forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			6160 lines
		
	
	
		
			240 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6160 lines
		
	
	
		
			240 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstCombineCompares.cpp --------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the visitICmp and visitFCmp functions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombineInternal.h"
 | 
						|
#include "llvm/ADT/APSInt.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/IR/ConstantRange.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
// How many times is a select replaced by one of its operands?
 | 
						|
STATISTIC(NumSel, "Number of select opts");
 | 
						|
 | 
						|
 | 
						|
/// Compute Result = In1+In2, returning true if the result overflowed for this
 | 
						|
/// type.
 | 
						|
static bool addWithOverflow(APInt &Result, const APInt &In1,
 | 
						|
                            const APInt &In2, bool IsSigned = false) {
 | 
						|
  bool Overflow;
 | 
						|
  if (IsSigned)
 | 
						|
    Result = In1.sadd_ov(In2, Overflow);
 | 
						|
  else
 | 
						|
    Result = In1.uadd_ov(In2, Overflow);
 | 
						|
 | 
						|
  return Overflow;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute Result = In1-In2, returning true if the result overflowed for this
 | 
						|
/// type.
 | 
						|
static bool subWithOverflow(APInt &Result, const APInt &In1,
 | 
						|
                            const APInt &In2, bool IsSigned = false) {
 | 
						|
  bool Overflow;
 | 
						|
  if (IsSigned)
 | 
						|
    Result = In1.ssub_ov(In2, Overflow);
 | 
						|
  else
 | 
						|
    Result = In1.usub_ov(In2, Overflow);
 | 
						|
 | 
						|
  return Overflow;
 | 
						|
}
 | 
						|
 | 
						|
/// Given an icmp instruction, return true if any use of this comparison is a
 | 
						|
/// branch on sign bit comparison.
 | 
						|
static bool hasBranchUse(ICmpInst &I) {
 | 
						|
  for (auto *U : I.users())
 | 
						|
    if (isa<BranchInst>(U))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the exploded icmp can be expressed as a signed comparison
 | 
						|
/// to zero and updates the predicate accordingly.
 | 
						|
/// The signedness of the comparison is preserved.
 | 
						|
/// TODO: Refactor with decomposeBitTestICmp()?
 | 
						|
static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
 | 
						|
  if (!ICmpInst::isSigned(Pred))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (C.isNullValue())
 | 
						|
    return ICmpInst::isRelational(Pred);
 | 
						|
 | 
						|
  if (C.isOneValue()) {
 | 
						|
    if (Pred == ICmpInst::ICMP_SLT) {
 | 
						|
      Pred = ICmpInst::ICMP_SLE;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else if (C.isAllOnesValue()) {
 | 
						|
    if (Pred == ICmpInst::ICMP_SGT) {
 | 
						|
      Pred = ICmpInst::ICMP_SGE;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Given a signed integer type and a set of known zero and one bits, compute
 | 
						|
/// the maximum and minimum values that could have the specified known zero and
 | 
						|
/// known one bits, returning them in Min/Max.
 | 
						|
/// TODO: Move to method on KnownBits struct?
 | 
						|
static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
 | 
						|
                                                   APInt &Min, APInt &Max) {
 | 
						|
  assert(Known.getBitWidth() == Min.getBitWidth() &&
 | 
						|
         Known.getBitWidth() == Max.getBitWidth() &&
 | 
						|
         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
 | 
						|
  APInt UnknownBits = ~(Known.Zero|Known.One);
 | 
						|
 | 
						|
  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
 | 
						|
  // bit if it is unknown.
 | 
						|
  Min = Known.One;
 | 
						|
  Max = Known.One|UnknownBits;
 | 
						|
 | 
						|
  if (UnknownBits.isNegative()) { // Sign bit is unknown
 | 
						|
    Min.setSignBit();
 | 
						|
    Max.clearSignBit();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Given an unsigned integer type and a set of known zero and one bits, compute
 | 
						|
/// the maximum and minimum values that could have the specified known zero and
 | 
						|
/// known one bits, returning them in Min/Max.
 | 
						|
/// TODO: Move to method on KnownBits struct?
 | 
						|
static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
 | 
						|
                                                     APInt &Min, APInt &Max) {
 | 
						|
  assert(Known.getBitWidth() == Min.getBitWidth() &&
 | 
						|
         Known.getBitWidth() == Max.getBitWidth() &&
 | 
						|
         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
 | 
						|
  APInt UnknownBits = ~(Known.Zero|Known.One);
 | 
						|
 | 
						|
  // The minimum value is when the unknown bits are all zeros.
 | 
						|
  Min = Known.One;
 | 
						|
  // The maximum value is when the unknown bits are all ones.
 | 
						|
  Max = Known.One|UnknownBits;
 | 
						|
}
 | 
						|
 | 
						|
/// This is called when we see this pattern:
 | 
						|
///   cmp pred (load (gep GV, ...)), cmpcst
 | 
						|
/// where GV is a global variable with a constant initializer. Try to simplify
 | 
						|
/// this into some simple computation that does not need the load. For example
 | 
						|
/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
 | 
						|
///
 | 
						|
/// If AndCst is non-null, then the loaded value is masked with that constant
 | 
						|
/// before doing the comparison. This handles cases like "A[i]&4 == 0".
 | 
						|
Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
 | 
						|
                                                        GlobalVariable *GV,
 | 
						|
                                                        CmpInst &ICI,
 | 
						|
                                                        ConstantInt *AndCst) {
 | 
						|
  Constant *Init = GV->getInitializer();
 | 
						|
  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
 | 
						|
  // Don't blow up on huge arrays.
 | 
						|
  if (ArrayElementCount > MaxArraySizeForCombine)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // There are many forms of this optimization we can handle, for now, just do
 | 
						|
  // the simple index into a single-dimensional array.
 | 
						|
  //
 | 
						|
  // Require: GEP GV, 0, i {{, constant indices}}
 | 
						|
  if (GEP->getNumOperands() < 3 ||
 | 
						|
      !isa<ConstantInt>(GEP->getOperand(1)) ||
 | 
						|
      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
 | 
						|
      isa<Constant>(GEP->getOperand(2)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check that indices after the variable are constants and in-range for the
 | 
						|
  // type they index.  Collect the indices.  This is typically for arrays of
 | 
						|
  // structs.
 | 
						|
  SmallVector<unsigned, 4> LaterIndices;
 | 
						|
 | 
						|
  Type *EltTy = Init->getType()->getArrayElementType();
 | 
						|
  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
 | 
						|
    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | 
						|
    if (!Idx) return nullptr;  // Variable index.
 | 
						|
 | 
						|
    uint64_t IdxVal = Idx->getZExtValue();
 | 
						|
    if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
 | 
						|
 | 
						|
    if (StructType *STy = dyn_cast<StructType>(EltTy))
 | 
						|
      EltTy = STy->getElementType(IdxVal);
 | 
						|
    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
 | 
						|
      if (IdxVal >= ATy->getNumElements()) return nullptr;
 | 
						|
      EltTy = ATy->getElementType();
 | 
						|
    } else {
 | 
						|
      return nullptr; // Unknown type.
 | 
						|
    }
 | 
						|
 | 
						|
    LaterIndices.push_back(IdxVal);
 | 
						|
  }
 | 
						|
 | 
						|
  enum { Overdefined = -3, Undefined = -2 };
 | 
						|
 | 
						|
  // Variables for our state machines.
 | 
						|
 | 
						|
  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
 | 
						|
  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
 | 
						|
  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
 | 
						|
  // undefined, otherwise set to the first true element.  SecondTrueElement is
 | 
						|
  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
 | 
						|
  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
 | 
						|
 | 
						|
  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
 | 
						|
  // form "i != 47 & i != 87".  Same state transitions as for true elements.
 | 
						|
  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
 | 
						|
 | 
						|
  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
 | 
						|
  /// define a state machine that triggers for ranges of values that the index
 | 
						|
  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
 | 
						|
  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
 | 
						|
  /// index in the range (inclusive).  We use -2 for undefined here because we
 | 
						|
  /// use relative comparisons and don't want 0-1 to match -1.
 | 
						|
  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
 | 
						|
 | 
						|
  // MagicBitvector - This is a magic bitvector where we set a bit if the
 | 
						|
  // comparison is true for element 'i'.  If there are 64 elements or less in
 | 
						|
  // the array, this will fully represent all the comparison results.
 | 
						|
  uint64_t MagicBitvector = 0;
 | 
						|
 | 
						|
  // Scan the array and see if one of our patterns matches.
 | 
						|
  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
 | 
						|
  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
 | 
						|
    Constant *Elt = Init->getAggregateElement(i);
 | 
						|
    if (!Elt) return nullptr;
 | 
						|
 | 
						|
    // If this is indexing an array of structures, get the structure element.
 | 
						|
    if (!LaterIndices.empty())
 | 
						|
      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
 | 
						|
 | 
						|
    // If the element is masked, handle it.
 | 
						|
    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
 | 
						|
 | 
						|
    // Find out if the comparison would be true or false for the i'th element.
 | 
						|
    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
 | 
						|
                                                  CompareRHS, DL, &TLI);
 | 
						|
    // If the result is undef for this element, ignore it.
 | 
						|
    if (isa<UndefValue>(C)) {
 | 
						|
      // Extend range state machines to cover this element in case there is an
 | 
						|
      // undef in the middle of the range.
 | 
						|
      if (TrueRangeEnd == (int)i-1)
 | 
						|
        TrueRangeEnd = i;
 | 
						|
      if (FalseRangeEnd == (int)i-1)
 | 
						|
        FalseRangeEnd = i;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we can't compute the result for any of the elements, we have to give
 | 
						|
    // up evaluating the entire conditional.
 | 
						|
    if (!isa<ConstantInt>(C)) return nullptr;
 | 
						|
 | 
						|
    // Otherwise, we know if the comparison is true or false for this element,
 | 
						|
    // update our state machines.
 | 
						|
    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
 | 
						|
 | 
						|
    // State machine for single/double/range index comparison.
 | 
						|
    if (IsTrueForElt) {
 | 
						|
      // Update the TrueElement state machine.
 | 
						|
      if (FirstTrueElement == Undefined)
 | 
						|
        FirstTrueElement = TrueRangeEnd = i;  // First true element.
 | 
						|
      else {
 | 
						|
        // Update double-compare state machine.
 | 
						|
        if (SecondTrueElement == Undefined)
 | 
						|
          SecondTrueElement = i;
 | 
						|
        else
 | 
						|
          SecondTrueElement = Overdefined;
 | 
						|
 | 
						|
        // Update range state machine.
 | 
						|
        if (TrueRangeEnd == (int)i-1)
 | 
						|
          TrueRangeEnd = i;
 | 
						|
        else
 | 
						|
          TrueRangeEnd = Overdefined;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Update the FalseElement state machine.
 | 
						|
      if (FirstFalseElement == Undefined)
 | 
						|
        FirstFalseElement = FalseRangeEnd = i; // First false element.
 | 
						|
      else {
 | 
						|
        // Update double-compare state machine.
 | 
						|
        if (SecondFalseElement == Undefined)
 | 
						|
          SecondFalseElement = i;
 | 
						|
        else
 | 
						|
          SecondFalseElement = Overdefined;
 | 
						|
 | 
						|
        // Update range state machine.
 | 
						|
        if (FalseRangeEnd == (int)i-1)
 | 
						|
          FalseRangeEnd = i;
 | 
						|
        else
 | 
						|
          FalseRangeEnd = Overdefined;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this element is in range, update our magic bitvector.
 | 
						|
    if (i < 64 && IsTrueForElt)
 | 
						|
      MagicBitvector |= 1ULL << i;
 | 
						|
 | 
						|
    // If all of our states become overdefined, bail out early.  Since the
 | 
						|
    // predicate is expensive, only check it every 8 elements.  This is only
 | 
						|
    // really useful for really huge arrays.
 | 
						|
    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
 | 
						|
        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
 | 
						|
        FalseRangeEnd == Overdefined)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we've scanned the entire array, emit our new comparison(s).  We
 | 
						|
  // order the state machines in complexity of the generated code.
 | 
						|
  Value *Idx = GEP->getOperand(2);
 | 
						|
 | 
						|
  // If the index is larger than the pointer size of the target, truncate the
 | 
						|
  // index down like the GEP would do implicitly.  We don't have to do this for
 | 
						|
  // an inbounds GEP because the index can't be out of range.
 | 
						|
  if (!GEP->isInBounds()) {
 | 
						|
    Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
 | 
						|
    unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
 | 
						|
    if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
 | 
						|
      Idx = Builder.CreateTrunc(Idx, IntPtrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the comparison is only true for one or two elements, emit direct
 | 
						|
  // comparisons.
 | 
						|
  if (SecondTrueElement != Overdefined) {
 | 
						|
    // None true -> false.
 | 
						|
    if (FirstTrueElement == Undefined)
 | 
						|
      return replaceInstUsesWith(ICI, Builder.getFalse());
 | 
						|
 | 
						|
    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
 | 
						|
 | 
						|
    // True for one element -> 'i == 47'.
 | 
						|
    if (SecondTrueElement == Undefined)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
 | 
						|
 | 
						|
    // True for two elements -> 'i == 47 | i == 72'.
 | 
						|
    Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
 | 
						|
    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
 | 
						|
    Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
 | 
						|
    return BinaryOperator::CreateOr(C1, C2);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the comparison is only false for one or two elements, emit direct
 | 
						|
  // comparisons.
 | 
						|
  if (SecondFalseElement != Overdefined) {
 | 
						|
    // None false -> true.
 | 
						|
    if (FirstFalseElement == Undefined)
 | 
						|
      return replaceInstUsesWith(ICI, Builder.getTrue());
 | 
						|
 | 
						|
    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
 | 
						|
 | 
						|
    // False for one element -> 'i != 47'.
 | 
						|
    if (SecondFalseElement == Undefined)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
 | 
						|
 | 
						|
    // False for two elements -> 'i != 47 & i != 72'.
 | 
						|
    Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
 | 
						|
    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
 | 
						|
    Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
 | 
						|
    return BinaryOperator::CreateAnd(C1, C2);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the comparison can be replaced with a range comparison for the elements
 | 
						|
  // where it is true, emit the range check.
 | 
						|
  if (TrueRangeEnd != Overdefined) {
 | 
						|
    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
 | 
						|
 | 
						|
    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
 | 
						|
    if (FirstTrueElement) {
 | 
						|
      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
 | 
						|
      Idx = Builder.CreateAdd(Idx, Offs);
 | 
						|
    }
 | 
						|
 | 
						|
    Value *End = ConstantInt::get(Idx->getType(),
 | 
						|
                                  TrueRangeEnd-FirstTrueElement+1);
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
 | 
						|
  }
 | 
						|
 | 
						|
  // False range check.
 | 
						|
  if (FalseRangeEnd != Overdefined) {
 | 
						|
    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
 | 
						|
    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
 | 
						|
    if (FirstFalseElement) {
 | 
						|
      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
 | 
						|
      Idx = Builder.CreateAdd(Idx, Offs);
 | 
						|
    }
 | 
						|
 | 
						|
    Value *End = ConstantInt::get(Idx->getType(),
 | 
						|
                                  FalseRangeEnd-FirstFalseElement);
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
 | 
						|
  }
 | 
						|
 | 
						|
  // If a magic bitvector captures the entire comparison state
 | 
						|
  // of this load, replace it with computation that does:
 | 
						|
  //   ((magic_cst >> i) & 1) != 0
 | 
						|
  {
 | 
						|
    Type *Ty = nullptr;
 | 
						|
 | 
						|
    // Look for an appropriate type:
 | 
						|
    // - The type of Idx if the magic fits
 | 
						|
    // - The smallest fitting legal type
 | 
						|
    if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
 | 
						|
      Ty = Idx->getType();
 | 
						|
    else
 | 
						|
      Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
 | 
						|
 | 
						|
    if (Ty) {
 | 
						|
      Value *V = Builder.CreateIntCast(Idx, Ty, false);
 | 
						|
      V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
 | 
						|
      V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return a value that can be used to compare the *offset* implied by a GEP to
 | 
						|
/// zero. For example, if we have &A[i], we want to return 'i' for
 | 
						|
/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
 | 
						|
/// are involved. The above expression would also be legal to codegen as
 | 
						|
/// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
 | 
						|
/// This latter form is less amenable to optimization though, and we are allowed
 | 
						|
/// to generate the first by knowing that pointer arithmetic doesn't overflow.
 | 
						|
///
 | 
						|
/// If we can't emit an optimized form for this expression, this returns null.
 | 
						|
///
 | 
						|
static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
 | 
						|
                                          const DataLayout &DL) {
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
 | 
						|
  // Check to see if this gep only has a single variable index.  If so, and if
 | 
						|
  // any constant indices are a multiple of its scale, then we can compute this
 | 
						|
  // in terms of the scale of the variable index.  For example, if the GEP
 | 
						|
  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
 | 
						|
  // because the expression will cross zero at the same point.
 | 
						|
  unsigned i, e = GEP->getNumOperands();
 | 
						|
  int64_t Offset = 0;
 | 
						|
  for (i = 1; i != e; ++i, ++GTI) {
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
 | 
						|
      // Compute the aggregate offset of constant indices.
 | 
						|
      if (CI->isZero()) continue;
 | 
						|
 | 
						|
      // Handle a struct index, which adds its field offset to the pointer.
 | 
						|
      if (StructType *STy = GTI.getStructTypeOrNull()) {
 | 
						|
        Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
 | 
						|
      } else {
 | 
						|
        uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
 | 
						|
        Offset += Size*CI->getSExtValue();
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Found our variable index.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no variable indices, we must have a constant offset, just
 | 
						|
  // evaluate it the general way.
 | 
						|
  if (i == e) return nullptr;
 | 
						|
 | 
						|
  Value *VariableIdx = GEP->getOperand(i);
 | 
						|
  // Determine the scale factor of the variable element.  For example, this is
 | 
						|
  // 4 if the variable index is into an array of i32.
 | 
						|
  uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
 | 
						|
 | 
						|
  // Verify that there are no other variable indices.  If so, emit the hard way.
 | 
						|
  for (++i, ++GTI; i != e; ++i, ++GTI) {
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | 
						|
    if (!CI) return nullptr;
 | 
						|
 | 
						|
    // Compute the aggregate offset of constant indices.
 | 
						|
    if (CI->isZero()) continue;
 | 
						|
 | 
						|
    // Handle a struct index, which adds its field offset to the pointer.
 | 
						|
    if (StructType *STy = GTI.getStructTypeOrNull()) {
 | 
						|
      Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
 | 
						|
    } else {
 | 
						|
      uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
 | 
						|
      Offset += Size*CI->getSExtValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we know we have a single variable index, which must be a
 | 
						|
  // pointer/array/vector index.  If there is no offset, life is simple, return
 | 
						|
  // the index.
 | 
						|
  Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
 | 
						|
  unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
 | 
						|
  if (Offset == 0) {
 | 
						|
    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
 | 
						|
    // we don't need to bother extending: the extension won't affect where the
 | 
						|
    // computation crosses zero.
 | 
						|
    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
 | 
						|
      VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
 | 
						|
    }
 | 
						|
    return VariableIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, there is an index.  The computation we will do will be modulo
 | 
						|
  // the pointer size.
 | 
						|
  Offset = SignExtend64(Offset, IntPtrWidth);
 | 
						|
  VariableScale = SignExtend64(VariableScale, IntPtrWidth);
 | 
						|
 | 
						|
  // To do this transformation, any constant index must be a multiple of the
 | 
						|
  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
 | 
						|
  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
 | 
						|
  // multiple of the variable scale.
 | 
						|
  int64_t NewOffs = Offset / (int64_t)VariableScale;
 | 
						|
  if (Offset != NewOffs*(int64_t)VariableScale)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Okay, we can do this evaluation.  Start by converting the index to intptr.
 | 
						|
  if (VariableIdx->getType() != IntPtrTy)
 | 
						|
    VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
 | 
						|
                                            true /*Signed*/);
 | 
						|
  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
 | 
						|
  return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if we can rewrite Start as a GEP with pointer Base
 | 
						|
/// and some integer offset. The nodes that need to be re-written
 | 
						|
/// for this transformation will be added to Explored.
 | 
						|
static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
 | 
						|
                                  const DataLayout &DL,
 | 
						|
                                  SetVector<Value *> &Explored) {
 | 
						|
  SmallVector<Value *, 16> WorkList(1, Start);
 | 
						|
  Explored.insert(Base);
 | 
						|
 | 
						|
  // The following traversal gives us an order which can be used
 | 
						|
  // when doing the final transformation. Since in the final
 | 
						|
  // transformation we create the PHI replacement instructions first,
 | 
						|
  // we don't have to get them in any particular order.
 | 
						|
  //
 | 
						|
  // However, for other instructions we will have to traverse the
 | 
						|
  // operands of an instruction first, which means that we have to
 | 
						|
  // do a post-order traversal.
