forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			825 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			825 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// Scudo Hardened Allocator implementation.
 | |
| /// It uses the sanitizer_common allocator as a base and aims at mitigating
 | |
| /// heap corruption vulnerabilities. It provides a checksum-guarded chunk
 | |
| /// header, a delayed free list, and additional sanity checks.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "scudo_allocator.h"
 | |
| #include "scudo_crc32.h"
 | |
| #include "scudo_errors.h"
 | |
| #include "scudo_flags.h"
 | |
| #include "scudo_interface_internal.h"
 | |
| #include "scudo_tsd.h"
 | |
| #include "scudo_utils.h"
 | |
| 
 | |
| #include "sanitizer_common/sanitizer_allocator_checks.h"
 | |
| #include "sanitizer_common/sanitizer_allocator_interface.h"
 | |
| #include "sanitizer_common/sanitizer_quarantine.h"
 | |
| 
 | |
| #ifdef GWP_ASAN_HOOKS
 | |
| # include "gwp_asan/guarded_pool_allocator.h"
 | |
| # include "gwp_asan/optional/backtrace.h"
 | |
| # include "gwp_asan/optional/options_parser.h"
 | |
| #endif // GWP_ASAN_HOOKS
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <string.h>
 | |
| 
 | |
| namespace __scudo {
 | |
| 
 | |
| // Global static cookie, initialized at start-up.
 | |
| static u32 Cookie;
 | |
| 
 | |
| // We default to software CRC32 if the alternatives are not supported, either
 | |
| // at compilation or at runtime.
 | |
| static atomic_uint8_t HashAlgorithm = { CRC32Software };
 | |
| 
 | |
| INLINE u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) {
 | |
|   // If the hardware CRC32 feature is defined here, it was enabled everywhere,
 | |
|   // as opposed to only for scudo_crc32.cpp. This means that other hardware
 | |
|   // specific instructions were likely emitted at other places, and as a
 | |
|   // result there is no reason to not use it here.
 | |
| #if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
 | |
|   Crc = CRC32_INTRINSIC(Crc, Value);
 | |
|   for (uptr i = 0; i < ArraySize; i++)
 | |
|     Crc = CRC32_INTRINSIC(Crc, Array[i]);
 | |
|   return Crc;
 | |
| #else
 | |
|   if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) {
 | |
|     Crc = computeHardwareCRC32(Crc, Value);
 | |
|     for (uptr i = 0; i < ArraySize; i++)
 | |
|       Crc = computeHardwareCRC32(Crc, Array[i]);
 | |
|     return Crc;
 | |
|   }
 | |
|   Crc = computeSoftwareCRC32(Crc, Value);
 | |
|   for (uptr i = 0; i < ArraySize; i++)
 | |
|     Crc = computeSoftwareCRC32(Crc, Array[i]);
 | |
|   return Crc;
 | |
| #endif  // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
 | |
| }
 | |
| 
 | |
| static BackendT &getBackend();
 | |
| 
 | |
| namespace Chunk {
 | |
|   static INLINE AtomicPackedHeader *getAtomicHeader(void *Ptr) {
 | |
|     return reinterpret_cast<AtomicPackedHeader *>(reinterpret_cast<uptr>(Ptr) -
 | |
|         getHeaderSize());
 | |
|   }
 | |
|   static INLINE
 | |
|   const AtomicPackedHeader *getConstAtomicHeader(const void *Ptr) {
 | |
|     return reinterpret_cast<const AtomicPackedHeader *>(
 | |
|         reinterpret_cast<uptr>(Ptr) - getHeaderSize());
 | |
|   }
 | |
| 
 | |
|   static INLINE bool isAligned(const void *Ptr) {
 | |
|     return IsAligned(reinterpret_cast<uptr>(Ptr), MinAlignment);
 | |
|   }
 | |
| 
 | |
|   // We can't use the offset member of the chunk itself, as we would double
 | |
|   // fetch it without any warranty that it wouldn't have been tampered. To
 | |
|   // prevent this, we work with a local copy of the header.
 | |
|   static INLINE void *getBackendPtr(const void *Ptr, UnpackedHeader *Header) {
 | |
|     return reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
 | |
|         getHeaderSize() - (Header->Offset << MinAlignmentLog));
 | |
|   }
 | |
| 
 | |
|   // Returns the usable size for a chunk, meaning the amount of bytes from the
 | |
|   // beginning of the user data to the end of the backend allocated chunk.
 | |
|   static INLINE uptr getUsableSize(const void *Ptr, UnpackedHeader *Header) {
 | |
|     const uptr ClassId = Header->ClassId;
 | |
|     if (ClassId)
 | |
|       return PrimaryT::ClassIdToSize(ClassId) - getHeaderSize() -
 | |
|           (Header->Offset << MinAlignmentLog);
 | |
|     return SecondaryT::GetActuallyAllocatedSize(
 | |
|         getBackendPtr(Ptr, Header)) - getHeaderSize();
 | |
|   }
 | |
| 
 | |
|   // Returns the size the user requested when allocating the chunk.
