forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2450 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2450 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This defines CStringChecker, which is an assortment of checks on calls
 | 
						|
// to functions in <string.h>.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InterCheckerAPI.h"
 | 
						|
#include "clang/Basic/CharInfo.h"
 | 
						|
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/Checker.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
namespace {
 | 
						|
enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
 | 
						|
class CStringChecker : public Checker< eval::Call,
 | 
						|
                                         check::PreStmt<DeclStmt>,
 | 
						|
                                         check::LiveSymbols,
 | 
						|
                                         check::DeadSymbols,
 | 
						|
                                         check::RegionChanges
 | 
						|
                                         > {
 | 
						|
  mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
 | 
						|
      BT_NotCString, BT_AdditionOverflow;
 | 
						|
 | 
						|
  mutable const char *CurrentFunctionDescription;
 | 
						|
 | 
						|
public:
 | 
						|
  /// The filter is used to filter out the diagnostics which are not enabled by
 | 
						|
  /// the user.
 | 
						|
  struct CStringChecksFilter {
 | 
						|
    DefaultBool CheckCStringNullArg;
 | 
						|
    DefaultBool CheckCStringOutOfBounds;
 | 
						|
    DefaultBool CheckCStringBufferOverlap;
 | 
						|
    DefaultBool CheckCStringNotNullTerm;
 | 
						|
 | 
						|
    CheckerNameRef CheckNameCStringNullArg;
 | 
						|
    CheckerNameRef CheckNameCStringOutOfBounds;
 | 
						|
    CheckerNameRef CheckNameCStringBufferOverlap;
 | 
						|
    CheckerNameRef CheckNameCStringNotNullTerm;
 | 
						|
  };
 | 
						|
 | 
						|
  CStringChecksFilter Filter;
 | 
						|
 | 
						|
  static void *getTag() { static int tag; return &tag; }
 | 
						|
 | 
						|
  bool evalCall(const CallEvent &Call, CheckerContext &C) const;
 | 
						|
  void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
 | 
						|
  void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
 | 
						|
  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
 | 
						|
 | 
						|
  ProgramStateRef
 | 
						|
    checkRegionChanges(ProgramStateRef state,
 | 
						|
                       const InvalidatedSymbols *,
 | 
						|
                       ArrayRef<const MemRegion *> ExplicitRegions,
 | 
						|
                       ArrayRef<const MemRegion *> Regions,
 | 
						|
                       const LocationContext *LCtx,
 | 
						|
                       const CallEvent *Call) const;
 | 
						|
 | 
						|
  typedef void (CStringChecker::*FnCheck)(CheckerContext &,
 | 
						|
                                          const CallExpr *) const;
 | 
						|
  CallDescriptionMap<FnCheck> Callbacks = {
 | 
						|
      {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy},
 | 
						|
      {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy},
 | 
						|
      {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp},
 | 
						|
      {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove},
 | 
						|
      {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset},
 | 
						|
      {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset},
 | 
						|
      {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy},
 | 
						|
      {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy},
 | 
						|
      {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy},
 | 
						|
      {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy},
 | 
						|
      {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat},
 | 
						|
      {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat},
 | 
						|
      {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat},
 | 
						|
      {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength},
 | 
						|
      {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength},
 | 
						|
      {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp},
 | 
						|
      {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp},
 | 
						|
      {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp},
 | 
						|
      {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp},
 | 
						|
      {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep},
 | 
						|
      {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy},
 | 
						|
      {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp},
 | 
						|
      {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero},
 | 
						|
      {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero},
 | 
						|
  };
 | 
						|
 | 
						|
  // These require a bit of special handling.
 | 
						|
  CallDescription StdCopy{{"std", "copy"}, 3},
 | 
						|
      StdCopyBackward{{"std", "copy_backward"}, 3};
 | 
						|
 | 
						|
  FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
 | 
						|
  void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
 | 
						|
                      ProgramStateRef state,
 | 
						|
                      const Expr *Size,
 | 
						|
                      const Expr *Source,
 | 
						|
                      const Expr *Dest,
 | 
						|
                      bool Restricted = false,
 | 
						|
                      bool IsMempcpy = false) const;
 | 
						|
 | 
						|
  void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
 | 
						|
  void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalstrLengthCommon(CheckerContext &C,
 | 
						|
                           const CallExpr *CE,
 | 
						|
                           bool IsStrnlen = false) const;
 | 
						|
 | 
						|
  void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd,
 | 
						|
                        bool IsBounded, ConcatFnKind appendK,
 | 
						|
                        bool returnPtr = true) const;
 | 
						|
 | 
						|
  void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStrlcat(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
 | 
						|
  void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStrcmpCommon(CheckerContext &C,
 | 
						|
                        const CallExpr *CE,
 | 
						|
                        bool IsBounded = false,
 | 
						|
                        bool IgnoreCase = false) const;
 | 
						|
 | 
						|
  void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
 | 
						|
  void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalMemset(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
  void evalBzero(CheckerContext &C, const CallExpr *CE) const;
 | 
						|
 | 
						|
  // Utility methods
 | 
						|
  std::pair<ProgramStateRef , ProgramStateRef >
 | 
						|
  static assumeZero(CheckerContext &C,
 | 
						|
                    ProgramStateRef state, SVal V, QualType Ty);
 | 
						|
 | 
						|
  static ProgramStateRef setCStringLength(ProgramStateRef state,
 | 
						|
                                              const MemRegion *MR,
 | 
						|
                                              SVal strLength);
 | 
						|
  static SVal getCStringLengthForRegion(CheckerContext &C,
 | 
						|
                                        ProgramStateRef &state,
 | 
						|
                                        const Expr *Ex,
 | 
						|
                                        const MemRegion *MR,
 | 
						|
                                        bool hypothetical);
 | 
						|
  SVal getCStringLength(CheckerContext &C,
 | 
						|
                        ProgramStateRef &state,
 | 
						|
                        const Expr *Ex,
 | 
						|
                        SVal Buf,
 | 
						|
                        bool hypothetical = false) const;
 | 
						|
 | 
						|
  const StringLiteral *getCStringLiteral(CheckerContext &C,
 | 
						|
                                         ProgramStateRef &state,
 | 
						|
                                         const Expr *expr,
 | 
						|
                                         SVal val) const;
 | 
						|
 | 
						|
  static ProgramStateRef InvalidateBuffer(CheckerContext &C,
 | 
						|
                                          ProgramStateRef state,
 | 
						|
                                          const Expr *Ex, SVal V,
 | 
						|
                                          bool IsSourceBuffer,
 | 
						|
                                          const Expr *Size);
 | 
						|
 | 
						|
  static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
 | 
						|
                              const MemRegion *MR);
 | 
						|
 | 
						|
  static bool memsetAux(const Expr *DstBuffer, SVal CharE,
 | 
						|
                        const Expr *Size, CheckerContext &C,
 | 
						|
                        ProgramStateRef &State);
 | 
						|
 | 
						|
  // Re-usable checks
 | 
						|
  ProgramStateRef checkNonNull(CheckerContext &C,
 | 
						|
                                   ProgramStateRef state,
 | 
						|
                                   const Expr *S,
 | 
						|
                                   SVal l,
 | 
						|
                                   unsigned IdxOfArg) const;
 | 
						|
  ProgramStateRef CheckLocation(CheckerContext &C,
 | 
						|
                                    ProgramStateRef state,
 | 
						|
                                    const Expr *S,
 | 
						|
                                    SVal l,
 | 
						|
                                    const char *message = nullptr) const;
 | 
						|
  ProgramStateRef CheckBufferAccess(CheckerContext &C,
 | 
						|
                                        ProgramStateRef state,
 | 
						|
                                        const Expr *Size,
 | 
						|
                                        const Expr *FirstBuf,
 | 
						|
                                        const Expr *SecondBuf,
 | 
						|
                                        const char *firstMessage = nullptr,
 | 
						|
                                        const char *secondMessage = nullptr,
 | 
						|
                                        bool WarnAboutSize = false) const;
 | 
						|
 | 
						|
  ProgramStateRef CheckBufferAccess(CheckerContext &C,
 | 
						|
                                        ProgramStateRef state,
 | 
						|
                                        const Expr *Size,
 | 
						|
                                        const Expr *Buf,
 | 
						|
                                        const char *message = nullptr,
 | 
						|
                                        bool WarnAboutSize = false) const {
 | 
						|
    // This is a convenience overload.
 | 
						|
    return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr,
 | 
						|
                             WarnAboutSize);
 | 
						|
  }
 | 
						|
  ProgramStateRef CheckOverlap(CheckerContext &C,
 | 
						|
                                   ProgramStateRef state,
 | 
						|
                                   const Expr *Size,
 | 
						|
                                   const Expr *First,
 | 
						|
                                   const Expr *Second) const;
 | 
						|
  void emitOverlapBug(CheckerContext &C,
 | 
						|
                      ProgramStateRef state,
 | 
						|
                      const Stmt *First,
 | 
						|
                      const Stmt *Second) const;
 | 
						|
 | 
						|
  void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
 | 
						|
                      StringRef WarningMsg) const;
 | 
						|
  void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
 | 
						|
                          const Stmt *S, StringRef WarningMsg) const;
 | 
						|
  void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
 | 
						|
                         const Stmt *S, StringRef WarningMsg) const;
 | 
						|
  void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
 | 
						|
 | 
						|
  ProgramStateRef checkAdditionOverflow(CheckerContext &C,
 | 
						|
                                            ProgramStateRef state,
 | 
						|
                                            NonLoc left,
 | 
						|
                                            NonLoc right) const;
 | 
						|
 | 
						|
  // Return true if the destination buffer of the copy function may be in bound.
 | 
						|
  // Expects SVal of Size to be positive and unsigned.
 | 
						|
  // Expects SVal of FirstBuf to be a FieldRegion.
 | 
						|
  static bool IsFirstBufInBound(CheckerContext &C,
 | 
						|
                                ProgramStateRef state,
 | 
						|
                                const Expr *FirstBuf,
 | 
						|
                                const Expr *Size);
 | 
						|
};
 | 
						|
 | 
						|
} //end anonymous namespace
 | 
						|
 | 
						|
REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Individual checks and utility methods.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
std::pair<ProgramStateRef , ProgramStateRef >
 | 
						|
CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
 | 
						|
                           QualType Ty) {
 | 
						|
  Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
 | 
						|
  if (!val)
 | 
						|
    return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
 | 
						|
 | 
						|
  SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
  DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
 | 
						|
  return state->assume(svalBuilder.evalEQ(state, *val, zero));
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
 | 
						|
                                            ProgramStateRef state,
 | 
						|
                                            const Expr *S, SVal l,
 | 
						|
                                            unsigned IdxOfArg) const {
 | 
						|
  // If a previous check has failed, propagate the failure.
 | 
						|
  if (!state)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ProgramStateRef stateNull, stateNonNull;
 | 
						|
  std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
 | 
						|
 | 
						|
  if (stateNull && !stateNonNull) {
 | 
						|
    if (Filter.CheckCStringNullArg) {
 | 
						|
      SmallString<80> buf;
 | 
						|
      llvm::raw_svector_ostream OS(buf);
 | 
						|
      assert(CurrentFunctionDescription);
 | 
						|
      OS << "Null pointer passed as " << IdxOfArg
 | 
						|
         << llvm::getOrdinalSuffix(IdxOfArg) << " argument to "
 | 
						|
         << CurrentFunctionDescription;
 | 
						|
 | 
						|
      emitNullArgBug(C, stateNull, S, OS.str());
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // From here on, assume that the value is non-null.
 | 
						|
  assert(stateNonNull);
 | 
						|
  return stateNonNull;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
 | 
						|
ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
 | 
						|
                                             ProgramStateRef state,
 | 
						|
                                             const Expr *S, SVal l,
 | 
						|
                                             const char *warningMsg) const {
 | 
						|
  // If a previous check has failed, propagate the failure.
 | 
						|
  if (!state)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check for out of bound array element access.
 | 
						|
  const MemRegion *R = l.getAsRegion();
 | 
						|
  if (!R)
 | 
						|
    return state;
 | 
						|
 | 
						|
  const ElementRegion *ER = dyn_cast<ElementRegion>(R);
 | 
						|
  if (!ER)
 | 
						|
    return state;
 | 
						|
 | 
						|
  if (ER->getValueType() != C.getASTContext().CharTy)
 | 
						|
    return state;
 | 
						|
 | 
						|
  // Get the size of the array.
