forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3111 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3111 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- APInt.cpp - Implement APInt class ---------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a class to represent arbitrary precision integer
 | |
| // constant values and provide a variety of arithmetic operations on them.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/bit.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <climits>
 | |
| #include <cmath>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "apint"
 | |
| 
 | |
| /// A utility function for allocating memory, checking for allocation failures,
 | |
| /// and ensuring the contents are zeroed.
 | |
| inline static uint64_t* getClearedMemory(unsigned numWords) {
 | |
|   uint64_t *result = new uint64_t[numWords];
 | |
|   memset(result, 0, numWords * sizeof(uint64_t));
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /// A utility function for allocating memory and checking for allocation
 | |
| /// failure.  The content is not zeroed.
 | |
| inline static uint64_t* getMemory(unsigned numWords) {
 | |
|   return new uint64_t[numWords];
 | |
| }
 | |
| 
 | |
| /// A utility function that converts a character to a digit.
 | |
| inline static unsigned getDigit(char cdigit, uint8_t radix) {
 | |
|   unsigned r;
 | |
| 
 | |
|   if (radix == 16 || radix == 36) {
 | |
|     r = cdigit - '0';
 | |
|     if (r <= 9)
 | |
|       return r;
 | |
| 
 | |
|     r = cdigit - 'A';
 | |
|     if (r <= radix - 11U)
 | |
|       return r + 10;
 | |
| 
 | |
|     r = cdigit - 'a';
 | |
|     if (r <= radix - 11U)
 | |
|       return r + 10;
 | |
| 
 | |
|     radix = 10;
 | |
|   }
 | |
| 
 | |
|   r = cdigit - '0';
 | |
|   if (r < radix)
 | |
|     return r;
 | |
| 
 | |
|   return -1U;
 | |
| }
 | |
| 
 | |
| 
 | |
| void APInt::initSlowCase(uint64_t val, bool isSigned) {
 | |
|   U.pVal = getClearedMemory(getNumWords());
 | |
|   U.pVal[0] = val;
 | |
|   if (isSigned && int64_t(val) < 0)
 | |
|     for (unsigned i = 1; i < getNumWords(); ++i)
 | |
|       U.pVal[i] = WORDTYPE_MAX;
 | |
|   clearUnusedBits();
 | |
| }
 | |
| 
 | |
| void APInt::initSlowCase(const APInt& that) {
 | |
|   U.pVal = getMemory(getNumWords());
 | |
|   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
 | |
| }
 | |
| 
 | |
| void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
 | |
|   assert(BitWidth && "Bitwidth too small");
 | |
|   assert(bigVal.data() && "Null pointer detected!");
 | |
|   if (isSingleWord())
 | |
|     U.VAL = bigVal[0];
 | |
|   else {
 | |
|     // Get memory, cleared to 0
 | |
|     U.pVal = getClearedMemory(getNumWords());
 | |
|     // Calculate the number of words to copy
 | |
|     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
 | |
|     // Copy the words from bigVal to pVal
 | |
|     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
 | |
|   }
 | |
|   // Make sure unused high bits are cleared
 | |
|   clearUnusedBits();
 | |
| }
 | |
| 
 | |
| APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
 | |
|   : BitWidth(numBits) {
 | |
|   initFromArray(bigVal);
 | |
| }
 | |
| 
 | |
| APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
 | |
|   : BitWidth(numBits) {
 | |
|   initFromArray(makeArrayRef(bigVal, numWords));
 | |
| }
 | |
| 
 | |
| APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
 | |
|   : BitWidth(numbits) {
 | |
|   assert(BitWidth && "Bitwidth too small");
 | |
|   fromString(numbits, Str, radix);
 | |
| }
 | |
| 
 | |
| void APInt::reallocate(unsigned NewBitWidth) {
 | |
|   // If the number of words is the same we can just change the width and stop.
 | |
|   if (getNumWords() == getNumWords(NewBitWidth)) {
 | |
|     BitWidth = NewBitWidth;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we have an allocation, delete it.
 | |
|   if (!isSingleWord())
 | |
|     delete [] U.pVal;
 | |
| 
 | |
|   // Update BitWidth.
 | |
|   BitWidth = NewBitWidth;
 | |
| 
 | |
|   // If we are supposed to have an allocation, create it.
 | |
|   if (!isSingleWord())
 | |
|     U.pVal = getMemory(getNumWords());
 | |
| }
 | |
| 
 | |
| void APInt::AssignSlowCase(const APInt& RHS) {
 | |
|   // Don't do anything for X = X
 | |
|   if (this == &RHS)
 | |
|     return;
 | |
| 
 | |
|   // Adjust the bit width and handle allocations as necessary.
 | |
|   reallocate(RHS.getBitWidth());
 | |
| 
 | |
|   // Copy the data.
 | |
|   if (isSingleWord())
 | |
|     U.VAL = RHS.U.VAL;
 | |
|   else
 | |
|     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
 | |
| }
 | |
| 
 | |
| /// This method 'profiles' an APInt for use with FoldingSet.
 | |
| void APInt::Profile(FoldingSetNodeID& ID) const {
 | |
|   ID.AddInteger(BitWidth);
 | |
| 
 | |
|   if (isSingleWord()) {
 | |
|     ID.AddInteger(U.VAL);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned NumWords = getNumWords();
 | |
|   for (unsigned i = 0; i < NumWords; ++i)
 | |
|     ID.AddInteger(U.pVal[i]);
 | |
| }
 | |
| 
 | |
| /// Prefix increment operator. Increments the APInt by one.
 | |
| APInt& APInt::operator++() {
 | |
|   if (isSingleWord())
 | |
|     ++U.VAL;
 | |
|   else
 | |
|     tcIncrement(U.pVal, getNumWords());
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// Prefix decrement operator. Decrements the APInt by one.
 | |
| APInt& APInt::operator--() {
 | |
|   if (isSingleWord())
 | |
|     --U.VAL;
 | |
|   else
 | |
|     tcDecrement(U.pVal, getNumWords());
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// Adds the RHS APInt to this APInt.
 | |
| /// @returns this, after addition of RHS.
 | |
| /// Addition assignment operator.
 | |
| APInt& APInt::operator+=(const APInt& RHS) {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord())
 | |
|     U.VAL += RHS.U.VAL;
 | |
|   else
 | |
|     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| APInt& APInt::operator+=(uint64_t RHS) {
 | |
|   if (isSingleWord())
 | |
|     U.VAL += RHS;
 | |
|   else
 | |
|     tcAddPart(U.pVal, RHS, getNumWords());
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// Subtracts the RHS APInt from this APInt
 | |
| /// @returns this, after subtraction
 | |
| /// Subtraction assignment operator.
 | |
| APInt& APInt::operator-=(const APInt& RHS) {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord())
 | |
|     U.VAL -= RHS.U.VAL;
 | |
|   else
 | |
|     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| APInt& APInt::operator-=(uint64_t RHS) {
 | |
|   if (isSingleWord())
 | |
|     U.VAL -= RHS;
 | |
|   else
 | |
|     tcSubtractPart(U.pVal, RHS, getNumWords());
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| APInt APInt::operator*(const APInt& RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord())
 | |
|     return APInt(BitWidth, U.VAL * RHS.U.VAL);
 | |
| 
 | |
|   APInt Result(getMemory(getNumWords()), getBitWidth());
 | |
| 
 | |
|   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
 | |
| 
 | |
|   Result.clearUnusedBits();
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void APInt::AndAssignSlowCase(const APInt& RHS) {
 | |
|   tcAnd(U.pVal, RHS.U.pVal, getNumWords());
 | |
| }
 | |
| 
 | |
| void APInt::OrAssignSlowCase(const APInt& RHS) {
 | |
|   tcOr(U.pVal, RHS.U.pVal, getNumWords());
 | |
| }
 | |
| 
 | |
| void APInt::XorAssignSlowCase(const APInt& RHS) {
 | |
|   tcXor(U.pVal, RHS.U.pVal, getNumWords());
 | |
| }
 | |
| 
 | |
| APInt& APInt::operator*=(const APInt& RHS) {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   *this = *this * RHS;
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| APInt& APInt::operator*=(uint64_t RHS) {
 | |
|   if (isSingleWord()) {
 | |
|     U.VAL *= RHS;
 | |
|   } else {
 | |
|     unsigned NumWords = getNumWords();
 | |
|     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
 | |
|   }
 | |
|   return clearUnusedBits();
 | |
| }
 | |
| 
 | |
| bool APInt::EqualSlowCase(const APInt& RHS) const {
 | |
|   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
 | |
| }
 | |
| 
 | |
| int APInt::compare(const APInt& RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
 | |
|   if (isSingleWord())
 | |
|     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
 | |
| 
 | |
|   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
 | |
| }
 | |
| 
 | |
| int APInt::compareSigned(const APInt& RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
 | |
|   if (isSingleWord()) {
 | |
|     int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
 | |
|     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
 | |
|     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
 | |
|   }
 | |
| 
 | |
|   bool lhsNeg = isNegative();
 | |
|   bool rhsNeg = RHS.isNegative();
 | |
| 
 | |
|   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
 | |
|   if (lhsNeg != rhsNeg)
 | |
|     return lhsNeg ? -1 : 1;
 | |
| 
 | |
|   // Otherwise we can just use an unsigned comparison, because even negative
 | |
|   // numbers compare correctly this way if both have the same signed-ness.
 | |
|   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
 | |
| }
 | |
| 
 | |
| void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
 | |
|   unsigned loWord = whichWord(loBit);
 | |
|   unsigned hiWord = whichWord(hiBit);
 | |
| 
 | |
|   // Create an initial mask for the low word with zeros below loBit.
 | |
|   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
 | |
| 
 | |
|   // If hiBit is not aligned, we need a high mask.
 | |
|   unsigned hiShiftAmt = whichBit(hiBit);
 | |
|   if (hiShiftAmt != 0) {
 | |
|     // Create a high mask with zeros above hiBit.
 | |
|     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
 | |
|     // If loWord and hiWord are equal, then we combine the masks. Otherwise,
 | |
|     // set the bits in hiWord.
 | |
|     if (hiWord == loWord)
 | |
|       loMask &= hiMask;
 | |
|     else
 | |
|       U.pVal[hiWord] |= hiMask;
 | |
|   }
 | |
|   // Apply the mask to the low word.
 | |
|   U.pVal[loWord] |= loMask;
 | |
| 
 | |
|   // Fill any words between loWord and hiWord with all ones.
 | |
|   for (unsigned word = loWord + 1; word < hiWord; ++word)
 | |
|     U.pVal[word] = WORDTYPE_MAX;
 | |
| }
 | |
| 
 | |
| /// Toggle every bit to its opposite value.
 | |
| void APInt::flipAllBitsSlowCase() {
 | |
|   tcComplement(U.pVal, getNumWords());
 | |
|   clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// Toggle a given bit to its opposite value whose position is given
 | |
| /// as "bitPosition".
 | |
| /// Toggles a given bit to its opposite value.
 | |
| void APInt::flipBit(unsigned bitPosition) {
 | |
|   assert(bitPosition < BitWidth && "Out of the bit-width range!");
 | |
|   if ((*this)[bitPosition]) clearBit(bitPosition);
 | |
|   else setBit(bitPosition);
 | |
| }
 | |
| 
 | |
| void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
 | |
|   unsigned subBitWidth = subBits.getBitWidth();
 | |
|   assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
 | |
|          "Illegal bit insertion");
 | |
| 
 | |
|   // Insertion is a direct copy.
 | |
|   if (subBitWidth == BitWidth) {
 | |
|     *this = subBits;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Single word result can be done as a direct bitmask.
 | |
|   if (isSingleWord()) {
 | |
|     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
 | |
|     U.VAL &= ~(mask << bitPosition);
 | |
|     U.VAL |= (subBits.U.VAL << bitPosition);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned loBit = whichBit(bitPosition);
 | |
|   unsigned loWord = whichWord(bitPosition);
 | |
|   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
 | |
| 
 | |
|   // Insertion within a single word can be done as a direct bitmask.
 | |
|   if (loWord == hi1Word) {
 | |
|     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
 | |
|     U.pVal[loWord] &= ~(mask << loBit);
 | |
|     U.pVal[loWord] |= (subBits.U.VAL << loBit);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Insert on word boundaries.
 | |
|   if (loBit == 0) {
 | |
|     // Direct copy whole words.
 | |
|     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
 | |
|     memcpy(U.pVal + loWord, subBits.getRawData(),
 | |
|            numWholeSubWords * APINT_WORD_SIZE);
 | |
| 
 | |
|     // Mask+insert remaining bits.
 | |
|     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
 | |
|     if (remainingBits != 0) {
 | |
|       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
 | |
|       U.pVal[hi1Word] &= ~mask;
 | |
|       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // General case - set/clear individual bits in dst based on src.
 | |
|   // TODO - there is scope for optimization here, but at the moment this code
 | |
|   // path is barely used so prefer readability over performance.
 | |
|   for (unsigned i = 0; i != subBitWidth; ++i) {
 | |
|     if (subBits[i])
 | |
|       setBit(bitPosition + i);
 | |
|     else
 | |
|       clearBit(bitPosition + i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
 | |
|   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
 | |
|   subBits &= maskBits;
 | |
|   if (isSingleWord()) {
 | |
|     U.VAL &= ~(maskBits << bitPosition);
 | |
|     U.VAL |= subBits << bitPosition;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned loBit = whichBit(bitPosition);
 | |
|   unsigned loWord = whichWord(bitPosition);
 | |
|   unsigned hiWord = whichWord(bitPosition + numBits - 1);
 | |
|   if (loWord == hiWord) {
 | |
|     U.pVal[loWord] &= ~(maskBits << loBit);
 | |
|     U.pVal[loWord] |= subBits << loBit;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
 | |
|   unsigned wordBits = 8 * sizeof(WordType);
 | |
|   U.pVal[loWord] &= ~(maskBits << loBit);
 | |
|   U.pVal[loWord] |= subBits << loBit;
 | |
| 
 | |
|   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
 | |
|   U.pVal[hiWord] |= subBits >> (wordBits - loBit);
 | |
| }
 | |
| 
 | |
| APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
 | |
|   assert(numBits > 0 && "Can't extract zero bits");
 | |
|   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
 | |
|          "Illegal bit extraction");
 | |
| 
 | |
|   if (isSingleWord())
 | |
|     return APInt(numBits, U.VAL >> bitPosition);
 | |
| 
 | |
|   unsigned loBit = whichBit(bitPosition);
 | |
|   unsigned loWord = whichWord(bitPosition);
 | |
|   unsigned hiWord = whichWord(bitPosition + numBits - 1);
 | |
| 
 | |
|   // Single word result extracting bits from a single word source.
 | |
|   if (loWord == hiWord)
 | |
|     return APInt(numBits, U.pVal[loWord] >> loBit);
 | |
| 
 | |
|   // Extracting bits that start on a source word boundary can be done
 | |
|   // as a fast memory copy.
