forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1602 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1602 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements the operating system Host concept.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Support/Host.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/FileSystem.h"
 | |
| #include "llvm/Support/MemoryBuffer.h"
 | |
| #include "llvm/Support/TargetParser.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <assert.h>
 | |
| #include <string.h>
 | |
| 
 | |
| // Include the platform-specific parts of this class.
 | |
| #ifdef LLVM_ON_UNIX
 | |
| #include "Unix/Host.inc"
 | |
| #endif
 | |
| #ifdef _WIN32
 | |
| #include "Windows/Host.inc"
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| #include <intrin.h>
 | |
| #endif
 | |
| #if defined(__APPLE__) && (!defined(__x86_64__))
 | |
| #include <mach/host_info.h>
 | |
| #include <mach/mach.h>
 | |
| #include <mach/mach_host.h>
 | |
| #include <mach/machine.h>
 | |
| #endif
 | |
| 
 | |
| #define DEBUG_TYPE "host-detection"
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  Implementations of the CPU detection routines
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static std::unique_ptr<llvm::MemoryBuffer>
 | |
|     LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
 | |
|   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
 | |
|       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
 | |
|   if (std::error_code EC = Text.getError()) {
 | |
|     llvm::errs() << "Can't read "
 | |
|                  << "/proc/cpuinfo: " << EC.message() << "\n";
 | |
|     return nullptr;
 | |
|   }
 | |
|   return std::move(*Text);
 | |
| }
 | |
| 
 | |
| StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
 | |
|   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
 | |
|   // and so we must use an operating-system interface to determine the current
 | |
|   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
 | |
|   const char *generic = "generic";
 | |
| 
 | |
|   // The cpu line is second (after the 'processor: 0' line), so if this
 | |
|   // buffer is too small then something has changed (or is wrong).
 | |
|   StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
 | |
|   StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
 | |
| 
 | |
|   StringRef::const_iterator CIP = CPUInfoStart;
 | |
| 
 | |
|   StringRef::const_iterator CPUStart = 0;
 | |
|   size_t CPULen = 0;
 | |
| 
 | |
|   // We need to find the first line which starts with cpu, spaces, and a colon.
 | |
|   // After the colon, there may be some additional spaces and then the cpu type.
 | |
|   while (CIP < CPUInfoEnd && CPUStart == 0) {
 | |
|     if (CIP < CPUInfoEnd && *CIP == '\n')
 | |
|       ++CIP;
 | |
| 
 | |
|     if (CIP < CPUInfoEnd && *CIP == 'c') {
 | |
|       ++CIP;
 | |
|       if (CIP < CPUInfoEnd && *CIP == 'p') {
 | |
|         ++CIP;
 | |
|         if (CIP < CPUInfoEnd && *CIP == 'u') {
 | |
|           ++CIP;
 | |
|           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
 | |
|             ++CIP;
 | |
| 
 | |
|           if (CIP < CPUInfoEnd && *CIP == ':') {
 | |
|             ++CIP;
 | |
|             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
 | |
|               ++CIP;
 | |
| 
 | |
|             if (CIP < CPUInfoEnd) {
 | |
|               CPUStart = CIP;
 | |
|               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
 | |
|                                           *CIP != ',' && *CIP != '\n'))
 | |
|                 ++CIP;
 | |
|               CPULen = CIP - CPUStart;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (CPUStart == 0)
 | |
|       while (CIP < CPUInfoEnd && *CIP != '\n')
 | |
|         ++CIP;
 | |
|   }
 | |
| 
 | |
|   if (CPUStart == 0)
 | |
|     return generic;
 | |
| 
 | |
|   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
 | |
|       .Case("604e", "604e")
 | |
|       .Case("604", "604")
 | |
|       .Case("7400", "7400")
 | |
|       .Case("7410", "7400")
 | |
|       .Case("7447", "7400")
 | |
|       .Case("7455", "7450")
 | |
|       .Case("G4", "g4")
 | |
|       .Case("POWER4", "970")
 | |
|       .Case("PPC970FX", "970")
 | |
|       .Case("PPC970MP", "970")
 | |
|       .Case("G5", "g5")
 | |
|       .Case("POWER5", "g5")
 | |
|       .Case("A2", "a2")
 | |
|       .Case("POWER6", "pwr6")
 | |
|       .Case("POWER7", "pwr7")
 | |
|       .Case("POWER8", "pwr8")
 | |
|       .Case("POWER8E", "pwr8")
 | |
|       .Case("POWER8NVL", "pwr8")
 | |
|       .Case("POWER9", "pwr9")
 | |
|       // FIXME: If we get a simulator or machine with the capabilities of
 | |
|       // mcpu=future, we should revisit this and add the name reported by the
 | |
|       // simulator/machine.
 | |
|       .Default(generic);
 | |
| }
 | |
| 
 | |
| StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
 | |
|   // The cpuid register on arm is not accessible from user space. On Linux,
 | |
|   // it is exposed through the /proc/cpuinfo file.
 | |
| 
 | |
|   // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
 | |
|   // in all cases.
 | |
|   SmallVector<StringRef, 32> Lines;
 | |
|   ProcCpuinfoContent.split(Lines, "\n");
 | |
| 
 | |
|   // Look for the CPU implementer line.
 | |
|   StringRef Implementer;
 | |
|   StringRef Hardware;
 | |
|   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
 | |
|     if (Lines[I].startswith("CPU implementer"))
 | |
|       Implementer = Lines[I].substr(15).ltrim("\t :");
 | |
|     if (Lines[I].startswith("Hardware"))
 | |
|       Hardware = Lines[I].substr(8).ltrim("\t :");
 | |
|   }
 | |
| 
 | |
|   if (Implementer == "0x41") { // ARM Ltd.
 | |
|     // MSM8992/8994 may give cpu part for the core that the kernel is running on,
 | |
|     // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
 | |
|     if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
 | |
|       return "cortex-a53";
 | |
| 
 | |
| 
 | |
|     // Look for the CPU part line.
 | |
|     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
 | |
|       if (Lines[I].startswith("CPU part"))
 | |
|         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
 | |
|         // values correspond to the "Part number" in the CP15/c0 register. The
 | |
|         // contents are specified in the various processor manuals.
 | |
|         // This corresponds to the Main ID Register in Technical Reference Manuals.
 | |
|         // and is used in programs like sys-utils
 | |
|         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
 | |
|             .Case("0x926", "arm926ej-s")
 | |
|             .Case("0xb02", "mpcore")
 | |
|             .Case("0xb36", "arm1136j-s")
 | |
|             .Case("0xb56", "arm1156t2-s")
 | |
|             .Case("0xb76", "arm1176jz-s")
 | |
|             .Case("0xc08", "cortex-a8")
 | |
|             .Case("0xc09", "cortex-a9")
 | |
|             .Case("0xc0f", "cortex-a15")
 | |
|             .Case("0xc20", "cortex-m0")
 | |
|             .Case("0xc23", "cortex-m3")
 | |
|             .Case("0xc24", "cortex-m4")
 | |
|             .Case("0xd22", "cortex-m55")
 | |
|             .Case("0xd02", "cortex-a34")
 | |
|             .Case("0xd04", "cortex-a35")
 | |
|             .Case("0xd03", "cortex-a53")
 | |
|             .Case("0xd07", "cortex-a57")
 | |
|             .Case("0xd08", "cortex-a72")
 | |
|             .Case("0xd09", "cortex-a73")
 | |
|             .Case("0xd0a", "cortex-a75")
 | |
|             .Case("0xd0b", "cortex-a76")
 | |
|             .Default("generic");
 | |
|   }
 | |
| 
 | |
|   if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
 | |
|     for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
 | |
|       if (Lines[I].startswith("CPU part")) {
 | |
|         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
 | |
|           .Case("0x516", "thunderx2t99")
 | |
|           .Case("0x0516", "thunderx2t99")
 | |
|           .Case("0xaf", "thunderx2t99")
 | |
|           .Case("0x0af", "thunderx2t99")
 | |
|           .Case("0xa1", "thunderxt88")
 | |
|           .Case("0x0a1", "thunderxt88")
 | |
|           .Default("generic");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Implementer == "0x46") { // Fujitsu Ltd.