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    SetVector<PHINode *> PHIs;
 | 
						|
 | 
						|
    while (!WorkList.empty()) {
 | 
						|
      if (Explored.size() >= 100)
 | 
						|
        return false;
 | 
						|
 | 
						|
      Value *V = WorkList.back();
 | 
						|
 | 
						|
      if (Explored.count(V) != 0) {
 | 
						|
        WorkList.pop_back();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
 | 
						|
          !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
 | 
						|
        // We've found some value that we can't explore which is different from
 | 
						|
        // the base. Therefore we can't do this transformation.
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
 | 
						|
        auto *CI = dyn_cast<CastInst>(V);
 | 
						|
        if (!CI->isNoopCast(DL))
 | 
						|
          return false;
 | 
						|
 | 
						|
        if (Explored.count(CI->getOperand(0)) == 0)
 | 
						|
          WorkList.push_back(CI->getOperand(0));
 | 
						|
      }
 | 
						|
 | 
						|
      if (auto *GEP = dyn_cast<GEPOperator>(V)) {
 | 
						|
        // We're limiting the GEP to having one index. This will preserve
 | 
						|
        // the original pointer type. We could handle more cases in the
 | 
						|
        // future.
 | 
						|
        if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
 | 
						|
            GEP->getType() != Start->getType())
 | 
						|
          return false;
 | 
						|
 | 
						|
        if (Explored.count(GEP->getOperand(0)) == 0)
 | 
						|
          WorkList.push_back(GEP->getOperand(0));
 | 
						|
      }
 | 
						|
 | 
						|
      if (WorkList.back() == V) {
 | 
						|
        WorkList.pop_back();
 | 
						|
        // We've finished visiting this node, mark it as such.
 | 
						|
        Explored.insert(V);
 | 
						|
      }
 | 
						|
 | 
						|
      if (auto *PN = dyn_cast<PHINode>(V)) {
 | 
						|
        // We cannot transform PHIs on unsplittable basic blocks.
 | 
						|
        if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
 | 
						|
          return false;
 | 
						|
        Explored.insert(PN);
 | 
						|
        PHIs.insert(PN);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Explore the PHI nodes further.
 | 
						|
    for (auto *PN : PHIs)
 | 
						|
      for (Value *Op : PN->incoming_values())
 | 
						|
        if (Explored.count(Op) == 0)
 | 
						|
          WorkList.push_back(Op);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that we can do this. Since we can't insert GEPs in a basic
 | 
						|
  // block before a PHI node, we can't easily do this transformation if
 | 
						|
  // we have PHI node users of transformed instructions.
 | 
						|
  for (Value *Val : Explored) {
 | 
						|
    for (Value *Use : Val->uses()) {
 | 
						|
 | 
						|
      auto *PHI = dyn_cast<PHINode>(Use);
 | 
						|
      auto *Inst = dyn_cast<Instruction>(Val);
 | 
						|
 | 
						|
      if (Inst == Base || Inst == PHI || !Inst || !PHI ||
 | 
						|
          Explored.count(PHI) == 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (PHI->getParent() == Inst->getParent())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Sets the appropriate insert point on Builder where we can add
 | 
						|
// a replacement Instruction for V (if that is possible).
 | 
						|
static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
 | 
						|
                              bool Before = true) {
 | 
						|
  if (auto *PHI = dyn_cast<PHINode>(V)) {
 | 
						|
    Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (auto *I = dyn_cast<Instruction>(V)) {
 | 
						|
    if (!Before)
 | 
						|
      I = &*std::next(I->getIterator());
 | 
						|
    Builder.SetInsertPoint(I);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (auto *A = dyn_cast<Argument>(V)) {
 | 
						|
    // Set the insertion point in the entry block.
 | 
						|
    BasicBlock &Entry = A->getParent()->getEntryBlock();
 | 
						|
    Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Otherwise, this is a constant and we don't need to set a new
 | 
						|
  // insertion point.
 | 
						|
  assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
 | 
						|
}
 | 
						|
 | 
						|
/// Returns a re-written value of Start as an indexed GEP using Base as a
 | 
						|
/// pointer.
 | 
						|
static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
 | 
						|
                                 const DataLayout &DL,
 | 
						|
                                 SetVector<Value *> &Explored) {
 | 
						|
  // Perform all the substitutions. This is a bit tricky because we can
 | 
						|
  // have cycles in our use-def chains.
 | 
						|
  // 1. Create the PHI nodes without any incoming values.
 | 
						|
  // 2. Create all the other values.
 | 
						|
  // 3. Add the edges for the PHI nodes.
 | 
						|
  // 4. Emit GEPs to get the original pointers.
 | 
						|
  // 5. Remove the original instructions.
 | 
						|
  Type *IndexType = IntegerType::get(
 | 
						|
      Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
 | 
						|
 | 
						|
  DenseMap<Value *, Value *> NewInsts;
 | 
						|
  NewInsts[Base] = ConstantInt::getNullValue(IndexType);
 | 
						|
 | 
						|
  // Create the new PHI nodes, without adding any incoming values.
 | 
						|
  for (Value *Val : Explored) {
 | 
						|
    if (Val == Base)
 | 
						|
      continue;
 | 
						|
    // Create empty phi nodes. This avoids cyclic dependencies when creating
 | 
						|
    // the remaining instructions.
 | 
						|
    if (auto *PHI = dyn_cast<PHINode>(Val))
 | 
						|
      NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
 | 
						|
                                      PHI->getName() + ".idx", PHI);
 | 
						|
  }
 | 
						|
  IRBuilder<> Builder(Base->getContext());
 | 
						|
 | 
						|
  // Create all the other instructions.
 | 
						|
  for (Value *Val : Explored) {
 | 
						|
 | 
						|
    if (NewInsts.find(Val) != NewInsts.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (auto *CI = dyn_cast<CastInst>(Val)) {
 | 
						|
      // Don't get rid of the intermediate variable here; the store can grow
 | 
						|
      // the map which will invalidate the reference to the input value.
 | 
						|
      Value *V = NewInsts[CI->getOperand(0)];
 | 
						|
      NewInsts[CI] = V;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
 | 
						|
      Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
 | 
						|
                                                  : GEP->getOperand(1);
 | 
						|
      setInsertionPoint(Builder, GEP);
 | 
						|
      // Indices might need to be sign extended. GEPs will magically do
 | 
						|
      // this, but we need to do it ourselves here.
 | 
						|
      if (Index->getType()->getScalarSizeInBits() !=
 | 
						|
          NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
 | 
						|
        Index = Builder.CreateSExtOrTrunc(
 | 
						|
            Index, NewInsts[GEP->getOperand(0)]->getType(),
 | 
						|
            GEP->getOperand(0)->getName() + ".sext");
 | 
						|
      }
 | 
						|
 | 
						|
      auto *Op = NewInsts[GEP->getOperand(0)];
 | 
						|
      if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
 | 
						|
        NewInsts[GEP] = Index;
 | 
						|
      else
 | 
						|
        NewInsts[GEP] = Builder.CreateNSWAdd(
 | 
						|
            Op, Index, GEP->getOperand(0)->getName() + ".add");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isa<PHINode>(Val))
 | 
						|
      continue;
 | 
						|
 | 
						|
    llvm_unreachable("Unexpected instruction type");
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the incoming values to the PHI nodes.
 | 
						|
  for (Value *Val : Explored) {
 | 
						|
    if (Val == Base)
 | 
						|
      continue;
 | 
						|
    // All the instructions have been created, we can now add edges to the
 | 
						|
    // phi nodes.
 | 
						|
    if (auto *PHI = dyn_cast<PHINode>(Val)) {
 | 
						|
      PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
 | 
						|
      for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
 | 
						|
        Value *NewIncoming = PHI->getIncomingValue(I);
 | 
						|
 | 
						|
        if (NewInsts.find(NewIncoming) != NewInsts.end())
 | 
						|
          NewIncoming = NewInsts[NewIncoming];
 | 
						|
 | 
						|
        NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (Value *Val : Explored) {
 | 
						|
    if (Val == Base)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Depending on the type, for external users we have to emit
 | 
						|
    // a GEP or a GEP + ptrtoint.
 | 
						|
    setInsertionPoint(Builder, Val, false);
 | 
						|
 | 
						|
    // If required, create an inttoptr instruction for Base.
 | 
						|
    Value *NewBase = Base;
 | 
						|
    if (!Base->getType()->isPointerTy())
 | 
						|
      NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
 | 
						|
                                               Start->getName() + "to.ptr");
 | 
						|
 | 
						|
    Value *GEP = Builder.CreateInBoundsGEP(
 | 
						|
        Start->getType()->getPointerElementType(), NewBase,
 | 
						|
        makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
 | 
						|
 | 
						|
    if (!Val->getType()->isPointerTy()) {
 | 
						|
      Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
 | 
						|
                                              Val->getName() + ".conv");
 | 
						|
      GEP = Cast;
 | 
						|
    }
 | 
						|
    Val->replaceAllUsesWith(GEP);
 | 
						|
  }
 | 
						|
 | 
						|
  return NewInsts[Start];
 | 
						|
}
 | 
						|
 | 
						|
/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
 | 
						|
/// the input Value as a constant indexed GEP. Returns a pair containing
 | 
						|
/// the GEPs Pointer and Index.
 | 
						|
static std::pair<Value *, Value *>
 | 
						|
getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
 | 
						|
  Type *IndexType = IntegerType::get(V->getContext(),
 | 
						|
                                     DL.getIndexTypeSizeInBits(V->getType()));
 | 
						|
 | 
						|
  Constant *Index = ConstantInt::getNullValue(IndexType);
 | 
						|
  while (true) {
 | 
						|
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | 
						|
      // We accept only inbouds GEPs here to exclude the possibility of
 | 
						|
      // overflow.
 | 
						|
      if (!GEP->isInBounds())
 | 
						|
        break;
 | 
						|
      if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
 | 
						|
          GEP->getType() == V->getType()) {
 | 
						|
        V = GEP->getOperand(0);
 | 
						|
        Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
 | 
						|
        Index = ConstantExpr::getAdd(
 | 
						|
            Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
 | 
						|
      if (!CI->isNoopCast(DL))
 | 
						|
        break;
 | 
						|
      V = CI->getOperand(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
 | 
						|
      if (!CI->isNoopCast(DL))
 | 
						|
        break;
 | 
						|
      V = CI->getOperand(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return {V, Index};
 | 
						|
}
 | 
						|
 | 
						|
/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
 | 
						|
/// We can look through PHIs, GEPs and casts in order to determine a common base
 | 
						|
/// between GEPLHS and RHS.
 | 
						|
static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
 | 
						|
                                              ICmpInst::Predicate Cond,
 | 
						|
                                              const DataLayout &DL) {
 | 
						|
  // FIXME: Support vector of pointers.
 | 
						|
  if (GEPLHS->getType()->isVectorTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!GEPLHS->hasAllConstantIndices())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Make sure the pointers have the same type.
 | 
						|
  if (GEPLHS->getType() != RHS->getType())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *PtrBase, *Index;
 | 
						|
  std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
 | 
						|
 | 
						|
  // The set of nodes that will take part in this transformation.
 | 
						|
  SetVector<Value *> Nodes;
 | 
						|
 | 
						|
  if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We know we can re-write this as
 | 
						|
  //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
 | 
						|
  // Since we've only looked through inbouds GEPs we know that we
 | 
						|
  // can't have overflow on either side. We can therefore re-write
 | 
						|
  // this as:
 | 
						|
  //   OFFSET1 cmp OFFSET2
 | 
						|
  Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
 | 
						|
 | 
						|
  // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
 | 
						|
  // GEP having PtrBase as the pointer base, and has returned in NewRHS the
 | 
						|
  // offset. Since Index is the offset of LHS to the base pointer, we will now
 | 
						|
  // compare the offsets instead of comparing the pointers.
 | 
						|
  return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
 | 
						|
}
 | 
						|
 | 
						|
/// Fold comparisons between a GEP instruction and something else. At this point
 | 
						|
/// we know that the GEP is on the LHS of the comparison.
 | 
						|
Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
 | 
						|
                                       ICmpInst::Predicate Cond,
 | 
						|
                                       Instruction &I) {
 | 
						|
  // Don't transform signed compares of GEPs into index compares. Even if the
 | 
						|
  // GEP is inbounds, the final add of the base pointer can have signed overflow
 | 
						|
  // and would change the result of the icmp.
 | 
						|
  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
 | 
						|
  // the maximum signed value for the pointer type.
 | 
						|
  if (ICmpInst::isSigned(Cond))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Look through bitcasts and addrspacecasts. We do not however want to remove
 | 
						|
  // 0 GEPs.
 | 
						|
  if (!isa<GetElementPtrInst>(RHS))
 | 
						|
    RHS = RHS->stripPointerCasts();
 | 
						|
 | 
						|
  Value *PtrBase = GEPLHS->getOperand(0);
 | 
						|
  // FIXME: Support vector pointer GEPs.
 | 
						|
  if (PtrBase == RHS && GEPLHS->isInBounds() &&
 | 
						|
      !GEPLHS->getType()->isVectorTy()) {
 | 
						|
    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
 | 
						|
    // This transformation (ignoring the base and scales) is valid because we
 | 
						|
    // know pointers can't overflow since the gep is inbounds.  See if we can
 | 
						|
    // output an optimized form.
 | 
						|
    Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
 | 
						|
 | 
						|
    // If not, synthesize the offset the hard way.
 | 
						|
    if (!Offset)
 | 
						|
      Offset = EmitGEPOffset(GEPLHS);
 | 
						|
    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
 | 
						|
                        Constant::getNullValue(Offset->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
 | 
						|
      isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
 | 
						|
      !NullPointerIsDefined(I.getFunction(),
 | 
						|
                            RHS->getType()->getPointerAddressSpace())) {
 | 
						|
    // For most address spaces, an allocation can't be placed at null, but null
 | 
						|
    // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
 | 
						|
    // the only valid inbounds address derived from null, is null itself.
 | 
						|
    // Thus, we have four cases to consider:
 | 
						|
    // 1) Base == nullptr, Offset == 0 -> inbounds, null
 | 
						|
    // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
 | 
						|
    // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
 | 
						|
    // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
 | 
						|
    //
 | 
						|
    // (Note if we're indexing a type of size 0, that simply collapses into one
 | 
						|
    //  of the buckets above.)
 | 
						|
    //
 | 
						|
    // In general, we're allowed to make values less poison (i.e. remove
 | 
						|
    //   sources of full UB), so in this case, we just select between the two
 | 
						|
    //   non-poison cases (1 and 4 above).
 | 
						|
    //
 | 
						|
    // For vectors, we apply the same reasoning on a per-lane basis.
 | 
						|
    auto *Base = GEPLHS->getPointerOperand();
 | 
						|
    if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
 | 
						|
      int NumElts = GEPLHS->getType()->getVectorNumElements();
 | 
						|
      Base = Builder.CreateVectorSplat(NumElts, Base);
 | 
						|
    }
 | 
						|
    return new ICmpInst(Cond, Base,
 | 
						|
                        ConstantExpr::getPointerBitCastOrAddrSpaceCast(
 | 
						|
                            cast<Constant>(RHS), Base->getType()));
 | 
						|
  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
 | 
						|
    // If the base pointers are different, but the indices are the same, just
 | 
						|
    // compare the base pointer.
 | 
						|
    if (PtrBase != GEPRHS->getOperand(0)) {
 | 
						|
      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
 | 
						|
      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
 | 
						|
                        GEPRHS->getOperand(0)->getType();
 | 
						|
      if (IndicesTheSame)
 | 
						|
        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | 
						|
          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | 
						|
            IndicesTheSame = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
      // If all indices are the same, just compare the base pointers.
 | 
						|
      Type *BaseType = GEPLHS->getOperand(0)->getType();
 | 
						|
      if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
 | 
						|
        return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
 | 
						|
 | 
						|
      // If we're comparing GEPs with two base pointers that only differ in type
 | 
						|
      // and both GEPs have only constant indices or just one use, then fold
 | 
						|
      // the compare with the adjusted indices.
 | 
						|
      // FIXME: Support vector of pointers.
 | 
						|
      if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
 | 
						|
          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
 | 
						|
          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
 | 
						|
          PtrBase->stripPointerCasts() ==
 | 
						|
              GEPRHS->getOperand(0)->stripPointerCasts() &&
 | 
						|
          !GEPLHS->getType()->isVectorTy()) {
 | 
						|
        Value *LOffset = EmitGEPOffset(GEPLHS);
 | 
						|
        Value *ROffset = EmitGEPOffset(GEPRHS);
 | 
						|
 | 
						|
        // If we looked through an addrspacecast between different sized address
 | 
						|
        // spaces, the LHS and RHS pointers are different sized
 | 
						|
        // integers. Truncate to the smaller one.
 | 
						|
        Type *LHSIndexTy = LOffset->getType();
 | 
						|
        Type *RHSIndexTy = ROffset->getType();
 | 
						|
        if (LHSIndexTy != RHSIndexTy) {
 | 
						|
          if (LHSIndexTy->getPrimitiveSizeInBits() <
 | 
						|
              RHSIndexTy->getPrimitiveSizeInBits()) {
 | 
						|
            ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
 | 
						|
          } else
 | 
						|
            LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
 | 
						|
        }
 | 
						|
 | 
						|
        Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
 | 
						|
                                        LOffset, ROffset);
 | 
						|
        return replaceInstUsesWith(I, Cmp);
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, the base pointers are different and the indices are
 | 
						|
      // different. Try convert this to an indexed compare by looking through
 | 
						|
      // PHIs/casts.