 | 
						|
  const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
 | 
						|
  DefinedOrUnknownSVal Size =
 | 
						|
      getDynamicSize(state, superReg, C.getSValBuilder());
 | 
						|
 | 
						|
  // Get the index of the accessed element.
 | 
						|
  DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
 | 
						|
 | 
						|
  ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
 | 
						|
  ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
 | 
						|
  if (StOutBound && !StInBound) {
 | 
						|
    // These checks are either enabled by the CString out-of-bounds checker
 | 
						|
    // explicitly or implicitly by the Malloc checker.
 | 
						|
    // In the latter case we only do modeling but do not emit warning.
 | 
						|
    if (!Filter.CheckCStringOutOfBounds)
 | 
						|
      return nullptr;
 | 
						|
    // Emit a bug report.
 | 
						|
    if (warningMsg) {
 | 
						|
      emitOutOfBoundsBug(C, StOutBound, S, warningMsg);
 | 
						|
    } else {
 | 
						|
      assert(CurrentFunctionDescription);
 | 
						|
      assert(CurrentFunctionDescription[0] != '\0');
 | 
						|
 | 
						|
      SmallString<80> buf;
 | 
						|
      llvm::raw_svector_ostream os(buf);
 | 
						|
      os << toUppercase(CurrentFunctionDescription[0])
 | 
						|
         << &CurrentFunctionDescription[1]
 | 
						|
         << " accesses out-of-bound array element";
 | 
						|
      emitOutOfBoundsBug(C, StOutBound, S, os.str());
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Array bound check succeeded.  From this point forward the array bound
 | 
						|
  // should always succeed.
 | 
						|
  return StInBound;
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
 | 
						|
                                                 ProgramStateRef state,
 | 
						|
                                                 const Expr *Size,
 | 
						|
                                                 const Expr *FirstBuf,
 | 
						|
                                                 const Expr *SecondBuf,
 | 
						|
                                                 const char *firstMessage,
 | 
						|
                                                 const char *secondMessage,
 | 
						|
                                                 bool WarnAboutSize) const {
 | 
						|
  // If a previous check has failed, propagate the failure.
 | 
						|
  if (!state)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
  ASTContext &Ctx = svalBuilder.getContext();
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
 | 
						|
  QualType sizeTy = Size->getType();
 | 
						|
  QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
 | 
						|
 | 
						|
  // Check that the first buffer is non-null.
 | 
						|
  SVal BufVal = C.getSVal(FirstBuf);
 | 
						|
  state = checkNonNull(C, state, FirstBuf, BufVal, 1);
 | 
						|
  if (!state)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If out-of-bounds checking is turned off, skip the rest.
 | 
						|
  if (!Filter.CheckCStringOutOfBounds)
 | 
						|
    return state;
 | 
						|
 | 
						|
  // Get the access length and make sure it is known.
 | 
						|
  // FIXME: This assumes the caller has already checked that the access length
 | 
						|
  // is positive. And that it's unsigned.
 | 
						|
  SVal LengthVal = C.getSVal(Size);
 | 
						|
  Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
 | 
						|
  if (!Length)
 | 
						|
    return state;
 | 
						|
 | 
						|
  // Compute the offset of the last element to be accessed: size-1.
 | 
						|
  NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
 | 
						|
  SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
 | 
						|
  if (Offset.isUnknown())
 | 
						|
    return nullptr;
 | 
						|
  NonLoc LastOffset = Offset.castAs<NonLoc>();
 | 
						|
 | 
						|
  // Check that the first buffer is sufficiently long.
 | 
						|
  SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
 | 
						|
  if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
 | 
						|
    const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
 | 
						|
 | 
						|
    SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
 | 
						|
                                          LastOffset, PtrTy);
 | 
						|
    state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
 | 
						|
 | 
						|
    // If the buffer isn't large enough, abort.
 | 
						|
    if (!state)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there's a second buffer, check it as well.
 | 
						|
  if (SecondBuf) {
 | 
						|
    BufVal = state->getSVal(SecondBuf, LCtx);
 | 
						|
    state = checkNonNull(C, state, SecondBuf, BufVal, 2);
 | 
						|
    if (!state)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
 | 
						|
    if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
 | 
						|
      const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
 | 
						|
 | 
						|
      SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
 | 
						|
                                            LastOffset, PtrTy);
 | 
						|
      state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Large enough or not, return this state!
 | 
						|
  return state;
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
 | 
						|
                                            ProgramStateRef state,
 | 
						|
                                            const Expr *Size,
 | 
						|
                                            const Expr *First,
 | 
						|
                                            const Expr *Second) const {
 | 
						|
  if (!Filter.CheckCStringBufferOverlap)
 | 
						|
    return state;
 | 
						|
 | 
						|
  // Do a simple check for overlap: if the two arguments are from the same
 | 
						|
  // buffer, see if the end of the first is greater than the start of the second
 | 
						|
  // or vice versa.
 | 
						|
 | 
						|
  // If a previous check has failed, propagate the failure.
 | 
						|
  if (!state)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ProgramStateRef stateTrue, stateFalse;
 | 
						|
 | 
						|
  // Get the buffer values and make sure they're known locations.
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
  SVal firstVal = state->getSVal(First, LCtx);
 | 
						|
  SVal secondVal = state->getSVal(Second, LCtx);
 | 
						|
 | 
						|
  Optional<Loc> firstLoc = firstVal.getAs<Loc>();
 | 
						|
  if (!firstLoc)
 | 
						|
    return state;
 | 
						|
 | 
						|
  Optional<Loc> secondLoc = secondVal.getAs<Loc>();
 | 
						|
  if (!secondLoc)
 | 
						|
    return state;
 | 
						|
 | 
						|
  // Are the two values the same?
 | 
						|
  SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
  std::tie(stateTrue, stateFalse) =
 | 
						|
    state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
 | 
						|
 | 
						|
  if (stateTrue && !stateFalse) {
 | 
						|
    // If the values are known to be equal, that's automatically an overlap.
 | 
						|
    emitOverlapBug(C, stateTrue, First, Second);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // assume the two expressions are not equal.
 | 
						|
  assert(stateFalse);
 | 
						|
  state = stateFalse;
 | 
						|
 | 
						|
  // Which value comes first?
 | 
						|
  QualType cmpTy = svalBuilder.getConditionType();
 | 
						|
  SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
 | 
						|
                                         *firstLoc, *secondLoc, cmpTy);
 | 
						|
  Optional<DefinedOrUnknownSVal> reverseTest =
 | 
						|
      reverse.getAs<DefinedOrUnknownSVal>();
 | 
						|
  if (!reverseTest)
 | 
						|
    return state;
 | 
						|
 | 
						|
  std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
 | 
						|
  if (stateTrue) {
 | 
						|
    if (stateFalse) {
 | 
						|
      // If we don't know which one comes first, we can't perform this test.
 | 
						|
      return state;
 | 
						|
    } else {
 | 
						|
      // Switch the values so that firstVal is before secondVal.
 | 
						|
      std::swap(firstLoc, secondLoc);
 | 
						|
 | 
						|
      // Switch the Exprs as well, so that they still correspond.
 | 
						|
      std::swap(First, Second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the length, and make sure it too is known.
 | 
						|
  SVal LengthVal = state->getSVal(Size, LCtx);
 | 
						|
  Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
 | 
						|
  if (!Length)
 | 
						|
    return state;
 | 
						|
 | 
						|
  // Convert the first buffer's start address to char*.
 | 
						|
  // Bail out if the cast fails.
 | 
						|
  ASTContext &Ctx = svalBuilder.getContext();
 | 
						|
  QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
 | 
						|
  SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
 | 
						|
                                         First->getType());
 | 
						|
  Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
 | 
						|
  if (!FirstStartLoc)
 | 
						|
    return state;
 | 
						|
 | 
						|
  // Compute the end of the first buffer. Bail out if THAT fails.
 | 
						|
  SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
 | 
						|
                                 *FirstStartLoc, *Length, CharPtrTy);
 | 
						|
  Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
 | 
						|
  if (!FirstEndLoc)
 | 
						|
    return state;
 | 
						|
 | 
						|
  // Is the end of the first buffer past the start of the second buffer?
 | 
						|
  SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
 | 
						|
                                *FirstEndLoc, *secondLoc, cmpTy);
 | 
						|
  Optional<DefinedOrUnknownSVal> OverlapTest =
 | 
						|
      Overlap.getAs<DefinedOrUnknownSVal>();
 | 
						|
  if (!OverlapTest)
 | 
						|
    return state;
 | 
						|
 | 
						|
  std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
 | 
						|
 | 
						|
  if (stateTrue && !stateFalse) {
 | 
						|
    // Overlap!
 | 
						|
    emitOverlapBug(C, stateTrue, First, Second);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // assume the two expressions don't overlap.
 | 
						|
  assert(stateFalse);
 | 
						|
  return stateFalse;
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
 | 
						|
                                  const Stmt *First, const Stmt *Second) const {
 | 
						|
  ExplodedNode *N = C.generateErrorNode(state);
 | 
						|
  if (!N)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!BT_Overlap)
 | 
						|
    BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
 | 
						|
                                 categories::UnixAPI, "Improper arguments"));
 | 
						|
 | 
						|
  // Generate a report for this bug.
 | 
						|
  auto report = std::make_unique<PathSensitiveBugReport>(
 | 
						|
      *BT_Overlap, "Arguments must not be overlapping buffers", N);
 | 
						|
  report->addRange(First->getSourceRange());
 | 
						|
  report->addRange(Second->getSourceRange());
 | 
						|
 | 
						|
  C.emitReport(std::move(report));
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
 | 
						|
                                    const Stmt *S, StringRef WarningMsg) const {
 | 
						|
  if (ExplodedNode *N = C.generateErrorNode(State)) {
 | 
						|
    if (!BT_Null)
 | 
						|
      BT_Null.reset(new BuiltinBug(
 | 
						|
          Filter.CheckNameCStringNullArg, categories::UnixAPI,
 | 
						|
          "Null pointer argument in call to byte string function"));
 | 
						|
 | 
						|
    BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get());
 | 
						|
    auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
 | 
						|
    Report->addRange(S->getSourceRange());
 | 
						|
    if (const auto *Ex = dyn_cast<Expr>(S))
 | 
						|
      bugreporter::trackExpressionValue(N, Ex, *Report);
 | 
						|
    C.emitReport(std::move(Report));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
 | 
						|
                                        ProgramStateRef State, const Stmt *S,
 | 
						|
                                        StringRef WarningMsg) const {
 | 
						|
  if (ExplodedNode *N = C.generateErrorNode(State)) {
 | 
						|
    if (!BT_Bounds)
 | 
						|
      BT_Bounds.reset(new BuiltinBug(
 | 
						|
          Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds
 | 
						|
                                         : Filter.CheckNameCStringNullArg,
 | 
						|
          "Out-of-bound array access",
 | 
						|
          "Byte string function accesses out-of-bound array element"));
 | 
						|
 | 
						|
    BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get());
 | 
						|
 | 
						|
    // FIXME: It would be nice to eventually make this diagnostic more clear,
 | 
						|
    // e.g., by referencing the original declaration or by saying *why* this
 | 
						|
    // reference is outside the range.
 | 
						|
    auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
 | 
						|
    Report->addRange(S->getSourceRange());
 | 
						|
    C.emitReport(std::move(Report));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
 | 
						|
                                       const Stmt *S,
 | 
						|
                                       StringRef WarningMsg) const {
 | 
						|
  if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
 | 
						|
    if (!BT_NotCString)
 | 
						|
      BT_NotCString.reset(new BuiltinBug(
 | 
						|
          Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
 | 
						|
          "Argument is not a null-terminated string."));
 | 
						|
 | 
						|
    auto Report =
 | 
						|
        std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
 | 
						|
 | 
						|
    Report->addRange(S->getSourceRange());
 | 
						|
    C.emitReport(std::move(Report));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
 | 
						|
                                             ProgramStateRef State) const {
 | 
						|
  if (ExplodedNode *N = C.generateErrorNode(State)) {
 | 
						|
    if (!BT_NotCString)
 | 
						|
      BT_NotCString.reset(
 | 
						|
          new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
 | 
						|
                         "Sum of expressions causes overflow."));
 | 
						|
 | 
						|
    // This isn't a great error message, but this should never occur in real
 | 
						|
    // code anyway -- you'd have to create a buffer longer than a size_t can
 | 
						|
    // represent, which is sort of a contradiction.