 | |
|   if (loBit == 0)
 | |
|     return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
 | |
| 
 | |
|   // General case - shift + copy source words directly into place.
 | |
|   APInt Result(numBits, 0);
 | |
|   unsigned NumSrcWords = getNumWords();
 | |
|   unsigned NumDstWords = Result.getNumWords();
 | |
| 
 | |
|   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
 | |
|   for (unsigned word = 0; word < NumDstWords; ++word) {
 | |
|     uint64_t w0 = U.pVal[loWord + word];
 | |
|     uint64_t w1 =
 | |
|         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
 | |
|     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
 | |
|   }
 | |
| 
 | |
|   return Result.clearUnusedBits();
 | |
| }
 | |
| 
 | |
| uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
 | |
|                                        unsigned bitPosition) const {
 | |
|   assert(numBits > 0 && "Can't extract zero bits");
 | |
|   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
 | |
|          "Illegal bit extraction");
 | |
|   assert(numBits <= 64 && "Illegal bit extraction");
 | |
| 
 | |
|   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
 | |
|   if (isSingleWord())
 | |
|     return (U.VAL >> bitPosition) & maskBits;
 | |
| 
 | |
|   unsigned loBit = whichBit(bitPosition);
 | |
|   unsigned loWord = whichWord(bitPosition);
 | |
|   unsigned hiWord = whichWord(bitPosition + numBits - 1);
 | |
|   if (loWord == hiWord)
 | |
|     return (U.pVal[loWord] >> loBit) & maskBits;
 | |
| 
 | |
|   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
 | |
|   unsigned wordBits = 8 * sizeof(WordType);
 | |
|   uint64_t retBits = U.pVal[loWord] >> loBit;
 | |
|   retBits |= U.pVal[hiWord] << (wordBits - loBit);
 | |
|   retBits &= maskBits;
 | |
|   return retBits;
 | |
| }
 | |
| 
 | |
| unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
 | |
|   assert(!str.empty() && "Invalid string length");
 | |
|   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
 | |
|           radix == 36) &&
 | |
|          "Radix should be 2, 8, 10, 16, or 36!");
 | |
| 
 | |
|   size_t slen = str.size();
 | |
| 
 | |
|   // Each computation below needs to know if it's negative.
 | |
|   StringRef::iterator p = str.begin();
 | |
|   unsigned isNegative = *p == '-';
 | |
|   if (*p == '-' || *p == '+') {
 | |
|     p++;
 | |
|     slen--;
 | |
|     assert(slen && "String is only a sign, needs a value.");
 | |
|   }
 | |
| 
 | |
|   // For radixes of power-of-two values, the bits required is accurately and
 | |
|   // easily computed
 | |
|   if (radix == 2)
 | |
|     return slen + isNegative;
 | |
|   if (radix == 8)
 | |
|     return slen * 3 + isNegative;
 | |
|   if (radix == 16)
 | |
|     return slen * 4 + isNegative;
 | |
| 
 | |
|   // FIXME: base 36
 | |
| 
 | |
|   // This is grossly inefficient but accurate. We could probably do something
 | |
|   // with a computation of roughly slen*64/20 and then adjust by the value of
 | |
|   // the first few digits. But, I'm not sure how accurate that could be.
 | |
| 
 | |
|   // Compute a sufficient number of bits that is always large enough but might
 | |
|   // be too large. This avoids the assertion in the constructor. This
 | |
|   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
 | |
|   // bits in that case.
 | |
|   unsigned sufficient
 | |
|     = radix == 10? (slen == 1 ? 4 : slen * 64/18)
 | |
|                  : (slen == 1 ? 7 : slen * 16/3);
 | |
| 
 | |
|   // Convert to the actual binary value.
 | |
|   APInt tmp(sufficient, StringRef(p, slen), radix);
 | |
| 
 | |
|   // Compute how many bits are required. If the log is infinite, assume we need
 | |
|   // just bit. If the log is exact and value is negative, then the value is
 | |
|   // MinSignedValue with (log + 1) bits.
 | |
|   unsigned log = tmp.logBase2();
 | |
|   if (log == (unsigned)-1) {
 | |
|     return isNegative + 1;
 | |
|   } else if (isNegative && tmp.isPowerOf2()) {
 | |
|     return isNegative + log;
 | |
|   } else {
 | |
|     return isNegative + log + 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| hash_code llvm::hash_value(const APInt &Arg) {
 | |
|   if (Arg.isSingleWord())
 | |
|     return hash_combine(Arg.U.VAL);
 | |
| 
 | |
|   return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords());
 | |
| }
 | |
| 
 | |
| bool APInt::isSplat(unsigned SplatSizeInBits) const {
 | |
|   assert(getBitWidth() % SplatSizeInBits == 0 &&
 | |
|          "SplatSizeInBits must divide width!");
 | |
|   // We can check that all parts of an integer are equal by making use of a
 | |
|   // little trick: rotate and check if it's still the same value.
 | |
|   return *this == rotl(SplatSizeInBits);
 | |
| }
 | |
| 
 | |
| /// This function returns the high "numBits" bits of this APInt.
 | |
| APInt APInt::getHiBits(unsigned numBits) const {
 | |
|   return this->lshr(BitWidth - numBits);
 | |
| }
 | |
| 
 | |
| /// This function returns the low "numBits" bits of this APInt.
 | |
| APInt APInt::getLoBits(unsigned numBits) const {
 | |
|   APInt Result(getLowBitsSet(BitWidth, numBits));
 | |
|   Result &= *this;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Return a value containing V broadcasted over NewLen bits.
 | |
| APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
 | |
|   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
 | |
| 
 | |
|   APInt Val = V.zextOrSelf(NewLen);
 | |
|   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
 | |
|     Val |= Val << I;
 | |
| 
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| unsigned APInt::countLeadingZerosSlowCase() const {
 | |
|   unsigned Count = 0;
 | |
|   for (int i = getNumWords()-1; i >= 0; --i) {
 | |
|     uint64_t V = U.pVal[i];
 | |
|     if (V == 0)
 | |
|       Count += APINT_BITS_PER_WORD;
 | |
|     else {
 | |
|       Count += llvm::countLeadingZeros(V);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   // Adjust for unused bits in the most significant word (they are zero).
 | |
|   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
 | |
|   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| unsigned APInt::countLeadingOnesSlowCase() const {
 | |
|   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
 | |
|   unsigned shift;
 | |
|   if (!highWordBits) {
 | |
|     highWordBits = APINT_BITS_PER_WORD;
 | |
|     shift = 0;
 | |
|   } else {
 | |
|     shift = APINT_BITS_PER_WORD - highWordBits;
 | |
|   }
 | |
|   int i = getNumWords() - 1;
 | |
|   unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
 | |
|   if (Count == highWordBits) {
 | |
|     for (i--; i >= 0; --i) {
 | |
|       if (U.pVal[i] == WORDTYPE_MAX)
 | |
|         Count += APINT_BITS_PER_WORD;
 | |
|       else {
 | |
|         Count += llvm::countLeadingOnes(U.pVal[i]);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| unsigned APInt::countTrailingZerosSlowCase() const {
 | |
|   unsigned Count = 0;
 | |
|   unsigned i = 0;
 | |
|   for (; i < getNumWords() && U.pVal[i] == 0; ++i)
 | |
|     Count += APINT_BITS_PER_WORD;
 | |
|   if (i < getNumWords())
 | |
|     Count += llvm::countTrailingZeros(U.pVal[i]);
 | |
|   return std::min(Count, BitWidth);
 | |
| }
 | |
| 
 | |
| unsigned APInt::countTrailingOnesSlowCase() const {
 | |
|   unsigned Count = 0;
 | |
|   unsigned i = 0;
 | |
|   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
 | |
|     Count += APINT_BITS_PER_WORD;
 | |
|   if (i < getNumWords())
 | |
|     Count += llvm::countTrailingOnes(U.pVal[i]);
 | |
|   assert(Count <= BitWidth);
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| unsigned APInt::countPopulationSlowCase() const {
 | |
|   unsigned Count = 0;
 | |
|   for (unsigned i = 0; i < getNumWords(); ++i)
 | |
|     Count += llvm::countPopulation(U.pVal[i]);
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| bool APInt::intersectsSlowCase(const APInt &RHS) const {
 | |
|   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
 | |
|     if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
 | |
|   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
 | |
|     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| APInt APInt::byteSwap() const {
 | |
|   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
 | |
|   if (BitWidth == 16)
 | |
|     return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
 | |
|   if (BitWidth == 32)
 | |
|     return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
 | |
|   if (BitWidth <= 64) {
 | |
|     uint64_t Tmp1 = ByteSwap_64(U.VAL);
 | |
|     Tmp1 >>= (64 - BitWidth);
 | |
|     return APInt(BitWidth, Tmp1);
 | |
|   }
 | |
| 
 | |
|   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
 | |
|   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
 | |
|     Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
 | |
|   if (Result.BitWidth != BitWidth) {
 | |
|     Result.lshrInPlace(Result.BitWidth - BitWidth);
 | |
|     Result.BitWidth = BitWidth;
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| APInt APInt::reverseBits() const {
 | |
|   switch (BitWidth) {
 | |
|   case 64:
 | |
|     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
 | |
|   case 32:
 | |
|     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
 | |
|   case 16:
 | |
|     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
 | |
|   case 8:
 | |
|     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   APInt Val(*this);
 | |
|   APInt Reversed(BitWidth, 0);
 | |
|   unsigned S = BitWidth;
 | |
| 
 | |
|   for (; Val != 0; Val.lshrInPlace(1)) {
 | |
|     Reversed <<= 1;
 | |
|     Reversed |= Val[0];
 | |
|     --S;
 | |
|   }
 | |
| 
 | |
|   Reversed <<= S;
 | |
|   return Reversed;
 | |
| }
 | |
| 
 | |
| APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
 | |
|   // Fast-path a common case.
 | |
|   if (A == B) return A;
 | |
| 
 | |
|   // Corner cases: if either operand is zero, the other is the gcd.
 | |
|   if (!A) return B;
 | |
|   if (!B) return A;
 | |
| 
 | |
|   // Count common powers of 2 and remove all other powers of 2.
 | |
|   unsigned Pow2;
 | |
|   {
 | |
|     unsigned Pow2_A = A.countTrailingZeros();
 | |
|     unsigned Pow2_B = B.countTrailingZeros();
 | |
|     if (Pow2_A > Pow2_B) {
 | |
|       A.lshrInPlace(Pow2_A - Pow2_B);
 | |
|       Pow2 = Pow2_B;
 | |
|     } else if (Pow2_B > Pow2_A) {
 | |
|       B.lshrInPlace(Pow2_B - Pow2_A);
 | |
|       Pow2 = Pow2_A;
 | |
|     } else {
 | |
|       Pow2 = Pow2_A;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Both operands are odd multiples of 2^Pow_2:
 | |
|   //
 | |
|   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
 | |
|   //
 | |
|   // This is a modified version of Stein's algorithm, taking advantage of
 | |
|   // efficient countTrailingZeros().
 | |
|   while (A != B) {
 | |
|     if (A.ugt(B)) {
 | |
|       A -= B;
 | |
|       A.lshrInPlace(A.countTrailingZeros() - Pow2);
 | |
|     } else {
 | |
|       B -= A;
 | |
|       B.lshrInPlace(B.countTrailingZeros() - Pow2);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return A;
 | |
| }
 | |
| 
 | |
| APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
 | |
|   uint64_t I = bit_cast<uint64_t>(Double);
 | |
| 
 | |
|   // Get the sign bit from the highest order bit
 | |
|   bool isNeg = I >> 63;
 | |
| 
 | |
|   // Get the 11-bit exponent and adjust for the 1023 bit bias
 | |
|   int64_t exp = ((I >> 52) & 0x7ff) - 1023;
 | |
| 
 | |
|   // If the exponent is negative, the value is < 0 so just return 0.
 | |
|   if (exp < 0)
 | |
|     return APInt(width, 0u);
 | |
| 
 | |
|   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
 | |
|   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
 | |
| 
 | |
|   // If the exponent doesn't shift all bits out of the mantissa
 | |
|   if (exp < 52)
 | |
|     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
 | |
|                     APInt(width, mantissa >> (52 - exp));
 | |
| 
 | |
|   // If the client didn't provide enough bits for us to shift the mantissa into
 | |
|   // then the result is undefined, just return 0
 | |
|   if (width <= exp - 52)
 | |
|     return APInt(width, 0);
 | |
| 
 | |
|   // Otherwise, we have to shift the mantissa bits up to the right location
 | |
|   APInt Tmp(width, mantissa);
 | |
|   Tmp <<= (unsigned)exp - 52;
 | |
|   return isNeg ? -Tmp : Tmp;
 | |
| }
 | |
| 
 | |
| /// This function converts this APInt to a double.
 | |
| /// The layout for double is as following (IEEE Standard 754):
 | |
| ///  --------------------------------------
 | |
| /// |  Sign    Exponent    Fraction    Bias |
 | |
| /// |-------------------------------------- |
 | |
| /// |  1[63]   11[62-52]   52[51-00]   1023 |
 | |
| ///  --------------------------------------
 | |
| double APInt::roundToDouble(bool isSigned) const {
 | |
| 
 | |
|   // Handle the simple case where the value is contained in one uint64_t.
 | |
|   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
 | |
|   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
 | |
|     if (isSigned) {
 | |
|       int64_t sext = SignExtend64(getWord(0), BitWidth);
 | |
|       return double(sext);
 | |
|     } else
 | |
|       return double(getWord(0));
 | |
|   }
 | |
| 
 | |
|   // Determine if the value is negative.
 | |
|   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
 | |
| 
 | |
|   // Construct the absolute value if we're negative.
 | |
|   APInt Tmp(isNeg ? -(*this) : (*this));
 | |
| 
 | |
|   // Figure out how many bits we're using.
 | |
|   unsigned n = Tmp.getActiveBits();
 | |
| 
 | |
|   // The exponent (without bias normalization) is just the number of bits
 | |
|   // we are using. Note that the sign bit is gone since we constructed the
 | |
|   // absolute value.
 | |
|   uint64_t exp = n;
 | |
| 
 | |
|   // Return infinity for exponent overflow
 | |
|   if (exp > 1023) {
 | |
|     if (!isSigned || !isNeg)
 | |
|       return std::numeric_limits<double>::infinity();
 | |
|     else
 | |
|       return -std::numeric_limits<double>::infinity();
 | |
|   }
 | |
|   exp += 1023; // Increment for 1023 bias
 | |
| 
 | |
|   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
 | |
|   // extract the high 52 bits from the correct words in pVal.
 | |
|   uint64_t mantissa;
 | |
|   unsigned hiWord = whichWord(n-1);
 | |
|   if (hiWord == 0) {
 | |
|     mantissa = Tmp.U.pVal[0];
 | |
|     if (n > 52)
 | |
|       mantissa >>= n - 52; // shift down, we want the top 52 bits.