 | |
|   static INLINE uptr getSize(const void *Ptr, UnpackedHeader *Header) {
 | |
|     const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
 | |
|     if (Header->ClassId)
 | |
|       return SizeOrUnusedBytes;
 | |
|     return SecondaryT::GetActuallyAllocatedSize(
 | |
|         getBackendPtr(Ptr, Header)) - getHeaderSize() - SizeOrUnusedBytes;
 | |
|   }
 | |
| 
 | |
|   // Compute the checksum of the chunk pointer and its header.
 | |
|   static INLINE u16 computeChecksum(const void *Ptr, UnpackedHeader *Header) {
 | |
|     UnpackedHeader ZeroChecksumHeader = *Header;
 | |
|     ZeroChecksumHeader.Checksum = 0;
 | |
|     uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
 | |
|     memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
 | |
|     const u32 Crc = computeCRC32(Cookie, reinterpret_cast<uptr>(Ptr),
 | |
|                                  HeaderHolder, ARRAY_SIZE(HeaderHolder));
 | |
|     return static_cast<u16>(Crc);
 | |
|   }
 | |
| 
 | |
|   // Checks the validity of a chunk by verifying its checksum. It doesn't
 | |
|   // incur termination in the event of an invalid chunk.
 | |
|   static INLINE bool isValid(const void *Ptr) {
 | |
|     PackedHeader NewPackedHeader =
 | |
|         atomic_load_relaxed(getConstAtomicHeader(Ptr));
 | |
|     UnpackedHeader NewUnpackedHeader =
 | |
|         bit_cast<UnpackedHeader>(NewPackedHeader);
 | |
|     return (NewUnpackedHeader.Checksum ==
 | |
|             computeChecksum(Ptr, &NewUnpackedHeader));
 | |
|   }
 | |
| 
 | |
|   // Ensure that ChunkAvailable is 0, so that if a 0 checksum is ever valid
 | |
|   // for a fully nulled out header, its state will be available anyway.
 | |
|   COMPILER_CHECK(ChunkAvailable == 0);
 | |
| 
 | |
|   // Loads and unpacks the header, verifying the checksum in the process.
 | |
|   static INLINE
 | |
|   void loadHeader(const void *Ptr, UnpackedHeader *NewUnpackedHeader) {
 | |
|     PackedHeader NewPackedHeader =
 | |
|         atomic_load_relaxed(getConstAtomicHeader(Ptr));
 | |
|     *NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
 | |
|     if (UNLIKELY(NewUnpackedHeader->Checksum !=
 | |
|         computeChecksum(Ptr, NewUnpackedHeader)))
 | |
|       dieWithMessage("corrupted chunk header at address %p\n", Ptr);
 | |
|   }
 | |
| 
 | |
|   // Packs and stores the header, computing the checksum in the process.
 | |
|   static INLINE void storeHeader(void *Ptr, UnpackedHeader *NewUnpackedHeader) {
 | |
|     NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
 | |
|     PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
 | |
|     atomic_store_relaxed(getAtomicHeader(Ptr), NewPackedHeader);
 | |
|   }
 | |
| 
 | |
|   // Packs and stores the header, computing the checksum in the process. We
 | |
|   // compare the current header with the expected provided one to ensure that
 | |
|   // we are not being raced by a corruption occurring in another thread.
 | |
|   static INLINE void compareExchangeHeader(void *Ptr,
 | |
|                                            UnpackedHeader *NewUnpackedHeader,
 | |
|                                            UnpackedHeader *OldUnpackedHeader) {
 | |
|     NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
 | |
|     PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
 | |
|     PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
 | |
|     if (UNLIKELY(!atomic_compare_exchange_strong(
 | |
|             getAtomicHeader(Ptr), &OldPackedHeader, NewPackedHeader,
 | |
|             memory_order_relaxed)))
 | |
|       dieWithMessage("race on chunk header at address %p\n", Ptr);
 | |
|   }
 | |
| }  // namespace Chunk
 | |
| 
 | |
| struct QuarantineCallback {
 | |
|   explicit QuarantineCallback(AllocatorCacheT *Cache)
 | |
|     : Cache_(Cache) {}
 | |
| 
 | |
|   // Chunk recycling function, returns a quarantined chunk to the backend,
 | |
|   // first making sure it hasn't been tampered with.
 | |
|   void Recycle(void *Ptr) {
 | |
|     UnpackedHeader Header;
 | |
|     Chunk::loadHeader(Ptr, &Header);
 | |
|     if (UNLIKELY(Header.State != ChunkQuarantine))
 | |
|       dieWithMessage("invalid chunk state when recycling address %p\n", Ptr);
 | |
|     UnpackedHeader NewHeader = Header;
 | |
|     NewHeader.State = ChunkAvailable;
 | |
|     Chunk::compareExchangeHeader(Ptr, &NewHeader, &Header);
 | |
|     void *BackendPtr = Chunk::getBackendPtr(Ptr, &Header);
 | |
|     if (Header.ClassId)
 | |
|       getBackend().deallocatePrimary(Cache_, BackendPtr, Header.ClassId);
 | |
|     else
 | |
|       getBackend().deallocateSecondary(BackendPtr);
 | |
|   }
 | |
| 
 | |
|   // Internal quarantine allocation and deallocation functions. We first check
 | |
|   // that the batches are indeed serviced by the Primary.