 | |
|     for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
 | |
|       if (Lines[I].startswith("CPU part")) {
 | |
|         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
 | |
|           .Case("0x001", "a64fx")
 | |
|           .Default("generic");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Implementer == "0x48") // HiSilicon Technologies, Inc.
 | |
|     // Look for the CPU part line.
 | |
|     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
 | |
|       if (Lines[I].startswith("CPU part"))
 | |
|         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
 | |
|         // values correspond to the "Part number" in the CP15/c0 register. The
 | |
|         // contents are specified in the various processor manuals.
 | |
|         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
 | |
|           .Case("0xd01", "tsv110")
 | |
|           .Default("generic");
 | |
| 
 | |
|   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
 | |
|     // Look for the CPU part line.
 | |
|     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
 | |
|       if (Lines[I].startswith("CPU part"))
 | |
|         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
 | |
|         // values correspond to the "Part number" in the CP15/c0 register. The
 | |
|         // contents are specified in the various processor manuals.
 | |
|         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
 | |
|             .Case("0x06f", "krait") // APQ8064
 | |
|             .Case("0x201", "kryo")
 | |
|             .Case("0x205", "kryo")
 | |
|             .Case("0x211", "kryo")
 | |
|             .Case("0x800", "cortex-a73")
 | |
|             .Case("0x801", "cortex-a73")
 | |
|             .Case("0x802", "cortex-a73")
 | |
|             .Case("0x803", "cortex-a73")
 | |
|             .Case("0x804", "cortex-a73")
 | |
|             .Case("0x805", "cortex-a73")
 | |
|             .Case("0xc00", "falkor")
 | |
|             .Case("0xc01", "saphira")
 | |
|             .Default("generic");
 | |
| 
 | |
|   if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
 | |
|     // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
 | |
|     // any predictive pattern across variants and parts.
 | |
|     unsigned Variant = 0, Part = 0;
 | |
| 
 | |
|     // Look for the CPU variant line, whose value is a 1 digit hexadecimal
 | |
|     // number, corresponding to the Variant bits in the CP15/C0 register.
 | |
|     for (auto I : Lines)
 | |
|       if (I.consume_front("CPU variant"))
 | |
|         I.ltrim("\t :").getAsInteger(0, Variant);
 | |
| 
 | |
|     // Look for the CPU part line, whose value is a 3 digit hexadecimal
 | |
|     // number, corresponding to the PartNum bits in the CP15/C0 register.
 | |
|     for (auto I : Lines)
 | |
|       if (I.consume_front("CPU part"))
 | |
|         I.ltrim("\t :").getAsInteger(0, Part);
 | |
| 
 | |
|     unsigned Exynos = (Variant << 12) | Part;
 | |
|     switch (Exynos) {
 | |
|     default:
 | |
|       // Default by falling through to Exynos M3.
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case 0x1002:
 | |
|       return "exynos-m3";
 | |
|     case 0x1003:
 | |
|       return "exynos-m4";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return "generic";
 | |
| }
 | |
| 
 | |
| StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
 | |
|   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
 | |
| 
 | |
|   // The "processor 0:" line comes after a fair amount of other information,
 | |
|   // including a cache breakdown, but this should be plenty.
 | |
|   SmallVector<StringRef, 32> Lines;
 | |
|   ProcCpuinfoContent.split(Lines, "\n");
 | |
| 
 | |
|   // Look for the CPU features.
 | |
|   SmallVector<StringRef, 32> CPUFeatures;
 | |
|   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
 | |
|     if (Lines[I].startswith("features")) {
 | |
|       size_t Pos = Lines[I].find(":");
 | |
|       if (Pos != StringRef::npos) {
 | |
|         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // We need to check for the presence of vector support independently of
 | |
|   // the machine type, since we may only use the vector register set when
 | |
|   // supported by the kernel (and hypervisor).
 | |
|   bool HaveVectorSupport = false;
 | |
|   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
 | |
|     if (CPUFeatures[I] == "vx")
 | |
|       HaveVectorSupport = true;
 | |
|   }
 | |
| 
 | |
|   // Now check the processor machine type.
 | |
|   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
 | |
|     if (Lines[I].startswith("processor ")) {
 | |
|       size_t Pos = Lines[I].find("machine = ");
 | |
|       if (Pos != StringRef::npos) {
 | |
|         Pos += sizeof("machine = ") - 1;
 | |
|         unsigned int Id;
 | |
|         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
 | |
|           if (Id >= 8561 && HaveVectorSupport)
 | |
|             return "z15";
 | |
|           if (Id >= 3906 && HaveVectorSupport)
 | |
|             return "z14";
 | |
|           if (Id >= 2964 && HaveVectorSupport)
 | |
|             return "z13";
 | |
|           if (Id >= 2827)
 | |
|             return "zEC12";
 | |
|           if (Id >= 2817)
 | |
|             return "z196";
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return "generic";
 | |
| }
 | |
| 
 | |
| StringRef sys::detail::getHostCPUNameForBPF() {
 | |
| #if !defined(__linux__) || !defined(__x86_64__)
 | |
|   return "generic";
 | |
| #else
 | |
|   uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
 | |
|       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
 | |
|     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
 | |
|       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
 | |
|       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
 | |
|       /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
 | |
|       0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
 | |
|       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
 | |
|       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
 | |
|       /* BPF_EXIT_INSN() */
 | |
|       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
 | |
| 
 | |
|   uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
 | |
|       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
 | |
|     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
 | |
|       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
 | |
|       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
 | |
|       /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
 | |
|       0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
 | |
|       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
 | |
|       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
 | |
|       /* BPF_EXIT_INSN() */
 | |
|       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
 | |
| 
 | |
|   struct bpf_prog_load_attr {
 | |
|     uint32_t prog_type;
 | |
|     uint32_t insn_cnt;
 | |
|     uint64_t insns;
 | |
|     uint64_t license;
 | |
|     uint32_t log_level;
 | |
|     uint32_t log_size;
 | |
|     uint64_t log_buf;
 | |
|     uint32_t kern_version;
 | |
|     uint32_t prog_flags;
 | |
|   } attr = {};
 | |
|   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
 | |
|   attr.insn_cnt = 5;
 | |
|   attr.insns = (uint64_t)v3_insns;
 | |
|   attr.license = (uint64_t)"DUMMY";
 | |
| 
 | |
|   int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
 | |
|                    sizeof(attr));
 | |
|   if (fd >= 0) {
 | |
|     close(fd);
 | |
|     return "v3";
 | |
|   }
 | |
| 
 | |
|   /* Clear the whole attr in case its content changed by syscall. */
 | |
|   memset(&attr, 0, sizeof(attr));
 | |
|   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
 | |
|   attr.insn_cnt = 5;
 | |
|   attr.insns = (uint64_t)v2_insns;
 | |
|   attr.license = (uint64_t)"DUMMY";
 | |
|   fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
 | |
|   if (fd >= 0) {
 | |
|     close(fd);
 | |
|     return "v2";
 | |
|   }
 | |
|   return "v1";
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if defined(__i386__) || defined(_M_IX86) || \
 | |
|     defined(__x86_64__) || defined(_M_X64)
 | |
| 
 | |
| enum VendorSignatures {
 | |
|   SIG_INTEL = 0x756e6547 /* Genu */,
 | |
|   SIG_AMD = 0x68747541 /* Auth */
 | |
| };
 | |
| 
 | |
| // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
 | |
| // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
 | |
| // support. Consequently, for i386, the presence of CPUID is checked first
 | |
| // via the corresponding eflags bit.
