forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			380 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- sanitizer_procmaps_mac.cpp ----------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Information about the process mappings (Mac-specific parts).
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "sanitizer_platform.h"
 | 
						|
#if SANITIZER_MAC
 | 
						|
#include "sanitizer_common.h"
 | 
						|
#include "sanitizer_placement_new.h"
 | 
						|
#include "sanitizer_procmaps.h"
 | 
						|
 | 
						|
#include <mach-o/dyld.h>
 | 
						|
#include <mach-o/loader.h>
 | 
						|
#include <mach/mach.h>
 | 
						|
 | 
						|
// These are not available in older macOS SDKs.
 | 
						|
#ifndef CPU_SUBTYPE_X86_64_H
 | 
						|
#define CPU_SUBTYPE_X86_64_H  ((cpu_subtype_t)8)   /* Haswell */
 | 
						|
#endif
 | 
						|
#ifndef CPU_SUBTYPE_ARM_V7S
 | 
						|
#define CPU_SUBTYPE_ARM_V7S   ((cpu_subtype_t)11)  /* Swift */
 | 
						|
#endif
 | 
						|
#ifndef CPU_SUBTYPE_ARM_V7K
 | 
						|
#define CPU_SUBTYPE_ARM_V7K   ((cpu_subtype_t)12)
 | 
						|
#endif
 | 
						|
#ifndef CPU_TYPE_ARM64
 | 
						|
#define CPU_TYPE_ARM64        (CPU_TYPE_ARM | CPU_ARCH_ABI64)
 | 
						|
#endif
 | 
						|
 | 
						|
namespace __sanitizer {
 | 
						|
 | 
						|
// Contains information used to iterate through sections.
 | 
						|
struct MemoryMappedSegmentData {
 | 
						|
  char name[kMaxSegName];
 | 
						|
  uptr nsects;
 | 
						|
  const char *current_load_cmd_addr;
 | 
						|
  u32 lc_type;
 | 
						|
  uptr base_virt_addr;
 | 
						|
  uptr addr_mask;
 | 
						|
};
 | 
						|
 | 
						|
template <typename Section>
 | 
						|
static void NextSectionLoad(LoadedModule *module, MemoryMappedSegmentData *data,
 | 
						|
                            bool isWritable) {
 | 
						|
  const Section *sc = (const Section *)data->current_load_cmd_addr;
 | 
						|
  data->current_load_cmd_addr += sizeof(Section);
 | 
						|
 | 
						|
  uptr sec_start = (sc->addr & data->addr_mask) + data->base_virt_addr;
 | 
						|
  uptr sec_end = sec_start + sc->size;
 | 
						|
  module->addAddressRange(sec_start, sec_end, /*executable=*/false, isWritable,
 | 
						|
                          sc->sectname);
 | 
						|
}
 | 
						|
 | 
						|
void MemoryMappedSegment::AddAddressRanges(LoadedModule *module) {
 | 
						|
  // Don't iterate over sections when the caller hasn't set up the
 | 
						|
  // data pointer, when there are no sections, or when the segment
 | 
						|
  // is executable. Avoid iterating over executable sections because
 | 
						|
  // it will confuse libignore, and because the extra granularity
 | 
						|
  // of information is not needed by any sanitizers.
 | 
						|
  if (!data_ || !data_->nsects || IsExecutable()) {
 | 
						|
    module->addAddressRange(start, end, IsExecutable(), IsWritable(),
 | 
						|
                            data_ ? data_->name : nullptr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  do {
 | 
						|
    if (data_->lc_type == LC_SEGMENT) {
 | 
						|
      NextSectionLoad<struct section>(module, data_, IsWritable());
 | 
						|
#ifdef MH_MAGIC_64
 | 
						|
    } else if (data_->lc_type == LC_SEGMENT_64) {
 | 
						|
      NextSectionLoad<struct section_64>(module, data_, IsWritable());
 | 
						|
#endif
 | 
						|
    }
 | 
						|
  } while (--data_->nsects);
 | 
						|
}
 | 
						|
 | 
						|
MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) {
 | 
						|
  Reset();
 | 
						|
}
 | 
						|
 | 
						|
MemoryMappingLayout::~MemoryMappingLayout() {
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryMappingLayout::Error() const {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// More information about Mach-O headers can be found in mach-o/loader.h
 | 
						|
// Each Mach-O image has a header (mach_header or mach_header_64) starting with
 | 
						|
// a magic number, and a list of linker load commands directly following the
 | 
						|
// header.
 | 
						|
// A load command is at least two 32-bit words: the command type and the
 | 
						|
// command size in bytes. We're interested only in segment load commands
 | 
						|
// (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped
 | 
						|
// into the task's address space.
 | 
						|
// The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or
 | 
						|
// segment_command_64 correspond to the memory address, memory size and the
 | 
						|
// file offset of the current memory segment.