 | 
						|
      return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
 | 
						|
    }
 | 
						|
 | 
						|
    // If one of the GEPs has all zero indices, recurse.
 | 
						|
    // FIXME: Handle vector of pointers.
 | 
						|
    if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
 | 
						|
      return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
 | 
						|
                         ICmpInst::getSwappedPredicate(Cond), I);
 | 
						|
 | 
						|
    // If the other GEP has all zero indices, recurse.
 | 
						|
    // FIXME: Handle vector of pointers.
 | 
						|
    if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
 | 
						|
      return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
 | 
						|
 | 
						|
    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
 | 
						|
    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
 | 
						|
      // If the GEPs only differ by one index, compare it.
 | 
						|
      unsigned NumDifferences = 0;  // Keep track of # differences.
 | 
						|
      unsigned DiffOperand = 0;     // The operand that differs.
 | 
						|
      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | 
						|
        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | 
						|
          Type *LHSType = GEPLHS->getOperand(i)->getType();
 | 
						|
          Type *RHSType = GEPRHS->getOperand(i)->getType();
 | 
						|
          // FIXME: Better support for vector of pointers.
 | 
						|
          if (LHSType->getPrimitiveSizeInBits() !=
 | 
						|
                   RHSType->getPrimitiveSizeInBits() ||
 | 
						|
              (GEPLHS->getType()->isVectorTy() &&
 | 
						|
               (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
 | 
						|
            // Irreconcilable differences.
 | 
						|
            NumDifferences = 2;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          if (NumDifferences++) break;
 | 
						|
          DiffOperand = i;
 | 
						|
        }
 | 
						|
 | 
						|
      if (NumDifferences == 0)   // SAME GEP?
 | 
						|
        return replaceInstUsesWith(I, // No comparison is needed here.
 | 
						|
          ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
 | 
						|
 | 
						|
      else if (NumDifferences == 1 && GEPsInBounds) {
 | 
						|
        Value *LHSV = GEPLHS->getOperand(DiffOperand);
 | 
						|
        Value *RHSV = GEPRHS->getOperand(DiffOperand);
 | 
						|
        // Make sure we do a signed comparison here.
 | 
						|
        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Only lower this if the icmp is the only user of the GEP or if we expect
 | 
						|
    // the result to fold to a constant!
 | 
						|
    if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
 | 
						|
        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
 | 
						|
      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
 | 
						|
      Value *L = EmitGEPOffset(GEPLHS);
 | 
						|
      Value *R = EmitGEPOffset(GEPRHS);
 | 
						|
      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try convert this to an indexed compare by looking through PHIs/casts as a
 | 
						|
  // last resort.
 | 
						|
  return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
 | 
						|
                                         const AllocaInst *Alloca,
 | 
						|
                                         const Value *Other) {
 | 
						|
  assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
 | 
						|
 | 
						|
  // It would be tempting to fold away comparisons between allocas and any
 | 
						|
  // pointer not based on that alloca (e.g. an argument). However, even
 | 
						|
  // though such pointers cannot alias, they can still compare equal.
 | 
						|
  //
 | 
						|
  // But LLVM doesn't specify where allocas get their memory, so if the alloca
 | 
						|
  // doesn't escape we can argue that it's impossible to guess its value, and we
 | 
						|
  // can therefore act as if any such guesses are wrong.
 | 
						|
  //
 | 
						|
  // The code below checks that the alloca doesn't escape, and that it's only
 | 
						|
  // used in a comparison once (the current instruction). The
 | 
						|
  // single-comparison-use condition ensures that we're trivially folding all
 | 
						|
  // comparisons against the alloca consistently, and avoids the risk of
 | 
						|
  // erroneously folding a comparison of the pointer with itself.
 | 
						|
 | 
						|
  unsigned MaxIter = 32; // Break cycles and bound to constant-time.
 | 
						|
 | 
						|
  SmallVector<const Use *, 32> Worklist;
 | 
						|
  for (const Use &U : Alloca->uses()) {
 | 
						|
    if (Worklist.size() >= MaxIter)
 | 
						|
      return nullptr;
 | 
						|
    Worklist.push_back(&U);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumCmps = 0;
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    assert(Worklist.size() <= MaxIter);
 | 
						|
    const Use *U = Worklist.pop_back_val();
 | 
						|
    const Value *V = U->getUser();
 | 
						|
    --MaxIter;
 | 
						|
 | 
						|
    if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
 | 
						|
        isa<SelectInst>(V)) {
 | 
						|
      // Track the uses.
 | 
						|
    } else if (isa<LoadInst>(V)) {
 | 
						|
      // Loading from the pointer doesn't escape it.
 | 
						|
      continue;
 | 
						|
    } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
 | 
						|
      // Storing *to* the pointer is fine, but storing the pointer escapes it.
 | 
						|
      if (SI->getValueOperand() == U->get())
 | 
						|
        return nullptr;
 | 
						|
      continue;
 | 
						|
    } else if (isa<ICmpInst>(V)) {
 | 
						|
      if (NumCmps++)
 | 
						|
        return nullptr; // Found more than one cmp.
 | 
						|
      continue;
 | 
						|
    } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
 | 
						|
      switch (Intrin->getIntrinsicID()) {
 | 
						|
        // These intrinsics don't escape or compare the pointer. Memset is safe
 | 
						|
        // because we don't allow ptrtoint. Memcpy and memmove are safe because
 | 
						|
        // we don't allow stores, so src cannot point to V.
 | 
						|
        case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
 | 
						|
        case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
 | 
						|
          continue;
 | 
						|
        default:
 | 
						|
          return nullptr;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    for (const Use &U : V->uses()) {
 | 
						|
      if (Worklist.size() >= MaxIter)
 | 
						|
        return nullptr;
 | 
						|
      Worklist.push_back(&U);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
 | 
						|
  return replaceInstUsesWith(
 | 
						|
      ICI,
 | 
						|
      ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
 | 
						|
}
 | 
						|
 | 
						|
/// Fold "icmp pred (X+C), X".
 | 
						|
Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
 | 
						|
                                              ICmpInst::Predicate Pred) {
 | 
						|
  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
 | 
						|
  // so the values can never be equal.  Similarly for all other "or equals"
 | 
						|
  // operators.
 | 
						|
  assert(!!C && "C should not be zero!");
 | 
						|
 | 
						|
  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
 | 
						|
  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
 | 
						|
  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
 | 
						|
  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
 | 
						|
    Constant *R = ConstantInt::get(X->getType(),
 | 
						|
                                   APInt::getMaxValue(C.getBitWidth()) - C);
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
 | 
						|
  }
 | 
						|
 | 
						|
  // (X+1) >u X        --> X <u (0-1)        --> X != 255
 | 
						|
  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
 | 
						|
  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
 | 
						|
  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_ULT, X,
 | 
						|
                        ConstantInt::get(X->getType(), -C));
 | 
						|
 | 
						|
  APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
 | 
						|
 | 
						|
  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
 | 
						|
  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
 | 
						|
  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
 | 
						|
  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
 | 
						|
  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
 | 
						|
  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
 | 
						|
  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_SGT, X,
 | 
						|
                        ConstantInt::get(X->getType(), SMax - C));
 | 
						|
 | 
						|
  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
 | 
						|
  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
 | 
						|
  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
 | 
						|
  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
 | 
						|
  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
 | 
						|
  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
 | 
						|
 | 
						|
  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
 | 
						|
  return new ICmpInst(ICmpInst::ICMP_SLT, X,
 | 
						|
                      ConstantInt::get(X->getType(), SMax - (C - 1)));
 | 
						|
}
 | 
						|
 | 
						|
/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
 | 
						|
/// (icmp eq/ne A, Log2(AP2/AP1)) ->
 | 
						|
/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
 | 
						|
Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
 | 
						|
                                                 const APInt &AP1,
 | 
						|
                                                 const APInt &AP2) {
 | 
						|
  assert(I.isEquality() && "Cannot fold icmp gt/lt");
 | 
						|
 | 
						|
  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
 | 
						|
    if (I.getPredicate() == I.ICMP_NE)
 | 
						|
      Pred = CmpInst::getInversePredicate(Pred);
 | 
						|
    return new ICmpInst(Pred, LHS, RHS);
 | 
						|
  };
 | 
						|
 | 
						|
  // Don't bother doing any work for cases which InstSimplify handles.
 | 
						|
  if (AP2.isNullValue())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  bool IsAShr = isa<AShrOperator>(I.getOperand(0));
 | 
						|
  if (IsAShr) {
 | 
						|
    if (AP2.isAllOnesValue())
 | 
						|
      return nullptr;
 | 
						|
    if (AP2.isNegative() != AP1.isNegative())
 | 
						|
      return nullptr;
 | 
						|
    if (AP2.sgt(AP1))
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AP1)
 | 
						|
    // 'A' must be large enough to shift out the highest set bit.
 | 
						|
    return getICmp(I.ICMP_UGT, A,
 | 
						|
                   ConstantInt::get(A->getType(), AP2.logBase2()));
 | 
						|
 | 
						|
  if (AP1 == AP2)
 | 
						|
    return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
 | 
						|
 | 
						|
  int Shift;
 | 
						|
  if (IsAShr && AP1.isNegative())
 | 
						|
    Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
 | 
						|
  else
 | 
						|
    Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
 | 
						|
 | 
						|
  if (Shift > 0) {
 | 
						|
    if (IsAShr && AP1 == AP2.ashr(Shift)) {
 | 
						|
      // There are multiple solutions if we are comparing against -1 and the LHS
 | 
						|
      // of the ashr is not a power of two.
 | 
						|
      if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
 | 
						|
        return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
 | 
						|
      return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
 | 
						|
    } else if (AP1 == AP2.lshr(Shift)) {
 | 
						|
      return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Shifting const2 will never be equal to const1.
 | 
						|
  // FIXME: This should always be handled by InstSimplify?
 | 
						|
  auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
 | 
						|
  return replaceInstUsesWith(I, TorF);
 | 
						|
}
 | 
						|
 | 
						|
/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
 | 
						|
/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
 | 
						|
Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
 | 
						|
                                                 const APInt &AP1,
 | 
						|
                                                 const APInt &AP2) {
 | 
						|
  assert(I.isEquality() && "Cannot fold icmp gt/lt");
 | 
						|
 | 
						|
  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
 | 
						|
    if (I.getPredicate() == I.ICMP_NE)
 | 
						|
      Pred = CmpInst::getInversePredicate(Pred);
 | 
						|
    return new ICmpInst(Pred, LHS, RHS);
 | 
						|
  };
 | 
						|
 | 
						|
  // Don't bother doing any work for cases which InstSimplify handles.
 | 
						|
  if (AP2.isNullValue())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  unsigned AP2TrailingZeros = AP2.countTrailingZeros();
 | 
						|
 | 
						|
  if (!AP1 && AP2TrailingZeros != 0)
 | 
						|
    return getICmp(
 | 
						|
        I.ICMP_UGE, A,
 | 
						|
        ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
 | 
						|
 | 
						|
  if (AP1 == AP2)
 | 
						|
    return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
 | 
						|
 | 
						|
  // Get the distance between the lowest bits that are set.
 | 
						|
  int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
 | 
						|
 | 
						|
  if (Shift > 0 && AP2.shl(Shift) == AP1)
 | 
						|
    return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
 | 
						|
 | 
						|
  // Shifting const2 will never be equal to const1.
 | 
						|
  // FIXME: This should always be handled by InstSimplify?
 | 
						|
  auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
 | 
						|
  return replaceInstUsesWith(I, TorF);
 | 
						|
}
 | 
						|
 | 
						|
/// The caller has matched a pattern of the form:
 | 
						|
///   I = icmp ugt (add (add A, B), CI2), CI1
 | 
						|
/// If this is of the form:
 | 
						|
///   sum = a + b
 | 
						|
///   if (sum+128 >u 255)
 | 
						|
/// Then replace it with llvm.sadd.with.overflow.i8.
 | 
						|
///
 | 
						|
static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
 | 
						|
                                          ConstantInt *CI2, ConstantInt *CI1,
 | 
						|
                                          InstCombiner &IC) {
 | 
						|
  // The transformation we're trying to do here is to transform this into an
 | 
						|
  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
 | 
						|
  // with a narrower add, and discard the add-with-constant that is part of the
 | 
						|
  // range check (if we can't eliminate it, this isn't profitable).
 | 
						|
 | 
						|
  // In order to eliminate the add-with-constant, the compare can be its only
 | 
						|
  // use.
 | 
						|
  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
 | 
						|
  if (!AddWithCst->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
 | 
						|
  if (!CI2->getValue().isPowerOf2())
 | 
						|
    return nullptr;
 | 
						|
  unsigned NewWidth = CI2->getValue().countTrailingZeros();
 | 
						|
  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The width of the new add formed is 1 more than the bias.
 | 
						|
  ++NewWidth;
 | 
						|
 | 
						|
  // Check to see that CI1 is an all-ones value with NewWidth bits.
 | 
						|
  if (CI1->getBitWidth() == NewWidth ||
 | 
						|
      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // This is only really a signed overflow check if the inputs have been
 | 
						|
  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
 | 
						|
  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
 | 
						|
  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
 | 
						|
  if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
 | 
						|
      IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // In order to replace the original add with a narrower
 | 
						|
  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
 | 
						|
  // and truncates that discard the high bits of the add.  Verify that this is
 | 
						|
  // the case.
 | 
						|
  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
 | 
						|
  for (User *U : OrigAdd->users()) {
 | 
						|
    if (U == AddWithCst)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Only accept truncates for now.  We would really like a nice recursive
 | 
						|
    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
 | 
						|
    // chain to see which bits of a value are actually demanded.  If the
 | 
						|
    // original add had another add which was then immediately truncated, we
 | 
						|
    // could still do the transformation.
 | 
						|
    TruncInst *TI = dyn_cast<TruncInst>(U);
 | 
						|
    if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the pattern matches, truncate the inputs to the narrower type and
 | 
						|
  // use the sadd_with_overflow intrinsic to efficiently compute both the
 | 
						|
  // result and the overflow bit.
 | 
						|
  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
 | 
						|
  Function *F = Intrinsic::getDeclaration(
 | 
						|
      I.getModule(), Intrinsic::sadd_with_overflow, NewType);
 | 
						|
 | 
						|
  InstCombiner::BuilderTy &Builder = IC.Builder;
 | 
						|
 | 
						|
  // Put the new code above the original add, in case there are any uses of the
 | 
						|
  // add between the add and the compare.
 | 
						|
  Builder.SetInsertPoint(OrigAdd);
 | 
						|
 | 
						|
  Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
 | 
						|
  Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
 | 
						|
  CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
 | 
						|
  Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
 | 
						|
  Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
 | 
						|
 | 
						|
  // The inner add was the result of the narrow add, zero extended to the
 | 
						|
  // wider type.  Replace it with the result computed by the intrinsic.
 | 
						|
  IC.replaceInstUsesWith(*OrigAdd, ZExt);
 | 
						|
 | 
						|
  // The original icmp gets replaced with the overflow value.
 | 
						|
  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
 | 
						|
}
 | 
						|
 | 
						|
/// If we have:
 | 
						|
///   icmp eq/ne (urem/srem %x, %y), 0
 | 
						|
/// iff %y is a power-of-two, we can replace this with a bit test:
 | 
						|
///   icmp eq/ne (and %x, (add %y, -1)), 0
 | 
						|
Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
 | 
						|
  // This fold is only valid for equality predicates.
 | 
						|
  if (!I.isEquality())
 | 
						|
    return nullptr;
 | 
						|
  ICmpInst::Predicate Pred;
 | 
						|
  Value *X, *Y, *Zero;
 | 
						|
  if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
 | 
						|
                        m_CombineAnd(m_Zero(), m_Value(Zero)))))
 | 
						|
    return nullptr;
 | 
						|
  if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
 | 
						|
    return nullptr;
 | 
						|
  // This may increase instruction count, we don't enforce that Y is a constant.
 | 
						|
  Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
 | 
						|
  Value *Masked = Builder.CreateAnd(X, Mask);
 | 
						|
  return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
 | 
						|
}
 | 
						|
 | 
						|
/// Fold equality-comparison between zero and any (maybe truncated) right-shift
 | 
						|
/// by one-less-than-bitwidth into a sign test on the original value.
 | 
						|
Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) {
 | 
						|
  Instruction *Val;
 | 
						|
  ICmpInst::Predicate Pred;
 | 
						|
  if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *X;
 | 
						|
  Type *XTy;
 | 
						|
 | 
						|
  Constant *C;
 | 
						|
  if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
 | 
						|
    XTy = X->getType();
 | 
						|
    unsigned XBitWidth = XTy->getScalarSizeInBits();
 | 
						|
    if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
 | 
						|
                                     APInt(XBitWidth, XBitWidth - 1))))
 | 
						|
      return nullptr;
 | 
						|
  } else if (isa<BinaryOperator>(Val) &&
 | 
						|
             (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
 | 
						|
                  cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
 | 
						|
                  /*AnalyzeForSignBitExtraction=*/true))) {
 | 
						|
    XTy = X->getType();
 | 
						|
  } else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ICmpInst::Create(Instruction::ICmp,
 | 
						|
                          Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
 | 
						|
                                                    : ICmpInst::ICMP_SLT,
 | 
						|
                          X, ConstantInt::getNullValue(XTy));
 | 
						|
}
 | 
						|
 | 
						|
// Handle  icmp pred X, 0
 | 
						|
Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
 | 
						|
  CmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  if (!match(Cmp.getOperand(1), m_Zero()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
 | 
						|
  if (Pred == ICmpInst::ICMP_SGT) {
 | 
						|
    Value *A, *B;
 | 
						|
    SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
 | 
						|
    if (SPR.Flavor == SPF_SMIN) {
 | 
						|
      if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
 | 
						|
        return new ICmpInst(Pred, B, Cmp.getOperand(1));
 | 
						|
      if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
 | 
						|
        return new ICmpInst(Pred, A, Cmp.getOperand(1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
 | 
						|
    return New;
 | 
						|
 | 
						|
  // Given:
 | 
						|
  //   icmp eq/ne (urem %x, %y), 0
 | 
						|
  // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
 | 
						|
  //   icmp eq/ne %x, 0
 | 
						|
  Value *X, *Y;
 | 
						|
  if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
 | 
						|
      ICmpInst::isEquality(Pred)) {
 | 
						|
    KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
 | 
						|
    KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
 | 
						|
    if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
 | 
						|
      return new ICmpInst(Pred, X, Cmp.getOperand(1));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp Pred X, C.
 | 
						|
/// TODO: This code structure does not make sense. The saturating add fold
 | 
						|
/// should be moved to some other helper and extended as noted below (it is also
 | 
						|
/// possible that code has been made unnecessary - do we canonicalize IR to
 | 
						|
/// overflow/saturating intrinsics or not?).
 | 
						|
Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
 | 
						|
  // Match the following pattern, which is a common idiom when writing
 | 
						|
  // overflow-safe integer arithmetic functions. The source performs an addition
 | 
						|
  // in wider type and explicitly checks for overflow using comparisons against
 | 
						|
  // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
 | 
						|
  //
 | 
						|
  // TODO: This could probably be generalized to handle other overflow-safe
 | 
						|
  // operations if we worked out the formulas to compute the appropriate magic
 | 
						|
  // constants.