 | |
|   } else {
 | |
|     assert(hiWord > 0 && "huh?");
 | |
|     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
 | |
|     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
 | |
|     mantissa = hibits | lobits;
 | |
|   }
 | |
| 
 | |
|   // The leading bit of mantissa is implicit, so get rid of it.
 | |
|   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
 | |
|   uint64_t I = sign | (exp << 52) | mantissa;
 | |
|   return bit_cast<double>(I);
 | |
| }
 | |
| 
 | |
| // Truncate to new width.
 | |
| APInt APInt::trunc(unsigned width) const {
 | |
|   assert(width < BitWidth && "Invalid APInt Truncate request");
 | |
|   assert(width && "Can't truncate to 0 bits");
 | |
| 
 | |
|   if (width <= APINT_BITS_PER_WORD)
 | |
|     return APInt(width, getRawData()[0]);
 | |
| 
 | |
|   APInt Result(getMemory(getNumWords(width)), width);
 | |
| 
 | |
|   // Copy full words.
 | |
|   unsigned i;
 | |
|   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
 | |
|     Result.U.pVal[i] = U.pVal[i];
 | |
| 
 | |
|   // Truncate and copy any partial word.
 | |
|   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
 | |
|   if (bits != 0)
 | |
|     Result.U.pVal[i] = U.pVal[i] << bits >> bits;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // Truncate to new width with unsigned saturation.
 | |
| APInt APInt::truncUSat(unsigned width) const {
 | |
|   assert(width < BitWidth && "Invalid APInt Truncate request");
 | |
|   assert(width && "Can't truncate to 0 bits");
 | |
| 
 | |
|   // Can we just losslessly truncate it?
 | |
|   if (isIntN(width))
 | |
|     return trunc(width);
 | |
|   // If not, then just return the new limit.
 | |
|   return APInt::getMaxValue(width);
 | |
| }
 | |
| 
 | |
| // Truncate to new width with signed saturation.
 | |
| APInt APInt::truncSSat(unsigned width) const {
 | |
|   assert(width < BitWidth && "Invalid APInt Truncate request");
 | |
|   assert(width && "Can't truncate to 0 bits");
 | |
| 
 | |
|   // Can we just losslessly truncate it?
 | |
|   if (isSignedIntN(width))
 | |
|     return trunc(width);
 | |
|   // If not, then just return the new limits.
 | |
|   return isNegative() ? APInt::getSignedMinValue(width)
 | |
|                       : APInt::getSignedMaxValue(width);
 | |
| }
 | |
| 
 | |
| // Sign extend to a new width.
 | |
| APInt APInt::sext(unsigned Width) const {
 | |
|   assert(Width > BitWidth && "Invalid APInt SignExtend request");
 | |
| 
 | |
|   if (Width <= APINT_BITS_PER_WORD)
 | |
|     return APInt(Width, SignExtend64(U.VAL, BitWidth));
 | |
| 
 | |
|   APInt Result(getMemory(getNumWords(Width)), Width);
 | |
| 
 | |
|   // Copy words.
 | |
|   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
 | |
| 
 | |
|   // Sign extend the last word since there may be unused bits in the input.
 | |
|   Result.U.pVal[getNumWords() - 1] =
 | |
|       SignExtend64(Result.U.pVal[getNumWords() - 1],
 | |
|                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
 | |
| 
 | |
|   // Fill with sign bits.
 | |
|   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
 | |
|               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
 | |
|   Result.clearUnusedBits();
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //  Zero extend to a new width.
 | |
| APInt APInt::zext(unsigned width) const {
 | |
|   assert(width > BitWidth && "Invalid APInt ZeroExtend request");
 | |
| 
 | |
|   if (width <= APINT_BITS_PER_WORD)
 | |
|     return APInt(width, U.VAL);
 | |
| 
 | |
|   APInt Result(getMemory(getNumWords(width)), width);
 | |
| 
 | |
|   // Copy words.
 | |
|   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
 | |
| 
 | |
|   // Zero remaining words.
 | |
|   std::memset(Result.U.pVal + getNumWords(), 0,
 | |
|               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| APInt APInt::zextOrTrunc(unsigned width) const {
 | |
|   if (BitWidth < width)
 | |
|     return zext(width);
 | |
|   if (BitWidth > width)
 | |
|     return trunc(width);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| APInt APInt::sextOrTrunc(unsigned width) const {
 | |
|   if (BitWidth < width)
 | |
|     return sext(width);
 | |
|   if (BitWidth > width)
 | |
|     return trunc(width);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| APInt APInt::zextOrSelf(unsigned width) const {
 | |
|   if (BitWidth < width)
 | |
|     return zext(width);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| APInt APInt::sextOrSelf(unsigned width) const {
 | |
|   if (BitWidth < width)
 | |
|     return sext(width);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| /// Arithmetic right-shift this APInt by shiftAmt.
 | |
| /// Arithmetic right-shift function.
 | |
| void APInt::ashrInPlace(const APInt &shiftAmt) {
 | |
|   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
 | |
| }
 | |
| 
 | |
| /// Arithmetic right-shift this APInt by shiftAmt.
 | |
| /// Arithmetic right-shift function.
 | |
| void APInt::ashrSlowCase(unsigned ShiftAmt) {
 | |
|   // Don't bother performing a no-op shift.
 | |
|   if (!ShiftAmt)
 | |
|     return;
 | |
| 
 | |
|   // Save the original sign bit for later.
 | |
|   bool Negative = isNegative();
 | |
| 
 | |
|   // WordShift is the inter-part shift; BitShift is intra-part shift.
 | |
|   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
 | |
|   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
 | |
| 
 | |
|   unsigned WordsToMove = getNumWords() - WordShift;
 | |
|   if (WordsToMove != 0) {
 | |
|     // Sign extend the last word to fill in the unused bits.
 | |
|     U.pVal[getNumWords() - 1] = SignExtend64(
 | |
|         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
 | |
| 
 | |
|     // Fastpath for moving by whole words.
 | |
|     if (BitShift == 0) {
 | |
|       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
 | |
|     } else {
 | |
|       // Move the words containing significant bits.
 | |
|       for (unsigned i = 0; i != WordsToMove - 1; ++i)
 | |
|         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
 | |
|                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
 | |
| 
 | |
|       // Handle the last word which has no high bits to copy.
 | |
|       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
 | |
|       // Sign extend one more time.
 | |
|       U.pVal[WordsToMove - 1] =
 | |
|           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fill in the remainder based on the original sign.
 | |
|   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
 | |
|               WordShift * APINT_WORD_SIZE);
 | |
|   clearUnusedBits();
 | |
| }
 | |
| 
 | |
| /// Logical right-shift this APInt by shiftAmt.
 | |
| /// Logical right-shift function.
 | |
| void APInt::lshrInPlace(const APInt &shiftAmt) {
 | |
|   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
 | |
| }
 | |
| 
 | |
| /// Logical right-shift this APInt by shiftAmt.
 | |
| /// Logical right-shift function.
 | |
| void APInt::lshrSlowCase(unsigned ShiftAmt) {
 | |
|   tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
 | |
| }
 | |
| 
 | |
| /// Left-shift this APInt by shiftAmt.
 | |
| /// Left-shift function.
 | |
| APInt &APInt::operator<<=(const APInt &shiftAmt) {
 | |
|   // It's undefined behavior in C to shift by BitWidth or greater.
 | |
|   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| void APInt::shlSlowCase(unsigned ShiftAmt) {
 | |
|   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
 | |
|   clearUnusedBits();
 | |
| }
 | |
| 
 | |
| // Calculate the rotate amount modulo the bit width.
 | |
| static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
 | |
|   unsigned rotBitWidth = rotateAmt.getBitWidth();
 | |
|   APInt rot = rotateAmt;
 | |
|   if (rotBitWidth < BitWidth) {
 | |
|     // Extend the rotate APInt, so that the urem doesn't divide by 0.
 | |
|     // e.g. APInt(1, 32) would give APInt(1, 0).
 | |
|     rot = rotateAmt.zext(BitWidth);
 | |
|   }
 | |
|   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
 | |
|   return rot.getLimitedValue(BitWidth);
 | |
| }
 | |
| 
 | |
| APInt APInt::rotl(const APInt &rotateAmt) const {
 | |
|   return rotl(rotateModulo(BitWidth, rotateAmt));
 | |
| }
 | |
| 
 | |
| APInt APInt::rotl(unsigned rotateAmt) const {
 | |
|   rotateAmt %= BitWidth;
 | |
|   if (rotateAmt == 0)
 | |
|     return *this;
 | |
|   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
 | |
| }
 | |
| 
 | |
| APInt APInt::rotr(const APInt &rotateAmt) const {
 | |
|   return rotr(rotateModulo(BitWidth, rotateAmt));
 | |
| }
 | |
| 
 | |
| APInt APInt::rotr(unsigned rotateAmt) const {
 | |
|   rotateAmt %= BitWidth;
 | |
|   if (rotateAmt == 0)
 | |
|     return *this;
 | |
|   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
 | |
| }
 | |
| 
 | |
| // Square Root - this method computes and returns the square root of "this".
 | |
| // Three mechanisms are used for computation. For small values (<= 5 bits),
 | |
| // a table lookup is done. This gets some performance for common cases. For
 | |
| // values using less than 52 bits, the value is converted to double and then
 | |
| // the libc sqrt function is called. The result is rounded and then converted
 | |
| // back to a uint64_t which is then used to construct the result. Finally,
 | |
| // the Babylonian method for computing square roots is used.
 | |
| APInt APInt::sqrt() const {
 | |
| 
 | |
|   // Determine the magnitude of the value.
 | |
|   unsigned magnitude = getActiveBits();
 | |
| 
 | |
|   // Use a fast table for some small values. This also gets rid of some
 | |
|   // rounding errors in libc sqrt for small values.
 | |
|   if (magnitude <= 5) {
 | |
|     static const uint8_t results[32] = {
 | |
|       /*     0 */ 0,
 | |
|       /*  1- 2 */ 1, 1,
 | |
|       /*  3- 6 */ 2, 2, 2, 2,
 | |
|       /*  7-12 */ 3, 3, 3, 3, 3, 3,
 | |
|       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
 | |
|       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|       /*    31 */ 6
 | |
|     };
 | |
|     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
 | |
|   }
 | |
| 
 | |
|   // If the magnitude of the value fits in less than 52 bits (the precision of
 | |
|   // an IEEE double precision floating point value), then we can use the
 | |
|   // libc sqrt function which will probably use a hardware sqrt computation.
 | |
|   // This should be faster than the algorithm below.
 | |
|   if (magnitude < 52) {
 | |
|     return APInt(BitWidth,
 | |
|                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
 | |
|                                                                : U.pVal[0])))));
 | |
|   }
 | |
| 
 | |
|   // Okay, all the short cuts are exhausted. We must compute it. The following
 | |
|   // is a classical Babylonian method for computing the square root. This code
 | |
|   // was adapted to APInt from a wikipedia article on such computations.
 | |
|   // See http://www.wikipedia.org/ and go to the page named
 | |
|   // Calculate_an_integer_square_root.
 | |
|   unsigned nbits = BitWidth, i = 4;
 | |
|   APInt testy(BitWidth, 16);
 | |
|   APInt x_old(BitWidth, 1);
 | |
|   APInt x_new(BitWidth, 0);
 | |
|   APInt two(BitWidth, 2);
 | |
| 
 | |
|   // Select a good starting value using binary logarithms.
 | |
|   for (;; i += 2, testy = testy.shl(2))
 | |
|     if (i >= nbits || this->ule(testy)) {
 | |
|       x_old = x_old.shl(i / 2);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Use the Babylonian method to arrive at the integer square root:
 | |
|   for (;;) {
 | |
|     x_new = (this->udiv(x_old) + x_old).udiv(two);
 | |
|     if (x_old.ule(x_new))
 | |
|       break;
 | |
|     x_old = x_new;
 | |
|   }
 | |
| 
 | |
|   // Make sure we return the closest approximation
 | |
|   // NOTE: The rounding calculation below is correct. It will produce an
 | |
|   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
 | |
|   // determined to be a rounding issue with pari/gp as it begins to use a
 | |
|   // floating point representation after 192 bits. There are no discrepancies
 | |
|   // between this algorithm and pari/gp for bit widths < 192 bits.
 | |
|   APInt square(x_old * x_old);
 | |
|   APInt nextSquare((x_old + 1) * (x_old +1));
 | |
|   if (this->ult(square))
 | |
|     return x_old;
 | |
|   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
 | |
|   APInt midpoint((nextSquare - square).udiv(two));
 | |
|   APInt offset(*this - square);
 | |
|   if (offset.ult(midpoint))
 | |
|     return x_old;
 | |
|   return x_old + 1;
 | |
| }
 | |
| 
 | |
| /// Computes the multiplicative inverse of this APInt for a given modulo. The
 | |
| /// iterative extended Euclidean algorithm is used to solve for this value,
 | |
| /// however we simplify it to speed up calculating only the inverse, and take
 | |
| /// advantage of div+rem calculations. We also use some tricks to avoid copying
 | |
| /// (potentially large) APInts around.
 | |
| /// WARNING: a value of '0' may be returned,
 | |
| ///          signifying that no multiplicative inverse exists!
 | |
| APInt APInt::multiplicativeInverse(const APInt& modulo) const {
 | |
|   assert(ult(modulo) && "This APInt must be smaller than the modulo");
 | |
| 
 | |
|   // Using the properties listed at the following web page (accessed 06/21/08):
 | |
|   //   http://www.numbertheory.org/php/euclid.html
 | |
|   // (especially the properties numbered 3, 4 and 9) it can be proved that
 | |
|   // BitWidth bits suffice for all the computations in the algorithm implemented
 | |
|   // below. More precisely, this number of bits suffice if the multiplicative
 | |
|   // inverse exists, but may not suffice for the general extended Euclidean
 | |
|   // algorithm.
 | |
| 
 | |
|   APInt r[2] = { modulo, *this };
 | |
|   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
 | |
|   APInt q(BitWidth, 0);
 | |
| 
 | |
|   unsigned i;
 | |
|   for (i = 0; r[i^1] != 0; i ^= 1) {
 | |
|     // An overview of the math without the confusing bit-flipping:
 | |
|     // q = r[i-2] / r[i-1]
 | |
|     // r[i] = r[i-2] % r[i-1]
 | |
|     // t[i] = t[i-2] - t[i-1] * q
 | |
|     udivrem(r[i], r[i^1], q, r[i]);
 | |
|     t[i] -= t[i^1] * q;
 | |
|   }
 | |
| 
 | |
|   // If this APInt and the modulo are not coprime, there is no multiplicative
 | |
|   // inverse, so return 0. We check this by looking at the next-to-last
 | |
|   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
 | |
|   // algorithm.