 | |
|   // TODO(kostyak): figure out the best way to protect the batches.
 | |
|   void *Allocate(uptr Size) {
 | |
|     const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
 | |
|     return getBackend().allocatePrimary(Cache_, BatchClassId);
 | |
|   }
 | |
| 
 | |
|   void Deallocate(void *Ptr) {
 | |
|     const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
 | |
|     getBackend().deallocatePrimary(Cache_, Ptr, BatchClassId);
 | |
|   }
 | |
| 
 | |
|   AllocatorCacheT *Cache_;
 | |
|   COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
 | |
| };
 | |
| 
 | |
| typedef Quarantine<QuarantineCallback, void> QuarantineT;
 | |
| typedef QuarantineT::Cache QuarantineCacheT;
 | |
| COMPILER_CHECK(sizeof(QuarantineCacheT) <=
 | |
|                sizeof(ScudoTSD::QuarantineCachePlaceHolder));
 | |
| 
 | |
| QuarantineCacheT *getQuarantineCache(ScudoTSD *TSD) {
 | |
|   return reinterpret_cast<QuarantineCacheT *>(TSD->QuarantineCachePlaceHolder);
 | |
| }
 | |
| 
 | |
| #ifdef GWP_ASAN_HOOKS
 | |
| static gwp_asan::GuardedPoolAllocator GuardedAlloc;
 | |
| #endif // GWP_ASAN_HOOKS
 | |
| 
 | |
| struct Allocator {
 | |
|   static const uptr MaxAllowedMallocSize =
 | |
|       FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);
 | |
| 
 | |
|   BackendT Backend;
 | |
|   QuarantineT Quarantine;
 | |
| 
 | |
|   u32 QuarantineChunksUpToSize;
 | |
| 
 | |
|   bool DeallocationTypeMismatch;
 | |
|   bool ZeroContents;
 | |
|   bool DeleteSizeMismatch;
 | |
| 
 | |
|   bool CheckRssLimit;
 | |
|   uptr HardRssLimitMb;
 | |
|   uptr SoftRssLimitMb;
 | |
|   atomic_uint8_t RssLimitExceeded;
 | |
|   atomic_uint64_t RssLastCheckedAtNS;
 | |
| 
 | |
|   explicit Allocator(LinkerInitialized)
 | |
|     : Quarantine(LINKER_INITIALIZED) {}
 | |
| 
 | |
|   NOINLINE void performSanityChecks();
 | |
| 
 | |
|   void init() {
 | |
|     SanitizerToolName = "Scudo";
 | |
|     PrimaryAllocatorName = "ScudoPrimary";
 | |
|     SecondaryAllocatorName = "ScudoSecondary";
 | |
| 
 | |
|     initFlags();
 | |
| 
 | |
|     performSanityChecks();
 | |
| 
 | |
|     // Check if hardware CRC32 is supported in the binary and by the platform,
 | |
|     // if so, opt for the CRC32 hardware version of the checksum.
 | |
|     if (&computeHardwareCRC32 && hasHardwareCRC32())
 | |
|       atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);
 | |
| 
 | |
|     SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
 | |
|     Backend.init(common_flags()->allocator_release_to_os_interval_ms);
 | |
|     HardRssLimitMb = common_flags()->hard_rss_limit_mb;
 | |
|     SoftRssLimitMb = common_flags()->soft_rss_limit_mb;
 | |
|     Quarantine.Init(
 | |
|         static_cast<uptr>(getFlags()->QuarantineSizeKb) << 10,
 | |
|         static_cast<uptr>(getFlags()->ThreadLocalQuarantineSizeKb) << 10);
 | |
|     QuarantineChunksUpToSize = (Quarantine.GetCacheSize() == 0) ? 0 :
 | |
|         getFlags()->QuarantineChunksUpToSize;
 | |
|     DeallocationTypeMismatch = getFlags()->DeallocationTypeMismatch;
 | |
|     DeleteSizeMismatch = getFlags()->DeleteSizeMismatch;
 | |
|     ZeroContents = getFlags()->ZeroContents;
 | |
| 
 | |
|     if (UNLIKELY(!GetRandom(reinterpret_cast<void *>(&Cookie), sizeof(Cookie),
 | |
|                             /*blocking=*/false))) {
 | |
|       Cookie = static_cast<u32>((NanoTime() >> 12) ^
 | |
|                                 (reinterpret_cast<uptr>(this) >> 4));
 | |
|     }
 | |
| 
 | |
|     CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
 | |
|     if (CheckRssLimit)
 | |
|       atomic_store_relaxed(&RssLastCheckedAtNS, MonotonicNanoTime());
 | |
|   }
 | |
| 
 | |
|   // Helper function that checks for a valid Scudo chunk. nullptr isn't.
 | |
|   bool isValidPointer(const void *Ptr) {
 | |
|     initThreadMaybe();
 | |
|     if (UNLIKELY(!Ptr))
 | |
|       return false;
 | |
|     if (!Chunk::isAligned(Ptr))
 | |
|       return false;
 | |
|     return Chunk::isValid(Ptr);
 | |
|   }
 | |
| 
 | |
|   NOINLINE bool isRssLimitExceeded();
 | |
| 
 | |
|   // Allocates a chunk.