 | 
						|
    const char *WarningMsg =
 | 
						|
        "This expression will create a string whose length is too big to "
 | 
						|
        "be represented as a size_t";
 | 
						|
 | 
						|
    auto Report =
 | 
						|
        std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
 | 
						|
    C.emitReport(std::move(Report));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
 | 
						|
                                                     ProgramStateRef state,
 | 
						|
                                                     NonLoc left,
 | 
						|
                                                     NonLoc right) const {
 | 
						|
  // If out-of-bounds checking is turned off, skip the rest.
 | 
						|
  if (!Filter.CheckCStringOutOfBounds)
 | 
						|
    return state;
 | 
						|
 | 
						|
  // If a previous check has failed, propagate the failure.
 | 
						|
  if (!state)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
  BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
 | 
						|
 | 
						|
  QualType sizeTy = svalBuilder.getContext().getSizeType();
 | 
						|
  const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
 | 
						|
  NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
 | 
						|
 | 
						|
  SVal maxMinusRight;
 | 
						|
  if (right.getAs<nonloc::ConcreteInt>()) {
 | 
						|
    maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
 | 
						|
                                                 sizeTy);
 | 
						|
  } else {
 | 
						|
    // Try switching the operands. (The order of these two assignments is
 | 
						|
    // important!)
 | 
						|
    maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
 | 
						|
                                            sizeTy);
 | 
						|
    left = right;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
 | 
						|
    QualType cmpTy = svalBuilder.getConditionType();
 | 
						|
    // If left > max - right, we have an overflow.
 | 
						|
    SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
 | 
						|
                                                *maxMinusRightNL, cmpTy);
 | 
						|
 | 
						|
    ProgramStateRef stateOverflow, stateOkay;
 | 
						|
    std::tie(stateOverflow, stateOkay) =
 | 
						|
      state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
 | 
						|
 | 
						|
    if (stateOverflow && !stateOkay) {
 | 
						|
      // We have an overflow. Emit a bug report.
 | 
						|
      emitAdditionOverflowBug(C, stateOverflow);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // From now on, assume an overflow didn't occur.
 | 
						|
    assert(stateOkay);
 | 
						|
    state = stateOkay;
 | 
						|
  }
 | 
						|
 | 
						|
  return state;
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
 | 
						|
                                                const MemRegion *MR,
 | 
						|
                                                SVal strLength) {
 | 
						|
  assert(!strLength.isUndef() && "Attempt to set an undefined string length");
 | 
						|
 | 
						|
  MR = MR->StripCasts();
 | 
						|
 | 
						|
  switch (MR->getKind()) {
 | 
						|
  case MemRegion::StringRegionKind:
 | 
						|
    // FIXME: This can happen if we strcpy() into a string region. This is
 | 
						|
    // undefined [C99 6.4.5p6], but we should still warn about it.
 | 
						|
    return state;
 | 
						|
 | 
						|
  case MemRegion::SymbolicRegionKind:
 | 
						|
  case MemRegion::AllocaRegionKind:
 | 
						|
  case MemRegion::VarRegionKind:
 | 
						|
  case MemRegion::FieldRegionKind:
 | 
						|
  case MemRegion::ObjCIvarRegionKind:
 | 
						|
    // These are the types we can currently track string lengths for.
 | 
						|
    break;
 | 
						|
 | 
						|
  case MemRegion::ElementRegionKind:
 | 
						|
    // FIXME: Handle element regions by upper-bounding the parent region's
 | 
						|
    // string length.
 | 
						|
    return state;
 | 
						|
 | 
						|
  default:
 | 
						|
    // Other regions (mostly non-data) can't have a reliable C string length.
 | 
						|
    // For now, just ignore the change.
 | 
						|
    // FIXME: These are rare but not impossible. We should output some kind of
 | 
						|
    // warning for things like strcpy((char[]){'a', 0}, "b");
 | 
						|
    return state;
 | 
						|
  }
 | 
						|
 | 
						|
  if (strLength.isUnknown())
 | 
						|
    return state->remove<CStringLength>(MR);
 | 
						|
 | 
						|
  return state->set<CStringLength>(MR, strLength);
 | 
						|
}
 | 
						|
 | 
						|
SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
 | 
						|
                                               ProgramStateRef &state,
 | 
						|
                                               const Expr *Ex,
 | 
						|
                                               const MemRegion *MR,
 | 
						|
                                               bool hypothetical) {
 | 
						|
  if (!hypothetical) {
 | 
						|
    // If there's a recorded length, go ahead and return it.
 | 
						|
    const SVal *Recorded = state->get<CStringLength>(MR);
 | 
						|
    if (Recorded)
 | 
						|
      return *Recorded;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, get a new symbol and update the state.
 | 
						|
  SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
  QualType sizeTy = svalBuilder.getContext().getSizeType();
 | 
						|
  SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
 | 
						|
                                                    MR, Ex, sizeTy,
 | 
						|
                                                    C.getLocationContext(),
 | 
						|
                                                    C.blockCount());
 | 
						|
 | 
						|
  if (!hypothetical) {
 | 
						|
    if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
 | 
						|
      // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
 | 
						|
      BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
 | 
						|
      const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
 | 
						|
      llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
 | 
						|
      const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
 | 
						|
                                                        fourInt);
 | 
						|
      NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
 | 
						|
      SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
 | 
						|
                                                maxLength, sizeTy);
 | 
						|
      state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
 | 
						|
    }
 | 
						|
    state = state->set<CStringLength>(MR, strLength);
 | 
						|
  }
 | 
						|
 | 
						|
  return strLength;
 | 
						|
}
 | 
						|
 | 
						|
SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
 | 
						|
                                      const Expr *Ex, SVal Buf,
 | 
						|
                                      bool hypothetical) const {
 | 
						|
  const MemRegion *MR = Buf.getAsRegion();
 | 
						|
  if (!MR) {
 | 
						|
    // If we can't get a region, see if it's something we /know/ isn't a
 | 
						|
    // C string. In the context of locations, the only time we can issue such
 | 
						|
    // a warning is for labels.
 | 
						|
    if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
 | 
						|
      if (Filter.CheckCStringNotNullTerm) {
 | 
						|
        SmallString<120> buf;
 | 
						|
        llvm::raw_svector_ostream os(buf);
 | 
						|
        assert(CurrentFunctionDescription);
 | 
						|
        os << "Argument to " << CurrentFunctionDescription
 | 
						|
           << " is the address of the label '" << Label->getLabel()->getName()
 | 
						|
           << "', which is not a null-terminated string";
 | 
						|
 | 
						|
        emitNotCStringBug(C, state, Ex, os.str());
 | 
						|
      }
 | 
						|
      return UndefinedVal();
 | 
						|
    }
 | 
						|
 | 
						|
    // If it's not a region and not a label, give up.
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a region, strip casts from it and see if we can figure out
 | 
						|
  // its length. For anything we can't figure out, just return UnknownVal.
 | 
						|
  MR = MR->StripCasts();
 | 
						|
 | 
						|
  switch (MR->getKind()) {
 | 
						|
  case MemRegion::StringRegionKind: {
 | 
						|
    // Modifying the contents of string regions is undefined [C99 6.4.5p6],
 | 
						|
    // so we can assume that the byte length is the correct C string length.
 | 
						|
    SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
    QualType sizeTy = svalBuilder.getContext().getSizeType();
 | 
						|
    const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
 | 
						|
    return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
 | 
						|
  }
 | 
						|
  case MemRegion::SymbolicRegionKind:
 | 
						|
  case MemRegion::AllocaRegionKind:
 | 
						|
  case MemRegion::VarRegionKind:
 | 
						|
  case MemRegion::FieldRegionKind:
 | 
						|
  case MemRegion::ObjCIvarRegionKind:
 | 
						|
    return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
 | 
						|
  case MemRegion::CompoundLiteralRegionKind:
 | 
						|
    // FIXME: Can we track this? Is it necessary?
 | 
						|
    return UnknownVal();
 | 
						|
  case MemRegion::ElementRegionKind:
 | 
						|
    // FIXME: How can we handle this? It's not good enough to subtract the
 | 
						|
    // offset from the base string length; consider "123\x00567" and &a[5].
 | 
						|
    return UnknownVal();
 | 
						|
  default:
 | 
						|
    // Other regions (mostly non-data) can't have a reliable C string length.
 | 
						|
    // In this case, an error is emitted and UndefinedVal is returned.
 | 
						|
    // The caller should always be prepared to handle this case.
 | 
						|
    if (Filter.CheckCStringNotNullTerm) {
 | 
						|
      SmallString<120> buf;
 | 
						|
      llvm::raw_svector_ostream os(buf);
 | 
						|
 | 
						|
      assert(CurrentFunctionDescription);
 | 
						|
      os << "Argument to " << CurrentFunctionDescription << " is ";
 | 
						|
 | 
						|
      if (SummarizeRegion(os, C.getASTContext(), MR))
 | 
						|
        os << ", which is not a null-terminated string";
 | 
						|
      else
 | 
						|
        os << "not a null-terminated string";
 | 
						|
 | 
						|
      emitNotCStringBug(C, state, Ex, os.str());
 | 
						|
    }
 | 
						|
    return UndefinedVal();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
 | 
						|
  ProgramStateRef &state, const Expr *expr, SVal val) const {
 | 
						|
 | 
						|
  // Get the memory region pointed to by the val.
 | 
						|
  const MemRegion *bufRegion = val.getAsRegion();
 | 
						|
  if (!bufRegion)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Strip casts off the memory region.
 | 
						|
  bufRegion = bufRegion->StripCasts();
 | 
						|
 | 
						|
  // Cast the memory region to a string region.
 | 
						|
  const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
 | 
						|
  if (!strRegion)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Return the actual string in the string region.
 | 
						|
  return strRegion->getStringLiteral();
 | 
						|
}
 | 
						|
 | 
						|
bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
 | 
						|
                                       ProgramStateRef state,
 | 
						|
                                       const Expr *FirstBuf,
 | 
						|
                                       const Expr *Size) {
 | 
						|
  // If we do not know that the buffer is long enough we return 'true'.
 | 
						|
  // Otherwise the parent region of this field region would also get
 | 
						|
  // invalidated, which would lead to warnings based on an unknown state.
 | 
						|
 | 
						|
  // Originally copied from CheckBufferAccess and CheckLocation.
 | 
						|
  SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
  ASTContext &Ctx = svalBuilder.getContext();
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
 | 
						|
  QualType sizeTy = Size->getType();
 | 
						|
  QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
 | 
						|
  SVal BufVal = state->getSVal(FirstBuf, LCtx);
 | 
						|
 | 
						|
  SVal LengthVal = state->getSVal(Size, LCtx);
 | 
						|
  Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
 | 
						|
  if (!Length)
 | 
						|
    return true; // cf top comment.
 | 
						|
 | 
						|
  // Compute the offset of the last element to be accessed: size-1.
 | 
						|
  NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
 | 
						|
  SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
 | 
						|
  if (Offset.isUnknown())
 | 
						|
    return true; // cf top comment
 | 
						|
  NonLoc LastOffset = Offset.castAs<NonLoc>();
 | 
						|
 | 
						|
  // Check that the first buffer is sufficiently long.
 | 
						|
  SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
 | 
						|
  Optional<Loc> BufLoc = BufStart.getAs<Loc>();
 | 
						|
  if (!BufLoc)
 | 
						|
    return true; // cf top comment.
 | 
						|
 | 
						|
  SVal BufEnd =
 | 
						|
      svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
 | 
						|
 | 
						|
  // Check for out of bound array element access.
 | 
						|
  const MemRegion *R = BufEnd.getAsRegion();
 | 
						|
  if (!R)
 | 
						|
    return true; // cf top comment.
 | 
						|
 | 
						|
  const ElementRegion *ER = dyn_cast<ElementRegion>(R);
 | 
						|
  if (!ER)
 | 
						|
    return true; // cf top comment.
 | 
						|
 | 
						|
  // FIXME: Does this crash when a non-standard definition
 | 
						|
  // of a library function is encountered?
 | 
						|
  assert(ER->getValueType() == C.getASTContext().CharTy &&
 | 
						|
         "IsFirstBufInBound should only be called with char* ElementRegions");
 | 
						|
 | 
						|
  // Get the size of the array.
 | 
						|
  const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
 | 
						|
  DefinedOrUnknownSVal SizeDV = getDynamicSize(state, superReg, svalBuilder);
 | 
						|
 | 
						|
  // Get the index of the accessed element.