 | |
|   if (r[i] != 1)
 | |
|     return APInt(BitWidth, 0);
 | |
| 
 | |
|   // The next-to-last t is the multiplicative inverse.  However, we are
 | |
|   // interested in a positive inverse. Calculate a positive one from a negative
 | |
|   // one if necessary. A simple addition of the modulo suffices because
 | |
|   // abs(t[i]) is known to be less than *this/2 (see the link above).
 | |
|   if (t[i].isNegative())
 | |
|     t[i] += modulo;
 | |
| 
 | |
|   return std::move(t[i]);
 | |
| }
 | |
| 
 | |
| /// Calculate the magic numbers required to implement a signed integer division
 | |
| /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
 | |
| /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
 | |
| /// Warren, Jr., chapter 10.
 | |
| APInt::ms APInt::magic() const {
 | |
|   const APInt& d = *this;
 | |
|   unsigned p;
 | |
|   APInt ad, anc, delta, q1, r1, q2, r2, t;
 | |
|   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
 | |
|   struct ms mag;
 | |
| 
 | |
|   ad = d.abs();
 | |
|   t = signedMin + (d.lshr(d.getBitWidth() - 1));
 | |
|   anc = t - 1 - t.urem(ad);   // absolute value of nc
 | |
|   p = d.getBitWidth() - 1;    // initialize p
 | |
|   q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
 | |
|   r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
 | |
|   q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
 | |
|   r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
 | |
|   do {
 | |
|     p = p + 1;
 | |
|     q1 = q1<<1;          // update q1 = 2p/abs(nc)
 | |
|     r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
 | |
|     if (r1.uge(anc)) {  // must be unsigned comparison
 | |
|       q1 = q1 + 1;
 | |
|       r1 = r1 - anc;
 | |
|     }
 | |
|     q2 = q2<<1;          // update q2 = 2p/abs(d)
 | |
|     r2 = r2<<1;          // update r2 = rem(2p/abs(d))
 | |
|     if (r2.uge(ad)) {   // must be unsigned comparison
 | |
|       q2 = q2 + 1;
 | |
|       r2 = r2 - ad;
 | |
|     }
 | |
|     delta = ad - r2;
 | |
|   } while (q1.ult(delta) || (q1 == delta && r1 == 0));
 | |
| 
 | |
|   mag.m = q2 + 1;
 | |
|   if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
 | |
|   mag.s = p - d.getBitWidth();          // resulting shift
 | |
|   return mag;
 | |
| }
 | |
| 
 | |
| /// Calculate the magic numbers required to implement an unsigned integer
 | |
| /// division by a constant as a sequence of multiplies, adds and shifts.
 | |
| /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
 | |
| /// S. Warren, Jr., chapter 10.
 | |
| /// LeadingZeros can be used to simplify the calculation if the upper bits
 | |
| /// of the divided value are known zero.
 | |
| APInt::mu APInt::magicu(unsigned LeadingZeros) const {
 | |
|   const APInt& d = *this;
 | |
|   unsigned p;
 | |
|   APInt nc, delta, q1, r1, q2, r2;
 | |
|   struct mu magu;
 | |
|   magu.a = 0;               // initialize "add" indicator
 | |
|   APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
 | |
|   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
 | |
|   APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
 | |
| 
 | |
|   nc = allOnes - (allOnes - d).urem(d);
 | |
|   p = d.getBitWidth() - 1;  // initialize p
 | |
|   q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
 | |
|   r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
 | |
|   q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
 | |
|   r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
 | |
|   do {
 | |
|     p = p + 1;
 | |
|     if (r1.uge(nc - r1)) {
 | |
|       q1 = q1 + q1 + 1;  // update q1
 | |
|       r1 = r1 + r1 - nc; // update r1
 | |
|     }
 | |
|     else {
 | |
|       q1 = q1+q1; // update q1
 | |
|       r1 = r1+r1; // update r1
 | |
|     }
 | |
|     if ((r2 + 1).uge(d - r2)) {
 | |
|       if (q2.uge(signedMax)) magu.a = 1;
 | |
|       q2 = q2+q2 + 1;     // update q2
 | |
|       r2 = r2+r2 + 1 - d; // update r2
 | |
|     }
 | |
|     else {
 | |
|       if (q2.uge(signedMin)) magu.a = 1;
 | |
|       q2 = q2+q2;     // update q2
 | |
|       r2 = r2+r2 + 1; // update r2
 | |
|     }
 | |
|     delta = d - 1 - r2;
 | |
|   } while (p < d.getBitWidth()*2 &&
 | |
|            (q1.ult(delta) || (q1 == delta && r1 == 0)));
 | |
|   magu.m = q2 + 1; // resulting magic number
 | |
|   magu.s = p - d.getBitWidth();  // resulting shift
 | |
|   return magu;
 | |
| }
 | |
| 
 | |
| /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
 | |
| /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
 | |
| /// variables here have the same names as in the algorithm. Comments explain
 | |
| /// the algorithm and any deviation from it.
 | |
| static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
 | |
|                      unsigned m, unsigned n) {
 | |
|   assert(u && "Must provide dividend");
 | |
|   assert(v && "Must provide divisor");
 | |
|   assert(q && "Must provide quotient");
 | |
|   assert(u != v && u != q && v != q && "Must use different memory");
 | |
|   assert(n>1 && "n must be > 1");
 | |
| 
 | |
|   // b denotes the base of the number system. In our case b is 2^32.
 | |
|   const uint64_t b = uint64_t(1) << 32;
 | |
| 
 | |
| // The DEBUG macros here tend to be spam in the debug output if you're not
 | |
| // debugging this code. Disable them unless KNUTH_DEBUG is defined.
 | |
| #ifdef KNUTH_DEBUG
 | |
| #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
 | |
| #else
 | |
| #define DEBUG_KNUTH(X) do {} while(false)
 | |
| #endif
 | |
| 
 | |
|   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
 | |
|   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
 | |
|   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
 | |
|   DEBUG_KNUTH(dbgs() << " by");
 | |
|   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
 | |
|   DEBUG_KNUTH(dbgs() << '\n');
 | |
|   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
 | |
|   // u and v by d. Note that we have taken Knuth's advice here to use a power
 | |
|   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
 | |
|   // 2 allows us to shift instead of multiply and it is easy to determine the
 | |
|   // shift amount from the leading zeros.  We are basically normalizing the u
 | |
|   // and v so that its high bits are shifted to the top of v's range without
 | |
|   // overflow. Note that this can require an extra word in u so that u must
 | |
|   // be of length m+n+1.
 | |
|   unsigned shift = countLeadingZeros(v[n-1]);
 | |
|   uint32_t v_carry = 0;
 | |
|   uint32_t u_carry = 0;
 | |
|   if (shift) {
 | |
|     for (unsigned i = 0; i < m+n; ++i) {
 | |
|       uint32_t u_tmp = u[i] >> (32 - shift);
 | |
|       u[i] = (u[i] << shift) | u_carry;
 | |
|       u_carry = u_tmp;
 | |
|     }
 | |
|     for (unsigned i = 0; i < n; ++i) {
 | |
|       uint32_t v_tmp = v[i] >> (32 - shift);
 | |
|       v[i] = (v[i] << shift) | v_carry;
 | |
|       v_carry = v_tmp;
 | |
|     }
 | |
|   }
 | |
|   u[m+n] = u_carry;
 | |
| 
 | |
|   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
 | |
|   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
 | |
|   DEBUG_KNUTH(dbgs() << " by");
 | |
|   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
 | |
|   DEBUG_KNUTH(dbgs() << '\n');
 | |
| 
 | |
|   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
 | |
|   int j = m;
 | |
|   do {
 | |
|     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
 | |
|     // D3. [Calculate q'.].
 | |
|     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
 | |
|     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
 | |
|     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
 | |
|     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
 | |
|     // on v[n-2] determines at high speed most of the cases in which the trial
 | |
|     // value qp is one too large, and it eliminates all cases where qp is two
 | |
|     // too large.
 | |
|     uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
 | |
|     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
 | |
|     uint64_t qp = dividend / v[n-1];
 | |
|     uint64_t rp = dividend % v[n-1];
 | |
|     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
 | |
|       qp--;
 | |
|       rp += v[n-1];
 | |
|       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
 | |
|         qp--;
 | |
|     }
 | |
|     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
 | |
| 
 | |
|     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
 | |
|     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
 | |
|     // consists of a simple multiplication by a one-place number, combined with
 | |
|     // a subtraction.
 | |
|     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
 | |
|     // this step is actually negative, (u[j+n]...u[j]) should be left as the
 | |
|     // true value plus b**(n+1), namely as the b's complement of
 | |
|     // the true value, and a "borrow" to the left should be remembered.
 | |
|     int64_t borrow = 0;
 | |
|     for (unsigned i = 0; i < n; ++i) {
 | |
|       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
 | |
|       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
 | |
|       u[j+i] = Lo_32(subres);
 | |
|       borrow = Hi_32(p) - Hi_32(subres);
 | |
|       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
 | |
|                         << ", borrow = " << borrow << '\n');
 | |
|     }
 | |
|     bool isNeg = u[j+n] < borrow;
 | |
|     u[j+n] -= Lo_32(borrow);
 | |
| 
 | |
|     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
 | |
|     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
 | |
|     DEBUG_KNUTH(dbgs() << '\n');
 | |
| 
 | |
|     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
 | |
|     // negative, go to step D6; otherwise go on to step D7.
 | |
|     q[j] = Lo_32(qp);
 | |
|     if (isNeg) {
 | |
|       // D6. [Add back]. The probability that this step is necessary is very
 | |
|       // small, on the order of only 2/b. Make sure that test data accounts for
 | |
|       // this possibility. Decrease q[j] by 1
 | |
|       q[j]--;
 | |
|       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
 | |
|       // A carry will occur to the left of u[j+n], and it should be ignored
 | |
|       // since it cancels with the borrow that occurred in D4.
 | |
|       bool carry = false;
 | |
|       for (unsigned i = 0; i < n; i++) {
 | |
|         uint32_t limit = std::min(u[j+i],v[i]);
 | |
|         u[j+i] += v[i] + carry;
 | |
|         carry = u[j+i] < limit || (carry && u[j+i] == limit);
 | |
|       }
 | |
|       u[j+n] += carry;
 | |
|     }
 | |
|     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
 | |
|     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
 | |
|     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
 | |
| 
 | |
|     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
 | |
|   } while (--j >= 0);
 | |
| 
 | |
|   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
 | |
|   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
 | |
|   DEBUG_KNUTH(dbgs() << '\n');
 | |
| 
 | |
|   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
 | |
|   // remainder may be obtained by dividing u[...] by d. If r is non-null we
 | |
|   // compute the remainder (urem uses this).
 | |
|   if (r) {
 | |
|     // The value d is expressed by the "shift" value above since we avoided
 | |
|     // multiplication by d by using a shift left. So, all we have to do is
 | |
|     // shift right here.
 | |
|     if (shift) {
 | |
|       uint32_t carry = 0;
 | |
|       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
 | |
|       for (int i = n-1; i >= 0; i--) {
 | |
|         r[i] = (u[i] >> shift) | carry;
 | |
|         carry = u[i] << (32 - shift);
 | |
|         DEBUG_KNUTH(dbgs() << " " << r[i]);
 | |
|       }
 | |
|     } else {
 | |
|       for (int i = n-1; i >= 0; i--) {
 | |
|         r[i] = u[i];
 | |
|         DEBUG_KNUTH(dbgs() << " " << r[i]);
 | |
|       }
 | |
|     }
 | |
|     DEBUG_KNUTH(dbgs() << '\n');
 | |
|   }
 | |
|   DEBUG_KNUTH(dbgs() << '\n');
 | |
| }
 | |
| 
 | |
| void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
 | |
|                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
 | |
|   assert(lhsWords >= rhsWords && "Fractional result");
 | |
| 
 | |
|   // First, compose the values into an array of 32-bit words instead of
 | |
|   // 64-bit words. This is a necessity of both the "short division" algorithm
 | |
|   // and the Knuth "classical algorithm" which requires there to be native
 | |
|   // operations for +, -, and * on an m bit value with an m*2 bit result. We
 | |
|   // can't use 64-bit operands here because we don't have native results of
 | |
|   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
 | |
|   // work on large-endian machines.
 | |
|   unsigned n = rhsWords * 2;
 | |
|   unsigned m = (lhsWords * 2) - n;
 | |
| 
 | |
|   // Allocate space for the temporary values we need either on the stack, if
 | |
|   // it will fit, or on the heap if it won't.
 | |
|   uint32_t SPACE[128];
 | |
|   uint32_t *U = nullptr;
 | |
|   uint32_t *V = nullptr;
 | |
|   uint32_t *Q = nullptr;
 | |
|   uint32_t *R = nullptr;
 | |
|   if ((Remainder?4:3)*n+2*m+1 <= 128) {
 | |
|     U = &SPACE[0];
 | |
|     V = &SPACE[m+n+1];
 | |
|     Q = &SPACE[(m+n+1) + n];
 | |
|     if (Remainder)
 | |
|       R = &SPACE[(m+n+1) + n + (m+n)];
 | |
|   } else {
 | |
|     U = new uint32_t[m + n + 1];
 | |
|     V = new uint32_t[n];
 | |
|     Q = new uint32_t[m+n];
 | |
|     if (Remainder)
 | |
|       R = new uint32_t[n];
 | |
|   }
 | |
| 
 | |
|   // Initialize the dividend
 | |
|   memset(U, 0, (m+n+1)*sizeof(uint32_t));
 | |
|   for (unsigned i = 0; i < lhsWords; ++i) {
 | |
|     uint64_t tmp = LHS[i];
 | |
|     U[i * 2] = Lo_32(tmp);
 | |
|     U[i * 2 + 1] = Hi_32(tmp);
 | |
|   }
 | |
|   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
 | |
| 
 | |
|   // Initialize the divisor
 | |
|   memset(V, 0, (n)*sizeof(uint32_t));
 | |
|   for (unsigned i = 0; i < rhsWords; ++i) {
 | |
|     uint64_t tmp = RHS[i];
 | |
|     V[i * 2] = Lo_32(tmp);
 | |
|     V[i * 2 + 1] = Hi_32(tmp);
 | |
|   }
 | |
| 
 | |
|   // initialize the quotient and remainder
 | |
|   memset(Q, 0, (m+n) * sizeof(uint32_t));
 | |
|   if (Remainder)
 | |
|     memset(R, 0, n * sizeof(uint32_t));
 | |
| 
 | |
|   // Now, adjust m and n for the Knuth division. n is the number of words in
 | |
|   // the divisor. m is the number of words by which the dividend exceeds the
 | |
|   // divisor (i.e. m+n is the length of the dividend). These sizes must not
 | |
|   // contain any zero words or the Knuth algorithm fails.
