forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			195 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C
		
	
	
	
//===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements single-precision soft-float division
 | 
						|
// with the IEEE-754 default rounding (to nearest, ties to even).
 | 
						|
//
 | 
						|
// For simplicity, this implementation currently flushes denormals to zero.
 | 
						|
// It should be a fairly straightforward exercise to implement gradual
 | 
						|
// underflow with correct rounding.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define SINGLE_PRECISION
 | 
						|
#include "fp_lib.h"
 | 
						|
 | 
						|
COMPILER_RT_ABI fp_t __divsf3(fp_t a, fp_t b) {
 | 
						|
 | 
						|
  const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
 | 
						|
  const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
 | 
						|
  const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
 | 
						|
 | 
						|
  rep_t aSignificand = toRep(a) & significandMask;
 | 
						|
  rep_t bSignificand = toRep(b) & significandMask;
 | 
						|
  int scale = 0;
 | 
						|
 | 
						|
  // Detect if a or b is zero, denormal, infinity, or NaN.
 | 
						|
  if (aExponent - 1U >= maxExponent - 1U ||
 | 
						|
      bExponent - 1U >= maxExponent - 1U) {
 | 
						|
 | 
						|
    const rep_t aAbs = toRep(a) & absMask;
 | 
						|
    const rep_t bAbs = toRep(b) & absMask;
 | 
						|
 | 
						|
    // NaN / anything = qNaN
 | 
						|
    if (aAbs > infRep)
 | 
						|
      return fromRep(toRep(a) | quietBit);
 | 
						|
    // anything / NaN = qNaN
 | 
						|
    if (bAbs > infRep)
 | 
						|
      return fromRep(toRep(b) | quietBit);
 | 
						|
 | 
						|
    if (aAbs == infRep) {
 | 
						|
      // infinity / infinity = NaN
 | 
						|
      if (bAbs == infRep)
 | 
						|
        return fromRep(qnanRep);
 | 
						|
      // infinity / anything else = +/- infinity
 | 
						|
      else
 | 
						|
        return fromRep(aAbs | quotientSign);
 | 
						|
    }
 | 
						|
 | 
						|
    // anything else / infinity = +/- 0
 | 
						|
    if (bAbs == infRep)
 | 
						|
      return fromRep(quotientSign);
 | 
						|
 | 
						|
    if (!aAbs) {
 | 
						|
      // zero / zero = NaN
 | 
						|
      if (!bAbs)
 | 
						|
        return fromRep(qnanRep);
 | 
						|
      // zero / anything else = +/- zero
 | 
						|
      else
 | 
						|
        return fromRep(quotientSign);
 | 
						|
    }
 | 
						|
    // anything else / zero = +/- infinity
 | 
						|
    if (!bAbs)
 | 
						|
      return fromRep(infRep | quotientSign);
 | 
						|
 | 
						|
    // One or both of a or b is denormal.  The other (if applicable) is a
 | 
						|
    // normal number.  Renormalize one or both of a and b, and set scale to
 | 
						|
    // include the necessary exponent adjustment.
 | 
						|
    if (aAbs < implicitBit)
 | 
						|
      scale += normalize(&aSignificand);
 | 
						|
    if (bAbs < implicitBit)
 | 
						|
      scale -= normalize(&bSignificand);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the implicit significand bit.  If we fell through from the
 | 
						|
  // denormal path it was already set by normalize( ), but setting it twice
 | 
						|
  // won't hurt anything.
 | 
						|
  aSignificand |= implicitBit;
 | 
						|
  bSignificand |= implicitBit;
 | 
						|
  int quotientExponent = aExponent - bExponent + scale;
 | 
						|
  // 0x7504F333 / 2^32 + 1 = 3/4 + 1/sqrt(2)
 | 
						|
 | 
						|
  // Align the significand of b as a Q31 fixed-point number in the range
 | 
						|
  // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
 | 
						|
  // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
 | 
						|
  // is accurate to about 3.5 binary digits.
 | 
						|
  uint32_t q31b = bSignificand << 8;
 | 
						|
  uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
 | 
						|
 | 
						|
  // Now refine the reciprocal estimate using a Newton-Raphson iteration:
 | 
						|
  //
 | 
						|
  //     x1 = x0 * (2 - x0 * b)
 | 
						|
  //
 | 
						|
  // This doubles the number of correct binary digits in the approximation
 | 
						|
  // with each iteration.
