forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2000 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2000 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the SampleProfileLoader transformation. This pass
 | 
						|
// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
 | 
						|
// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
 | 
						|
// profile information in the given profile.
 | 
						|
//
 | 
						|
// This pass generates branch weight annotations on the IR:
 | 
						|
//
 | 
						|
// - prof: Represents branch weights. This annotation is added to branches
 | 
						|
//      to indicate the weights of each edge coming out of the branch.
 | 
						|
//      The weight of each edge is the weight of the target block for
 | 
						|
//      that edge. The weight of a block B is computed as the maximum
 | 
						|
//      number of samples found in B.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO/SampleProfile.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/CallGraphSCCPass.h"
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/Analysis/ProfileSummaryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/ValueSymbolTable.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/ProfileData/InstrProf.h"
 | 
						|
#include "llvm/ProfileData/SampleProf.h"
 | 
						|
#include "llvm/ProfileData/SampleProfReader.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/ErrorOr.h"
 | 
						|
#include "llvm/Support/GenericDomTree.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/Transforms/Instrumentation.h"
 | 
						|
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/MisExpect.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <functional>
 | 
						|
#include <limits>
 | 
						|
#include <map>
 | 
						|
#include <memory>
 | 
						|
#include <queue>
 | 
						|
#include <string>
 | 
						|
#include <system_error>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace sampleprof;
 | 
						|
using ProfileCount = Function::ProfileCount;
 | 
						|
#define DEBUG_TYPE "sample-profile"
 | 
						|
#define CSINLINE_DEBUG DEBUG_TYPE "-inline"
 | 
						|
 | 
						|
STATISTIC(NumCSInlined,
 | 
						|
          "Number of functions inlined with context sensitive profile");
 | 
						|
STATISTIC(NumCSNotInlined,
 | 
						|
          "Number of functions not inlined with context sensitive profile");
 | 
						|
 | 
						|
// Command line option to specify the file to read samples from. This is
 | 
						|
// mainly used for debugging.
 | 
						|
static cl::opt<std::string> SampleProfileFile(
 | 
						|
    "sample-profile-file", cl::init(""), cl::value_desc("filename"),
 | 
						|
    cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
 | 
						|
 | 
						|
// The named file contains a set of transformations that may have been applied
 | 
						|
// to the symbol names between the program from which the sample data was
 | 
						|
// collected and the current program's symbols.
 | 
						|
static cl::opt<std::string> SampleProfileRemappingFile(
 | 
						|
    "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
 | 
						|
    cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
 | 
						|
    "sample-profile-max-propagate-iterations", cl::init(100),
 | 
						|
    cl::desc("Maximum number of iterations to go through when propagating "
 | 
						|
             "sample block/edge weights through the CFG."));
 | 
						|
 | 
						|
static cl::opt<unsigned> SampleProfileRecordCoverage(
 | 
						|
    "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
 | 
						|
    cl::desc("Emit a warning if less than N% of records in the input profile "
 | 
						|
             "are matched to the IR."));
 | 
						|
 | 
						|
static cl::opt<unsigned> SampleProfileSampleCoverage(
 | 
						|
    "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
 | 
						|
    cl::desc("Emit a warning if less than N% of samples in the input profile "
 | 
						|
             "are matched to the IR."));
 | 
						|
 | 
						|
static cl::opt<bool> NoWarnSampleUnused(
 | 
						|
    "no-warn-sample-unused", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Use this option to turn off/on warnings about function with "
 | 
						|
             "samples but without debug information to use those samples. "));
 | 
						|
 | 
						|
static cl::opt<bool> ProfileSampleAccurate(
 | 
						|
    "profile-sample-accurate", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("If the sample profile is accurate, we will mark all un-sampled "
 | 
						|
             "callsite and function as having 0 samples. Otherwise, treat "
 | 
						|
             "un-sampled callsites and functions conservatively as unknown. "));
 | 
						|
 | 
						|
static cl::opt<bool> ProfileAccurateForSymsInList(
 | 
						|
    "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
 | 
						|
    cl::init(true),
 | 
						|
    cl::desc("For symbols in profile symbol list, regard their profiles to "
 | 
						|
             "be accurate. It may be overriden by profile-sample-accurate. "));
 | 
						|
 | 
						|
static cl::opt<bool> ProfileMergeInlinee(
 | 
						|
    "sample-profile-merge-inlinee", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Merge past inlinee's profile to outline version if sample "
 | 
						|
             "profile loader decided not to inline a call site."));
 | 
						|
 | 
						|
static cl::opt<bool> ProfileTopDownLoad(
 | 
						|
    "sample-profile-top-down-load", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Do profile annotation and inlining for functions in top-down "
 | 
						|
             "order of call graph during sample profile loading."));
 | 
						|
 | 
						|
static cl::opt<bool> ProfileSizeInline(
 | 
						|
    "sample-profile-inline-size", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Inline cold call sites in profile loader if it's beneficial "
 | 
						|
             "for code size."));
 | 
						|
 | 
						|
static cl::opt<int> SampleColdCallSiteThreshold(
 | 
						|
    "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
 | 
						|
    cl::desc("Threshold for inlining cold callsites"));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
 | 
						|
using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
 | 
						|
using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
 | 
						|
using EdgeWeightMap = DenseMap<Edge, uint64_t>;
 | 
						|
using BlockEdgeMap =
 | 
						|
    DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
 | 
						|
 | 
						|
class SampleProfileLoader;
 | 
						|
 | 
						|
class SampleCoverageTracker {
 | 
						|
public:
 | 
						|
  SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
 | 
						|
 | 
						|
  bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
 | 
						|
                       uint32_t Discriminator, uint64_t Samples);
 | 
						|
  unsigned computeCoverage(unsigned Used, unsigned Total) const;
 | 
						|
  unsigned countUsedRecords(const FunctionSamples *FS,
 | 
						|
                            ProfileSummaryInfo *PSI) const;
 | 
						|
  unsigned countBodyRecords(const FunctionSamples *FS,
 | 
						|
                            ProfileSummaryInfo *PSI) const;
 | 
						|
  uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
 | 
						|
  uint64_t countBodySamples(const FunctionSamples *FS,
 | 
						|
                            ProfileSummaryInfo *PSI) const;
 | 
						|
 | 
						|
  void clear() {
 | 
						|
    SampleCoverage.clear();
 | 
						|
    TotalUsedSamples = 0;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
 | 
						|
  using FunctionSamplesCoverageMap =
 | 
						|
      DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
 | 
						|
 | 
						|
  /// Coverage map for sampling records.
 | 
						|
  ///
 | 
						|
  /// This map keeps a record of sampling records that have been matched to
 | 
						|
  /// an IR instruction. This is used to detect some form of staleness in
 | 
						|
  /// profiles (see flag -sample-profile-check-coverage).
 | 
						|
  ///
 | 
						|
  /// Each entry in the map corresponds to a FunctionSamples instance.  This is
 | 
						|
  /// another map that counts how many times the sample record at the
 | 
						|
  /// given location has been used.
 | 
						|
  FunctionSamplesCoverageMap SampleCoverage;
 | 
						|
 | 
						|
  /// Number of samples used from the profile.
 | 
						|
  ///
 | 
						|
  /// When a sampling record is used for the first time, the samples from
 | 
						|
  /// that record are added to this accumulator.  Coverage is later computed
 | 
						|
  /// based on the total number of samples available in this function and
 | 
						|
  /// its callsites.
 | 
						|
  ///
 | 
						|
  /// Note that this accumulator tracks samples used from a single function
 | 
						|
  /// and all the inlined callsites. Strictly, we should have a map of counters
 | 
						|
  /// keyed by FunctionSamples pointers, but these stats are cleared after
 | 
						|
  /// every function, so we just need to keep a single counter.
 | 
						|
  uint64_t TotalUsedSamples = 0;
 | 
						|
 | 
						|
  SampleProfileLoader &SPLoader;
 | 
						|
};
 | 
						|
 | 
						|
class GUIDToFuncNameMapper {
 | 
						|
public:
 | 
						|
  GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
 | 
						|
                        DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
 | 
						|
      : CurrentReader(Reader), CurrentModule(M),
 | 
						|
      CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
 | 
						|
    if (CurrentReader.getFormat() != SPF_Compact_Binary)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (const auto &F : CurrentModule) {
 | 
						|
      StringRef OrigName = F.getName();
 | 
						|
      CurrentGUIDToFuncNameMap.insert(
 | 
						|
          {Function::getGUID(OrigName), OrigName});
 | 
						|
 | 
						|
      // Local to global var promotion used by optimization like thinlto
 | 
						|
      // will rename the var and add suffix like ".llvm.xxx" to the
 | 
						|
      // original local name. In sample profile, the suffixes of function
 | 
						|
      // names are all stripped. Since it is possible that the mapper is
 | 
						|
      // built in post-thin-link phase and var promotion has been done,
 | 
						|
      // we need to add the substring of function name without the suffix
 | 
						|
      // into the GUIDToFuncNameMap.
 | 
						|
      StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
 | 
						|
      if (CanonName != OrigName)
 | 
						|
        CurrentGUIDToFuncNameMap.insert(
 | 
						|
            {Function::getGUID(CanonName), CanonName});
 | 
						|
    }
 | 
						|
 | 
						|
    // Update GUIDToFuncNameMap for each function including inlinees.
 | 
						|
    SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
 | 
						|
  }
 | 
						|
 | 
						|
  ~GUIDToFuncNameMapper() {
 | 
						|
    if (CurrentReader.getFormat() != SPF_Compact_Binary)
 | 
						|
      return;
 | 
						|
 | 
						|
    CurrentGUIDToFuncNameMap.clear();
 | 
						|
 | 
						|
    // Reset GUIDToFuncNameMap for of each function as they're no
 | 
						|
    // longer valid at this point.
 | 
						|
    SetGUIDToFuncNameMapForAll(nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
 | 
						|
    std::queue<FunctionSamples *> FSToUpdate;
 | 
						|
    for (auto &IFS : CurrentReader.getProfiles()) {
 | 
						|
      FSToUpdate.push(&IFS.second);
 | 
						|
    }
 | 
						|
 | 
						|
    while (!FSToUpdate.empty()) {
 | 
						|
      FunctionSamples *FS = FSToUpdate.front();
 | 
						|
      FSToUpdate.pop();
 | 
						|
      FS->GUIDToFuncNameMap = Map;
 | 
						|
      for (const auto &ICS : FS->getCallsiteSamples()) {
 | 
						|
        const FunctionSamplesMap &FSMap = ICS.second;
 | 
						|
        for (auto &IFS : FSMap) {
 | 
						|
          FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
 | 
						|
          FSToUpdate.push(&FS);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SampleProfileReader &CurrentReader;
 | 
						|
  Module &CurrentModule;
 | 
						|
  DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
 | 
						|
};
 | 
						|
 | 
						|
/// Sample profile pass.
