|       return ExprError();
 | |
|     return Arg;
 | |
|   }
 | |
| 
 | |
|   // Deal with parameters of type std::nullptr_t.
 | |
|   if (ParamType->isNullPtrType()) {
 | |
|     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
 | |
|       Converted = TemplateArgument(Arg);
 | |
|       return Arg;
 | |
|     }
 | |
| 
 | |
|     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
 | |
|     case NPV_NotNullPointer:
 | |
|       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
 | |
|         << Arg->getType() << ParamType;
 | |
|       Diag(Param->getLocation(), diag::note_template_param_here);
 | |
|       return ExprError();
 | |
| 
 | |
|     case NPV_Error:
 | |
|       return ExprError();
 | |
| 
 | |
|     case NPV_NullPointer:
 | |
|       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
 | |
|       Converted = TemplateArgument(Context.getCanonicalType(ParamType),
 | |
|                                    /*isNullPtr*/true);
 | |
|       return Arg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //     -- For a non-type template-parameter of type pointer to data
 | |
|   //        member, qualification conversions (4.4) are applied.
 | |
|   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
 | |
| 
 | |
|   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
 | |
|                                            Converted))
 | |
|     return ExprError();
 | |
|   return Arg;
 | |
| }
 | |
| 
 | |
| static void DiagnoseTemplateParameterListArityMismatch(
 | |
|     Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
 | |
|     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
 | |
| 
 | |
| /// Check a template argument against its corresponding
 | |
| /// template template parameter.
 | |
| ///
 | |
| /// This routine implements the semantics of C++ [temp.arg.template].
 | |
| /// It returns true if an error occurred, and false otherwise.
 | |
| bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
 | |
|                                          TemplateParameterList *Params,
 | |
|                                          TemplateArgumentLoc &Arg) {
 | |
|   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
 | |
|   TemplateDecl *Template = Name.getAsTemplateDecl();
 | |
|   if (!Template) {
 | |
|     // Any dependent template name is fine.
 | |
|     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Template->isInvalidDecl())
 | |
|     return true;
 | |
| 
 | |
|   // C++0x [temp.arg.template]p1:
 | |
|   //   A template-argument for a template template-parameter shall be
 | |
|   //   the name of a class template or an alias template, expressed as an
 | |
|   //   id-expression. When the template-argument names a class template, only
 | |
|   //   primary class templates are considered when matching the
 | |
|   //   template template argument with the corresponding parameter;
 | |
|   //   partial specializations are not considered even if their
 | |
|   //   parameter lists match that of the template template parameter.
 | |
|   //
 | |
|   // Note that we also allow template template parameters here, which
 | |
|   // will happen when we are dealing with, e.g., class template
 | |
|   // partial specializations.
 | |
|   if (!isa<ClassTemplateDecl>(Template) &&
 | |
|       !isa<TemplateTemplateParmDecl>(Template) &&
 | |
|       !isa<TypeAliasTemplateDecl>(Template) &&
 | |
|       !isa<BuiltinTemplateDecl>(Template)) {
 | |
|     assert(isa<FunctionTemplateDecl>(Template) &&
 | |
|            "Only function templates are possible here");
 | |
|     Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
 | |
|     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
 | |
|       << Template;
 | |
|   }
 | |
| 
 | |
|   // C++1z [temp.arg.template]p3: (DR 150)
 | |
|   //   A template-argument matches a template template-parameter P when P
 | |
|   //   is at least as specialized as the template-argument A.
 | |
|   // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
 | |
|   //  defect report resolution from C++17 and shouldn't be introduced by
 | |
|   //  concepts.
 | |
|   if (getLangOpts().RelaxedTemplateTemplateArgs) {
 | |
|     // Quick check for the common case:
 | |
|     //   If P contains a parameter pack, then A [...] matches P if each of A's
 | |
|     //   template parameters matches the corresponding template parameter in
 | |
|     //   the template-parameter-list of P.
 | |
|     if (TemplateParameterListsAreEqual(
 | |
|             Template->getTemplateParameters(), Params, false,
 | |
|             TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
 | |
|         // If the argument has no associated constraints, then the parameter is
 | |
|         // definitely at least as specialized as the argument.
 | |
|         // Otherwise - we need a more thorough check.
 | |
|         !Template->hasAssociatedConstraints())
 | |
|       return false;
 | |
| 
 | |
|     if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
 | |
|                                                           Arg.getLocation())) {
 | |
|       // C++2a[temp.func.order]p2
 | |
|       //   [...] If both deductions succeed, the partial ordering selects the
 | |
|       //   more constrained template as described by the rules in
 | |
|       //   [temp.constr.order].
 | |
|       SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
 | |
|       Params->getAssociatedConstraints(ParamsAC);
 | |
|       // C++2a[temp.arg.template]p3
 | |
|       //   [...] In this comparison, if P is unconstrained, the constraints on A
 | |
|       //   are not considered.
 | |
|       if (ParamsAC.empty())
 | |
|         return false;
 | |
|       Template->getAssociatedConstraints(TemplateAC);
 | |
|       bool IsParamAtLeastAsConstrained;
 | |
|       if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
 | |
|                                  IsParamAtLeastAsConstrained))
 | |
|         return true;
 | |
|       if (!IsParamAtLeastAsConstrained) {
 | |
|         Diag(Arg.getLocation(),
 | |
|              diag::err_template_template_parameter_not_at_least_as_constrained)
 | |
|             << Template << Param << Arg.getSourceRange();
 | |
|         Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
 | |
|         Diag(Template->getLocation(), diag::note_entity_declared_at)
 | |
|             << Template;
 | |
|         MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
 | |
|                                                       TemplateAC);
 | |
|         return true;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|     // FIXME: Produce better diagnostics for deduction failures.
 | |
|   }
 | |
| 
 | |
|   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
 | |
|                                          Params,
 | |
|                                          true,
 | |
|                                          TPL_TemplateTemplateArgumentMatch,
 | |
|                                          Arg.getLocation());
 | |
| }
 | |
| 
 | |
| /// Given a non-type template argument that refers to a
 | |
| /// declaration and the type of its corresponding non-type template
 | |
| /// parameter, produce an expression that properly refers to that
 | |
| /// declaration.
 | |
| ExprResult
 | |
| Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
 | |
|                                               QualType ParamType,
 | |
|                                               SourceLocation Loc) {
 | |
|   // C++ [temp.param]p8:
 | |
|   //
 | |
|   //   A non-type template-parameter of type "array of T" or
 | |
|   //   "function returning T" is adjusted to be of type "pointer to
 | |
|   //   T" or "pointer to function returning T", respectively.
 | |
|   if (ParamType->isArrayType())
 | |
|     ParamType = Context.getArrayDecayedType(ParamType);
 | |
|   else if (ParamType->isFunctionType())
 | |
|     ParamType = Context.getPointerType(ParamType);
 | |
| 
 | |
|   // For a NULL non-type template argument, return nullptr casted to the
 | |
|   // parameter's type.
 | |
|   if (Arg.getKind() == TemplateArgument::NullPtr) {
 | |
|     return ImpCastExprToType(
 | |
|              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
 | |
|                              ParamType,
 | |
|                              ParamType->getAs<MemberPointerType>()
 | |
|                                ? CK_NullToMemberPointer
 | |
|                                : CK_NullToPointer);
 | |
|   }
 | |
|   assert(Arg.getKind() == TemplateArgument::Declaration &&
 | |
|          "Only declaration template arguments permitted here");
 | |
| 
 | |
|   ValueDecl *VD = Arg.getAsDecl();
 | |
| 
 | |
|   CXXScopeSpec SS;
 | |
|   if (ParamType->isMemberPointerType()) {
 | |
|     // If this is a pointer to member, we need to use a qualified name to
 | |
|     // form a suitable pointer-to-member constant.
 | |
|     assert(VD->getDeclContext()->isRecord() &&
 | |
|            (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
 | |
|             isa<IndirectFieldDecl>(VD)));
 | |
|     QualType ClassType
 | |
|       = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
 | |
|     NestedNameSpecifier *Qualifier
 | |
|       = NestedNameSpecifier::Create(Context, nullptr, false,
 | |
|                                     ClassType.getTypePtr());
 | |
|     SS.MakeTrivial(Context, Qualifier, Loc);
 | |
|   }
 | |
| 
 | |
|   ExprResult RefExpr = BuildDeclarationNameExpr(
 | |
|       SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
 | |
|   if (RefExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // For a pointer, the argument declaration is the pointee. Take its address.
 | |
|   QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
 | |
|   if (ParamType->isPointerType() && !ElemT.isNull() &&
 | |
|       Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
 | |
|     // Decay an array argument if we want a pointer to its first element.
 | |
|     RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
 | |
|     if (RefExpr.isInvalid())
 | |
|       return ExprError();
 | |
|   } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
 | |
|     // For any other pointer, take the address (or form a pointer-to-member).
 | |
|     RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
 | |
|     if (RefExpr.isInvalid())
 | |
|       return ExprError();
 | |
|   } else {
 | |
|     assert(ParamType->isReferenceType() &&
 | |
|            "unexpected type for decl template argument");
 | |
|   }
 | |
| 
 | |
|   // At this point we should have the right value category.
 | |
|   assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
 | |
|          "value kind mismatch for non-type template argument");
 | |
| 
 | |
|   // The type of the template parameter can differ from the type of the
 | |
|   // argument in various ways; convert it now if necessary.
 | |
|   QualType DestExprType = ParamType.getNonLValueExprType(Context);
 | |
|   if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
 | |
|     CastKind CK;
 | |
|     QualType Ignored;
 | |
|     if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
 | |
|         IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
 | |
|       CK = CK_NoOp;
 | |
|     } else if (ParamType->isVoidPointerType() &&
 | |
|                RefExpr.get()->getType()->isPointerType()) {
 | |
|       CK = CK_BitCast;
 | |
|     } else {
 | |
|       // FIXME: Pointers to members can need conversion derived-to-base or
 | |
|       // base-to-derived conversions. We currently don't retain enough
 | |
|       // information to convert properly (we need to track a cast path or
 | |
|       // subobject number in the template argument).
 | |
|       llvm_unreachable(
 | |
|           "unexpected conversion required for non-type template argument");
 | |
|     }
 | |
|     RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
 | |
|                                 RefExpr.get()->getValueKind());
 | |
|   }
 | |
| 
 | |
|   return RefExpr;
 | |
| }
 | |
| 
 | |
| /// Construct a new expression that refers to the given
 | |
| /// integral template argument with the given source-location
 | |
| /// information.
 | |
| ///
 | |
| /// This routine takes care of the mapping from an integral template
 | |
| /// argument (which may have any integral type) to the appropriate
 | |
| /// literal value.
 | |
| ExprResult
 | |
| Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
 | |
|                                                   SourceLocation Loc) {
 | |
|   assert(Arg.getKind() == TemplateArgument::Integral &&
 | |
|          "Operation is only valid for integral template arguments");
 | |
|   QualType OrigT = Arg.getIntegralType();
 | |
| 
 | |
|   // If this is an enum type that we're instantiating, we need to use an integer
 | |
|   // type the same size as the enumerator.  We don't want to build an
 | |
|   // IntegerLiteral with enum type.  The integer type of an enum type can be of
 | |
|   // any integral type with C++11 enum classes, make sure we create the right
 | |
|   // type of literal for it.
 | |
|   QualType T = OrigT;
 | |
|   if (const EnumType *ET = OrigT->getAs<EnumType>())
 | |
|     T = ET->getDecl()->getIntegerType();
 | |
| 
 | |
|   Expr *E;
 | |
|   if (T->isAnyCharacterType()) {
 | |
|     CharacterLiteral::CharacterKind Kind;
 | |
|     if (T->isWideCharType())
 | |
|       Kind = CharacterLiteral::Wide;
 | |
|     else if (T->isChar8Type() && getLangOpts().Char8)
 | |
|       Kind = CharacterLiteral::UTF8;
 | |
|     else if (T->isChar16Type())
 | |
|       Kind = CharacterLiteral::UTF16;
 | |
|     else if (T->isChar32Type())
 | |
|       Kind = CharacterLiteral::UTF32;
 | |
|     else
 | |
|       Kind = CharacterLiteral::Ascii;
 | |
| 
 | |
|     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
 | |
|                                        Kind, T, Loc);
 | |
|   } else if (T->isBooleanType()) {
 | |
|     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
 | |
|                                          T, Loc);
 | |
|   } else if (T->isNullPtrType()) {
 | |
|     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
 | |
|   } else {
 | |
|     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
 | |
|   }
 | |
| 
 | |
|   if (OrigT->isEnumeralType()) {
 | |
|     // FIXME: This is a hack. We need a better way to handle substituted
 | |
|     // non-type template parameters.
 | |
|     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
 | |
|                                nullptr,
 | |
|                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
 | |
|                                Loc, Loc);
 | |
|   }
 | |
| 
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| /// Match two template parameters within template parameter lists.
 | |
| static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
 | |
|                                        bool Complain,
 | |
|                                      Sema::TemplateParameterListEqualKind Kind,
 | |
|                                        SourceLocation TemplateArgLoc) {
 | |
|   // Check the actual kind (type, non-type, template).
 | |
|   if (Old->getKind() != New->getKind()) {
 | |
|     if (Complain) {
 | |
|       unsigned NextDiag = diag::err_template_param_different_kind;
 | |
|       if (TemplateArgLoc.isValid()) {
 | |
|         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
 | |
|         NextDiag = diag::note_template_param_different_kind;
 | |
|       }
 | |
|       S.Diag(New->getLocation(), NextDiag)
 | |
|         << (Kind != Sema::TPL_TemplateMatch);
 | |
|       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
 | |
|         << (Kind != Sema::TPL_TemplateMatch);
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check that both are parameter packs or neither are parameter packs.
 | |
|   // However, if we are matching a template template argument to a
 | |
|   // template template parameter, the template template parameter can have
 | |
|   // a parameter pack where the template template argument does not.
 | |
|   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
 | |
|       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
 | |
|         Old->isTemplateParameterPack())) {
 | |
|     if (Complain) {
 | |
|       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
 | |
|       if (TemplateArgLoc.isValid()) {
 | |
|         S.Diag(TemplateArgLoc,
 | |
|              diag::err_template_arg_template_params_mismatch);
 | |
|         NextDiag = diag::note_template_parameter_pack_non_pack;
 | |
|       }
 | |
| 
 | |
|       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
 | |
|                       : isa<NonTypeTemplateParmDecl>(New)? 1
 | |
|                       : 2;
 | |
|       S.Diag(New->getLocation(), NextDiag)
 | |
|         << ParamKind << New->isParameterPack();
 | |
|       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
 | |
|         << ParamKind << Old->isParameterPack();
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // For non-type template parameters, check the type of the parameter.
 | |
|   if (NonTypeTemplateParmDecl *OldNTTP
 | |
|                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
 | |
|     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
 | |
| 
 | |
|     // If we are matching a template template argument to a template
 | |
|     // template parameter and one of the non-type template parameter types
 | |
|     // is dependent, then we must wait until template instantiation time
 | |
|     // to actually compare the arguments.
 | |
|     if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
 | |
|         (!OldNTTP->getType()->isDependentType() &&
 | |
|          !NewNTTP->getType()->isDependentType()))
 | |
|       if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
 | |
|         if (Complain) {
 | |
|           unsigned NextDiag = diag::err_template_nontype_parm_different_type;
 | |
|           if (TemplateArgLoc.isValid()) {
 | |
|             S.Diag(TemplateArgLoc,
 | |
|                    diag::err_template_arg_template_params_mismatch);
 | |
|             NextDiag = diag::note_template_nontype_parm_different_type;
 | |
|           }
 | |
|           S.Diag(NewNTTP->getLocation(), NextDiag)
 | |
|             << NewNTTP->getType()
 | |
|             << (Kind != Sema::TPL_TemplateMatch);
 | |
|           S.Diag(OldNTTP->getLocation(),
 | |
|                  diag::note_template_nontype_parm_prev_declaration)
 | |
|             << OldNTTP->getType();
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
|   // For template template parameters, check the template parameter types.
 | |
|   // The template parameter lists of template template
 | |
|   // parameters must agree.
 | |
|   else if (TemplateTemplateParmDecl *OldTTP
 | |
|                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
 | |
|     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
 | |
|     if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
 | |
|                                           OldTTP->getTemplateParameters(),
 | |
|                                           Complain,
 | |
|                                         (Kind == Sema::TPL_TemplateMatch
 | |
|                                            ? Sema::TPL_TemplateTemplateParmMatch
 | |
|                                            : Kind),
 | |
|                                           TemplateArgLoc))
 | |
|       return false;
 | |
|   } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) {
 | |
|     const Expr *NewC = nullptr, *OldC = nullptr;
 | |
|     if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
 | |
|       NewC = TC->getImmediatelyDeclaredConstraint();
 | |
|     if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
 | |
|       OldC = TC->getImmediatelyDeclaredConstraint();
 | |
| 
 | |
|     auto Diagnose = [&] {
 | |
|       S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
 | |
|            diag::err_template_different_type_constraint);
 | |
|       S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
 | |
|            diag::note_template_prev_declaration) << /*declaration*/0;
 | |
|     };
 | |
| 
 | |
|     if (!NewC != !OldC) {
 | |
|       if (Complain)
 | |
|         Diagnose();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (NewC) {
 | |
|       llvm::FoldingSetNodeID OldCID, NewCID;
 | |
|       OldC->Profile(OldCID, S.Context, /*Canonical=*/true);
 | |
|       NewC->Profile(NewCID, S.Context, /*Canonical=*/true);
 | |
|       if (OldCID != NewCID) {
 | |
|         if (Complain)
 | |
|           Diagnose();
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Diagnose a known arity mismatch when comparing template argument
 | |
| /// lists.
 | |
| static
 | |
| void DiagnoseTemplateParameterListArityMismatch(Sema &S,
 | |
|                                                 TemplateParameterList *New,
 | |
|                                                 TemplateParameterList *Old,
 | |
|                                       Sema::TemplateParameterListEqualKind Kind,
 | |
|                                                 SourceLocation TemplateArgLoc) {
 | |
|   unsigned NextDiag = diag::err_template_param_list_different_arity;
 | |
|   if (TemplateArgLoc.isValid()) {
 | |
|     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
 | |
|     NextDiag = diag::note_template_param_list_different_arity;
 | |
|   }
 | |
|   S.Diag(New->getTemplateLoc(), NextDiag)
 | |
|     << (New->size() > Old->size())
 | |
|     << (Kind != Sema::TPL_TemplateMatch)
 | |
|     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
 | |
|   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
 | |
|     << (Kind != Sema::TPL_TemplateMatch)
 | |
|     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
 | |
| }
 | |
| 
 | |
| /// Determine whether the given template parameter lists are
 | |
| /// equivalent.