 | 
						|
  DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
 | 
						|
 | 
						|
  ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true);
 | 
						|
 | 
						|
  return static_cast<bool>(StInBound);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
 | 
						|
                                                 ProgramStateRef state,
 | 
						|
                                                 const Expr *E, SVal V,
 | 
						|
                                                 bool IsSourceBuffer,
 | 
						|
                                                 const Expr *Size) {
 | 
						|
  Optional<Loc> L = V.getAs<Loc>();
 | 
						|
  if (!L)
 | 
						|
    return state;
 | 
						|
 | 
						|
  // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
 | 
						|
  // some assumptions about the value that CFRefCount can't. Even so, it should
 | 
						|
  // probably be refactored.
 | 
						|
  if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
 | 
						|
    const MemRegion *R = MR->getRegion()->StripCasts();
 | 
						|
 | 
						|
    // Are we dealing with an ElementRegion?  If so, we should be invalidating
 | 
						|
    // the super-region.
 | 
						|
    if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
 | 
						|
      R = ER->getSuperRegion();
 | 
						|
      // FIXME: What about layers of ElementRegions?
 | 
						|
    }
 | 
						|
 | 
						|
    // Invalidate this region.
 | 
						|
    const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
 | 
						|
 | 
						|
    bool CausesPointerEscape = false;
 | 
						|
    RegionAndSymbolInvalidationTraits ITraits;
 | 
						|
    // Invalidate and escape only indirect regions accessible through the source
 | 
						|
    // buffer.
 | 
						|
    if (IsSourceBuffer) {
 | 
						|
      ITraits.setTrait(R->getBaseRegion(),
 | 
						|
                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
 | 
						|
      ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
 | 
						|
      CausesPointerEscape = true;
 | 
						|
    } else {
 | 
						|
      const MemRegion::Kind& K = R->getKind();
 | 
						|
      if (K == MemRegion::FieldRegionKind)
 | 
						|
        if (Size && IsFirstBufInBound(C, state, E, Size)) {
 | 
						|
          // If destination buffer is a field region and access is in bound,
 | 
						|
          // do not invalidate its super region.
 | 
						|
          ITraits.setTrait(
 | 
						|
              R,
 | 
						|
              RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return state->invalidateRegions(R, E, C.blockCount(), LCtx,
 | 
						|
                                    CausesPointerEscape, nullptr, nullptr,
 | 
						|
                                    &ITraits);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a non-region value by chance, just remove the binding.
 | 
						|
  // FIXME: is this necessary or correct? This handles the non-Region
 | 
						|
  //  cases.  Is it ever valid to store to these?
 | 
						|
  return state->killBinding(*L);
 | 
						|
}
 | 
						|
 | 
						|
bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
 | 
						|
                                     const MemRegion *MR) {
 | 
						|
  switch (MR->getKind()) {
 | 
						|
  case MemRegion::FunctionCodeRegionKind: {
 | 
						|
    if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
 | 
						|
      os << "the address of the function '" << *FD << '\'';
 | 
						|
    else
 | 
						|
      os << "the address of a function";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case MemRegion::BlockCodeRegionKind:
 | 
						|
    os << "block text";
 | 
						|
    return true;
 | 
						|
  case MemRegion::BlockDataRegionKind:
 | 
						|
    os << "a block";
 | 
						|
    return true;
 | 
						|
  case MemRegion::CXXThisRegionKind:
 | 
						|
  case MemRegion::CXXTempObjectRegionKind:
 | 
						|
    os << "a C++ temp object of type "
 | 
						|
       << cast<TypedValueRegion>(MR)->getValueType().getAsString();
 | 
						|
    return true;
 | 
						|
  case MemRegion::VarRegionKind:
 | 
						|
    os << "a variable of type"
 | 
						|
       << cast<TypedValueRegion>(MR)->getValueType().getAsString();
 | 
						|
    return true;
 | 
						|
  case MemRegion::FieldRegionKind:
 | 
						|
    os << "a field of type "
 | 
						|
       << cast<TypedValueRegion>(MR)->getValueType().getAsString();
 | 
						|
    return true;
 | 
						|
  case MemRegion::ObjCIvarRegionKind:
 | 
						|
    os << "an instance variable of type "
 | 
						|
       << cast<TypedValueRegion>(MR)->getValueType().getAsString();
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
 | 
						|
                               const Expr *Size, CheckerContext &C,
 | 
						|
                               ProgramStateRef &State) {
 | 
						|
  SVal MemVal = C.getSVal(DstBuffer);
 | 
						|
  SVal SizeVal = C.getSVal(Size);
 | 
						|
  const MemRegion *MR = MemVal.getAsRegion();
 | 
						|
  if (!MR)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We're about to model memset by producing a "default binding" in the Store.
 | 
						|
  // Our current implementation - RegionStore - doesn't support default bindings
 | 
						|
  // that don't cover the whole base region. So we should first get the offset
 | 
						|
  // and the base region to figure out whether the offset of buffer is 0.
 | 
						|
  RegionOffset Offset = MR->getAsOffset();
 | 
						|
  const MemRegion *BR = Offset.getRegion();
 | 
						|
 | 
						|
  Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
 | 
						|
  if (!SizeNL)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
  ASTContext &Ctx = C.getASTContext();
 | 
						|
 | 
						|
  // void *memset(void *dest, int ch, size_t count);
 | 
						|
  // For now we can only handle the case of offset is 0 and concrete char value.
 | 
						|
  if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
 | 
						|
      Offset.getOffset() == 0) {
 | 
						|
    // Get the base region's size.
 | 
						|
    DefinedOrUnknownSVal SizeDV = getDynamicSize(State, BR, svalBuilder);
 | 
						|
 | 
						|
    ProgramStateRef StateWholeReg, StateNotWholeReg;
 | 
						|
    std::tie(StateWholeReg, StateNotWholeReg) =
 | 
						|
        State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL));
 | 
						|
 | 
						|
    // With the semantic of 'memset()', we should convert the CharVal to
 | 
						|
    // unsigned char.
 | 
						|
    CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
 | 
						|
 | 
						|
    ProgramStateRef StateNullChar, StateNonNullChar;
 | 
						|
    std::tie(StateNullChar, StateNonNullChar) =
 | 
						|
        assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
 | 
						|
 | 
						|
    if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
 | 
						|
        !StateNonNullChar) {
 | 
						|
      // If the 'memset()' acts on the whole region of destination buffer and
 | 
						|
      // the value of the second argument of 'memset()' is zero, bind the second
 | 
						|
      // argument's value to the destination buffer with 'default binding'.
 | 
						|
      // FIXME: Since there is no perfect way to bind the non-zero character, we
 | 
						|
      // can only deal with zero value here. In the future, we need to deal with
 | 
						|
      // the binding of non-zero value in the case of whole region.
 | 
						|
      State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
 | 
						|
                                     C.getLocationContext());
 | 
						|
    } else {
 | 
						|
      // If the destination buffer's extent is not equal to the value of
 | 
						|
      // third argument, just invalidate buffer.
 | 
						|
      State = InvalidateBuffer(C, State, DstBuffer, MemVal,
 | 
						|
                               /*IsSourceBuffer*/ false, Size);
 | 
						|
    }
 | 
						|
 | 
						|
    if (StateNullChar && !StateNonNullChar) {
 | 
						|
      // If the value of the second argument of 'memset()' is zero, set the
 | 
						|
      // string length of destination buffer to 0 directly.
 | 
						|
      State = setCStringLength(State, MR,
 | 
						|
                               svalBuilder.makeZeroVal(Ctx.getSizeType()));
 | 
						|
    } else if (!StateNullChar && StateNonNullChar) {
 | 
						|
      SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
 | 
						|
          CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
 | 
						|
          C.getLocationContext(), C.blockCount());
 | 
						|
 | 
						|
      // If the value of second argument is not zero, then the string length
 | 
						|
      // is at least the size argument.
 | 
						|
      SVal NewStrLenGESize = svalBuilder.evalBinOp(
 | 
						|
          State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
 | 
						|
 | 
						|
      State = setCStringLength(
 | 
						|
          State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
 | 
						|
          MR, NewStrLen);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // If the offset is not zero and char value is not concrete, we can do
 | 
						|
    // nothing but invalidate the buffer.
 | 
						|
    State = InvalidateBuffer(C, State, DstBuffer, MemVal,
 | 
						|
                             /*IsSourceBuffer*/ false, Size);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// evaluation of individual function calls.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void CStringChecker::evalCopyCommon(CheckerContext &C,
 | 
						|
                                    const CallExpr *CE,
 | 
						|
                                    ProgramStateRef state,
 | 
						|
                                    const Expr *Size, const Expr *Dest,
 | 
						|
                                    const Expr *Source, bool Restricted,
 | 
						|
                                    bool IsMempcpy) const {
 | 
						|
  CurrentFunctionDescription = "memory copy function";
 | 
						|
 | 
						|
  // See if the size argument is zero.
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
  SVal sizeVal = state->getSVal(Size, LCtx);
 | 
						|
  QualType sizeTy = Size->getType();
 | 
						|
 | 
						|
  ProgramStateRef stateZeroSize, stateNonZeroSize;
 | 
						|
  std::tie(stateZeroSize, stateNonZeroSize) =
 | 
						|
    assumeZero(C, state, sizeVal, sizeTy);
 | 
						|
 | 
						|
  // Get the value of the Dest.
 | 
						|
  SVal destVal = state->getSVal(Dest, LCtx);
 | 
						|
 | 
						|
  // If the size is zero, there won't be any actual memory access, so
 | 
						|
  // just bind the return value to the destination buffer and return.
 | 
						|
  if (stateZeroSize && !stateNonZeroSize) {
 | 
						|
    stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
 | 
						|
    C.addTransition(stateZeroSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the size can be nonzero, we have to check the other arguments.
 | 
						|
  if (stateNonZeroSize) {
 | 
						|
    state = stateNonZeroSize;
 | 
						|
 | 
						|
    // Ensure the destination is not null. If it is NULL there will be a
 | 
						|
    // NULL pointer dereference.
 | 
						|
    state = checkNonNull(C, state, Dest, destVal, 1);
 | 
						|
    if (!state)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Get the value of the Src.
 | 
						|
    SVal srcVal = state->getSVal(Source, LCtx);
 | 
						|
 | 
						|
    // Ensure the source is not null. If it is NULL there will be a
 | 
						|
    // NULL pointer dereference.
 | 
						|
    state = checkNonNull(C, state, Source, srcVal, 2);
 | 
						|
    if (!state)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Ensure the accesses are valid and that the buffers do not overlap.
 | 
						|
    const char * const writeWarning =
 | 
						|
      "Memory copy function overflows destination buffer";
 | 
						|
    state = CheckBufferAccess(C, state, Size, Dest, Source,
 | 
						|
                              writeWarning, /* sourceWarning = */ nullptr);
 | 
						|
    if (Restricted)
 | 
						|
      state = CheckOverlap(C, state, Size, Dest, Source);
 | 
						|
 | 
						|
    if (!state)
 | 
						|
      return;
 | 
						|
 | 
						|
    // If this is mempcpy, get the byte after the last byte copied and
 | 
						|
    // bind the expr.
 | 
						|
    if (IsMempcpy) {
 | 
						|
      // Get the byte after the last byte copied.
 | 
						|
      SValBuilder &SvalBuilder = C.getSValBuilder();
 | 
						|
      ASTContext &Ctx = SvalBuilder.getContext();
 | 
						|
      QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
 | 
						|
      SVal DestRegCharVal =
 | 
						|
          SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType());
 | 
						|
      SVal lastElement = C.getSValBuilder().evalBinOp(
 | 
						|
          state, BO_Add, DestRegCharVal, sizeVal, Dest->getType());
 | 
						|
      // If we don't know how much we copied, we can at least
 | 
						|
      // conjure a return value for later.
 | 
						|
      if (lastElement.isUnknown())
 | 
						|
        lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
 | 
						|
                                                          C.blockCount());
 | 
						|
 | 
						|
      // The byte after the last byte copied is the return value.
 | 
						|
      state = state->BindExpr(CE, LCtx, lastElement);
 | 
						|
    } else {
 | 
						|
      // All other copies return the destination buffer.
 | 
						|
      // (Well, bcopy() has a void return type, but this won't hurt.)
 | 
						|
      state = state->BindExpr(CE, LCtx, destVal);
 | 
						|
    }
 | 
						|
 | 
						|
    // Invalidate the destination (regular invalidation without pointer-escaping
 | 
						|
    // the address of the top-level region).