 | 
						|
///
 | 
						|
/// This pass reads profile data from the file specified by
 | 
						|
/// -sample-profile-file and annotates every affected function with the
 | 
						|
/// profile information found in that file.
 | 
						|
class SampleProfileLoader {
 | 
						|
public:
 | 
						|
  SampleProfileLoader(
 | 
						|
      StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
 | 
						|
      std::function<AssumptionCache &(Function &)> GetAssumptionCache,
 | 
						|
      std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
 | 
						|
      std::function<const TargetLibraryInfo &(Function &)> GetTLI)
 | 
						|
      : GetAC(std::move(GetAssumptionCache)),
 | 
						|
        GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
 | 
						|
        CoverageTracker(*this), Filename(std::string(Name)),
 | 
						|
        RemappingFilename(std::string(RemapName)),
 | 
						|
        IsThinLTOPreLink(IsThinLTOPreLink) {}
 | 
						|
 | 
						|
  bool doInitialization(Module &M);
 | 
						|
  bool runOnModule(Module &M, ModuleAnalysisManager *AM,
 | 
						|
                   ProfileSummaryInfo *_PSI, CallGraph *CG);
 | 
						|
 | 
						|
  void dump() { Reader->dump(); }
 | 
						|
 | 
						|
protected:
 | 
						|
  friend class SampleCoverageTracker;
 | 
						|
 | 
						|
  bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
 | 
						|
  unsigned getFunctionLoc(Function &F);
 | 
						|
  bool emitAnnotations(Function &F);
 | 
						|
  ErrorOr<uint64_t> getInstWeight(const Instruction &I);
 | 
						|
  ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
 | 
						|
  const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
 | 
						|
  std::vector<const FunctionSamples *>
 | 
						|
  findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
 | 
						|
  mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
 | 
						|
  const FunctionSamples *findFunctionSamples(const Instruction &I) const;
 | 
						|
  bool inlineCallInstruction(Instruction *I);
 | 
						|
  bool inlineHotFunctions(Function &F,
 | 
						|
                          DenseSet<GlobalValue::GUID> &InlinedGUIDs);
 | 
						|
  // Inline cold/small functions in addition to hot ones
 | 
						|
  bool shouldInlineColdCallee(Instruction &CallInst);
 | 
						|
  void emitOptimizationRemarksForInlineCandidates(
 | 
						|
    const SmallVector<Instruction *, 10> &Candidates, const Function &F, bool Hot);
 | 
						|
  void printEdgeWeight(raw_ostream &OS, Edge E);
 | 
						|
  void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
 | 
						|
  void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
 | 
						|
  bool computeBlockWeights(Function &F);
 | 
						|
  void findEquivalenceClasses(Function &F);
 | 
						|
  template <bool IsPostDom>
 | 
						|
  void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
 | 
						|
                           DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
 | 
						|
 | 
						|
  void propagateWeights(Function &F);
 | 
						|
  uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
 | 
						|
  void buildEdges(Function &F);
 | 
						|
  std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
 | 
						|
  bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
 | 
						|
  void computeDominanceAndLoopInfo(Function &F);
 | 
						|
  void clearFunctionData();
 | 
						|
  bool callsiteIsHot(const FunctionSamples *CallsiteFS,
 | 
						|
                     ProfileSummaryInfo *PSI);
 | 
						|
 | 
						|
  /// Map basic blocks to their computed weights.
 | 
						|
  ///
 | 
						|
  /// The weight of a basic block is defined to be the maximum
 | 
						|
  /// of all the instruction weights in that block.
 | 
						|
  BlockWeightMap BlockWeights;
 | 
						|
 | 
						|
  /// Map edges to their computed weights.
 | 
						|
  ///
 | 
						|
  /// Edge weights are computed by propagating basic block weights in
 | 
						|
  /// SampleProfile::propagateWeights.
 | 
						|
  EdgeWeightMap EdgeWeights;
 | 
						|
 | 
						|
  /// Set of visited blocks during propagation.
 | 
						|
  SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
 | 
						|
 | 
						|
  /// Set of visited edges during propagation.
 | 
						|
  SmallSet<Edge, 32> VisitedEdges;
 | 
						|
 | 
						|
  /// Equivalence classes for block weights.
 | 
						|
  ///
 | 
						|
  /// Two blocks BB1 and BB2 are in the same equivalence class if they
 | 
						|
  /// dominate and post-dominate each other, and they are in the same loop
 | 
						|
  /// nest. When this happens, the two blocks are guaranteed to execute
 | 
						|
  /// the same number of times.
 | 
						|
  EquivalenceClassMap EquivalenceClass;
 | 
						|
 | 
						|
  /// Map from function name to Function *. Used to find the function from
 | 
						|
  /// the function name. If the function name contains suffix, additional
 | 
						|
  /// entry is added to map from the stripped name to the function if there
 | 
						|
  /// is one-to-one mapping.
 | 
						|
  StringMap<Function *> SymbolMap;
 | 
						|
 | 
						|
  /// Dominance, post-dominance and loop information.
 | 
						|
  std::unique_ptr<DominatorTree> DT;
 | 
						|
  std::unique_ptr<PostDominatorTree> PDT;
 | 
						|
  std::unique_ptr<LoopInfo> LI;
 | 
						|
 | 
						|
  std::function<AssumptionCache &(Function &)> GetAC;
 | 
						|
  std::function<TargetTransformInfo &(Function &)> GetTTI;
 | 
						|
  std::function<const TargetLibraryInfo &(Function &)> GetTLI;
 | 
						|
 | 
						|
  /// Predecessors for each basic block in the CFG.
 | 
						|
  BlockEdgeMap Predecessors;
 | 
						|
 | 
						|
  /// Successors for each basic block in the CFG.
 | 
						|
  BlockEdgeMap Successors;
 | 
						|
 | 
						|
  SampleCoverageTracker CoverageTracker;
 | 
						|
 | 
						|
  /// Profile reader object.
 | 
						|
  std::unique_ptr<SampleProfileReader> Reader;
 | 
						|
 | 
						|
  /// Samples collected for the body of this function.
 | 
						|
  FunctionSamples *Samples = nullptr;
 | 
						|
 | 
						|
  /// Name of the profile file to load.
 | 
						|
  std::string Filename;
 | 
						|
 | 
						|
  /// Name of the profile remapping file to load.
 | 
						|
  std::string RemappingFilename;
 | 
						|
 | 
						|
  /// Flag indicating whether the profile input loaded successfully.
 | 
						|
  bool ProfileIsValid = false;
 | 
						|
 | 
						|
  /// Flag indicating if the pass is invoked in ThinLTO compile phase.
 | 
						|
  ///
 | 
						|
  /// In this phase, in annotation, we should not promote indirect calls.
 | 
						|
  /// Instead, we will mark GUIDs that needs to be annotated to the function.
 | 
						|
  bool IsThinLTOPreLink;
 | 
						|
 | 
						|
  /// Profile Summary Info computed from sample profile.
 | 
						|
  ProfileSummaryInfo *PSI = nullptr;
 | 
						|
 | 
						|
  /// Profle Symbol list tells whether a function name appears in the binary
 | 
						|
  /// used to generate the current profile.
 | 
						|
  std::unique_ptr<ProfileSymbolList> PSL;
 | 
						|
 | 
						|
  /// Total number of samples collected in this profile.
 | 
						|
  ///
 | 
						|
  /// This is the sum of all the samples collected in all the functions executed
 | 
						|
  /// at runtime.
 | 
						|
  uint64_t TotalCollectedSamples = 0;
 | 
						|
 | 
						|
  /// Optimization Remark Emitter used to emit diagnostic remarks.
 | 
						|
  OptimizationRemarkEmitter *ORE = nullptr;
 | 
						|
 | 
						|
  // Information recorded when we declined to inline a call site
 | 
						|
  // because we have determined it is too cold is accumulated for
 | 
						|
  // each callee function. Initially this is just the entry count.
 | 
						|
  struct NotInlinedProfileInfo {
 | 
						|
    uint64_t entryCount;
 | 
						|
  };
 | 
						|
  DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
 | 
						|
 | 
						|
  // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
 | 
						|
  // all the function symbols defined or declared in current module.
 | 
						|
  DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
 | 
						|
 | 
						|
  // All the Names used in FunctionSamples including outline function
 | 
						|
  // names, inline instance names and call target names.
 | 
						|
  StringSet<> NamesInProfile;
 | 
						|
 | 
						|
  // For symbol in profile symbol list, whether to regard their profiles
 | 
						|
  // to be accurate. It is mainly decided by existance of profile symbol
 | 
						|
  // list and -profile-accurate-for-symsinlist flag, but it can be
 | 
						|
  // overriden by -profile-sample-accurate or profile-sample-accurate
 | 
						|
  // attribute.
 | 
						|
  bool ProfAccForSymsInList;
 | 
						|
};
 | 
						|
 | 
						|
class SampleProfileLoaderLegacyPass : public ModulePass {
 | 
						|
public:
 | 
						|
  // Class identification, replacement for typeinfo
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
 | 
						|
                                bool IsThinLTOPreLink = false)
 | 
						|
      : ModulePass(ID), SampleLoader(
 | 
						|
                            Name, SampleProfileRemappingFile, IsThinLTOPreLink,
 | 
						|
                            [&](Function &F) -> AssumptionCache & {
 | 
						|
                              return ACT->getAssumptionCache(F);
 | 
						|
                            },
 | 
						|
                            [&](Function &F) -> TargetTransformInfo & {
 | 
						|
                              return TTIWP->getTTI(F);
 | 
						|
                            },
 | 
						|
                            [&](Function &F) -> TargetLibraryInfo & {
 | 
						|
                              return TLIWP->getTLI(F);
 | 
						|
                            }) {
 | 
						|
    initializeSampleProfileLoaderLegacyPassPass(
 | 
						|
        *PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void dump() { SampleLoader.dump(); }
 | 
						|
 | 
						|
  bool doInitialization(Module &M) override {
 | 
						|
    return SampleLoader.doInitialization(M);
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef getPassName() const override { return "Sample profile pass"; }
 | 
						|
  bool runOnModule(Module &M) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  SampleProfileLoader SampleLoader;
 | 
						|
  AssumptionCacheTracker *ACT = nullptr;
 | 
						|
  TargetTransformInfoWrapperPass *TTIWP = nullptr;
 | 
						|
  TargetLibraryInfoWrapperPass *TLIWP = nullptr;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Return true if the given callsite is hot wrt to hot cutoff threshold.
 | 
						|
///
 | 
						|
/// Functions that were inlined in the original binary will be represented
 | 
						|
/// in the inline stack in the sample profile. If the profile shows that
 | 
						|
/// the original inline decision was "good" (i.e., the callsite is executed
 | 
						|
/// frequently), then we will recreate the inline decision and apply the
 | 
						|
/// profile from the inlined callsite.