 | |
| // Removal of cpuid.h header motivated by PR30384
 | |
| // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
 | |
| // or test-suite, but are used in external projects e.g. libstdcxx
 | |
| static bool isCpuIdSupported() {
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #if defined(__i386__)
 | |
|   int __cpuid_supported;
 | |
|   __asm__("  pushfl\n"
 | |
|           "  popl   %%eax\n"
 | |
|           "  movl   %%eax,%%ecx\n"
 | |
|           "  xorl   $0x00200000,%%eax\n"
 | |
|           "  pushl  %%eax\n"
 | |
|           "  popfl\n"
 | |
|           "  pushfl\n"
 | |
|           "  popl   %%eax\n"
 | |
|           "  movl   $0,%0\n"
 | |
|           "  cmpl   %%eax,%%ecx\n"
 | |
|           "  je     1f\n"
 | |
|           "  movl   $1,%0\n"
 | |
|           "1:"
 | |
|           : "=r"(__cpuid_supported)
 | |
|           :
 | |
|           : "eax", "ecx");
 | |
|   if (!__cpuid_supported)
 | |
|     return false;
 | |
| #endif
 | |
|   return true;
 | |
| #endif
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
 | |
| /// the specified arguments.  If we can't run cpuid on the host, return true.
 | |
| static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
 | |
|                                unsigned *rECX, unsigned *rEDX) {
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #if defined(__x86_64__)
 | |
|   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
 | |
|   // FIXME: should we save this for Clang?
 | |
|   __asm__("movq\t%%rbx, %%rsi\n\t"
 | |
|           "cpuid\n\t"
 | |
|           "xchgq\t%%rbx, %%rsi\n\t"
 | |
|           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
 | |
|           : "a"(value));
 | |
|   return false;
 | |
| #elif defined(__i386__)
 | |
|   __asm__("movl\t%%ebx, %%esi\n\t"
 | |
|           "cpuid\n\t"
 | |
|           "xchgl\t%%ebx, %%esi\n\t"
 | |
|           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
 | |
|           : "a"(value));
 | |
|   return false;
 | |
| #else
 | |
|   return true;
 | |
| #endif
 | |
| #elif defined(_MSC_VER)
 | |
|   // The MSVC intrinsic is portable across x86 and x64.
 | |
|   int registers[4];
 | |
|   __cpuid(registers, value);
 | |
|   *rEAX = registers[0];
 | |
|   *rEBX = registers[1];
 | |
|   *rECX = registers[2];
 | |
|   *rEDX = registers[3];
 | |
|   return false;
 | |
| #else
 | |
|   return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
 | |
| /// the 4 values in the specified arguments.  If we can't run cpuid on the host,
 | |
| /// return true.
 | |
| static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
 | |
|                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
 | |
|                                  unsigned *rEDX) {
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #if defined(__x86_64__)
 | |
|   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
 | |
|   // FIXME: should we save this for Clang?
 | |
|   __asm__("movq\t%%rbx, %%rsi\n\t"
 | |
|           "cpuid\n\t"
 | |
|           "xchgq\t%%rbx, %%rsi\n\t"
 | |
|           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
 | |
|           : "a"(value), "c"(subleaf));
 | |
|   return false;
 | |
| #elif defined(__i386__)
 | |
|   __asm__("movl\t%%ebx, %%esi\n\t"
 | |
|           "cpuid\n\t"
 | |
|           "xchgl\t%%ebx, %%esi\n\t"
 | |
|           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
 | |
|           : "a"(value), "c"(subleaf));
 | |
|   return false;
 | |
| #else
 | |
|   return true;
 | |
| #endif
 | |
| #elif defined(_MSC_VER)
 | |
|   int registers[4];
 | |
|   __cpuidex(registers, value, subleaf);
 | |
|   *rEAX = registers[0];
 | |
|   *rEBX = registers[1];
 | |
|   *rECX = registers[2];
 | |
|   *rEDX = registers[3];
 | |
|   return false;
 | |
| #else
 | |
|   return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Read control register 0 (XCR0). Used to detect features such as AVX.
 | |
| static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
|   // Check xgetbv; this uses a .byte sequence instead of the instruction
 | |
|   // directly because older assemblers do not include support for xgetbv and
 | |
|   // there is no easy way to conditionally compile based on the assembler used.
 | |
|   __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
 | |
|   return false;
 | |
| #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
 | |
|   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
 | |
|   *rEAX = Result;
 | |
|   *rEDX = Result >> 32;
 | |
|   return false;
 | |
| #else
 | |
|   return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
 | |
|                                  unsigned *Model) {
 | |
|   *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
 | |
|   *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
 | |
|   if (*Family == 6 || *Family == 0xf) {
 | |
|     if (*Family == 0xf)
 | |
|       // Examine extended family ID if family ID is F.
 | |
|       *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
 | |
|     // Examine extended model ID if family ID is 6 or F.
 | |
|     *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void
 | |
| getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
 | |
|                                 unsigned Brand_id, unsigned Features,
 | |
|                                 unsigned Features2, unsigned Features3,
 | |
|                                 unsigned *Type, unsigned *Subtype) {
 | |
|   if (Brand_id != 0)
 | |
|     return;
 | |
|   switch (Family) {
 | |
|   case 3:
 | |
|     *Type = X86::INTEL_i386;
 | |
|     break;
 | |
|   case 4:
 | |
|     *Type = X86::INTEL_i486;
 | |
|     break;
 | |
|   case 5:
 | |
|     if (Features & (1 << X86::FEATURE_MMX)) {
 | |
|       *Type = X86::INTEL_PENTIUM_MMX;
 | |
|       break;
 | |
|     }
 | |
|     *Type = X86::INTEL_PENTIUM;
 | |
|     break;
 | |
|   case 6:
 | |
|     switch (Model) {
 | |
|     case 0x01: // Pentium Pro processor
 | |
|       *Type = X86::INTEL_PENTIUM_PRO;
 | |
|       break;
 | |
|     case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
 | |
|                // model 03
 | |
|     case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
 | |
|                // model 05, and Intel Celeron processor, model 05
 | |
|     case 0x06: // Celeron processor, model 06
 | |
|       *Type = X86::INTEL_PENTIUM_II;
 | |
|       break;
 | |
|     case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
 | |
|                // processor, model 07
 | |
|     case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
 | |
|                // model 08, and Celeron processor, model 08
 | |
|     case 0x0a: // Pentium III Xeon processor, model 0Ah
 | |
|     case 0x0b: // Pentium III processor, model 0Bh
 | |
|       *Type = X86::INTEL_PENTIUM_III;
 | |
|       break;
 | |
|     case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
 | |
|     case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
 | |
|                // 0Dh. All processors are manufactured using the 90 nm process.
 | |
|     case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
 | |
|                // Integrated Processor with Intel QuickAssist Technology
 | |
|       *Type = X86::INTEL_PENTIUM_M;
 | |
|       break;
 | |
|     case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
 | |
|                // 0Eh. All processors are manufactured using the 65 nm process.
 | |
|       *Type = X86::INTEL_CORE_DUO;
 | |
|       break;   // yonah
 | |
|     case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
 | |
|                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
 | |
|                // mobile processor, Intel Core 2 Extreme processor, Intel
 | |
|                // Pentium Dual-Core processor, Intel Xeon processor, model
 | |
|                // 0Fh. All processors are manufactured using the 65 nm process.
 | |
|     case 0x16: // Intel Celeron processor model 16h. All processors are
 | |
|                // manufactured using the 65 nm process
 | |
|       *Type = X86::INTEL_CORE2; // "core2"
 | |
|       *Subtype = X86::INTEL_CORE2_65;
 | |
|       break;
 | |
|     case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
 | |
|                // 17h. All processors are manufactured using the 45 nm process.
 | |
|                //
 | |
|                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
 | |
|     case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
 | |
|                // the 45 nm process.