 | |
| ///
 | |
| /// \param New  The new template parameter list, typically written in the
 | |
| /// source code as part of a new template declaration.
 | |
| ///
 | |
| /// \param Old  The old template parameter list, typically found via
 | |
| /// name lookup of the template declared with this template parameter
 | |
| /// list.
 | |
| ///
 | |
| /// \param Complain  If true, this routine will produce a diagnostic if
 | |
| /// the template parameter lists are not equivalent.
 | |
| ///
 | |
| /// \param Kind describes how we are to match the template parameter lists.
 | |
| ///
 | |
| /// \param TemplateArgLoc If this source location is valid, then we
 | |
| /// are actually checking the template parameter list of a template
 | |
| /// argument (New) against the template parameter list of its
 | |
| /// corresponding template template parameter (Old). We produce
 | |
| /// slightly different diagnostics in this scenario.
 | |
| ///
 | |
| /// \returns True if the template parameter lists are equal, false
 | |
| /// otherwise.
 | |
| bool
 | |
| Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
 | |
|                                      TemplateParameterList *Old,
 | |
|                                      bool Complain,
 | |
|                                      TemplateParameterListEqualKind Kind,
 | |
|                                      SourceLocation TemplateArgLoc) {
 | |
|   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
 | |
|     if (Complain)
 | |
|       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
 | |
|                                                  TemplateArgLoc);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // C++0x [temp.arg.template]p3:
 | |
|   //   A template-argument matches a template template-parameter (call it P)
 | |
|   //   when each of the template parameters in the template-parameter-list of
 | |
|   //   the template-argument's corresponding class template or alias template
 | |
|   //   (call it A) matches the corresponding template parameter in the
 | |
|   //   template-parameter-list of P. [...]
 | |
|   TemplateParameterList::iterator NewParm = New->begin();
 | |
|   TemplateParameterList::iterator NewParmEnd = New->end();
 | |
|   for (TemplateParameterList::iterator OldParm = Old->begin(),
 | |
|                                     OldParmEnd = Old->end();
 | |
|        OldParm != OldParmEnd; ++OldParm) {
 | |
|     if (Kind != TPL_TemplateTemplateArgumentMatch ||
 | |
|         !(*OldParm)->isTemplateParameterPack()) {
 | |
|       if (NewParm == NewParmEnd) {
 | |
|         if (Complain)
 | |
|           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
 | |
|                                                      TemplateArgLoc);
 | |
| 
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
 | |
|                                       Kind, TemplateArgLoc))
 | |
|         return false;
 | |
| 
 | |
|       ++NewParm;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C++0x [temp.arg.template]p3:
 | |
|     //   [...] When P's template- parameter-list contains a template parameter
 | |
|     //   pack (14.5.3), the template parameter pack will match zero or more
 | |
|     //   template parameters or template parameter packs in the
 | |
|     //   template-parameter-list of A with the same type and form as the
 | |
|     //   template parameter pack in P (ignoring whether those template
 | |
|     //   parameters are template parameter packs).
 | |
|     for (; NewParm != NewParmEnd; ++NewParm) {
 | |
|       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
 | |
|                                       Kind, TemplateArgLoc))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure we exhausted all of the arguments.
 | |
|   if (NewParm != NewParmEnd) {
 | |
|     if (Complain)
 | |
|       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
 | |
|                                                  TemplateArgLoc);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Kind != TPL_TemplateTemplateArgumentMatch) {
 | |
|     const Expr *NewRC = New->getRequiresClause();
 | |
|     const Expr *OldRC = Old->getRequiresClause();
 | |
| 
 | |
|     auto Diagnose = [&] {
 | |
|       Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
 | |
|            diag::err_template_different_requires_clause);
 | |
|       Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
 | |
|            diag::note_template_prev_declaration) << /*declaration*/0;
 | |
|     };
 | |
| 
 | |
|     if (!NewRC != !OldRC) {
 | |
|       if (Complain)
 | |
|         Diagnose();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (NewRC) {
 | |
|       llvm::FoldingSetNodeID OldRCID, NewRCID;
 | |
|       OldRC->Profile(OldRCID, Context, /*Canonical=*/true);
 | |
|       NewRC->Profile(NewRCID, Context, /*Canonical=*/true);
 | |
|       if (OldRCID != NewRCID) {
 | |
|         if (Complain)
 | |
|           Diagnose();
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check whether a template can be declared within this scope.
 | |
| ///
 | |
| /// If the template declaration is valid in this scope, returns
 | |
| /// false. Otherwise, issues a diagnostic and returns true.
 | |
| bool
 | |
| Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
 | |
|   if (!S)
 | |
|     return false;
 | |
| 
 | |
|   // Find the nearest enclosing declaration scope.
 | |
|   while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | |
|          (S->getFlags() & Scope::TemplateParamScope) != 0)
 | |
|     S = S->getParent();
 | |
| 
 | |
|   // C++ [temp]p4:
 | |
|   //   A template [...] shall not have C linkage.
 | |
|   DeclContext *Ctx = S->getEntity();
 | |
|   assert(Ctx && "Unknown context");
 | |
|   if (Ctx->isExternCContext()) {
 | |
|     Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
 | |
|         << TemplateParams->getSourceRange();
 | |
|     if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
 | |
|       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
 | |
|     return true;
 | |
|   }
 | |
|   Ctx = Ctx->getRedeclContext();
 | |
| 
 | |
|   // C++ [temp]p2:
 | |
|   //   A template-declaration can appear only as a namespace scope or
 | |
|   //   class scope declaration.
 | |
|   if (Ctx) {
 | |
|     if (Ctx->isFileContext())
 | |
|       return false;
 | |
|     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
 | |
|       // C++ [temp.mem]p2:
 | |
|       //   A local class shall not have member templates.
 | |
|       if (RD->isLocalClass())
 | |
|         return Diag(TemplateParams->getTemplateLoc(),
 | |
|                     diag::err_template_inside_local_class)
 | |
|           << TemplateParams->getSourceRange();
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Diag(TemplateParams->getTemplateLoc(),
 | |
|               diag::err_template_outside_namespace_or_class_scope)
 | |
|     << TemplateParams->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// Determine what kind of template specialization the given declaration
 | |
| /// is.
 | |
| static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
 | |
|   if (!D)
 | |
|     return TSK_Undeclared;
 | |
| 
 | |
|   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
 | |
|     return Record->getTemplateSpecializationKind();
 | |
|   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
 | |
|     return Function->getTemplateSpecializationKind();
 | |
|   if (VarDecl *Var = dyn_cast<VarDecl>(D))
 | |
|     return Var->getTemplateSpecializationKind();
 | |
| 
 | |
|   return TSK_Undeclared;
 | |
| }
 | |
| 
 | |
| /// Check whether a specialization is well-formed in the current
 | |
| /// context.
 | |
| ///
 | |
| /// This routine determines whether a template specialization can be declared
 | |
| /// in the current context (C++ [temp.expl.spec]p2).
 | |
| ///
 | |
| /// \param S the semantic analysis object for which this check is being
 | |
| /// performed.
 | |
| ///
 | |
| /// \param Specialized the entity being specialized or instantiated, which
 | |
| /// may be a kind of template (class template, function template, etc.) or
 | |
| /// a member of a class template (member function, static data member,
 | |
| /// member class).
 | |
| ///
 | |
| /// \param PrevDecl the previous declaration of this entity, if any.
 | |
| ///
 | |
| /// \param Loc the location of the explicit specialization or instantiation of
 | |
| /// this entity.
 | |
| ///
 | |
| /// \param IsPartialSpecialization whether this is a partial specialization of
 | |
| /// a class template.
 | |
| ///
 | |
| /// \returns true if there was an error that we cannot recover from, false
 | |
| /// otherwise.
 | |
| static bool CheckTemplateSpecializationScope(Sema &S,
 | |
|                                              NamedDecl *Specialized,
 | |
|                                              NamedDecl *PrevDecl,
 | |
|                                              SourceLocation Loc,
 | |
|                                              bool IsPartialSpecialization) {
 | |
|   // Keep these "kind" numbers in sync with the %select statements in the
 | |
|   // various diagnostics emitted by this routine.
 | |
|   int EntityKind = 0;
 | |
|   if (isa<ClassTemplateDecl>(Specialized))
 | |
|     EntityKind = IsPartialSpecialization? 1 : 0;
 | |
|   else if (isa<VarTemplateDecl>(Specialized))
 | |
|     EntityKind = IsPartialSpecialization ? 3 : 2;
 | |
|   else if (isa<FunctionTemplateDecl>(Specialized))
 | |
|     EntityKind = 4;
 | |
|   else if (isa<CXXMethodDecl>(Specialized))
 | |
|     EntityKind = 5;
 | |
|   else if (isa<VarDecl>(Specialized))
 | |
|     EntityKind = 6;
 | |
|   else if (isa<RecordDecl>(Specialized))
 | |
|     EntityKind = 7;
 | |
|   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
 | |
|     EntityKind = 8;
 | |
|   else {
 | |
|     S.Diag(Loc, diag::err_template_spec_unknown_kind)
 | |
|       << S.getLangOpts().CPlusPlus11;
 | |
|     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.expl.spec]p2:
 | |
|   //   An explicit specialization may be declared in any scope in which
 | |
|   //   the corresponding primary template may be defined.
 | |
|   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
 | |
|     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
 | |
|       << Specialized;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.class.spec]p6:
 | |
|   //   A class template partial specialization may be declared in any
 | |
|   //   scope in which the primary template may be defined.
 | |
|   DeclContext *SpecializedContext =
 | |
|       Specialized->getDeclContext()->getRedeclContext();
 | |
|   DeclContext *DC = S.CurContext->getRedeclContext();
 | |
| 
 | |
|   // Make sure that this redeclaration (or definition) occurs in the same
 | |
|   // scope or an enclosing namespace.
 | |
|   if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
 | |
|                             : DC->Equals(SpecializedContext))) {
 | |
|     if (isa<TranslationUnitDecl>(SpecializedContext))
 | |
|       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
 | |
|         << EntityKind << Specialized;
 | |
|     else {
 | |
|       auto *ND = cast<NamedDecl>(SpecializedContext);
 | |
|       int Diag = diag::err_template_spec_redecl_out_of_scope;
 | |
|       if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
 | |
|         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
 | |
|       S.Diag(Loc, Diag) << EntityKind << Specialized
 | |
|                         << ND << isa<CXXRecordDecl>(ND);
 | |
|     }
 | |
| 
 | |
|     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
 | |
| 
 | |
|     // Don't allow specializing in the wrong class during error recovery.
 | |
|     // Otherwise, things can go horribly wrong.
 | |
|     if (DC->isRecord())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
 | |
|   if (!E->isTypeDependent())
 | |
|     return SourceLocation();
 | |
|   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
 | |
|   Checker.TraverseStmt(E);
 | |
|   if (Checker.MatchLoc.isInvalid())
 | |
|     return E->getSourceRange();
 | |
|   return Checker.MatchLoc;
 | |
| }
 | |
| 
 | |
| static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
 | |
|   if (!TL.getType()->isDependentType())
 | |
|     return SourceLocation();
 | |
|   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
 | |
|   Checker.TraverseTypeLoc(TL);
 | |
|   if (Checker.MatchLoc.isInvalid())
 | |
|     return TL.getSourceRange();
 | |
|   return Checker.MatchLoc;
 | |
| }
 | |
| 
 | |
| /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
 | |
| /// that checks non-type template partial specialization arguments.
 | |
| static bool CheckNonTypeTemplatePartialSpecializationArgs(
 | |
|     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
 | |
|     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
 | |
|   for (unsigned I = 0; I != NumArgs; ++I) {
 | |
|     if (Args[I].getKind() == TemplateArgument::Pack) {
 | |
|       if (CheckNonTypeTemplatePartialSpecializationArgs(
 | |
|               S, TemplateNameLoc, Param, Args[I].pack_begin(),
 | |
|               Args[I].pack_size(), IsDefaultArgument))
 | |
|         return true;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (Args[I].getKind() != TemplateArgument::Expression)
 | |
|       continue;
 | |
| 
 | |
|     Expr *ArgExpr = Args[I].getAsExpr();
 | |
| 
 | |
|     // We can have a pack expansion of any of the bullets below.
 | |
|     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
 | |
|       ArgExpr = Expansion->getPattern();
 | |
| 
 | |
|     // Strip off any implicit casts we added as part of type checking.
 | |
|     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
 | |
|       ArgExpr = ICE->getSubExpr();
 | |
| 
 | |
|     // C++ [temp.class.spec]p8:
 | |
|     //   A non-type argument is non-specialized if it is the name of a
 | |
|     //   non-type parameter. All other non-type arguments are
 | |
|     //   specialized.
 | |
|     //
 | |
|     // Below, we check the two conditions that only apply to
 | |
|     // specialized non-type arguments, so skip any non-specialized
 | |
|     // arguments.
 | |
|     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
 | |
|       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
 | |
|         continue;
 | |
| 
 | |
|     // C++ [temp.class.spec]p9:
 | |
|     //   Within the argument list of a class template partial
 | |
|     //   specialization, the following restrictions apply:
 | |
|     //     -- A partially specialized non-type argument expression
 | |
|     //        shall not involve a template parameter of the partial
 | |
|     //        specialization except when the argument expression is a
 | |
|     //        simple identifier.
 | |
|     //     -- The type of a template parameter corresponding to a
 | |
|     //        specialized non-type argument shall not be dependent on a
 | |
|     //        parameter of the specialization.
 | |
|     // DR1315 removes the first bullet, leaving an incoherent set of rules.
 | |
|     // We implement a compromise between the original rules and DR1315:
 | |
|     //     --  A specialized non-type template argument shall not be
 | |
|     //         type-dependent and the corresponding template parameter
 | |
|     //         shall have a non-dependent type.
 | |
|     SourceRange ParamUseRange =
 | |
|         findTemplateParameterInType(Param->getDepth(), ArgExpr);
 | |
|     if (ParamUseRange.isValid()) {
 | |
|       if (IsDefaultArgument) {
 | |
|         S.Diag(TemplateNameLoc,
 | |
|                diag::err_dependent_non_type_arg_in_partial_spec);
 | |
|         S.Diag(ParamUseRange.getBegin(),
 | |
|                diag::note_dependent_non_type_default_arg_in_partial_spec)
 | |
|           << ParamUseRange;
 | |
|       } else {
 | |
|         S.Diag(ParamUseRange.getBegin(),
 | |
|                diag::err_dependent_non_type_arg_in_partial_spec)
 | |
|           << ParamUseRange;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     ParamUseRange = findTemplateParameter(
 | |
|         Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
 | |
|     if (ParamUseRange.isValid()) {
 | |
|       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
 | |
|              diag::err_dependent_typed_non_type_arg_in_partial_spec)
 | |
|           << Param->getType();
 | |
|       S.Diag(Param->getLocation(), diag::note_template_param_here)
 | |
|         << (IsDefaultArgument ? ParamUseRange : SourceRange())
 | |
|         << ParamUseRange;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check the non-type template arguments of a class template
 | |
| /// partial specialization according to C++ [temp.class.spec]p9.
 | |
| ///
 | |
| /// \param TemplateNameLoc the location of the template name.
 | |
| /// \param PrimaryTemplate the template parameters of the primary class
 | |
| ///        template.
 | |
| /// \param NumExplicit the number of explicitly-specified template arguments.
 | |
| /// \param TemplateArgs the template arguments of the class template
 | |
| ///        partial specialization.
 | |
| ///
 | |
| /// \returns \c true if there was an error, \c false otherwise.
 | |
| bool Sema::CheckTemplatePartialSpecializationArgs(
 | |
|     SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
 | |
|     unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
 | |
|   // We have to be conservative when checking a template in a dependent
 | |
|   // context.
 | |
|   if (PrimaryTemplate->getDeclContext()->isDependentContext())
 | |
|     return false;
 | |
| 
 | |
|   TemplateParameterList *TemplateParams =
 | |
|       PrimaryTemplate->getTemplateParameters();
 | |
|   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | |
|     NonTypeTemplateParmDecl *Param
 | |
|       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
 | |
|     if (!Param)
 | |
|       continue;
 | |
| 
 | |
|     if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
 | |
|                                                       Param, &TemplateArgs[I],
 | |
|                                                       1, I >= NumExplicit))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| DeclResult Sema::ActOnClassTemplateSpecialization(
 | |
|     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
 | |
|     SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
 | |
|     TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
 | |
|     MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
 | |
|   assert(TUK != TUK_Reference && "References are not specializations");
 | |
| 
 | |
|   // NOTE: KWLoc is the location of the tag keyword. This will instead
 | |
|   // store the location of the outermost template keyword in the declaration.
 | |
|   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
 | |
|     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
 | |
|   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
 | |
|   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
 | |
|   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
 | |
| 
 | |
|   // Find the class template we're specializing
 | |
|   TemplateName Name = TemplateId.Template.get();
 | |
|   ClassTemplateDecl *ClassTemplate
 | |
|     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
 | |
| 
 | |
|   if (!ClassTemplate) {
 | |
|     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
 | |
|       << (Name.getAsTemplateDecl() &&
 | |
|           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool isMemberSpecialization = false;
 | |
|   bool isPartialSpecialization = false;
 | |
| 
 | |
|   // Check the validity of the template headers that introduce this
 | |
|   // template.
 | |
|   // FIXME: We probably shouldn't complain about these headers for
 | |
|   // friend declarations.
 | |
|   bool Invalid = false;
 | |
|   TemplateParameterList *TemplateParams =
 | |
|       MatchTemplateParametersToScopeSpecifier(
 | |
|           KWLoc, TemplateNameLoc, SS, &TemplateId,
 | |
|           TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
 | |
|           Invalid);
 | |
|   if (Invalid)
 | |
|     return true;
 | |
| 
 | |
|   if (TemplateParams && TemplateParams->size() > 0) {
 | |
|     isPartialSpecialization = true;
 | |
| 
 | |
|     if (TUK == TUK_Friend) {
 | |
|       Diag(KWLoc, diag::err_partial_specialization_friend)
 | |
|         << SourceRange(LAngleLoc, RAngleLoc);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // C++ [temp.class.spec]p10:
 | |
|     //   The template parameter list of a specialization shall not
 | |
|     //   contain default template argument values.