 | 
						|
///
 | 
						|
/// To decide whether an inlined callsite is hot, we compare the callsite
 | 
						|
/// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
 | 
						|
/// regarded as hot if the count is above the cutoff value.
 | 
						|
///
 | 
						|
/// When ProfileAccurateForSymsInList is enabled and profile symbol list
 | 
						|
/// is present, functions in the profile symbol list but without profile will
 | 
						|
/// be regarded as cold and much less inlining will happen in CGSCC inlining
 | 
						|
/// pass, so we tend to lower the hot criteria here to allow more early
 | 
						|
/// inlining to happen for warm callsites and it is helpful for performance.
 | 
						|
bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
 | 
						|
                                        ProfileSummaryInfo *PSI) {
 | 
						|
  if (!CallsiteFS)
 | 
						|
    return false; // The callsite was not inlined in the original binary.
 | 
						|
 | 
						|
  assert(PSI && "PSI is expected to be non null");
 | 
						|
  uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
 | 
						|
  if (ProfAccForSymsInList)
 | 
						|
    return !PSI->isColdCount(CallsiteTotalSamples);
 | 
						|
  else
 | 
						|
    return PSI->isHotCount(CallsiteTotalSamples);
 | 
						|
}
 | 
						|
 | 
						|
/// Mark as used the sample record for the given function samples at
 | 
						|
/// (LineOffset, Discriminator).
 | 
						|
///
 | 
						|
/// \returns true if this is the first time we mark the given record.
 | 
						|
bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
 | 
						|
                                            uint32_t LineOffset,
 | 
						|
                                            uint32_t Discriminator,
 | 
						|
                                            uint64_t Samples) {
 | 
						|
  LineLocation Loc(LineOffset, Discriminator);
 | 
						|
  unsigned &Count = SampleCoverage[FS][Loc];
 | 
						|
  bool FirstTime = (++Count == 1);
 | 
						|
  if (FirstTime)
 | 
						|
    TotalUsedSamples += Samples;
 | 
						|
  return FirstTime;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the number of sample records that were applied from this profile.
 | 
						|
///
 | 
						|
/// This count does not include records from cold inlined callsites.
 | 
						|
unsigned
 | 
						|
SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
 | 
						|
                                        ProfileSummaryInfo *PSI) const {
 | 
						|
  auto I = SampleCoverage.find(FS);
 | 
						|
 | 
						|
  // The size of the coverage map for FS represents the number of records
 | 
						|
  // that were marked used at least once.
 | 
						|
  unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
 | 
						|
 | 
						|
  // If there are inlined callsites in this function, count the samples found
 | 
						|
  // in the respective bodies. However, do not bother counting callees with 0
 | 
						|
  // total samples, these are callees that were never invoked at runtime.
 | 
						|
  for (const auto &I : FS->getCallsiteSamples())
 | 
						|
    for (const auto &J : I.second) {
 | 
						|
      const FunctionSamples *CalleeSamples = &J.second;
 | 
						|
      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
 | 
						|
        Count += countUsedRecords(CalleeSamples, PSI);
 | 
						|
    }
 | 
						|
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the number of sample records in the body of this profile.
 | 
						|
///
 | 
						|
/// This count does not include records from cold inlined callsites.
 | 
						|
unsigned
 | 
						|
SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
 | 
						|
                                        ProfileSummaryInfo *PSI) const {
 | 
						|
  unsigned Count = FS->getBodySamples().size();
 | 
						|
 | 
						|
  // Only count records in hot callsites.
 | 
						|
  for (const auto &I : FS->getCallsiteSamples())
 | 
						|
    for (const auto &J : I.second) {
 | 
						|
      const FunctionSamples *CalleeSamples = &J.second;
 | 
						|
      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
 | 
						|
        Count += countBodyRecords(CalleeSamples, PSI);
 | 
						|
    }
 | 
						|
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the number of samples collected in the body of this profile.
 | 
						|
///
 | 
						|
/// This count does not include samples from cold inlined callsites.
 | 
						|
uint64_t
 | 
						|
SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
 | 
						|
                                        ProfileSummaryInfo *PSI) const {
 | 
						|
  uint64_t Total = 0;
 | 
						|
  for (const auto &I : FS->getBodySamples())
 | 
						|
    Total += I.second.getSamples();
 | 
						|
 | 
						|
  // Only count samples in hot callsites.
 | 
						|
  for (const auto &I : FS->getCallsiteSamples())
 | 
						|
    for (const auto &J : I.second) {
 | 
						|
      const FunctionSamples *CalleeSamples = &J.second;
 | 
						|
      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
 | 
						|
        Total += countBodySamples(CalleeSamples, PSI);
 | 
						|
    }
 | 
						|
 | 
						|
  return Total;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the fraction of sample records used in this profile.
 | 
						|
///
 | 
						|
/// The returned value is an unsigned integer in the range 0-100 indicating
 | 
						|
/// the percentage of sample records that were used while applying this
 | 
						|
/// profile to the associated function.
 | 
						|
unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
 | 
						|
                                                unsigned Total) const {
 | 
						|
  assert(Used <= Total &&
 | 
						|
         "number of used records cannot exceed the total number of records");
 | 
						|
  return Total > 0 ? Used * 100 / Total : 100;
 | 
						|
}
 | 
						|
 | 
						|
/// Clear all the per-function data used to load samples and propagate weights.
 | 
						|
void SampleProfileLoader::clearFunctionData() {
 | 
						|
  BlockWeights.clear();
 | 
						|
  EdgeWeights.clear();
 | 
						|
  VisitedBlocks.clear();
 | 
						|
  VisitedEdges.clear();
 | 
						|
  EquivalenceClass.clear();
 | 
						|
  DT = nullptr;
 | 
						|
  PDT = nullptr;
 | 
						|
  LI = nullptr;
 | 
						|
  Predecessors.clear();
 | 
						|
  Successors.clear();
 | 
						|
  CoverageTracker.clear();
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// Print the weight of edge \p E on stream \p OS.
 | 
						|
///
 | 
						|
/// \param OS  Stream to emit the output to.
 | 
						|
/// \param E  Edge to print.
 | 
						|
void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
 | 
						|
  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
 | 
						|
     << "]: " << EdgeWeights[E] << "\n";
 | 
						|
}
 | 
						|
 | 
						|
/// Print the equivalence class of block \p BB on stream \p OS.
 | 
						|
///
 | 
						|
/// \param OS  Stream to emit the output to.
 | 
						|
/// \param BB  Block to print.
 | 
						|
void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
 | 
						|
                                                const BasicBlock *BB) {
 | 
						|
  const BasicBlock *Equiv = EquivalenceClass[BB];
 | 
						|
  OS << "equivalence[" << BB->getName()
 | 
						|
     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
 | 
						|
}
 | 
						|
 | 
						|
/// Print the weight of block \p BB on stream \p OS.
 | 
						|
///
 | 
						|
/// \param OS  Stream to emit the output to.
 | 
						|
/// \param BB  Block to print.
 | 
						|
void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
 | 
						|
                                           const BasicBlock *BB) const {
 | 
						|
  const auto &I = BlockWeights.find(BB);
 | 
						|
  uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
 | 
						|
  OS << "weight[" << BB->getName() << "]: " << W << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// Get the weight for an instruction.
 | 
						|
///
 | 
						|
/// The "weight" of an instruction \p Inst is the number of samples
 | 
						|
/// collected on that instruction at runtime. To retrieve it, we
 | 
						|
/// need to compute the line number of \p Inst relative to the start of its
 | 
						|
/// function. We use HeaderLineno to compute the offset. We then
 | 
						|
/// look up the samples collected for \p Inst using BodySamples.
 | 
						|
///
 | 
						|
/// \param Inst Instruction to query.
 | 
						|
///
 | 
						|
/// \returns the weight of \p Inst.
 | 
						|
ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
 | 
						|
  const DebugLoc &DLoc = Inst.getDebugLoc();
 | 
						|
  if (!DLoc)
 | 
						|
    return std::error_code();
 | 
						|
 | 
						|
  const FunctionSamples *FS = findFunctionSamples(Inst);
 | 
						|
  if (!FS)
 | 
						|
    return std::error_code();
 | 
						|
 | 
						|
  // Ignore all intrinsics, phinodes and branch instructions.
 | 
						|
  // Branch and phinodes instruction usually contains debug info from sources outside of
 | 
						|
  // the residing basic block, thus we ignore them during annotation.
 | 
						|
  if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
 | 
						|
    return std::error_code();
 | 
						|
 | 
						|
  // If a direct call/invoke instruction is inlined in profile
 | 
						|
  // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
 | 
						|
  // it means that the inlined callsite has no sample, thus the call
 | 
						|
  // instruction should have 0 count.
 | 
						|
  if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
 | 
						|
      !ImmutableCallSite(&Inst).isIndirectCall() &&
 | 
						|
      findCalleeFunctionSamples(Inst))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const DILocation *DIL = DLoc;
 | 
						|
  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
 | 
						|
  uint32_t Discriminator = DIL->getBaseDiscriminator();
 | 
						|
  ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
 | 
						|
  if (R) {
 | 
						|
    bool FirstMark =
 | 
						|
        CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
 | 
						|
    if (FirstMark) {
 | 
						|
      ORE->emit([&]() {
 | 
						|
        OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
 | 
						|
        Remark << "Applied " << ore::NV("NumSamples", *R);
 | 
						|
        Remark << " samples from profile (offset: ";
 | 
						|
        Remark << ore::NV("LineOffset", LineOffset);
 | 
						|
        if (Discriminator) {
 | 
						|
          Remark << ".";
 | 
						|
          Remark << ore::NV("Discriminator", Discriminator);
 | 
						|
        }
 | 
						|
        Remark << ")";
 | 
						|
        return Remark;
 | 
						|
      });
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
 | 
						|
                      << DIL->getBaseDiscriminator() << ":" << Inst
 | 
						|
                      << " (line offset: " << LineOffset << "."
 | 
						|
                      << DIL->getBaseDiscriminator() << " - weight: " << R.get()
 | 
						|
                      << ")\n");
 | 
						|
  }
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the weight of a basic block.
 | 
						|
///
 | 
						|
/// The weight of basic block \p BB is the maximum weight of all the
 | 
						|
/// instructions in BB.
 | 
						|
///
 | 
						|
/// \param BB The basic block to query.
 | 
						|
///
 | 
						|
/// \returns the weight for \p BB.
 | 
						|
ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
 | 
						|
  uint64_t Max = 0;
 | 
						|
  bool HasWeight = false;
 | 
						|
  for (auto &I : BB->getInstList()) {
 | 
						|
    const ErrorOr<uint64_t> &R = getInstWeight(I);
 | 
						|
    if (R) {
 | 
						|
      Max = std::max(Max, R.get());
 | 
						|
      HasWeight = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
 | 
						|
}
 | 
						|
 | 
						|
/// Compute and store the weights of every basic block.