 | |
|       *Type = X86::INTEL_CORE2; // "penryn"
 | |
|       *Subtype = X86::INTEL_CORE2_45;
 | |
|       break;
 | |
|     case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
 | |
|                // processors are manufactured using the 45 nm process.
 | |
|     case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
 | |
|                // As found in a Summer 2010 model iMac.
 | |
|     case 0x1f:
 | |
|     case 0x2e:             // Nehalem EX
 | |
|       *Type = X86::INTEL_COREI7; // "nehalem"
 | |
|       *Subtype = X86::INTEL_COREI7_NEHALEM;
 | |
|       break;
 | |
|     case 0x25: // Intel Core i7, laptop version.
 | |
|     case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
 | |
|                // processors are manufactured using the 32 nm process.
 | |
|     case 0x2f: // Westmere EX
 | |
|       *Type = X86::INTEL_COREI7; // "westmere"
 | |
|       *Subtype = X86::INTEL_COREI7_WESTMERE;
 | |
|       break;
 | |
|     case 0x2a: // Intel Core i7 processor. All processors are manufactured
 | |
|                // using the 32 nm process.
 | |
|     case 0x2d:
 | |
|       *Type = X86::INTEL_COREI7; //"sandybridge"
 | |
|       *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
 | |
|       break;
 | |
|     case 0x3a:
 | |
|     case 0x3e:             // Ivy Bridge EP
 | |
|       *Type = X86::INTEL_COREI7; // "ivybridge"
 | |
|       *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
 | |
|       break;
 | |
| 
 | |
|     // Haswell:
 | |
|     case 0x3c:
 | |
|     case 0x3f:
 | |
|     case 0x45:
 | |
|     case 0x46:
 | |
|       *Type = X86::INTEL_COREI7; // "haswell"
 | |
|       *Subtype = X86::INTEL_COREI7_HASWELL;
 | |
|       break;
 | |
| 
 | |
|     // Broadwell:
 | |
|     case 0x3d:
 | |
|     case 0x47:
 | |
|     case 0x4f:
 | |
|     case 0x56:
 | |
|       *Type = X86::INTEL_COREI7; // "broadwell"
 | |
|       *Subtype = X86::INTEL_COREI7_BROADWELL;
 | |
|       break;
 | |
| 
 | |
|     // Skylake:
 | |
|     case 0x4e:              // Skylake mobile
 | |
|     case 0x5e:              // Skylake desktop
 | |
|     case 0x8e:              // Kaby Lake mobile
 | |
|     case 0x9e:              // Kaby Lake desktop
 | |
|       *Type = X86::INTEL_COREI7; // "skylake"
 | |
|       *Subtype = X86::INTEL_COREI7_SKYLAKE;
 | |
|       break;
 | |
| 
 | |
|     // Skylake Xeon:
 | |
|     case 0x55:
 | |
|       *Type = X86::INTEL_COREI7;
 | |
|       if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32)))
 | |
|         *Subtype = X86::INTEL_COREI7_COOPERLAKE; // "cooperlake"
 | |
|       else if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32)))
 | |
|         *Subtype = X86::INTEL_COREI7_CASCADELAKE; // "cascadelake"
 | |
|       else
 | |
|         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
 | |
|       break;
 | |
| 
 | |
|     // Cannonlake:
 | |
|     case 0x66:
 | |
|       *Type = X86::INTEL_COREI7;
 | |
|       *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake"
 | |
|       break;
 | |
| 
 | |
|     // Icelake:
 | |
|     case 0x7d:
 | |
|     case 0x7e:
 | |
|       *Type = X86::INTEL_COREI7;
 | |
|       *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; // "icelake-client"
 | |
|       break;
 | |
| 
 | |
|     // Icelake Xeon:
 | |
|     case 0x6a:
 | |
|     case 0x6c:
 | |
|       *Type = X86::INTEL_COREI7;
 | |
|       *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER; // "icelake-server"
 | |
|       break;
 | |
| 
 | |
|     case 0x1c: // Most 45 nm Intel Atom processors
 | |
|     case 0x26: // 45 nm Atom Lincroft
 | |
|     case 0x27: // 32 nm Atom Medfield
 | |
|     case 0x35: // 32 nm Atom Midview
 | |
|     case 0x36: // 32 nm Atom Midview
 | |
|       *Type = X86::INTEL_BONNELL;
 | |
|       break; // "bonnell"
 | |
| 
 | |
|     // Atom Silvermont codes from the Intel software optimization guide.
 | |
|     case 0x37:
 | |
|     case 0x4a:
 | |
|     case 0x4d:
 | |
|     case 0x5a:
 | |
|     case 0x5d:
 | |
|     case 0x4c: // really airmont
 | |
|       *Type = X86::INTEL_SILVERMONT;
 | |
|       break; // "silvermont"
 | |
|     // Goldmont:
 | |
|     case 0x5c: // Apollo Lake
 | |
|     case 0x5f: // Denverton
 | |
|       *Type = X86::INTEL_GOLDMONT;
 | |
|       break; // "goldmont"
 | |
|     case 0x7a:
 | |
|       *Type = X86::INTEL_GOLDMONT_PLUS;
 | |
|       break;
 | |
|     case 0x86:
 | |
|       *Type = X86::INTEL_TREMONT;
 | |
|       break;
 | |
| 
 | |
|     case 0x57:
 | |
|       *Type = X86::INTEL_KNL; // knl
 | |
|       break;
 | |
| 
 | |
|     case 0x85:
 | |
|       *Type = X86::INTEL_KNM; // knm
 | |
|       break;
 | |
| 
 | |
|     default: // Unknown family 6 CPU, try to guess.