 | 
						|
    // FIXME: Even if we can't perfectly model the copy, we should see if we
 | 
						|
    // can use LazyCompoundVals to copy the source values into the destination.
 | 
						|
    // This would probably remove any existing bindings past the end of the
 | 
						|
    // copied region, but that's still an improvement over blank invalidation.
 | 
						|
    state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest),
 | 
						|
                             /*IsSourceBuffer*/false, Size);
 | 
						|
 | 
						|
    // Invalidate the source (const-invalidation without const-pointer-escaping
 | 
						|
    // the address of the top-level region).
 | 
						|
    state = InvalidateBuffer(C, state, Source, C.getSVal(Source),
 | 
						|
                             /*IsSourceBuffer*/true, nullptr);
 | 
						|
 | 
						|
    C.addTransition(state);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
 | 
						|
  // The return value is the address of the destination buffer.
 | 
						|
  const Expr *Dest = CE->getArg(0);
 | 
						|
  ProgramStateRef state = C.getState();
 | 
						|
 | 
						|
  evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
 | 
						|
  // The return value is a pointer to the byte following the last written byte.
 | 
						|
  const Expr *Dest = CE->getArg(0);
 | 
						|
  ProgramStateRef state = C.getState();
 | 
						|
 | 
						|
  evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // void *memmove(void *dst, const void *src, size_t n);
 | 
						|
  // The return value is the address of the destination buffer.
 | 
						|
  const Expr *Dest = CE->getArg(0);
 | 
						|
  ProgramStateRef state = C.getState();
 | 
						|
 | 
						|
  evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // void bcopy(const void *src, void *dst, size_t n);
 | 
						|
  evalCopyCommon(C, CE, C.getState(),
 | 
						|
                 CE->getArg(2), CE->getArg(1), CE->getArg(0));
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // int memcmp(const void *s1, const void *s2, size_t n);
 | 
						|
  CurrentFunctionDescription = "memory comparison function";
 | 
						|
 | 
						|
  const Expr *Left = CE->getArg(0);
 | 
						|
  const Expr *Right = CE->getArg(1);
 | 
						|
  const Expr *Size = CE->getArg(2);
 | 
						|
 | 
						|
  ProgramStateRef state = C.getState();
 | 
						|
  SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
 | 
						|
  // See if the size argument is zero.
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
  SVal sizeVal = state->getSVal(Size, LCtx);
 | 
						|
  QualType sizeTy = Size->getType();
 | 
						|
 | 
						|
  ProgramStateRef stateZeroSize, stateNonZeroSize;
 | 
						|
  std::tie(stateZeroSize, stateNonZeroSize) =
 | 
						|
    assumeZero(C, state, sizeVal, sizeTy);
 | 
						|
 | 
						|
  // If the size can be zero, the result will be 0 in that case, and we don't
 | 
						|
  // have to check either of the buffers.
 | 
						|
  if (stateZeroSize) {
 | 
						|
    state = stateZeroSize;
 | 
						|
    state = state->BindExpr(CE, LCtx,
 | 
						|
                            svalBuilder.makeZeroVal(CE->getType()));
 | 
						|
    C.addTransition(state);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the size can be nonzero, we have to check the other arguments.
 | 
						|
  if (stateNonZeroSize) {
 | 
						|
    state = stateNonZeroSize;
 | 
						|
    // If we know the two buffers are the same, we know the result is 0.
 | 
						|
    // First, get the two buffers' addresses. Another checker will have already
 | 
						|
    // made sure they're not undefined.
 | 
						|
    DefinedOrUnknownSVal LV =
 | 
						|
        state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
 | 
						|
    DefinedOrUnknownSVal RV =
 | 
						|
        state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
 | 
						|
 | 
						|
    // See if they are the same.
 | 
						|
    DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
 | 
						|
    ProgramStateRef StSameBuf, StNotSameBuf;
 | 
						|
    std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
 | 
						|
 | 
						|
    // If the two arguments are the same buffer, we know the result is 0,
 | 
						|
    // and we only need to check one size.
 | 
						|
    if (StSameBuf && !StNotSameBuf) {
 | 
						|
      state = StSameBuf;
 | 
						|
      state = CheckBufferAccess(C, state, Size, Left);
 | 
						|
      if (state) {
 | 
						|
        state = StSameBuf->BindExpr(CE, LCtx,
 | 
						|
                                    svalBuilder.makeZeroVal(CE->getType()));
 | 
						|
        C.addTransition(state);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the two arguments might be different buffers, we have to check
 | 
						|
    // the size of both of them.
 | 
						|
    assert(StNotSameBuf);
 | 
						|
    state = CheckBufferAccess(C, state, Size, Left, Right);
 | 
						|
    if (state) {
 | 
						|
      // The return value is the comparison result, which we don't know.
 | 
						|
      SVal CmpV =
 | 
						|
          svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
 | 
						|
      state = state->BindExpr(CE, LCtx, CmpV);
 | 
						|
      C.addTransition(state);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalstrLength(CheckerContext &C,
 | 
						|
                                   const CallExpr *CE) const {
 | 
						|
  // size_t strlen(const char *s);
 | 
						|
  evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalstrnLength(CheckerContext &C,
 | 
						|
                                    const CallExpr *CE) const {
 | 
						|
  // size_t strnlen(const char *s, size_t maxlen);
 | 
						|
  evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
 | 
						|
                                         bool IsStrnlen) const {
 | 
						|
  CurrentFunctionDescription = "string length function";
 | 
						|
  ProgramStateRef state = C.getState();
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
 | 
						|
  if (IsStrnlen) {
 | 
						|
    const Expr *maxlenExpr = CE->getArg(1);
 | 
						|
    SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
 | 
						|
 | 
						|
    ProgramStateRef stateZeroSize, stateNonZeroSize;
 | 
						|
    std::tie(stateZeroSize, stateNonZeroSize) =
 | 
						|
      assumeZero(C, state, maxlenVal, maxlenExpr->getType());
 | 
						|
 | 
						|
    // If the size can be zero, the result will be 0 in that case, and we don't
 | 
						|
    // have to check the string itself.
 | 
						|
    if (stateZeroSize) {
 | 
						|
      SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
 | 
						|
      stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
 | 
						|
      C.addTransition(stateZeroSize);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the size is GUARANTEED to be zero, we're done!
 | 
						|
    if (!stateNonZeroSize)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Otherwise, record the assumption that the size is nonzero.
 | 
						|
    state = stateNonZeroSize;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the string argument is non-null.
 | 
						|
  const Expr *Arg = CE->getArg(0);
 | 
						|
  SVal ArgVal = state->getSVal(Arg, LCtx);
 | 
						|
 | 
						|
  state = checkNonNull(C, state, Arg, ArgVal, 1);
 | 
						|
 | 
						|
  if (!state)
 | 
						|
    return;
 | 
						|
 | 
						|
  SVal strLength = getCStringLength(C, state, Arg, ArgVal);
 | 
						|
 | 
						|
  // If the argument isn't a valid C string, there's no valid state to
 | 
						|
  // transition to.
 | 
						|
  if (strLength.isUndef())
 | 
						|
    return;
 | 
						|
 | 
						|
  DefinedOrUnknownSVal result = UnknownVal();
 | 
						|
 | 
						|
  // If the check is for strnlen() then bind the return value to no more than
 | 
						|
  // the maxlen value.
 | 
						|
  if (IsStrnlen) {
 | 
						|
    QualType cmpTy = C.getSValBuilder().getConditionType();
 | 
						|
 | 
						|
    // It's a little unfortunate to be getting this again,
 | 
						|
    // but it's not that expensive...
 | 
						|
    const Expr *maxlenExpr = CE->getArg(1);
 | 
						|
    SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
 | 
						|
 | 
						|
    Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
 | 
						|
    Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
 | 
						|
 | 
						|
    if (strLengthNL && maxlenValNL) {
 | 
						|
      ProgramStateRef stateStringTooLong, stateStringNotTooLong;
 | 
						|
 | 
						|
      // Check if the strLength is greater than the maxlen.
 | 
						|
      std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
 | 
						|
          C.getSValBuilder()
 | 
						|
              .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
 | 
						|
              .castAs<DefinedOrUnknownSVal>());
 | 
						|
 | 
						|
      if (stateStringTooLong && !stateStringNotTooLong) {
 | 
						|
        // If the string is longer than maxlen, return maxlen.
 | 
						|
        result = *maxlenValNL;
 | 
						|
      } else if (stateStringNotTooLong && !stateStringTooLong) {
 | 
						|
        // If the string is shorter than maxlen, return its length.
 | 
						|
        result = *strLengthNL;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (result.isUnknown()) {
 | 
						|
      // If we don't have enough information for a comparison, there's
 | 
						|
      // no guarantee the full string length will actually be returned.
 | 
						|
      // All we know is the return value is the min of the string length
 | 
						|
      // and the limit. This is better than nothing.
 | 
						|
      result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
 | 
						|
                                                   C.blockCount());
 | 
						|
      NonLoc resultNL = result.castAs<NonLoc>();
 | 
						|
 | 
						|
      if (strLengthNL) {
 | 
						|
        state = state->assume(C.getSValBuilder().evalBinOpNN(
 | 
						|
                                  state, BO_LE, resultNL, *strLengthNL, cmpTy)
 | 
						|
                                  .castAs<DefinedOrUnknownSVal>(), true);
 | 
						|
      }
 | 
						|
 | 
						|
      if (maxlenValNL) {
 | 
						|
        state = state->assume(C.getSValBuilder().evalBinOpNN(
 | 
						|
                                  state, BO_LE, resultNL, *maxlenValNL, cmpTy)
 | 
						|
                                  .castAs<DefinedOrUnknownSVal>(), true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    // This is a plain strlen(), not strnlen().
 | 
						|
    result = strLength.castAs<DefinedOrUnknownSVal>();
 | 
						|
 | 
						|
    // If we don't know the length of the string, conjure a return
 | 
						|
    // value, so it can be used in constraints, at least.
 | 
						|
    if (result.isUnknown()) {
 | 
						|
      result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
 | 
						|
                                                   C.blockCount());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Bind the return value.
 | 
						|
  assert(!result.isUnknown() && "Should have conjured a value by now");
 | 
						|
  state = state->BindExpr(CE, LCtx, result);
 | 
						|
  C.addTransition(state);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // char *strcpy(char *restrict dst, const char *restrict src);
 | 
						|
  evalStrcpyCommon(C, CE,
 | 
						|
                   /* ReturnEnd = */ false,
 | 
						|
                   /* IsBounded = */ false,
 | 
						|
                   /* appendK = */ ConcatFnKind::none);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
 | 
						|
  evalStrcpyCommon(C, CE,
 | 
						|
                   /* ReturnEnd = */ false,
 | 
						|
                   /* IsBounded = */ true,
 | 
						|
                   /* appendK = */ ConcatFnKind::none);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // char *stpcpy(char *restrict dst, const char *restrict src);
 | 
						|
  evalStrcpyCommon(C, CE,
 | 
						|
                   /* ReturnEnd = */ true,
 | 
						|
                   /* IsBounded = */ false,
 | 
						|
                   /* appendK = */ ConcatFnKind::none);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // size_t strlcpy(char *dest, const char *src, size_t size);
 | 
						|
  evalStrcpyCommon(C, CE,
 | 
						|
                   /* ReturnEnd = */ true,
 | 
						|
                   /* IsBounded = */ true,
 | 
						|
                   /* appendK = */ ConcatFnKind::none,
 | 
						|
                   /* returnPtr = */ false);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // char *strcat(char *restrict s1, const char *restrict s2);
 | 
						|
  evalStrcpyCommon(C, CE,
 | 
						|
                   /* ReturnEnd = */ false,
 | 
						|
                   /* IsBounded = */ false,
 | 
						|
                   /* appendK = */ ConcatFnKind::strcat);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
 | 
						|
  evalStrcpyCommon(C, CE,
 | 
						|
                   /* ReturnEnd = */ false,
 | 
						|
                   /* IsBounded = */ true,
 | 
						|
                   /* appendK = */ ConcatFnKind::strcat);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  // size_t strlcat(char *dst, const char *src, size_t size);
 | 
						|
  // It will append at most size - strlen(dst) - 1 bytes,
 | 
						|
  // NULL-terminating the result.