 | 
						|
///
 | 
						|
/// This populates the BlockWeights map by computing
 | 
						|
/// the weights of every basic block in the CFG.
 | 
						|
///
 | 
						|
/// \param F The function to query.
 | 
						|
bool SampleProfileLoader::computeBlockWeights(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  LLVM_DEBUG(dbgs() << "Block weights\n");
 | 
						|
  for (const auto &BB : F) {
 | 
						|
    ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
 | 
						|
    if (Weight) {
 | 
						|
      BlockWeights[&BB] = Weight.get();
 | 
						|
      VisitedBlocks.insert(&BB);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the FunctionSamples for a call instruction.
 | 
						|
///
 | 
						|
/// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
 | 
						|
/// instance in which that call instruction is calling to. It contains
 | 
						|
/// all samples that resides in the inlined instance. We first find the
 | 
						|
/// inlined instance in which the call instruction is from, then we
 | 
						|
/// traverse its children to find the callsite with the matching
 | 
						|
/// location.
 | 
						|
///
 | 
						|
/// \param Inst Call/Invoke instruction to query.
 | 
						|
///
 | 
						|
/// \returns The FunctionSamples pointer to the inlined instance.
 | 
						|
const FunctionSamples *
 | 
						|
SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
 | 
						|
  const DILocation *DIL = Inst.getDebugLoc();
 | 
						|
  if (!DIL) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef CalleeName;
 | 
						|
  if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
 | 
						|
    if (Function *Callee = CI->getCalledFunction())
 | 
						|
      CalleeName = Callee->getName();
 | 
						|
 | 
						|
  const FunctionSamples *FS = findFunctionSamples(Inst);
 | 
						|
  if (FS == nullptr)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
 | 
						|
                                                DIL->getBaseDiscriminator()),
 | 
						|
                                   CalleeName);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns a vector of FunctionSamples that are the indirect call targets
 | 
						|
/// of \p Inst. The vector is sorted by the total number of samples. Stores
 | 
						|
/// the total call count of the indirect call in \p Sum.
 | 
						|
std::vector<const FunctionSamples *>
 | 
						|
SampleProfileLoader::findIndirectCallFunctionSamples(
 | 
						|
    const Instruction &Inst, uint64_t &Sum) const {
 | 
						|
  const DILocation *DIL = Inst.getDebugLoc();
 | 
						|
  std::vector<const FunctionSamples *> R;
 | 
						|
 | 
						|
  if (!DIL) {
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  const FunctionSamples *FS = findFunctionSamples(Inst);
 | 
						|
  if (FS == nullptr)
 | 
						|
    return R;
 | 
						|
 | 
						|
  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
 | 
						|
  uint32_t Discriminator = DIL->getBaseDiscriminator();
 | 
						|
 | 
						|
  auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
 | 
						|
  Sum = 0;
 | 
						|
  if (T)
 | 
						|
    for (const auto &T_C : T.get())
 | 
						|
      Sum += T_C.second;
 | 
						|
  if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
 | 
						|
          FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
 | 
						|
    if (M->empty())
 | 
						|
      return R;
 | 
						|
    for (const auto &NameFS : *M) {
 | 
						|
      Sum += NameFS.second.getEntrySamples();
 | 
						|
      R.push_back(&NameFS.second);
 | 
						|
    }
 | 
						|
    llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
 | 
						|
      if (L->getEntrySamples() != R->getEntrySamples())
 | 
						|
        return L->getEntrySamples() > R->getEntrySamples();
 | 
						|
      return FunctionSamples::getGUID(L->getName()) <
 | 
						|
             FunctionSamples::getGUID(R->getName());
 | 
						|
    });
 | 
						|
  }
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the FunctionSamples for an instruction.
 | 
						|
///
 | 
						|
/// The FunctionSamples of an instruction \p Inst is the inlined instance
 | 
						|
/// in which that instruction is coming from. We traverse the inline stack
 | 
						|
/// of that instruction, and match it with the tree nodes in the profile.
 | 
						|
///
 | 
						|
/// \param Inst Instruction to query.
 | 
						|
///
 | 
						|
/// \returns the FunctionSamples pointer to the inlined instance.
 | 
						|
const FunctionSamples *
 | 
						|
SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
 | 
						|
  const DILocation *DIL = Inst.getDebugLoc();
 | 
						|
  if (!DIL)
 | 
						|
    return Samples;
 | 
						|
 | 
						|
  auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
 | 
						|
  if (it.second)
 | 
						|
    it.first->second = Samples->findFunctionSamples(DIL);
 | 
						|
  return it.first->second;
 | 
						|
}
 | 
						|
 | 
						|
bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
 | 
						|
  assert(isa<CallInst>(I) || isa<InvokeInst>(I));
 | 
						|
  CallSite CS(I);
 | 
						|
  Function *CalledFunction = CS.getCalledFunction();
 | 
						|
  assert(CalledFunction);
 | 
						|
  DebugLoc DLoc = I->getDebugLoc();
 | 
						|
  BasicBlock *BB = I->getParent();
 | 
						|
  InlineParams Params = getInlineParams();
 | 
						|
  Params.ComputeFullInlineCost = true;
 | 
						|
  // Checks if there is anything in the reachable portion of the callee at
 | 
						|
  // this callsite that makes this inlining potentially illegal. Need to
 | 
						|
  // set ComputeFullInlineCost, otherwise getInlineCost may return early
 | 
						|
  // when cost exceeds threshold without checking all IRs in the callee.
 | 
						|
  // The acutal cost does not matter because we only checks isNever() to
 | 
						|
  // see if it is legal to inline the callsite.
 | 
						|
  InlineCost Cost =
 | 
						|
      getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
 | 
						|
                    None, GetTLI, nullptr, nullptr);
 | 
						|
  if (Cost.isNever()) {
 | 
						|
    ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
 | 
						|
              << "incompatible inlining");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  InlineFunctionInfo IFI(nullptr, &GetAC);
 | 
						|
  if (InlineFunction(CS, IFI).isSuccess()) {
 | 
						|
    // The call to InlineFunction erases I, so we can't pass it here.
 | 
						|
    ORE->emit(OptimizationRemark(CSINLINE_DEBUG, "InlineSuccess", DLoc, BB)
 | 
						|
              << "inlined callee '" << ore::NV("Callee", CalledFunction)
 | 
						|
              << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SampleProfileLoader::shouldInlineColdCallee(Instruction &CallInst) {
 | 
						|
  if (!ProfileSizeInline)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Function *Callee = CallSite(&CallInst).getCalledFunction();
 | 
						|
  if (Callee == nullptr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  InlineCost Cost =
 | 
						|
      getInlineCost(cast<CallBase>(CallInst), getInlineParams(),
 | 
						|
                    GetTTI(*Callee), GetAC, None, GetTLI, nullptr, nullptr);
 | 
						|
 | 
						|
  return Cost.getCost() <= SampleColdCallSiteThreshold;
 | 
						|
}
 | 
						|
 | 
						|
void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
 | 
						|
    const SmallVector<Instruction *, 10> &Candidates, const Function &F,
 | 
						|
    bool Hot) {
 | 
						|
  for (auto I : Candidates) {
 | 
						|
    Function *CalledFunction = CallSite(I).getCalledFunction();
 | 
						|
    if (CalledFunction) {
 | 
						|
      ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 
 | 
						|
                                           I->getDebugLoc(), I->getParent())
 | 
						|
                << "previous inlining reattempted for "
 | 
						|
                << (Hot ? "hotness: '" : "size: '")
 | 
						|
                << ore::NV("Callee", CalledFunction) << "' into '"
 | 
						|
                << ore::NV("Caller", &F) << "'");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Iteratively inline hot callsites of a function.
 | 
						|
///
 | 
						|
/// Iteratively traverse all callsites of the function \p F, and find if
 | 
						|
/// the corresponding inlined instance exists and is hot in profile. If
 | 
						|
/// it is hot enough, inline the callsites and adds new callsites of the
 | 
						|
/// callee into the caller. If the call is an indirect call, first promote
 | 
						|
/// it to direct call. Each indirect call is limited with a single target.
 | 
						|
///
 | 
						|
/// \param F function to perform iterative inlining.
 | 
						|
/// \param InlinedGUIDs a set to be updated to include all GUIDs that are
 | 
						|
///     inlined in the profiled binary.
 | 
						|
///
 | 
						|
/// \returns True if there is any inline happened.
 | 
						|
bool SampleProfileLoader::inlineHotFunctions(
 | 
						|
    Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
 | 
						|
  DenseSet<Instruction *> PromotedInsns;
 | 
						|
 | 
						|
  // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
 | 
						|
  // Profile symbol list is ignored when profile-sample-accurate is on.
 | 
						|
  assert((!ProfAccForSymsInList ||
 | 
						|
          (!ProfileSampleAccurate &&
 | 
						|
           !F.hasFnAttribute("profile-sample-accurate"))) &&
 | 
						|
         "ProfAccForSymsInList should be false when profile-sample-accurate "
 | 
						|
         "is enabled");
 | 
						|
 | 
						|
  DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
 | 
						|
  bool Changed = false;
 | 
						|
  while (true) {
 | 
						|
    bool LocalChanged = false;
 | 
						|
    SmallVector<Instruction *, 10> CIS;
 | 
						|
    for (auto &BB : F) {
 | 
						|
      bool Hot = false;
 | 
						|
      SmallVector<Instruction *, 10> AllCandidates;
 | 
						|
      SmallVector<Instruction *, 10> ColdCandidates;
 | 
						|
      for (auto &I : BB.getInstList()) {
 | 
						|
        const FunctionSamples *FS = nullptr;
 | 
						|
        if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
 | 
						|
            !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
 | 
						|
          AllCandidates.push_back(&I);
 | 
						|
          if (FS->getEntrySamples() > 0)
 | 
						|
            localNotInlinedCallSites.try_emplace(&I, FS);
 | 
						|
          if (callsiteIsHot(FS, PSI))
 | 
						|
            Hot = true;
 | 
						|
          else if (shouldInlineColdCallee(I))
 | 
						|
            ColdCandidates.push_back(&I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Hot) {
 | 
						|
        CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
 | 
						|
        emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
 | 
						|
        emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (auto I : CIS) {
 | 
						|
      Function *CalledFunction = CallSite(I).getCalledFunction();
 | 
						|
      // Do not inline recursive calls.
 | 
						|
      if (CalledFunction == &F)
 | 
						|
        continue;
 | 
						|
      if (CallSite(I).isIndirectCall()) {
 | 
						|
        if (PromotedInsns.count(I))
 | 
						|
          continue;
 | 
						|
        uint64_t Sum;
 | 
						|
        for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
 | 
						|
          if (IsThinLTOPreLink) {
 | 
						|
            FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
 | 
						|
                                     PSI->getOrCompHotCountThreshold());
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
 | 
						|
          // If it is a recursive call, we do not inline it as it could bloat
 | 
						|
          // the code exponentially. There is way to better handle this, e.g.