 | |
|   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
 | |
|     n--;
 | |
|     m++;
 | |
|   }
 | |
|   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
 | |
|     m--;
 | |
| 
 | |
|   // If we're left with only a single word for the divisor, Knuth doesn't work
 | |
|   // so we implement the short division algorithm here. This is much simpler
 | |
|   // and faster because we are certain that we can divide a 64-bit quantity
 | |
|   // by a 32-bit quantity at hardware speed and short division is simply a
 | |
|   // series of such operations. This is just like doing short division but we
 | |
|   // are using base 2^32 instead of base 10.
 | |
|   assert(n != 0 && "Divide by zero?");
 | |
|   if (n == 1) {
 | |
|     uint32_t divisor = V[0];
 | |
|     uint32_t remainder = 0;
 | |
|     for (int i = m; i >= 0; i--) {
 | |
|       uint64_t partial_dividend = Make_64(remainder, U[i]);
 | |
|       if (partial_dividend == 0) {
 | |
|         Q[i] = 0;
 | |
|         remainder = 0;
 | |
|       } else if (partial_dividend < divisor) {
 | |
|         Q[i] = 0;
 | |
|         remainder = Lo_32(partial_dividend);
 | |
|       } else if (partial_dividend == divisor) {
 | |
|         Q[i] = 1;
 | |
|         remainder = 0;
 | |
|       } else {
 | |
|         Q[i] = Lo_32(partial_dividend / divisor);
 | |
|         remainder = Lo_32(partial_dividend - (Q[i] * divisor));
 | |
|       }
 | |
|     }
 | |
|     if (R)
 | |
|       R[0] = remainder;
 | |
|   } else {
 | |
|     // Now we're ready to invoke the Knuth classical divide algorithm. In this
 | |
|     // case n > 1.
 | |
|     KnuthDiv(U, V, Q, R, m, n);
 | |
|   }
 | |
| 
 | |
|   // If the caller wants the quotient
 | |
|   if (Quotient) {
 | |
|     for (unsigned i = 0; i < lhsWords; ++i)
 | |
|       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
 | |
|   }
 | |
| 
 | |
|   // If the caller wants the remainder
 | |
|   if (Remainder) {
 | |
|     for (unsigned i = 0; i < rhsWords; ++i)
 | |
|       Remainder[i] = Make_64(R[i*2+1], R[i*2]);
 | |
|   }
 | |
| 
 | |
|   // Clean up the memory we allocated.
 | |
|   if (U != &SPACE[0]) {
 | |
|     delete [] U;
 | |
|     delete [] V;
 | |
|     delete [] Q;
 | |
|     delete [] R;
 | |
|   }
 | |
| }
 | |
| 
 | |
| APInt APInt::udiv(const APInt &RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
| 
 | |
|   // First, deal with the easy case
 | |
|   if (isSingleWord()) {
 | |
|     assert(RHS.U.VAL != 0 && "Divide by zero?");
 | |
|     return APInt(BitWidth, U.VAL / RHS.U.VAL);
 | |
|   }
 | |
| 
 | |
|   // Get some facts about the LHS and RHS number of bits and words
 | |
|   unsigned lhsWords = getNumWords(getActiveBits());
 | |
|   unsigned rhsBits  = RHS.getActiveBits();
 | |
|   unsigned rhsWords = getNumWords(rhsBits);
 | |
|   assert(rhsWords && "Divided by zero???");
 | |
| 
 | |
|   // Deal with some degenerate cases
 | |
|   if (!lhsWords)
 | |
|     // 0 / X ===> 0
 | |
|     return APInt(BitWidth, 0);
 | |
|   if (rhsBits == 1)
 | |
|     // X / 1 ===> X
 | |
|     return *this;
 | |
|   if (lhsWords < rhsWords || this->ult(RHS))
 | |
|     // X / Y ===> 0, iff X < Y
 | |
|     return APInt(BitWidth, 0);
 | |
|   if (*this == RHS)
 | |
|     // X / X ===> 1
 | |
|     return APInt(BitWidth, 1);
 | |
|   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
 | |
|     // All high words are zero, just use native divide
 | |
|     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
 | |
| 
 | |
|   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
 | |
|   APInt Quotient(BitWidth, 0); // to hold result.
 | |
|   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
 | |
|   return Quotient;
 | |
| }
 | |
| 
 | |
| APInt APInt::udiv(uint64_t RHS) const {
 | |
|   assert(RHS != 0 && "Divide by zero?");
 | |
| 
 | |
|   // First, deal with the easy case
 | |
|   if (isSingleWord())
 | |
|     return APInt(BitWidth, U.VAL / RHS);
 | |
| 
 | |
|   // Get some facts about the LHS words.
 | |
|   unsigned lhsWords = getNumWords(getActiveBits());
 | |
| 
 | |
|   // Deal with some degenerate cases
 | |
|   if (!lhsWords)
 | |
|     // 0 / X ===> 0
 | |
|     return APInt(BitWidth, 0);
 | |
|   if (RHS == 1)
 | |
|     // X / 1 ===> X
 | |
|     return *this;
 | |
|   if (this->ult(RHS))
 | |
|     // X / Y ===> 0, iff X < Y
 | |
|     return APInt(BitWidth, 0);
 | |
|   if (*this == RHS)
 | |
|     // X / X ===> 1
 | |
|     return APInt(BitWidth, 1);
 | |
|   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
 | |
|     // All high words are zero, just use native divide
 | |
|     return APInt(BitWidth, this->U.pVal[0] / RHS);
 | |
| 
 | |
|   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
 | |
|   APInt Quotient(BitWidth, 0); // to hold result.
 | |
|   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
 | |
|   return Quotient;
 | |
| }
 | |
| 
 | |
| APInt APInt::sdiv(const APInt &RHS) const {
 | |
|   if (isNegative()) {
 | |
|     if (RHS.isNegative())
 | |
|       return (-(*this)).udiv(-RHS);
 | |
|     return -((-(*this)).udiv(RHS));
 | |
|   }
 | |
|   if (RHS.isNegative())
 | |
|     return -(this->udiv(-RHS));
 | |
|   return this->udiv(RHS);
 | |
| }
 | |
| 
 | |
| APInt APInt::sdiv(int64_t RHS) const {
 | |
|   if (isNegative()) {
 | |
|     if (RHS < 0)
 | |
|       return (-(*this)).udiv(-RHS);
 | |
|     return -((-(*this)).udiv(RHS));
 | |
|   }
 | |
|   if (RHS < 0)
 | |
|     return -(this->udiv(-RHS));
 | |
|   return this->udiv(RHS);
 | |
| }
 | |
| 
 | |
| APInt APInt::urem(const APInt &RHS) const {
 | |
|   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   if (isSingleWord()) {
 | |
|     assert(RHS.U.VAL != 0 && "Remainder by zero?");
 | |
|     return APInt(BitWidth, U.VAL % RHS.U.VAL);
 | |
|   }
 | |
| 
 | |
|   // Get some facts about the LHS
 | |
|   unsigned lhsWords = getNumWords(getActiveBits());
 | |
| 
 | |
|   // Get some facts about the RHS
 | |
|   unsigned rhsBits = RHS.getActiveBits();
 | |
|   unsigned rhsWords = getNumWords(rhsBits);
 | |
|   assert(rhsWords && "Performing remainder operation by zero ???");
 | |
| 
 | |
|   // Check the degenerate cases
 | |
|   if (lhsWords == 0)
 | |
|     // 0 % Y ===> 0
 | |
|     return APInt(BitWidth, 0);
 | |
|   if (rhsBits == 1)
 | |
|     // X % 1 ===> 0
 | |
|     return APInt(BitWidth, 0);
 | |
|   if (lhsWords < rhsWords || this->ult(RHS))
 | |
|     // X % Y ===> X, iff X < Y
 | |
|     return *this;
 | |
|   if (*this == RHS)
 | |
|     // X % X == 0;
 | |
|     return APInt(BitWidth, 0);
 | |
|   if (lhsWords == 1)
 | |
|     // All high words are zero, just use native remainder
 | |
|     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
 | |
| 
 | |
|   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
 | |
|   APInt Remainder(BitWidth, 0);
 | |
|   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
 | |
|   return Remainder;
 | |
| }
 | |
| 
 | |
| uint64_t APInt::urem(uint64_t RHS) const {
 | |
|   assert(RHS != 0 && "Remainder by zero?");
 | |
| 
 | |
|   if (isSingleWord())
 | |
|     return U.VAL % RHS;
 | |
| 
 | |
|   // Get some facts about the LHS
 | |
|   unsigned lhsWords = getNumWords(getActiveBits());
 | |
| 
 | |
|   // Check the degenerate cases
 | |
|   if (lhsWords == 0)
 | |
|     // 0 % Y ===> 0
 | |
|     return 0;
 | |
|   if (RHS == 1)
 | |
|     // X % 1 ===> 0
 | |
|     return 0;
 | |
|   if (this->ult(RHS))
 | |
|     // X % Y ===> X, iff X < Y
 | |
|     return getZExtValue();
 | |
|   if (*this == RHS)
 | |
|     // X % X == 0;
 | |
|     return 0;
 | |
|   if (lhsWords == 1)
 | |
|     // All high words are zero, just use native remainder
 | |
|     return U.pVal[0] % RHS;
 | |
| 
 | |
|   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
 | |
|   uint64_t Remainder;
 | |
|   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
 | |
|   return Remainder;
 | |
| }
 | |
| 
 | |
| APInt APInt::srem(const APInt &RHS) const {
 | |
|   if (isNegative()) {
 | |
|     if (RHS.isNegative())
 | |
|       return -((-(*this)).urem(-RHS));
 | |
|     return -((-(*this)).urem(RHS));
 | |
|   }
 | |
|   if (RHS.isNegative())
 | |
|     return this->urem(-RHS);
 | |
|   return this->urem(RHS);
 | |
| }
 | |
| 
 | |
| int64_t APInt::srem(int64_t RHS) const {
 | |
|   if (isNegative()) {
 | |
|     if (RHS < 0)
 | |
|       return -((-(*this)).urem(-RHS));
 | |
|     return -((-(*this)).urem(RHS));
 | |
|   }
 | |
|   if (RHS < 0)
 | |
|     return this->urem(-RHS);
 | |
|   return this->urem(RHS);
 | |
| }
 | |
| 
 | |
| void APInt::udivrem(const APInt &LHS, const APInt &RHS,
 | |
|                     APInt &Quotient, APInt &Remainder) {
 | |
|   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|   unsigned BitWidth = LHS.BitWidth;
 | |
| 
 | |
|   // First, deal with the easy case
 | |
|   if (LHS.isSingleWord()) {
 | |
|     assert(RHS.U.VAL != 0 && "Divide by zero?");
 | |
|     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
 | |
|     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
 | |
|     Quotient = APInt(BitWidth, QuotVal);
 | |
|     Remainder = APInt(BitWidth, RemVal);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Get some size facts about the dividend and divisor
 | |
|   unsigned lhsWords = getNumWords(LHS.getActiveBits());
 | |
|   unsigned rhsBits  = RHS.getActiveBits();
 | |
|   unsigned rhsWords = getNumWords(rhsBits);
 | |
|   assert(rhsWords && "Performing divrem operation by zero ???");
 | |
| 
 | |
|   // Check the degenerate cases
 | |
|   if (lhsWords == 0) {
 | |
|     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
 | |
|     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (rhsBits == 1) {
 | |
|     Quotient = LHS;                   // X / 1 ===> X
 | |
|     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
 | |
|   }
 | |
| 
 | |
|   if (lhsWords < rhsWords || LHS.ult(RHS)) {
 | |
|     Remainder = LHS;                  // X % Y ===> X, iff X < Y
 | |
|     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (LHS == RHS) {
 | |
|     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
 | |
|     Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Make sure there is enough space to hold the results.
 | |
|   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
 | |
|   // change the size. This is necessary if Quotient or Remainder is aliased
 | |
|   // with LHS or RHS.
 | |
|   Quotient.reallocate(BitWidth);
 | |
|   Remainder.reallocate(BitWidth);
 | |
| 
 | |
|   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
 | |
|     // There is only one word to consider so use the native versions.
 | |
|     uint64_t lhsValue = LHS.U.pVal[0];
 | |
|     uint64_t rhsValue = RHS.U.pVal[0];
 | |
|     Quotient = lhsValue / rhsValue;
 | |
|     Remainder = lhsValue % rhsValue;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Okay, lets do it the long way
 | |
|   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
 | |
|          Remainder.U.pVal);
 | |
|   // Clear the rest of the Quotient and Remainder.
 | |
|   std::memset(Quotient.U.pVal + lhsWords, 0,
 | |
|               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
 | |
|   std::memset(Remainder.U.pVal + rhsWords, 0,
 | |
|               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
 | |
| }
 | |
| 
 | |
| void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
 | |
|                     uint64_t &Remainder) {
 | |
|   assert(RHS != 0 && "Divide by zero?");
 | |
|   unsigned BitWidth = LHS.BitWidth;
 | |
| 
 | |
|   // First, deal with the easy case
 | |
|   if (LHS.isSingleWord()) {
 | |
|     uint64_t QuotVal = LHS.U.VAL / RHS;
 | |
|     Remainder = LHS.U.VAL % RHS;
 | |
|     Quotient = APInt(BitWidth, QuotVal);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Get some size facts about the dividend and divisor
 | |
|   unsigned lhsWords = getNumWords(LHS.getActiveBits());
 | |
| 
 | |
|   // Check the degenerate cases
 | |
|   if (lhsWords == 0) {
 | |
|     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
 | |
|     Remainder = 0;                    // 0 % Y ===> 0
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (RHS == 1) {
 | |
|     Quotient = LHS;                   // X / 1 ===> X
 | |
|     Remainder = 0;                    // X % 1 ===> 0
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (LHS.ult(RHS)) {
 | |
|     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
 | |
|     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (LHS == RHS) {
 | |
|     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
 | |
|     Remainder = 0;                    // X % X ===> 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Make sure there is enough space to hold the results.
 | |
|   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
 | |
|   // change the size. This is necessary if Quotient is aliased with LHS.
 | |
|   Quotient.reallocate(BitWidth);
 | |
| 
 | |
|   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
 | |
|     // There is only one word to consider so use the native versions.
 | |
|     uint64_t lhsValue = LHS.U.pVal[0];
 | |
|     Quotient = lhsValue / RHS;
 | |
|     Remainder = lhsValue % RHS;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Okay, lets do it the long way
 | |
|   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
 | |
|   // Clear the rest of the Quotient.