 | 
						|
// Because these fields are taken from the images as is, one needs to add
 | 
						|
// _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime.
 | 
						|
 | 
						|
void MemoryMappingLayout::Reset() {
 | 
						|
  // Count down from the top.
 | 
						|
  // TODO(glider): as per man 3 dyld, iterating over the headers with
 | 
						|
  // _dyld_image_count is thread-unsafe. We need to register callbacks for
 | 
						|
  // adding and removing images which will invalidate the MemoryMappingLayout
 | 
						|
  // state.
 | 
						|
  data_.current_image = _dyld_image_count();
 | 
						|
  data_.current_load_cmd_count = -1;
 | 
						|
  data_.current_load_cmd_addr = 0;
 | 
						|
  data_.current_magic = 0;
 | 
						|
  data_.current_filetype = 0;
 | 
						|
  data_.current_arch = kModuleArchUnknown;
 | 
						|
  internal_memset(data_.current_uuid, 0, kModuleUUIDSize);
 | 
						|
}
 | 
						|
 | 
						|
// The dyld load address should be unchanged throughout process execution,
 | 
						|
// and it is expensive to compute once many libraries have been loaded,
 | 
						|
// so cache it here and do not reset.
 | 
						|
static mach_header *dyld_hdr = 0;
 | 
						|
static const char kDyldPath[] = "/usr/lib/dyld";
 | 
						|
static const int kDyldImageIdx = -1;
 | 
						|
 | 
						|
// static
 | 
						|
void MemoryMappingLayout::CacheMemoryMappings() {
 | 
						|
  // No-op on Mac for now.
 | 
						|
}
 | 
						|
 | 
						|
void MemoryMappingLayout::LoadFromCache() {
 | 
						|
  // No-op on Mac for now.
 | 
						|
}
 | 
						|
 | 
						|
// _dyld_get_image_header() and related APIs don't report dyld itself.
 | 
						|
// We work around this by manually recursing through the memory map
 | 
						|
// until we hit a Mach header matching dyld instead. These recurse
 | 
						|
// calls are expensive, but the first memory map generation occurs
 | 
						|
// early in the process, when dyld is one of the only images loaded,
 | 
						|
// so it will be hit after only a few iterations.
 | 
						|
static mach_header *get_dyld_image_header() {
 | 
						|
  unsigned depth = 1;
 | 
						|
  vm_size_t size = 0;
 | 
						|
  vm_address_t address = 0;
 | 
						|
  kern_return_t err = KERN_SUCCESS;
 | 
						|
  mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64;
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    struct vm_region_submap_info_64 info;
 | 
						|
    err = vm_region_recurse_64(mach_task_self(), &address, &size, &depth,
 | 
						|
                               (vm_region_info_t)&info, &count);
 | 
						|
    if (err != KERN_SUCCESS) return nullptr;
 | 
						|
 | 
						|
    if (size >= sizeof(mach_header) && info.protection & kProtectionRead) {
 | 
						|
      mach_header *hdr = (mach_header *)address;
 | 
						|
      if ((hdr->magic == MH_MAGIC || hdr->magic == MH_MAGIC_64) &&
 | 
						|
          hdr->filetype == MH_DYLINKER) {
 | 
						|
        return hdr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    address += size;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const mach_header *get_dyld_hdr() {
 | 
						|
  if (!dyld_hdr) dyld_hdr = get_dyld_image_header();
 | 
						|
 | 
						|
  return dyld_hdr;
 | 
						|
}
 | 
						|
 | 
						|
// Next and NextSegmentLoad were inspired by base/sysinfo.cc in
 | 
						|
// Google Perftools, https://github.com/gperftools/gperftools.
 | 
						|
 | 
						|
// NextSegmentLoad scans the current image for the next segment load command
 | 
						|
// and returns the start and end addresses and file offset of the corresponding
 | 
						|
// segment.
 | 
						|
// Note that the segment addresses are not necessarily sorted.
 | 
						|
template <u32 kLCSegment, typename SegmentCommand>
 | 
						|
static bool NextSegmentLoad(MemoryMappedSegment *segment,
 | 
						|
                            MemoryMappedSegmentData *seg_data,
 | 
						|
                            MemoryMappingLayoutData *layout_data) {
 | 
						|
  const char *lc = layout_data->current_load_cmd_addr;
 | 
						|
  layout_data->current_load_cmd_addr += ((const load_command *)lc)->cmdsize;
 | 
						|
  if (((const load_command *)lc)->cmd == kLCSegment) {
 | 
						|
    const SegmentCommand* sc = (const SegmentCommand *)lc;
 | 
						|
    uptr base_virt_addr, addr_mask;
 | 
						|
    if (layout_data->current_image == kDyldImageIdx) {
 | 
						|
      base_virt_addr = (uptr)get_dyld_hdr();
 | 
						|
      // vmaddr is masked with 0xfffff because on macOS versions < 10.12,
 | 
						|
      // it contains an absolute address rather than an offset for dyld.