 | 
						|
  evalStrcpyCommon(C, CE,
 | 
						|
                   /* ReturnEnd = */ false,
 | 
						|
                   /* IsBounded = */ true,
 | 
						|
                   /* appendK = */ ConcatFnKind::strlcat,
 | 
						|
                   /* returnPtr = */ false);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
 | 
						|
                                      bool ReturnEnd, bool IsBounded,
 | 
						|
                                      ConcatFnKind appendK,
 | 
						|
                                      bool returnPtr) const {
 | 
						|
  if (appendK == ConcatFnKind::none)
 | 
						|
    CurrentFunctionDescription = "string copy function";
 | 
						|
  else
 | 
						|
    CurrentFunctionDescription = "string concatenation function";
 | 
						|
  ProgramStateRef state = C.getState();
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
 | 
						|
  // Check that the destination is non-null.
 | 
						|
  const Expr *Dst = CE->getArg(0);
 | 
						|
  SVal DstVal = state->getSVal(Dst, LCtx);
 | 
						|
 | 
						|
  state = checkNonNull(C, state, Dst, DstVal, 1);
 | 
						|
  if (!state)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check that the source is non-null.
 | 
						|
  const Expr *srcExpr = CE->getArg(1);
 | 
						|
  SVal srcVal = state->getSVal(srcExpr, LCtx);
 | 
						|
  state = checkNonNull(C, state, srcExpr, srcVal, 2);
 | 
						|
  if (!state)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Get the string length of the source.
 | 
						|
  SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
 | 
						|
  Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
 | 
						|
 | 
						|
  // Get the string length of the destination buffer.
 | 
						|
  SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
 | 
						|
  Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
 | 
						|
 | 
						|
  // If the source isn't a valid C string, give up.
 | 
						|
  if (strLength.isUndef())
 | 
						|
    return;
 | 
						|
 | 
						|
  SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
  QualType cmpTy = svalBuilder.getConditionType();
 | 
						|
  QualType sizeTy = svalBuilder.getContext().getSizeType();
 | 
						|
 | 
						|
  // These two values allow checking two kinds of errors:
 | 
						|
  // - actual overflows caused by a source that doesn't fit in the destination
 | 
						|
  // - potential overflows caused by a bound that could exceed the destination
 | 
						|
  SVal amountCopied = UnknownVal();
 | 
						|
  SVal maxLastElementIndex = UnknownVal();
 | 
						|
  const char *boundWarning = nullptr;
 | 
						|
 | 
						|
  state = CheckOverlap(C, state, IsBounded ? CE->getArg(2) : CE->getArg(1), Dst,
 | 
						|
                       srcExpr);
 | 
						|
 | 
						|
  if (!state)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If the function is strncpy, strncat, etc... it is bounded.
 | 
						|
  if (IsBounded) {
 | 
						|
    // Get the max number of characters to copy.
 | 
						|
    const Expr *lenExpr = CE->getArg(2);
 | 
						|
    SVal lenVal = state->getSVal(lenExpr, LCtx);
 | 
						|
 | 
						|
    // Protect against misdeclared strncpy().
 | 
						|
    lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
 | 
						|
 | 
						|
    Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
 | 
						|
 | 
						|
    // If we know both values, we might be able to figure out how much
 | 
						|
    // we're copying.
 | 
						|
    if (strLengthNL && lenValNL) {
 | 
						|
      switch (appendK) {
 | 
						|
      case ConcatFnKind::none:
 | 
						|
      case ConcatFnKind::strcat: {
 | 
						|
        ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
 | 
						|
        // Check if the max number to copy is less than the length of the src.
 | 
						|
        // If the bound is equal to the source length, strncpy won't null-
 | 
						|
        // terminate the result!
 | 
						|
        std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
 | 
						|
            svalBuilder
 | 
						|
                .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
 | 
						|
                .castAs<DefinedOrUnknownSVal>());
 | 
						|
 | 
						|
        if (stateSourceTooLong && !stateSourceNotTooLong) {
 | 
						|
          // Max number to copy is less than the length of the src, so the
 | 
						|
          // actual strLength copied is the max number arg.
 | 
						|
          state = stateSourceTooLong;
 | 
						|
          amountCopied = lenVal;
 | 
						|
 | 
						|
        } else if (!stateSourceTooLong && stateSourceNotTooLong) {
 | 
						|
          // The source buffer entirely fits in the bound.
 | 
						|
          state = stateSourceNotTooLong;
 | 
						|
          amountCopied = strLength;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case ConcatFnKind::strlcat:
 | 
						|
        if (!dstStrLengthNL)
 | 
						|
          return;
 | 
						|
 | 
						|
        // amountCopied = min (size - dstLen - 1 , srcLen)
 | 
						|
        SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
 | 
						|
                                                 *dstStrLengthNL, sizeTy);
 | 
						|
        if (!freeSpace.getAs<NonLoc>())
 | 
						|
          return;
 | 
						|
        freeSpace =
 | 
						|
            svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
 | 
						|
                                  svalBuilder.makeIntVal(1, sizeTy), sizeTy);
 | 
						|
        Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
 | 
						|
 | 
						|
        // While unlikely, it is possible that the subtraction is
 | 
						|
        // too complex to compute, let's check whether it succeeded.
 | 
						|
        if (!freeSpaceNL)
 | 
						|
          return;
 | 
						|
        SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
 | 
						|
            state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
 | 
						|
 | 
						|
        ProgramStateRef TrueState, FalseState;
 | 
						|
        std::tie(TrueState, FalseState) =
 | 
						|
            state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
 | 
						|
 | 
						|
        // srcStrLength <= size - dstStrLength -1
 | 
						|
        if (TrueState && !FalseState) {
 | 
						|
          amountCopied = strLength;
 | 
						|
        }
 | 
						|
 | 
						|
        // srcStrLength > size - dstStrLength -1
 | 
						|
        if (!TrueState && FalseState) {
 | 
						|
          amountCopied = freeSpace;
 | 
						|
        }
 | 
						|
 | 
						|
        if (TrueState && FalseState)
 | 
						|
          amountCopied = UnknownVal();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // We still want to know if the bound is known to be too large.
 | 
						|
    if (lenValNL) {
 | 
						|
      switch (appendK) {
 | 
						|
      case ConcatFnKind::strcat:
 | 
						|
        // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
 | 
						|
 | 
						|
        // Get the string length of the destination. If the destination is
 | 
						|
        // memory that can't have a string length, we shouldn't be copying
 | 
						|
        // into it anyway.
 | 
						|
        if (dstStrLength.isUndef())
 | 
						|
          return;
 | 
						|
 | 
						|
        if (dstStrLengthNL) {
 | 
						|
          maxLastElementIndex = svalBuilder.evalBinOpNN(
 | 
						|
              state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
 | 
						|
 | 
						|
          boundWarning = "Size argument is greater than the free space in the "
 | 
						|
                         "destination buffer";
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case ConcatFnKind::none:
 | 
						|
      case ConcatFnKind::strlcat:
 | 
						|
        // For strncpy and strlcat, this is just checking
 | 
						|
        //  that lenVal <= sizeof(dst).
 | 
						|
        // (Yes, strncpy and strncat differ in how they treat termination.
 | 
						|
        // strncat ALWAYS terminates, but strncpy doesn't.)
 | 
						|
 | 
						|
        // We need a special case for when the copy size is zero, in which
 | 
						|
        // case strncpy will do no work at all. Our bounds check uses n-1
 | 
						|
        // as the last element accessed, so n == 0 is problematic.
 | 
						|
        ProgramStateRef StateZeroSize, StateNonZeroSize;
 | 
						|
        std::tie(StateZeroSize, StateNonZeroSize) =
 | 
						|
            assumeZero(C, state, *lenValNL, sizeTy);
 | 
						|
 | 
						|
        // If the size is known to be zero, we're done.
 | 
						|
        if (StateZeroSize && !StateNonZeroSize) {
 | 
						|
          if (returnPtr) {
 | 
						|
            StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
 | 
						|
          } else {
 | 
						|
            if (appendK == ConcatFnKind::none) {
 | 
						|
              // strlcpy returns strlen(src)
 | 
						|
              StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength);
 | 
						|
            } else {
 | 
						|
              // strlcat returns strlen(src) + strlen(dst)
 | 
						|
              SVal retSize = svalBuilder.evalBinOp(
 | 
						|
                  state, BO_Add, strLength, dstStrLength, sizeTy);
 | 
						|
              StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          C.addTransition(StateZeroSize);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        // Otherwise, go ahead and figure out the last element we'll touch.
 | 
						|
        // We don't record the non-zero assumption here because we can't
 | 
						|
        // be sure. We won't warn on a possible zero.
 | 
						|
        NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
 | 
						|
        maxLastElementIndex =
 | 
						|
            svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
 | 
						|
        boundWarning = "Size argument is greater than the length of the "
 | 
						|
                       "destination buffer";
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // The function isn't bounded. The amount copied should match the length
 | 
						|
    // of the source buffer.
 | 
						|
    amountCopied = strLength;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(state);
 | 
						|
 | 
						|
  // This represents the number of characters copied into the destination
 | 
						|
  // buffer. (It may not actually be the strlen if the destination buffer
 | 
						|
  // is not terminated.)
 | 
						|
  SVal finalStrLength = UnknownVal();
 | 
						|
  SVal strlRetVal = UnknownVal();
 | 
						|
 | 
						|
  if (appendK == ConcatFnKind::none && !returnPtr) {
 | 
						|
    // strlcpy returns the sizeof(src)
 | 
						|
    strlRetVal = strLength;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is an appending function (strcat, strncat...) then set the
 | 
						|
  // string length to strlen(src) + strlen(dst) since the buffer will
 | 
						|
  // ultimately contain both.
 | 
						|
  if (appendK != ConcatFnKind::none) {
 | 
						|
    // Get the string length of the destination. If the destination is memory
 | 
						|
    // that can't have a string length, we shouldn't be copying into it anyway.
 | 
						|
    if (dstStrLength.isUndef())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
 | 
						|
      strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
 | 
						|
                                           *dstStrLengthNL, sizeTy);
 | 
						|
    }
 | 
						|
 | 
						|
    Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
 | 
						|
 | 
						|
    // If we know both string lengths, we might know the final string length.
 | 
						|
    if (amountCopiedNL && dstStrLengthNL) {
 | 
						|
      // Make sure the two lengths together don't overflow a size_t.
 | 
						|
      state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
 | 
						|
      if (!state)
 | 
						|
        return;
 | 
						|
 | 
						|
      finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
 | 
						|
                                               *dstStrLengthNL, sizeTy);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we couldn't get a single value for the final string length,
 | 
						|
    // we can at least bound it by the individual lengths.
 | 
						|
    if (finalStrLength.isUnknown()) {
 | 
						|
      // Try to get a "hypothetical" string length symbol, which we can later
 | 
						|
      // set as a real value if that turns out to be the case.
 | 
						|
      finalStrLength = getCStringLength(C, state, CE, DstVal, true);
 | 
						|
      assert(!finalStrLength.isUndef());
 | 
						|
 | 
						|
      if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
 | 
						|
        if (amountCopiedNL && appendK == ConcatFnKind::none) {
 | 
						|
          // we overwrite dst string with the src
 | 
						|
          // finalStrLength >= srcStrLength
 | 
						|
          SVal sourceInResult = svalBuilder.evalBinOpNN(
 | 
						|
              state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
 | 
						|
          state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
 | 
						|
                                true);
 | 
						|
          if (!state)
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        if (dstStrLengthNL && appendK != ConcatFnKind::none) {
 | 
						|
          // we extend the dst string with the src
 | 
						|
          // finalStrLength >= dstStrLength
 | 
						|
          SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
 | 
						|
                                                      *finalStrLengthNL,
 | 
						|
                                                      *dstStrLengthNL,
 | 
						|
                                                      cmpTy);
 | 
						|
          state =
 | 
						|
              state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
 | 
						|
          if (!state)
 | 
						|
            return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
 | 
						|
    // the final string length will match the input string length.
 | 
						|
    finalStrLength = amountCopied;
 | 
						|
  }
 | 
						|
 | 
						|
  SVal Result;
 | 
						|
 | 
						|
  if (returnPtr) {
 | 
						|
    // The final result of the function will either be a pointer past the last
 | 
						|
    // copied element, or a pointer to the start of the destination buffer.