 | |
|   void *allocate(uptr Size, uptr Alignment, AllocType Type,
 | |
|                  bool ForceZeroContents = false) {
 | |
|     initThreadMaybe();
 | |
| 
 | |
| #ifdef GWP_ASAN_HOOKS
 | |
|     if (UNLIKELY(GuardedAlloc.shouldSample())) {
 | |
|       if (void *Ptr = GuardedAlloc.allocate(Size))
 | |
|         return Ptr;
 | |
|     }
 | |
| #endif // GWP_ASAN_HOOKS
 | |
| 
 | |
|     if (UNLIKELY(Alignment > MaxAlignment)) {
 | |
|       if (AllocatorMayReturnNull())
 | |
|         return nullptr;
 | |
|       reportAllocationAlignmentTooBig(Alignment, MaxAlignment);
 | |
|     }
 | |
|     if (UNLIKELY(Alignment < MinAlignment))
 | |
|       Alignment = MinAlignment;
 | |
| 
 | |
|     const uptr NeededSize = RoundUpTo(Size ? Size : 1, MinAlignment) +
 | |
|         Chunk::getHeaderSize();
 | |
|     const uptr AlignedSize = (Alignment > MinAlignment) ?
 | |
|         NeededSize + (Alignment - Chunk::getHeaderSize()) : NeededSize;
 | |
|     if (UNLIKELY(Size >= MaxAllowedMallocSize) ||
 | |
|         UNLIKELY(AlignedSize >= MaxAllowedMallocSize)) {
 | |
|       if (AllocatorMayReturnNull())
 | |
|         return nullptr;
 | |
|       reportAllocationSizeTooBig(Size, AlignedSize, MaxAllowedMallocSize);
 | |
|     }
 | |
| 
 | |
|     if (CheckRssLimit && UNLIKELY(isRssLimitExceeded())) {
 | |
|       if (AllocatorMayReturnNull())
 | |
|         return nullptr;
 | |
|       reportRssLimitExceeded();
 | |
|     }
 | |
| 
 | |
|     // Primary and Secondary backed allocations have a different treatment. We
 | |
|     // deal with alignment requirements of Primary serviced allocations here,
 | |
|     // but the Secondary will take care of its own alignment needs.
 | |
|     void *BackendPtr;
 | |
|     uptr BackendSize;
 | |
|     u8 ClassId;
 | |
|     if (PrimaryT::CanAllocate(AlignedSize, MinAlignment)) {
 | |
|       BackendSize = AlignedSize;
 | |
|       ClassId = SizeClassMap::ClassID(BackendSize);
 | |
|       bool UnlockRequired;
 | |
|       ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
 | |
|       BackendPtr = Backend.allocatePrimary(&TSD->Cache, ClassId);
 | |
|       if (UnlockRequired)
 | |
|         TSD->unlock();
 | |
|     } else {
 | |
|       BackendSize = NeededSize;
 | |
|       ClassId = 0;
 | |
|       BackendPtr = Backend.allocateSecondary(BackendSize, Alignment);
 | |
|     }
 | |
|     if (UNLIKELY(!BackendPtr)) {
 | |
|       SetAllocatorOutOfMemory();
 | |
|       if (AllocatorMayReturnNull())
 | |
|         return nullptr;
 | |
|       reportOutOfMemory(Size);
 | |
|     }
 | |
| 
 | |
|     // If requested, we will zero out the entire contents of the returned chunk.
 | |
|     if ((ForceZeroContents || ZeroContents) && ClassId)
 | |
|       memset(BackendPtr, 0, PrimaryT::ClassIdToSize(ClassId));
 | |
| 
 | |
|     UnpackedHeader Header = {};
 | |
|     uptr UserPtr = reinterpret_cast<uptr>(BackendPtr) + Chunk::getHeaderSize();
 | |
|     if (UNLIKELY(!IsAligned(UserPtr, Alignment))) {
 | |
|       // Since the Secondary takes care of alignment, a non-aligned pointer
 | |
|       // means it is from the Primary. It is also the only case where the offset
 | |
|       // field of the header would be non-zero.
 | |
|       DCHECK(ClassId);
 | |
|       const uptr AlignedUserPtr = RoundUpTo(UserPtr, Alignment);
 | |
|       Header.Offset = (AlignedUserPtr - UserPtr) >> MinAlignmentLog;
 | |
|       UserPtr = AlignedUserPtr;
 | |
|     }
 | |
|     DCHECK_LE(UserPtr + Size, reinterpret_cast<uptr>(BackendPtr) + BackendSize);
 | |
|     Header.State = ChunkAllocated;
 | |
|     Header.AllocType = Type;
 | |
|     if (ClassId) {
 | |
|       Header.ClassId = ClassId;
 | |
|       Header.SizeOrUnusedBytes = Size;
 | |
|     } else {
 | |
|       // The secondary fits the allocations to a page, so the amount of unused
 | |
|       // bytes is the difference between the end of the user allocation and the
 | |
|       // next page boundary.