 | |
|   std::memset(Quotient.U.pVal + lhsWords, 0,
 | |
|               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
 | |
| }
 | |
| 
 | |
| void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
 | |
|                     APInt &Quotient, APInt &Remainder) {
 | |
|   if (LHS.isNegative()) {
 | |
|     if (RHS.isNegative())
 | |
|       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
 | |
|     else {
 | |
|       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
 | |
|       Quotient.negate();
 | |
|     }
 | |
|     Remainder.negate();
 | |
|   } else if (RHS.isNegative()) {
 | |
|     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
 | |
|     Quotient.negate();
 | |
|   } else {
 | |
|     APInt::udivrem(LHS, RHS, Quotient, Remainder);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void APInt::sdivrem(const APInt &LHS, int64_t RHS,
 | |
|                     APInt &Quotient, int64_t &Remainder) {
 | |
|   uint64_t R = Remainder;
 | |
|   if (LHS.isNegative()) {
 | |
|     if (RHS < 0)
 | |
|       APInt::udivrem(-LHS, -RHS, Quotient, R);
 | |
|     else {
 | |
|       APInt::udivrem(-LHS, RHS, Quotient, R);
 | |
|       Quotient.negate();
 | |
|     }
 | |
|     R = -R;
 | |
|   } else if (RHS < 0) {
 | |
|     APInt::udivrem(LHS, -RHS, Quotient, R);
 | |
|     Quotient.negate();
 | |
|   } else {
 | |
|     APInt::udivrem(LHS, RHS, Quotient, R);
 | |
|   }
 | |
|   Remainder = R;
 | |
| }
 | |
| 
 | |
| APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   APInt Res = *this+RHS;
 | |
|   Overflow = isNonNegative() == RHS.isNonNegative() &&
 | |
|              Res.isNonNegative() != isNonNegative();
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   APInt Res = *this+RHS;
 | |
|   Overflow = Res.ult(RHS);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   APInt Res = *this - RHS;
 | |
|   Overflow = isNonNegative() != RHS.isNonNegative() &&
 | |
|              Res.isNonNegative() != isNonNegative();
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   APInt Res = *this-RHS;
 | |
|   Overflow = Res.ugt(*this);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   // MININT/-1  -->  overflow.
 | |
|   Overflow = isMinSignedValue() && RHS.isAllOnesValue();
 | |
|   return sdiv(RHS);
 | |
| }
 | |
| 
 | |
| APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   APInt Res = *this * RHS;
 | |
| 
 | |
|   if (*this != 0 && RHS != 0)
 | |
|     Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
 | |
|   else
 | |
|     Overflow = false;
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
 | |
|   if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
 | |
|     Overflow = true;
 | |
|     return *this * RHS;
 | |
|   }
 | |
| 
 | |
|   APInt Res = lshr(1) * RHS;
 | |
|   Overflow = Res.isNegative();
 | |
|   Res <<= 1;
 | |
|   if ((*this)[0]) {
 | |
|     Res += RHS;
 | |
|     if (Res.ult(RHS))
 | |
|       Overflow = true;
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
 | |
|   Overflow = ShAmt.uge(getBitWidth());
 | |
|   if (Overflow)
 | |
|     return APInt(BitWidth, 0);
 | |
| 
 | |
|   if (isNonNegative()) // Don't allow sign change.
 | |
|     Overflow = ShAmt.uge(countLeadingZeros());
 | |
|   else
 | |
|     Overflow = ShAmt.uge(countLeadingOnes());
 | |
| 
 | |
|   return *this << ShAmt;
 | |
| }
 | |
| 
 | |
| APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
 | |
|   Overflow = ShAmt.uge(getBitWidth());
 | |
|   if (Overflow)
 | |
|     return APInt(BitWidth, 0);
 | |
| 
 | |
|   Overflow = ShAmt.ugt(countLeadingZeros());
 | |
| 
 | |
|   return *this << ShAmt;
 | |
| }
 | |
| 
 | |
| APInt APInt::sadd_sat(const APInt &RHS) const {
 | |
|   bool Overflow;
 | |
|   APInt Res = sadd_ov(RHS, Overflow);
 | |
|   if (!Overflow)
 | |
|     return Res;
 | |
| 
 | |
|   return isNegative() ? APInt::getSignedMinValue(BitWidth)
 | |
|                       : APInt::getSignedMaxValue(BitWidth);
 | |
| }
 | |
| 
 | |
| APInt APInt::uadd_sat(const APInt &RHS) const {
 | |
|   bool Overflow;
 | |
|   APInt Res = uadd_ov(RHS, Overflow);
 | |
|   if (!Overflow)
 | |
|     return Res;
 | |
| 
 | |
|   return APInt::getMaxValue(BitWidth);
 | |
| }
 | |
| 
 | |
| APInt APInt::ssub_sat(const APInt &RHS) const {
 | |
|   bool Overflow;
 | |
|   APInt Res = ssub_ov(RHS, Overflow);
 | |
|   if (!Overflow)
 | |
|     return Res;
 | |
| 
 | |
|   return isNegative() ? APInt::getSignedMinValue(BitWidth)
 | |
|                       : APInt::getSignedMaxValue(BitWidth);
 | |
| }
 | |
| 
 | |
| APInt APInt::usub_sat(const APInt &RHS) const {
 | |
|   bool Overflow;
 | |
|   APInt Res = usub_ov(RHS, Overflow);
 | |
|   if (!Overflow)
 | |
|     return Res;
 | |
| 
 | |
|   return APInt(BitWidth, 0);
 | |
| }
 | |
| 
 | |
| APInt APInt::smul_sat(const APInt &RHS) const {
 | |
|   bool Overflow;
 | |
|   APInt Res = smul_ov(RHS, Overflow);
 | |
|   if (!Overflow)
 | |
|     return Res;
 | |
| 
 | |
|   // The result is negative if one and only one of inputs is negative.
 | |
|   bool ResIsNegative = isNegative() ^ RHS.isNegative();
 | |
| 
 | |
|   return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
 | |
|                        : APInt::getSignedMaxValue(BitWidth);
 | |
| }
 | |
| 
 | |
| APInt APInt::umul_sat(const APInt &RHS) const {
 | |
|   bool Overflow;
 | |
|   APInt Res = umul_ov(RHS, Overflow);
 | |
|   if (!Overflow)
 | |
|     return Res;
 | |
| 
 | |
|   return APInt::getMaxValue(BitWidth);
 | |
| }
 | |
| 
 | |
| APInt APInt::sshl_sat(const APInt &RHS) const {
 | |
|   bool Overflow;
 | |
|   APInt Res = sshl_ov(RHS, Overflow);
 | |
|   if (!Overflow)
 | |
|     return Res;
 | |
| 
 | |
|   return isNegative() ? APInt::getSignedMinValue(BitWidth)
 | |
|                       : APInt::getSignedMaxValue(BitWidth);
 | |
| }
 | |
| 
 | |
| APInt APInt::ushl_sat(const APInt &RHS) const {
 | |
|   bool Overflow;
 | |
|   APInt Res = ushl_ov(RHS, Overflow);
 | |
|   if (!Overflow)
 | |
|     return Res;
 | |
| 
 | |
|   return APInt::getMaxValue(BitWidth);
 | |
| }
 | |
| 
 | |
| void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
 | |
|   // Check our assumptions here
 | |
|   assert(!str.empty() && "Invalid string length");
 | |
|   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
 | |
|           radix == 36) &&
 | |
|          "Radix should be 2, 8, 10, 16, or 36!");
 | |
| 
 | |
|   StringRef::iterator p = str.begin();
 | |
|   size_t slen = str.size();
 | |
|   bool isNeg = *p == '-';
 | |
|   if (*p == '-' || *p == '+') {
 | |
|     p++;
 | |
|     slen--;
 | |
|     assert(slen && "String is only a sign, needs a value.");
 | |
|   }
 | |
|   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
 | |
|   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
 | |
|   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
 | |
|   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
 | |
|          "Insufficient bit width");
 | |
| 
 | |
|   // Allocate memory if needed
 | |
|   if (isSingleWord())
 | |
|     U.VAL = 0;
 | |
|   else
 | |
|     U.pVal = getClearedMemory(getNumWords());
 | |
| 
 | |
|   // Figure out if we can shift instead of multiply
 | |
|   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
 | |
| 
 | |
|   // Enter digit traversal loop
 | |
|   for (StringRef::iterator e = str.end(); p != e; ++p) {
 | |
|     unsigned digit = getDigit(*p, radix);
 | |
|     assert(digit < radix && "Invalid character in digit string");
 | |
| 
 | |
|     // Shift or multiply the value by the radix
 | |
|     if (slen > 1) {
 | |
|       if (shift)
 | |
|         *this <<= shift;
 | |
|       else
 | |
|         *this *= radix;
 | |
|     }
 | |
| 
 | |
|     // Add in the digit we just interpreted
 | |
|     *this += digit;
 | |
|   }
 | |
|   // If its negative, put it in two's complement form
 | |
|   if (isNeg)
 | |
|     this->negate();
 | |
| }
 | |
| 
 | |
| void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
 | |
|                      bool Signed, bool formatAsCLiteral) const {
 | |
|   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
 | |
|           Radix == 36) &&
 | |
|          "Radix should be 2, 8, 10, 16, or 36!");
 | |
| 
 | |
|   const char *Prefix = "";
 | |
|   if (formatAsCLiteral) {
 | |
|     switch (Radix) {
 | |
|       case 2:
 | |
|         // Binary literals are a non-standard extension added in gcc 4.3:
 | |
|         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
 | |
|         Prefix = "0b";
 | |
|         break;
 | |
|       case 8:
 | |
|         Prefix = "0";
 | |
|         break;
 | |
|       case 10:
 | |
|         break; // No prefix
 | |
|       case 16:
 | |
|         Prefix = "0x";
 | |
|         break;
 | |
|       default:
 | |
|         llvm_unreachable("Invalid radix!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // First, check for a zero value and just short circuit the logic below.
 | |
|   if (*this == 0) {
 | |
|     while (*Prefix) {
 | |
|       Str.push_back(*Prefix);
 | |
|       ++Prefix;
 | |
|     };
 | |
|     Str.push_back('0');
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 | |
| 
 | |
|   if (isSingleWord()) {
 | |
|     char Buffer[65];
 | |
|     char *BufPtr = std::end(Buffer);
 | |
| 
 | |
|     uint64_t N;
 | |
|     if (!Signed) {
 | |
|       N = getZExtValue();
 | |
|     } else {
 | |
|       int64_t I = getSExtValue();
 | |
|       if (I >= 0) {
 | |
|         N = I;
 | |
|       } else {
 | |
|         Str.push_back('-');
 | |
|         N = -(uint64_t)I;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     while (*Prefix) {
 | |
|       Str.push_back(*Prefix);
 | |
|       ++Prefix;
 | |
|     };
 | |
| 
 | |
|     while (N) {
 | |
|       *--BufPtr = Digits[N % Radix];
 | |
|       N /= Radix;
 | |
|     }
 | |
|     Str.append(BufPtr, std::end(Buffer));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   APInt Tmp(*this);
 | |
| 
 | |
|   if (Signed && isNegative()) {
 | |
|     // They want to print the signed version and it is a negative value
 | |
|     // Flip the bits and add one to turn it into the equivalent positive
 | |
|     // value and put a '-' in the result.
 | |
|     Tmp.negate();
 | |
|     Str.push_back('-');
 | |
|   }
 | |
| 
 | |
|   while (*Prefix) {
 | |
|     Str.push_back(*Prefix);
 | |
|     ++Prefix;
 | |
|   };
 | |
| 
 | |
|   // We insert the digits backward, then reverse them to get the right order.
 | |
|   unsigned StartDig = Str.size();
 | |
| 
 | |
|   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
 | |
|   // because the number of bits per digit (1, 3 and 4 respectively) divides
 | |
|   // equally.  We just shift until the value is zero.
 | |
|   if (Radix == 2 || Radix == 8 || Radix == 16) {
 | |
|     // Just shift tmp right for each digit width until it becomes zero
 | |
|     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
 | |
|     unsigned MaskAmt = Radix - 1;
 | |
| 
 | |
|     while (Tmp.getBoolValue()) {
 | |
|       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
 | |
|       Str.push_back(Digits[Digit]);
 | |
|       Tmp.lshrInPlace(ShiftAmt);
 | |
|     }
 | |
|   } else {
 | |
|     while (Tmp.getBoolValue()) {
 | |
|       uint64_t Digit;
 | |
|       udivrem(Tmp, Radix, Tmp, Digit);
 | |
|       assert(Digit < Radix && "divide failed");
 | |
|       Str.push_back(Digits[Digit]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reverse the digits before returning.
 | |
|   std::reverse(Str.begin()+StartDig, Str.end());
 | |
| }
 | |
| 
 | |
| /// Returns the APInt as a std::string. Note that this is an inefficient method.
 | |
| /// It is better to pass in a SmallVector/SmallString to the methods above.
 | |
| std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
 | |
|   SmallString<40> S;
 | |
|   toString(S, Radix, Signed, /* formatAsCLiteral = */false);
 | |
|   return std::string(S.str());
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void APInt::dump() const {
 | |
|   SmallString<40> S, U;
 | |
|   this->toStringUnsigned(U);
 | |
|   this->toStringSigned(S);
 | |
|   dbgs() << "APInt(" << BitWidth << "b, "
 | |
|          << U << "u " << S << "s)\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void APInt::print(raw_ostream &OS, bool isSigned) const {
 | |
|   SmallString<40> S;
 | |
|   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
 | |
|   OS << S;
 | |
| }
 | |
| 
 | |
| // This implements a variety of operations on a representation of
 | |
| // arbitrary precision, two's-complement, bignum integer values.
 | |
| 
 | |
| // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
 | |
| // and unrestricting assumption.
 | |
| static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
 | |
|               "Part width must be divisible by 2!");
 | |
| 
 | |
| /* Some handy functions local to this file.  */
 | |
| 
 | |
| /* Returns the integer part with the least significant BITS set.
 | |
|    BITS cannot be zero.  */
 | |
| static inline APInt::WordType lowBitMask(unsigned bits) {
 | |
|   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
 | |
| 
 | |
|   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
 | |
| }
 | |
| 
 | |
| /* Returns the value of the lower half of PART.  */
 | |
| static inline APInt::WordType lowHalf(APInt::WordType part) {
 | |
|   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
 | |
| }
 | |
| 
 | |
| /* Returns the value of the upper half of PART.  */
 | |
| static inline APInt::WordType highHalf(APInt::WordType part) {
 | |
|   return part >> (APInt::APINT_BITS_PER_WORD / 2);
 | |
| }
 | |
| 
 | |
| /* Returns the bit number of the most significant set bit of a part.