 | 
						|
    Result = (ReturnEnd ? UnknownVal() : DstVal);
 | 
						|
  } else {
 | 
						|
    if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
 | 
						|
      //strlcpy, strlcat
 | 
						|
      Result = strlRetVal;
 | 
						|
    else
 | 
						|
      Result = finalStrLength;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(state);
 | 
						|
 | 
						|
  // If the destination is a MemRegion, try to check for a buffer overflow and
 | 
						|
  // record the new string length.
 | 
						|
  if (Optional<loc::MemRegionVal> dstRegVal =
 | 
						|
      DstVal.getAs<loc::MemRegionVal>()) {
 | 
						|
    QualType ptrTy = Dst->getType();
 | 
						|
 | 
						|
    // If we have an exact value on a bounded copy, use that to check for
 | 
						|
    // overflows, rather than our estimate about how much is actually copied.
 | 
						|
    if (boundWarning) {
 | 
						|
      if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
 | 
						|
        SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
 | 
						|
            *maxLastNL, ptrTy);
 | 
						|
        state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
 | 
						|
            boundWarning);
 | 
						|
        if (!state)
 | 
						|
          return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Then, if the final length is known...
 | 
						|
    if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
 | 
						|
      SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
 | 
						|
          *knownStrLength, ptrTy);
 | 
						|
 | 
						|
      // ...and we haven't checked the bound, we'll check the actual copy.
 | 
						|
      if (!boundWarning) {
 | 
						|
        const char * const warningMsg =
 | 
						|
          "String copy function overflows destination buffer";
 | 
						|
        state = CheckLocation(C, state, Dst, lastElement, warningMsg);
 | 
						|
        if (!state)
 | 
						|
          return;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is a stpcpy-style copy, the last element is the return value.
 | 
						|
      if (returnPtr && ReturnEnd)
 | 
						|
        Result = lastElement;
 | 
						|
    }
 | 
						|
 | 
						|
    // Invalidate the destination (regular invalidation without pointer-escaping
 | 
						|
    // the address of the top-level region). This must happen before we set the
 | 
						|
    // C string length because invalidation will clear the length.
 | 
						|
    // FIXME: Even if we can't perfectly model the copy, we should see if we
 | 
						|
    // can use LazyCompoundVals to copy the source values into the destination.
 | 
						|
    // This would probably remove any existing bindings past the end of the
 | 
						|
    // string, but that's still an improvement over blank invalidation.
 | 
						|
    state = InvalidateBuffer(C, state, Dst, *dstRegVal,
 | 
						|
        /*IsSourceBuffer*/false, nullptr);
 | 
						|
 | 
						|
    // Invalidate the source (const-invalidation without const-pointer-escaping
 | 
						|
    // the address of the top-level region).
 | 
						|
    state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true,
 | 
						|
        nullptr);
 | 
						|
 | 
						|
    // Set the C string length of the destination, if we know it.
 | 
						|
    if (IsBounded && (appendK == ConcatFnKind::none)) {
 | 
						|
      // strncpy is annoying in that it doesn't guarantee to null-terminate
 | 
						|
      // the result string. If the original string didn't fit entirely inside
 | 
						|
      // the bound (including the null-terminator), we don't know how long the
 | 
						|
      // result is.
 | 
						|
      if (amountCopied != strLength)
 | 
						|
        finalStrLength = UnknownVal();
 | 
						|
    }
 | 
						|
    state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(state);
 | 
						|
 | 
						|
  if (returnPtr) {
 | 
						|
    // If this is a stpcpy-style copy, but we were unable to check for a buffer
 | 
						|
    // overflow, we still need a result. Conjure a return value.
 | 
						|
    if (ReturnEnd && Result.isUnknown()) {
 | 
						|
      Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Set the return value.
 | 
						|
  state = state->BindExpr(CE, LCtx, Result);
 | 
						|
  C.addTransition(state);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  //int strcmp(const char *s1, const char *s2);
 | 
						|
  evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  //int strncmp(const char *s1, const char *s2, size_t n);
 | 
						|
  evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrcasecmp(CheckerContext &C,
 | 
						|
    const CallExpr *CE) const {
 | 
						|
  //int strcasecmp(const char *s1, const char *s2);
 | 
						|
  evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrncasecmp(CheckerContext &C,
 | 
						|
    const CallExpr *CE) const {
 | 
						|
  //int strncasecmp(const char *s1, const char *s2, size_t n);
 | 
						|
  evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
 | 
						|
    bool IsBounded, bool IgnoreCase) const {
 | 
						|
  CurrentFunctionDescription = "string comparison function";
 | 
						|
  ProgramStateRef state = C.getState();
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
 | 
						|
  // Check that the first string is non-null
 | 
						|
  const Expr *s1 = CE->getArg(0);
 | 
						|
  SVal s1Val = state->getSVal(s1, LCtx);
 | 
						|
  state = checkNonNull(C, state, s1, s1Val, 1);
 | 
						|
  if (!state)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check that the second string is non-null.
 | 
						|
  const Expr *s2 = CE->getArg(1);
 | 
						|
  SVal s2Val = state->getSVal(s2, LCtx);
 | 
						|
  state = checkNonNull(C, state, s2, s2Val, 2);
 | 
						|
  if (!state)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Get the string length of the first string or give up.
 | 
						|
  SVal s1Length = getCStringLength(C, state, s1, s1Val);
 | 
						|
  if (s1Length.isUndef())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Get the string length of the second string or give up.
 | 
						|
  SVal s2Length = getCStringLength(C, state, s2, s2Val);
 | 
						|
  if (s2Length.isUndef())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we know the two buffers are the same, we know the result is 0.
 | 
						|
  // First, get the two buffers' addresses. Another checker will have already
 | 
						|
  // made sure they're not undefined.
 | 
						|
  DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
 | 
						|
  DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
 | 
						|
 | 
						|
  // See if they are the same.
 | 
						|
  SValBuilder &svalBuilder = C.getSValBuilder();
 | 
						|
  DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
 | 
						|
  ProgramStateRef StSameBuf, StNotSameBuf;
 | 
						|
  std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
 | 
						|
 | 
						|
  // If the two arguments might be the same buffer, we know the result is 0,
 | 
						|
  // and we only need to check one size.
 | 
						|
  if (StSameBuf) {
 | 
						|
    StSameBuf = StSameBuf->BindExpr(CE, LCtx,
 | 
						|
        svalBuilder.makeZeroVal(CE->getType()));
 | 
						|
    C.addTransition(StSameBuf);
 | 
						|
 | 
						|
    // If the two arguments are GUARANTEED to be the same, we're done!
 | 
						|
    if (!StNotSameBuf)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(StNotSameBuf);
 | 
						|
  state = StNotSameBuf;
 | 
						|
 | 
						|
  // At this point we can go about comparing the two buffers.
 | 
						|
  // For now, we only do this if they're both known string literals.
 | 
						|
 | 
						|
  // Attempt to extract string literals from both expressions.
 | 
						|
  const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
 | 
						|
  const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
 | 
						|
  bool canComputeResult = false;
 | 
						|
  SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
 | 
						|
      C.blockCount());
 | 
						|
 | 
						|
  if (s1StrLiteral && s2StrLiteral) {
 | 
						|
    StringRef s1StrRef = s1StrLiteral->getString();
 | 
						|
    StringRef s2StrRef = s2StrLiteral->getString();
 | 
						|
 | 
						|
    if (IsBounded) {
 | 
						|
      // Get the max number of characters to compare.
 | 
						|
      const Expr *lenExpr = CE->getArg(2);
 | 
						|
      SVal lenVal = state->getSVal(lenExpr, LCtx);
 | 
						|
 | 
						|
      // If the length is known, we can get the right substrings.
 | 
						|
      if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
 | 
						|
        // Create substrings of each to compare the prefix.
 | 
						|
        s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
 | 
						|
        s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
 | 
						|
        canComputeResult = true;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // This is a normal, unbounded strcmp.
 | 
						|
      canComputeResult = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (canComputeResult) {
 | 
						|
      // Real strcmp stops at null characters.
 | 
						|
      size_t s1Term = s1StrRef.find('\0');
 | 
						|
      if (s1Term != StringRef::npos)
 | 
						|
        s1StrRef = s1StrRef.substr(0, s1Term);
 | 
						|
 | 
						|
      size_t s2Term = s2StrRef.find('\0');
 | 
						|
      if (s2Term != StringRef::npos)
 | 
						|
        s2StrRef = s2StrRef.substr(0, s2Term);
 | 
						|
 | 
						|
      // Use StringRef's comparison methods to compute the actual result.
 | 
						|
      int compareRes = IgnoreCase ? s1StrRef.compare_lower(s2StrRef)
 | 
						|
        : s1StrRef.compare(s2StrRef);
 | 
						|
 | 
						|
      // The strcmp function returns an integer greater than, equal to, or less
 | 
						|
      // than zero, [c11, p7.24.4.2].
 | 
						|
      if (compareRes == 0) {
 | 
						|
        resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
 | 
						|
        // Constrain strcmp's result range based on the result of StringRef's
 | 
						|
        // comparison methods.
 | 
						|
        BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT;
 | 
						|
        SVal compareWithZero =
 | 
						|
          svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
 | 
						|
              svalBuilder.getConditionType());
 | 
						|
        DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
 | 
						|
        state = state->assume(compareWithZeroVal, true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  state = state->BindExpr(CE, LCtx, resultVal);
 | 
						|
 | 
						|
  // Record this as a possible path.
 | 
						|
  C.addTransition(state);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  //char *strsep(char **stringp, const char *delim);
 | 
						|
  // Sanity: does the search string parameter match the return type?
 | 
						|
  const Expr *SearchStrPtr = CE->getArg(0);
 | 
						|
  QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType();
 | 
						|
  if (CharPtrTy.isNull() ||
 | 
						|
      CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
 | 
						|
    return;
 | 
						|
 | 
						|
  CurrentFunctionDescription = "strsep()";
 | 
						|
  ProgramStateRef State = C.getState();
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
 | 
						|
  // Check that the search string pointer is non-null (though it may point to
 | 
						|
  // a null string).
 | 
						|
  SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx);
 | 
						|
  State = checkNonNull(C, State, SearchStrPtr, SearchStrVal, 1);
 | 
						|
  if (!State)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check that the delimiter string is non-null.
 | 
						|
  const Expr *DelimStr = CE->getArg(1);
 | 
						|
  SVal DelimStrVal = State->getSVal(DelimStr, LCtx);
 | 
						|
  State = checkNonNull(C, State, DelimStr, DelimStrVal, 2);
 | 
						|
  if (!State)
 | 
						|
    return;
 | 
						|
 | 
						|
  SValBuilder &SVB = C.getSValBuilder();
 | 
						|
  SVal Result;
 | 
						|
  if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
 | 
						|
    // Get the current value of the search string pointer, as a char*.
 | 
						|
    Result = State->getSVal(*SearchStrLoc, CharPtrTy);
 | 
						|
 | 
						|
    // Invalidate the search string, representing the change of one delimiter
 | 
						|
    // character to NUL.
 | 
						|
    State = InvalidateBuffer(C, State, SearchStrPtr, Result,
 | 
						|
        /*IsSourceBuffer*/false, nullptr);
 | 
						|
 | 
						|
    // Overwrite the search string pointer. The new value is either an address
 | 
						|
    // further along in the same string, or NULL if there are no more tokens.
 | 
						|
    State = State->bindLoc(*SearchStrLoc,
 | 
						|
        SVB.conjureSymbolVal(getTag(),
 | 
						|
          CE,
 | 
						|
          LCtx,
 | 
						|
          CharPtrTy,
 | 
						|
          C.blockCount()),
 | 
						|
        LCtx);
 | 
						|
  } else {
 | 
						|
    assert(SearchStrVal.isUnknown());
 | 
						|
    // Conjure a symbolic value. It's the best we can do.
 | 
						|
    Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the return value, and finish.
 | 
						|
  State = State->BindExpr(CE, LCtx, Result);
 | 
						|
  C.addTransition(State);
 | 
						|
}
 | 
						|
 | 
						|
// These should probably be moved into a C++ standard library checker.