 | |
|       const uptr PageSize = GetPageSizeCached();
 | |
|       const uptr TrailingBytes = (UserPtr + Size) & (PageSize - 1);
 | |
|       if (TrailingBytes)
 | |
|         Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
 | |
|     }
 | |
|     void *Ptr = reinterpret_cast<void *>(UserPtr);
 | |
|     Chunk::storeHeader(Ptr, &Header);
 | |
|     if (SCUDO_CAN_USE_HOOKS && &__sanitizer_malloc_hook)
 | |
|       __sanitizer_malloc_hook(Ptr, Size);
 | |
|     return Ptr;
 | |
|   }
 | |
| 
 | |
|   // Place a chunk in the quarantine or directly deallocate it in the event of
 | |
|   // a zero-sized quarantine, or if the size of the chunk is greater than the
 | |
|   // quarantine chunk size threshold.
 | |
|   void quarantineOrDeallocateChunk(void *Ptr, UnpackedHeader *Header,
 | |
|                                    uptr Size) {
 | |
|     const bool BypassQuarantine = !Size || (Size > QuarantineChunksUpToSize);
 | |
|     if (BypassQuarantine) {
 | |
|       UnpackedHeader NewHeader = *Header;
 | |
|       NewHeader.State = ChunkAvailable;
 | |
|       Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
 | |
|       void *BackendPtr = Chunk::getBackendPtr(Ptr, Header);
 | |
|       if (Header->ClassId) {
 | |
|         bool UnlockRequired;
 | |
|         ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
 | |
|         getBackend().deallocatePrimary(&TSD->Cache, BackendPtr,
 | |
|                                        Header->ClassId);
 | |
|         if (UnlockRequired)
 | |
|           TSD->unlock();
 | |
|       } else {
 | |
|         getBackend().deallocateSecondary(BackendPtr);
 | |
|       }
 | |
|     } else {
 | |
|       // If a small memory amount was allocated with a larger alignment, we want
 | |
|       // to take that into account. Otherwise the Quarantine would be filled
 | |
|       // with tiny chunks, taking a lot of VA memory. This is an approximation
 | |
|       // of the usable size, that allows us to not call
 | |
|       // GetActuallyAllocatedSize.
 | |
|       const uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog);
 | |
|       UnpackedHeader NewHeader = *Header;
 | |
|       NewHeader.State = ChunkQuarantine;
 | |
|       Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
 | |
|       bool UnlockRequired;
 | |
|       ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
 | |
|       Quarantine.Put(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache),
 | |
|                      Ptr, EstimatedSize);
 | |
|       if (UnlockRequired)
 | |
|         TSD->unlock();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Deallocates a Chunk, which means either adding it to the quarantine or
 | |
|   // directly returning it to the backend if criteria are met.
 | |
|   void deallocate(void *Ptr, uptr DeleteSize, uptr DeleteAlignment,
 | |
|                   AllocType Type) {
 | |
|     // For a deallocation, we only ensure minimal initialization, meaning thread
 | |
|     // local data will be left uninitialized for now (when using ELF TLS). The
 | |
|     // fallback cache will be used instead. This is a workaround for a situation
 | |
|     // where the only heap operation performed in a thread would be a free past
 | |
|     // the TLS destructors, ending up in initialized thread specific data never
 | |
|     // being destroyed properly. Any other heap operation will do a full init.
 | |
|     initThreadMaybe(/*MinimalInit=*/true);
 | |
|     if (SCUDO_CAN_USE_HOOKS && &__sanitizer_free_hook)
 | |
|       __sanitizer_free_hook(Ptr);
 | |
|     if (UNLIKELY(!Ptr))
 | |
|       return;
 | |
| 
 | |
| #ifdef GWP_ASAN_HOOKS
 | |
|     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
 | |
|       GuardedAlloc.deallocate(Ptr);
 | |
|       return;
 | |
|     }
 | |
| #endif // GWP_ASAN_HOOKS
 | |
| 
 | |
|     if (UNLIKELY(!Chunk::isAligned(Ptr)))
 | |
|       dieWithMessage("misaligned pointer when deallocating address %p\n", Ptr);
 | |
|     UnpackedHeader Header;
 | |
|     Chunk::loadHeader(Ptr, &Header);
 | |
|     if (UNLIKELY(Header.State != ChunkAllocated))
 | |
|       dieWithMessage("invalid chunk state when deallocating address %p\n", Ptr);
 | |
|     if (DeallocationTypeMismatch) {
 | |
|       // The deallocation type has to match the allocation one.
 | |
|       if (Header.AllocType != Type) {
 | |
|         // With the exception of memalign'd Chunks, that can be still be free'd.
 | |
|         if (Header.AllocType != FromMemalign || Type != FromMalloc)
 | |
|           dieWithMessage("allocation type mismatch when deallocating address "
 | |
|                          "%p\n", Ptr);
 | |
|       }
 | |
|     }
 | |
|     const uptr Size = Chunk::getSize(Ptr, &Header);
 | |
|     if (DeleteSizeMismatch) {
 | |
|       if (DeleteSize && DeleteSize != Size)
 | |
|         dieWithMessage("invalid sized delete when deallocating address %p\n",
 | |
|                        Ptr);
 | |
|     }
 | |
|     (void)DeleteAlignment;  // TODO(kostyak): verify that the alignment matches.