 | |
|     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | |
|       Decl *Param = TemplateParams->getParam(I);
 | |
|       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
 | |
|         if (TTP->hasDefaultArgument()) {
 | |
|           Diag(TTP->getDefaultArgumentLoc(),
 | |
|                diag::err_default_arg_in_partial_spec);
 | |
|           TTP->removeDefaultArgument();
 | |
|         }
 | |
|       } else if (NonTypeTemplateParmDecl *NTTP
 | |
|                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | |
|         if (Expr *DefArg = NTTP->getDefaultArgument()) {
 | |
|           Diag(NTTP->getDefaultArgumentLoc(),
 | |
|                diag::err_default_arg_in_partial_spec)
 | |
|             << DefArg->getSourceRange();
 | |
|           NTTP->removeDefaultArgument();
 | |
|         }
 | |
|       } else {
 | |
|         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
 | |
|         if (TTP->hasDefaultArgument()) {
 | |
|           Diag(TTP->getDefaultArgument().getLocation(),
 | |
|                diag::err_default_arg_in_partial_spec)
 | |
|             << TTP->getDefaultArgument().getSourceRange();
 | |
|           TTP->removeDefaultArgument();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else if (TemplateParams) {
 | |
|     if (TUK == TUK_Friend)
 | |
|       Diag(KWLoc, diag::err_template_spec_friend)
 | |
|         << FixItHint::CreateRemoval(
 | |
|                                 SourceRange(TemplateParams->getTemplateLoc(),
 | |
|                                             TemplateParams->getRAngleLoc()))
 | |
|         << SourceRange(LAngleLoc, RAngleLoc);
 | |
|   } else {
 | |
|     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
 | |
|   }
 | |
| 
 | |
|   // Check that the specialization uses the same tag kind as the
 | |
|   // original template.
 | |
|   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | |
|   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
 | |
|   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
 | |
|                                     Kind, TUK == TUK_Definition, KWLoc,
 | |
|                                     ClassTemplate->getIdentifier())) {
 | |
|     Diag(KWLoc, diag::err_use_with_wrong_tag)
 | |
|       << ClassTemplate
 | |
|       << FixItHint::CreateReplacement(KWLoc,
 | |
|                             ClassTemplate->getTemplatedDecl()->getKindName());
 | |
|     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
 | |
|          diag::note_previous_use);
 | |
|     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
 | |
|   }
 | |
| 
 | |
|   // Translate the parser's template argument list in our AST format.
 | |
|   TemplateArgumentListInfo TemplateArgs =
 | |
|       makeTemplateArgumentListInfo(*this, TemplateId);
 | |
| 
 | |
|   // Check for unexpanded parameter packs in any of the template arguments.
 | |
|   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | |
|     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
 | |
|                                         UPPC_PartialSpecialization))
 | |
|       return true;
 | |
| 
 | |
|   // Check that the template argument list is well-formed for this
 | |
|   // template.
 | |
|   SmallVector<TemplateArgument, 4> Converted;
 | |
|   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
 | |
|                                 TemplateArgs, false, Converted,
 | |
|                                 /*UpdateArgsWithConversion=*/true))
 | |
|     return true;
 | |
| 
 | |
|   // Find the class template (partial) specialization declaration that
 | |
|   // corresponds to these arguments.
 | |
|   if (isPartialSpecialization) {
 | |
|     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
 | |
|                                                TemplateArgs.size(), Converted))
 | |
|       return true;
 | |
| 
 | |
|     // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
 | |
|     // also do it during instantiation.
 | |
|     bool InstantiationDependent;
 | |
|     if (!Name.isDependent() &&
 | |
|         !TemplateSpecializationType::anyDependentTemplateArguments(
 | |
|             TemplateArgs.arguments(), InstantiationDependent)) {
 | |
|       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
 | |
|         << ClassTemplate->getDeclName();
 | |
|       isPartialSpecialization = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
 | |
| 
 | |
|   if (isPartialSpecialization)
 | |
|     PrevDecl = ClassTemplate->findPartialSpecialization(Converted,
 | |
|                                                         TemplateParams,
 | |
|                                                         InsertPos);
 | |
|   else
 | |
|     PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
 | |
| 
 | |
|   ClassTemplateSpecializationDecl *Specialization = nullptr;
 | |
| 
 | |
|   // Check whether we can declare a class template specialization in
 | |
|   // the current scope.
 | |
|   if (TUK != TUK_Friend &&
 | |
|       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
 | |
|                                        TemplateNameLoc,
 | |
|                                        isPartialSpecialization))
 | |
|     return true;
 | |
| 
 | |
|   // The canonical type
 | |
|   QualType CanonType;
 | |
|   if (isPartialSpecialization) {
 | |
|     // Build the canonical type that describes the converted template
 | |
|     // arguments of the class template partial specialization.
 | |
|     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
 | |
|     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
 | |
|                                                       Converted);
 | |
| 
 | |
|     if (Context.hasSameType(CanonType,
 | |
|                         ClassTemplate->getInjectedClassNameSpecialization()) &&
 | |
|         (!Context.getLangOpts().CPlusPlus2a ||
 | |
|          !TemplateParams->hasAssociatedConstraints())) {
 | |
|       // C++ [temp.class.spec]p9b3:
 | |
|       //
 | |
|       //   -- The argument list of the specialization shall not be identical
 | |
|       //      to the implicit argument list of the primary template.
 | |
|       //
 | |
|       // This rule has since been removed, because it's redundant given DR1495,
 | |
|       // but we keep it because it produces better diagnostics and recovery.
 | |
|       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
 | |
|         << /*class template*/0 << (TUK == TUK_Definition)
 | |
|         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
 | |
|       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
 | |
|                                 ClassTemplate->getIdentifier(),
 | |
|                                 TemplateNameLoc,
 | |
|                                 Attr,
 | |
|                                 TemplateParams,
 | |
|                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
 | |
|                                 /*FriendLoc*/SourceLocation(),
 | |
|                                 TemplateParameterLists.size() - 1,
 | |
|                                 TemplateParameterLists.data());
 | |
|     }
 | |
| 
 | |
|     // Create a new class template partial specialization declaration node.
 | |
|     ClassTemplatePartialSpecializationDecl *PrevPartial
 | |
|       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
 | |
|     ClassTemplatePartialSpecializationDecl *Partial
 | |
|       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
 | |
|                                              ClassTemplate->getDeclContext(),
 | |
|                                                        KWLoc, TemplateNameLoc,
 | |
|                                                        TemplateParams,
 | |
|                                                        ClassTemplate,
 | |
|                                                        Converted,
 | |
|                                                        TemplateArgs,
 | |
|                                                        CanonType,
 | |
|                                                        PrevPartial);
 | |
|     SetNestedNameSpecifier(*this, Partial, SS);
 | |
|     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
 | |
|       Partial->setTemplateParameterListsInfo(
 | |
|           Context, TemplateParameterLists.drop_back(1));
 | |
|     }
 | |
| 
 | |
|     if (!PrevPartial)
 | |
|       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
 | |
|     Specialization = Partial;
 | |
| 
 | |
|     // If we are providing an explicit specialization of a member class
 | |
|     // template specialization, make a note of that.
 | |
|     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
 | |
|       PrevPartial->setMemberSpecialization();
 | |
| 
 | |
|     CheckTemplatePartialSpecialization(Partial);
 | |
|   } else {
 | |
|     // Create a new class template specialization declaration node for
 | |
|     // this explicit specialization or friend declaration.
 | |
|     Specialization
 | |
|       = ClassTemplateSpecializationDecl::Create(Context, Kind,
 | |
|                                              ClassTemplate->getDeclContext(),
 | |
|                                                 KWLoc, TemplateNameLoc,
 | |
|                                                 ClassTemplate,
 | |
|                                                 Converted,
 | |
|                                                 PrevDecl);
 | |
|     SetNestedNameSpecifier(*this, Specialization, SS);
 | |
|     if (TemplateParameterLists.size() > 0) {
 | |
|       Specialization->setTemplateParameterListsInfo(Context,
 | |
|                                                     TemplateParameterLists);
 | |
|     }
 | |
| 
 | |
|     if (!PrevDecl)
 | |
|       ClassTemplate->AddSpecialization(Specialization, InsertPos);
 | |
| 
 | |
|     if (CurContext->isDependentContext()) {
 | |
|       TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
 | |
|       CanonType = Context.getTemplateSpecializationType(
 | |
|           CanonTemplate, Converted);
 | |
|     } else {
 | |
|       CanonType = Context.getTypeDeclType(Specialization);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.expl.spec]p6:
 | |
|   //   If a template, a member template or the member of a class template is
 | |
|   //   explicitly specialized then that specialization shall be declared
 | |
|   //   before the first use of that specialization that would cause an implicit
 | |
|   //   instantiation to take place, in every translation unit in which such a
 | |
|   //   use occurs; no diagnostic is required.
 | |
|   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
 | |
|     bool Okay = false;
 | |
|     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | |
|       // Is there any previous explicit specialization declaration?
 | |
|       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
 | |
|         Okay = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!Okay) {
 | |
|       SourceRange Range(TemplateNameLoc, RAngleLoc);
 | |
|       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
 | |
|         << Context.getTypeDeclType(Specialization) << Range;
 | |
| 
 | |
|       Diag(PrevDecl->getPointOfInstantiation(),
 | |
|            diag::note_instantiation_required_here)
 | |
|         << (PrevDecl->getTemplateSpecializationKind()
 | |
|                                                 != TSK_ImplicitInstantiation);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is not a friend, note that this is an explicit specialization.
 | |
|   if (TUK != TUK_Friend)
 | |
|     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
 | |
| 
 | |
|   // Check that this isn't a redefinition of this specialization.
 | |
|   if (TUK == TUK_Definition) {
 | |
|     RecordDecl *Def = Specialization->getDefinition();
 | |
|     NamedDecl *Hidden = nullptr;
 | |
|     if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
 | |
|       SkipBody->ShouldSkip = true;
 | |
|       SkipBody->Previous = Def;
 | |
|       makeMergedDefinitionVisible(Hidden);
 | |
|     } else if (Def) {
 | |
|       SourceRange Range(TemplateNameLoc, RAngleLoc);
 | |
|       Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
 | |
|       Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|       Specialization->setInvalidDecl();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ProcessDeclAttributeList(S, Specialization, Attr);
 | |
| 
 | |
|   // Add alignment attributes if necessary; these attributes are checked when
 | |
|   // the ASTContext lays out the structure.
 | |
|   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
 | |
|     AddAlignmentAttributesForRecord(Specialization);
 | |
|     AddMsStructLayoutForRecord(Specialization);
 | |
|   }
 | |
| 
 | |
|   if (ModulePrivateLoc.isValid())
 | |
|     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
 | |
|       << (isPartialSpecialization? 1 : 0)
 | |
|       << FixItHint::CreateRemoval(ModulePrivateLoc);
 | |
| 
 | |
|   // Build the fully-sugared type for this class template
 | |
|   // specialization as the user wrote in the specialization
 | |
|   // itself. This means that we'll pretty-print the type retrieved
 | |
|   // from the specialization's declaration the way that the user
 | |
|   // actually wrote the specialization, rather than formatting the
 | |
|   // name based on the "canonical" representation used to store the
 | |
|   // template arguments in the specialization.
 | |
|   TypeSourceInfo *WrittenTy
 | |
|     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
 | |
|                                                 TemplateArgs, CanonType);
 | |
|   if (TUK != TUK_Friend) {
 | |
|     Specialization->setTypeAsWritten(WrittenTy);
 | |
|     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.expl.spec]p9:
 | |
|   //   A template explicit specialization is in the scope of the
 | |
|   //   namespace in which the template was defined.
 | |
|   //
 | |
|   // We actually implement this paragraph where we set the semantic
 | |
|   // context (in the creation of the ClassTemplateSpecializationDecl),
 | |
|   // but we also maintain the lexical context where the actual
 | |
|   // definition occurs.
 | |
|   Specialization->setLexicalDeclContext(CurContext);
 | |
| 
 | |
|   // We may be starting the definition of this specialization.
 | |
|   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
 | |
|     Specialization->startDefinition();
 | |
| 
 | |
|   if (TUK == TUK_Friend) {
 | |
|     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
 | |
|                                             TemplateNameLoc,
 | |
|                                             WrittenTy,
 | |
|                                             /*FIXME:*/KWLoc);
 | |
|     Friend->setAccess(AS_public);
 | |
|     CurContext->addDecl(Friend);
 | |
|   } else {
 | |
|     // Add the specialization into its lexical context, so that it can
 | |
|     // be seen when iterating through the list of declarations in that
 | |
|     // context. However, specializations are not found by name lookup.
 | |
|     CurContext->addDecl(Specialization);
 | |
|   }
 | |
| 
 | |
|   if (SkipBody && SkipBody->ShouldSkip)
 | |
|     return SkipBody->Previous;
 | |
| 
 | |
|   return Specialization;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnTemplateDeclarator(Scope *S,
 | |
|                               MultiTemplateParamsArg TemplateParameterLists,
 | |
|                                     Declarator &D) {
 | |
|   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
 | |
|   ActOnDocumentableDecl(NewDecl);
 | |
|   return NewDecl;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnConceptDefinition(Scope *S,
 | |
|                               MultiTemplateParamsArg TemplateParameterLists,
 | |
|                                    IdentifierInfo *Name, SourceLocation NameLoc,
 | |
|                                    Expr *ConstraintExpr) {
 | |
|   DeclContext *DC = CurContext;
 | |
| 
 | |
|   if (!DC->getRedeclContext()->isFileContext()) {
 | |
|     Diag(NameLoc,
 | |
|       diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (TemplateParameterLists.size() > 1) {
 | |
|     Diag(NameLoc, diag::err_concept_extra_headers);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (TemplateParameterLists.front()->size() == 0) {
 | |
|     Diag(NameLoc, diag::err_concept_no_parameters);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name,
 | |
|                                              TemplateParameterLists.front(),
 | |
|                                              ConstraintExpr);
 | |
| 
 | |
|   if (NewDecl->hasAssociatedConstraints()) {
 | |
|     // C++2a [temp.concept]p4:
 | |
|     // A concept shall not have associated constraints.
 | |
|     Diag(NameLoc, diag::err_concept_no_associated_constraints);
 | |
|     NewDecl->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // Check for conflicting previous declaration.
 | |
|   DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
 | |
|   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
 | |
|                         ForVisibleRedeclaration);
 | |
|   LookupName(Previous, S);
 | |
| 
 | |
|   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
 | |
|                        /*AllowInlineNamespace*/false);
 | |
|   if (!Previous.empty()) {
 | |
|     auto *Old = Previous.getRepresentativeDecl();
 | |
|     Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition :
 | |
|          diag::err_redefinition_different_kind) << NewDecl->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|   }
 | |
| 
 | |
|   ActOnDocumentableDecl(NewDecl);
 | |
|   PushOnScopeChains(NewDecl, S);
 | |
|   return NewDecl;
 | |
| }
 | |
| 
 | |
| /// \brief Strips various properties off an implicit instantiation
 | |
| /// that has just been explicitly specialized.
 | |
| static void StripImplicitInstantiation(NamedDecl *D) {
 | |
|   D->dropAttr<DLLImportAttr>();
 | |
|   D->dropAttr<DLLExportAttr>();
 | |
| 
 | |
|   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
 | |
|     FD->setInlineSpecified(false);
 | |
| }
 | |
| 
 | |
| /// Compute the diagnostic location for an explicit instantiation
 | |
| //  declaration or definition.
 | |
| static SourceLocation DiagLocForExplicitInstantiation(
 | |
|     NamedDecl* D, SourceLocation PointOfInstantiation) {
 | |
|   // Explicit instantiations following a specialization have no effect and
 | |
|   // hence no PointOfInstantiation. In that case, walk decl backwards
 | |
|   // until a valid name loc is found.
 | |
|   SourceLocation PrevDiagLoc = PointOfInstantiation;
 | |
|   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
 | |
|        Prev = Prev->getPreviousDecl()) {
 | |
|     PrevDiagLoc = Prev->getLocation();
 | |
|   }
 | |
|   assert(PrevDiagLoc.isValid() &&
 | |
|          "Explicit instantiation without point of instantiation?");
 | |
|   return PrevDiagLoc;
 | |
| }
 | |
| 
 | |
| /// Diagnose cases where we have an explicit template specialization
 | |
| /// before/after an explicit template instantiation, producing diagnostics
 | |
| /// for those cases where they are required and determining whether the
 | |
| /// new specialization/instantiation will have any effect.
 | |
| ///
 | |
| /// \param NewLoc the location of the new explicit specialization or
 | |
| /// instantiation.
 | |
| ///
 | |
| /// \param NewTSK the kind of the new explicit specialization or instantiation.
 | |
| ///
 | |
| /// \param PrevDecl the previous declaration of the entity.
 | |
| ///
 | |
| /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
 | |
| ///
 | |
| /// \param PrevPointOfInstantiation if valid, indicates where the previus
 | |
| /// declaration was instantiated (either implicitly or explicitly).
 | |
| ///
 | |
| /// \param HasNoEffect will be set to true to indicate that the new
 | |
| /// specialization or instantiation has no effect and should be ignored.
 | |
| ///
 | |
| /// \returns true if there was an error that should prevent the introduction of
 | |
| /// the new declaration into the AST, false otherwise.
 | |
| bool
 | |
| Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
 | |
|                                              TemplateSpecializationKind NewTSK,
 | |
|                                              NamedDecl *PrevDecl,
 | |
|                                              TemplateSpecializationKind PrevTSK,
 | |
|                                         SourceLocation PrevPointOfInstantiation,
 | |
|                                              bool &HasNoEffect) {
 | |
|   HasNoEffect = false;
 | |
| 
 | |
|   switch (NewTSK) {
 | |
|   case TSK_Undeclared:
 | |
|   case TSK_ImplicitInstantiation:
 | |
|     assert(
 | |
|         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
 | |
|         "previous declaration must be implicit!");
 | |
|     return false;
 | |
| 
 | |
|   case TSK_ExplicitSpecialization:
 | |
|     switch (PrevTSK) {
 | |
|     case TSK_Undeclared:
 | |
|     case TSK_ExplicitSpecialization:
 | |
|       // Okay, we're just specializing something that is either already
 | |
|       // explicitly specialized or has merely been mentioned without any
 | |
|       // instantiation.
 | |
|       return false;
 | |
| 
 | |
|     case TSK_ImplicitInstantiation:
 | |
|       if (PrevPointOfInstantiation.isInvalid()) {
 | |
|         // The declaration itself has not actually been instantiated, so it is
 | |
|         // still okay to specialize it.
 | |
|         StripImplicitInstantiation(PrevDecl);
 | |
|         return false;
 | |
|       }
 | |
|       // Fall through
 | |
|       LLVM_FALLTHROUGH;
 | |
| 
 | |
|     case TSK_ExplicitInstantiationDeclaration:
 | |
|     case TSK_ExplicitInstantiationDefinition:
 | |
|       assert((PrevTSK == TSK_ImplicitInstantiation ||
 | |
|               PrevPointOfInstantiation.isValid()) &&
 | |
|              "Explicit instantiation without point of instantiation?");
 | |
| 
 | |
|       // C++ [temp.expl.spec]p6:
 | |
|       //   If a template, a member template or the member of a class template
 | |
|       //   is explicitly specialized then that specialization shall be declared
 | |
|       //   before the first use of that specialization that would cause an
 | |
|       //   implicit instantiation to take place, in every translation unit in
 | |
|       //   which such a use occurs; no diagnostic is required.