 | 
						|
void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  evalStdCopyCommon(C, CE);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStdCopyBackward(CheckerContext &C,
 | 
						|
    const CallExpr *CE) const {
 | 
						|
  evalStdCopyCommon(C, CE);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalStdCopyCommon(CheckerContext &C,
 | 
						|
    const CallExpr *CE) const {
 | 
						|
  if (!CE->getArg(2)->getType()->isPointerType())
 | 
						|
    return;
 | 
						|
 | 
						|
  ProgramStateRef State = C.getState();
 | 
						|
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
 | 
						|
  // template <class _InputIterator, class _OutputIterator>
 | 
						|
  // _OutputIterator
 | 
						|
  // copy(_InputIterator __first, _InputIterator __last,
 | 
						|
  //        _OutputIterator __result)
 | 
						|
 | 
						|
  // Invalidate the destination buffer
 | 
						|
  const Expr *Dst = CE->getArg(2);
 | 
						|
  SVal DstVal = State->getSVal(Dst, LCtx);
 | 
						|
  State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
 | 
						|
      /*Size=*/nullptr);
 | 
						|
 | 
						|
  SValBuilder &SVB = C.getSValBuilder();
 | 
						|
 | 
						|
  SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
 | 
						|
  State = State->BindExpr(CE, LCtx, ResultVal);
 | 
						|
 | 
						|
  C.addTransition(State);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  CurrentFunctionDescription = "memory set function";
 | 
						|
 | 
						|
  const Expr *Mem = CE->getArg(0);
 | 
						|
  const Expr *CharE = CE->getArg(1);
 | 
						|
  const Expr *Size = CE->getArg(2);
 | 
						|
  ProgramStateRef State = C.getState();
 | 
						|
 | 
						|
  // See if the size argument is zero.
 | 
						|
  const LocationContext *LCtx = C.getLocationContext();
 | 
						|
  SVal SizeVal = State->getSVal(Size, LCtx);
 | 
						|
  QualType SizeTy = Size->getType();
 | 
						|
 | 
						|
  ProgramStateRef StateZeroSize, StateNonZeroSize;
 | 
						|
  std::tie(StateZeroSize, StateNonZeroSize) =
 | 
						|
    assumeZero(C, State, SizeVal, SizeTy);
 | 
						|
 | 
						|
  // Get the value of the memory area.
 | 
						|
  SVal MemVal = State->getSVal(Mem, LCtx);
 | 
						|
 | 
						|
  // If the size is zero, there won't be any actual memory access, so
 | 
						|
  // just bind the return value to the Mem buffer and return.
 | 
						|
  if (StateZeroSize && !StateNonZeroSize) {
 | 
						|
    StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal);
 | 
						|
    C.addTransition(StateZeroSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure the memory area is not null.
 | 
						|
  // If it is NULL there will be a NULL pointer dereference.
 | 
						|
  State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1);
 | 
						|
  if (!State)
 | 
						|
    return;
 | 
						|
 | 
						|
  State = CheckBufferAccess(C, State, Size, Mem);
 | 
						|
  if (!State)
 | 
						|
    return;
 | 
						|
 | 
						|
  // According to the values of the arguments, bind the value of the second
 | 
						|
  // argument to the destination buffer and set string length, or just
 | 
						|
  // invalidate the destination buffer.
 | 
						|
  if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State))
 | 
						|
    return;
 | 
						|
 | 
						|
  State = State->BindExpr(CE, LCtx, MemVal);
 | 
						|
  C.addTransition(State);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const {
 | 
						|
  CurrentFunctionDescription = "memory clearance function";
 | 
						|
 | 
						|
  const Expr *Mem = CE->getArg(0);
 | 
						|
  const Expr *Size = CE->getArg(1);
 | 
						|
  SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
 | 
						|
 | 
						|
  ProgramStateRef State = C.getState();
 | 
						|
 | 
						|
  // See if the size argument is zero.
 | 
						|
  SVal SizeVal = C.getSVal(Size);
 | 
						|
  QualType SizeTy = Size->getType();
 | 
						|
 | 
						|
  ProgramStateRef StateZeroSize, StateNonZeroSize;
 | 
						|
  std::tie(StateZeroSize, StateNonZeroSize) =
 | 
						|
    assumeZero(C, State, SizeVal, SizeTy);
 | 
						|
 | 
						|
  // If the size is zero, there won't be any actual memory access,
 | 
						|
  // In this case we just return.
 | 
						|
  if (StateZeroSize && !StateNonZeroSize) {
 | 
						|
    C.addTransition(StateZeroSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the value of the memory area.
 | 
						|
  SVal MemVal = C.getSVal(Mem);
 | 
						|
 | 
						|
  // Ensure the memory area is not null.
 | 
						|
  // If it is NULL there will be a NULL pointer dereference.
 | 
						|
  State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1);
 | 
						|
  if (!State)
 | 
						|
    return;
 | 
						|
 | 
						|
  State = CheckBufferAccess(C, State, Size, Mem);
 | 
						|
  if (!State)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!memsetAux(Mem, Zero, Size, C, State))
 | 
						|
    return;
 | 
						|
 | 
						|
  C.addTransition(State);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// The driver method, and other Checker callbacks.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
 | 
						|
                                                     CheckerContext &C) const {
 | 
						|
  const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
 | 
						|
  if (!CE)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
 | 
						|
  if (!FD)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Call.isCalled(StdCopy)) {
 | 
						|
    return &CStringChecker::evalStdCopy;
 | 
						|
  } else if (Call.isCalled(StdCopyBackward)) {
 | 
						|
    return &CStringChecker::evalStdCopyBackward;
 | 
						|
  }
 | 
						|
 | 
						|
  // Pro-actively check that argument types are safe to do arithmetic upon.
 | 
						|
  // We do not want to crash if someone accidentally passes a structure
 | 
						|
  // into, say, a C++ overload of any of these functions. We could not check
 | 
						|
  // that for std::copy because they may have arguments of other types.
 | 
						|
  for (auto I : CE->arguments()) {
 | 
						|
    QualType T = I->getType();
 | 
						|
    if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  const FnCheck *Callback = Callbacks.lookup(Call);
 | 
						|
  if (Callback)
 | 
						|
    return *Callback;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
 | 
						|
  FnCheck Callback = identifyCall(Call, C);
 | 
						|
 | 
						|
  // If the callee isn't a string function, let another checker handle it.
 | 
						|
  if (!Callback)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check and evaluate the call.
 | 
						|
  const auto *CE = cast<CallExpr>(Call.getOriginExpr());
 | 
						|
  (this->*Callback)(C, CE);
 | 
						|
 | 
						|
  // If the evaluate call resulted in no change, chain to the next eval call
 | 
						|
  // handler.
 | 
						|
  // Note, the custom CString evaluation calls assume that basic safety
 | 
						|
  // properties are held. However, if the user chooses to turn off some of these
 | 
						|
  // checks, we ignore the issues and leave the call evaluation to a generic
 | 
						|
  // handler.
 | 
						|
  return C.isDifferent();
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
 | 
						|
  // Record string length for char a[] = "abc";
 | 
						|
  ProgramStateRef state = C.getState();
 | 
						|
 | 
						|
  for (const auto *I : DS->decls()) {
 | 
						|
    const VarDecl *D = dyn_cast<VarDecl>(I);
 | 
						|
    if (!D)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // FIXME: Handle array fields of structs.
 | 
						|
    if (!D->getType()->isArrayType())
 | 
						|
      continue;
 | 
						|
 | 
						|
    const Expr *Init = D->getInit();
 | 
						|
    if (!Init)
 | 
						|
      continue;
 | 
						|
    if (!isa<StringLiteral>(Init))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Loc VarLoc = state->getLValue(D, C.getLocationContext());
 | 
						|
    const MemRegion *MR = VarLoc.getAsRegion();
 | 
						|
    if (!MR)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SVal StrVal = C.getSVal(Init);
 | 
						|
    assert(StrVal.isValid() && "Initializer string is unknown or undefined");
 | 
						|
    DefinedOrUnknownSVal strLength =
 | 
						|
      getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
 | 
						|
 | 
						|
    state = state->set<CStringLength>(MR, strLength);
 | 
						|
  }
 | 
						|
 | 
						|
  C.addTransition(state);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef
 | 
						|
CStringChecker::checkRegionChanges(ProgramStateRef state,
 | 
						|
    const InvalidatedSymbols *,
 | 
						|
    ArrayRef<const MemRegion *> ExplicitRegions,
 | 
						|
    ArrayRef<const MemRegion *> Regions,
 | 
						|
    const LocationContext *LCtx,
 | 
						|
    const CallEvent *Call) const {
 | 
						|
  CStringLengthTy Entries = state->get<CStringLength>();
 | 
						|
  if (Entries.isEmpty())
 | 
						|
    return state;
 | 
						|
 | 
						|
  llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
 | 
						|
  llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
 | 
						|
 | 
						|
  // First build sets for the changed regions and their super-regions.
 | 
						|
  for (ArrayRef<const MemRegion *>::iterator
 | 
						|
      I = Regions.begin(), E = Regions.end(); I != E; ++I) {
 | 
						|
    const MemRegion *MR = *I;
 | 
						|
    Invalidated.insert(MR);
 | 
						|
 | 
						|
    SuperRegions.insert(MR);
 | 
						|
    while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
 | 
						|
      MR = SR->getSuperRegion();
 | 
						|
      SuperRegions.insert(MR);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CStringLengthTy::Factory &F = state->get_context<CStringLength>();
 | 
						|
 | 
						|
  // Then loop over the entries in the current state.
 | 
						|
  for (CStringLengthTy::iterator I = Entries.begin(),
 | 
						|
      E = Entries.end(); I != E; ++I) {
 | 
						|
    const MemRegion *MR = I.getKey();
 | 
						|
 | 
						|
    // Is this entry for a super-region of a changed region?
 | 
						|
    if (SuperRegions.count(MR)) {
 | 
						|
      Entries = F.remove(Entries, MR);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Is this entry for a sub-region of a changed region?
 | 
						|
    const MemRegion *Super = MR;
 | 
						|
    while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
 | 
						|
      Super = SR->getSuperRegion();
 | 
						|
      if (Invalidated.count(Super)) {
 | 
						|
        Entries = F.remove(Entries, MR);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return state->set<CStringLength>(Entries);
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::checkLiveSymbols(ProgramStateRef state,
 | 
						|
    SymbolReaper &SR) const {
 | 
						|
  // Mark all symbols in our string length map as valid.
 | 
						|
  CStringLengthTy Entries = state->get<CStringLength>();
 | 
						|
 | 
						|
  for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
 | 
						|
      I != E; ++I) {
 | 
						|
    SVal Len = I.getData();
 | 
						|
 | 
						|
    for (SymExpr::symbol_iterator si = Len.symbol_begin(),
 | 
						|
        se = Len.symbol_end(); si != se; ++si)
 | 
						|
      SR.markInUse(*si);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
 | 
						|
    CheckerContext &C) const {
 | 
						|
  ProgramStateRef state = C.getState();
 | 
						|
  CStringLengthTy Entries = state->get<CStringLength>();
 | 
						|
  if (Entries.isEmpty())
 | 
						|
    return;
 | 
						|
 | 
						|
  CStringLengthTy::Factory &F = state->get_context<CStringLength>();
 | 
						|
  for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
 | 
						|
      I != E; ++I) {
 | 
						|
    SVal Len = I.getData();
 | 
						|
    if (SymbolRef Sym = Len.getAsSymbol()) {
 | 
						|
      if (SR.isDead(Sym))
 | 
						|
        Entries = F.remove(Entries, I.getKey());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  state = state->set<CStringLength>(Entries);
 | 
						|
  C.addTransition(state);
 | 
						|
}
 | 
						|
 | 
						|
void ento::registerCStringModeling(CheckerManager &Mgr) {
 | 
						|
  Mgr.registerChecker<CStringChecker>();
 | 
						|
}
 | 
						|
 | 
						|
bool ento::shouldRegisterCStringModeling(const LangOptions &LO) {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
#define REGISTER_CHECKER(name)                                                 \
 | 
						|
  void ento::register##name(CheckerManager &mgr) {                             \
 | 
						|
    CStringChecker *checker = mgr.getChecker<CStringChecker>();                \
 | 
						|
    checker->Filter.Check##name = true;                                        \
 | 
						|
    checker->Filter.CheckName##name = mgr.getCurrentCheckerName();             \
 | 
						|
  }                                                                            \
 | 
						|
                                                                               \
 | 
						|
  bool ento::shouldRegister##name(const LangOptions &LO) { return true; }
 | 
						|
 | 
						|
REGISTER_CHECKER(CStringNullArg)
 | 
						|
REGISTER_CHECKER(CStringOutOfBounds)
 | 
						|
REGISTER_CHECKER(CStringBufferOverlap)
 | 
						|
REGISTER_CHECKER(CStringNotNullTerm)
 |