 | 
						|
  //
 | 
						|
  // sum = a + b
 | 
						|
  // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
 | 
						|
  CmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
 | 
						|
  Value *A, *B;
 | 
						|
  ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
 | 
						|
  if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
 | 
						|
      match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
 | 
						|
    if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
 | 
						|
      return Res;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Canonicalize icmp instructions based on dominating conditions.
 | 
						|
Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
 | 
						|
  // This is a cheap/incomplete check for dominance - just match a single
 | 
						|
  // predecessor with a conditional branch.
 | 
						|
  BasicBlock *CmpBB = Cmp.getParent();
 | 
						|
  BasicBlock *DomBB = CmpBB->getSinglePredecessor();
 | 
						|
  if (!DomBB)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *DomCond;
 | 
						|
  BasicBlock *TrueBB, *FalseBB;
 | 
						|
  if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
 | 
						|
         "Predecessor block does not point to successor?");
 | 
						|
 | 
						|
  // The branch should get simplified. Don't bother simplifying this condition.
 | 
						|
  if (TrueBB == FalseBB)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Try to simplify this compare to T/F based on the dominating condition.
 | 
						|
  Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
 | 
						|
  if (Imp)
 | 
						|
    return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
 | 
						|
 | 
						|
  CmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
 | 
						|
  ICmpInst::Predicate DomPred;
 | 
						|
  const APInt *C, *DomC;
 | 
						|
  if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
 | 
						|
      match(Y, m_APInt(C))) {
 | 
						|
    // We have 2 compares of a variable with constants. Calculate the constant
 | 
						|
    // ranges of those compares to see if we can transform the 2nd compare:
 | 
						|
    // DomBB:
 | 
						|
    //   DomCond = icmp DomPred X, DomC
 | 
						|
    //   br DomCond, CmpBB, FalseBB
 | 
						|
    // CmpBB:
 | 
						|
    //   Cmp = icmp Pred X, C
 | 
						|
    ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
 | 
						|
    ConstantRange DominatingCR =
 | 
						|
        (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
 | 
						|
                          : ConstantRange::makeExactICmpRegion(
 | 
						|
                                CmpInst::getInversePredicate(DomPred), *DomC);
 | 
						|
    ConstantRange Intersection = DominatingCR.intersectWith(CR);
 | 
						|
    ConstantRange Difference = DominatingCR.difference(CR);
 | 
						|
    if (Intersection.isEmptySet())
 | 
						|
      return replaceInstUsesWith(Cmp, Builder.getFalse());
 | 
						|
    if (Difference.isEmptySet())
 | 
						|
      return replaceInstUsesWith(Cmp, Builder.getTrue());
 | 
						|
 | 
						|
    // Canonicalizing a sign bit comparison that gets used in a branch,
 | 
						|
    // pessimizes codegen by generating branch on zero instruction instead
 | 
						|
    // of a test and branch. So we avoid canonicalizing in such situations
 | 
						|
    // because test and branch instruction has better branch displacement
 | 
						|
    // than compare and branch instruction.
 | 
						|
    bool UnusedBit;
 | 
						|
    bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
 | 
						|
    if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (const APInt *EqC = Intersection.getSingleElement())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
 | 
						|
    if (const APInt *NeC = Difference.getSingleElement())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (trunc X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
 | 
						|
                                                 TruncInst *Trunc,
 | 
						|
                                                 const APInt &C) {
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  Value *X = Trunc->getOperand(0);
 | 
						|
  if (C.isOneValue() && C.getBitWidth() > 1) {
 | 
						|
    // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
 | 
						|
    Value *V = nullptr;
 | 
						|
    if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLT, V,
 | 
						|
                          ConstantInt::get(V->getType(), 1));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Cmp.isEquality() && Trunc->hasOneUse()) {
 | 
						|
    // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
 | 
						|
    // of the high bits truncated out of x are known.
 | 
						|
    unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
 | 
						|
             SrcBits = X->getType()->getScalarSizeInBits();
 | 
						|
    KnownBits Known = computeKnownBits(X, 0, &Cmp);
 | 
						|
 | 
						|
    // If all the high bits are known, we can do this xform.
 | 
						|
    if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
 | 
						|
      // Pull in the high bits from known-ones set.
 | 
						|
      APInt NewRHS = C.zext(SrcBits);
 | 
						|
      NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (xor X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
 | 
						|
                                               BinaryOperator *Xor,
 | 
						|
                                               const APInt &C) {
 | 
						|
  Value *X = Xor->getOperand(0);
 | 
						|
  Value *Y = Xor->getOperand(1);
 | 
						|
  const APInt *XorC;
 | 
						|
  if (!match(Y, m_APInt(XorC)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If this is a comparison that tests the signbit (X < 0) or (x > -1),
 | 
						|
  // fold the xor.
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  bool TrueIfSigned = false;
 | 
						|
  if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
 | 
						|
 | 
						|
    // If the sign bit of the XorCst is not set, there is no change to
 | 
						|
    // the operation, just stop using the Xor.
 | 
						|
    if (!XorC->isNegative())
 | 
						|
      return replaceOperand(Cmp, 0, X);
 | 
						|
 | 
						|
    // Emit the opposite comparison.
 | 
						|
    if (TrueIfSigned)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGT, X,
 | 
						|
                          ConstantInt::getAllOnesValue(X->getType()));
 | 
						|
    else
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLT, X,
 | 
						|
                          ConstantInt::getNullValue(X->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Xor->hasOneUse()) {
 | 
						|
    // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
 | 
						|
    if (!Cmp.isEquality() && XorC->isSignMask()) {
 | 
						|
      Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
 | 
						|
                            : Cmp.getSignedPredicate();
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
 | 
						|
    }
 | 
						|
 | 
						|
    // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
 | 
						|
    if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
 | 
						|
      Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
 | 
						|
                            : Cmp.getSignedPredicate();
 | 
						|
      Pred = Cmp.getSwappedPredicate(Pred);
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Mask constant magic can eliminate an 'xor' with unsigned compares.
 | 
						|
  if (Pred == ICmpInst::ICMP_UGT) {
 | 
						|
    // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
 | 
						|
    if (*XorC == ~C && (C + 1).isPowerOf2())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
 | 
						|
    // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
 | 
						|
    if (*XorC == C && (C + 1).isPowerOf2())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
 | 
						|
  }
 | 
						|
  if (Pred == ICmpInst::ICMP_ULT) {
 | 
						|
    // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
 | 
						|
    if (*XorC == -C && C.isPowerOf2())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_UGT, X,
 | 
						|
                          ConstantInt::get(X->getType(), ~C));
 | 
						|
    // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
 | 
						|
    if (*XorC == C && (-C).isPowerOf2())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_UGT, X,
 | 
						|
                          ConstantInt::get(X->getType(), ~C));
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (and (sh X, Y), C2), C1.
 | 
						|
Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
 | 
						|
                                            const APInt &C1, const APInt &C2) {
 | 
						|
  BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
 | 
						|
  if (!Shift || !Shift->isShift())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
 | 
						|
  // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
 | 
						|
  // code produced by the clang front-end, for bitfield access.
 | 
						|
  // This seemingly simple opportunity to fold away a shift turns out to be
 | 
						|
  // rather complicated. See PR17827 for details.
 | 
						|
  unsigned ShiftOpcode = Shift->getOpcode();
 | 
						|
  bool IsShl = ShiftOpcode == Instruction::Shl;
 | 
						|
  const APInt *C3;
 | 
						|
  if (match(Shift->getOperand(1), m_APInt(C3))) {
 | 
						|
    APInt NewAndCst, NewCmpCst;
 | 
						|
    bool AnyCmpCstBitsShiftedOut;
 | 
						|
    if (ShiftOpcode == Instruction::Shl) {
 | 
						|
      // For a left shift, we can fold if the comparison is not signed. We can
 | 
						|
      // also fold a signed comparison if the mask value and comparison value
 | 
						|
      // are not negative. These constraints may not be obvious, but we can
 | 
						|
      // prove that they are correct using an SMT solver.
 | 
						|
      if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      NewCmpCst = C1.lshr(*C3);
 | 
						|
      NewAndCst = C2.lshr(*C3);
 | 
						|
      AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
 | 
						|
    } else if (ShiftOpcode == Instruction::LShr) {
 | 
						|
      // For a logical right shift, we can fold if the comparison is not signed.
 | 
						|
      // We can also fold a signed comparison if the shifted mask value and the
 | 
						|
      // shifted comparison value are not negative. These constraints may not be
 | 
						|
      // obvious, but we can prove that they are correct using an SMT solver.
 | 
						|
      NewCmpCst = C1.shl(*C3);
 | 
						|
      NewAndCst = C2.shl(*C3);
 | 
						|
      AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
 | 
						|
      if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
 | 
						|
        return nullptr;
 | 
						|
    } else {
 | 
						|
      // For an arithmetic shift, check that both constants don't use (in a
 | 
						|
      // signed sense) the top bits being shifted out.
 | 
						|
      assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
 | 
						|
      NewCmpCst = C1.shl(*C3);
 | 
						|
      NewAndCst = C2.shl(*C3);
 | 
						|
      AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
 | 
						|
      if (NewAndCst.ashr(*C3) != C2)
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (AnyCmpCstBitsShiftedOut) {
 | 
						|
      // If we shifted bits out, the fold is not going to work out. As a
 | 
						|
      // special case, check to see if this means that the result is always
 | 
						|
      // true or false now.
 | 
						|
      if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
 | 
						|
        return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
 | 
						|
      if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
 | 
						|
        return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
 | 
						|
    } else {
 | 
						|
      Value *NewAnd = Builder.CreateAnd(
 | 
						|
          Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
 | 
						|
      return new ICmpInst(Cmp.getPredicate(),
 | 
						|
          NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
 | 
						|
  // preferable because it allows the C2 << Y expression to be hoisted out of a
 | 
						|
  // loop if Y is invariant and X is not.
 | 
						|
  if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
 | 
						|
      !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
 | 
						|
    // Compute C2 << Y.
 | 
						|
    Value *NewShift =
 | 
						|
        IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
 | 
						|
              : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
 | 
						|
 | 
						|
    // Compute X & (C2 << Y).
 | 
						|
    Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
 | 
						|
    return replaceOperand(Cmp, 0, NewAnd);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (and X, C2), C1.
 | 
						|
Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
 | 
						|
                                                 BinaryOperator *And,
 | 
						|
                                                 const APInt &C1) {
 | 
						|
  bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
 | 
						|
 | 
						|
  // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
 | 
						|
  // TODO: We canonicalize to the longer form for scalars because we have
 | 
						|
  // better analysis/folds for icmp, and codegen may be better with icmp.
 | 
						|
  if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
 | 
						|
      match(And->getOperand(1), m_One()))
 | 
						|
    return new TruncInst(And->getOperand(0), Cmp.getType());
 | 
						|
 | 
						|
  const APInt *C2;
 | 
						|
  Value *X;
 | 
						|
  if (!match(And, m_And(m_Value(X), m_APInt(C2))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Don't perform the following transforms if the AND has multiple uses
 | 
						|
  if (!And->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Cmp.isEquality() && C1.isNullValue()) {
 | 
						|
    // Restrict this fold to single-use 'and' (PR10267).
 | 
						|
    // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
 | 
						|
    if (C2->isSignMask()) {
 | 
						|
      Constant *Zero = Constant::getNullValue(X->getType());
 | 
						|
      auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
 | 
						|
      return new ICmpInst(NewPred, X, Zero);
 | 
						|
    }
 | 
						|
 | 
						|
    // Restrict this fold only for single-use 'and' (PR10267).
 | 
						|
    // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
 | 
						|
    if ((~(*C2) + 1).isPowerOf2()) {
 | 
						|
      Constant *NegBOC =
 | 
						|
          ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
 | 
						|
      auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
 | 
						|
      return new ICmpInst(NewPred, X, NegBOC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the LHS is an 'and' of a truncate and we can widen the and/compare to
 | 
						|
  // the input width without changing the value produced, eliminate the cast:
 | 
						|
  //
 | 
						|
  // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
 | 
						|
  //
 | 
						|
  // We can do this transformation if the constants do not have their sign bits
 | 
						|
  // set or if it is an equality comparison. Extending a relational comparison
 | 
						|
  // when we're checking the sign bit would not work.
 | 
						|
  Value *W;
 | 
						|
  if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
 | 
						|
      (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
 | 
						|
    // TODO: Is this a good transform for vectors? Wider types may reduce
 | 
						|
    // throughput. Should this transform be limited (even for scalars) by using
 | 
						|
    // shouldChangeType()?
 | 
						|
    if (!Cmp.getType()->isVectorTy()) {
 | 
						|
      Type *WideType = W->getType();
 | 
						|
      unsigned WideScalarBits = WideType->getScalarSizeInBits();
 | 
						|
      Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
 | 
						|
      Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
 | 
						|
      Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
 | 
						|
      return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
 | 
						|
    return I;
 | 
						|
 | 
						|
  // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
 | 
						|
  // (icmp pred (and A, (or (shl 1, B), 1), 0))
 | 
						|
  //
 | 
						|
  // iff pred isn't signed
 | 
						|
  if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
 | 
						|
      match(And->getOperand(1), m_One())) {
 | 
						|
    Constant *One = cast<Constant>(And->getOperand(1));
 | 
						|
    Value *Or = And->getOperand(0);
 | 
						|
    Value *A, *B, *LShr;
 | 
						|
    if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
 | 
						|
        match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
 | 
						|
      unsigned UsesRemoved = 0;
 | 
						|
      if (And->hasOneUse())
 | 
						|
        ++UsesRemoved;
 | 
						|
      if (Or->hasOneUse())
 | 
						|
        ++UsesRemoved;
 | 
						|
      if (LShr->hasOneUse())
 | 
						|
        ++UsesRemoved;
 | 
						|
 | 
						|
      // Compute A & ((1 << B) | 1)
 | 
						|
      Value *NewOr = nullptr;
 | 
						|
      if (auto *C = dyn_cast<Constant>(B)) {
 | 
						|
        if (UsesRemoved >= 1)
 | 
						|
          NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
 | 
						|
      } else {
 | 
						|
        if (UsesRemoved >= 3)
 | 
						|
          NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
 | 
						|
                                                     /*HasNUW=*/true),
 | 
						|
                                   One, Or->getName());
 | 
						|
      }
 | 
						|
      if (NewOr) {
 | 
						|
        Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
 | 
						|
        return replaceOperand(Cmp, 0, NewAnd);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (and X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
 | 
						|
                                               BinaryOperator *And,
 | 
						|
                                               const APInt &C) {
 | 
						|
  if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
 | 
						|
    return I;
 | 
						|
 | 
						|
  // TODO: These all require that Y is constant too, so refactor with the above.
 | 
						|
 | 
						|
  // Try to optimize things like "A[i] & 42 == 0" to index computations.
 | 
						|
  Value *X = And->getOperand(0);
 | 
						|
  Value *Y = And->getOperand(1);
 | 
						|
  if (auto *LI = dyn_cast<LoadInst>(X))
 | 
						|
    if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
 | 
						|
      if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
 | 
						|
        if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
 | 
						|
            !LI->isVolatile() && isa<ConstantInt>(Y)) {
 | 
						|
          ConstantInt *C2 = cast<ConstantInt>(Y);
 | 
						|
          if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
 | 
						|
            return Res;
 | 
						|
        }
 | 
						|
 | 
						|
  if (!Cmp.isEquality())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // X & -C == -C -> X >  u ~C
 | 
						|
  // X & -C != -C -> X <= u ~C
 | 
						|
  //   iff C is a power of 2
 | 
						|
  if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
 | 
						|
    auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
 | 
						|
                                                          : CmpInst::ICMP_ULE;
 | 
						|
    return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
 | 
						|
  }
 | 
						|
 | 
						|
  // (X & C2) == 0 -> (trunc X) >= 0
 | 
						|
  // (X & C2) != 0 -> (trunc X) <  0
 | 
						|
  //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
 | 
						|
  const APInt *C2;
 | 
						|
  if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
 | 
						|
    int32_t ExactLogBase2 = C2->exactLogBase2();
 | 
						|
    if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
 | 
						|
      Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
 | 
						|
      if (And->getType()->isVectorTy())
 | 
						|
        NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
 | 
						|
      Value *Trunc = Builder.CreateTrunc(X, NTy);
 | 
						|
      auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
 | 
						|
                                                            : CmpInst::ICMP_SLT;
 | 
						|
      return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (or X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
 | 
						|
                                              const APInt &C) {
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  if (C.isOneValue()) {
 | 
						|
    // icmp slt signum(V) 1 --> icmp slt V, 1
 | 
						|
    Value *V = nullptr;
 | 
						|
    if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLT, V,
 | 
						|
                          ConstantInt::get(V->getType(), 1));
 | 
						|
  }
 | 
						|
 | 
						|
  Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
 | 
						|
  if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) {
 | 
						|
    // X | C == C --> X <=u C
 | 
						|
    // X | C != C --> X  >u C
 | 
						|
    //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
 | 
						|
    if ((C + 1).isPowerOf2()) {
 | 
						|
      Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
 | 
						|
      return new ICmpInst(Pred, OrOp0, OrOp1);
 | 
						|
    }
 | 
						|
    // More general: are all bits outside of a mask constant set or not set?
 | 
						|
    // X | C == C --> (X & ~C) == 0
 | 
						|
    // X | C != C --> (X & ~C) != 0
 | 
						|
    if (Or->hasOneUse()) {
 | 
						|
      Value *A = Builder.CreateAnd(OrOp0, ~C);
 | 
						|
      return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *P, *Q;
 | 
						|
  if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
 | 
						|
    // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
 | 
						|
    // -> and (icmp eq P, null), (icmp eq Q, null).
 | 
						|
    Value *CmpP =
 | 
						|
        Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
 | 
						|
    Value *CmpQ =
 | 
						|
        Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
 | 
						|
    auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
 | 
						|
    return BinaryOperator::Create(BOpc, CmpP, CmpQ);
 | 
						|
  }
 | 
						|
 | 
						|
  // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
 | 
						|
  // a shorter form that has more potential to be folded even further.
 | 
						|
  Value *X1, *X2, *X3, *X4;
 | 
						|
  if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
 | 
						|
      match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
 | 
						|
    // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
 | 
						|
    // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
 | 
						|
    Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
 | 
						|
    Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
 | 
						|
    auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
 | 
						|
    return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (mul X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
 | 
						|
                                               BinaryOperator *Mul,
 | 
						|
                                               const APInt &C) {
 | 
						|
  const APInt *MulC;
 | 
						|
  if (!match(Mul->getOperand(1), m_APInt(MulC)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If this is a test of the sign bit and the multiply is sign-preserving with
 | 
						|
  // a constant operand, use the multiply LHS operand instead.