 | |
|       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | |
|         // Is there any previous explicit specialization declaration?
 | |
|         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
 | |
|           return false;
 | |
|       }
 | |
| 
 | |
|       Diag(NewLoc, diag::err_specialization_after_instantiation)
 | |
|         << PrevDecl;
 | |
|       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
 | |
|         << (PrevTSK != TSK_ImplicitInstantiation);
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
|     llvm_unreachable("The switch over PrevTSK must be exhaustive.");
 | |
| 
 | |
|   case TSK_ExplicitInstantiationDeclaration:
 | |
|     switch (PrevTSK) {
 | |
|     case TSK_ExplicitInstantiationDeclaration:
 | |
|       // This explicit instantiation declaration is redundant (that's okay).
 | |
|       HasNoEffect = true;
 | |
|       return false;
 | |
| 
 | |
|     case TSK_Undeclared:
 | |
|     case TSK_ImplicitInstantiation:
 | |
|       // We're explicitly instantiating something that may have already been
 | |
|       // implicitly instantiated; that's fine.
 | |
|       return false;
 | |
| 
 | |
|     case TSK_ExplicitSpecialization:
 | |
|       // C++0x [temp.explicit]p4:
 | |
|       //   For a given set of template parameters, if an explicit instantiation
 | |
|       //   of a template appears after a declaration of an explicit
 | |
|       //   specialization for that template, the explicit instantiation has no
 | |
|       //   effect.
 | |
|       HasNoEffect = true;
 | |
|       return false;
 | |
| 
 | |
|     case TSK_ExplicitInstantiationDefinition:
 | |
|       // C++0x [temp.explicit]p10:
 | |
|       //   If an entity is the subject of both an explicit instantiation
 | |
|       //   declaration and an explicit instantiation definition in the same
 | |
|       //   translation unit, the definition shall follow the declaration.
 | |
|       Diag(NewLoc,
 | |
|            diag::err_explicit_instantiation_declaration_after_definition);
 | |
| 
 | |
|       // Explicit instantiations following a specialization have no effect and
 | |
|       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
 | |
|       // until a valid name loc is found.
 | |
|       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
 | |
|            diag::note_explicit_instantiation_definition_here);
 | |
|       HasNoEffect = true;
 | |
|       return false;
 | |
|     }
 | |
|     llvm_unreachable("Unexpected TemplateSpecializationKind!");
 | |
| 
 | |
|   case TSK_ExplicitInstantiationDefinition:
 | |
|     switch (PrevTSK) {
 | |
|     case TSK_Undeclared:
 | |
|     case TSK_ImplicitInstantiation:
 | |
|       // We're explicitly instantiating something that may have already been
 | |
|       // implicitly instantiated; that's fine.
 | |
|       return false;
 | |
| 
 | |
|     case TSK_ExplicitSpecialization:
 | |
|       // C++ DR 259, C++0x [temp.explicit]p4:
 | |
|       //   For a given set of template parameters, if an explicit
 | |
|       //   instantiation of a template appears after a declaration of
 | |
|       //   an explicit specialization for that template, the explicit
 | |
|       //   instantiation has no effect.
 | |
|       Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
 | |
|         << PrevDecl;
 | |
|       Diag(PrevDecl->getLocation(),
 | |
|            diag::note_previous_template_specialization);
 | |
|       HasNoEffect = true;
 | |
|       return false;
 | |
| 
 | |
|     case TSK_ExplicitInstantiationDeclaration:
 | |
|       // We're explicitly instantiating a definition for something for which we
 | |
|       // were previously asked to suppress instantiations. That's fine.
 | |
| 
 | |
|       // C++0x [temp.explicit]p4:
 | |
|       //   For a given set of template parameters, if an explicit instantiation
 | |
|       //   of a template appears after a declaration of an explicit
 | |
|       //   specialization for that template, the explicit instantiation has no
 | |
|       //   effect.
 | |
|       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | |
|         // Is there any previous explicit specialization declaration?
 | |
|         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
 | |
|           HasNoEffect = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return false;
 | |
| 
 | |
|     case TSK_ExplicitInstantiationDefinition:
 | |
|       // C++0x [temp.spec]p5:
 | |
|       //   For a given template and a given set of template-arguments,
 | |
|       //     - an explicit instantiation definition shall appear at most once
 | |
|       //       in a program,
 | |
| 
 | |
|       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
 | |
|       Diag(NewLoc, (getLangOpts().MSVCCompat)
 | |
|                        ? diag::ext_explicit_instantiation_duplicate
 | |
|                        : diag::err_explicit_instantiation_duplicate)
 | |
|           << PrevDecl;
 | |
|       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
 | |
|            diag::note_previous_explicit_instantiation);
 | |
|       HasNoEffect = true;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Missing specialization/instantiation case?");
 | |
| }
 | |
| 
 | |
| /// Perform semantic analysis for the given dependent function
 | |
| /// template specialization.
 | |
| ///
 | |
| /// The only possible way to get a dependent function template specialization
 | |
| /// is with a friend declaration, like so:
 | |
| ///
 | |
| /// \code
 | |
| ///   template \<class T> void foo(T);
 | |
| ///   template \<class T> class A {
 | |
| ///     friend void foo<>(T);
 | |
| ///   };
 | |
| /// \endcode
 | |
| ///
 | |
| /// There really isn't any useful analysis we can do here, so we
 | |
| /// just store the information.
 | |
| bool
 | |
| Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
 | |
|                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
 | |
|                                                    LookupResult &Previous) {
 | |
|   // Remove anything from Previous that isn't a function template in
 | |
|   // the correct context.
 | |
|   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
 | |
|   LookupResult::Filter F = Previous.makeFilter();
 | |
|   enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
 | |
|   SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
 | |
|   while (F.hasNext()) {
 | |
|     NamedDecl *D = F.next()->getUnderlyingDecl();
 | |
|     if (!isa<FunctionTemplateDecl>(D)) {
 | |
|       F.erase();
 | |
|       DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!FDLookupContext->InEnclosingNamespaceSetOf(
 | |
|             D->getDeclContext()->getRedeclContext())) {
 | |
|       F.erase();
 | |
|       DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
|   F.done();
 | |
| 
 | |
|   if (Previous.empty()) {
 | |
|     Diag(FD->getLocation(),
 | |
|          diag::err_dependent_function_template_spec_no_match);
 | |
|     for (auto &P : DiscardedCandidates)
 | |
|       Diag(P.second->getLocation(),
 | |
|            diag::note_dependent_function_template_spec_discard_reason)
 | |
|           << P.first;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
 | |
|                                          ExplicitTemplateArgs);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Perform semantic analysis for the given function template
 | |
| /// specialization.
 | |
| ///
 | |
| /// This routine performs all of the semantic analysis required for an
 | |
| /// explicit function template specialization. On successful completion,
 | |
| /// the function declaration \p FD will become a function template
 | |
| /// specialization.
 | |
| ///
 | |
| /// \param FD the function declaration, which will be updated to become a
 | |
| /// function template specialization.
 | |
| ///
 | |
| /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
 | |
| /// if any. Note that this may be valid info even when 0 arguments are
 | |
| /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
 | |
| /// as it anyway contains info on the angle brackets locations.
 | |
| ///
 | |
| /// \param Previous the set of declarations that may be specialized by
 | |
| /// this function specialization.
 | |
| ///
 | |
| /// \param QualifiedFriend whether this is a lookup for a qualified friend
 | |
| /// declaration with no explicit template argument list that might be
 | |
| /// befriending a function template specialization.
 | |
| bool Sema::CheckFunctionTemplateSpecialization(
 | |
|     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
 | |
|     LookupResult &Previous, bool QualifiedFriend) {
 | |
|   // The set of function template specializations that could match this
 | |
|   // explicit function template specialization.
 | |
|   UnresolvedSet<8> Candidates;
 | |
|   TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
 | |
|                                             /*ForTakingAddress=*/false);
 | |
| 
 | |
|   llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
 | |
|       ConvertedTemplateArgs;
 | |
| 
 | |
|   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
 | |
|   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | |
|          I != E; ++I) {
 | |
|     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
 | |
|     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
 | |
|       // Only consider templates found within the same semantic lookup scope as
 | |
|       // FD.
 | |
|       if (!FDLookupContext->InEnclosingNamespaceSetOf(
 | |
|                                 Ovl->getDeclContext()->getRedeclContext()))
 | |
|         continue;
 | |
| 
 | |
|       // When matching a constexpr member function template specialization
 | |
|       // against the primary template, we don't yet know whether the
 | |
|       // specialization has an implicit 'const' (because we don't know whether
 | |
|       // it will be a static member function until we know which template it
 | |
|       // specializes), so adjust it now assuming it specializes this template.
 | |
|       QualType FT = FD->getType();
 | |
|       if (FD->isConstexpr()) {
 | |
|         CXXMethodDecl *OldMD =
 | |
|           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
 | |
|         if (OldMD && OldMD->isConst()) {
 | |
|           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
 | |
|           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | |
|           EPI.TypeQuals.addConst();
 | |
|           FT = Context.getFunctionType(FPT->getReturnType(),
 | |
|                                        FPT->getParamTypes(), EPI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       TemplateArgumentListInfo Args;
 | |
|       if (ExplicitTemplateArgs)
 | |
|         Args = *ExplicitTemplateArgs;
 | |
| 
 | |
|       // C++ [temp.expl.spec]p11:
 | |
|       //   A trailing template-argument can be left unspecified in the
 | |
|       //   template-id naming an explicit function template specialization
 | |
|       //   provided it can be deduced from the function argument type.
 | |
|       // Perform template argument deduction to determine whether we may be
 | |
|       // specializing this template.
 | |
|       // FIXME: It is somewhat wasteful to build
 | |
|       TemplateDeductionInfo Info(FailedCandidates.getLocation());
 | |
|       FunctionDecl *Specialization = nullptr;
 | |
|       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
 | |
|               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
 | |
|               ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
 | |
|               Info)) {
 | |
|         // Template argument deduction failed; record why it failed, so
 | |
|         // that we can provide nifty diagnostics.
 | |
|         FailedCandidates.addCandidate().set(
 | |
|             I.getPair(), FunTmpl->getTemplatedDecl(),
 | |
|             MakeDeductionFailureInfo(Context, TDK, Info));
 | |
|         (void)TDK;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Target attributes are part of the cuda function signature, so
 | |
|       // the deduced template's cuda target must match that of the
 | |
|       // specialization.  Given that C++ template deduction does not
 | |
|       // take target attributes into account, we reject candidates
 | |
|       // here that have a different target.
 | |
|       if (LangOpts.CUDA &&
 | |
|           IdentifyCUDATarget(Specialization,
 | |
|                              /* IgnoreImplicitHDAttr = */ true) !=
 | |
|               IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
 | |
|         FailedCandidates.addCandidate().set(
 | |
|             I.getPair(), FunTmpl->getTemplatedDecl(),
 | |
|             MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Record this candidate.
 | |
|       if (ExplicitTemplateArgs)
 | |
|         ConvertedTemplateArgs[Specialization] = std::move(Args);
 | |
|       Candidates.addDecl(Specialization, I.getAccess());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For a qualified friend declaration (with no explicit marker to indicate
 | |
|   // that a template specialization was intended), note all (template and
 | |
|   // non-template) candidates.
 | |
|   if (QualifiedFriend && Candidates.empty()) {
 | |
|     Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
 | |
|         << FD->getDeclName() << FDLookupContext;
 | |
|     // FIXME: We should form a single candidate list and diagnose all
 | |
|     // candidates at once, to get proper sorting and limiting.
 | |
|     for (auto *OldND : Previous) {
 | |
|       if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
 | |
|         NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
 | |
|     }
 | |
|     FailedCandidates.NoteCandidates(*this, FD->getLocation());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Find the most specialized function template.
 | |
|   UnresolvedSetIterator Result = getMostSpecialized(
 | |
|       Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
 | |
|       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
 | |
|       PDiag(diag::err_function_template_spec_ambiguous)
 | |
|           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
 | |
|       PDiag(diag::note_function_template_spec_matched));
 | |
| 
 | |
|   if (Result == Candidates.end())
 | |
|     return true;
 | |
| 
 | |
|   // Ignore access information;  it doesn't figure into redeclaration checking.
 | |
|   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
 | |
| 
 | |
|   FunctionTemplateSpecializationInfo *SpecInfo
 | |
|     = Specialization->getTemplateSpecializationInfo();
 | |
|   assert(SpecInfo && "Function template specialization info missing?");
 | |
| 
 | |
|   // Note: do not overwrite location info if previous template
 | |
|   // specialization kind was explicit.
 | |
|   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
 | |
|   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
 | |
|     Specialization->setLocation(FD->getLocation());
 | |
|     Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
 | |
|     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
 | |
|     // function can differ from the template declaration with respect to
 | |
|     // the constexpr specifier.
 | |
|     // FIXME: We need an update record for this AST mutation.
 | |
|     // FIXME: What if there are multiple such prior declarations (for instance,
 | |
|     // from different modules)?
 | |
|     Specialization->setConstexprKind(FD->getConstexprKind());
 | |
|   }
 | |
| 
 | |
|   // FIXME: Check if the prior specialization has a point of instantiation.
 | |
|   // If so, we have run afoul of .
 | |
| 
 | |
|   // If this is a friend declaration, then we're not really declaring
 | |
|   // an explicit specialization.
 | |
|   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
 | |
| 
 | |
|   // Check the scope of this explicit specialization.
 | |
|   if (!isFriend &&
 | |
|       CheckTemplateSpecializationScope(*this,
 | |
|                                        Specialization->getPrimaryTemplate(),
 | |
|                                        Specialization, FD->getLocation(),
 | |
|                                        false))
 | |
|     return true;
 | |
| 
 | |
|   // C++ [temp.expl.spec]p6:
 | |
|   //   If a template, a member template or the member of a class template is
 | |
|   //   explicitly specialized then that specialization shall be declared
 | |
|   //   before the first use of that specialization that would cause an implicit
 | |
|   //   instantiation to take place, in every translation unit in which such a
 | |
|   //   use occurs; no diagnostic is required.
 | |
|   bool HasNoEffect = false;
 | |
|   if (!isFriend &&
 | |
|       CheckSpecializationInstantiationRedecl(FD->getLocation(),
 | |
|                                              TSK_ExplicitSpecialization,
 | |
|                                              Specialization,
 | |
|                                    SpecInfo->getTemplateSpecializationKind(),
 | |
|                                          SpecInfo->getPointOfInstantiation(),
 | |
|                                              HasNoEffect))
 | |
|     return true;
 | |
| 
 | |
|   // Mark the prior declaration as an explicit specialization, so that later
 | |
|   // clients know that this is an explicit specialization.
 | |
|   if (!isFriend) {
 | |
|     // Since explicit specializations do not inherit '=delete' from their
 | |
|     // primary function template - check if the 'specialization' that was
 | |
|     // implicitly generated (during template argument deduction for partial
 | |
|     // ordering) from the most specialized of all the function templates that
 | |
|     // 'FD' could have been specializing, has a 'deleted' definition.  If so,
 | |
|     // first check that it was implicitly generated during template argument
 | |
|     // deduction by making sure it wasn't referenced, and then reset the deleted
 | |
|     // flag to not-deleted, so that we can inherit that information from 'FD'.
 | |
|     if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
 | |
|         !Specialization->getCanonicalDecl()->isReferenced()) {
 | |
|       // FIXME: This assert will not hold in the presence of modules.
 | |
|       assert(
 | |
|           Specialization->getCanonicalDecl() == Specialization &&
 | |
|           "This must be the only existing declaration of this specialization");
 | |
|       // FIXME: We need an update record for this AST mutation.
 | |
|       Specialization->setDeletedAsWritten(false);
 | |
|     }
 | |
|     // FIXME: We need an update record for this AST mutation.
 | |
|     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
 | |
|     MarkUnusedFileScopedDecl(Specialization);
 | |
|   }
 | |
| 
 | |
|   // Turn the given function declaration into a function template
 | |
|   // specialization, with the template arguments from the previous
 | |
|   // specialization.
 | |
|   // Take copies of (semantic and syntactic) template argument lists.
 | |
|   const TemplateArgumentList* TemplArgs = new (Context)
 | |
|     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
 | |
|   FD->setFunctionTemplateSpecialization(
 | |
|       Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
 | |
|       SpecInfo->getTemplateSpecializationKind(),
 | |
|       ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
 | |
| 
 | |
|   // A function template specialization inherits the target attributes
 | |
|   // of its template.  (We require the attributes explicitly in the
 | |
|   // code to match, but a template may have implicit attributes by
 | |
|   // virtue e.g. of being constexpr, and it passes these implicit
 | |
|   // attributes on to its specializations.)
 | |
|   if (LangOpts.CUDA)
 | |
|     inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
 | |
| 
 | |
|   // The "previous declaration" for this function template specialization is
 | |
|   // the prior function template specialization.
 | |
|   Previous.clear();
 | |
|   Previous.addDecl(Specialization);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Perform semantic analysis for the given non-template member
 | |
| /// specialization.
 | |
| ///
 | |
| /// This routine performs all of the semantic analysis required for an
 | |
| /// explicit member function specialization. On successful completion,
 | |
| /// the function declaration \p FD will become a member function
 | |
| /// specialization.
 | |
| ///
 | |
| /// \param Member the member declaration, which will be updated to become a
 | |
| /// specialization.
 | |
| ///
 | |
| /// \param Previous the set of declarations, one of which may be specialized
 | |
| /// by this function specialization;  the set will be modified to contain the
 | |
| /// redeclared member.
 | |
| bool
 | |
| Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
 | |
|   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
 | |
| 
 | |
|   // Try to find the member we are instantiating.
 | |
|   NamedDecl *FoundInstantiation = nullptr;
 | |
|   NamedDecl *Instantiation = nullptr;
 | |
|   NamedDecl *InstantiatedFrom = nullptr;
 | |
|   MemberSpecializationInfo *MSInfo = nullptr;
 | |
| 
 | |
|   if (Previous.empty()) {
 | |
|     // Nowhere to look anyway.
 | |
|   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
 | |
|     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | |
|            I != E; ++I) {
 | |
|       NamedDecl *D = (*I)->getUnderlyingDecl();
 | |
|       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | |
|         QualType Adjusted = Function->getType();
 | |
|         if (!hasExplicitCallingConv(Adjusted))
 | |
|           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
 | |
|         // This doesn't handle deduced return types, but both function
 | |
|         // declarations should be undeduced at this point.