 | |
|    If the input number has no bits set -1U is returned.  */
 | |
| static unsigned partMSB(APInt::WordType value) {
 | |
|   return findLastSet(value, ZB_Max);
 | |
| }
 | |
| 
 | |
| /* Returns the bit number of the least significant set bit of a
 | |
|    part.  If the input number has no bits set -1U is returned.  */
 | |
| static unsigned partLSB(APInt::WordType value) {
 | |
|   return findFirstSet(value, ZB_Max);
 | |
| }
 | |
| 
 | |
| /* Sets the least significant part of a bignum to the input value, and
 | |
|    zeroes out higher parts.  */
 | |
| void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
 | |
|   assert(parts > 0);
 | |
| 
 | |
|   dst[0] = part;
 | |
|   for (unsigned i = 1; i < parts; i++)
 | |
|     dst[i] = 0;
 | |
| }
 | |
| 
 | |
| /* Assign one bignum to another.  */
 | |
| void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
 | |
|   for (unsigned i = 0; i < parts; i++)
 | |
|     dst[i] = src[i];
 | |
| }
 | |
| 
 | |
| /* Returns true if a bignum is zero, false otherwise.  */
 | |
| bool APInt::tcIsZero(const WordType *src, unsigned parts) {
 | |
|   for (unsigned i = 0; i < parts; i++)
 | |
|     if (src[i])
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /* Extract the given bit of a bignum; returns 0 or 1.  */
 | |
| int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
 | |
|   return (parts[whichWord(bit)] & maskBit(bit)) != 0;
 | |
| }
 | |
| 
 | |
| /* Set the given bit of a bignum. */
 | |
| void APInt::tcSetBit(WordType *parts, unsigned bit) {
 | |
|   parts[whichWord(bit)] |= maskBit(bit);
 | |
| }
 | |
| 
 | |
| /* Clears the given bit of a bignum. */
 | |
| void APInt::tcClearBit(WordType *parts, unsigned bit) {
 | |
|   parts[whichWord(bit)] &= ~maskBit(bit);
 | |
| }
 | |
| 
 | |
| /* Returns the bit number of the least significant set bit of a
 | |
|    number.  If the input number has no bits set -1U is returned.  */
 | |
| unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
 | |
|   for (unsigned i = 0; i < n; i++) {
 | |
|     if (parts[i] != 0) {
 | |
|       unsigned lsb = partLSB(parts[i]);
 | |
| 
 | |
|       return lsb + i * APINT_BITS_PER_WORD;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return -1U;
 | |
| }
 | |
| 
 | |
| /* Returns the bit number of the most significant set bit of a number.
 | |
|    If the input number has no bits set -1U is returned.  */
 | |
| unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
 | |
|   do {
 | |
|     --n;
 | |
| 
 | |
|     if (parts[n] != 0) {
 | |
|       unsigned msb = partMSB(parts[n]);
 | |
| 
 | |
|       return msb + n * APINT_BITS_PER_WORD;
 | |
|     }
 | |
|   } while (n);
 | |
| 
 | |
|   return -1U;
 | |
| }
 | |
| 
 | |
| /* Copy the bit vector of width srcBITS from SRC, starting at bit
 | |
|    srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
 | |
|    the least significant bit of DST.  All high bits above srcBITS in
 | |
|    DST are zero-filled.  */
 | |
| void
 | |
| APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
 | |
|                  unsigned srcBits, unsigned srcLSB) {
 | |
|   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
 | |
|   assert(dstParts <= dstCount);
 | |
| 
 | |
|   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
 | |
|   tcAssign (dst, src + firstSrcPart, dstParts);
 | |
| 
 | |
|   unsigned shift = srcLSB % APINT_BITS_PER_WORD;
 | |
|   tcShiftRight (dst, dstParts, shift);
 | |
| 
 | |
|   /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
 | |
|      in DST.  If this is less that srcBits, append the rest, else
 | |
|      clear the high bits.  */
 | |
|   unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
 | |
|   if (n < srcBits) {
 | |
|     WordType mask = lowBitMask (srcBits - n);
 | |
|     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
 | |
|                           << n % APINT_BITS_PER_WORD);
 | |
|   } else if (n > srcBits) {
 | |
|     if (srcBits % APINT_BITS_PER_WORD)
 | |
|       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
 | |
|   }
 | |
| 
 | |
|   /* Clear high parts.  */
 | |
|   while (dstParts < dstCount)
 | |
|     dst[dstParts++] = 0;
 | |
| }
 | |
| 
 | |
| /* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
 | |
| APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
 | |
|                              WordType c, unsigned parts) {
 | |
|   assert(c <= 1);
 | |
| 
 | |
|   for (unsigned i = 0; i < parts; i++) {
 | |
|     WordType l = dst[i];
 | |
|     if (c) {
 | |
|       dst[i] += rhs[i] + 1;
 | |
|       c = (dst[i] <= l);
 | |
|     } else {
 | |
|       dst[i] += rhs[i];
 | |
|       c = (dst[i] < l);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| /// This function adds a single "word" integer, src, to the multiple
 | |
| /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
 | |
| /// 1 is returned if there is a carry out, otherwise 0 is returned.
 | |
| /// @returns the carry of the addition.
 | |
| APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
 | |
|                                  unsigned parts) {
 | |
|   for (unsigned i = 0; i < parts; ++i) {
 | |
|     dst[i] += src;
 | |
|     if (dst[i] >= src)
 | |
|       return 0; // No need to carry so exit early.
 | |
|     src = 1; // Carry one to next digit.
 | |
|   }
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
 | |
| APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
 | |
|                                   WordType c, unsigned parts) {
 | |
|   assert(c <= 1);
 | |
| 
 | |
|   for (unsigned i = 0; i < parts; i++) {
 | |
|     WordType l = dst[i];
 | |
|     if (c) {
 | |
|       dst[i] -= rhs[i] + 1;
 | |
|       c = (dst[i] >= l);
 | |
|     } else {
 | |
|       dst[i] -= rhs[i];
 | |
|       c = (dst[i] > l);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| /// This function subtracts a single "word" (64-bit word), src, from
 | |
| /// the multi-word integer array, dst[], propagating the borrowed 1 value until
 | |
| /// no further borrowing is needed or it runs out of "words" in dst.  The result
 | |
| /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
 | |
| /// exhausted. In other words, if src > dst then this function returns 1,
 | |
| /// otherwise 0.
 | |
| /// @returns the borrow out of the subtraction
 | |
| APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
 | |
|                                       unsigned parts) {
 | |
|   for (unsigned i = 0; i < parts; ++i) {
 | |
|     WordType Dst = dst[i];
 | |
|     dst[i] -= src;
 | |
|     if (src <= Dst)
 | |
|       return 0; // No need to borrow so exit early.
 | |
|     src = 1; // We have to "borrow 1" from next "word"
 | |
|   }
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* Negate a bignum in-place.  */
 | |
| void APInt::tcNegate(WordType *dst, unsigned parts) {
 | |
|   tcComplement(dst, parts);
 | |
|   tcIncrement(dst, parts);
 | |
| }
 | |
| 
 | |
| /*  DST += SRC * MULTIPLIER + CARRY   if add is true
 | |
|     DST  = SRC * MULTIPLIER + CARRY   if add is false
 | |
| 
 | |
|     Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
 | |
|     they must start at the same point, i.e. DST == SRC.
 | |
| 
 | |
|     If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
 | |
|     returned.  Otherwise DST is filled with the least significant
 | |
|     DSTPARTS parts of the result, and if all of the omitted higher
 | |
|     parts were zero return zero, otherwise overflow occurred and
 | |
|     return one.  */
 | |
| int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
 | |
|                           WordType multiplier, WordType carry,
 | |
|                           unsigned srcParts, unsigned dstParts,
 | |
|                           bool add) {
 | |
|   /* Otherwise our writes of DST kill our later reads of SRC.  */
 | |
|   assert(dst <= src || dst >= src + srcParts);
 | |
|   assert(dstParts <= srcParts + 1);
 | |
| 
 | |
|   /* N loops; minimum of dstParts and srcParts.  */
 | |
|   unsigned n = std::min(dstParts, srcParts);
 | |
| 
 | |
|   for (unsigned i = 0; i < n; i++) {
 | |
|     WordType low, mid, high, srcPart;
 | |
| 
 | |
|       /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
 | |
| 
 | |
|          This cannot overflow, because
 | |
| 
 | |
|          (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
 | |
| 
 | |
|          which is less than n^2.  */
 | |
| 
 | |
|     srcPart = src[i];
 | |
| 
 | |
|     if (multiplier == 0 || srcPart == 0) {
 | |
|       low = carry;
 | |
|       high = 0;
 | |
|     } else {
 | |
|       low = lowHalf(srcPart) * lowHalf(multiplier);
 | |
|       high = highHalf(srcPart) * highHalf(multiplier);
 | |
| 
 | |
|       mid = lowHalf(srcPart) * highHalf(multiplier);
 | |
|       high += highHalf(mid);
 | |
|       mid <<= APINT_BITS_PER_WORD / 2;
 | |
|       if (low + mid < low)
 | |
|         high++;
 | |
|       low += mid;
 | |
| 
 | |
|       mid = highHalf(srcPart) * lowHalf(multiplier);
 | |
|       high += highHalf(mid);
 | |
|       mid <<= APINT_BITS_PER_WORD / 2;
 | |
|       if (low + mid < low)
 | |
|         high++;
 | |
|       low += mid;
 | |
| 
 | |
|       /* Now add carry.  */
 | |
|       if (low + carry < low)
 | |
|         high++;
 | |
|       low += carry;
 | |
|     }
 | |
| 
 | |
|     if (add) {
 | |
|       /* And now DST[i], and store the new low part there.  */
 | |
|       if (low + dst[i] < low)
 | |
|         high++;
 | |
|       dst[i] += low;
 | |
|     } else
 | |
|       dst[i] = low;
 | |
| 
 | |
|     carry = high;
 | |
|   }
 | |
| 
 | |
|   if (srcParts < dstParts) {
 | |
|     /* Full multiplication, there is no overflow.  */
 | |
|     assert(srcParts + 1 == dstParts);
 | |
|     dst[srcParts] = carry;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* We overflowed if there is carry.  */
 | |
|   if (carry)
 | |
|     return 1;
 | |
| 
 | |
|   /* We would overflow if any significant unwritten parts would be
 | |
|      non-zero.  This is true if any remaining src parts are non-zero
 | |
|      and the multiplier is non-zero.  */
 | |
|   if (multiplier)
 | |
|     for (unsigned i = dstParts; i < srcParts; i++)
 | |
|       if (src[i])
 | |
|         return 1;
 | |
| 
 | |
|   /* We fitted in the narrow destination.  */
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* DST = LHS * RHS, where DST has the same width as the operands and
 | |
|    is filled with the least significant parts of the result.  Returns
 | |
|    one if overflow occurred, otherwise zero.  DST must be disjoint
 | |
|    from both operands.  */
 | |
| int APInt::tcMultiply(WordType *dst, const WordType *lhs,
 | |
|                       const WordType *rhs, unsigned parts) {
 | |
|   assert(dst != lhs && dst != rhs);
 | |
| 
 | |
|   int overflow = 0;
 | |
|   tcSet(dst, 0, parts);
 | |
| 
 | |
|   for (unsigned i = 0; i < parts; i++)
 | |
|     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
 | |
|                                parts - i, true);
 | |
| 
 | |
|   return overflow;
 | |
| }
 | |
| 
 | |
| /// DST = LHS * RHS, where DST has width the sum of the widths of the
 | |
| /// operands. No overflow occurs. DST must be disjoint from both operands.
 | |
| void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
 | |
|                            const WordType *rhs, unsigned lhsParts,
 | |
|                            unsigned rhsParts) {
 | |
|   /* Put the narrower number on the LHS for less loops below.  */
 | |
|   if (lhsParts > rhsParts)
 | |
|     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
 | |
| 
 | |
|   assert(dst != lhs && dst != rhs);
 | |
| 
 | |
|   tcSet(dst, 0, rhsParts);
 | |
| 
 | |
|   for (unsigned i = 0; i < lhsParts; i++)
 | |
|     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
 | |
| }
 | |
| 
 | |
| /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
 | |
|    Otherwise set LHS to LHS / RHS with the fractional part discarded,
 | |
|    set REMAINDER to the remainder, return zero.  i.e.
 | |
| 
 | |
|    OLD_LHS = RHS * LHS + REMAINDER
 | |
| 
 | |
|    SCRATCH is a bignum of the same size as the operands and result for
 | |
|    use by the routine; its contents need not be initialized and are
 | |
|    destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
 | |
| */
 | |
| int APInt::tcDivide(WordType *lhs, const WordType *rhs,
 | |
|                     WordType *remainder, WordType *srhs,
 | |
|                     unsigned parts) {
 | |
|   assert(lhs != remainder && lhs != srhs && remainder != srhs);
 | |
| 
 | |
|   unsigned shiftCount = tcMSB(rhs, parts) + 1;
 | |
|   if (shiftCount == 0)
 | |
|     return true;
 | |
| 
 | |
|   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
 | |
|   unsigned n = shiftCount / APINT_BITS_PER_WORD;
 | |
|   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
 | |
| 
 | |
|   tcAssign(srhs, rhs, parts);
 | |
|   tcShiftLeft(srhs, parts, shiftCount);
 | |
|   tcAssign(remainder, lhs, parts);
 | |
|   tcSet(lhs, 0, parts);
 | |
| 
 | |
|   /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
 | |
|      the total.  */
 | |
|   for (;;) {
 | |
|     int compare = tcCompare(remainder, srhs, parts);
 | |
|     if (compare >= 0) {
 | |
|       tcSubtract(remainder, srhs, 0, parts);
 | |
|       lhs[n] |= mask;
 | |
|     }
 | |
| 
 | |
|     if (shiftCount == 0)
 | |
|       break;
 | |
|     shiftCount--;
 | |
|     tcShiftRight(srhs, parts, 1);
 | |
|     if ((mask >>= 1) == 0) {
 | |
|       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
 | |
|       n--;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
 | |
| /// no restrictions on Count.
 | |
| void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
 | |
|   // Don't bother performing a no-op shift.
 | |
|   if (!Count)
 | |
|     return;
 | |
| 
 | |
|   // WordShift is the inter-part shift; BitShift is the intra-part shift.
 | |
|   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
 | |
|   unsigned BitShift = Count % APINT_BITS_PER_WORD;
 | |
| 
 | |
|   // Fastpath for moving by whole words.
 | |
|   if (BitShift == 0) {
 | |
|     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
 | |
|   } else {
 | |
|     while (Words-- > WordShift) {
 | |
|       Dst[Words] = Dst[Words - WordShift] << BitShift;
 | |
|       if (Words > WordShift)
 | |
|         Dst[Words] |=
 | |
|           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fill in the remainder with 0s.
 | |
|   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
 | |
| }
 | |
| 
 | |
| /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
 | |
| /// are no restrictions on Count.
 | |
| void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
 | |
|   // Don't bother performing a no-op shift.
 | |
|   if (!Count)
 | |
|     return;
 | |
| 
 | |
|   // WordShift is the inter-part shift; BitShift is the intra-part shift.
 | |
|   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
 | |
|   unsigned BitShift = Count % APINT_BITS_PER_WORD;
 | |
| 
 | |
|   unsigned WordsToMove = Words - WordShift;
 | |
|   // Fastpath for moving by whole words.
 | |
|   if (BitShift == 0) {
 | |
|     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
 | |
|   } else {
 | |
|     for (unsigned i = 0; i != WordsToMove; ++i) {
 | |
|       Dst[i] = Dst[i + WordShift] >> BitShift;
 | |
|       if (i + 1 != WordsToMove)
 | |
|         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fill in the remainder with 0s.