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
 | 
						|
    if (MulC->isNegative())
 | 
						|
      Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
    return new ICmpInst(Pred, Mul->getOperand(0),
 | 
						|
                        Constant::getNullValue(Mul->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (shl 1, Y), C.
 | 
						|
static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
 | 
						|
                                   const APInt &C) {
 | 
						|
  Value *Y;
 | 
						|
  if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *ShiftType = Shl->getType();
 | 
						|
  unsigned TypeBits = C.getBitWidth();
 | 
						|
  bool CIsPowerOf2 = C.isPowerOf2();
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  if (Cmp.isUnsigned()) {
 | 
						|
    // (1 << Y) pred C -> Y pred Log2(C)
 | 
						|
    if (!CIsPowerOf2) {
 | 
						|
      // (1 << Y) <  30 -> Y <= 4
 | 
						|
      // (1 << Y) <= 30 -> Y <= 4
 | 
						|
      // (1 << Y) >= 30 -> Y >  4
 | 
						|
      // (1 << Y) >  30 -> Y >  4
 | 
						|
      if (Pred == ICmpInst::ICMP_ULT)
 | 
						|
        Pred = ICmpInst::ICMP_ULE;
 | 
						|
      else if (Pred == ICmpInst::ICMP_UGE)
 | 
						|
        Pred = ICmpInst::ICMP_UGT;
 | 
						|
    }
 | 
						|
 | 
						|
    // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
 | 
						|
    // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
 | 
						|
    unsigned CLog2 = C.logBase2();
 | 
						|
    if (CLog2 == TypeBits - 1) {
 | 
						|
      if (Pred == ICmpInst::ICMP_UGE)
 | 
						|
        Pred = ICmpInst::ICMP_EQ;
 | 
						|
      else if (Pred == ICmpInst::ICMP_ULT)
 | 
						|
        Pred = ICmpInst::ICMP_NE;
 | 
						|
    }
 | 
						|
    return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
 | 
						|
  } else if (Cmp.isSigned()) {
 | 
						|
    Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
 | 
						|
    if (C.isAllOnesValue()) {
 | 
						|
      // (1 << Y) <= -1 -> Y == 31
 | 
						|
      if (Pred == ICmpInst::ICMP_SLE)
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
 | 
						|
 | 
						|
      // (1 << Y) >  -1 -> Y != 31
 | 
						|
      if (Pred == ICmpInst::ICMP_SGT)
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
 | 
						|
    } else if (!C) {
 | 
						|
      // (1 << Y) <  0 -> Y == 31
 | 
						|
      // (1 << Y) <= 0 -> Y == 31
 | 
						|
      if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
 | 
						|
 | 
						|
      // (1 << Y) >= 0 -> Y != 31
 | 
						|
      // (1 << Y) >  0 -> Y != 31
 | 
						|
      if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
 | 
						|
    }
 | 
						|
  } else if (Cmp.isEquality() && CIsPowerOf2) {
 | 
						|
    return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (shl X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
 | 
						|
                                               BinaryOperator *Shl,
 | 
						|
                                               const APInt &C) {
 | 
						|
  const APInt *ShiftVal;
 | 
						|
  if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
 | 
						|
    return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
 | 
						|
 | 
						|
  const APInt *ShiftAmt;
 | 
						|
  if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
 | 
						|
    return foldICmpShlOne(Cmp, Shl, C);
 | 
						|
 | 
						|
  // Check that the shift amount is in range. If not, don't perform undefined
 | 
						|
  // shifts. When the shift is visited, it will be simplified.
 | 
						|
  unsigned TypeBits = C.getBitWidth();
 | 
						|
  if (ShiftAmt->uge(TypeBits))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  Value *X = Shl->getOperand(0);
 | 
						|
  Type *ShType = Shl->getType();
 | 
						|
 | 
						|
  // NSW guarantees that we are only shifting out sign bits from the high bits,
 | 
						|
  // so we can ASHR the compare constant without needing a mask and eliminate
 | 
						|
  // the shift.
 | 
						|
  if (Shl->hasNoSignedWrap()) {
 | 
						|
    if (Pred == ICmpInst::ICMP_SGT) {
 | 
						|
      // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
 | 
						|
      APInt ShiftedC = C.ashr(*ShiftAmt);
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | 
						|
    }
 | 
						|
    if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
 | 
						|
        C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
 | 
						|
      APInt ShiftedC = C.ashr(*ShiftAmt);
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | 
						|
    }
 | 
						|
    if (Pred == ICmpInst::ICMP_SLT) {
 | 
						|
      // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
 | 
						|
      // (X << S) <=s C is equiv to X <=s (C >> S) for all C
 | 
						|
      // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
 | 
						|
      // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
 | 
						|
      assert(!C.isMinSignedValue() && "Unexpected icmp slt");
 | 
						|
      APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | 
						|
    }
 | 
						|
    // If this is a signed comparison to 0 and the shift is sign preserving,
 | 
						|
    // use the shift LHS operand instead; isSignTest may change 'Pred', so only
 | 
						|
    // do that if we're sure to not continue on in this function.
 | 
						|
    if (isSignTest(Pred, C))
 | 
						|
      return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
 | 
						|
  }
 | 
						|
 | 
						|
  // NUW guarantees that we are only shifting out zero bits from the high bits,
 | 
						|
  // so we can LSHR the compare constant without needing a mask and eliminate
 | 
						|
  // the shift.
 | 
						|
  if (Shl->hasNoUnsignedWrap()) {
 | 
						|
    if (Pred == ICmpInst::ICMP_UGT) {
 | 
						|
      // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
 | 
						|
      APInt ShiftedC = C.lshr(*ShiftAmt);
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | 
						|
    }
 | 
						|
    if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
 | 
						|
        C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
 | 
						|
      APInt ShiftedC = C.lshr(*ShiftAmt);
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | 
						|
    }
 | 
						|
    if (Pred == ICmpInst::ICMP_ULT) {
 | 
						|
      // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
 | 
						|
      // (X << S) <=u C is equiv to X <=u (C >> S) for all C
 | 
						|
      // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
 | 
						|
      // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
 | 
						|
      assert(C.ugt(0) && "ult 0 should have been eliminated");
 | 
						|
      APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Cmp.isEquality() && Shl->hasOneUse()) {
 | 
						|
    // Strength-reduce the shift into an 'and'.
 | 
						|
    Constant *Mask = ConstantInt::get(
 | 
						|
        ShType,
 | 
						|
        APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
 | 
						|
    Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
 | 
						|
    Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
 | 
						|
    return new ICmpInst(Pred, And, LShrC);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
 | 
						|
  bool TrueIfSigned = false;
 | 
						|
  if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
 | 
						|
    // (X << 31) <s 0  --> (X & 1) != 0
 | 
						|
    Constant *Mask = ConstantInt::get(
 | 
						|
        ShType,
 | 
						|
        APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
 | 
						|
    Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
 | 
						|
    return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
 | 
						|
                        And, Constant::getNullValue(ShType));
 | 
						|
  }
 | 
						|
 | 
						|
  // Simplify 'shl' inequality test into 'and' equality test.
 | 
						|
  if (Cmp.isUnsigned() && Shl->hasOneUse()) {
 | 
						|
    // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
 | 
						|
    if ((C + 1).isPowerOf2() &&
 | 
						|
        (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
 | 
						|
      Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
 | 
						|
      return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
 | 
						|
                                                     : ICmpInst::ICMP_NE,
 | 
						|
                          And, Constant::getNullValue(ShType));
 | 
						|
    }
 | 
						|
    // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
 | 
						|
    if (C.isPowerOf2() &&
 | 
						|
        (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
 | 
						|
      Value *And =
 | 
						|
          Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
 | 
						|
      return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
 | 
						|
                                                     : ICmpInst::ICMP_NE,
 | 
						|
                          And, Constant::getNullValue(ShType));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform (icmp pred iM (shl iM %v, N), C)
 | 
						|
  // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
 | 
						|
  // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
 | 
						|
  // This enables us to get rid of the shift in favor of a trunc that may be
 | 
						|
  // free on the target. It has the additional benefit of comparing to a
 | 
						|
  // smaller constant that may be more target-friendly.
 | 
						|
  unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
 | 
						|
  if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
 | 
						|
      DL.isLegalInteger(TypeBits - Amt)) {
 | 
						|
    Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
 | 
						|
    if (ShType->isVectorTy())
 | 
						|
      TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
 | 
						|
    Constant *NewC =
 | 
						|
        ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
 | 
						|
    return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp ({al}shr X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
 | 
						|
                                               BinaryOperator *Shr,
 | 
						|
                                               const APInt &C) {
 | 
						|
  // An exact shr only shifts out zero bits, so:
 | 
						|
  // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
 | 
						|
  Value *X = Shr->getOperand(0);
 | 
						|
  CmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
 | 
						|
      C.isNullValue())
 | 
						|
    return new ICmpInst(Pred, X, Cmp.getOperand(1));
 | 
						|
 | 
						|
  const APInt *ShiftVal;
 | 
						|
  if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
 | 
						|
    return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
 | 
						|
 | 
						|
  const APInt *ShiftAmt;
 | 
						|
  if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check that the shift amount is in range. If not, don't perform undefined
 | 
						|
  // shifts. When the shift is visited it will be simplified.
 | 
						|
  unsigned TypeBits = C.getBitWidth();
 | 
						|
  unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
 | 
						|
  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  bool IsAShr = Shr->getOpcode() == Instruction::AShr;
 | 
						|
  bool IsExact = Shr->isExact();
 | 
						|
  Type *ShrTy = Shr->getType();
 | 
						|
  // TODO: If we could guarantee that InstSimplify would handle all of the
 | 
						|
  // constant-value-based preconditions in the folds below, then we could assert
 | 
						|
  // those conditions rather than checking them. This is difficult because of
 | 
						|
  // undef/poison (PR34838).
 | 
						|
  if (IsAShr) {
 | 
						|
    if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
 | 
						|
      // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
 | 
						|
      // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
 | 
						|
      APInt ShiftedC = C.shl(ShAmtVal);
 | 
						|
      if (ShiftedC.ashr(ShAmtVal) == C)
 | 
						|
        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
 | 
						|
    }
 | 
						|
    if (Pred == CmpInst::ICMP_SGT) {
 | 
						|
      // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
 | 
						|
      APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
 | 
						|
      if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
 | 
						|
          (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
 | 
						|
        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
 | 
						|
      // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
 | 
						|
      // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
 | 
						|
      APInt ShiftedC = C.shl(ShAmtVal);
 | 
						|
      if (ShiftedC.lshr(ShAmtVal) == C)
 | 
						|
        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
 | 
						|
    }
 | 
						|
    if (Pred == CmpInst::ICMP_UGT) {
 | 
						|
      // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
 | 
						|
      APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
 | 
						|
      if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
 | 
						|
        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Cmp.isEquality())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Handle equality comparisons of shift-by-constant.
 | 
						|
 | 
						|
  // If the comparison constant changes with the shift, the comparison cannot
 | 
						|
  // succeed (bits of the comparison constant cannot match the shifted value).
 | 
						|
  // This should be known by InstSimplify and already be folded to true/false.
 | 
						|
  assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
 | 
						|
          (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
 | 
						|
         "Expected icmp+shr simplify did not occur.");
 | 
						|
 | 
						|
  // If the bits shifted out are known zero, compare the unshifted value:
 | 
						|
  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
 | 
						|
  if (Shr->isExact())
 | 
						|
    return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
 | 
						|
 | 
						|
  if (Shr->hasOneUse()) {
 | 
						|
    // Canonicalize the shift into an 'and':
 | 
						|
    // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
 | 
						|
    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
 | 
						|
    Constant *Mask = ConstantInt::get(ShrTy, Val);
 | 
						|
    Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
 | 
						|
    return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
 | 
						|
                                                BinaryOperator *SRem,
 | 
						|
                                                const APInt &C) {
 | 
						|
  // Match an 'is positive' or 'is negative' comparison of remainder by a
 | 
						|
  // constant power-of-2 value:
 | 
						|
  // (X % pow2C) sgt/slt 0
 | 
						|
  const ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // TODO: The one-use check is standard because we do not typically want to
 | 
						|
  //       create longer instruction sequences, but this might be a special-case
 | 
						|
  //       because srem is not good for analysis or codegen.
 | 
						|
  if (!SRem->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const APInt *DivisorC;
 | 
						|
  if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Mask off the sign bit and the modulo bits (low-bits).
 | 
						|
  Type *Ty = SRem->getType();
 | 
						|
  APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
 | 
						|
  Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
 | 
						|
  Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
 | 
						|
 | 
						|
  // For 'is positive?' check that the sign-bit is clear and at least 1 masked
 | 
						|
  // bit is set. Example:
 | 
						|
  // (i8 X % 32) s> 0 --> (X & 159) s> 0
 | 
						|
  if (Pred == ICmpInst::ICMP_SGT)
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
 | 
						|
 | 
						|
  // For 'is negative?' check that the sign-bit is set and at least 1 masked
 | 
						|
  // bit is set. Example:
 | 
						|
  // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
 | 
						|
  return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (udiv X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
 | 
						|
                                                BinaryOperator *UDiv,
 | 
						|
                                                const APInt &C) {
 | 
						|
  const APInt *C2;
 | 
						|
  if (!match(UDiv->getOperand(0), m_APInt(C2)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
 | 
						|
 | 
						|
  // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
 | 
						|
  Value *Y = UDiv->getOperand(1);
 | 
						|
  if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
 | 
						|
    assert(!C.isMaxValue() &&
 | 
						|
           "icmp ugt X, UINT_MAX should have been simplified already.");
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_ULE, Y,
 | 
						|
                        ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
 | 
						|
  }
 | 
						|
 | 
						|
  // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
 | 
						|
  if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
 | 
						|
    assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_UGT, Y,
 | 
						|
                        ConstantInt::get(Y->getType(), C2->udiv(C)));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp ({su}div X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
 | 
						|
                                               BinaryOperator *Div,
 | 
						|
                                               const APInt &C) {
 | 
						|
  // Fold: icmp pred ([us]div X, C2), C -> range test
 | 
						|
  // Fold this div into the comparison, producing a range check.
 | 
						|
  // Determine, based on the divide type, what the range is being
 | 
						|
  // checked.  If there is an overflow on the low or high side, remember
 | 
						|
  // it, otherwise compute the range [low, hi) bounding the new value.
 | 
						|
  // See: InsertRangeTest above for the kinds of replacements possible.
 | 
						|
  const APInt *C2;
 | 
						|
  if (!match(Div->getOperand(1), m_APInt(C2)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // FIXME: If the operand types don't match the type of the divide
 | 
						|
  // then don't attempt this transform. The code below doesn't have the
 | 
						|
  // logic to deal with a signed divide and an unsigned compare (and
 | 
						|
  // vice versa). This is because (x /s C2) <s C  produces different
 | 
						|
  // results than (x /s C2) <u C or (x /u C2) <s C or even
 | 
						|
  // (x /u C2) <u C.  Simply casting the operands and result won't
 | 
						|
  // work. :(  The if statement below tests that condition and bails
 | 
						|
  // if it finds it.
 | 
						|
  bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
 | 
						|
  if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
 | 
						|
  // INT_MIN will also fail if the divisor is 1. Although folds of all these
 | 
						|
  // division-by-constant cases should be present, we can not assert that they
 | 
						|
  // have happened before we reach this icmp instruction.
 | 
						|
  if (C2->isNullValue() || C2->isOneValue() ||
 | 
						|
      (DivIsSigned && C2->isAllOnesValue()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Compute Prod = C * C2. We are essentially solving an equation of
 | 
						|
  // form X / C2 = C. We solve for X by multiplying C2 and C.
 | 
						|
  // By solving for X, we can turn this into a range check instead of computing
 | 
						|
  // a divide.
 | 
						|
  APInt Prod = C * *C2;
 | 
						|
 | 
						|
  // Determine if the product overflows by seeing if the product is not equal to
 | 
						|
  // the divide. Make sure we do the same kind of divide as in the LHS
 | 
						|
  // instruction that we're folding.
 | 
						|
  bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
 | 
						|
  // If the division is known to be exact, then there is no remainder from the
 | 
						|
  // divide, so the covered range size is unit, otherwise it is the divisor.
 | 
						|
  APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
 | 
						|
 | 
						|
  // Figure out the interval that is being checked.  For example, a comparison
 | 
						|
  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
 | 
						|
  // Compute this interval based on the constants involved and the signedness of
 | 
						|
  // the compare/divide.  This computes a half-open interval, keeping track of
 | 
						|
  // whether either value in the interval overflows.  After analysis each
 | 
						|
  // overflow variable is set to 0 if it's corresponding bound variable is valid
 | 
						|
  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
 | 
						|
  int LoOverflow = 0, HiOverflow = 0;
 | 
						|
  APInt LoBound, HiBound;
 | 
						|
 | 
						|
  if (!DivIsSigned) {  // udiv
 | 
						|
    // e.g. X/5 op 3  --> [15, 20)
 | 
						|
    LoBound = Prod;
 | 
						|
    HiOverflow = LoOverflow = ProdOV;
 | 
						|
    if (!HiOverflow) {
 | 
						|
      // If this is not an exact divide, then many values in the range collapse
 | 
						|
      // to the same result value.
 | 
						|
      HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
 | 
						|
    }
 | 
						|
  } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
 | 
						|
    if (C.isNullValue()) {       // (X / pos) op 0
 | 
						|
      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
 | 
						|
      LoBound = -(RangeSize - 1);
 | 
						|
      HiBound = RangeSize;
 | 
						|
    } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
 | 
						|
      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
 | 
						|
      HiOverflow = LoOverflow = ProdOV;
 | 
						|
      if (!HiOverflow)
 | 
						|
        HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
 | 
						|
    } else {                       // (X / pos) op neg
 | 
						|
      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
 | 
						|
      HiBound = Prod + 1;
 | 
						|
      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
 | 
						|
      if (!LoOverflow) {
 | 
						|
        APInt DivNeg = -RangeSize;
 | 
						|
        LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (C2->isNegative()) { // Divisor is < 0.