 | 
						|
          // clone the caller first, and inline the cloned caller if it is
 | 
						|
          // recursive. As llvm does not inline recursive calls, we will
 | 
						|
          // simply ignore it instead of handling it explicitly.
 | 
						|
          if (CalleeFunctionName == F.getName())
 | 
						|
            continue;
 | 
						|
 | 
						|
          if (!callsiteIsHot(FS, PSI))
 | 
						|
            continue;
 | 
						|
 | 
						|
          const char *Reason = "Callee function not available";
 | 
						|
          auto R = SymbolMap.find(CalleeFunctionName);
 | 
						|
          if (R != SymbolMap.end() && R->getValue() &&
 | 
						|
              !R->getValue()->isDeclaration() &&
 | 
						|
              R->getValue()->getSubprogram() &&
 | 
						|
              isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
 | 
						|
            uint64_t C = FS->getEntrySamples();
 | 
						|
            Instruction *DI =
 | 
						|
                pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
 | 
						|
            Sum -= C;
 | 
						|
            PromotedInsns.insert(I);
 | 
						|
            // If profile mismatches, we should not attempt to inline DI.
 | 
						|
            if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
 | 
						|
                inlineCallInstruction(DI)) {
 | 
						|
              localNotInlinedCallSites.erase(I);
 | 
						|
              LocalChanged = true;
 | 
						|
              ++NumCSInlined;
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            LLVM_DEBUG(dbgs()
 | 
						|
                       << "\nFailed to promote indirect call to "
 | 
						|
                       << CalleeFunctionName << " because " << Reason << "\n");
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (CalledFunction && CalledFunction->getSubprogram() &&
 | 
						|
                 !CalledFunction->isDeclaration()) {
 | 
						|
        if (inlineCallInstruction(I)) {
 | 
						|
          localNotInlinedCallSites.erase(I);
 | 
						|
          LocalChanged = true;
 | 
						|
          ++NumCSInlined;
 | 
						|
        }
 | 
						|
      } else if (IsThinLTOPreLink) {
 | 
						|
        findCalleeFunctionSamples(*I)->findInlinedFunctions(
 | 
						|
            InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (LocalChanged) {
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Accumulate not inlined callsite information into notInlinedSamples
 | 
						|
  for (const auto &Pair : localNotInlinedCallSites) {
 | 
						|
    Instruction *I = Pair.getFirst();
 | 
						|
    Function *Callee = CallSite(I).getCalledFunction();
 | 
						|
    if (!Callee || Callee->isDeclaration())
 | 
						|
      continue;
 | 
						|
 | 
						|
    ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
 | 
						|
                                         I->getDebugLoc(), I->getParent())
 | 
						|
              << "previous inlining not repeated: '"
 | 
						|
              << ore::NV("Callee", Callee) << "' into '"
 | 
						|
              << ore::NV("Caller", &F) << "'");
 | 
						|
 | 
						|
    ++NumCSNotInlined;
 | 
						|
    const FunctionSamples *FS = Pair.getSecond();
 | 
						|
    if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ProfileMergeInlinee) {
 | 
						|
      // Use entry samples as head samples during the merge, as inlinees
 | 
						|
      // don't have head samples.
 | 
						|
      assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee");
 | 
						|
      const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples());
 | 
						|
 | 
						|
      // Note that we have to do the merge right after processing function.
 | 
						|
      // This allows OutlineFS's profile to be used for annotation during
 | 
						|
      // top-down processing of functions' annotation.
 | 
						|
      FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
 | 
						|
      OutlineFS->merge(*FS);
 | 
						|
    } else {
 | 
						|
      auto pair =
 | 
						|
          notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
 | 
						|
      pair.first->second.entryCount += FS->getEntrySamples();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Find equivalence classes for the given block.
 | 
						|
///
 | 
						|
/// This finds all the blocks that are guaranteed to execute the same
 | 
						|
/// number of times as \p BB1. To do this, it traverses all the
 | 
						|
/// descendants of \p BB1 in the dominator or post-dominator tree.
 | 
						|
///
 | 
						|
/// A block BB2 will be in the same equivalence class as \p BB1 if
 | 
						|
/// the following holds:
 | 
						|
///
 | 
						|
/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
 | 
						|
///    is a descendant of \p BB1 in the dominator tree, then BB2 should
 | 
						|
///    dominate BB1 in the post-dominator tree.
 | 
						|
///
 | 
						|
/// 2- Both BB2 and \p BB1 must be in the same loop.
 | 
						|
///
 | 
						|
/// For every block BB2 that meets those two requirements, we set BB2's
 | 
						|
/// equivalence class to \p BB1.
 | 
						|
///
 | 
						|
/// \param BB1  Block to check.
 | 
						|
/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
 | 
						|
/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
 | 
						|
///                 with blocks from \p BB1's dominator tree, then
 | 
						|
///                 this is the post-dominator tree, and vice versa.
 | 
						|
template <bool IsPostDom>
 | 
						|
void SampleProfileLoader::findEquivalencesFor(
 | 
						|
    BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
 | 
						|
    DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
 | 
						|
  const BasicBlock *EC = EquivalenceClass[BB1];
 | 
						|
  uint64_t Weight = BlockWeights[EC];
 | 
						|
  for (const auto *BB2 : Descendants) {
 | 
						|
    bool IsDomParent = DomTree->dominates(BB2, BB1);
 | 
						|
    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
 | 
						|
    if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
 | 
						|
      EquivalenceClass[BB2] = EC;
 | 
						|
      // If BB2 is visited, then the entire EC should be marked as visited.
 | 
						|
      if (VisitedBlocks.count(BB2)) {
 | 
						|
        VisitedBlocks.insert(EC);
 | 
						|
      }
 | 
						|
 | 
						|
      // If BB2 is heavier than BB1, make BB2 have the same weight
 | 
						|
      // as BB1.
 | 
						|
      //
 | 
						|
      // Note that we don't worry about the opposite situation here
 | 
						|
      // (when BB2 is lighter than BB1). We will deal with this
 | 
						|
      // during the propagation phase. Right now, we just want to
 | 
						|
      // make sure that BB1 has the largest weight of all the
 | 
						|
      // members of its equivalence set.
 | 
						|
      Weight = std::max(Weight, BlockWeights[BB2]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (EC == &EC->getParent()->getEntryBlock()) {
 | 
						|
    BlockWeights[EC] = Samples->getHeadSamples() + 1;
 | 
						|
  } else {
 | 
						|
    BlockWeights[EC] = Weight;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Find equivalence classes.
 | 
						|
///
 | 
						|
/// Since samples may be missing from blocks, we can fill in the gaps by setting
 | 
						|
/// the weights of all the blocks in the same equivalence class to the same
 | 
						|
/// weight. To compute the concept of equivalence, we use dominance and loop
 | 
						|
/// information. Two blocks B1 and B2 are in the same equivalence class if B1
 | 
						|
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
 | 
						|
///
 | 
						|
/// \param F The function to query.
 | 
						|
void SampleProfileLoader::findEquivalenceClasses(Function &F) {
 | 
						|
  SmallVector<BasicBlock *, 8> DominatedBBs;
 | 
						|
  LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
 | 
						|
  // Find equivalence sets based on dominance and post-dominance information.
 | 
						|
  for (auto &BB : F) {
 | 
						|
    BasicBlock *BB1 = &BB;
 | 
						|
 | 
						|
    // Compute BB1's equivalence class once.
 | 
						|
    if (EquivalenceClass.count(BB1)) {
 | 
						|
      LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // By default, blocks are in their own equivalence class.
 | 
						|
    EquivalenceClass[BB1] = BB1;
 | 
						|
 | 
						|
    // Traverse all the blocks dominated by BB1. We are looking for
 | 
						|
    // every basic block BB2 such that:
 | 
						|
    //
 | 
						|
    // 1- BB1 dominates BB2.
 | 
						|
    // 2- BB2 post-dominates BB1.
 | 
						|
    // 3- BB1 and BB2 are in the same loop nest.
 | 
						|
    //
 | 
						|
    // If all those conditions hold, it means that BB2 is executed
 | 
						|
    // as many times as BB1, so they are placed in the same equivalence
 | 
						|
    // class by making BB2's equivalence class be BB1.
 | 
						|
    DominatedBBs.clear();
 | 
						|
    DT->getDescendants(BB1, DominatedBBs);
 | 
						|
    findEquivalencesFor(BB1, DominatedBBs, PDT.get());
 | 
						|
 | 
						|
    LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
 | 
						|
  }
 | 
						|
 | 
						|
  // Assign weights to equivalence classes.
 | 
						|
  //
 | 
						|
  // All the basic blocks in the same equivalence class will execute
 | 
						|
  // the same number of times. Since we know that the head block in
 | 
						|
  // each equivalence class has the largest weight, assign that weight
 | 
						|
  // to all the blocks in that equivalence class.
 | 
						|
  LLVM_DEBUG(
 | 
						|
      dbgs() << "\nAssign the same weight to all blocks in the same class\n");
 | 
						|
  for (auto &BI : F) {
 | 
						|
    const BasicBlock *BB = &BI;
 | 
						|
    const BasicBlock *EquivBB = EquivalenceClass[BB];
 | 
						|
    if (BB != EquivBB)
 | 
						|
      BlockWeights[BB] = BlockWeights[EquivBB];
 | 
						|
    LLVM_DEBUG(printBlockWeight(dbgs(), BB));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Visit the given edge to decide if it has a valid weight.
 | 
						|
///
 | 
						|
/// If \p E has not been visited before, we copy to \p UnknownEdge
 | 
						|
/// and increment the count of unknown edges.
 | 
						|
///
 | 
						|
/// \param E  Edge to visit.
 | 
						|
/// \param NumUnknownEdges  Current number of unknown edges.
 | 
						|
/// \param UnknownEdge  Set if E has not been visited before.
 | 
						|
///
 | 
						|
/// \returns E's weight, if known. Otherwise, return 0.
 | 
						|
uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
 | 
						|
                                        Edge *UnknownEdge) {
 | 
						|
  if (!VisitedEdges.count(E)) {
 | 
						|
    (*NumUnknownEdges)++;
 | 
						|
    *UnknownEdge = E;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return EdgeWeights[E];
 | 
						|
}
 | 
						|
 | 
						|
/// Propagate weights through incoming/outgoing edges.
 | 
						|
///
 | 
						|
/// If the weight of a basic block is known, and there is only one edge
 | 
						|
/// with an unknown weight, we can calculate the weight of that edge.
 | 
						|
///
 | 
						|
/// Similarly, if all the edges have a known count, we can calculate the
 | 
						|
/// count of the basic block, if needed.
 | 
						|
///
 | 
						|
/// \param F  Function to process.
 | 
						|
/// \param UpdateBlockCount  Whether we should update basic block counts that
 | 
						|
///                          has already been annotated.