 | |
|       // TODO detect tigerlake host
 | |
|       if (Features3 & (1 << (X86::FEATURE_AVX512VP2INTERSECT - 64))) {
 | |
|         *Type = X86::INTEL_COREI7;
 | |
|         *Subtype = X86::INTEL_COREI7_TIGERLAKE;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (Features & (1 << X86::FEATURE_AVX512VBMI2)) {
 | |
|         *Type = X86::INTEL_COREI7;
 | |
|         *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (Features & (1 << X86::FEATURE_AVX512VBMI)) {
 | |
|         *Type = X86::INTEL_COREI7;
 | |
|         *Subtype = X86::INTEL_COREI7_CANNONLAKE;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32))) {
 | |
|         *Type = X86::INTEL_COREI7;
 | |
|         *Subtype = X86::INTEL_COREI7_COOPERLAKE;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) {
 | |
|         *Type = X86::INTEL_COREI7;
 | |
|         *Subtype = X86::INTEL_COREI7_CASCADELAKE;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (Features & (1 << X86::FEATURE_AVX512VL)) {
 | |
|         *Type = X86::INTEL_COREI7;
 | |
|         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (Features & (1 << X86::FEATURE_AVX512ER)) {
 | |
|         *Type = X86::INTEL_KNL; // knl
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) {
 | |
|         if (Features3 & (1 << (X86::FEATURE_SHA - 64))) {
 | |
|           *Type = X86::INTEL_GOLDMONT;
 | |
|         } else {
 | |
|           *Type = X86::INTEL_COREI7;
 | |
|           *Subtype = X86::INTEL_COREI7_SKYLAKE;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       if (Features3 & (1 << (X86::FEATURE_ADX - 64))) {
 | |
|         *Type = X86::INTEL_COREI7;
 | |
|         *Subtype = X86::INTEL_COREI7_BROADWELL;
 | |
|         break;
 | |
|       }
 | |
|       if (Features & (1 << X86::FEATURE_AVX2)) {
 | |
|         *Type = X86::INTEL_COREI7;
 | |
|         *Subtype = X86::INTEL_COREI7_HASWELL;
 | |
|         break;
 | |
|       }
 | |
|       if (Features & (1 << X86::FEATURE_AVX)) {
 | |
|         *Type = X86::INTEL_COREI7;
 | |
|         *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
 | |
|         break;
 | |
|       }
 | |
|       if (Features & (1 << X86::FEATURE_SSE4_2)) {
 | |
|         if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
 | |
|           *Type = X86::INTEL_SILVERMONT;
 | |
|         } else {
 | |
|           *Type = X86::INTEL_COREI7;
 | |
|           *Subtype = X86::INTEL_COREI7_NEHALEM;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       if (Features & (1 << X86::FEATURE_SSE4_1)) {
 | |
|         *Type = X86::INTEL_CORE2; // "penryn"
 | |
|         *Subtype = X86::INTEL_CORE2_45;
 | |
|         break;
 | |
|       }
 | |
|       if (Features & (1 << X86::FEATURE_SSSE3)) {
 | |
|         if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
 | |
|           *Type = X86::INTEL_BONNELL; // "bonnell"
 | |
|         } else {
 | |
|           *Type = X86::INTEL_CORE2; // "core2"
 | |
|           *Subtype = X86::INTEL_CORE2_65;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
 | |
|         *Type = X86::INTEL_CORE2; // "core2"
 | |
|         *Subtype = X86::INTEL_CORE2_65;
 | |
|         break;
 | |
|       }
 | |
|       if (Features & (1 << X86::FEATURE_SSE3)) {
 | |
|         *Type = X86::INTEL_CORE_DUO;
 | |
|         break;
 | |
|       }
 | |
|       if (Features & (1 << X86::FEATURE_SSE2)) {
 | |
|         *Type = X86::INTEL_PENTIUM_M;
 | |
|         break;
 | |
|       }
 | |
|       if (Features & (1 << X86::FEATURE_SSE)) {
 | |
|         *Type = X86::INTEL_PENTIUM_III;
 | |
|         break;
 | |
|       }
 | |
|       if (Features & (1 << X86::FEATURE_MMX)) {
 | |
|         *Type = X86::INTEL_PENTIUM_II;
 | |
|         break;
 | |
|       }
 | |
|       *Type = X86::INTEL_PENTIUM_PRO;
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case 15: {
 | |
|     if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
 | |
|       *Type = X86::INTEL_NOCONA;
 | |
|       break;
 | |
|     }
 | |
|     if (Features & (1 << X86::FEATURE_SSE3)) {
 | |
|       *Type = X86::INTEL_PRESCOTT;
 | |
|       break;
 | |
|     }
 | |
|     *Type = X86::INTEL_PENTIUM_IV;
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break; /*"generic"*/
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
 | |
|                                           unsigned Features, unsigned *Type,
 | |
|                                           unsigned *Subtype) {
 | |
|   // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
 | |
|   // appears to be no way to generate the wide variety of AMD-specific targets
 | |
|   // from the information returned from CPUID.
 | |
|   switch (Family) {
 | |
|   case 4:
 | |
|     *Type = X86::AMD_i486;
 | |
|     break;
 | |
|   case 5:
 | |
|     *Type = X86::AMDPENTIUM;
 | |
|     switch (Model) {
 | |
|     case 6:
 | |
|     case 7:
 | |
|       *Subtype = X86::AMDPENTIUM_K6;
 | |
|       break; // "k6"
 | |
|     case 8:
 | |
|       *Subtype = X86::AMDPENTIUM_K62;
 | |
|       break; // "k6-2"
 | |
|     case 9:
 | |
|     case 13:
 | |
|       *Subtype = X86::AMDPENTIUM_K63;
 | |
|       break; // "k6-3"
 | |
|     case 10:
 | |
|       *Subtype = X86::AMDPENTIUM_GEODE;
 | |
|       break; // "geode"
 | |
|     }
 | |
|     break;
 | |
|   case 6:
 | |
|     if (Features & (1 << X86::FEATURE_SSE)) {
 | |
|       *Type = X86::AMD_ATHLON_XP;
 | |
|       break; // "athlon-xp"
 | |
|     }
 | |
|     *Type = X86::AMD_ATHLON;
 | |
|     break; // "athlon"
 | |
|   case 15:
 | |
|     if (Features & (1 << X86::FEATURE_SSE3)) {
 | |
|       *Type = X86::AMD_K8SSE3;
 | |
|       break; // "k8-sse3"
 | |
|     }
 | |
|     *Type = X86::AMD_K8;
 | |
|     break; // "k8"
 | |
|   case 16:
 | |
|     *Type = X86::AMDFAM10H; // "amdfam10"
 | |
|     switch (Model) {
 | |
|     case 2:
 | |
|       *Subtype = X86::AMDFAM10H_BARCELONA;
 | |
|       break;
 | |
|     case 4:
 | |
|       *Subtype = X86::AMDFAM10H_SHANGHAI;
 | |
|       break;
 | |
|     case 8:
 | |
|       *Subtype = X86::AMDFAM10H_ISTANBUL;
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case 20:
 | |
|     *Type = X86::AMD_BTVER1;
 | |
|     break; // "btver1";
 | |
|   case 21:
 | |
|     *Type = X86::AMDFAM15H;
 | |
|     if (Model >= 0x60 && Model <= 0x7f) {
 | |
|       *Subtype = X86::AMDFAM15H_BDVER4;
 | |
|       break; // "bdver4"; 60h-7Fh: Excavator
 | |
|     }
 | |
|     if (Model >= 0x30 && Model <= 0x3f) {
 | |
|       *Subtype = X86::AMDFAM15H_BDVER3;
 | |
|       break; // "bdver3"; 30h-3Fh: Steamroller
 | |
|     }
 | |
|     if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
 | |
|       *Subtype = X86::AMDFAM15H_BDVER2;
 | |
|       break; // "bdver2"; 02h, 10h-1Fh: Piledriver
 | |
|     }
 | |
|     if (Model <= 0x0f) {
 | |
|       *Subtype = X86::AMDFAM15H_BDVER1;
 | |
|       break; // "bdver1"; 00h-0Fh: Bulldozer
 | |
|     }
 | |
|     break;
 | |
|   case 22:
 | |
|     *Type = X86::AMD_BTVER2;
 | |
|     break; // "btver2"
 | |
|   case 23:
 | |
|     *Type = X86::AMDFAM17H;
 | |
|     if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) {
 | |
|       *Subtype = X86::AMDFAM17H_ZNVER2;
 | |
|       break; // "znver2"; 30h-3fh, 71h: Zen2
 | |
|     }
 | |
|     if (Model <= 0x0f) {
 | |
|       *Subtype = X86::AMDFAM17H_ZNVER1;
 | |
|       break; // "znver1"; 00h-0Fh: Zen1
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break; // "generic"
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
 | |
|                                  unsigned *FeaturesOut, unsigned *Features2Out,
 | |
|                                  unsigned *Features3Out) {
 | |
|   unsigned Features = 0;
 | |
|   unsigned Features2 = 0;
 | |
|   unsigned Features3 = 0;
 | |
|   unsigned EAX, EBX;
 | |
| 
 | |
|   auto setFeature = [&](unsigned F) {
 | |
|     if (F < 32)
 | |
|       Features |= 1U << (F & 0x1f);
 | |
|     else if (F < 64)
 | |
|       Features2 |= 1U << ((F - 32) & 0x1f);
 | |
|     else if (F < 96)
 | |
|       Features3 |= 1U << ((F - 64) & 0x1f);
 | |
|     else
 | |
|       llvm_unreachable("Unexpected FeatureBit");
 | |
|   };
 | |
| 
 | |
|   if ((EDX >> 15) & 1)
 | |
|     setFeature(X86::FEATURE_CMOV);
 | |
|   if ((EDX >> 23) & 1)
 | |
|     setFeature(X86::FEATURE_MMX);
 | |
|   if ((EDX >> 25) & 1)
 | |
|     setFeature(X86::FEATURE_SSE);
 | |
|   if ((EDX >> 26) & 1)
 | |
|     setFeature(X86::FEATURE_SSE2);
 | |
| 
 | |
|   if ((ECX >> 0) & 1)
 | |
|     setFeature(X86::FEATURE_SSE3);
 | |
|   if ((ECX >> 1) & 1)
 | |
|     setFeature(X86::FEATURE_PCLMUL);
 | |
|   if ((ECX >> 9) & 1)
 | |
|     setFeature(X86::FEATURE_SSSE3);
 | |
|   if ((ECX >> 12) & 1)
 | |
|     setFeature(X86::FEATURE_FMA);
 | |
|   if ((ECX >> 19) & 1)
 | |
|     setFeature(X86::FEATURE_SSE4_1);
 | |
|   if ((ECX >> 20) & 1)
 | |
|     setFeature(X86::FEATURE_SSE4_2);
 | |
|   if ((ECX >> 23) & 1)
 | |
|     setFeature(X86::FEATURE_POPCNT);
 | |
|   if ((ECX >> 25) & 1)
 | |
|     setFeature(X86::FEATURE_AES);
 | |
| 
 | |
|   if ((ECX >> 22) & 1)
 | |
|     setFeature(X86::FEATURE_MOVBE);
 | |
| 
 | |
|   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
 | |
|   // indicates that the AVX registers will be saved and restored on context
 | |
|   // switch, then we have full AVX support.