 | |
|         if (Context.hasSameType(Adjusted, Method->getType())) {
 | |
|           FoundInstantiation = *I;
 | |
|           Instantiation = Method;
 | |
|           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
 | |
|           MSInfo = Method->getMemberSpecializationInfo();
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else if (isa<VarDecl>(Member)) {
 | |
|     VarDecl *PrevVar;
 | |
|     if (Previous.isSingleResult() &&
 | |
|         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
 | |
|       if (PrevVar->isStaticDataMember()) {
 | |
|         FoundInstantiation = Previous.getRepresentativeDecl();
 | |
|         Instantiation = PrevVar;
 | |
|         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
 | |
|         MSInfo = PrevVar->getMemberSpecializationInfo();
 | |
|       }
 | |
|   } else if (isa<RecordDecl>(Member)) {
 | |
|     CXXRecordDecl *PrevRecord;
 | |
|     if (Previous.isSingleResult() &&
 | |
|         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
 | |
|       FoundInstantiation = Previous.getRepresentativeDecl();
 | |
|       Instantiation = PrevRecord;
 | |
|       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
 | |
|       MSInfo = PrevRecord->getMemberSpecializationInfo();
 | |
|     }
 | |
|   } else if (isa<EnumDecl>(Member)) {
 | |
|     EnumDecl *PrevEnum;
 | |
|     if (Previous.isSingleResult() &&
 | |
|         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
 | |
|       FoundInstantiation = Previous.getRepresentativeDecl();
 | |
|       Instantiation = PrevEnum;
 | |
|       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
 | |
|       MSInfo = PrevEnum->getMemberSpecializationInfo();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Instantiation) {
 | |
|     // There is no previous declaration that matches. Since member
 | |
|     // specializations are always out-of-line, the caller will complain about
 | |
|     // this mismatch later.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // A member specialization in a friend declaration isn't really declaring
 | |
|   // an explicit specialization, just identifying a specific (possibly implicit)
 | |
|   // specialization. Don't change the template specialization kind.
 | |
|   //
 | |
|   // FIXME: Is this really valid? Other compilers reject.
 | |
|   if (Member->getFriendObjectKind() != Decl::FOK_None) {
 | |
|     // Preserve instantiation information.
 | |
|     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
 | |
|       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
 | |
|                                       cast<CXXMethodDecl>(InstantiatedFrom),
 | |
|         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
 | |
|     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
 | |
|       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
 | |
|                                       cast<CXXRecordDecl>(InstantiatedFrom),
 | |
|         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
 | |
|     }
 | |
| 
 | |
|     Previous.clear();
 | |
|     Previous.addDecl(FoundInstantiation);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Make sure that this is a specialization of a member.
 | |
|   if (!InstantiatedFrom) {
 | |
|     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
 | |
|       << Member;
 | |
|     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.expl.spec]p6:
 | |
|   //   If a template, a member template or the member of a class template is
 | |
|   //   explicitly specialized then that specialization shall be declared
 | |
|   //   before the first use of that specialization that would cause an implicit
 | |
|   //   instantiation to take place, in every translation unit in which such a
 | |
|   //   use occurs; no diagnostic is required.
 | |
|   assert(MSInfo && "Member specialization info missing?");
 | |
| 
 | |
|   bool HasNoEffect = false;
 | |
|   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
 | |
|                                              TSK_ExplicitSpecialization,
 | |
|                                              Instantiation,
 | |
|                                      MSInfo->getTemplateSpecializationKind(),
 | |
|                                            MSInfo->getPointOfInstantiation(),
 | |
|                                              HasNoEffect))
 | |
|     return true;
 | |
| 
 | |
|   // Check the scope of this explicit specialization.
 | |
|   if (CheckTemplateSpecializationScope(*this,
 | |
|                                        InstantiatedFrom,
 | |
|                                        Instantiation, Member->getLocation(),
 | |
|                                        false))
 | |
|     return true;
 | |
| 
 | |
|   // Note that this member specialization is an "instantiation of" the
 | |
|   // corresponding member of the original template.
 | |
|   if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
 | |
|     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
 | |
|     if (InstantiationFunction->getTemplateSpecializationKind() ==
 | |
|           TSK_ImplicitInstantiation) {
 | |
|       // Explicit specializations of member functions of class templates do not
 | |
|       // inherit '=delete' from the member function they are specializing.
 | |
|       if (InstantiationFunction->isDeleted()) {
 | |
|         // FIXME: This assert will not hold in the presence of modules.
 | |
|         assert(InstantiationFunction->getCanonicalDecl() ==
 | |
|                InstantiationFunction);
 | |
|         // FIXME: We need an update record for this AST mutation.
 | |
|         InstantiationFunction->setDeletedAsWritten(false);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     MemberFunction->setInstantiationOfMemberFunction(
 | |
|         cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
 | |
|   } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
 | |
|     MemberVar->setInstantiationOfStaticDataMember(
 | |
|         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
 | |
|   } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
 | |
|     MemberClass->setInstantiationOfMemberClass(
 | |
|         cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
 | |
|   } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
 | |
|     MemberEnum->setInstantiationOfMemberEnum(
 | |
|         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
 | |
|   } else {
 | |
|     llvm_unreachable("unknown member specialization kind");
 | |
|   }
 | |
| 
 | |
|   // Save the caller the trouble of having to figure out which declaration
 | |
|   // this specialization matches.
 | |
|   Previous.clear();
 | |
|   Previous.addDecl(FoundInstantiation);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Complete the explicit specialization of a member of a class template by
 | |
| /// updating the instantiated member to be marked as an explicit specialization.
 | |
| ///
 | |
| /// \param OrigD The member declaration instantiated from the template.
 | |
| /// \param Loc The location of the explicit specialization of the member.
 | |
| template<typename DeclT>
 | |
| static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
 | |
|                                              SourceLocation Loc) {
 | |
|   if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
 | |
|     return;
 | |
| 
 | |
|   // FIXME: Inform AST mutation listeners of this AST mutation.
 | |
|   // FIXME: If there are multiple in-class declarations of the member (from
 | |
|   // multiple modules, or a declaration and later definition of a member type),
 | |
|   // should we update all of them?
 | |
|   OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
 | |
|   OrigD->setLocation(Loc);
 | |
| }
 | |
| 
 | |
| void Sema::CompleteMemberSpecialization(NamedDecl *Member,
 | |
|                                         LookupResult &Previous) {
 | |
|   NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
 | |
|   if (Instantiation == Member)
 | |
|     return;
 | |
| 
 | |
|   if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
 | |
|     completeMemberSpecializationImpl(*this, Function, Member->getLocation());
 | |
|   else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
 | |
|     completeMemberSpecializationImpl(*this, Var, Member->getLocation());
 | |
|   else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
 | |
|     completeMemberSpecializationImpl(*this, Record, Member->getLocation());
 | |
|   else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
 | |
|     completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
 | |
|   else
 | |
|     llvm_unreachable("unknown member specialization kind");
 | |
| }
 | |
| 
 | |
| /// Check the scope of an explicit instantiation.
 | |
| ///
 | |
| /// \returns true if a serious error occurs, false otherwise.
 | |
| static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
 | |
|                                             SourceLocation InstLoc,
 | |
|                                             bool WasQualifiedName) {
 | |
|   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
 | |
|   DeclContext *CurContext = S.CurContext->getRedeclContext();
 | |
| 
 | |
|   if (CurContext->isRecord()) {
 | |
|     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
 | |
|       << D;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++11 [temp.explicit]p3:
 | |
|   //   An explicit instantiation shall appear in an enclosing namespace of its
 | |
|   //   template. If the name declared in the explicit instantiation is an
 | |
|   //   unqualified name, the explicit instantiation shall appear in the
 | |
|   //   namespace where its template is declared or, if that namespace is inline
 | |
|   //   (7.3.1), any namespace from its enclosing namespace set.
 | |
|   //
 | |
|   // This is DR275, which we do not retroactively apply to C++98/03.
 | |
|   if (WasQualifiedName) {
 | |
|     if (CurContext->Encloses(OrigContext))
 | |
|       return false;
 | |
|   } else {
 | |
|     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
 | |
|     if (WasQualifiedName)
 | |
|       S.Diag(InstLoc,
 | |
|              S.getLangOpts().CPlusPlus11?
 | |
|                diag::err_explicit_instantiation_out_of_scope :
 | |
|                diag::warn_explicit_instantiation_out_of_scope_0x)
 | |
|         << D << NS;
 | |
|     else
 | |
|       S.Diag(InstLoc,
 | |
|              S.getLangOpts().CPlusPlus11?
 | |
|                diag::err_explicit_instantiation_unqualified_wrong_namespace :
 | |
|                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
 | |
|         << D << NS;
 | |
|   } else
 | |
|     S.Diag(InstLoc,
 | |
|            S.getLangOpts().CPlusPlus11?
 | |
|              diag::err_explicit_instantiation_must_be_global :
 | |
|              diag::warn_explicit_instantiation_must_be_global_0x)
 | |
|       << D;
 | |
|   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Common checks for whether an explicit instantiation of \p D is valid.
 | |
| static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
 | |
|                                        SourceLocation InstLoc,
 | |
|                                        bool WasQualifiedName,
 | |
|                                        TemplateSpecializationKind TSK) {
 | |
|   // C++ [temp.explicit]p13:
 | |
|   //   An explicit instantiation declaration shall not name a specialization of
 | |
|   //   a template with internal linkage.
 | |
|   if (TSK == TSK_ExplicitInstantiationDeclaration &&
 | |
|       D->getFormalLinkage() == InternalLinkage) {
 | |
|     S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++11 [temp.explicit]p3: [DR 275]
 | |
|   //   An explicit instantiation shall appear in an enclosing namespace of its
 | |
|   //   template.
 | |
|   if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determine whether the given scope specifier has a template-id in it.
 | |
| static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
 | |
|   if (!SS.isSet())
 | |
|     return false;
 | |
| 
 | |
|   // C++11 [temp.explicit]p3:
 | |
|   //   If the explicit instantiation is for a member function, a member class
 | |
|   //   or a static data member of a class template specialization, the name of
 | |
|   //   the class template specialization in the qualified-id for the member
 | |
|   //   name shall be a simple-template-id.
 | |
|   //
 | |
|   // C++98 has the same restriction, just worded differently.
 | |
|   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
 | |
|        NNS = NNS->getPrefix())
 | |
|     if (const Type *T = NNS->getAsType())
 | |
|       if (isa<TemplateSpecializationType>(T))
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Make a dllexport or dllimport attr on a class template specialization take
 | |
| /// effect.
 | |
| static void dllExportImportClassTemplateSpecialization(
 | |
|     Sema &S, ClassTemplateSpecializationDecl *Def) {
 | |
|   auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
 | |
|   assert(A && "dllExportImportClassTemplateSpecialization called "
 | |
|               "on Def without dllexport or dllimport");
 | |
| 
 | |
|   // We reject explicit instantiations in class scope, so there should
 | |
|   // never be any delayed exported classes to worry about.
 | |
|   assert(S.DelayedDllExportClasses.empty() &&
 | |
|          "delayed exports present at explicit instantiation");
 | |
|   S.checkClassLevelDLLAttribute(Def);
 | |
| 
 | |
|   // Propagate attribute to base class templates.
 | |
|   for (auto &B : Def->bases()) {
 | |
|     if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
 | |
|             B.getType()->getAsCXXRecordDecl()))
 | |
|       S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
 | |
|   }
 | |
| 
 | |
|   S.referenceDLLExportedClassMethods();
 | |
| }
 | |
| 
 | |
| // Explicit instantiation of a class template specialization
 | |
| DeclResult Sema::ActOnExplicitInstantiation(
 | |
|     Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
 | |
|     unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
 | |
|     TemplateTy TemplateD, SourceLocation TemplateNameLoc,
 | |
|     SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
 | |
|     SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
 | |
|   // Find the class template we're specializing
 | |
|   TemplateName Name = TemplateD.get();
 | |
|   TemplateDecl *TD = Name.getAsTemplateDecl();
 | |
|   // Check that the specialization uses the same tag kind as the
 | |
|   // original template.
 | |
|   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | |
|   assert(Kind != TTK_Enum &&
 | |
|          "Invalid enum tag in class template explicit instantiation!");
 | |
| 
 | |
|   ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
 | |
| 
 | |
|   if (!ClassTemplate) {
 | |
|     NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
 | |
|     Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
 | |
|     Diag(TD->getLocation(), diag::note_previous_use);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
 | |
|                                     Kind, /*isDefinition*/false, KWLoc,
 | |
|                                     ClassTemplate->getIdentifier())) {
 | |
|     Diag(KWLoc, diag::err_use_with_wrong_tag)
 | |
|       << ClassTemplate
 | |
|       << FixItHint::CreateReplacement(KWLoc,
 | |
|                             ClassTemplate->getTemplatedDecl()->getKindName());
 | |
|     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
 | |
|          diag::note_previous_use);
 | |
|     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
 | |
|   }
 | |
| 
 | |
|   // C++0x [temp.explicit]p2:
 | |
|   //   There are two forms of explicit instantiation: an explicit instantiation
 | |
|   //   definition and an explicit instantiation declaration. An explicit
 | |
|   //   instantiation declaration begins with the extern keyword. [...]
 | |
|   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
 | |
|                                        ? TSK_ExplicitInstantiationDefinition
 | |
|                                        : TSK_ExplicitInstantiationDeclaration;
 | |
| 
 | |
|   if (TSK == TSK_ExplicitInstantiationDeclaration &&
 | |
|       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
 | |
|     // Check for dllexport class template instantiation declarations,
 | |
|     // except for MinGW mode.
 | |
|     for (const ParsedAttr &AL : Attr) {
 | |
|       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
 | |
|         Diag(ExternLoc,
 | |
|              diag::warn_attribute_dllexport_explicit_instantiation_decl);
 | |
|         Diag(AL.getLoc(), diag::note_attribute);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
 | |
|       Diag(ExternLoc,
 | |
|            diag::warn_attribute_dllexport_explicit_instantiation_decl);
 | |
|       Diag(A->getLocation(), diag::note_attribute);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In MSVC mode, dllimported explicit instantiation definitions are treated as
 | |
|   // instantiation declarations for most purposes.
 | |
|   bool DLLImportExplicitInstantiationDef = false;
 | |
|   if (TSK == TSK_ExplicitInstantiationDefinition &&
 | |
|       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
 | |
|     // Check for dllimport class template instantiation definitions.
 | |
|     bool DLLImport =
 | |
|         ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
 | |
|     for (const ParsedAttr &AL : Attr) {
 | |
|       if (AL.getKind() == ParsedAttr::AT_DLLImport)
 | |
|         DLLImport = true;
 | |
|       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
 | |
|         // dllexport trumps dllimport here.
 | |
|         DLLImport = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (DLLImport) {
 | |
|       TSK = TSK_ExplicitInstantiationDeclaration;
 | |
|       DLLImportExplicitInstantiationDef = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Translate the parser's template argument list in our AST format.
 | |
|   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | |
|   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | |
| 
 | |
|   // Check that the template argument list is well-formed for this
 | |
|   // template.
 | |
|   SmallVector<TemplateArgument, 4> Converted;
 | |
|   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
 | |
|                                 TemplateArgs, false, Converted,
 | |
|                                 /*UpdateArgsWithConversion=*/true))
 | |
|     return true;
 | |
| 
 | |
|   // Find the class template specialization declaration that
 | |
|   // corresponds to these arguments.
 | |
|   void *InsertPos = nullptr;
 | |
|   ClassTemplateSpecializationDecl *PrevDecl
 | |
|     = ClassTemplate->findSpecialization(Converted, InsertPos);
 | |
| 
 | |
|   TemplateSpecializationKind PrevDecl_TSK
 | |
|     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
 | |
| 
 | |
|   if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
 | |
|       Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
 | |
|     // Check for dllexport class template instantiation definitions in MinGW
 | |
|     // mode, if a previous declaration of the instantiation was seen.
 | |
|     for (const ParsedAttr &AL : Attr) {
 | |
|       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
 | |
|         Diag(AL.getLoc(),
 | |
|              diag::warn_attribute_dllexport_explicit_instantiation_def);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
 | |
|                                  SS.isSet(), TSK))
 | |
|     return true;
 | |
| 
 | |
|   ClassTemplateSpecializationDecl *Specialization = nullptr;
 | |
| 
 | |
|   bool HasNoEffect = false;
 | |
|   if (PrevDecl) {
 | |
|     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
 | |
|                                                PrevDecl, PrevDecl_TSK,
 | |
|                                             PrevDecl->getPointOfInstantiation(),
 | |
|                                                HasNoEffect))
 | |
|       return PrevDecl;
 | |
| 
 | |
|     // Even though HasNoEffect == true means that this explicit instantiation
 | |
|     // has no effect on semantics, we go on to put its syntax in the AST.
 | |
| 
 | |
|     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
 | |
|         PrevDecl_TSK == TSK_Undeclared) {
 | |
|       // Since the only prior class template specialization with these
 | |
|       // arguments was referenced but not declared, reuse that
 | |
|       // declaration node as our own, updating the source location
 | |
|       // for the template name to reflect our new declaration.
 | |
|       // (Other source locations will be updated later.)
 | |
|       Specialization = PrevDecl;
 | |
|       Specialization->setLocation(TemplateNameLoc);
 | |
|       PrevDecl = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
 | |
|         DLLImportExplicitInstantiationDef) {
 | |
|       // The new specialization might add a dllimport attribute.
 | |
|       HasNoEffect = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Specialization) {
 | |
|     // Create a new class template specialization declaration node for
 | |
|     // this explicit specialization.
 | |
|     Specialization
 | |
|       = ClassTemplateSpecializationDecl::Create(Context, Kind,
 | |
|                                              ClassTemplate->getDeclContext(),
 | |
|                                                 KWLoc, TemplateNameLoc,
 | |
|                                                 ClassTemplate,
 | |
|                                                 Converted,
 | |
|                                                 PrevDecl);
 | |
|     SetNestedNameSpecifier(*this, Specialization, SS);
 | |
| 
 | |
|     if (!HasNoEffect && !PrevDecl) {
 | |
|       // Insert the new specialization.
 | |
|       ClassTemplate->AddSpecialization(Specialization, InsertPos);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Build the fully-sugared type for this explicit instantiation as
 | |
|   // the user wrote in the explicit instantiation itself. This means
 | |
|   // that we'll pretty-print the type retrieved from the
 | |
|   // specialization's declaration the way that the user actually wrote
 | |
|   // the explicit instantiation, rather than formatting the name based
 | |
|   // on the "canonical" representation used to store the template
 | |
|   // arguments in the specialization.