 | 
						|
///
 | 
						|
/// \returns  True if new weights were assigned to edges or blocks.
 | 
						|
bool SampleProfileLoader::propagateThroughEdges(Function &F,
 | 
						|
                                                bool UpdateBlockCount) {
 | 
						|
  bool Changed = false;
 | 
						|
  LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
 | 
						|
  for (const auto &BI : F) {
 | 
						|
    const BasicBlock *BB = &BI;
 | 
						|
    const BasicBlock *EC = EquivalenceClass[BB];
 | 
						|
 | 
						|
    // Visit all the predecessor and successor edges to determine
 | 
						|
    // which ones have a weight assigned already. Note that it doesn't
 | 
						|
    // matter that we only keep track of a single unknown edge. The
 | 
						|
    // only case we are interested in handling is when only a single
 | 
						|
    // edge is unknown (see setEdgeOrBlockWeight).
 | 
						|
    for (unsigned i = 0; i < 2; i++) {
 | 
						|
      uint64_t TotalWeight = 0;
 | 
						|
      unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
 | 
						|
      Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
 | 
						|
 | 
						|
      if (i == 0) {
 | 
						|
        // First, visit all predecessor edges.
 | 
						|
        NumTotalEdges = Predecessors[BB].size();
 | 
						|
        for (auto *Pred : Predecessors[BB]) {
 | 
						|
          Edge E = std::make_pair(Pred, BB);
 | 
						|
          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
 | 
						|
          if (E.first == E.second)
 | 
						|
            SelfReferentialEdge = E;
 | 
						|
        }
 | 
						|
        if (NumTotalEdges == 1) {
 | 
						|
          SingleEdge = std::make_pair(Predecessors[BB][0], BB);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // On the second round, visit all successor edges.
 | 
						|
        NumTotalEdges = Successors[BB].size();
 | 
						|
        for (auto *Succ : Successors[BB]) {
 | 
						|
          Edge E = std::make_pair(BB, Succ);
 | 
						|
          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
 | 
						|
        }
 | 
						|
        if (NumTotalEdges == 1) {
 | 
						|
          SingleEdge = std::make_pair(BB, Successors[BB][0]);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // After visiting all the edges, there are three cases that we
 | 
						|
      // can handle immediately:
 | 
						|
      //
 | 
						|
      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
 | 
						|
      //   In this case, we simply check that the sum of all the edges
 | 
						|
      //   is the same as BB's weight. If not, we change BB's weight
 | 
						|
      //   to match. Additionally, if BB had not been visited before,
 | 
						|
      //   we mark it visited.
 | 
						|
      //
 | 
						|
      // - Only one edge is unknown and BB has already been visited.
 | 
						|
      //   In this case, we can compute the weight of the edge by
 | 
						|
      //   subtracting the total block weight from all the known
 | 
						|
      //   edge weights. If the edges weight more than BB, then the
 | 
						|
      //   edge of the last remaining edge is set to zero.
 | 
						|
      //
 | 
						|
      // - There exists a self-referential edge and the weight of BB is
 | 
						|
      //   known. In this case, this edge can be based on BB's weight.
 | 
						|
      //   We add up all the other known edges and set the weight on
 | 
						|
      //   the self-referential edge as we did in the previous case.
 | 
						|
      //
 | 
						|
      // In any other case, we must continue iterating. Eventually,
 | 
						|
      // all edges will get a weight, or iteration will stop when
 | 
						|
      // it reaches SampleProfileMaxPropagateIterations.
 | 
						|
      if (NumUnknownEdges <= 1) {
 | 
						|
        uint64_t &BBWeight = BlockWeights[EC];
 | 
						|
        if (NumUnknownEdges == 0) {
 | 
						|
          if (!VisitedBlocks.count(EC)) {
 | 
						|
            // If we already know the weight of all edges, the weight of the
 | 
						|
            // basic block can be computed. It should be no larger than the sum
 | 
						|
            // of all edge weights.
 | 
						|
            if (TotalWeight > BBWeight) {
 | 
						|
              BBWeight = TotalWeight;
 | 
						|
              Changed = true;
 | 
						|
              LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
 | 
						|
                                << " known. Set weight for block: ";
 | 
						|
                         printBlockWeight(dbgs(), BB););
 | 
						|
            }
 | 
						|
          } else if (NumTotalEdges == 1 &&
 | 
						|
                     EdgeWeights[SingleEdge] < BlockWeights[EC]) {
 | 
						|
            // If there is only one edge for the visited basic block, use the
 | 
						|
            // block weight to adjust edge weight if edge weight is smaller.
 | 
						|
            EdgeWeights[SingleEdge] = BlockWeights[EC];
 | 
						|
            Changed = true;
 | 
						|
          }
 | 
						|
        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
 | 
						|
          // If there is a single unknown edge and the block has been
 | 
						|
          // visited, then we can compute E's weight.
 | 
						|
          if (BBWeight >= TotalWeight)
 | 
						|
            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
 | 
						|
          else
 | 
						|
            EdgeWeights[UnknownEdge] = 0;
 | 
						|
          const BasicBlock *OtherEC;
 | 
						|
          if (i == 0)
 | 
						|
            OtherEC = EquivalenceClass[UnknownEdge.first];
 | 
						|
          else
 | 
						|
            OtherEC = EquivalenceClass[UnknownEdge.second];
 | 
						|
          // Edge weights should never exceed the BB weights it connects.
 | 
						|
          if (VisitedBlocks.count(OtherEC) &&
 | 
						|
              EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
 | 
						|
            EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
 | 
						|
          VisitedEdges.insert(UnknownEdge);
 | 
						|
          Changed = true;
 | 
						|
          LLVM_DEBUG(dbgs() << "Set weight for edge: ";
 | 
						|
                     printEdgeWeight(dbgs(), UnknownEdge));
 | 
						|
        }
 | 
						|
      } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
 | 
						|
        // If a block Weights 0, all its in/out edges should weight 0.
 | 
						|
        if (i == 0) {
 | 
						|
          for (auto *Pred : Predecessors[BB]) {
 | 
						|
            Edge E = std::make_pair(Pred, BB);
 | 
						|
            EdgeWeights[E] = 0;
 | 
						|
            VisitedEdges.insert(E);
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          for (auto *Succ : Successors[BB]) {
 | 
						|
            Edge E = std::make_pair(BB, Succ);
 | 
						|
            EdgeWeights[E] = 0;
 | 
						|
            VisitedEdges.insert(E);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
 | 
						|
        uint64_t &BBWeight = BlockWeights[BB];
 | 
						|
        // We have a self-referential edge and the weight of BB is known.
 | 
						|
        if (BBWeight >= TotalWeight)
 | 
						|
          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
 | 
						|
        else
 | 
						|
          EdgeWeights[SelfReferentialEdge] = 0;
 | 
						|
        VisitedEdges.insert(SelfReferentialEdge);
 | 
						|
        Changed = true;
 | 
						|
        LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
 | 
						|
                   printEdgeWeight(dbgs(), SelfReferentialEdge));
 | 
						|
      }
 | 
						|
      if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
 | 
						|
        BlockWeights[EC] = TotalWeight;
 | 
						|
        VisitedBlocks.insert(EC);
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Build in/out edge lists for each basic block in the CFG.
 | 
						|
///
 | 
						|
/// We are interested in unique edges. If a block B1 has multiple
 | 
						|
/// edges to another block B2, we only add a single B1->B2 edge.
 | 
						|
void SampleProfileLoader::buildEdges(Function &F) {
 | 
						|
  for (auto &BI : F) {
 | 
						|
    BasicBlock *B1 = &BI;
 | 
						|
 | 
						|
    // Add predecessors for B1.
 | 
						|
    SmallPtrSet<BasicBlock *, 16> Visited;
 | 
						|
    if (!Predecessors[B1].empty())
 | 
						|
      llvm_unreachable("Found a stale predecessors list in a basic block.");
 | 
						|
    for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
 | 
						|
      BasicBlock *B2 = *PI;
 | 
						|
      if (Visited.insert(B2).second)
 | 
						|
        Predecessors[B1].push_back(B2);
 | 
						|
    }
 | 
						|
 | 
						|
    // Add successors for B1.
 | 
						|
    Visited.clear();
 | 
						|
    if (!Successors[B1].empty())
 | 
						|
      llvm_unreachable("Found a stale successors list in a basic block.");
 | 
						|
    for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
 | 
						|
      BasicBlock *B2 = *SI;
 | 
						|
      if (Visited.insert(B2).second)
 | 
						|
        Successors[B1].push_back(B2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the sorted CallTargetMap \p M by count in descending order.
 | 
						|
static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
 | 
						|
    const SampleRecord::CallTargetMap & M) {
 | 
						|
  SmallVector<InstrProfValueData, 2> R;
 | 
						|
  for (const auto &I : SampleRecord::SortCallTargets(M)) {
 | 
						|
    R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
 | 
						|
  }
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
/// Propagate weights into edges
 | 
						|
///
 | 
						|
/// The following rules are applied to every block BB in the CFG:
 | 
						|
///
 | 
						|
/// - If BB has a single predecessor/successor, then the weight
 | 
						|
///   of that edge is the weight of the block.
 | 
						|
///
 | 
						|
/// - If all incoming or outgoing edges are known except one, and the
 | 
						|
///   weight of the block is already known, the weight of the unknown
 | 
						|
///   edge will be the weight of the block minus the sum of all the known
 | 
						|
///   edges. If the sum of all the known edges is larger than BB's weight,
 | 
						|
///   we set the unknown edge weight to zero.
 | 
						|
///
 | 
						|
/// - If there is a self-referential edge, and the weight of the block is
 | 
						|
///   known, the weight for that edge is set to the weight of the block
 | 
						|
///   minus the weight of the other incoming edges to that block (if
 | 
						|
///   known).
 | 
						|
void SampleProfileLoader::propagateWeights(Function &F) {
 | 
						|
  bool Changed = true;
 | 
						|
  unsigned I = 0;
 | 
						|
 | 
						|
  // If BB weight is larger than its corresponding loop's header BB weight,
 | 
						|
  // use the BB weight to replace the loop header BB weight.
 | 
						|
  for (auto &BI : F) {
 | 
						|
    BasicBlock *BB = &BI;
 | 
						|
    Loop *L = LI->getLoopFor(BB);
 | 
						|
    if (!L) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    BasicBlock *Header = L->getHeader();
 | 
						|
    if (Header && BlockWeights[BB] > BlockWeights[Header]) {
 | 
						|
      BlockWeights[Header] = BlockWeights[BB];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Before propagation starts, build, for each block, a list of
 | 
						|
  // unique predecessors and successors. This is necessary to handle
 | 
						|
  // identical edges in multiway branches. Since we visit all blocks and all
 | 
						|
  // edges of the CFG, it is cleaner to build these lists once at the start
 | 
						|
  // of the pass.