 | |
|     quarantineOrDeallocateChunk(Ptr, &Header, Size);
 | |
|   }
 | |
| 
 | |
|   // Reallocates a chunk. We can save on a new allocation if the new requested
 | |
|   // size still fits in the chunk.
 | |
|   void *reallocate(void *OldPtr, uptr NewSize) {
 | |
|     initThreadMaybe();
 | |
| 
 | |
| #ifdef GWP_ASAN_HOOKS
 | |
|     if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
 | |
|       size_t OldSize = GuardedAlloc.getSize(OldPtr);
 | |
|       void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
 | |
|       if (NewPtr)
 | |
|         memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
 | |
|       GuardedAlloc.deallocate(OldPtr);
 | |
|       return NewPtr;
 | |
|     }
 | |
| #endif // GWP_ASAN_HOOKS
 | |
| 
 | |
|     if (UNLIKELY(!Chunk::isAligned(OldPtr)))
 | |
|       dieWithMessage("misaligned address when reallocating address %p\n",
 | |
|                      OldPtr);
 | |
|     UnpackedHeader OldHeader;
 | |
|     Chunk::loadHeader(OldPtr, &OldHeader);
 | |
|     if (UNLIKELY(OldHeader.State != ChunkAllocated))
 | |
|       dieWithMessage("invalid chunk state when reallocating address %p\n",
 | |
|                      OldPtr);
 | |
|     if (DeallocationTypeMismatch) {
 | |
|       if (UNLIKELY(OldHeader.AllocType != FromMalloc))
 | |
|         dieWithMessage("allocation type mismatch when reallocating address "
 | |
|                        "%p\n", OldPtr);
 | |
|     }
 | |
|     const uptr UsableSize = Chunk::getUsableSize(OldPtr, &OldHeader);
 | |
|     // The new size still fits in the current chunk, and the size difference
 | |
|     // is reasonable.
 | |
|     if (NewSize <= UsableSize &&
 | |
|         (UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) {
 | |
|       UnpackedHeader NewHeader = OldHeader;
 | |
|       NewHeader.SizeOrUnusedBytes =
 | |
|           OldHeader.ClassId ? NewSize : UsableSize - NewSize;
 | |
|       Chunk::compareExchangeHeader(OldPtr, &NewHeader, &OldHeader);
 | |
|       return OldPtr;
 | |
|     }
 | |
|     // Otherwise, we have to allocate a new chunk and copy the contents of the
 | |
|     // old one.
 | |
|     void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
 | |
|     if (NewPtr) {
 | |
|       const uptr OldSize = OldHeader.ClassId ? OldHeader.SizeOrUnusedBytes :
 | |
|           UsableSize - OldHeader.SizeOrUnusedBytes;
 | |
|       memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize));
 | |
|       quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
 | |
|     }
 | |
|     return NewPtr;
 | |
|   }
 | |
| 
 | |
|   // Helper function that returns the actual usable size of a chunk.
 | |
|   uptr getUsableSize(const void *Ptr) {
 | |
|     initThreadMaybe();
 | |
|     if (UNLIKELY(!Ptr))
 | |
|       return 0;
 | |
| 
 | |
| #ifdef GWP_ASAN_HOOKS
 | |
|     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
 | |
|       return GuardedAlloc.getSize(Ptr);
 | |
| #endif // GWP_ASAN_HOOKS
 | |
| 
 | |
|     UnpackedHeader Header;
 | |
|     Chunk::loadHeader(Ptr, &Header);
 | |
|     // Getting the usable size of a chunk only makes sense if it's allocated.
 | |
|     if (UNLIKELY(Header.State != ChunkAllocated))
 | |
|       dieWithMessage("invalid chunk state when sizing address %p\n", Ptr);
 | |
|     return Chunk::getUsableSize(Ptr, &Header);
 | |
|   }
 | |
| 
 | |
|   void *calloc(uptr NMemB, uptr Size) {
 | |
|     initThreadMaybe();
 | |
|     if (UNLIKELY(CheckForCallocOverflow(NMemB, Size))) {
 | |
|       if (AllocatorMayReturnNull())
 | |
|         return nullptr;
 | |
|       reportCallocOverflow(NMemB, Size);
 | |
|     }
 | |
|     return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
 | |
|   }
 | |
| 
 | |
|   void commitBack(ScudoTSD *TSD) {
 | |
|     Quarantine.Drain(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache));
 | |
|     Backend.destroyCache(&TSD->Cache);
 | |
|   }
 | |
| 
 | |
|   uptr getStats(AllocatorStat StatType) {
 | |
|     initThreadMaybe();
 | |
|     uptr stats[AllocatorStatCount];
 | |
|     Backend.getStats(stats);
 | |
|     return stats[StatType];
 | |
|   }
 | |
| 
 | |
|   bool canReturnNull() {
 | |
|     initThreadMaybe();
 | |
|     return AllocatorMayReturnNull();
 | |
|   }
 | |
| 
 | |
|   void setRssLimit(uptr LimitMb, bool HardLimit) {
 | |
|     if (HardLimit)
 | |
|       HardRssLimitMb = LimitMb;
 | |
|     else
 | |
|       SoftRssLimitMb = LimitMb;
 | |
|     CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
 | |
|   }
 | |
| 
 | |
|   void printStats() {
 | |
|     initThreadMaybe();
 | |
|     Backend.printStats();
 | |
|   }
 | |
| };
 | |
| 
 | |
| NOINLINE void Allocator::performSanityChecks() {
 | |
|   // Verify that the header offset field can hold the maximum offset. In the
 | |
|   // case of the Secondary allocator, it takes care of alignment and the
 | |
|   // offset will always be 0. In the case of the Primary, the worst case
 | |
|   // scenario happens in the last size class, when the backend allocation
 | |
|   // would already be aligned on the requested alignment, which would happen
 | |
|   // to be the maximum alignment that would fit in that size class. As a
 | |
|   // result, the maximum offset will be at most the maximum alignment for the
 | |
|   // last size class minus the header size, in multiples of MinAlignment.