 | |
|   TypeSourceInfo *WrittenTy
 | |
|     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
 | |
|                                                 TemplateArgs,
 | |
|                                   Context.getTypeDeclType(Specialization));
 | |
|   Specialization->setTypeAsWritten(WrittenTy);
 | |
| 
 | |
|   // Set source locations for keywords.
 | |
|   Specialization->setExternLoc(ExternLoc);
 | |
|   Specialization->setTemplateKeywordLoc(TemplateLoc);
 | |
|   Specialization->setBraceRange(SourceRange());
 | |
| 
 | |
|   bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
 | |
|   ProcessDeclAttributeList(S, Specialization, Attr);
 | |
| 
 | |
|   // Add the explicit instantiation into its lexical context. However,
 | |
|   // since explicit instantiations are never found by name lookup, we
 | |
|   // just put it into the declaration context directly.
 | |
|   Specialization->setLexicalDeclContext(CurContext);
 | |
|   CurContext->addDecl(Specialization);
 | |
| 
 | |
|   // Syntax is now OK, so return if it has no other effect on semantics.
 | |
|   if (HasNoEffect) {
 | |
|     // Set the template specialization kind.
 | |
|     Specialization->setTemplateSpecializationKind(TSK);
 | |
|     return Specialization;
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.explicit]p3:
 | |
|   //   A definition of a class template or class member template
 | |
|   //   shall be in scope at the point of the explicit instantiation of
 | |
|   //   the class template or class member template.
 | |
|   //
 | |
|   // This check comes when we actually try to perform the
 | |
|   // instantiation.
 | |
|   ClassTemplateSpecializationDecl *Def
 | |
|     = cast_or_null<ClassTemplateSpecializationDecl>(
 | |
|                                               Specialization->getDefinition());
 | |
|   if (!Def)
 | |
|     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
 | |
|   else if (TSK == TSK_ExplicitInstantiationDefinition) {
 | |
|     MarkVTableUsed(TemplateNameLoc, Specialization, true);
 | |
|     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
 | |
|   }
 | |
| 
 | |
|   // Instantiate the members of this class template specialization.
 | |
|   Def = cast_or_null<ClassTemplateSpecializationDecl>(
 | |
|                                        Specialization->getDefinition());
 | |
|   if (Def) {
 | |
|     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
 | |
|     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
 | |
|     // TSK_ExplicitInstantiationDefinition
 | |
|     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
 | |
|         (TSK == TSK_ExplicitInstantiationDefinition ||
 | |
|          DLLImportExplicitInstantiationDef)) {
 | |
|       // FIXME: Need to notify the ASTMutationListener that we did this.
 | |
|       Def->setTemplateSpecializationKind(TSK);
 | |
| 
 | |
|       if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
 | |
|           (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
 | |
|            Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
 | |
|         // In the MS ABI, an explicit instantiation definition can add a dll
 | |
|         // attribute to a template with a previous instantiation declaration.
 | |
|         // MinGW doesn't allow this.
 | |
|         auto *A = cast<InheritableAttr>(
 | |
|             getDLLAttr(Specialization)->clone(getASTContext()));
 | |
|         A->setInherited(true);
 | |
|         Def->addAttr(A);
 | |
|         dllExportImportClassTemplateSpecialization(*this, Def);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Fix a TSK_ImplicitInstantiation followed by a
 | |
|     // TSK_ExplicitInstantiationDefinition
 | |
|     bool NewlyDLLExported =
 | |
|         !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
 | |
|     if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
 | |
|         (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
 | |
|          Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
 | |
|       // In the MS ABI, an explicit instantiation definition can add a dll
 | |
|       // attribute to a template with a previous implicit instantiation.
 | |
|       // MinGW doesn't allow this. We limit clang to only adding dllexport, to
 | |
|       // avoid potentially strange codegen behavior.  For example, if we extend
 | |
|       // this conditional to dllimport, and we have a source file calling a
 | |
|       // method on an implicitly instantiated template class instance and then
 | |
|       // declaring a dllimport explicit instantiation definition for the same
 | |
|       // template class, the codegen for the method call will not respect the
 | |
|       // dllimport, while it will with cl. The Def will already have the DLL
 | |
|       // attribute, since the Def and Specialization will be the same in the
 | |
|       // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the
 | |
|       // attribute to the Specialization; we just need to make it take effect.
 | |
|       assert(Def == Specialization &&
 | |
|              "Def and Specialization should match for implicit instantiation");
 | |
|       dllExportImportClassTemplateSpecialization(*this, Def);
 | |
|     }
 | |
| 
 | |
|     // In MinGW mode, export the template instantiation if the declaration
 | |
|     // was marked dllexport.
 | |
|     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
 | |
|         Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
 | |
|         PrevDecl->hasAttr<DLLExportAttr>()) {
 | |
|       dllExportImportClassTemplateSpecialization(*this, Def);
 | |
|     }
 | |
| 
 | |
|     // Set the template specialization kind. Make sure it is set before
 | |
|     // instantiating the members which will trigger ASTConsumer callbacks.
 | |
|     Specialization->setTemplateSpecializationKind(TSK);
 | |
|     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
 | |
|   } else {
 | |
| 
 | |
|     // Set the template specialization kind.
 | |
|     Specialization->setTemplateSpecializationKind(TSK);
 | |
|   }
 | |
| 
 | |
|   return Specialization;
 | |
| }
 | |
| 
 | |
| // Explicit instantiation of a member class of a class template.
 | |
| DeclResult
 | |
| Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
 | |
|                                  SourceLocation TemplateLoc, unsigned TagSpec,
 | |
|                                  SourceLocation KWLoc, CXXScopeSpec &SS,
 | |
|                                  IdentifierInfo *Name, SourceLocation NameLoc,
 | |
|                                  const ParsedAttributesView &Attr) {
 | |
| 
 | |
|   bool Owned = false;
 | |
|   bool IsDependent = false;
 | |
|   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
 | |
|                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
 | |
|                         /*ModulePrivateLoc=*/SourceLocation(),
 | |
|                         MultiTemplateParamsArg(), Owned, IsDependent,
 | |
|                         SourceLocation(), false, TypeResult(),
 | |
|                         /*IsTypeSpecifier*/false,
 | |
|                         /*IsTemplateParamOrArg*/false);
 | |
|   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
 | |
| 
 | |
|   if (!TagD)
 | |
|     return true;
 | |
| 
 | |
|   TagDecl *Tag = cast<TagDecl>(TagD);
 | |
|   assert(!Tag->isEnum() && "shouldn't see enumerations here");
 | |
| 
 | |
|   if (Tag->isInvalidDecl())
 | |
|     return true;
 | |
| 
 | |
|   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
 | |
|   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
 | |
|   if (!Pattern) {
 | |
|     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
 | |
|       << Context.getTypeDeclType(Record);
 | |
|     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++0x [temp.explicit]p2:
 | |
|   //   If the explicit instantiation is for a class or member class, the
 | |
|   //   elaborated-type-specifier in the declaration shall include a
 | |
|   //   simple-template-id.
 | |
|   //
 | |
|   // C++98 has the same restriction, just worded differently.
 | |
|   if (!ScopeSpecifierHasTemplateId(SS))
 | |
|     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
 | |
|       << Record << SS.getRange();
 | |
| 
 | |
|   // C++0x [temp.explicit]p2:
 | |
|   //   There are two forms of explicit instantiation: an explicit instantiation
 | |
|   //   definition and an explicit instantiation declaration. An explicit
 | |
|   //   instantiation declaration begins with the extern keyword. [...]
 | |
|   TemplateSpecializationKind TSK
 | |
|     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
 | |
|                            : TSK_ExplicitInstantiationDeclaration;
 | |
| 
 | |
|   CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
 | |
| 
 | |
|   // Verify that it is okay to explicitly instantiate here.
 | |
|   CXXRecordDecl *PrevDecl
 | |
|     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
 | |
|   if (!PrevDecl && Record->getDefinition())
 | |
|     PrevDecl = Record;
 | |
|   if (PrevDecl) {
 | |
|     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
 | |
|     bool HasNoEffect = false;
 | |
|     assert(MSInfo && "No member specialization information?");
 | |
|     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
 | |
|                                                PrevDecl,
 | |
|                                         MSInfo->getTemplateSpecializationKind(),
 | |
|                                              MSInfo->getPointOfInstantiation(),
 | |
|                                                HasNoEffect))
 | |
|       return true;
 | |
|     if (HasNoEffect)
 | |
|       return TagD;
 | |
|   }
 | |
| 
 | |
|   CXXRecordDecl *RecordDef
 | |
|     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
 | |
|   if (!RecordDef) {
 | |
|     // C++ [temp.explicit]p3:
 | |
|     //   A definition of a member class of a class template shall be in scope
 | |
|     //   at the point of an explicit instantiation of the member class.
 | |
|     CXXRecordDecl *Def
 | |
|       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
 | |
|     if (!Def) {
 | |
|       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
 | |
|         << 0 << Record->getDeclName() << Record->getDeclContext();
 | |
|       Diag(Pattern->getLocation(), diag::note_forward_declaration)
 | |
|         << Pattern;
 | |
|       return true;
 | |
|     } else {
 | |
|       if (InstantiateClass(NameLoc, Record, Def,
 | |
|                            getTemplateInstantiationArgs(Record),
 | |
|                            TSK))
 | |
|         return true;
 | |
| 
 | |
|       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
 | |
|       if (!RecordDef)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Instantiate all of the members of the class.
 | |
|   InstantiateClassMembers(NameLoc, RecordDef,
 | |
|                           getTemplateInstantiationArgs(Record), TSK);
 | |
| 
 | |
|   if (TSK == TSK_ExplicitInstantiationDefinition)
 | |
|     MarkVTableUsed(NameLoc, RecordDef, true);
 | |
| 
 | |
|   // FIXME: We don't have any representation for explicit instantiations of
 | |
|   // member classes. Such a representation is not needed for compilation, but it
 | |
|   // should be available for clients that want to see all of the declarations in
 | |
|   // the source code.
 | |
|   return TagD;
 | |
| }
 | |
| 
 | |
| DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
 | |
|                                             SourceLocation ExternLoc,
 | |
|                                             SourceLocation TemplateLoc,
 | |
|                                             Declarator &D) {
 | |
|   // Explicit instantiations always require a name.
 | |
|   // TODO: check if/when DNInfo should replace Name.
 | |
|   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   if (!Name) {
 | |
|     if (!D.isInvalidType())
 | |
|       Diag(D.getDeclSpec().getBeginLoc(),
 | |
|            diag::err_explicit_instantiation_requires_name)
 | |
|           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | |
|   // we find one that is.
 | |
|   while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | |
|          (S->getFlags() & Scope::TemplateParamScope) != 0)
 | |
|     S = S->getParent();
 | |
| 
 | |
|   // Determine the type of the declaration.
 | |
|   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
 | |
|   QualType R = T->getType();
 | |
|   if (R.isNull())
 | |
|     return true;
 | |
| 
 | |
|   // C++ [dcl.stc]p1:
 | |
|   //   A storage-class-specifier shall not be specified in [...] an explicit
 | |
|   //   instantiation (14.7.2) directive.
 | |
|   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
 | |
|       << Name;
 | |
|     return true;
 | |
|   } else if (D.getDeclSpec().getStorageClassSpec()
 | |
|                                                 != DeclSpec::SCS_unspecified) {
 | |
|     // Complain about then remove the storage class specifier.
 | |
|     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
 | |
|       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | |
| 
 | |
|     D.getMutableDeclSpec().ClearStorageClassSpecs();
 | |
|   }
 | |
| 
 | |
|   // C++0x [temp.explicit]p1:
 | |
|   //   [...] An explicit instantiation of a function template shall not use the
 | |
|   //   inline or constexpr specifiers.
 | |
|   // Presumably, this also applies to member functions of class templates as
 | |
|   // well.
 | |
|   if (D.getDeclSpec().isInlineSpecified())
 | |
|     Diag(D.getDeclSpec().getInlineSpecLoc(),
 | |
|          getLangOpts().CPlusPlus11 ?
 | |
|            diag::err_explicit_instantiation_inline :
 | |
|            diag::warn_explicit_instantiation_inline_0x)
 | |
|       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
 | |
|   if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
 | |
|     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
 | |
|     // not already specified.
 | |
|     Diag(D.getDeclSpec().getConstexprSpecLoc(),
 | |
|          diag::err_explicit_instantiation_constexpr);
 | |
| 
 | |
|   // A deduction guide is not on the list of entities that can be explicitly
 | |
|   // instantiated.
 | |
|   if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
 | |
|     Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
 | |
|         << /*explicit instantiation*/ 0;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++0x [temp.explicit]p2:
 | |
|   //   There are two forms of explicit instantiation: an explicit instantiation
 | |
|   //   definition and an explicit instantiation declaration. An explicit
 | |
|   //   instantiation declaration begins with the extern keyword. [...]
 | |
|   TemplateSpecializationKind TSK
 | |
|     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
 | |
|                            : TSK_ExplicitInstantiationDeclaration;
 | |
| 
 | |
|   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
 | |
|   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
 | |
| 
 | |
|   if (!R->isFunctionType()) {
 | |
|     // C++ [temp.explicit]p1:
 | |
|     //   A [...] static data member of a class template can be explicitly
 | |
|     //   instantiated from the member definition associated with its class
 | |
|     //   template.
 | |
|     // C++1y [temp.explicit]p1:
 | |
|     //   A [...] variable [...] template specialization can be explicitly
 | |
|     //   instantiated from its template.
 | |
|     if (Previous.isAmbiguous())
 | |
|       return true;
 | |
| 
 | |
|     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
 | |
|     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
 | |
| 
 | |
|     if (!PrevTemplate) {
 | |
|       if (!Prev || !Prev->isStaticDataMember()) {
 | |
|         // We expect to see a static data member here.
 | |
|         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
 | |
|             << Name;
 | |
|         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
 | |
|              P != PEnd; ++P)
 | |
|           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       if (!Prev->getInstantiatedFromStaticDataMember()) {
 | |
|         // FIXME: Check for explicit specialization?
 | |
|         Diag(D.getIdentifierLoc(),
 | |
|              diag::err_explicit_instantiation_data_member_not_instantiated)
 | |
|             << Prev;
 | |
|         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
 | |
|         // FIXME: Can we provide a note showing where this was declared?
 | |
|         return true;
 | |
|       }
 | |
|     } else {
 | |
|       // Explicitly instantiate a variable template.
 | |
| 
 | |
|       // C++1y [dcl.spec.auto]p6:
 | |
|       //   ... A program that uses auto or decltype(auto) in a context not
 | |
|       //   explicitly allowed in this section is ill-formed.
 | |
|       //
 | |
|       // This includes auto-typed variable template instantiations.
 | |
|       if (R->isUndeducedType()) {
 | |
|         Diag(T->getTypeLoc().getBeginLoc(),
 | |
|              diag::err_auto_not_allowed_var_inst);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
 | |
|         // C++1y [temp.explicit]p3:
 | |
|         //   If the explicit instantiation is for a variable, the unqualified-id
 | |
|         //   in the declaration shall be a template-id.
 | |
|         Diag(D.getIdentifierLoc(),
 | |
|              diag::err_explicit_instantiation_without_template_id)
 | |
|           << PrevTemplate;
 | |
|         Diag(PrevTemplate->getLocation(),
 | |
|              diag::note_explicit_instantiation_here);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Translate the parser's template argument list into our AST format.
 | |
|       TemplateArgumentListInfo TemplateArgs =
 | |
|           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
 | |
| 
 | |
|       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
 | |
|                                           D.getIdentifierLoc(), TemplateArgs);
 | |
|       if (Res.isInvalid())
 | |
|         return true;
 | |
| 
 | |
|       // Ignore access control bits, we don't need them for redeclaration
 | |
|       // checking.
 | |
|       Prev = cast<VarDecl>(Res.get());
 | |
|     }
 | |
| 
 | |
|     // C++0x [temp.explicit]p2:
 | |
|     //   If the explicit instantiation is for a member function, a member class
 | |
|     //   or a static data member of a class template specialization, the name of
 | |
|     //   the class template specialization in the qualified-id for the member
 | |
|     //   name shall be a simple-template-id.
 | |
|     //
 | |
|     // C++98 has the same restriction, just worded differently.
 | |
|     //
 | |
|     // This does not apply to variable template specializations, where the
 | |
|     // template-id is in the unqualified-id instead.
 | |
|     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
 | |
|       Diag(D.getIdentifierLoc(),
 | |
|            diag::ext_explicit_instantiation_without_qualified_id)
 | |
|         << Prev << D.getCXXScopeSpec().getRange();
 | |
| 
 | |
|     CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
 | |
| 
 | |
|     // Verify that it is okay to explicitly instantiate here.
 | |
|     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
 | |
|     SourceLocation POI = Prev->getPointOfInstantiation();
 | |
|     bool HasNoEffect = false;
 | |
|     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
 | |
|                                                PrevTSK, POI, HasNoEffect))
 | |
|       return true;
 | |
| 
 | |
|     if (!HasNoEffect) {
 | |
|       // Instantiate static data member or variable template.
 | |
|       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
 | |
|       // Merge attributes.
 | |
|       ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
 | |
|       if (TSK == TSK_ExplicitInstantiationDefinition)
 | |
|         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
 | |
|     }
 | |
| 
 | |
|     // Check the new variable specialization against the parsed input.
 | |
|     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
 | |
|       Diag(T->getTypeLoc().getBeginLoc(),
 | |
|            diag::err_invalid_var_template_spec_type)
 | |
|           << 0 << PrevTemplate << R << Prev->getType();
 | |
|       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
 | |
|           << 2 << PrevTemplate->getDeclName();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // FIXME: Create an ExplicitInstantiation node?
 | |
|     return (Decl*) nullptr;
 | |
|   }
 | |
| 
 | |
|   // If the declarator is a template-id, translate the parser's template
 | |
|   // argument list into our AST format.
 | |
|   bool HasExplicitTemplateArgs = false;
 | |
|   TemplateArgumentListInfo TemplateArgs;
 | |
|   if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
 | |
|     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
 | |
|     HasExplicitTemplateArgs = true;
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.explicit]p1:
 | |
|   //   A [...] function [...] can be explicitly instantiated from its template.
 | |
|   //   A member function [...] of a class template can be explicitly
 | |
|   //  instantiated from the member definition associated with its class
 | |
|   //  template.