 | 
						|
    if (Div->isExact())
 | 
						|
      RangeSize.negate();
 | 
						|
    if (C.isNullValue()) { // (X / neg) op 0
 | 
						|
      // e.g. X/-5 op 0  --> [-4, 5)
 | 
						|
      LoBound = RangeSize + 1;
 | 
						|
      HiBound = -RangeSize;
 | 
						|
      if (HiBound == *C2) {        // -INTMIN = INTMIN
 | 
						|
        HiOverflow = 1;            // [INTMIN+1, overflow)
 | 
						|
        HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
 | 
						|
      }
 | 
						|
    } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
 | 
						|
      // e.g. X/-5 op 3  --> [-19, -14)
 | 
						|
      HiBound = Prod + 1;
 | 
						|
      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
 | 
						|
      if (!LoOverflow)
 | 
						|
        LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
 | 
						|
    } else {                       // (X / neg) op neg
 | 
						|
      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
 | 
						|
      LoOverflow = HiOverflow = ProdOV;
 | 
						|
      if (!HiOverflow)
 | 
						|
        HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
 | 
						|
    }
 | 
						|
 | 
						|
    // Dividing by a negative swaps the condition.  LT <-> GT
 | 
						|
    Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *X = Div->getOperand(0);
 | 
						|
  switch (Pred) {
 | 
						|
    default: llvm_unreachable("Unhandled icmp opcode!");
 | 
						|
    case ICmpInst::ICMP_EQ:
 | 
						|
      if (LoOverflow && HiOverflow)
 | 
						|
        return replaceInstUsesWith(Cmp, Builder.getFalse());
 | 
						|
      if (HiOverflow)
 | 
						|
        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
 | 
						|
                            ICmpInst::ICMP_UGE, X,
 | 
						|
                            ConstantInt::get(Div->getType(), LoBound));
 | 
						|
      if (LoOverflow)
 | 
						|
        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
 | 
						|
                            ICmpInst::ICMP_ULT, X,
 | 
						|
                            ConstantInt::get(Div->getType(), HiBound));
 | 
						|
      return replaceInstUsesWith(
 | 
						|
          Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
 | 
						|
    case ICmpInst::ICMP_NE:
 | 
						|
      if (LoOverflow && HiOverflow)
 | 
						|
        return replaceInstUsesWith(Cmp, Builder.getTrue());
 | 
						|
      if (HiOverflow)
 | 
						|
        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
 | 
						|
                            ICmpInst::ICMP_ULT, X,
 | 
						|
                            ConstantInt::get(Div->getType(), LoBound));
 | 
						|
      if (LoOverflow)
 | 
						|
        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
 | 
						|
                            ICmpInst::ICMP_UGE, X,
 | 
						|
                            ConstantInt::get(Div->getType(), HiBound));
 | 
						|
      return replaceInstUsesWith(Cmp,
 | 
						|
                                 insertRangeTest(X, LoBound, HiBound,
 | 
						|
                                                 DivIsSigned, false));
 | 
						|
    case ICmpInst::ICMP_ULT:
 | 
						|
    case ICmpInst::ICMP_SLT:
 | 
						|
      if (LoOverflow == +1)   // Low bound is greater than input range.
 | 
						|
        return replaceInstUsesWith(Cmp, Builder.getTrue());
 | 
						|
      if (LoOverflow == -1)   // Low bound is less than input range.
 | 
						|
        return replaceInstUsesWith(Cmp, Builder.getFalse());
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
 | 
						|
    case ICmpInst::ICMP_UGT:
 | 
						|
    case ICmpInst::ICMP_SGT:
 | 
						|
      if (HiOverflow == +1)       // High bound greater than input range.
 | 
						|
        return replaceInstUsesWith(Cmp, Builder.getFalse());
 | 
						|
      if (HiOverflow == -1)       // High bound less than input range.
 | 
						|
        return replaceInstUsesWith(Cmp, Builder.getTrue());
 | 
						|
      if (Pred == ICmpInst::ICMP_UGT)
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_UGE, X,
 | 
						|
                            ConstantInt::get(Div->getType(), HiBound));
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGE, X,
 | 
						|
                          ConstantInt::get(Div->getType(), HiBound));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (sub X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
 | 
						|
                                               BinaryOperator *Sub,
 | 
						|
                                               const APInt &C) {
 | 
						|
  Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  const APInt *C2;
 | 
						|
  APInt SubResult;
 | 
						|
 | 
						|
  // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
 | 
						|
  if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
 | 
						|
    return new ICmpInst(Cmp.getPredicate(), Y,
 | 
						|
                        ConstantInt::get(Y->getType(), 0));
 | 
						|
 | 
						|
  // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
 | 
						|
  if (match(X, m_APInt(C2)) &&
 | 
						|
      ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
 | 
						|
       (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
 | 
						|
      !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
 | 
						|
    return new ICmpInst(Cmp.getSwappedPredicate(), Y,
 | 
						|
                        ConstantInt::get(Y->getType(), SubResult));
 | 
						|
 | 
						|
  // The following transforms are only worth it if the only user of the subtract
 | 
						|
  // is the icmp.
 | 
						|
  if (!Sub->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Sub->hasNoSignedWrap()) {
 | 
						|
    // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
 | 
						|
    if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
 | 
						|
 | 
						|
    // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
 | 
						|
    if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
 | 
						|
 | 
						|
    // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
 | 
						|
    if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
 | 
						|
 | 
						|
    // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
 | 
						|
    if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!match(X, m_APInt(C2)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // C2 - Y <u C -> (Y | (C - 1)) == C2
 | 
						|
  //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
 | 
						|
  if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
 | 
						|
      (*C2 & (C - 1)) == (C - 1))
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
 | 
						|
 | 
						|
  // C2 - Y >u C -> (Y | C) != C2
 | 
						|
  //   iff C2 & C == C and C + 1 is a power of 2
 | 
						|
  if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp (add X, Y), C.
 | 
						|
Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
 | 
						|
                                               BinaryOperator *Add,
 | 
						|
                                               const APInt &C) {
 | 
						|
  Value *Y = Add->getOperand(1);
 | 
						|
  const APInt *C2;
 | 
						|
  if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Fold icmp pred (add X, C2), C.
 | 
						|
  Value *X = Add->getOperand(0);
 | 
						|
  Type *Ty = Add->getType();
 | 
						|
  CmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
 | 
						|
  // If the add does not wrap, we can always adjust the compare by subtracting
 | 
						|
  // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
 | 
						|
  // are canonicalized to SGT/SLT/UGT/ULT.
 | 
						|
  if ((Add->hasNoSignedWrap() &&
 | 
						|
       (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
 | 
						|
      (Add->hasNoUnsignedWrap() &&
 | 
						|
       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
 | 
						|
    bool Overflow;
 | 
						|
    APInt NewC =
 | 
						|
        Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
 | 
						|
    // If there is overflow, the result must be true or false.
 | 
						|
    // TODO: Can we assert there is no overflow because InstSimplify always
 | 
						|
    // handles those cases?
 | 
						|
    if (!Overflow)
 | 
						|
      // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
 | 
						|
      return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
 | 
						|
  }
 | 
						|
 | 
						|
  auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
 | 
						|
  const APInt &Upper = CR.getUpper();
 | 
						|
  const APInt &Lower = CR.getLower();
 | 
						|
  if (Cmp.isSigned()) {
 | 
						|
    if (Lower.isSignMask())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
 | 
						|
    if (Upper.isSignMask())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
 | 
						|
  } else {
 | 
						|
    if (Lower.isMinValue())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
 | 
						|
    if (Upper.isMinValue())
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Add->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // X+C <u C2 -> (X & -C2) == C
 | 
						|
  //   iff C & (C2-1) == 0
 | 
						|
  //       C2 is a power of 2
 | 
						|
  if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
 | 
						|
                        ConstantExpr::getNeg(cast<Constant>(Y)));
 | 
						|
 | 
						|
  // X+C >u C2 -> (X & ~C2) != C
 | 
						|
  //   iff C & C2 == 0
 | 
						|
  //       C2+1 is a power of 2
 | 
						|
  if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
 | 
						|
                        ConstantExpr::getNeg(cast<Constant>(Y)));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
 | 
						|
                                           Value *&RHS, ConstantInt *&Less,
 | 
						|
                                           ConstantInt *&Equal,
 | 
						|
                                           ConstantInt *&Greater) {
 | 
						|
  // TODO: Generalize this to work with other comparison idioms or ensure
 | 
						|
  // they get canonicalized into this form.
 | 
						|
 | 
						|
  // select i1 (a == b),
 | 
						|
  //        i32 Equal,
 | 
						|
  //        i32 (select i1 (a < b), i32 Less, i32 Greater)
 | 
						|
  // where Equal, Less and Greater are placeholders for any three constants.
 | 
						|
  ICmpInst::Predicate PredA;
 | 
						|
  if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
 | 
						|
      !ICmpInst::isEquality(PredA))
 | 
						|
    return false;
 | 
						|
  Value *EqualVal = SI->getTrueValue();
 | 
						|
  Value *UnequalVal = SI->getFalseValue();
 | 
						|
  // We still can get non-canonical predicate here, so canonicalize.
 | 
						|
  if (PredA == ICmpInst::ICMP_NE)
 | 
						|
    std::swap(EqualVal, UnequalVal);
 | 
						|
  if (!match(EqualVal, m_ConstantInt(Equal)))
 | 
						|
    return false;
 | 
						|
  ICmpInst::Predicate PredB;
 | 
						|
  Value *LHS2, *RHS2;
 | 
						|
  if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
 | 
						|
                                  m_ConstantInt(Less), m_ConstantInt(Greater))))
 | 
						|
    return false;
 | 
						|
  // We can get predicate mismatch here, so canonicalize if possible:
 | 
						|
  // First, ensure that 'LHS' match.
 | 
						|
  if (LHS2 != LHS) {
 | 
						|
    // x sgt y <--> y slt x
 | 
						|
    std::swap(LHS2, RHS2);
 | 
						|
    PredB = ICmpInst::getSwappedPredicate(PredB);
 | 
						|
  }
 | 
						|
  if (LHS2 != LHS)
 | 
						|
    return false;
 | 
						|
  // We also need to canonicalize 'RHS'.
 | 
						|
  if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
 | 
						|
    // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
 | 
						|
    auto FlippedStrictness =
 | 
						|
        getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
 | 
						|
    if (!FlippedStrictness)
 | 
						|
      return false;
 | 
						|
    assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
 | 
						|
    RHS2 = FlippedStrictness->second;
 | 
						|
    // And kind-of perform the result swap.
 | 
						|
    std::swap(Less, Greater);
 | 
						|
    PredB = ICmpInst::ICMP_SLT;
 | 
						|
  }
 | 
						|
  return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
 | 
						|
                                                  SelectInst *Select,
 | 
						|
                                                  ConstantInt *C) {
 | 
						|
 | 
						|
  assert(C && "Cmp RHS should be a constant int!");
 | 
						|
  // If we're testing a constant value against the result of a three way
 | 
						|
  // comparison, the result can be expressed directly in terms of the
 | 
						|
  // original values being compared.  Note: We could possibly be more
 | 
						|
  // aggressive here and remove the hasOneUse test. The original select is
 | 
						|
  // really likely to simplify or sink when we remove a test of the result.
 | 
						|
  Value *OrigLHS, *OrigRHS;
 | 
						|
  ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
 | 
						|
  if (Cmp.hasOneUse() &&
 | 
						|
      matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
 | 
						|
                              C3GreaterThan)) {
 | 
						|
    assert(C1LessThan && C2Equal && C3GreaterThan);
 | 
						|
 | 
						|
    bool TrueWhenLessThan =
 | 
						|
        ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
 | 
						|
            ->isAllOnesValue();
 | 
						|
    bool TrueWhenEqual =
 | 
						|
        ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
 | 
						|
            ->isAllOnesValue();
 | 
						|
    bool TrueWhenGreaterThan =
 | 
						|
        ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
 | 
						|
            ->isAllOnesValue();
 | 
						|
 | 
						|
    // This generates the new instruction that will replace the original Cmp
 | 
						|
    // Instruction. Instead of enumerating the various combinations when
 | 
						|
    // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
 | 
						|
    // false, we rely on chaining of ORs and future passes of InstCombine to
 | 
						|
    // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
 | 
						|
 | 
						|
    // When none of the three constants satisfy the predicate for the RHS (C),
 | 
						|
    // the entire original Cmp can be simplified to a false.
 | 
						|
    Value *Cond = Builder.getFalse();
 | 
						|
    if (TrueWhenLessThan)
 | 
						|
      Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
 | 
						|
                                                       OrigLHS, OrigRHS));
 | 
						|
    if (TrueWhenEqual)
 | 
						|
      Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
 | 
						|
                                                       OrigLHS, OrigRHS));
 | 
						|
    if (TrueWhenGreaterThan)
 | 
						|
      Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
 | 
						|
                                                       OrigLHS, OrigRHS));
 | 
						|
 | 
						|
    return replaceInstUsesWith(Cmp, Cond);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *foldICmpBitCast(ICmpInst &Cmp,
 | 
						|
                                    InstCombiner::BuilderTy &Builder) {
 | 
						|
  auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
 | 
						|
  if (!Bitcast)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  Value *Op1 = Cmp.getOperand(1);
 | 
						|
  Value *BCSrcOp = Bitcast->getOperand(0);
 | 
						|
 | 
						|
  // Make sure the bitcast doesn't change the number of vector elements.
 | 
						|
  if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
 | 
						|
          Bitcast->getDestTy()->getScalarSizeInBits()) {
 | 
						|
    // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
 | 
						|
    Value *X;
 | 
						|
    if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
 | 
						|
      // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
 | 
						|
      // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
 | 
						|
      // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
 | 
						|
      // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
 | 
						|
      if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
 | 
						|
           Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
 | 
						|
          match(Op1, m_Zero()))
 | 
						|
        return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
 | 
						|
 | 
						|
      // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
 | 
						|
      if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
 | 
						|
        return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
 | 
						|
 | 
						|
      // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
 | 
						|
      if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
 | 
						|
        return new ICmpInst(Pred, X,
 | 
						|
                            ConstantInt::getAllOnesValue(X->getType()));
 | 
						|
    }
 | 
						|
 | 
						|
    // Zero-equality checks are preserved through unsigned floating-point casts:
 | 
						|
    // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
 | 
						|
    // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
 | 
						|
    if (match(BCSrcOp, m_UIToFP(m_Value(X))))
 | 
						|
      if (Cmp.isEquality() && match(Op1, m_Zero()))
 | 
						|
        return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Test to see if the operands of the icmp are casted versions of other
 | 
						|
  // values. If the ptr->ptr cast can be stripped off both arguments, do so.
 | 
						|
  if (Bitcast->getType()->isPointerTy() &&
 | 
						|
      (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
 | 
						|
    // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
 | 
						|
    // so eliminate it as well.
 | 
						|
    if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
 | 
						|
      Op1 = BC2->getOperand(0);
 | 
						|
 | 
						|
    Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
 | 
						|
    return new ICmpInst(Pred, BCSrcOp, Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Folding: icmp <pred> iN X, C
 | 
						|
  //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
 | 
						|
  //    and C is a splat of a K-bit pattern
 | 
						|
  //    and SC is a constant vector = <C', C', C', ..., C'>
 | 
						|
  // Into:
 | 
						|
  //   %E = extractelement <M x iK> %vec, i32 C'
 | 
						|
  //   icmp <pred> iK %E, trunc(C)
 | 
						|
  const APInt *C;
 | 
						|
  if (!match(Cmp.getOperand(1), m_APInt(C)) ||
 | 
						|
      !Bitcast->getType()->isIntegerTy() ||
 | 
						|
      !Bitcast->getSrcTy()->isIntOrIntVectorTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Vec;
 | 
						|
  Constant *Mask;
 | 
						|
  if (match(BCSrcOp,
 | 
						|
            m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
 | 
						|
    // Check whether every element of Mask is the same constant
 | 
						|
    if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
 | 
						|
      auto *VecTy = cast<VectorType>(BCSrcOp->getType());
 | 
						|
      auto *EltTy = cast<IntegerType>(VecTy->getElementType());
 | 
						|
      if (C->isSplat(EltTy->getBitWidth())) {
 | 
						|
        // Fold the icmp based on the value of C
 | 
						|
        // If C is M copies of an iK sized bit pattern,
 | 
						|
        // then:
 | 
						|
        //   =>  %E = extractelement <N x iK> %vec, i32 Elem
 | 
						|
        //       icmp <pred> iK %SplatVal, <pattern>
 | 
						|
        Value *Extract = Builder.CreateExtractElement(Vec, Elem);
 | 
						|
        Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
 | 
						|
        return new ICmpInst(Pred, Extract, NewC);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
 | 
						|
/// where X is some kind of instruction.
 | 
						|
Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
 | 
						|
  const APInt *C;
 | 
						|
  if (!match(Cmp.getOperand(1), m_APInt(C)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
 | 
						|
    switch (BO->getOpcode()) {
 | 
						|
    case Instruction::Xor:
 | 
						|
      if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      break;
 | 
						|
    case Instruction::And:
 | 
						|
      if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      break;
 | 
						|
    case Instruction::Or:
 | 
						|
      if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      break;
 | 
						|
    case Instruction::Mul:
 | 
						|
      if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      break;
 | 
						|
    case Instruction::Shl:
 | 
						|
      if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      break;
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
      if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      break;
 | 
						|
    case Instruction::SRem:
 | 
						|
      if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      break;
 | 
						|
    case Instruction::UDiv:
 | 
						|
      if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Instruction::SDiv:
 | 
						|
      if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      break;
 | 
						|
    case Instruction::Sub:
 | 
						|
      if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      break;
 | 
						|
    case Instruction::Add:
 | 
						|
      if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
 | 
						|
        return I;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // TODO: These folds could be refactored to be part of the above calls.
 | 
						|
    if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
 | 
						|
      return I;
 | 
						|
  }
 | 
						|
 | 
						|
  // Match against CmpInst LHS being instructions other than binary operators.
 | 
						|
 | 
						|
  if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
 | 
						|
    // For now, we only support constant integers while folding the
 | 
						|
    // ICMP(SELECT)) pattern. We can extend this to support vector of integers
 | 
						|
    // similar to the cases handled by binary ops above.
 | 
						|
    if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
 | 
						|
      if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
 | 
						|
        return I;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
 | 
						|
    if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
 | 
						|
      return I;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
 | 
						|
    if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
 | 
						|
      return I;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
 | 
						|
/// icmp eq/ne BO, C.
 | 
						|
Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
 | 
						|
                                                             BinaryOperator *BO,
 | 
						|
                                                             const APInt &C) {
 | 
						|
  // TODO: Some of these folds could work with arbitrary constants, but this
 | 
						|
  // function is limited to scalar and vector splat constants.
 | 
						|
  if (!Cmp.isEquality())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
 | 
						|
  Constant *RHS = cast<Constant>(Cmp.getOperand(1));
 | 
						|
  Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
 | 
						|
 | 
						|
  switch (BO->getOpcode()) {
 | 
						|
  case Instruction::SRem:
 | 
						|
    // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
 | 
						|
    if (C.isNullValue() && BO->hasOneUse()) {
 | 
						|
      const APInt *BOC;
 | 
						|
      if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
 | 
						|
        Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
 | 
						|
        return new ICmpInst(Pred, NewRem,
 | 
						|
                            Constant::getNullValue(BO->getType()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Add: {
 | 
						|
    // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
 | 
						|
    if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
 | 
						|
      if (BO->hasOneUse())
 | 
						|
        return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
 | 
						|
    } else if (C.isNullValue()) {
 | 
						|
      // Replace ((add A, B) != 0) with (A != -B) if A or B is
 | 
						|
      // efficiently invertible, or if the add has just this one use.
 | 
						|
      if (Value *NegVal = dyn_castNegVal(BOp1))
 | 
						|
        return new ICmpInst(Pred, BOp0, NegVal);
 | 
						|
      if (Value *NegVal = dyn_castNegVal(BOp0))
 | 
						|
        return new ICmpInst(Pred, NegVal, BOp1);
 | 
						|
      if (BO->hasOneUse()) {
 | 
						|
        Value *Neg = Builder.CreateNeg(BOp1);
 | 
						|
        Neg->takeName(BO);
 | 
						|
        return new ICmpInst(Pred, BOp0, Neg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Xor:
 | 
						|
    if (BO->hasOneUse()) {
 | 
						|
      if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
 | 
						|
        // For the xor case, we can xor two constants together, eliminating
 | 
						|
        // the explicit xor.