 | |
|   UnpackedHeader Header = {};
 | |
|   const uptr MaxPrimaryAlignment =
 | |
|       1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
 | |
|   const uptr MaxOffset =
 | |
|       (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
 | |
|   Header.Offset = MaxOffset;
 | |
|   if (Header.Offset != MaxOffset)
 | |
|     dieWithMessage("maximum possible offset doesn't fit in header\n");
 | |
|   // Verify that we can fit the maximum size or amount of unused bytes in the
 | |
|   // header. Given that the Secondary fits the allocation to a page, the worst
 | |
|   // case scenario happens in the Primary. It will depend on the second to
 | |
|   // last and last class sizes, as well as the dynamic base for the Primary.
 | |
|   // The following is an over-approximation that works for our needs.
 | |
|   const uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1;
 | |
|   Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
 | |
|   if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)
 | |
|     dieWithMessage("maximum possible unused bytes doesn't fit in header\n");
 | |
| 
 | |
|   const uptr LargestClassId = SizeClassMap::kLargestClassID;
 | |
|   Header.ClassId = LargestClassId;
 | |
|   if (Header.ClassId != LargestClassId)
 | |
|     dieWithMessage("largest class ID doesn't fit in header\n");
 | |
| }
 | |
| 
 | |
| // Opportunistic RSS limit check. This will update the RSS limit status, if
 | |
| // it can, every 250ms, otherwise it will just return the current one.
 | |
| NOINLINE bool Allocator::isRssLimitExceeded() {
 | |
|   u64 LastCheck = atomic_load_relaxed(&RssLastCheckedAtNS);
 | |
|   const u64 CurrentCheck = MonotonicNanoTime();
 | |
|   if (LIKELY(CurrentCheck < LastCheck + (250ULL * 1000000ULL)))
 | |
|     return atomic_load_relaxed(&RssLimitExceeded);
 | |
|   if (!atomic_compare_exchange_weak(&RssLastCheckedAtNS, &LastCheck,
 | |
|                                     CurrentCheck, memory_order_relaxed))
 | |
|     return atomic_load_relaxed(&RssLimitExceeded);
 | |
|   // TODO(kostyak): We currently use sanitizer_common's GetRSS which reads the
 | |
|   //                RSS from /proc/self/statm by default. We might want to
 | |
|   //                call getrusage directly, even if it's less accurate.
 | |
|   const uptr CurrentRssMb = GetRSS() >> 20;
 | |
|   if (HardRssLimitMb && UNLIKELY(HardRssLimitMb < CurrentRssMb))
 | |
|     dieWithMessage("hard RSS limit exhausted (%zdMb vs %zdMb)\n",
 | |
|                    HardRssLimitMb, CurrentRssMb);
 | |
|   if (SoftRssLimitMb) {
 | |
|     if (atomic_load_relaxed(&RssLimitExceeded)) {
 | |
|       if (CurrentRssMb <= SoftRssLimitMb)
 | |
|         atomic_store_relaxed(&RssLimitExceeded, false);
 | |
|     } else {
 | |
|       if (CurrentRssMb > SoftRssLimitMb) {
 | |
|         atomic_store_relaxed(&RssLimitExceeded, true);
 | |
|         Printf("Scudo INFO: soft RSS limit exhausted (%zdMb vs %zdMb)\n",
 | |
|                SoftRssLimitMb, CurrentRssMb);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return atomic_load_relaxed(&RssLimitExceeded);
 | |
| }
 | |
| 
 | |
| static Allocator Instance(LINKER_INITIALIZED);
 | |
| 
 | |
| static BackendT &getBackend() {
 | |
|   return Instance.Backend;
 | |
| }
 | |
| 
 | |
| void initScudo() {
 | |
|   Instance.init();
 | |
| #ifdef GWP_ASAN_HOOKS
 | |
|   gwp_asan::options::initOptions();
 | |
|   gwp_asan::options::Options &Opts = gwp_asan::options::getOptions();
 | |
|   Opts.Backtrace = gwp_asan::options::getBacktraceFunction();
 | |
|   GuardedAlloc.init(Opts);
 | |
| 
 | |
|   if (Opts.InstallSignalHandlers)
 | |
|     gwp_asan::crash_handler::installSignalHandlers(
 | |
|         &GuardedAlloc, __sanitizer::Printf,
 | |
|         gwp_asan::options::getPrintBacktraceFunction(), Opts.Backtrace);
 | |
| #endif // GWP_ASAN_HOOKS
 | |
| }
 | |
| 
 | |
| void ScudoTSD::init() {
 | |
|   getBackend().initCache(&Cache);
 | |
|   memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
 | |
| }
 | |
| 
 | |
| void ScudoTSD::commitBack() {
 | |
|   Instance.commitBack(this);
 | |
| }
 | |
| 
 | |