 | |
|   UnresolvedSet<8> TemplateMatches;
 | |
|   FunctionDecl *NonTemplateMatch = nullptr;
 | |
|   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
 | |
|   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
 | |
|        P != PEnd; ++P) {
 | |
|     NamedDecl *Prev = *P;
 | |
|     if (!HasExplicitTemplateArgs) {
 | |
|       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
 | |
|         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
 | |
|                                                 /*AdjustExceptionSpec*/true);
 | |
|         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
 | |
|           if (Method->getPrimaryTemplate()) {
 | |
|             TemplateMatches.addDecl(Method, P.getAccess());
 | |
|           } else {
 | |
|             // FIXME: Can this assert ever happen?  Needs a test.
 | |
|             assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
 | |
|             NonTemplateMatch = Method;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
 | |
|     if (!FunTmpl)
 | |
|       continue;
 | |
| 
 | |
|     TemplateDeductionInfo Info(FailedCandidates.getLocation());
 | |
|     FunctionDecl *Specialization = nullptr;
 | |
|     if (TemplateDeductionResult TDK
 | |
|           = DeduceTemplateArguments(FunTmpl,
 | |
|                                (HasExplicitTemplateArgs ? &TemplateArgs
 | |
|                                                         : nullptr),
 | |
|                                     R, Specialization, Info)) {
 | |
|       // Keep track of almost-matches.
 | |
|       FailedCandidates.addCandidate()
 | |
|           .set(P.getPair(), FunTmpl->getTemplatedDecl(),
 | |
|                MakeDeductionFailureInfo(Context, TDK, Info));
 | |
|       (void)TDK;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Target attributes are part of the cuda function signature, so
 | |
|     // the cuda target of the instantiated function must match that of its
 | |
|     // template.  Given that C++ template deduction does not take
 | |
|     // target attributes into account, we reject candidates here that
 | |
|     // have a different target.
 | |
|     if (LangOpts.CUDA &&
 | |
|         IdentifyCUDATarget(Specialization,
 | |
|                            /* IgnoreImplicitHDAttr = */ true) !=
 | |
|             IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
 | |
|       FailedCandidates.addCandidate().set(
 | |
|           P.getPair(), FunTmpl->getTemplatedDecl(),
 | |
|           MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     TemplateMatches.addDecl(Specialization, P.getAccess());
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *Specialization = NonTemplateMatch;
 | |
|   if (!Specialization) {
 | |
|     // Find the most specialized function template specialization.
 | |
|     UnresolvedSetIterator Result = getMostSpecialized(
 | |
|         TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
 | |
|         D.getIdentifierLoc(),
 | |
|         PDiag(diag::err_explicit_instantiation_not_known) << Name,
 | |
|         PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
 | |
|         PDiag(diag::note_explicit_instantiation_candidate));
 | |
| 
 | |
|     if (Result == TemplateMatches.end())
 | |
|       return true;
 | |
| 
 | |
|     // Ignore access control bits, we don't need them for redeclaration checking.
 | |
|     Specialization = cast<FunctionDecl>(*Result);
 | |
|   }
 | |
| 
 | |
|   // C++11 [except.spec]p4
 | |
|   // In an explicit instantiation an exception-specification may be specified,
 | |
|   // but is not required.
 | |
|   // If an exception-specification is specified in an explicit instantiation
 | |
|   // directive, it shall be compatible with the exception-specifications of
 | |
|   // other declarations of that function.
 | |
|   if (auto *FPT = R->getAs<FunctionProtoType>())
 | |
|     if (FPT->hasExceptionSpec()) {
 | |
|       unsigned DiagID =
 | |
|           diag::err_mismatched_exception_spec_explicit_instantiation;
 | |
|       if (getLangOpts().MicrosoftExt)
 | |
|         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
 | |
|       bool Result = CheckEquivalentExceptionSpec(
 | |
|           PDiag(DiagID) << Specialization->getType(),
 | |
|           PDiag(diag::note_explicit_instantiation_here),
 | |
|           Specialization->getType()->getAs<FunctionProtoType>(),
 | |
|           Specialization->getLocation(), FPT, D.getBeginLoc());
 | |
|       // In Microsoft mode, mismatching exception specifications just cause a
 | |
|       // warning.
 | |
|       if (!getLangOpts().MicrosoftExt && Result)
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
 | |
|     Diag(D.getIdentifierLoc(),
 | |
|          diag::err_explicit_instantiation_member_function_not_instantiated)
 | |
|       << Specialization
 | |
|       << (Specialization->getTemplateSpecializationKind() ==
 | |
|           TSK_ExplicitSpecialization);
 | |
|     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
 | |
|   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
 | |
|     PrevDecl = Specialization;
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     bool HasNoEffect = false;
 | |
|     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
 | |
|                                                PrevDecl,
 | |
|                                      PrevDecl->getTemplateSpecializationKind(),
 | |
|                                           PrevDecl->getPointOfInstantiation(),
 | |
|                                                HasNoEffect))
 | |
|       return true;
 | |
| 
 | |
|     // FIXME: We may still want to build some representation of this
 | |
|     // explicit specialization.
 | |
|     if (HasNoEffect)
 | |
|       return (Decl*) nullptr;
 | |
|   }
 | |
| 
 | |
|   // HACK: libc++ has a bug where it attempts to explicitly instantiate the
 | |
|   // functions
 | |
|   //     valarray<size_t>::valarray(size_t) and
 | |
|   //     valarray<size_t>::~valarray()
 | |
|   // that it declared to have internal linkage with the internal_linkage
 | |
|   // attribute. Ignore the explicit instantiation declaration in this case.
 | |
|   if (Specialization->hasAttr<InternalLinkageAttr>() &&
 | |
|       TSK == TSK_ExplicitInstantiationDeclaration) {
 | |
|     if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
 | |
|       if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
 | |
|           RD->isInStdNamespace())
 | |
|         return (Decl*) nullptr;
 | |
|   }
 | |
| 
 | |
|   ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
 | |
| 
 | |
|   // In MSVC mode, dllimported explicit instantiation definitions are treated as
 | |
|   // instantiation declarations.
 | |
|   if (TSK == TSK_ExplicitInstantiationDefinition &&
 | |
|       Specialization->hasAttr<DLLImportAttr>() &&
 | |
|       Context.getTargetInfo().getCXXABI().isMicrosoft())
 | |
|     TSK = TSK_ExplicitInstantiationDeclaration;
 | |
| 
 | |
|   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
 | |
| 
 | |
|   if (Specialization->isDefined()) {
 | |
|     // Let the ASTConsumer know that this function has been explicitly
 | |
|     // instantiated now, and its linkage might have changed.
 | |
|     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
 | |
|   } else if (TSK == TSK_ExplicitInstantiationDefinition)
 | |
|     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
 | |
| 
 | |
|   // C++0x [temp.explicit]p2:
 | |
|   //   If the explicit instantiation is for a member function, a member class
 | |
|   //   or a static data member of a class template specialization, the name of
 | |
|   //   the class template specialization in the qualified-id for the member
 | |
|   //   name shall be a simple-template-id.
 | |
|   //
 | |
|   // C++98 has the same restriction, just worded differently.
 | |
|   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
 | |
|   if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
 | |
|       D.getCXXScopeSpec().isSet() &&
 | |
|       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
 | |
|     Diag(D.getIdentifierLoc(),
 | |
|          diag::ext_explicit_instantiation_without_qualified_id)
 | |
|     << Specialization << D.getCXXScopeSpec().getRange();
 | |
| 
 | |
|   CheckExplicitInstantiation(
 | |
|       *this,
 | |
|       FunTmpl ? (NamedDecl *)FunTmpl
 | |
|               : Specialization->getInstantiatedFromMemberFunction(),
 | |
|       D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
 | |
| 
 | |
|   // FIXME: Create some kind of ExplicitInstantiationDecl here.
 | |
|   return (Decl*) nullptr;
 | |
| }
 | |
| 
 | |
| TypeResult
 | |
| Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | |
|                         const CXXScopeSpec &SS, IdentifierInfo *Name,
 | |
|                         SourceLocation TagLoc, SourceLocation NameLoc) {
 | |
|   // This has to hold, because SS is expected to be defined.
 | |
|   assert(Name && "Expected a name in a dependent tag");
 | |
| 
 | |
|   NestedNameSpecifier *NNS = SS.getScopeRep();
 | |
|   if (!NNS)
 | |
|     return true;
 | |
| 
 | |
|   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | |
| 
 | |
|   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
 | |
|     Diag(NameLoc, diag::err_dependent_tag_decl)
 | |
|       << (TUK == TUK_Definition) << Kind << SS.getRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Create the resulting type.
 | |
|   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
 | |
|   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
 | |
| 
 | |
|   // Create type-source location information for this type.
 | |
|   TypeLocBuilder TLB;
 | |
|   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
 | |
|   TL.setElaboratedKeywordLoc(TagLoc);
 | |
|   TL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|   TL.setNameLoc(NameLoc);
 | |
|   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
 | |
| }
 | |
| 
 | |
| TypeResult
 | |
| Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
 | |
|                         const CXXScopeSpec &SS, const IdentifierInfo &II,
 | |
|                         SourceLocation IdLoc) {
 | |
|   if (SS.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
 | |
|     Diag(TypenameLoc,
 | |
|          getLangOpts().CPlusPlus11 ?
 | |
|            diag::warn_cxx98_compat_typename_outside_of_template :
 | |
|            diag::ext_typename_outside_of_template)
 | |
|       << FixItHint::CreateRemoval(TypenameLoc);
 | |
| 
 | |
|   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | |
|   TypeSourceInfo *TSI = nullptr;
 | |
|   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
 | |
|                                  TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
 | |
|                                  /*DeducedTSTContext=*/true);
 | |
|   if (T.isNull())
 | |
|     return true;
 | |
|   return CreateParsedType(T, TSI);
 | |
| }
 | |
| 
 | |
| TypeResult
 | |
| Sema::ActOnTypenameType(Scope *S,
 | |
|                         SourceLocation TypenameLoc,
 | |
|                         const CXXScopeSpec &SS,
 | |
|                         SourceLocation TemplateKWLoc,
 | |
|                         TemplateTy TemplateIn,
 | |
|                         IdentifierInfo *TemplateII,
 | |
|                         SourceLocation TemplateIILoc,
 | |
|                         SourceLocation LAngleLoc,
 | |
|                         ASTTemplateArgsPtr TemplateArgsIn,
 | |
|                         SourceLocation RAngleLoc) {
 | |
|   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
 | |
|     Diag(TypenameLoc,
 | |
|          getLangOpts().CPlusPlus11 ?
 | |
|            diag::warn_cxx98_compat_typename_outside_of_template :
 | |
|            diag::ext_typename_outside_of_template)
 | |
|       << FixItHint::CreateRemoval(TypenameLoc);
 | |
| 
 | |
|   // Strangely, non-type results are not ignored by this lookup, so the
 | |
|   // program is ill-formed if it finds an injected-class-name.
 | |
|   if (TypenameLoc.isValid()) {
 | |
|     auto *LookupRD =
 | |
|         dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
 | |
|     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
 | |
|       Diag(TemplateIILoc,
 | |
|            diag::ext_out_of_line_qualified_id_type_names_constructor)
 | |
|         << TemplateII << 0 /*injected-class-name used as template name*/
 | |
|         << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Translate the parser's template argument list in our AST format.
 | |
|   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | |
|   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | |
| 
 | |
|   TemplateName Template = TemplateIn.get();
 | |
|   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
 | |
|     // Construct a dependent template specialization type.
 | |
|     assert(DTN && "dependent template has non-dependent name?");
 | |
|     assert(DTN->getQualifier() == SS.getScopeRep());
 | |
|     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
 | |
|                                                           DTN->getQualifier(),
 | |
|                                                           DTN->getIdentifier(),
 | |
|                                                                 TemplateArgs);
 | |
| 
 | |
|     // Create source-location information for this type.
 | |
|     TypeLocBuilder Builder;
 | |
|     DependentTemplateSpecializationTypeLoc SpecTL
 | |
|     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
 | |
|     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
 | |
|     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | |
|     SpecTL.setTemplateNameLoc(TemplateIILoc);
 | |
|     SpecTL.setLAngleLoc(LAngleLoc);
 | |
|     SpecTL.setRAngleLoc(RAngleLoc);
 | |
|     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | |
|       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | |
|     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | |
|   }
 | |
| 
 | |
|   QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
 | |
|   if (T.isNull())
 | |
|     return true;
 | |
| 
 | |
|   // Provide source-location information for the template specialization type.
 | |
|   TypeLocBuilder Builder;
 | |
|   TemplateSpecializationTypeLoc SpecTL
 | |
|     = Builder.push<TemplateSpecializationTypeLoc>(T);
 | |
|   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | |
|   SpecTL.setTemplateNameLoc(TemplateIILoc);
 | |
|   SpecTL.setLAngleLoc(LAngleLoc);
 | |
|   SpecTL.setRAngleLoc(RAngleLoc);
 | |
|   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | |
|     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | |
| 
 | |
|   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
 | |
|   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
 | |
|   TL.setElaboratedKeywordLoc(TypenameLoc);
 | |
|   TL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
| 
 | |
|   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
 | |
|   return CreateParsedType(T, TSI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Determine whether this failed name lookup should be treated as being
 | |
| /// disabled by a usage of std::enable_if.
 | |
| static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
 | |
|                        SourceRange &CondRange, Expr *&Cond) {
 | |
|   // We must be looking for a ::type...
 | |
|   if (!II.isStr("type"))
 | |
|     return false;
 | |
| 
 | |
|   // ... within an explicitly-written template specialization...
 | |
|   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
 | |
|     return false;
 | |
|   TypeLoc EnableIfTy = NNS.getTypeLoc();
 | |
|   TemplateSpecializationTypeLoc EnableIfTSTLoc =
 | |
|       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
 | |
|   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
 | |
|     return false;
 | |
|   const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
 | |
| 
 | |
|   // ... which names a complete class template declaration...
 | |
|   const TemplateDecl *EnableIfDecl =
 | |
|     EnableIfTST->getTemplateName().getAsTemplateDecl();
 | |
|   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
 | |
|     return false;
 | |
| 
 | |
|   // ... called "enable_if".
 | |
|   const IdentifierInfo *EnableIfII =
 | |
|     EnableIfDecl->getDeclName().getAsIdentifierInfo();
 | |
|   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
 | |
|     return false;
 | |
| 
 | |
|   // Assume the first template argument is the condition.
 | |
|   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
 | |
| 
 | |
|   // Dig out the condition.
 | |
|   Cond = nullptr;
 | |
|   if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
 | |
|         != TemplateArgument::Expression)
 | |
|     return true;
 | |
| 
 | |
|   Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
 | |
| 
 | |
|   // Ignore Boolean literals; they add no value.
 | |
|   if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
 | |
|     Cond = nullptr;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| QualType
 | |
| Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
 | |
|                         SourceLocation KeywordLoc,
 | |
|                         NestedNameSpecifierLoc QualifierLoc,
 | |
|                         const IdentifierInfo &II,
 | |
|                         SourceLocation IILoc,
 | |
|                         TypeSourceInfo **TSI,
 | |
|                         bool DeducedTSTContext) {
 | |
|   QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
 | |
|                                  DeducedTSTContext);
 | |
|   if (T.isNull())
 | |
|     return QualType();
 | |
| 
 | |
|   *TSI = Context.CreateTypeSourceInfo(T);
 | |
|   if (isa<DependentNameType>(T)) {
 | |
|     DependentNameTypeLoc TL =
 | |
|         (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
 | |
|     TL.setElaboratedKeywordLoc(KeywordLoc);
 | |
|     TL.setQualifierLoc(QualifierLoc);
 | |
|     TL.setNameLoc(IILoc);
 | |
|   } else {
 | |
|     ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
 | |
|     TL.setElaboratedKeywordLoc(KeywordLoc);
 | |
|     TL.setQualifierLoc(QualifierLoc);
 | |
|     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
 | |
|   }
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| /// Build the type that describes a C++ typename specifier,
 | |
| /// e.g., "typename T::type".
 | |
| QualType
 | |
| Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
 | |
|                         SourceLocation KeywordLoc,
 | |
|                         NestedNameSpecifierLoc QualifierLoc,
 | |
|                         const IdentifierInfo &II,
 | |
|                         SourceLocation IILoc, bool DeducedTSTContext) {
 | |
|   CXXScopeSpec SS;
 | |
|   SS.Adopt(QualifierLoc);
 | |
| 
 | |
|   DeclContext *Ctx = nullptr;
 | |
|   if (QualifierLoc) {
 | |
|     Ctx = computeDeclContext(SS);
 | |
|     if (!Ctx) {
 | |
|       // If the nested-name-specifier is dependent and couldn't be
 | |
|       // resolved to a type, build a typename type.
 | |
|       assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
 | |
|       return Context.getDependentNameType(Keyword,
 | |
|                                           QualifierLoc.getNestedNameSpecifier(),
 | |
|                                           &II);
 | |
|     }
 | |
| 
 | |
|     // If the nested-name-specifier refers to the current instantiation,
 | |
|     // the "typename" keyword itself is superfluous. In C++03, the
 | |
|     // program is actually ill-formed. However, DR 382 (in C++0x CD1)
 | |
|     // allows such extraneous "typename" keywords, and we retroactively
 | |
|     // apply this DR to C++03 code with only a warning. In any case we continue.
 | |
| 
 | |
|     if (RequireCompleteDeclContext(SS, Ctx))
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   DeclarationName Name(&II);
 | |
|   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
 | |
|   if (Ctx)
 | |
|     LookupQualifiedName(Result, Ctx, SS);
 | |
|   else
 | |
|     LookupName(Result, CurScope);
 | |
|   unsigned DiagID = 0;
 | |
|   Decl *Referenced = nullptr;
 | |
|   switch (Result.getResultKind()) {
 | |
|   case LookupResult::NotFound: {
 | |
|     // If we're looking up 'type' within a template named 'enable_if', produce
 | |
|     // a more specific diagnostic.
 | |
|     SourceRange CondRange;
 | |
|     Expr *Cond = nullptr;
 | |
|     if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
 | |
|       // If we have a condition, narrow it down to the specific failed
 | |
|       // condition.
 | |
|       if (Cond) {
 | |
|         Expr *FailedCond;
 | |
|         std::string FailedDescription;
 | |
|         std::tie(FailedCond, FailedDescription) =
 | |
|           findFailedBooleanCondition(Cond);
 | |
| 
 | |
|         Diag(FailedCond->getExprLoc(),
 | |
|              diag::err_typename_nested_not_found_requirement)
 | |
|           << FailedDescription
 | |
|           << FailedCond->getSourceRange();
 | |
|         return QualType();
 | |
|       }
 | |
| 
 | |
|       Diag(CondRange.getBegin(),
 | |
|            diag::err_typename_nested_not_found_enable_if)
 | |
|           << Ctx << CondRange;
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     DiagID = Ctx ? diag::err_typename_nested_not_found
 | |
|                  : diag::err_unknown_typename;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case LookupResult::FoundUnresolvedValue: {
 | |
|     // We found a using declaration that is a value. Most likely, the using
 | |
|     // declaration itself is meant to have the 'typename' keyword.