 | 
						|
        return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
 | 
						|
      } else if (C.isNullValue()) {
 | 
						|
        // Replace ((xor A, B) != 0) with (A != B)
 | 
						|
        return new ICmpInst(Pred, BOp0, BOp1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Sub:
 | 
						|
    if (BO->hasOneUse()) {
 | 
						|
      // Only check for constant LHS here, as constant RHS will be canonicalized
 | 
						|
      // to add and use the fold above.
 | 
						|
      if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
 | 
						|
        // Replace ((sub BOC, B) != C) with (B != BOC-C).
 | 
						|
        return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
 | 
						|
      } else if (C.isNullValue()) {
 | 
						|
        // Replace ((sub A, B) != 0) with (A != B).
 | 
						|
        return new ICmpInst(Pred, BOp0, BOp1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Or: {
 | 
						|
    const APInt *BOC;
 | 
						|
    if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
 | 
						|
      // Comparing if all bits outside of a constant mask are set?
 | 
						|
      // Replace (X | C) == -1 with (X & ~C) == ~C.
 | 
						|
      // This removes the -1 constant.
 | 
						|
      Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
 | 
						|
      Value *And = Builder.CreateAnd(BOp0, NotBOC);
 | 
						|
      return new ICmpInst(Pred, And, NotBOC);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::And: {
 | 
						|
    const APInt *BOC;
 | 
						|
    if (match(BOp1, m_APInt(BOC))) {
 | 
						|
      // If we have ((X & C) == C), turn it into ((X & C) != 0).
 | 
						|
      if (C == *BOC && C.isPowerOf2())
 | 
						|
        return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
 | 
						|
                            BO, Constant::getNullValue(RHS->getType()));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Mul:
 | 
						|
    if (C.isNullValue() && BO->hasNoSignedWrap()) {
 | 
						|
      const APInt *BOC;
 | 
						|
      if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
 | 
						|
        // The trivial case (mul X, 0) is handled by InstSimplify.
 | 
						|
        // General case : (mul X, C) != 0 iff X != 0
 | 
						|
        //                (mul X, C) == 0 iff X == 0
 | 
						|
        return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::UDiv:
 | 
						|
    if (C.isNullValue()) {
 | 
						|
      // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
 | 
						|
      auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
 | 
						|
      return new ICmpInst(NewPred, BOp1, BOp0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold an equality icmp with LLVM intrinsic and constant operand.
 | 
						|
Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
 | 
						|
                                                           IntrinsicInst *II,
 | 
						|
                                                           const APInt &C) {
 | 
						|
  Type *Ty = II->getType();
 | 
						|
  unsigned BitWidth = C.getBitWidth();
 | 
						|
  switch (II->getIntrinsicID()) {
 | 
						|
  case Intrinsic::bswap:
 | 
						|
    // bswap(A) == C  ->  A == bswap(C)
 | 
						|
    return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
 | 
						|
                        ConstantInt::get(Ty, C.byteSwap()));
 | 
						|
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz: {
 | 
						|
    // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
 | 
						|
    if (C == BitWidth)
 | 
						|
      return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
 | 
						|
                          ConstantInt::getNullValue(Ty));
 | 
						|
 | 
						|
    // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
 | 
						|
    // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
 | 
						|
    // Limit to one use to ensure we don't increase instruction count.
 | 
						|
    unsigned Num = C.getLimitedValue(BitWidth);
 | 
						|
    if (Num != BitWidth && II->hasOneUse()) {
 | 
						|
      bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
 | 
						|
      APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
 | 
						|
                               : APInt::getHighBitsSet(BitWidth, Num + 1);
 | 
						|
      APInt Mask2 = IsTrailing
 | 
						|
        ? APInt::getOneBitSet(BitWidth, Num)
 | 
						|
        : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
 | 
						|
      return new ICmpInst(Cmp.getPredicate(),
 | 
						|
          Builder.CreateAnd(II->getArgOperand(0), Mask1),
 | 
						|
          ConstantInt::get(Ty, Mask2));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::ctpop: {
 | 
						|
    // popcount(A) == 0  ->  A == 0 and likewise for !=
 | 
						|
    // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
 | 
						|
    bool IsZero = C.isNullValue();
 | 
						|
    if (IsZero || C == BitWidth)
 | 
						|
      return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
 | 
						|
          IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::uadd_sat: {
 | 
						|
    // uadd.sat(a, b) == 0  ->  (a | b) == 0
 | 
						|
    if (C.isNullValue()) {
 | 
						|
      Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
 | 
						|
      return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::usub_sat: {
 | 
						|
    // usub.sat(a, b) == 0  ->  a <= b
 | 
						|
    if (C.isNullValue()) {
 | 
						|
      ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
 | 
						|
          ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
 | 
						|
      return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
 | 
						|
Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
 | 
						|
                                                         IntrinsicInst *II,
 | 
						|
                                                         const APInt &C) {
 | 
						|
  if (Cmp.isEquality())
 | 
						|
    return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
 | 
						|
 | 
						|
  Type *Ty = II->getType();
 | 
						|
  unsigned BitWidth = C.getBitWidth();
 | 
						|
  switch (II->getIntrinsicID()) {
 | 
						|
  case Intrinsic::ctlz: {
 | 
						|
    // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
 | 
						|
    if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
 | 
						|
      unsigned Num = C.getLimitedValue();
 | 
						|
      APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
 | 
						|
      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
 | 
						|
                             II->getArgOperand(0), ConstantInt::get(Ty, Limit));
 | 
						|
    }
 | 
						|
 | 
						|
    // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
 | 
						|
    if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
 | 
						|
        C.uge(1) && C.ule(BitWidth)) {
 | 
						|
      unsigned Num = C.getLimitedValue();
 | 
						|
      APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
 | 
						|
      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
 | 
						|
                             II->getArgOperand(0), ConstantInt::get(Ty, Limit));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::cttz: {
 | 
						|
    // Limit to one use to ensure we don't increase instruction count.
 | 
						|
    if (!II->hasOneUse())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
 | 
						|
    if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
 | 
						|
      APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
 | 
						|
      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
 | 
						|
                             Builder.CreateAnd(II->getArgOperand(0), Mask),
 | 
						|
                             ConstantInt::getNullValue(Ty));
 | 
						|
    }
 | 
						|
 | 
						|
    // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
 | 
						|
    if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
 | 
						|
        C.uge(1) && C.ule(BitWidth)) {
 | 
						|
      APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
 | 
						|
      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
 | 
						|
                             Builder.CreateAnd(II->getArgOperand(0), Mask),
 | 
						|
                             ConstantInt::getNullValue(Ty));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Handle icmp with constant (but not simple integer constant) RHS.
 | 
						|
Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  Constant *RHSC = dyn_cast<Constant>(Op1);
 | 
						|
  Instruction *LHSI = dyn_cast<Instruction>(Op0);
 | 
						|
  if (!RHSC || !LHSI)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  switch (LHSI->getOpcode()) {
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
 | 
						|
    if (RHSC->isNullValue() &&
 | 
						|
        cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
 | 
						|
      return new ICmpInst(
 | 
						|
          I.getPredicate(), LHSI->getOperand(0),
 | 
						|
          Constant::getNullValue(LHSI->getOperand(0)->getType()));
 | 
						|
    break;
 | 
						|
  case Instruction::PHI:
 | 
						|
    // Only fold icmp into the PHI if the phi and icmp are in the same
 | 
						|
    // block.  If in the same block, we're encouraging jump threading.  If
 | 
						|
    // not, we are just pessimizing the code by making an i1 phi.
 | 
						|
    if (LHSI->getParent() == I.getParent())
 | 
						|
      if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
 | 
						|
        return NV;
 | 
						|
    break;
 | 
						|
  case Instruction::Select: {
 | 
						|
    // If either operand of the select is a constant, we can fold the
 | 
						|
    // comparison into the select arms, which will cause one to be
 | 
						|
    // constant folded and the select turned into a bitwise or.
 | 
						|
    Value *Op1 = nullptr, *Op2 = nullptr;
 | 
						|
    ConstantInt *CI = nullptr;
 | 
						|
    if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | 
						|
      Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
 | 
						|
      CI = dyn_cast<ConstantInt>(Op1);
 | 
						|
    }
 | 
						|
    if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | 
						|
      Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
 | 
						|
      CI = dyn_cast<ConstantInt>(Op2);
 | 
						|
    }
 | 
						|
 | 
						|
    // We only want to perform this transformation if it will not lead to
 | 
						|
    // additional code. This is true if either both sides of the select
 | 
						|
    // fold to a constant (in which case the icmp is replaced with a select
 | 
						|
    // which will usually simplify) or this is the only user of the
 | 
						|
    // select (in which case we are trading a select+icmp for a simpler
 | 
						|
    // select+icmp) or all uses of the select can be replaced based on
 | 
						|
    // dominance information ("Global cases").
 | 
						|
    bool Transform = false;
 | 
						|
    if (Op1 && Op2)
 | 
						|
      Transform = true;
 | 
						|
    else if (Op1 || Op2) {
 | 
						|
      // Local case
 | 
						|
      if (LHSI->hasOneUse())
 | 
						|
        Transform = true;
 | 
						|
      // Global cases
 | 
						|
      else if (CI && !CI->isZero())
 | 
						|
        // When Op1 is constant try replacing select with second operand.
 | 
						|
        // Otherwise Op2 is constant and try replacing select with first
 | 
						|
        // operand.
 | 
						|
        Transform =
 | 
						|
            replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
 | 
						|
    }
 | 
						|
    if (Transform) {
 | 
						|
      if (!Op1)
 | 
						|
        Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
 | 
						|
                                 I.getName());
 | 
						|
      if (!Op2)
 | 
						|
        Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
 | 
						|
                                 I.getName());
 | 
						|
      return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // icmp pred inttoptr(X), null -> icmp pred X, 0
 | 
						|
    if (RHSC->isNullValue() &&
 | 
						|
        DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
 | 
						|
      return new ICmpInst(
 | 
						|
          I.getPredicate(), LHSI->getOperand(0),
 | 
						|
          Constant::getNullValue(LHSI->getOperand(0)->getType()));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Load:
 | 
						|
    // Try to optimize things like "A[i] > 4" to index computations.
 | 
						|
    if (GetElementPtrInst *GEP =
 | 
						|
            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
 | 
						|
      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
 | 
						|
        if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
 | 
						|
            !cast<LoadInst>(LHSI)->isVolatile())
 | 
						|
          if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
 | 
						|
            return Res;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Some comparisons can be simplified.
 | 
						|
/// In this case, we are looking for comparisons that look like
 | 
						|
/// a check for a lossy truncation.
 | 
						|
/// Folds:
 | 
						|
///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
 | 
						|
/// Where Mask is some pattern that produces all-ones in low bits:
 | 
						|
///    (-1 >> y)
 | 
						|
///    ((-1 << y) >> y)     <- non-canonical, has extra uses
 | 
						|
///   ~(-1 << y)
 | 
						|
///    ((1 << y) + (-1))    <- non-canonical, has extra uses
 | 
						|
/// The Mask can be a constant, too.
 | 
						|
/// For some predicates, the operands are commutative.
 | 
						|
/// For others, x can only be on a specific side.
 | 
						|
static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
 | 
						|
                                          InstCombiner::BuilderTy &Builder) {
 | 
						|
  ICmpInst::Predicate SrcPred;
 | 
						|
  Value *X, *M, *Y;
 | 
						|
  auto m_VariableMask = m_CombineOr(
 | 
						|
      m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
 | 
						|
                  m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
 | 
						|
      m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
 | 
						|
                  m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
 | 
						|
  auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
 | 
						|
  if (!match(&I, m_c_ICmp(SrcPred,
 | 
						|
                          m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
 | 
						|
                          m_Deferred(X))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ICmpInst::Predicate DstPred;
 | 
						|
  switch (SrcPred) {
 | 
						|
  case ICmpInst::Predicate::ICMP_EQ:
 | 
						|
    //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
 | 
						|
    DstPred = ICmpInst::Predicate::ICMP_ULE;
 | 
						|
    break;
 | 
						|
  case ICmpInst::Predicate::ICMP_NE:
 | 
						|
    //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
 | 
						|
    DstPred = ICmpInst::Predicate::ICMP_UGT;
 | 
						|
    break;
 | 
						|
  case ICmpInst::Predicate::ICMP_ULT:
 | 
						|
    //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
 | 
						|
    //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
 | 
						|
    DstPred = ICmpInst::Predicate::ICMP_UGT;
 | 
						|
    break;
 | 
						|
  case ICmpInst::Predicate::ICMP_UGE:
 | 
						|
    //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
 | 
						|
    //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
 | 
						|
    DstPred = ICmpInst::Predicate::ICMP_ULE;
 | 
						|
    break;
 | 
						|
  case ICmpInst::Predicate::ICMP_SLT:
 | 
						|
    //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
 | 
						|
    //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
 | 
						|
    if (!match(M, m_Constant())) // Can not do this fold with non-constant.
 | 
						|
      return nullptr;
 | 
						|
    if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
 | 
						|
      return nullptr;
 | 
						|
    DstPred = ICmpInst::Predicate::ICMP_SGT;
 | 
						|
    break;
 | 
						|
  case ICmpInst::Predicate::ICMP_SGE:
 | 
						|
    //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
 | 
						|
    //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
 | 
						|
    if (!match(M, m_Constant())) // Can not do this fold with non-constant.
 | 
						|
      return nullptr;
 | 
						|
    if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
 | 
						|
      return nullptr;
 | 
						|
    DstPred = ICmpInst::Predicate::ICMP_SLE;
 | 
						|
    break;
 | 
						|
  case ICmpInst::Predicate::ICMP_SGT:
 | 
						|
  case ICmpInst::Predicate::ICMP_SLE:
 | 
						|
    return nullptr;
 | 
						|
  case ICmpInst::Predicate::ICMP_UGT:
 | 
						|
  case ICmpInst::Predicate::ICMP_ULE:
 | 
						|
    llvm_unreachable("Instsimplify took care of commut. variant");
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("All possible folds are handled.");
 | 
						|
  }
 | 
						|
 | 
						|
  // The mask value may be a vector constant that has undefined elements. But it
 | 
						|
  // may not be safe to propagate those undefs into the new compare, so replace
 | 
						|
  // those elements by copying an existing, defined, and safe scalar constant.
 | 
						|
  Type *OpTy = M->getType();
 | 
						|
  auto *VecC = dyn_cast<Constant>(M);
 | 
						|
  if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
 | 
						|
    Constant *SafeReplacementConstant = nullptr;
 | 
						|
    for (unsigned i = 0, e = OpTy->getVectorNumElements(); i != e; ++i) {
 | 
						|
      if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
 | 
						|
        SafeReplacementConstant = VecC->getAggregateElement(i);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(SafeReplacementConstant && "Failed to find undef replacement");
 | 
						|
    M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
 | 
						|
  }
 | 
						|
 | 
						|
  return Builder.CreateICmp(DstPred, X, M);
 | 
						|
}
 | 
						|
 | 
						|
/// Some comparisons can be simplified.
 | 
						|
/// In this case, we are looking for comparisons that look like
 | 
						|
/// a check for a lossy signed truncation.
 | 
						|
/// Folds:   (MaskedBits is a constant.)
 | 
						|
///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
 | 
						|
/// Into:
 | 
						|
///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
 | 
						|
/// Where  KeptBits = bitwidth(%x) - MaskedBits
 | 
						|
static Value *
 | 
						|
foldICmpWithTruncSignExtendedVal(ICmpInst &I,
 | 
						|
                                 InstCombiner::BuilderTy &Builder) {
 | 
						|
  ICmpInst::Predicate SrcPred;
 | 
						|
  Value *X;
 | 
						|
  const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
 | 
						|
  // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
 | 
						|
  if (!match(&I, m_c_ICmp(SrcPred,
 | 
						|
                          m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
 | 
						|
                                          m_APInt(C1))),
 | 
						|
                          m_Deferred(X))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Potential handling of non-splats: for each element:
 | 
						|
  //  * if both are undef, replace with constant 0.
 | 
						|
  //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
 | 
						|
  //  * if both are not undef, and are different, bailout.
 | 
						|
  //  * else, only one is undef, then pick the non-undef one.
 | 
						|
 | 
						|
  // The shift amount must be equal.
 | 
						|
  if (*C0 != *C1)
 | 
						|
    return nullptr;
 | 
						|
  const APInt &MaskedBits = *C0;
 | 
						|
  assert(MaskedBits != 0 && "shift by zero should be folded away already.");
 | 
						|
 | 
						|
  ICmpInst::Predicate DstPred;
 | 
						|
  switch (SrcPred) {
 | 
						|
  case ICmpInst::Predicate::ICMP_EQ:
 | 
						|
    // ((%x << MaskedBits) a>> MaskedBits) == %x
 | 
						|
    //   =>
 | 
						|
    // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
 | 
						|
    DstPred = ICmpInst::Predicate::ICMP_ULT;
 | 
						|
    break;
 | 
						|
  case ICmpInst::Predicate::ICMP_NE:
 | 
						|
    // ((%x << MaskedBits) a>> MaskedBits) != %x
 | 
						|
    //   =>
 | 
						|
    // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
 | 
						|
    DstPred = ICmpInst::Predicate::ICMP_UGE;
 | 
						|
    break;
 | 
						|
  // FIXME: are more folds possible?
 | 
						|
  default:
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *XType = X->getType();
 | 
						|
  const unsigned XBitWidth = XType->getScalarSizeInBits();
 | 
						|
  const APInt BitWidth = APInt(XBitWidth, XBitWidth);
 | 
						|
  assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
 | 
						|
 | 
						|
  // KeptBits = bitwidth(%x) - MaskedBits
 | 
						|
  const APInt KeptBits = BitWidth - MaskedBits;
 | 
						|
  assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
 | 
						|
  // ICmpCst = (1 << KeptBits)
 | 
						|
  const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
 | 
						|
  assert(ICmpCst.isPowerOf2());
 | 
						|
  // AddCst = (1 << (KeptBits-1))
 | 
						|
  const APInt AddCst = ICmpCst.lshr(1);
 | 
						|
  assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
 | 
						|
 | 
						|
  // T0 = add %x, AddCst
 | 
						|
  Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
 | 
						|
  // T1 = T0 DstPred ICmpCst
 | 
						|
  Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
 | 
						|
 | 
						|
  return T1;
 | 
						|
}
 | 
						|
 | 
						|
// Given pattern:
 | 
						|
//   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
 | 
						|
// we should move shifts to the same hand of 'and', i.e. rewrite as
 | 
						|
//   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
 | 
						|
// We are only interested in opposite logical shifts here.
 | 
						|
// One of the shifts can be truncated.
 | 
						|
// If we can, we want to end up creating 'lshr' shift.
 | 
						|
static Value *
 | 
						|
foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
 | 
						|
                                           InstCombiner::BuilderTy &Builder) {
 | 
						|
  if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
 | 
						|
      !I.getOperand(0)->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
 | 
						|
 | 
						|
  // Look for an 'and' of two logical shifts, one of which may be truncated.
 | 
						|
  // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
 | 
						|
  Instruction *XShift, *MaybeTruncation, *YShift;
 | 
						|
  if (!match(
 | 
						|
          I.getOperand(0),
 | 
						|
          m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
 | 
						|
                  m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
 | 
						|
                                   m_AnyLogicalShift, m_Instruction(YShift))),
 | 
						|
                               m_Instruction(MaybeTruncation)))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We potentially looked past 'trunc', but only when matching YShift,
 | 
						|
  // therefore YShift must have the widest type.