 | |
|   const unsigned AVXBits = (1 << 27) | (1 << 28);
 | |
|   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
 | |
|                 ((EAX & 0x6) == 0x6);
 | |
| #if defined(__APPLE__)
 | |
|   // Darwin lazily saves the AVX512 context on first use: trust that the OS will
 | |
|   // save the AVX512 context if we use AVX512 instructions, even the bit is not
 | |
|   // set right now.
 | |
|   bool HasAVX512Save = true;
 | |
| #else
 | |
|   // AVX512 requires additional context to be saved by the OS.
 | |
|   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
 | |
| #endif
 | |
| 
 | |
|   if (HasAVX)
 | |
|     setFeature(X86::FEATURE_AVX);
 | |
| 
 | |
|   bool HasLeaf7 =
 | |
|       MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
 | |
| 
 | |
|   if (HasLeaf7 && ((EBX >> 3) & 1))
 | |
|     setFeature(X86::FEATURE_BMI);
 | |
|   if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
 | |
|     setFeature(X86::FEATURE_AVX2);
 | |
|   if (HasLeaf7 && ((EBX >> 8) & 1))
 | |
|     setFeature(X86::FEATURE_BMI2);
 | |
|   if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512F);
 | |
|   if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512DQ);
 | |
|   if (HasLeaf7 && ((EBX >> 19) & 1))
 | |
|     setFeature(X86::FEATURE_ADX);
 | |
|   if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512IFMA);
 | |
|   if (HasLeaf7 && ((EBX >> 23) & 1))
 | |
|     setFeature(X86::FEATURE_CLFLUSHOPT);
 | |
|   if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512PF);
 | |
|   if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512ER);
 | |
|   if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512CD);
 | |
|   if (HasLeaf7 && ((EBX >> 29) & 1))
 | |
|     setFeature(X86::FEATURE_SHA);
 | |
|   if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512BW);
 | |
|   if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512VL);
 | |
| 
 | |
|   if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512VBMI);
 | |
|   if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512VBMI2);
 | |
|   if (HasLeaf7 && ((ECX >> 8) & 1))
 | |
|     setFeature(X86::FEATURE_GFNI);
 | |
|   if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
 | |
|     setFeature(X86::FEATURE_VPCLMULQDQ);
 | |
|   if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512VNNI);
 | |
|   if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512BITALG);
 | |
|   if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
 | |
| 
 | |
|   if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX5124VNNIW);
 | |
|   if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX5124FMAPS);
 | |
|   if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512VP2INTERSECT);
 | |
| 
 | |
|   bool HasLeaf7Subleaf1 =
 | |
|       MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
 | |
|   if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
 | |
|     setFeature(X86::FEATURE_AVX512BF16);
 | |
| 
 | |
|   unsigned MaxExtLevel;
 | |
|   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
 | |
| 
 | |
|   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
 | |
|                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
 | |
|   if (HasExtLeaf1 && ((ECX >> 6) & 1))
 | |
|     setFeature(X86::FEATURE_SSE4_A);
 | |
|   if (HasExtLeaf1 && ((ECX >> 11) & 1))
 | |
|     setFeature(X86::FEATURE_XOP);
 | |
|   if (HasExtLeaf1 && ((ECX >> 16) & 1))
 | |
|     setFeature(X86::FEATURE_FMA4);
 | |
| 
 | |
|   if (HasExtLeaf1 && ((EDX >> 29) & 1))
 | |
|     setFeature(X86::FEATURE_EM64T);
 | |
| 
 | |
|   *FeaturesOut  = Features;
 | |
|   *Features2Out = Features2;
 | |
|   *Features3Out = Features3;
 | |
| }
 | |
| 
 | |
| StringRef sys::getHostCPUName() {
 | |
|   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
 | |
|   unsigned MaxLeaf, Vendor;
 | |
| 
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
|   //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
 | |
|   // and simplify it to not invoke __cpuid (like cpu_model.c in
 | |
|   // compiler-rt/lib/builtins/cpu_model.c?
 | |
|   // Opting for the second option.
 | |
|   if(!isCpuIdSupported())
 | |
|     return "generic";
 | |
| #endif
 | |
|   if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
 | |
|     return "generic";
 | |
|   getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
 | |
| 
 | |
|   unsigned Brand_id = EBX & 0xff;
 | |
|   unsigned Family = 0, Model = 0;
 | |
|   unsigned Features = 0, Features2 = 0, Features3 = 0;
 | |
|   detectX86FamilyModel(EAX, &Family, &Model);
 | |
|   getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3);
 | |
| 
 | |
|   unsigned Type = 0;
 | |
|   unsigned Subtype = 0;
 | |
| 
 | |
|   if (Vendor == SIG_INTEL) {
 | |
|     getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features,
 | |
|                                     Features2, Features3, &Type, &Subtype);
 | |
|   } else if (Vendor == SIG_AMD) {
 | |
|     getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
 | |
|   }
 | |
| 
 | |
|   // Check subtypes first since those are more specific.
 | |
| #define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \
 | |
|   if (Subtype == X86::ENUM) \
 | |
|     return ARCHNAME;
 | |
| #include "llvm/Support/X86TargetParser.def"
 | |
| 
 | |
|   // Now check types.