 | 
						|
  buildEdges(F);
 | 
						|
 | 
						|
  // Propagate until we converge or we go past the iteration limit.
 | 
						|
  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
 | 
						|
    Changed = propagateThroughEdges(F, false);
 | 
						|
  }
 | 
						|
 | 
						|
  // The first propagation propagates BB counts from annotated BBs to unknown
 | 
						|
  // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
 | 
						|
  // to propagate edge weights.
 | 
						|
  VisitedEdges.clear();
 | 
						|
  Changed = true;
 | 
						|
  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
 | 
						|
    Changed = propagateThroughEdges(F, false);
 | 
						|
  }
 | 
						|
 | 
						|
  // The 3rd propagation pass allows adjust annotated BB weights that are
 | 
						|
  // obviously wrong.
 | 
						|
  Changed = true;
 | 
						|
  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
 | 
						|
    Changed = propagateThroughEdges(F, true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Generate MD_prof metadata for every branch instruction using the
 | 
						|
  // edge weights computed during propagation.
 | 
						|
  LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
 | 
						|
  LLVMContext &Ctx = F.getContext();
 | 
						|
  MDBuilder MDB(Ctx);
 | 
						|
  for (auto &BI : F) {
 | 
						|
    BasicBlock *BB = &BI;
 | 
						|
 | 
						|
    if (BlockWeights[BB]) {
 | 
						|
      for (auto &I : BB->getInstList()) {
 | 
						|
        if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
 | 
						|
          continue;
 | 
						|
        CallSite CS(&I);
 | 
						|
        if (!CS.getCalledFunction()) {
 | 
						|
          const DebugLoc &DLoc = I.getDebugLoc();
 | 
						|
          if (!DLoc)
 | 
						|
            continue;
 | 
						|
          const DILocation *DIL = DLoc;
 | 
						|
          uint32_t LineOffset = FunctionSamples::getOffset(DIL);
 | 
						|
          uint32_t Discriminator = DIL->getBaseDiscriminator();
 | 
						|
 | 
						|
          const FunctionSamples *FS = findFunctionSamples(I);
 | 
						|
          if (!FS)
 | 
						|
            continue;
 | 
						|
          auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
 | 
						|
          if (!T || T.get().empty())
 | 
						|
            continue;
 | 
						|
          SmallVector<InstrProfValueData, 2> SortedCallTargets =
 | 
						|
              GetSortedValueDataFromCallTargets(T.get());
 | 
						|
          uint64_t Sum;
 | 
						|
          findIndirectCallFunctionSamples(I, Sum);
 | 
						|
          annotateValueSite(*I.getParent()->getParent()->getParent(), I,
 | 
						|
                            SortedCallTargets, Sum, IPVK_IndirectCallTarget,
 | 
						|
                            SortedCallTargets.size());
 | 
						|
        } else if (!isa<IntrinsicInst>(&I)) {
 | 
						|
          I.setMetadata(LLVMContext::MD_prof,
 | 
						|
                        MDB.createBranchWeights(
 | 
						|
                            {static_cast<uint32_t>(BlockWeights[BB])}));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Instruction *TI = BB->getTerminator();
 | 
						|
    if (TI->getNumSuccessors() == 1)
 | 
						|
      continue;
 | 
						|
    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DebugLoc BranchLoc = TI->getDebugLoc();
 | 
						|
    LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
 | 
						|
                      << ((BranchLoc) ? Twine(BranchLoc.getLine())
 | 
						|
                                      : Twine("<UNKNOWN LOCATION>"))
 | 
						|
                      << ".\n");
 | 
						|
    SmallVector<uint32_t, 4> Weights;
 | 
						|
    uint32_t MaxWeight = 0;
 | 
						|
    Instruction *MaxDestInst;
 | 
						|
    for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
 | 
						|
      BasicBlock *Succ = TI->getSuccessor(I);
 | 
						|
      Edge E = std::make_pair(BB, Succ);
 | 
						|
      uint64_t Weight = EdgeWeights[E];
 | 
						|
      LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
 | 
						|
      // Use uint32_t saturated arithmetic to adjust the incoming weights,
 | 
						|
      // if needed. Sample counts in profiles are 64-bit unsigned values,
 | 
						|
      // but internally branch weights are expressed as 32-bit values.
 | 
						|
      if (Weight > std::numeric_limits<uint32_t>::max()) {
 | 
						|
        LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
 | 
						|
        Weight = std::numeric_limits<uint32_t>::max();
 | 
						|
      }
 | 
						|
      // Weight is added by one to avoid propagation errors introduced by
 | 
						|
      // 0 weights.
 | 
						|
      Weights.push_back(static_cast<uint32_t>(Weight + 1));
 | 
						|
      if (Weight != 0) {
 | 
						|
        if (Weight > MaxWeight) {
 | 
						|
          MaxWeight = Weight;
 | 
						|
          MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    misexpect::verifyMisExpect(TI, Weights, TI->getContext());
 | 
						|
 | 
						|
    uint64_t TempWeight;
 | 
						|
    // Only set weights if there is at least one non-zero weight.
 | 
						|
    // In any other case, let the analyzer set weights.
 | 
						|
    // Do not set weights if the weights are present. In ThinLTO, the profile
 | 
						|
    // annotation is done twice. If the first annotation already set the
 | 
						|
    // weights, the second pass does not need to set it.
 | 
						|
    if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
 | 
						|
      TI->setMetadata(LLVMContext::MD_prof,
 | 
						|
                      MDB.createBranchWeights(Weights));
 | 
						|
      ORE->emit([&]() {
 | 
						|
        return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
 | 
						|
               << "most popular destination for conditional branches at "
 | 
						|
               << ore::NV("CondBranchesLoc", BranchLoc);
 | 
						|
      });
 | 
						|
    } else {
 | 
						|
      LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Get the line number for the function header.
 | 
						|
///
 | 
						|
/// This looks up function \p F in the current compilation unit and
 | 
						|
/// retrieves the line number where the function is defined. This is
 | 
						|
/// line 0 for all the samples read from the profile file. Every line
 | 
						|
/// number is relative to this line.
 | 
						|
///
 | 
						|
/// \param F  Function object to query.
 | 
						|
///
 | 
						|
/// \returns the line number where \p F is defined. If it returns 0,
 | 
						|
///          it means that there is no debug information available for \p F.
 | 
						|
unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
 | 
						|
  if (DISubprogram *S = F.getSubprogram())
 | 
						|
    return S->getLine();
 | 
						|
 | 
						|
  if (NoWarnSampleUnused)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If the start of \p F is missing, emit a diagnostic to inform the user
 | 
						|
  // about the missed opportunity.
 | 
						|
  F.getContext().diagnose(DiagnosticInfoSampleProfile(
 | 
						|
      "No debug information found in function " + F.getName() +
 | 
						|
          ": Function profile not used",
 | 
						|
      DS_Warning));
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
 | 
						|
  DT.reset(new DominatorTree);
 | 
						|
  DT->recalculate(F);
 | 
						|
 | 
						|
  PDT.reset(new PostDominatorTree(F));
 | 
						|
 | 
						|
  LI.reset(new LoopInfo);
 | 
						|
  LI->analyze(*DT);
 | 
						|
}
 | 
						|
 | 
						|
/// Generate branch weight metadata for all branches in \p F.
 | 
						|
///
 | 
						|
/// Branch weights are computed out of instruction samples using a
 | 
						|
/// propagation heuristic. Propagation proceeds in 3 phases:
 | 
						|
///
 | 
						|
/// 1- Assignment of block weights. All the basic blocks in the function
 | 
						|
///    are initial assigned the same weight as their most frequently
 | 
						|
///    executed instruction.
 | 
						|
///
 | 
						|
/// 2- Creation of equivalence classes. Since samples may be missing from
 | 
						|
///    blocks, we can fill in the gaps by setting the weights of all the
 | 
						|
///    blocks in the same equivalence class to the same weight. To compute
 | 
						|
///    the concept of equivalence, we use dominance and loop information.
 | 
						|
///    Two blocks B1 and B2 are in the same equivalence class if B1
 | 
						|
///    dominates B2, B2 post-dominates B1 and both are in the same loop.
 | 
						|
///
 | 
						|
/// 3- Propagation of block weights into edges. This uses a simple
 | 
						|
///    propagation heuristic. The following rules are applied to every
 | 
						|
///    block BB in the CFG:
 | 
						|
///
 | 
						|
///    - If BB has a single predecessor/successor, then the weight
 | 
						|
///      of that edge is the weight of the block.
 | 
						|
///
 | 
						|
///    - If all the edges are known except one, and the weight of the
 | 
						|
///      block is already known, the weight of the unknown edge will
 | 
						|
///      be the weight of the block minus the sum of all the known
 | 
						|
///      edges. If the sum of all the known edges is larger than BB's weight,
 | 
						|
///      we set the unknown edge weight to zero.
 | 
						|
///
 | 
						|
///    - If there is a self-referential edge, and the weight of the block is
 | 
						|
///      known, the weight for that edge is set to the weight of the block
 | 
						|
///      minus the weight of the other incoming edges to that block (if
 | 
						|
///      known).
 | 
						|
///
 | 
						|
/// Since this propagation is not guaranteed to finalize for every CFG, we
 | 
						|
/// only allow it to proceed for a limited number of iterations (controlled
 | 
						|
/// by -sample-profile-max-propagate-iterations).
 | 
						|
///
 | 
						|
/// FIXME: Try to replace this propagation heuristic with a scheme
 | 
						|
/// that is guaranteed to finalize. A work-list approach similar to
 | 
						|
/// the standard value propagation algorithm used by SSA-CCP might
 | 
						|
/// work here.
 | 
						|
///
 | 
						|
/// Once all the branch weights are computed, we emit the MD_prof
 | 
						|
/// metadata on BB using the computed values for each of its branches.
 | 
						|
///
 | 
						|
/// \param F The function to query.
 | 
						|
///
 | 
						|
/// \returns true if \p F was modified. Returns false, otherwise.
 | 
						|
bool SampleProfileLoader::emitAnnotations(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  if (getFunctionLoc(F) == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
 | 
						|
                    << F.getName() << ": " << getFunctionLoc(F) << "\n");
 | 
						|
 | 
						|
  DenseSet<GlobalValue::GUID> InlinedGUIDs;
 | 
						|
  Changed |= inlineHotFunctions(F, InlinedGUIDs);
 | 
						|
 | 
						|
  // Compute basic block weights.
 | 
						|
  Changed |= computeBlockWeights(F);
 | 
						|
 | 
						|
  if (Changed) {
 | 
						|
    // Add an entry count to the function using the samples gathered at the
 | 
						|
    // function entry.
 | 
						|
    // Sets the GUIDs that are inlined in the profiled binary. This is used
 | 
						|
    // for ThinLink to make correct liveness analysis, and also make the IR
 | 
						|
    // match the profiled binary before annotation.