 | |
|     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
 | |
|                           IILoc);
 | |
|     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
 | |
|       << Name << Ctx << FullRange;
 | |
|     if (UnresolvedUsingValueDecl *Using
 | |
|           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
 | |
|       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
 | |
|       Diag(Loc, diag::note_using_value_decl_missing_typename)
 | |
|         << FixItHint::CreateInsertion(Loc, "typename ");
 | |
|     }
 | |
|   }
 | |
|   // Fall through to create a dependent typename type, from which we can recover
 | |
|   // better.
 | |
|   LLVM_FALLTHROUGH;
 | |
| 
 | |
|   case LookupResult::NotFoundInCurrentInstantiation:
 | |
|     // Okay, it's a member of an unknown instantiation.
 | |
|     return Context.getDependentNameType(Keyword,
 | |
|                                         QualifierLoc.getNestedNameSpecifier(),
 | |
|                                         &II);
 | |
| 
 | |
|   case LookupResult::Found:
 | |
|     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
 | |
|       // C++ [class.qual]p2:
 | |
|       //   In a lookup in which function names are not ignored and the
 | |
|       //   nested-name-specifier nominates a class C, if the name specified
 | |
|       //   after the nested-name-specifier, when looked up in C, is the
 | |
|       //   injected-class-name of C [...] then the name is instead considered
 | |
|       //   to name the constructor of class C.
 | |
|       //
 | |
|       // Unlike in an elaborated-type-specifier, function names are not ignored
 | |
|       // in typename-specifier lookup. However, they are ignored in all the
 | |
|       // contexts where we form a typename type with no keyword (that is, in
 | |
|       // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
 | |
|       //
 | |
|       // FIXME: That's not strictly true: mem-initializer-id lookup does not
 | |
|       // ignore functions, but that appears to be an oversight.
 | |
|       auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
 | |
|       auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
 | |
|       if (Keyword == ETK_Typename && LookupRD && FoundRD &&
 | |
|           FoundRD->isInjectedClassName() &&
 | |
|           declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
 | |
|         Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
 | |
|             << &II << 1 << 0 /*'typename' keyword used*/;
 | |
| 
 | |
|       // We found a type. Build an ElaboratedType, since the
 | |
|       // typename-specifier was just sugar.
 | |
|       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
 | |
|       return Context.getElaboratedType(Keyword,
 | |
|                                        QualifierLoc.getNestedNameSpecifier(),
 | |
|                                        Context.getTypeDeclType(Type));
 | |
|     }
 | |
| 
 | |
|     // C++ [dcl.type.simple]p2:
 | |
|     //   A type-specifier of the form
 | |
|     //     typename[opt] nested-name-specifier[opt] template-name
 | |
|     //   is a placeholder for a deduced class type [...].
 | |
|     if (getLangOpts().CPlusPlus17) {
 | |
|       if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
 | |
|         if (!DeducedTSTContext) {
 | |
|           QualType T(QualifierLoc
 | |
|                          ? QualifierLoc.getNestedNameSpecifier()->getAsType()
 | |
|                          : nullptr, 0);
 | |
|           if (!T.isNull())
 | |
|             Diag(IILoc, diag::err_dependent_deduced_tst)
 | |
|               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
 | |
|           else
 | |
|             Diag(IILoc, diag::err_deduced_tst)
 | |
|               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
 | |
|           Diag(TD->getLocation(), diag::note_template_decl_here);
 | |
|           return QualType();
 | |
|         }
 | |
|         return Context.getElaboratedType(
 | |
|             Keyword, QualifierLoc.getNestedNameSpecifier(),
 | |
|             Context.getDeducedTemplateSpecializationType(TemplateName(TD),
 | |
|                                                          QualType(), false));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     DiagID = Ctx ? diag::err_typename_nested_not_type
 | |
|                  : diag::err_typename_not_type;
 | |
|     Referenced = Result.getFoundDecl();
 | |
|     break;
 | |
| 
 | |
|   case LookupResult::FoundOverloaded:
 | |
|     DiagID = Ctx ? diag::err_typename_nested_not_type
 | |
|                  : diag::err_typename_not_type;
 | |
|     Referenced = *Result.begin();
 | |
|     break;
 | |
| 
 | |
|   case LookupResult::Ambiguous:
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // If we get here, it's because name lookup did not find a
 | |
|   // type. Emit an appropriate diagnostic and return an error.
 | |
|   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
 | |
|                         IILoc);
 | |
|   if (Ctx)
 | |
|     Diag(IILoc, DiagID) << FullRange << Name << Ctx;
 | |
|   else
 | |
|     Diag(IILoc, DiagID) << FullRange << Name;
 | |
|   if (Referenced)
 | |
|     Diag(Referenced->getLocation(),
 | |
|          Ctx ? diag::note_typename_member_refers_here
 | |
|              : diag::note_typename_refers_here)
 | |
|       << Name;
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // See Sema::RebuildTypeInCurrentInstantiation
 | |
|   class CurrentInstantiationRebuilder
 | |
|     : public TreeTransform<CurrentInstantiationRebuilder> {
 | |
|     SourceLocation Loc;
 | |
|     DeclarationName Entity;
 | |
| 
 | |
|   public:
 | |
|     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
 | |
| 
 | |
|     CurrentInstantiationRebuilder(Sema &SemaRef,
 | |
|                                   SourceLocation Loc,
 | |
|                                   DeclarationName Entity)
 | |
|     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
 | |
|       Loc(Loc), Entity(Entity) { }
 | |
| 
 | |
|     /// Determine whether the given type \p T has already been
 | |
|     /// transformed.
 | |
|     ///
 | |
|     /// For the purposes of type reconstruction, a type has already been
 | |
|     /// transformed if it is NULL or if it is not dependent.
 | |
|     bool AlreadyTransformed(QualType T) {
 | |
|       return T.isNull() || !T->isDependentType();
 | |
|     }
 | |
| 
 | |
|     /// Returns the location of the entity whose type is being
 | |
|     /// rebuilt.
 | |
|     SourceLocation getBaseLocation() { return Loc; }
 | |
| 
 | |
|     /// Returns the name of the entity whose type is being rebuilt.
 | |
|     DeclarationName getBaseEntity() { return Entity; }
 | |
| 
 | |
|     /// Sets the "base" location and entity when that
 | |
|     /// information is known based on another transformation.
 | |
|     void setBase(SourceLocation Loc, DeclarationName Entity) {
 | |
|       this->Loc = Loc;
 | |
|       this->Entity = Entity;
 | |
|     }
 | |
| 
 | |
|     ExprResult TransformLambdaExpr(LambdaExpr *E) {
 | |
|       // Lambdas never need to be transformed.
 | |
|       return E;
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Rebuilds a type within the context of the current instantiation.
 | |
| ///
 | |
| /// The type \p T is part of the type of an out-of-line member definition of
 | |
| /// a class template (or class template partial specialization) that was parsed
 | |
| /// and constructed before we entered the scope of the class template (or
 | |
| /// partial specialization thereof). This routine will rebuild that type now
 | |
| /// that we have entered the declarator's scope, which may produce different
 | |
| /// canonical types, e.g.,
 | |
| ///
 | |
| /// \code
 | |
| /// template<typename T>
 | |
| /// struct X {
 | |
| ///   typedef T* pointer;
 | |
| ///   pointer data();
 | |
| /// };
 | |
| ///
 | |
| /// template<typename T>
 | |
| /// typename X<T>::pointer X<T>::data() { ... }
 | |
| /// \endcode
 | |
| ///
 | |
| /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
 | |
| /// since we do not know that we can look into X<T> when we parsed the type.
 | |
| /// This function will rebuild the type, performing the lookup of "pointer"
 | |
| /// in X<T> and returning an ElaboratedType whose canonical type is the same
 | |
| /// as the canonical type of T*, allowing the return types of the out-of-line
 | |
| /// definition and the declaration to match.
 | |
| TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
 | |
|                                                         SourceLocation Loc,
 | |
|                                                         DeclarationName Name) {
 | |
|   if (!T || !T->getType()->isDependentType())
 | |
|     return T;
 | |
| 
 | |
|   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
 | |
|   return Rebuilder.TransformType(T);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
 | |
|   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
 | |
|                                           DeclarationName());
 | |
|   return Rebuilder.TransformExpr(E);
 | |
| }
 | |
| 
 | |
| bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
 | |
|   if (SS.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | |
|   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
 | |
|                                           DeclarationName());
 | |
|   NestedNameSpecifierLoc Rebuilt
 | |
|     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
 | |
|   if (!Rebuilt)
 | |
|     return true;
 | |
| 
 | |
|   SS.Adopt(Rebuilt);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Rebuild the template parameters now that we know we're in a current
 | |
| /// instantiation.
 | |
| bool Sema::RebuildTemplateParamsInCurrentInstantiation(
 | |
|                                                TemplateParameterList *Params) {
 | |
|   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
 | |
|     Decl *Param = Params->getParam(I);
 | |
| 
 | |
|     // There is nothing to rebuild in a type parameter.
 | |
|     if (isa<TemplateTypeParmDecl>(Param))
 | |
|       continue;
 | |
| 
 | |
|     // Rebuild the template parameter list of a template template parameter.
 | |
|     if (TemplateTemplateParmDecl *TTP
 | |
|         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
 | |
|       if (RebuildTemplateParamsInCurrentInstantiation(
 | |
|             TTP->getTemplateParameters()))
 | |
|         return true;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Rebuild the type of a non-type template parameter.
 | |
|     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
 | |
|     TypeSourceInfo *NewTSI
 | |
|       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
 | |
|                                           NTTP->getLocation(),
 | |
|                                           NTTP->getDeclName());
 | |
|     if (!NewTSI)
 | |
|       return true;
 | |
| 
 | |
|     if (NewTSI->getType()->isUndeducedType()) {
 | |
|       // C++17 [temp.dep.expr]p3:
 | |
|       //   An id-expression is type-dependent if it contains
 | |
|       //    - an identifier associated by name lookup with a non-type
 | |
|       //      template-parameter declared with a type that contains a
 | |
|       //      placeholder type (7.1.7.4),
 | |
|       NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy);
 | |
|     }
 | |
| 
 | |
|     if (NewTSI != NTTP->getTypeSourceInfo()) {
 | |
|       NTTP->setTypeSourceInfo(NewTSI);
 | |
|       NTTP->setType(NewTSI->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Produces a formatted string that describes the binding of
 | |
| /// template parameters to template arguments.
 | |
| std::string
 | |
| Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
 | |
|                                       const TemplateArgumentList &Args) {
 | |
|   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
 | |
| }
 | |
| 
 | |
| std::string
 | |
| Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
 | |
|                                       const TemplateArgument *Args,
 | |
|                                       unsigned NumArgs) {
 | |
|   SmallString<128> Str;
 | |
|   llvm::raw_svector_ostream Out(Str);
 | |
| 
 | |
|   if (!Params || Params->size() == 0 || NumArgs == 0)
 | |
|     return std::string();
 | |
| 
 | |
|   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
 | |
|     if (I >= NumArgs)
 | |
|       break;
 | |
| 
 | |
|     if (I == 0)
 | |
|       Out << "[with ";
 | |
|     else
 | |
|       Out << ", ";
 | |
| 
 | |
|     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
 | |
|       Out << Id->getName();
 | |
|     } else {
 | |
|       Out << '$' << I;
 | |
|     }
 | |
| 
 | |
|     Out << " = ";
 | |
|     Args[I].print(getPrintingPolicy(), Out);
 | |
|   }
 | |
| 
 | |
|   Out << ']';
 | |
|   return std::string(Out.str());
 | |
| }
 | |
| 
 | |
| void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
 | |
|                                     CachedTokens &Toks) {
 | |
|   if (!FD)
 | |
|     return;
 | |
| 
 | |
|   auto LPT = std::make_unique<LateParsedTemplate>();
 | |
| 
 | |
|   // Take tokens to avoid allocations
 | |
|   LPT->Toks.swap(Toks);
 | |
|   LPT->D = FnD;
 | |
|   LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
 | |
| 
 | |
|   FD->setLateTemplateParsed(true);
 | |
| }
 | |
| 
 | |
| void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
 | |
|   if (!FD)
 | |
|     return;
 | |
|   FD->setLateTemplateParsed(false);
 | |
| }
 | |
| 
 | |
| bool Sema::IsInsideALocalClassWithinATemplateFunction() {
 | |
|   DeclContext *DC = CurContext;
 | |
| 
 | |
|   while (DC) {
 | |
|     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
 | |
|       const FunctionDecl *FD = RD->isLocalClass();
 | |
|       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
 | |
|     } else if (DC->isTranslationUnit() || DC->isNamespace())
 | |
|       return false;
 | |
| 
 | |
|     DC = DC->getParent();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// Walk the path from which a declaration was instantiated, and check
 | |
| /// that every explicit specialization along that path is visible. This enforces
 | |
| /// C++ [temp.expl.spec]/6:
 | |
| ///
 | |
| ///   If a template, a member template or a member of a class template is
 | |
| ///   explicitly specialized then that specialization shall be declared before
 | |
| ///   the first use of that specialization that would cause an implicit
 | |
| ///   instantiation to take place, in every translation unit in which such a
 | |
| ///   use occurs; no diagnostic is required.
 | |
| ///
 | |
| /// and also C++ [temp.class.spec]/1:
 | |
| ///
 | |
| ///   A partial specialization shall be declared before the first use of a
 | |
| ///   class template specialization that would make use of the partial
 | |
| ///   specialization as the result of an implicit or explicit instantiation
 | |
| ///   in every translation unit in which such a use occurs; no diagnostic is
 | |
| ///   required.
 | |
| class ExplicitSpecializationVisibilityChecker {
 | |
|   Sema &S;
 | |
|   SourceLocation Loc;
 | |
|   llvm::SmallVector<Module *, 8> Modules;
 | |
| 
 | |
| public:
 | |
|   ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
 | |
|       : S(S), Loc(Loc) {}
 | |
| 
 | |
|   void check(NamedDecl *ND) {
 | |
|     if (auto *FD = dyn_cast<FunctionDecl>(ND))
 | |
|       return checkImpl(FD);
 | |
|     if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
 | |
|       return checkImpl(RD);
 | |
|     if (auto *VD = dyn_cast<VarDecl>(ND))
 | |
|       return checkImpl(VD);
 | |
|     if (auto *ED = dyn_cast<EnumDecl>(ND))
 | |
|       return checkImpl(ED);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void diagnose(NamedDecl *D, bool IsPartialSpec) {
 | |
|     auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
 | |
|                               : Sema::MissingImportKind::ExplicitSpecialization;
 | |
|     const bool Recover = true;
 | |
| 
 | |
|     // If we got a custom set of modules (because only a subset of the
 | |
|     // declarations are interesting), use them, otherwise let
 | |
|     // diagnoseMissingImport intelligently pick some.
 | |
|     if (Modules.empty())
 | |
|       S.diagnoseMissingImport(Loc, D, Kind, Recover);
 | |
|     else
 | |
|       S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
 | |
|   }
 | |
| 
 | |
|   // Check a specific declaration. There are three problematic cases:
 | |
|   //
 | |
|   //  1) The declaration is an explicit specialization of a template
 | |
|   //     specialization.
 | |
|   //  2) The declaration is an explicit specialization of a member of an
 | |
|   //     templated class.
 | |
|   //  3) The declaration is an instantiation of a template, and that template
 | |
|   //     is an explicit specialization of a member of a templated class.
 | |
|   //
 | |
|   // We don't need to go any deeper than that, as the instantiation of the
 | |
|   // surrounding class / etc is not triggered by whatever triggered this
 | |
|   // instantiation, and thus should be checked elsewhere.
 | |
|   template<typename SpecDecl>
 | |
|   void checkImpl(SpecDecl *Spec) {
 | |
|     bool IsHiddenExplicitSpecialization = false;
 | |
|     if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
 | |
|       IsHiddenExplicitSpecialization =
 | |
|           Spec->getMemberSpecializationInfo()
 | |
|               ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
 | |
|               : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
 | |
|     } else {
 | |
|       checkInstantiated(Spec);
 | |
|     }
 | |
| 
 | |
|     if (IsHiddenExplicitSpecialization)
 | |
|       diagnose(Spec->getMostRecentDecl(), false);
 | |
|   }
 | |
| 
 | |
|   void checkInstantiated(FunctionDecl *FD) {
 | |
|     if (auto *TD = FD->getPrimaryTemplate())
 | |
|       checkTemplate(TD);
 | |
|   }
 | |
| 
 | |
|   void checkInstantiated(CXXRecordDecl *RD) {
 | |
|     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
 | |
|     if (!SD)
 | |
|       return;
 | |
| 
 | |
|     auto From = SD->getSpecializedTemplateOrPartial();
 | |
|     if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
 | |
|       checkTemplate(TD);
 | |
|     else if (auto *TD =
 | |
|                  From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
 | |
|       if (!S.hasVisibleDeclaration(TD))
 | |
|         diagnose(TD, true);
 | |
|       checkTemplate(TD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void checkInstantiated(VarDecl *RD) {
 | |
|     auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
 | |
|     if (!SD)
 | |
|       return;
 | |
| 
 | |
|     auto From = SD->getSpecializedTemplateOrPartial();
 | |
|     if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
 | |
|       checkTemplate(TD);
 | |
|     else if (auto *TD =
 | |
|                  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
 | |
|       if (!S.hasVisibleDeclaration(TD))
 | |
|         diagnose(TD, true);
 | |
|       checkTemplate(TD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void checkInstantiated(EnumDecl *FD) {}
 | |
| 
 | |
|   template<typename TemplDecl>
 | |
|   void checkTemplate(TemplDecl *TD) {
 | |
|     if (TD->isMemberSpecialization()) {
 | |
|       if (!S.hasVisibleMemberSpecialization(TD, &Modules))
 | |
|         diagnose(TD->getMostRecentDecl(), false);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
 | |
|   if (!getLangOpts().Modules)
 | |
|     return;
 | |
| 
 | |
|   ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
 | |
| }
 | |
| 
 | |
| /// Check whether a template partial specialization that we've discovered
 | |
| /// is hidden, and produce suitable diagnostics if so.
 | |
| void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
 | |
|                                                 NamedDecl *Spec) {
 | |
|   llvm::SmallVector<Module *, 8> Modules;
 | |
|   if (!hasVisibleDeclaration(Spec, &Modules))
 | |
|     diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
 | |
|                           MissingImportKind::PartialSpecialization,
 | |
|                           /*Recover*/true);
 | |
| }
 |