 | |
| #define X86_CPU_TYPE(ARCHNAME, ENUM) \
 | |
|   if (Type == X86::ENUM) \
 | |
|     return ARCHNAME;
 | |
| #include "llvm/Support/X86TargetParser.def"
 | |
| 
 | |
|   return "generic";
 | |
| }
 | |
| 
 | |
| #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
 | |
| StringRef sys::getHostCPUName() {
 | |
|   host_basic_info_data_t hostInfo;
 | |
|   mach_msg_type_number_t infoCount;
 | |
| 
 | |
|   infoCount = HOST_BASIC_INFO_COUNT;
 | |
|   mach_port_t hostPort = mach_host_self();
 | |
|   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
 | |
|             &infoCount);
 | |
|   mach_port_deallocate(mach_task_self(), hostPort);
 | |
| 
 | |
|   if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
 | |
|     return "generic";
 | |
| 
 | |
|   switch (hostInfo.cpu_subtype) {
 | |
|   case CPU_SUBTYPE_POWERPC_601:
 | |
|     return "601";
 | |
|   case CPU_SUBTYPE_POWERPC_602:
 | |
|     return "602";
 | |
|   case CPU_SUBTYPE_POWERPC_603:
 | |
|     return "603";
 | |
|   case CPU_SUBTYPE_POWERPC_603e:
 | |
|     return "603e";
 | |
|   case CPU_SUBTYPE_POWERPC_603ev:
 | |
|     return "603ev";
 | |
|   case CPU_SUBTYPE_POWERPC_604:
 | |
|     return "604";
 | |
|   case CPU_SUBTYPE_POWERPC_604e:
 | |
|     return "604e";
 | |
|   case CPU_SUBTYPE_POWERPC_620:
 | |
|     return "620";
 | |
|   case CPU_SUBTYPE_POWERPC_750:
 | |
|     return "750";
 | |
|   case CPU_SUBTYPE_POWERPC_7400:
 | |
|     return "7400";
 | |
|   case CPU_SUBTYPE_POWERPC_7450:
 | |
|     return "7450";
 | |
|   case CPU_SUBTYPE_POWERPC_970:
 | |
|     return "970";
 | |
|   default:;
 | |
|   }
 | |
| 
 | |
|   return "generic";
 | |
| }
 | |
| #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
 | |
| StringRef sys::getHostCPUName() {
 | |
|   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
 | |
|   StringRef Content = P ? P->getBuffer() : "";
 | |
|   return detail::getHostCPUNameForPowerPC(Content);
 | |
| }
 | |
| #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
 | |
| StringRef sys::getHostCPUName() {
 | |
|   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
 | |
|   StringRef Content = P ? P->getBuffer() : "";
 | |
|   return detail::getHostCPUNameForARM(Content);
 | |
| }
 | |
| #elif defined(__linux__) && defined(__s390x__)
 | |
| StringRef sys::getHostCPUName() {
 | |
|   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
 | |
|   StringRef Content = P ? P->getBuffer() : "";
 | |
|   return detail::getHostCPUNameForS390x(Content);
 | |
| }
 | |
| #elif defined(__APPLE__) && defined(__aarch64__)
 | |
| StringRef sys::getHostCPUName() {
 | |
|   return "cyclone";
 | |
| }
 | |
| #elif defined(__APPLE__) && defined(__arm__)
 | |
| StringRef sys::getHostCPUName() {
 | |
|   host_basic_info_data_t hostInfo;
 | |
|   mach_msg_type_number_t infoCount;
 | |
| 
 | |
|   infoCount = HOST_BASIC_INFO_COUNT;
 | |
|   mach_port_t hostPort = mach_host_self();
 | |
|   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
 | |
|             &infoCount);
 | |
|   mach_port_deallocate(mach_task_self(), hostPort);
 | |
| 
 | |
|   if (hostInfo.cpu_type != CPU_TYPE_ARM) {
 | |
|     assert(false && "CPUType not equal to ARM should not be possible on ARM");
 | |
|     return "generic";
 | |
|   }
 | |
|   switch (hostInfo.cpu_subtype) {
 | |
|     case CPU_SUBTYPE_ARM_V7S:
 | |
|       return "swift";
 | |
|     default:;
 | |
|     }
 | |
| 
 | |
|   return "generic";
 | |
| }
 | |
| #else
 | |
| StringRef sys::getHostCPUName() { return "generic"; }
 | |
| #endif
 | |
| 
 | |
| #if defined(__linux__) && defined(__x86_64__)
 | |
| // On Linux, the number of physical cores can be computed from /proc/cpuinfo,
 | |
| // using the number of unique physical/core id pairs. The following
 | |
| // implementation reads the /proc/cpuinfo format on an x86_64 system.
 | |
| int computeHostNumPhysicalCores() {
 | |
|   // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
 | |
|   // mmapped because it appears to have 0 size.
 | |
|   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
 | |
|       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
 | |
|   if (std::error_code EC = Text.getError()) {
 | |
|     llvm::errs() << "Can't read "
 | |
|                  << "/proc/cpuinfo: " << EC.message() << "\n";
 | |
|     return -1;
 | |
|   }
 | |
|   SmallVector<StringRef, 8> strs;
 | |
|   (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
 | |
|                              /*KeepEmpty=*/false);
 | |
|   int CurPhysicalId = -1;
 | |
|   int CurCoreId = -1;
 | |
|   SmallSet<std::pair<int, int>, 32> UniqueItems;
 | |
|   for (auto &Line : strs) {
 | |
|     Line = Line.trim();
 | |
|     if (!Line.startswith("physical id") && !Line.startswith("core id"))
 | |
|       continue;
 | |
|     std::pair<StringRef, StringRef> Data = Line.split(':');
 | |
|     auto Name = Data.first.trim();
 | |
|     auto Val = Data.second.trim();
 | |
|     if (Name == "physical id") {
 | |
|       assert(CurPhysicalId == -1 &&
 | |
|              "Expected a core id before seeing another physical id");
 | |
|       Val.getAsInteger(10, CurPhysicalId);
 | |
|     }
 | |
|     if (Name == "core id") {
 | |
|       assert(CurCoreId == -1 &&
 | |
|              "Expected a physical id before seeing another core id");
 | |
|       Val.getAsInteger(10, CurCoreId);
 | |
|     }
 | |
|     if (CurPhysicalId != -1 && CurCoreId != -1) {
 | |
|       UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
 | |
|       CurPhysicalId = -1;
 | |
|       CurCoreId = -1;
 | |
|     }
 | |
|   }
 | |
|   return UniqueItems.size();
 | |
| }
 | |
| #elif defined(__APPLE__) && defined(__x86_64__)
 | |
| #include <sys/param.h>
 | |
| #include <sys/sysctl.h>
 | |
| 
 | |
| // Gets the number of *physical cores* on the machine.
 | |
| int computeHostNumPhysicalCores() {
 | |
|   uint32_t count;
 | |
|   size_t len = sizeof(count);
 | |
|   sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
 | |
|   if (count < 1) {
 | |
|     int nm[2];
 | |
|     nm[0] = CTL_HW;
 | |
|     nm[1] = HW_AVAILCPU;
 | |
|     sysctl(nm, 2, &count, &len, NULL, 0);
 | |
|     if (count < 1)
 | |
|       return -1;
 | |
|   }
 | |
|   return count;
 | |
| }
 | |
| #elif defined(_WIN32) && LLVM_ENABLE_THREADS != 0
 | |
| // Defined in llvm/lib/Support/Windows/Threading.inc
 | |
| int computeHostNumPhysicalCores();
 | |
| #else
 | |
| // On other systems, return -1 to indicate unknown.
 | |
| static int computeHostNumPhysicalCores() { return -1; }
 | |
| #endif
 | |
| 
 | |
| int sys::getHostNumPhysicalCores() {
 | |
|   static int NumCores = computeHostNumPhysicalCores();
 | |
|   return NumCores;
 | |
| }
 | |
| 
 | |
| #if defined(__i386__) || defined(_M_IX86) || \
 | |
|     defined(__x86_64__) || defined(_M_X64)
 | |
| bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
 | |
|   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
 | |
|   unsigned MaxLevel;
 | |
|   union {
 | |
|     unsigned u[3];
 | |
|     char c[12];
 | |
|   } text;
 | |
| 
 | |
|   if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
 | |
|       MaxLevel < 1)
 | |
|     return false;
 | |
| 
 | |
|   getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
 | |
| 
 | |
|   Features["cx8"]    = (EDX >>  8) & 1;
 | |
|   Features["cmov"]   = (EDX >> 15) & 1;
 | |
|   Features["mmx"]    = (EDX >> 23) & 1;
 | |
|   Features["fxsr"]   = (EDX >> 24) & 1;
 | |
|   Features["sse"]    = (EDX >> 25) & 1;
 | |
|   Features["sse2"]   = (EDX >> 26) & 1;
 | |
| 
 | |
|   Features["sse3"]   = (ECX >>  0) & 1;
 | |
|   Features["pclmul"] = (ECX >>  1) & 1;
 | |
|   Features["ssse3"]  = (ECX >>  9) & 1;
 | |
|   Features["cx16"]   = (ECX >> 13) & 1;
 | |
|   Features["sse4.1"] = (ECX >> 19) & 1;
 | |
|   Features["sse4.2"] = (ECX >> 20) & 1;
 | |
|   Features["movbe"]  = (ECX >> 22) & 1;
 | |
|   Features["popcnt"] = (ECX >> 23) & 1;
 | |
|   Features["aes"]    = (ECX >> 25) & 1;
 | |
|   Features["rdrnd"]  = (ECX >> 30) & 1;
 | |
| 
 | |
|   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
 | |
|   // indicates that the AVX registers will be saved and restored on context
 | |
|   // switch, then we have full AVX support.