 | |
|   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
 | |
| }
 | |
| 
 | |
| /* Bitwise and of two bignums.  */
 | |
| void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
 | |
|   for (unsigned i = 0; i < parts; i++)
 | |
|     dst[i] &= rhs[i];
 | |
| }
 | |
| 
 | |
| /* Bitwise inclusive or of two bignums.  */
 | |
| void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
 | |
|   for (unsigned i = 0; i < parts; i++)
 | |
|     dst[i] |= rhs[i];
 | |
| }
 | |
| 
 | |
| /* Bitwise exclusive or of two bignums.  */
 | |
| void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
 | |
|   for (unsigned i = 0; i < parts; i++)
 | |
|     dst[i] ^= rhs[i];
 | |
| }
 | |
| 
 | |
| /* Complement a bignum in-place.  */
 | |
| void APInt::tcComplement(WordType *dst, unsigned parts) {
 | |
|   for (unsigned i = 0; i < parts; i++)
 | |
|     dst[i] = ~dst[i];
 | |
| }
 | |
| 
 | |
| /* Comparison (unsigned) of two bignums.  */
 | |
| int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
 | |
|                      unsigned parts) {
 | |
|   while (parts) {
 | |
|     parts--;
 | |
|     if (lhs[parts] != rhs[parts])
 | |
|       return (lhs[parts] > rhs[parts]) ? 1 : -1;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Set the least significant BITS bits of a bignum, clear the
 | |
|    rest.  */
 | |
| void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
 | |
|                                       unsigned bits) {
 | |
|   unsigned i = 0;
 | |
|   while (bits > APINT_BITS_PER_WORD) {
 | |
|     dst[i++] = ~(WordType) 0;
 | |
|     bits -= APINT_BITS_PER_WORD;
 | |
|   }
 | |
| 
 | |
|   if (bits)
 | |
|     dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
 | |
| 
 | |
|   while (i < parts)
 | |
|     dst[i++] = 0;
 | |
| }
 | |
| 
 | |
| APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
 | |
|                                    APInt::Rounding RM) {
 | |
|   // Currently udivrem always rounds down.
 | |
|   switch (RM) {
 | |
|   case APInt::Rounding::DOWN:
 | |
|   case APInt::Rounding::TOWARD_ZERO:
 | |
|     return A.udiv(B);
 | |
|   case APInt::Rounding::UP: {
 | |
|     APInt Quo, Rem;
 | |
|     APInt::udivrem(A, B, Quo, Rem);
 | |
|     if (Rem == 0)
 | |
|       return Quo;
 | |
|     return Quo + 1;
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("Unknown APInt::Rounding enum");
 | |
| }
 | |
| 
 | |
| APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
 | |
|                                    APInt::Rounding RM) {
 | |
|   switch (RM) {
 | |
|   case APInt::Rounding::DOWN:
 | |
|   case APInt::Rounding::UP: {
 | |
|     APInt Quo, Rem;
 | |
|     APInt::sdivrem(A, B, Quo, Rem);
 | |
|     if (Rem == 0)
 | |
|       return Quo;
 | |
|     // This algorithm deals with arbitrary rounding mode used by sdivrem.
 | |
|     // We want to check whether the non-integer part of the mathematical value
 | |
|     // is negative or not. If the non-integer part is negative, we need to round
 | |
|     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
 | |
|     // already rounded down.
 | |
|     if (RM == APInt::Rounding::DOWN) {
 | |
|       if (Rem.isNegative() != B.isNegative())
 | |
|         return Quo - 1;
 | |
|       return Quo;
 | |
|     }
 | |
|     if (Rem.isNegative() != B.isNegative())
 | |
|       return Quo;
 | |
|     return Quo + 1;
 | |
|   }
 | |
|   // Currently sdiv rounds towards zero.
 | |
|   case APInt::Rounding::TOWARD_ZERO:
 | |
|     return A.sdiv(B);
 | |
|   }
 | |
|   llvm_unreachable("Unknown APInt::Rounding enum");
 | |
| }
 | |
| 
 | |
| Optional<APInt>
 | |
| llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
 | |
|                                            unsigned RangeWidth) {
 | |
|   unsigned CoeffWidth = A.getBitWidth();
 | |
|   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
 | |
|   assert(RangeWidth <= CoeffWidth &&
 | |
|          "Value range width should be less than coefficient width");
 | |
|   assert(RangeWidth > 1 && "Value range bit width should be > 1");
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
 | |
|                     << "x + " << C << ", rw:" << RangeWidth << '\n');
 | |
| 
 | |
|   // Identify 0 as a (non)solution immediately.
 | |
|   if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
 | |
|     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
 | |
|     return APInt(CoeffWidth, 0);
 | |
|   }
 | |
| 
 | |
|   // The result of APInt arithmetic has the same bit width as the operands,
 | |
|   // so it can actually lose high bits. A product of two n-bit integers needs
 | |
|   // 2n-1 bits to represent the full value.
 | |
|   // The operation done below (on quadratic coefficients) that can produce
 | |
|   // the largest value is the evaluation of the equation during bisection,
 | |
|   // which needs 3 times the bitwidth of the coefficient, so the total number
 | |
|   // of required bits is 3n.
 | |
|   //
 | |
|   // The purpose of this extension is to simulate the set Z of all integers,
 | |
|   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
 | |
|   // and negative numbers (not so much in a modulo arithmetic). The method
 | |
|   // used to solve the equation is based on the standard formula for real
 | |
|   // numbers, and uses the concepts of "positive" and "negative" with their
 | |
|   // usual meanings.
 | |
|   CoeffWidth *= 3;
 | |
|   A = A.sext(CoeffWidth);
 | |
|   B = B.sext(CoeffWidth);
 | |
|   C = C.sext(CoeffWidth);
 | |
| 
 | |
|   // Make A > 0 for simplicity. Negate cannot overflow at this point because
 | |
|   // the bit width has increased.
 | |
|   if (A.isNegative()) {
 | |
|     A.negate();
 | |
|     B.negate();
 | |
|     C.negate();
 | |
|   }
 | |
| 
 | |
|   // Solving an equation q(x) = 0 with coefficients in modular arithmetic
 | |
|   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
 | |
|   // and R = 2^BitWidth.
 | |
|   // Since we're trying not only to find exact solutions, but also values
 | |
|   // that "wrap around", such a set will always have a solution, i.e. an x
 | |
|   // that satisfies at least one of the equations, or such that |q(x)|
 | |
|   // exceeds kR, while |q(x-1)| for the same k does not.
 | |
|   //
 | |
|   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
 | |
|   // positive solution n (in the above sense), and also such that the n
 | |
|   // will be the least among all solutions corresponding to k = 0, 1, ...
 | |
|   // (more precisely, the least element in the set
 | |
|   //   { n(k) | k is such that a solution n(k) exists }).
 | |
|   //
 | |
|   // Consider the parabola (over real numbers) that corresponds to the
 | |
|   // quadratic equation. Since A > 0, the arms of the parabola will point
 | |
|   // up. Picking different values of k will shift it up and down by R.
 | |
|   //
 | |
|   // We want to shift the parabola in such a way as to reduce the problem
 | |
|   // of solving q(x) = kR to solving shifted_q(x) = 0.
 | |
|   // (The interesting solutions are the ceilings of the real number
 | |
|   // solutions.)
 | |
|   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
 | |
|   APInt TwoA = 2 * A;
 | |
|   APInt SqrB = B * B;
 | |
|   bool PickLow;
 | |
| 
 | |
|   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
 | |
|     assert(A.isStrictlyPositive());
 | |
|     APInt T = V.abs().urem(A);
 | |
|     if (T.isNullValue())
 | |
|       return V;
 | |
|     return V.isNegative() ? V+T : V+(A-T);
 | |
|   };
 | |
| 
 | |
|   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
 | |
|   // iff B is positive.
 | |
|   if (B.isNonNegative()) {
 | |
|     // If B >= 0, the vertex it at a negative location (or at 0), so in
 | |
|     // order to have a non-negative solution we need to pick k that makes
 | |
|     // C-kR negative. To satisfy all the requirements for the solution
 | |
|     // that we are looking for, it needs to be closest to 0 of all k.
 | |
|     C = C.srem(R);
 | |
|     if (C.isStrictlyPositive())
 | |
|       C -= R;
 | |
|     // Pick the greater solution.
 | |
|     PickLow = false;
 | |
|   } else {
 | |
|     // If B < 0, the vertex is at a positive location. For any solution
 | |
|     // to exist, the discriminant must be non-negative. This means that
 | |
|     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
 | |
|     // lower bound on values of k: kR >= C - B^2/4A.
 | |
|     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
 | |
|     // Round LowkR up (towards +inf) to the nearest kR.
 | |
|     LowkR = RoundUp(LowkR, R);
 | |
| 
 | |
|     // If there exists k meeting the condition above, and such that
 | |
|     // C-kR > 0, there will be two positive real number solutions of
 | |
|     // q(x) = kR. Out of all such values of k, pick the one that makes
 | |
|     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
 | |
|     // In other words, find maximum k such that LowkR <= kR < C.
 | |
|     if (C.sgt(LowkR)) {
 | |
|       // If LowkR < C, then such a k is guaranteed to exist because
 | |
|       // LowkR itself is a multiple of R.
 | |
|       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
 | |
|       // Pick the smaller solution.
 | |
|       PickLow = true;
 | |
|     } else {
 | |
|       // If C-kR < 0 for all potential k's, it means that one solution
 | |
|       // will be negative, while the other will be positive. The positive
 | |
|       // solution will shift towards 0 if the parabola is moved up.
 | |
|       // Pick the kR closest to the lower bound (i.e. make C-kR closest
 | |
|       // to 0, or in other words, out of all parabolas that have solutions,
 | |
|       // pick the one that is the farthest "up").
 | |
|       // Since LowkR is itself a multiple of R, simply take C-LowkR.
 | |
|       C -= LowkR;
 | |
|       // Pick the greater solution.
 | |
|       PickLow = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
 | |
|                     << B << "x + " << C << ", rw:" << RangeWidth << '\n');
 | |
| 
 | |
|   APInt D = SqrB - 4*A*C;
 | |
|   assert(D.isNonNegative() && "Negative discriminant");
 | |
|   APInt SQ = D.sqrt();
 | |
| 
 | |
|   APInt Q = SQ * SQ;
 | |
|   bool InexactSQ = Q != D;
 | |
|   // The calculated SQ may actually be greater than the exact (non-integer)
 | |
|   // value. If that's the case, decrement SQ to get a value that is lower.
 | |
|   if (Q.sgt(D))
 | |
|     SQ -= 1;
 | |
| 
 | |
|   APInt X;
 | |
|   APInt Rem;
 | |
| 
 | |
|   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
 | |
|   // When using the quadratic formula directly, the calculated low root
 | |
|   // may be greater than the exact one, since we would be subtracting SQ.
 | |
|   // To make sure that the calculated root is not greater than the exact
 | |
|   // one, subtract SQ+1 when calculating the low root (for inexact value
 | |
|   // of SQ).
 | |
|   if (PickLow)
 | |
|     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
 | |
|   else
 | |
|     APInt::sdivrem(-B + SQ, TwoA, X, Rem);
 | |
| 
 | |
|   // The updated coefficients should be such that the (exact) solution is
 | |
|   // positive. Since APInt division rounds towards 0, the calculated one
 | |
|   // can be 0, but cannot be negative.
 | |
|   assert(X.isNonNegative() && "Solution should be non-negative");
 | |
| 
 | |
|   if (!InexactSQ && Rem.isNullValue()) {
 | |
|     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
 | |
|     return X;
 | |
|   }
 | |
| 
 | |
|   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
 | |
|   // The exact value of the square root of D should be between SQ and SQ+1.
 | |
|   // This implies that the solution should be between that corresponding to
 | |
|   // SQ (i.e. X) and that corresponding to SQ+1.
 | |
|   //
 | |
|   // The calculated X cannot be greater than the exact (real) solution.
 | |
|   // Actually it must be strictly less than the exact solution, while
 | |
|   // X+1 will be greater than or equal to it.
 | |
| 
 | |
|   APInt VX = (A*X + B)*X + C;
 | |
|   APInt VY = VX + TwoA*X + A + B;
 | |
|   bool SignChange = VX.isNegative() != VY.isNegative() ||
 | |
|                     VX.isNullValue() != VY.isNullValue();
 | |
|   // If the sign did not change between X and X+1, X is not a valid solution.
 | |
|   // This could happen when the actual (exact) roots don't have an integer
 | |
|   // between them, so they would both be contained between X and X+1.
 | |
|   if (!SignChange) {
 | |
|     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   X += 1;
 | |
|   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
 | |
|   return X;
 | |
| }
 | |
| 
 | |
| Optional<unsigned>
 | |
| llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
 | |
|   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
 | |
|   if (A == B)
 | |
|     return llvm::None;
 | |
|   return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
 | |
| }
 | |
| 
 | |
| /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
 | |
| /// with the integer held in IntVal.
 | |
| void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
 | |
|                             unsigned StoreBytes) {
 | |
|   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
 | |
|   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
 | |
| 
 | |
|   if (sys::IsLittleEndianHost) {
 | |
|     // Little-endian host - the source is ordered from LSB to MSB.  Order the
 | |
|     // destination from LSB to MSB: Do a straight copy.
 | |
|     memcpy(Dst, Src, StoreBytes);
 | |
|   } else {
 | |
|     // Big-endian host - the source is an array of 64 bit words ordered from
 | |
|     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
 | |
|     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
 | |
|     while (StoreBytes > sizeof(uint64_t)) {
 | |
|       StoreBytes -= sizeof(uint64_t);
 | |
|       // May not be aligned so use memcpy.
 | |
|       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
 | |
|       Src += sizeof(uint64_t);
 | |
|     }
 | |
| 
 | |
|     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
 | |
| /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
 | |
| void llvm::LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
 | |
|   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
 | |
|   uint8_t *Dst = reinterpret_cast<uint8_t *>(
 | |
|                    const_cast<uint64_t *>(IntVal.getRawData()));
 | |
| 
 | |
|   if (sys::IsLittleEndianHost)
 | |
|     // Little-endian host - the destination must be ordered from LSB to MSB.
 | |
|     // The source is ordered from LSB to MSB: Do a straight copy.
 | |
|     memcpy(Dst, Src, LoadBytes);
 | |
|   else {
 | |
|     // Big-endian - the destination is an array of 64 bit words ordered from
 | |
|     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
 | |
|     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
 | |
|     // a word.
 | |
|     while (LoadBytes > sizeof(uint64_t)) {
 | |
|       LoadBytes -= sizeof(uint64_t);
 | |
|       // May not be aligned so use memcpy.
 | |
|       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
 | |
|       Dst += sizeof(uint64_t);
 | |
|     }
 | |
| 
 | |
|     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
 | |
|   }
 | |
| }
 |