 | 
						|
  uint32_t correction;
 | 
						|
  correction = -((uint64_t)reciprocal * q31b >> 32);
 | 
						|
  reciprocal = (uint64_t)reciprocal * correction >> 31;
 | 
						|
  correction = -((uint64_t)reciprocal * q31b >> 32);
 | 
						|
  reciprocal = (uint64_t)reciprocal * correction >> 31;
 | 
						|
  correction = -((uint64_t)reciprocal * q31b >> 32);
 | 
						|
  reciprocal = (uint64_t)reciprocal * correction >> 31;
 | 
						|
 | 
						|
  // Adust the final 32-bit reciprocal estimate downward to ensure that it is
 | 
						|
  // strictly smaller than the infinitely precise exact reciprocal.  Because
 | 
						|
  // the computation of the Newton-Raphson step is truncating at every step,
 | 
						|
  // this adjustment is small; most of the work is already done.
 | 
						|
  reciprocal -= 2;
 | 
						|
 | 
						|
  // The numerical reciprocal is accurate to within 2^-28, lies in the
 | 
						|
  // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
 | 
						|
  // than the true reciprocal of b.  Multiplying a by this reciprocal thus
 | 
						|
  // gives a numerical q = a/b in Q24 with the following properties:
 | 
						|
  //
 | 
						|
  //    1. q < a/b
 | 
						|
  //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
 | 
						|
  //    3. The error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
 | 
						|
  //       from the fact that we truncate the product, and the 2^27 term
 | 
						|
  //       is the error in the reciprocal of b scaled by the maximum
 | 
						|
  //       possible value of a.  As a consequence of this error bound,
 | 
						|
  //       either q or nextafter(q) is the correctly rounded.
 | 
						|
  rep_t quotient = (uint64_t)reciprocal * (aSignificand << 1) >> 32;
 | 
						|
 | 
						|
  // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
 | 
						|
  // In either case, we are going to compute a residual of the form
 | 
						|
  //
 | 
						|
  //     r = a - q*b
 | 
						|
  //
 | 
						|
  // We know from the construction of q that r satisfies:
 | 
						|
  //
 | 
						|
  //     0 <= r < ulp(q)*b
 | 
						|
  //
 | 
						|
  // If r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
 | 
						|
  // already have the correct result.  The exact halfway case cannot occur.
 | 
						|
  // We also take this time to right shift quotient if it falls in the [1,2)
 | 
						|
  // range and adjust the exponent accordingly.
 | 
						|
  rep_t residual;
 | 
						|
  if (quotient < (implicitBit << 1)) {
 | 
						|
    residual = (aSignificand << 24) - quotient * bSignificand;
 | 
						|
    quotientExponent--;
 | 
						|
  } else {
 | 
						|
    quotient >>= 1;
 | 
						|
    residual = (aSignificand << 23) - quotient * bSignificand;
 | 
						|
  }
 | 
						|
 | 
						|
  const int writtenExponent = quotientExponent + exponentBias;
 | 
						|
 | 
						|
  if (writtenExponent >= maxExponent) {
 | 
						|
    // If we have overflowed the exponent, return infinity.
 | 
						|
    return fromRep(infRep | quotientSign);
 | 
						|
  }
 | 
						|
 | 
						|
  else if (writtenExponent < 1) {
 | 
						|
    if (writtenExponent == 0) {
 | 
						|
      // Check whether the rounded result is normal.
 | 
						|
      const bool round = (residual << 1) > bSignificand;
 | 
						|
      // Clear the implicit bit.
 | 
						|
      rep_t absResult = quotient & significandMask;
 | 
						|
      // Round.
 | 
						|
      absResult += round;
 | 
						|
      if (absResult & ~significandMask) {
 | 
						|
        // The rounded result is normal; return it.
 | 
						|
        return fromRep(absResult | quotientSign);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Flush denormals to zero.  In the future, it would be nice to add
 | 
						|
    // code to round them correctly.
 | 
						|
    return fromRep(quotientSign);
 | 
						|
  }
 | 
						|
 | 
						|
  else {
 | 
						|
    const bool round = (residual << 1) > bSignificand;
 | 
						|
    // Clear the implicit bit.
 | 
						|
    rep_t absResult = quotient & significandMask;
 | 
						|
    // Insert the exponent.
 | 
						|
    absResult |= (rep_t)writtenExponent << significandBits;
 | 
						|
    // Round.
 | 
						|
    absResult += round;
 | 
						|
    // Insert the sign and return.
 | 
						|
    return fromRep(absResult | quotientSign);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(__ARM_EABI__)
 | 
						|
#if defined(COMPILER_RT_ARMHF_TARGET)
 | 
						|
AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) { return __divsf3(a, b); }
 | 
						|
#else
 | 
						|
COMPILER_RT_ALIAS(__divsf3, __aeabi_fdiv)
 | 
						|
#endif
 | 
						|
#endif
 |