 | |
|   bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
 | |
|                     !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
 | |
| #if defined(__APPLE__)
 | |
|   // Darwin lazily saves the AVX512 context on first use: trust that the OS will
 | |
|   // save the AVX512 context if we use AVX512 instructions, even the bit is not
 | |
|   // set right now.
 | |
|   bool HasAVX512Save = true;
 | |
| #else
 | |
|   // AVX512 requires additional context to be saved by the OS.
 | |
|   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
 | |
| #endif
 | |
| 
 | |
|   Features["avx"]   = HasAVXSave;
 | |
|   Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave;
 | |
|   // Only enable XSAVE if OS has enabled support for saving YMM state.
 | |
|   Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
 | |
|   Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave;
 | |
| 
 | |
|   unsigned MaxExtLevel;
 | |
|   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
 | |
| 
 | |
|   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
 | |
|                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
 | |
|   Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1);
 | |
|   Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
 | |
|   Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
 | |
|   Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
 | |
|   Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
 | |
|   Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1);
 | |
|   Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
 | |
|   Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
 | |
|   Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
 | |
| 
 | |
|   Features["64bit"]  = HasExtLeaf1 && ((EDX >> 29) & 1);
 | |
| 
 | |
|   // Miscellaneous memory related features, detected by
 | |
|   // using the 0x80000008 leaf of the CPUID instruction
 | |
|   bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
 | |
|                      !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
 | |
|   Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1);
 | |
|   Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
 | |
| 
 | |
|   bool HasLeaf7 =
 | |
|       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
 | |
| 
 | |
|   Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1);
 | |
|   Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1);
 | |
|   Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1);
 | |
|   // AVX2 is only supported if we have the OS save support from AVX.
 | |
|   Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave;
 | |
|   Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1);
 | |
|   Features["invpcid"]    = HasLeaf7 && ((EBX >> 10) & 1);
 | |
|   Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1);
 | |
|   // AVX512 is only supported if the OS supports the context save for it.
 | |
|   Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
 | |
|   Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
 | |
|   Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1);
 | |
|   Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1);
 | |
|   Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
 | |
|   Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
 | |
|   Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1);
 | |
|   Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
 | |
|   Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
 | |
|   Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
 | |
|   Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1);
 | |
|   Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
 | |
|   Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
 | |
| 
 | |
|   Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1);
 | |
|   Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save;
 | |
|   Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1);
 | |
|   Features["waitpkg"]         = HasLeaf7 && ((ECX >>  5) & 1);
 | |
|   Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save;
 | |
|   Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1);
 | |
|   Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1);
 | |
|   Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave;
 | |
|   Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
 | |
|   Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
 | |
|   Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
 | |
|   Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
 | |
|   Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1);
 | |
|   Features["cldemote"]        = HasLeaf7 && ((ECX >> 25) & 1);
 | |
|   Features["movdiri"]         = HasLeaf7 && ((ECX >> 27) & 1);
 | |
|   Features["movdir64b"]       = HasLeaf7 && ((ECX >> 28) & 1);
 | |
|   Features["enqcmd"]          = HasLeaf7 && ((ECX >> 29) & 1);
 | |
| 
 | |
|   // There are two CPUID leafs which information associated with the pconfig
 | |
|   // instruction:
 | |
|   // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
 | |
|   // bit of EDX), while the EAX=0x1b leaf returns information on the
 | |
|   // availability of specific pconfig leafs.
 | |
|   // The target feature here only refers to the the first of these two.
 | |
|   // Users might need to check for the availability of specific pconfig
 | |
|   // leaves using cpuid, since that information is ignored while
 | |
|   // detecting features using the "-march=native" flag.
 | |
|   // For more info, see X86 ISA docs.
 | |
|   Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
 | |
|   bool HasLeaf7Subleaf1 =
 | |
|       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
 | |
|   Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
 | |
| 
 | |
|   bool HasLeafD = MaxLevel >= 0xd &&
 | |
|                   !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
 | |
| 
 | |
|   // Only enable XSAVE if OS has enabled support for saving YMM state.
 | |
|   Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
 | |
|   Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
 | |
|   Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
 | |
| 
 | |
|   bool HasLeaf14 = MaxLevel >= 0x14 &&
 | |
|                   !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
 | |
| 
 | |
|   Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
 | |
| bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
 | |
|   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
 | |
|   if (!P)
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<StringRef, 32> Lines;
 | |
|   P->getBuffer().split(Lines, "\n");
 | |
| 
 | |
|   SmallVector<StringRef, 32> CPUFeatures;
 | |
| 
 | |
|   // Look for the CPU features.
 | |
|   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
 | |
|     if (Lines[I].startswith("Features")) {
 | |
|       Lines[I].split(CPUFeatures, ' ');
 | |
|       break;
 | |
|     }
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
|   // Keep track of which crypto features we have seen
 | |
|   enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
 | |
|   uint32_t crypto = 0;
 | |
| #endif
 | |
| 
 | |
|   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
 | |
|     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
 | |
| #if defined(__aarch64__)
 | |
|                                    .Case("asimd", "neon")
 | |
|                                    .Case("fp", "fp-armv8")
 | |
|                                    .Case("crc32", "crc")
 | |
| #else
 | |
|                                    .Case("half", "fp16")
 | |
|                                    .Case("neon", "neon")
 | |
|                                    .Case("vfpv3", "vfp3")
 | |
|                                    .Case("vfpv3d16", "d16")
 | |
|                                    .Case("vfpv4", "vfp4")
 | |
|                                    .Case("idiva", "hwdiv-arm")
 | |
|                                    .Case("idivt", "hwdiv")
 | |
| #endif
 | |
|                                    .Default("");
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
|     // We need to check crypto separately since we need all of the crypto
 | |
|     // extensions to enable the subtarget feature
 | |
|     if (CPUFeatures[I] == "aes")
 | |
|       crypto |= CAP_AES;
 | |
|     else if (CPUFeatures[I] == "pmull")
 | |
|       crypto |= CAP_PMULL;
 | |
|     else if (CPUFeatures[I] == "sha1")
 | |
|       crypto |= CAP_SHA1;
 | |
|     else if (CPUFeatures[I] == "sha2")
 | |
|       crypto |= CAP_SHA2;
 | |
| #endif
 | |
| 
 | |
|     if (LLVMFeatureStr != "")
 | |
|       Features[LLVMFeatureStr] = true;
 | |
|   }
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
|   // If we have all crypto bits we can add the feature
 | |
|   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
 | |
|     Features["crypto"] = true;
 | |
| #endif
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| #elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64))
 | |
| bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
 | |
|   if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE))
 | |
|     Features["neon"] = true;
 | |
|   if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE))
 | |
|     Features["crc"] = true;
 | |
|   if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE))
 | |
|     Features["crypto"] = true;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| #else
 | |
| bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
 | |
| #endif
 | |
| 
 | |
| std::string sys::getProcessTriple() {
 | |
|   std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
 | |
|   Triple PT(Triple::normalize(TargetTripleString));
 | |
| 
 | |
|   if (sizeof(void *) == 8 && PT.isArch32Bit())
 | |
|     PT = PT.get64BitArchVariant();
 | |
|   if (sizeof(void *) == 4 && PT.isArch64Bit())
 | |
|     PT = PT.get32BitArchVariant();
 | |
| 
 | |
|   return PT.str();
 | |
| }
 |