 | 
						|
    F.setEntryCount(
 | 
						|
        ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
 | 
						|
        &InlinedGUIDs);
 | 
						|
 | 
						|
    // Compute dominance and loop info needed for propagation.
 | 
						|
    computeDominanceAndLoopInfo(F);
 | 
						|
 | 
						|
    // Find equivalence classes.
 | 
						|
    findEquivalenceClasses(F);
 | 
						|
 | 
						|
    // Propagate weights to all edges.
 | 
						|
    propagateWeights(F);
 | 
						|
  }
 | 
						|
 | 
						|
  // If coverage checking was requested, compute it now.
 | 
						|
  if (SampleProfileRecordCoverage) {
 | 
						|
    unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
 | 
						|
    unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
 | 
						|
    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
 | 
						|
    if (Coverage < SampleProfileRecordCoverage) {
 | 
						|
      F.getContext().diagnose(DiagnosticInfoSampleProfile(
 | 
						|
          F.getSubprogram()->getFilename(), getFunctionLoc(F),
 | 
						|
          Twine(Used) + " of " + Twine(Total) + " available profile records (" +
 | 
						|
              Twine(Coverage) + "%) were applied",
 | 
						|
          DS_Warning));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SampleProfileSampleCoverage) {
 | 
						|
    uint64_t Used = CoverageTracker.getTotalUsedSamples();
 | 
						|
    uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
 | 
						|
    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
 | 
						|
    if (Coverage < SampleProfileSampleCoverage) {
 | 
						|
      F.getContext().diagnose(DiagnosticInfoSampleProfile(
 | 
						|
          F.getSubprogram()->getFilename(), getFunctionLoc(F),
 | 
						|
          Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
 | 
						|
              Twine(Coverage) + "%) were applied",
 | 
						|
          DS_Warning));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
char SampleProfileLoaderLegacyPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
 | 
						|
                      "Sample Profile loader", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
 | 
						|
                    "Sample Profile loader", false, false)
 | 
						|
 | 
						|
std::vector<Function *>
 | 
						|
SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
 | 
						|
  std::vector<Function *> FunctionOrderList;
 | 
						|
  FunctionOrderList.reserve(M.size());
 | 
						|
 | 
						|
  if (!ProfileTopDownLoad || CG == nullptr) {
 | 
						|
    for (Function &F : M)
 | 
						|
      if (!F.isDeclaration())
 | 
						|
        FunctionOrderList.push_back(&F);
 | 
						|
    return FunctionOrderList;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(&CG->getModule() == &M);
 | 
						|
  scc_iterator<CallGraph *> CGI = scc_begin(CG);
 | 
						|
  while (!CGI.isAtEnd()) {
 | 
						|
    for (CallGraphNode *node : *CGI) {
 | 
						|
      auto F = node->getFunction();
 | 
						|
      if (F && !F->isDeclaration())
 | 
						|
        FunctionOrderList.push_back(F);
 | 
						|
    }
 | 
						|
    ++CGI;
 | 
						|
  }
 | 
						|
 | 
						|
  std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
 | 
						|
  return FunctionOrderList;
 | 
						|
}
 | 
						|
 | 
						|
bool SampleProfileLoader::doInitialization(Module &M) {
 | 
						|
  auto &Ctx = M.getContext();
 | 
						|
 | 
						|
  std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
 | 
						|
  auto ReaderOrErr =
 | 
						|
      SampleProfileReader::create(Filename, Ctx, RemappingFilename);
 | 
						|
  if (std::error_code EC = ReaderOrErr.getError()) {
 | 
						|
    std::string Msg = "Could not open profile: " + EC.message();
 | 
						|
    Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  Reader = std::move(ReaderOrErr.get());
 | 
						|
  Reader->collectFuncsFrom(M);
 | 
						|
  ProfileIsValid = (Reader->read() == sampleprof_error::success);
 | 
						|
  PSL = Reader->getProfileSymbolList();
 | 
						|
 | 
						|
  // While profile-sample-accurate is on, ignore symbol list.
 | 
						|
  ProfAccForSymsInList =
 | 
						|
      ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
 | 
						|
  if (ProfAccForSymsInList) {
 | 
						|
    NamesInProfile.clear();
 | 
						|
    if (auto NameTable = Reader->getNameTable())
 | 
						|
      NamesInProfile.insert(NameTable->begin(), NameTable->end());
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
ModulePass *llvm::createSampleProfileLoaderPass() {
 | 
						|
  return new SampleProfileLoaderLegacyPass();
 | 
						|
}
 | 
						|
 | 
						|
ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
 | 
						|
  return new SampleProfileLoaderLegacyPass(Name);
 | 
						|
}
 | 
						|
 | 
						|
bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
 | 
						|
                                      ProfileSummaryInfo *_PSI, CallGraph *CG) {
 | 
						|
  GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
 | 
						|
  if (!ProfileIsValid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  PSI = _PSI;
 | 
						|
  if (M.getProfileSummary(/* IsCS */ false) == nullptr)
 | 
						|
    M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
 | 
						|
                        ProfileSummary::PSK_Sample);
 | 
						|
 | 
						|
  // Compute the total number of samples collected in this profile.
 | 
						|
  for (const auto &I : Reader->getProfiles())
 | 
						|
    TotalCollectedSamples += I.second.getTotalSamples();
 | 
						|
 | 
						|
  // Populate the symbol map.
 | 
						|
  for (const auto &N_F : M.getValueSymbolTable()) {
 | 
						|
    StringRef OrigName = N_F.getKey();
 | 
						|
    Function *F = dyn_cast<Function>(N_F.getValue());
 | 
						|
    if (F == nullptr)
 | 
						|
      continue;
 | 
						|
    SymbolMap[OrigName] = F;
 | 
						|
    auto pos = OrigName.find('.');
 | 
						|
    if (pos != StringRef::npos) {
 | 
						|
      StringRef NewName = OrigName.substr(0, pos);
 | 
						|
      auto r = SymbolMap.insert(std::make_pair(NewName, F));
 | 
						|
      // Failiing to insert means there is already an entry in SymbolMap,
 | 
						|
      // thus there are multiple functions that are mapped to the same
 | 
						|
      // stripped name. In this case of name conflicting, set the value
 | 
						|
      // to nullptr to avoid confusion.
 | 
						|
      if (!r.second)
 | 
						|
        r.first->second = nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool retval = false;
 | 
						|
  for (auto F : buildFunctionOrder(M, CG)) {
 | 
						|
    assert(!F->isDeclaration());
 | 
						|
    clearFunctionData();
 | 
						|
    retval |= runOnFunction(*F, AM);
 | 
						|
  }
 | 
						|
 | 
						|
  // Account for cold calls not inlined....
 | 
						|
  for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
 | 
						|
       notInlinedCallInfo)
 | 
						|
    updateProfileCallee(pair.first, pair.second.entryCount);
 | 
						|
 | 
						|
  return retval;
 | 
						|
}
 | 
						|
 | 
						|
bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
 | 
						|
  ACT = &getAnalysis<AssumptionCacheTracker>();
 | 
						|
  TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
 | 
						|
  TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
 | 
						|
  ProfileSummaryInfo *PSI =
 | 
						|
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | 
						|
  return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
 | 
						|
 | 
						|
  DILocation2SampleMap.clear();
 | 
						|
  // By default the entry count is initialized to -1, which will be treated
 | 
						|
  // conservatively by getEntryCount as the same as unknown (None). This is
 | 
						|
  // to avoid newly added code to be treated as cold. If we have samples
 | 
						|
  // this will be overwritten in emitAnnotations.
 | 
						|
  uint64_t initialEntryCount = -1;
 | 
						|
 | 
						|
  ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
 | 
						|
  if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
 | 
						|
    // initialize all the function entry counts to 0. It means all the
 | 
						|
    // functions without profile will be regarded as cold.
 | 
						|
    initialEntryCount = 0;
 | 
						|
    // profile-sample-accurate is a user assertion which has a higher precedence
 | 
						|
    // than symbol list. When profile-sample-accurate is on, ignore symbol list.
 | 
						|
    ProfAccForSymsInList = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // PSL -- profile symbol list include all the symbols in sampled binary.
 | 
						|
  // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
 | 
						|
  // old functions without samples being cold, without having to worry
 | 
						|
  // about new and hot functions being mistakenly treated as cold.
 | 
						|
  if (ProfAccForSymsInList) {
 | 
						|
    // Initialize the entry count to 0 for functions in the list.
 | 
						|
    if (PSL->contains(F.getName()))
 | 
						|
      initialEntryCount = 0;
 | 
						|
 | 
						|
    // Function in the symbol list but without sample will be regarded as
 | 
						|
    // cold. To minimize the potential negative performance impact it could
 | 
						|
    // have, we want to be a little conservative here saying if a function
 | 
						|
    // shows up in the profile, no matter as outline function, inline instance
 | 
						|
    // or call targets, treat the function as not being cold. This will handle
 | 
						|
    // the cases such as most callsites of a function are inlined in sampled
 | 
						|
    // binary but not inlined in current build (because of source code drift,
 | 
						|
    // imprecise debug information, or the callsites are all cold individually
 | 
						|
    // but not cold accumulatively...), so the outline function showing up as
 | 
						|
    // cold in sampled binary will actually not be cold after current build.
 | 
						|
    StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
 | 
						|
    if (NamesInProfile.count(CanonName))
 | 
						|
      initialEntryCount = -1;
 | 
						|
  }
 | 
						|
 | 
						|
  F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
 | 
						|
  std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
 | 
						|
  if (AM) {
 | 
						|
    auto &FAM =
 | 
						|
        AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
 | 
						|
            .getManager();
 | 
						|
    ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | 
						|
  } else {
 | 
						|
    OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
 | 
						|
    ORE = OwnedORE.get();
 | 
						|
  }
 | 
						|
  Samples = Reader->getSamplesFor(F);
 | 
						|
  if (Samples && !Samples->empty())
 | 
						|
    return emitAnnotations(F);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
 | 
						|
                                               ModuleAnalysisManager &AM) {
 | 
						|
  FunctionAnalysisManager &FAM =
 | 
						|
      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
 | 
						|
 | 
						|
  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
 | 
						|
    return FAM.getResult<AssumptionAnalysis>(F);
 | 
						|
  };
 | 
						|
  auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
 | 
						|
    return FAM.getResult<TargetIRAnalysis>(F);
 | 
						|
  };
 | 
						|
  auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
 | 
						|
    return FAM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
  };
 | 
						|
 | 
						|
  SampleProfileLoader SampleLoader(
 | 
						|
      ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
 | 
						|
      ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
 | 
						|
                                       : ProfileRemappingFileName,
 | 
						|
      IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI);
 | 
						|
 | 
						|
  if (!SampleLoader.doInitialization(M))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
 | 
						|
  CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
 | 
						|
  if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  return PreservedAnalyses::none();
 | 
						|
}
 |