 | 
						|
      // To make matters even more complicated, this absolute address
 | 
						|
      // isn't actually the absolute segment address, but the offset portion
 | 
						|
      // of the address is accurate when combined with the dyld base address,
 | 
						|
      // and the mask will give just this offset.
 | 
						|
      addr_mask = 0xfffff;
 | 
						|
    } else {
 | 
						|
      base_virt_addr =
 | 
						|
          (uptr)_dyld_get_image_vmaddr_slide(layout_data->current_image);
 | 
						|
      addr_mask = ~0;
 | 
						|
    }
 | 
						|
 | 
						|
    segment->start = (sc->vmaddr & addr_mask) + base_virt_addr;
 | 
						|
    segment->end = segment->start + sc->vmsize;
 | 
						|
    // Most callers don't need section information, so only fill this struct
 | 
						|
    // when required.
 | 
						|
    if (seg_data) {
 | 
						|
      seg_data->nsects = sc->nsects;
 | 
						|
      seg_data->current_load_cmd_addr =
 | 
						|
          (const char *)lc + sizeof(SegmentCommand);
 | 
						|
      seg_data->lc_type = kLCSegment;
 | 
						|
      seg_data->base_virt_addr = base_virt_addr;
 | 
						|
      seg_data->addr_mask = addr_mask;
 | 
						|
      internal_strncpy(seg_data->name, sc->segname,
 | 
						|
                       ARRAY_SIZE(seg_data->name));
 | 
						|
    }
 | 
						|
 | 
						|
    // Return the initial protection.
 | 
						|
    segment->protection = sc->initprot;
 | 
						|
    segment->offset = (layout_data->current_filetype ==
 | 
						|
                       /*MH_EXECUTE*/ 0x2)
 | 
						|
                          ? sc->vmaddr
 | 
						|
                          : sc->fileoff;
 | 
						|
    if (segment->filename) {
 | 
						|
      const char *src = (layout_data->current_image == kDyldImageIdx)
 | 
						|
                            ? kDyldPath
 | 
						|
                            : _dyld_get_image_name(layout_data->current_image);
 | 
						|
      internal_strncpy(segment->filename, src, segment->filename_size);
 | 
						|
    }
 | 
						|
    segment->arch = layout_data->current_arch;
 | 
						|
    internal_memcpy(segment->uuid, layout_data->current_uuid, kModuleUUIDSize);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ModuleArch ModuleArchFromCpuType(cpu_type_t cputype, cpu_subtype_t cpusubtype) {
 | 
						|
  cpusubtype = cpusubtype & ~CPU_SUBTYPE_MASK;
 | 
						|
  switch (cputype) {
 | 
						|
    case CPU_TYPE_I386:
 | 
						|
      return kModuleArchI386;
 | 
						|
    case CPU_TYPE_X86_64:
 | 
						|
      if (cpusubtype == CPU_SUBTYPE_X86_64_ALL) return kModuleArchX86_64;
 | 
						|
      if (cpusubtype == CPU_SUBTYPE_X86_64_H) return kModuleArchX86_64H;
 | 
						|
      CHECK(0 && "Invalid subtype of x86_64");
 | 
						|
      return kModuleArchUnknown;
 | 
						|
    case CPU_TYPE_ARM:
 | 
						|
      if (cpusubtype == CPU_SUBTYPE_ARM_V6) return kModuleArchARMV6;
 | 
						|
      if (cpusubtype == CPU_SUBTYPE_ARM_V7) return kModuleArchARMV7;
 | 
						|
      if (cpusubtype == CPU_SUBTYPE_ARM_V7S) return kModuleArchARMV7S;
 | 
						|
      if (cpusubtype == CPU_SUBTYPE_ARM_V7K) return kModuleArchARMV7K;
 | 
						|
      CHECK(0 && "Invalid subtype of ARM");
 | 
						|
      return kModuleArchUnknown;
 | 
						|
    case CPU_TYPE_ARM64:
 | 
						|
      return kModuleArchARM64;
 | 
						|
    default:
 | 
						|
      CHECK(0 && "Invalid CPU type");
 | 
						|
      return kModuleArchUnknown;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static const load_command *NextCommand(const load_command *lc) {
 | 
						|
  return (const load_command *)((const char *)lc + lc->cmdsize);
 | 
						|
}
 | 
						|
 | 
						|
static void FindUUID(const load_command *first_lc, u8 *uuid_output) {
 | 
						|
  for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
 | 
						|
    if (lc->cmd != LC_UUID) continue;
 | 
						|
 | 
						|
    const uuid_command *uuid_lc = (const uuid_command *)lc;
 | 
						|
    const uint8_t *uuid = &uuid_lc->uuid[0];
 | 
						|
    internal_memcpy(uuid_output, uuid, kModuleUUIDSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool IsModuleInstrumented(const load_command *first_lc) {
 | 
						|