| void *scudoAllocate(uptr Size, uptr Alignment, AllocType Type) {
 | |
|   if (Alignment && UNLIKELY(!IsPowerOfTwo(Alignment))) {
 | |
|     errno = EINVAL;
 | |
|     if (Instance.canReturnNull())
 | |
|       return nullptr;
 | |
|     reportAllocationAlignmentNotPowerOfTwo(Alignment);
 | |
|   }
 | |
|   return SetErrnoOnNull(Instance.allocate(Size, Alignment, Type));
 | |
| }
 | |
| 
 | |
| void scudoDeallocate(void *Ptr, uptr Size, uptr Alignment, AllocType Type) {
 | |
|   Instance.deallocate(Ptr, Size, Alignment, Type);
 | |
| }
 | |
| 
 | |
| void *scudoRealloc(void *Ptr, uptr Size) {
 | |
|   if (!Ptr)
 | |
|     return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
 | |
|   if (Size == 0) {
 | |
|     Instance.deallocate(Ptr, 0, 0, FromMalloc);
 | |
|     return nullptr;
 | |
|   }
 | |
|   return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
 | |
| }
 | |
| 
 | |
| void *scudoCalloc(uptr NMemB, uptr Size) {
 | |
|   return SetErrnoOnNull(Instance.calloc(NMemB, Size));
 | |
| }
 | |
| 
 | |
| void *scudoValloc(uptr Size) {
 | |
|   return SetErrnoOnNull(
 | |
|       Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
 | |
| }
 | |
| 
 | |
| void *scudoPvalloc(uptr Size) {
 | |
|   const uptr PageSize = GetPageSizeCached();
 | |
|   if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) {
 | |
|     errno = ENOMEM;
 | |
|     if (Instance.canReturnNull())
 | |
|       return nullptr;
 | |
|     reportPvallocOverflow(Size);
 | |
|   }
 | |
|   // pvalloc(0) should allocate one page.
 | |
|   Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
 | |
|   return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
 | |
| }
 | |
| 
 | |
| int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
 | |
|   if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
 | |
|     if (!Instance.canReturnNull())
 | |
|       reportInvalidPosixMemalignAlignment(Alignment);
 | |
|     return EINVAL;
 | |
|   }
 | |
|   void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
 | |
|   if (UNLIKELY(!Ptr))
 | |
|     return ENOMEM;
 | |
|   *MemPtr = Ptr;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
 | |
|   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
 | |
|     errno = EINVAL;
 | |
|     if (Instance.canReturnNull())
 | |
|       return nullptr;
 | |
|     reportInvalidAlignedAllocAlignment(Size, Alignment);
 | |
|   }
 | |
|   return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
 | |
| }
 | |
| 
 | |
| uptr scudoMallocUsableSize(void *Ptr) {
 | |
|   return Instance.getUsableSize(Ptr);
 | |
| }
 | |
| 
 | |
| }  // namespace __scudo
 | |
| 
 | |
| using namespace __scudo;
 | |
| 
 | |
| // MallocExtension helper functions
 | |
| 
 | |
| uptr __sanitizer_get_current_allocated_bytes() {
 | |
|   return Instance.getStats(AllocatorStatAllocated);
 | |
| }
 | |
| 
 | |
| uptr __sanitizer_get_heap_size() {
 | |
|   return Instance.getStats(AllocatorStatMapped);
 | |
| }
 | |
| 
 | |
| uptr __sanitizer_get_free_bytes() {
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| uptr __sanitizer_get_unmapped_bytes() {
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| uptr __sanitizer_get_estimated_allocated_size(uptr Size) {
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| int __sanitizer_get_ownership(const void *Ptr) {
 | |
|   return Instance.isValidPointer(Ptr);
 | |
| }
 | |
| 
 | |
| uptr __sanitizer_get_allocated_size(const void *Ptr) {
 | |
|   return Instance.getUsableSize(Ptr);
 | |
| }
 | |
| 
 | |
| #if !SANITIZER_SUPPORTS_WEAK_HOOKS
 | |
| SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
 | |
|                              void *Ptr, uptr Size) {
 | |
|   (void)Ptr;
 | |
|   (void)Size;
 | |
| }
 | |
| 
 | |
| SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *Ptr) {
 | |
|   (void)Ptr;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Interface functions
 | |
| 
 | |
| void __scudo_set_rss_limit(uptr LimitMb, s32 HardLimit) {
 | |
|   if (!SCUDO_CAN_USE_PUBLIC_INTERFACE)
 | |
|     return;
 | |
|   Instance.setRssLimit(LimitMb, !!HardLimit);
 | |
| }
 | |
| 
 | |
| void __scudo_print_stats() {
 | |
|   Instance.printStats();
 | |
| }
 |