  for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
 | 
						|
    if (lc->cmd != LC_LOAD_DYLIB) continue;
 | 
						|
 | 
						|
    const dylib_command *dylib_lc = (const dylib_command *)lc;
 | 
						|
    uint32_t dylib_name_offset = dylib_lc->dylib.name.offset;
 | 
						|
    const char *dylib_name = ((const char *)dylib_lc) + dylib_name_offset;
 | 
						|
    dylib_name = StripModuleName(dylib_name);
 | 
						|
    if (dylib_name != 0 && (internal_strstr(dylib_name, "libclang_rt."))) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryMappingLayout::Next(MemoryMappedSegment *segment) {
 | 
						|
  for (; data_.current_image >= kDyldImageIdx; data_.current_image--) {
 | 
						|
    const mach_header *hdr = (data_.current_image == kDyldImageIdx)
 | 
						|
                                 ? get_dyld_hdr()
 | 
						|
                                 : _dyld_get_image_header(data_.current_image);
 | 
						|
    if (!hdr) continue;
 | 
						|
    if (data_.current_load_cmd_count < 0) {
 | 
						|
      // Set up for this image;
 | 
						|
      data_.current_load_cmd_count = hdr->ncmds;
 | 
						|
      data_.current_magic = hdr->magic;
 | 
						|
      data_.current_filetype = hdr->filetype;
 | 
						|
      data_.current_arch = ModuleArchFromCpuType(hdr->cputype, hdr->cpusubtype);
 | 
						|
      switch (data_.current_magic) {
 | 
						|
#ifdef MH_MAGIC_64
 | 
						|
        case MH_MAGIC_64: {
 | 
						|
          data_.current_load_cmd_addr =
 | 
						|
              (const char *)hdr + sizeof(mach_header_64);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        case MH_MAGIC: {
 | 
						|
          data_.current_load_cmd_addr = (const char *)hdr + sizeof(mach_header);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        default: {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      FindUUID((const load_command *)data_.current_load_cmd_addr,
 | 
						|
               data_.current_uuid);
 | 
						|
      data_.current_instrumented = IsModuleInstrumented(
 | 
						|
          (const load_command *)data_.current_load_cmd_addr);
 | 
						|
    }
 | 
						|
 | 
						|
    for (; data_.current_load_cmd_count >= 0; data_.current_load_cmd_count--) {
 | 
						|
      switch (data_.current_magic) {
 | 
						|
        // data_.current_magic may be only one of MH_MAGIC, MH_MAGIC_64.
 | 
						|
#ifdef MH_MAGIC_64
 | 
						|
        case MH_MAGIC_64: {
 | 
						|
          if (NextSegmentLoad<LC_SEGMENT_64, struct segment_command_64>(
 | 
						|
                  segment, segment->data_, &data_))
 | 
						|
            return true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        case MH_MAGIC: {
 | 
						|
          if (NextSegmentLoad<LC_SEGMENT, struct segment_command>(
 | 
						|
                  segment, segment->data_, &data_))
 | 
						|
            return true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If we get here, no more load_cmd's in this image talk about
 | 
						|
    // segments.  Go on to the next image.
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void MemoryMappingLayout::DumpListOfModules(
 | 
						|
    InternalMmapVectorNoCtor<LoadedModule> *modules) {
 | 
						|
  Reset();
 | 
						|
  InternalScopedString module_name(kMaxPathLength);
 | 
						|
  MemoryMappedSegment segment(module_name.data(), kMaxPathLength);
 | 
						|
  MemoryMappedSegmentData data;
 | 
						|
  segment.data_ = &data;
 | 
						|
  while (Next(&segment)) {
 | 
						|
    if (segment.filename[0] == '\0') continue;
 | 
						|
    LoadedModule *cur_module = nullptr;
 | 
						|
    if (!modules->empty() &&
 | 
						|
        0 == internal_strcmp(segment.filename, modules->back().full_name())) {
 | 
						|
      cur_module = &modules->back();
 | 
						|
    } else {
 | 
						|
      modules->push_back(LoadedModule());
 | 
						|
      cur_module = &modules->back();
 | 
						|
      cur_module->set(segment.filename, segment.start, segment.arch,
 | 
						|
                      segment.uuid, data_.current_instrumented);
 | 
						|
    }
 | 
						|
    segment.AddAddressRanges(cur_module);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace __sanitizer
 | 
						|
 | 
						|
#endif  // SANITIZER_MAC
 |