 | 
						|
  Instruction *WidestShift = YShift;
 | 
						|
  // Therefore XShift must have the shallowest type.
 | 
						|
  // Or they both have identical types if there was no truncation.
 | 
						|
  Instruction *NarrowestShift = XShift;
 | 
						|
 | 
						|
  Type *WidestTy = WidestShift->getType();
 | 
						|
  Type *NarrowestTy = NarrowestShift->getType();
 | 
						|
  assert(NarrowestTy == I.getOperand(0)->getType() &&
 | 
						|
         "We did not look past any shifts while matching XShift though.");
 | 
						|
  bool HadTrunc = WidestTy != I.getOperand(0)->getType();
 | 
						|
 | 
						|
  // If YShift is a 'lshr', swap the shifts around.
 | 
						|
  if (match(YShift, m_LShr(m_Value(), m_Value())))
 | 
						|
    std::swap(XShift, YShift);
 | 
						|
 | 
						|
  // The shifts must be in opposite directions.
 | 
						|
  auto XShiftOpcode = XShift->getOpcode();
 | 
						|
  if (XShiftOpcode == YShift->getOpcode())
 | 
						|
    return nullptr; // Do not care about same-direction shifts here.
 | 
						|
 | 
						|
  Value *X, *XShAmt, *Y, *YShAmt;
 | 
						|
  match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
 | 
						|
  match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
 | 
						|
 | 
						|
  // If one of the values being shifted is a constant, then we will end with
 | 
						|
  // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
 | 
						|
  // however, we will need to ensure that we won't increase instruction count.
 | 
						|
  if (!isa<Constant>(X) && !isa<Constant>(Y)) {
 | 
						|
    // At least one of the hands of the 'and' should be one-use shift.
 | 
						|
    if (!match(I.getOperand(0),
 | 
						|
               m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
 | 
						|
      return nullptr;
 | 
						|
    if (HadTrunc) {
 | 
						|
      // Due to the 'trunc', we will need to widen X. For that either the old
 | 
						|
      // 'trunc' or the shift amt in the non-truncated shift should be one-use.
 | 
						|
      if (!MaybeTruncation->hasOneUse() &&
 | 
						|
          !NarrowestShift->getOperand(1)->hasOneUse())
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We have two shift amounts from two different shifts. The types of those
 | 
						|
  // shift amounts may not match. If that's the case let's bailout now.
 | 
						|
  if (XShAmt->getType() != YShAmt->getType())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // As input, we have the following pattern:
 | 
						|
  //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
 | 
						|
  // We want to rewrite that as:
 | 
						|
  //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
 | 
						|
  // While we know that originally (Q+K) would not overflow
 | 
						|
  // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
 | 
						|
  // shift amounts. so it may now overflow in smaller bitwidth.
 | 
						|
  // To ensure that does not happen, we need to ensure that the total maximal
 | 
						|
  // shift amount is still representable in that smaller bit width.
 | 
						|
  unsigned MaximalPossibleTotalShiftAmount =
 | 
						|
      (WidestTy->getScalarSizeInBits() - 1) +
 | 
						|
      (NarrowestTy->getScalarSizeInBits() - 1);
 | 
						|
  APInt MaximalRepresentableShiftAmount =
 | 
						|
      APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
 | 
						|
  if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Can we fold (XShAmt+YShAmt) ?
 | 
						|
  auto *NewShAmt = dyn_cast_or_null<Constant>(
 | 
						|
      SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
 | 
						|
                      /*isNUW=*/false, SQ.getWithInstruction(&I)));
 | 
						|
  if (!NewShAmt)
 | 
						|
    return nullptr;
 | 
						|
  NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
 | 
						|
  unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
  // Is the new shift amount smaller than the bit width?
 | 
						|
  // FIXME: could also rely on ConstantRange.
 | 
						|
  if (!match(NewShAmt,
 | 
						|
             m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
 | 
						|
                                APInt(WidestBitWidth, WidestBitWidth))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // An extra legality check is needed if we had trunc-of-lshr.
 | 
						|
  if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
 | 
						|
    auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
 | 
						|
                    WidestShift]() {
 | 
						|
      // It isn't obvious whether it's worth it to analyze non-constants here.
 | 
						|
      // Also, let's basically give up on non-splat cases, pessimizing vectors.
 | 
						|
      // If *any* of these preconditions matches we can perform the fold.
 | 
						|
      Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
 | 
						|
                                    ? NewShAmt->getSplatValue()
 | 
						|
                                    : NewShAmt;
 | 
						|
      // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
 | 
						|
      if (NewShAmtSplat &&
 | 
						|
          (NewShAmtSplat->isNullValue() ||
 | 
						|
           NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
 | 
						|
        return true;
 | 
						|
      // We consider *min* leading zeros so a single outlier
 | 
						|
      // blocks the transform as opposed to allowing it.
 | 
						|
      if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
 | 
						|
        KnownBits Known = computeKnownBits(C, SQ.DL);
 | 
						|
        unsigned MinLeadZero = Known.countMinLeadingZeros();
 | 
						|
        // If the value being shifted has at most lowest bit set we can fold.
 | 
						|
        unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
 | 
						|
        if (MaxActiveBits <= 1)
 | 
						|
          return true;
 | 
						|
        // Precondition:  NewShAmt u<= countLeadingZeros(C)
 | 
						|
        if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
      if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
 | 
						|
        KnownBits Known = computeKnownBits(C, SQ.DL);
 | 
						|
        unsigned MinLeadZero = Known.countMinLeadingZeros();
 | 
						|
        // If the value being shifted has at most lowest bit set we can fold.
 | 
						|
        unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
 | 
						|
        if (MaxActiveBits <= 1)
 | 
						|
          return true;
 | 
						|
        // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
 | 
						|
        if (NewShAmtSplat) {
 | 
						|
          APInt AdjNewShAmt =
 | 
						|
              (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
 | 
						|
          if (AdjNewShAmt.ule(MinLeadZero))
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return false; // Can't tell if it's ok.
 | 
						|
    };
 | 
						|
    if (!CanFold())
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // All good, we can do this fold.
 | 
						|
  X = Builder.CreateZExt(X, WidestTy);
 | 
						|
  Y = Builder.CreateZExt(Y, WidestTy);
 | 
						|
  // The shift is the same that was for X.
 | 
						|
  Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
 | 
						|
                  ? Builder.CreateLShr(X, NewShAmt)
 | 
						|
                  : Builder.CreateShl(X, NewShAmt);
 | 
						|
  Value *T1 = Builder.CreateAnd(T0, Y);
 | 
						|
  return Builder.CreateICmp(I.getPredicate(), T1,
 | 
						|
                            Constant::getNullValue(WidestTy));
 | 
						|
}
 | 
						|
 | 
						|
/// Fold
 | 
						|
///   (-1 u/ x) u< y
 | 
						|
///   ((x * y) u/ x) != y
 | 
						|
/// to
 | 
						|
///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
 | 
						|
/// Note that the comparison is commutative, while inverted (u>=, ==) predicate
 | 
						|
/// will mean that we are looking for the opposite answer.
 | 
						|
Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
 | 
						|
  ICmpInst::Predicate Pred;
 | 
						|
  Value *X, *Y;
 | 
						|
  Instruction *Mul;
 | 
						|
  bool NeedNegation;
 | 
						|
  // Look for: (-1 u/ x) u</u>= y
 | 
						|
  if (!I.isEquality() &&
 | 
						|
      match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
 | 
						|
                         m_Value(Y)))) {
 | 
						|
    Mul = nullptr;
 | 
						|
 | 
						|
    // Are we checking that overflow does not happen, or does happen?
 | 
						|
    switch (Pred) {
 | 
						|
    case ICmpInst::Predicate::ICMP_ULT:
 | 
						|
      NeedNegation = false;
 | 
						|
      break; // OK
 | 
						|
    case ICmpInst::Predicate::ICMP_UGE:
 | 
						|
      NeedNegation = true;
 | 
						|
      break; // OK
 | 
						|
    default:
 | 
						|
      return nullptr; // Wrong predicate.
 | 
						|
    }
 | 
						|
  } else // Look for: ((x * y) u/ x) !=/== y
 | 
						|
      if (I.isEquality() &&
 | 
						|
          match(&I, m_c_ICmp(Pred, m_Value(Y),
 | 
						|
                             m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
 | 
						|
                                                                  m_Value(X)),
 | 
						|
                                                          m_Instruction(Mul)),
 | 
						|
                                             m_Deferred(X)))))) {
 | 
						|
    NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
 | 
						|
  } else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  BuilderTy::InsertPointGuard Guard(Builder);
 | 
						|
  // If the pattern included (x * y), we'll want to insert new instructions
 | 
						|
  // right before that original multiplication so that we can replace it.
 | 
						|
  bool MulHadOtherUses = Mul && !Mul->hasOneUse();
 | 
						|
  if (MulHadOtherUses)
 | 
						|
    Builder.SetInsertPoint(Mul);
 | 
						|
 | 
						|
  Function *F = Intrinsic::getDeclaration(
 | 
						|
      I.getModule(), Intrinsic::umul_with_overflow, X->getType());
 | 
						|
  CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
 | 
						|
 | 
						|
  // If the multiplication was used elsewhere, to ensure that we don't leave
 | 
						|
  // "duplicate" instructions, replace uses of that original multiplication
 | 
						|
  // with the multiplication result from the with.overflow intrinsic.
 | 
						|
  if (MulHadOtherUses)
 | 
						|
    replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
 | 
						|
 | 
						|
  Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
 | 
						|
  if (NeedNegation) // This technically increases instruction count.
 | 
						|
    Res = Builder.CreateNot(Res, "umul.not.ov");
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to fold icmp (binop), X or icmp X, (binop).
 | 
						|
/// TODO: A large part of this logic is duplicated in InstSimplify's
 | 
						|
/// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
 | 
						|
/// duplication.
 | 
						|
Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) {
 | 
						|
  const SimplifyQuery Q = SQ.getWithInstruction(&I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  // Special logic for binary operators.
 | 
						|
  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
 | 
						|
  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
 | 
						|
  if (!BO0 && !BO1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const CmpInst::Predicate Pred = I.getPredicate();
 | 
						|
  Value *X;
 | 
						|
 | 
						|
  // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
 | 
						|
  // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
 | 
						|
  if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
 | 
						|
      (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
 | 
						|
    return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
 | 
						|
  // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
 | 
						|
  if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
 | 
						|
      (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
 | 
						|
    return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
 | 
						|
 | 
						|
  bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
 | 
						|
  if (BO0 && isa<OverflowingBinaryOperator>(BO0))
 | 
						|
    NoOp0WrapProblem =
 | 
						|
        ICmpInst::isEquality(Pred) ||
 | 
						|
        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
 | 
						|
        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
 | 
						|
  if (BO1 && isa<OverflowingBinaryOperator>(BO1))
 | 
						|
    NoOp1WrapProblem =
 | 
						|
        ICmpInst::isEquality(Pred) ||
 | 
						|
        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
 | 
						|
        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
 | 
						|
 | 
						|
  // Analyze the case when either Op0 or Op1 is an add instruction.
 | 
						|
  // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
 | 
						|
  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
 | 
						|
  if (BO0 && BO0->getOpcode() == Instruction::Add) {
 | 
						|
    A = BO0->getOperand(0);
 | 
						|
    B = BO0->getOperand(1);
 | 
						|
  }
 | 
						|
  if (BO1 && BO1->getOpcode() == Instruction::Add) {
 | 
						|
    C = BO1->getOperand(0);
 | 
						|
    D = BO1->getOperand(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
 | 
						|
  // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
 | 
						|
  if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
 | 
						|
    return new ICmpInst(Pred, A == Op1 ? B : A,
 | 
						|
                        Constant::getNullValue(Op1->getType()));
 | 
						|
 | 
						|
  // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
 | 
						|
  // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
 | 
						|
  if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
 | 
						|
    return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
 | 
						|
                        C == Op0 ? D : C);
 | 
						|
 | 
						|
  // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
 | 
						|
  if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
 | 
						|
      NoOp1WrapProblem) {
 | 
						|
    // Determine Y and Z in the form icmp (X+Y), (X+Z).
 | 
						|
    Value *Y, *Z;
 | 
						|
    if (A == C) {
 | 
						|
      // C + B == C + D  ->  B == D
 | 
						|
      Y = B;
 | 
						|
      Z = D;
 | 
						|
    } else if (A == D) {
 | 
						|
      // D + B == C + D  ->  B == C
 | 
						|
      Y = B;
 | 
						|
      Z = C;
 | 
						|
    } else if (B == C) {
 | 
						|
      // A + C == C + D  ->  A == D
 | 
						|
      Y = A;
 | 
						|
      Z = D;
 | 
						|
    } else {
 | 
						|
      assert(B == D);
 | 
						|
      // A + D == C + D  ->  A == C
 | 
						|
      Y = A;
 | 
						|
      Z = C;
 | 
						|
    }
 | 
						|
    return new ICmpInst(Pred, Y, Z);
 | 
						|
  }
 | 
						|
 | 
						|
  // icmp slt (A + -1), Op1 -> icmp sle A, Op1
 | 
						|
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
 | 
						|
      match(B, m_AllOnes()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
 | 
						|
 | 
						|
  // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
 | 
						|
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
 | 
						|
      match(B, m_AllOnes()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
 | 
						|
 | 
						|
  // icmp sle (A + 1), Op1 -> icmp slt A, Op1
 | 
						|
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
 | 
						|
 | 
						|
  // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
 | 
						|
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
 | 
						|
 | 
						|
  // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
 | 
						|
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
 | 
						|
      match(D, m_AllOnes()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
 | 
						|
 | 
						|
  // icmp sle Op0, (C + -1) -> icmp slt Op0, C
 | 
						|
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
 | 
						|
      match(D, m_AllOnes()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
 | 
						|
 | 
						|
  // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
 | 
						|
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
 | 
						|
 | 
						|
  // icmp slt Op0, (C + 1) -> icmp sle Op0, C
 | 
						|
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
 | 
						|
 | 
						|
  // TODO: The subtraction-related identities shown below also hold, but
 | 
						|
  // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
 | 
						|
  // wouldn't happen even if they were implemented.
 | 
						|
  //
 | 
						|
  // icmp ult (A - 1), Op1 -> icmp ule A, Op1
 | 
						|
  // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
 | 
						|
  // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
 | 
						|
  // icmp ule Op0, (C - 1) -> icmp ult Op0, C
 | 
						|
 | 
						|
  // icmp ule (A + 1), Op0 -> icmp ult A, Op1
 | 
						|
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
 | 
						|
 | 
						|
  // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
 | 
						|
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
 | 
						|
 | 
						|
  // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
 | 
						|
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
 | 
						|
 | 
						|
  // icmp ult Op0, (C + 1) -> icmp ule Op0, C
 | 
						|
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
 | 
						|
    return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
 | 
						|
 | 
						|
  // if C1 has greater magnitude than C2:
 | 
						|
  //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
 | 
						|
  //  s.t. C3 = C1 - C2
 | 
						|
  //
 | 
						|
  // if C2 has greater magnitude than C1:
 | 
						|
  //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
 | 
						|
  //  s.t. C3 = C2 - C1
 | 
						|
  if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
 | 
						|
      (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
 | 
						|
    if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
 | 
						|
      if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
 | 
						|
        const APInt &AP1 = C1->getValue();
 | 
						|
        const APInt &AP2 = C2->getValue();
 | 
						|
        if (AP1.isNegative() == AP2.isNegative()) {
 | 
						|
          APInt AP1Abs = C1->getValue().abs();
 | 
						|
          APInt AP2Abs = C2->getValue().abs();
 | 
						|
          if (AP1Abs.uge(AP2Abs)) {
 | 
						|
            ConstantInt *C3 = Builder.getInt(AP1 - AP2);
 | 
						|
            Value *NewAdd = Builder.CreateNSWAdd(A, C3);
 | 
						|
            return new ICmpInst(Pred, NewAdd, C);
 | 
						|
          } else {
 | 
						|
            ConstantInt *C3 = Builder.getInt(AP2 - AP1);
 | 
						|
            Value *NewAdd = Builder.CreateNSWAdd(C, C3);
 | 
						|
            return new ICmpInst(Pred, A, NewAdd);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  // Analyze the case when either Op0 or Op1 is a sub instruction.
 | 
						|
  // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
 | 
						|
  A = nullptr;
 | 
						|
  B = nullptr;
 | 
						|
  C = nullptr;
 | 
						|
  D = nullptr;
 | 
						|
  if (BO0 && BO0->getOpcode() == Instruction::Sub) {
 | 
						|
    A = BO0->getOperand(0);
 | 
						|
    B = BO0->getOperand(1);
 | 
						|
  }
 | 
						|
  if (BO1 && BO1->getOpcode() == Instruction::Sub) {
 | 
						|
    C = BO1->getOperand(0);
 | 
						|
    D = BO1->getOperand(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
 | 
						|
  if (A == Op1 && NoOp0WrapProblem)
 | 
						|
    return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
 | 
						|
  // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
 | 
						|
  if (C == Op0 && NoOp1WrapProblem)
 | 
						|
    return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
 | 
						|
 | 
						|
  // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
 | 
						|
  // (A - B) u>/u<= A --> B u>/u<= A
 | 
						|
  if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
 | 
						|
    return new ICmpInst(Pred, B, A);
 | 
						|
  // C u</u>= (C - D) --> C u</u>= D
 | 
						|
  if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
 | 
						|
    return new ICmpInst(Pred, C, D);
 | 
						|
  // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
 | 
						|
  if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
 | 
						|
      isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
 | 
						|
    return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
 | 
						|
  // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
 | 
						|
  if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
 | 
						|
      isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
 | 
						|
    return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
 | 
						|
 | 
						|
  // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
 | 
						|
  if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
 | 
						|
    return new ICmpInst(Pred, A, C);
 | 
						|
 | 
						|
  // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
 | 
						|
  if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
 | 
						|
    return new ICmpInst(Pred, D, B);
 | 
						|
 | 
						|
  // icmp (0-X) < cst --> x > -cst
 | 
						|
  if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
 | 
						|
    Value *X;
 | 
						|
    if (match(BO0, m_Neg(m_Value(X))))
 | 
						|
      if (Constant *RHSC = dyn_cast<Constant>(Op1))
 | 
						|
        if (RHSC->isNotMinSignedValue())
 | 
						|
          return new ICmpInst(I.getSwappedPredicate(), X,
 | 
						|
                              ConstantExpr::getNeg(RHSC));
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator *SRem = nullptr;
 | 
						|
  // icmp (srem X, Y), Y
 | 
						|
  if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
 | 
						|
    SRem = BO0;
 | 
						|
  // icmp Y, (srem X, Y)
 | 
						|
  else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
 | 
						|
           Op0 == BO1->getOperand(1))
 | 
						|
    SRem = BO1;
 | 
						|
  if (SRem) {
 | 
						|
    // We don't check hasOneUse to avoid increasing register pressure because
 | 
						|
    // the value we use is the same value this instruction was already using.
 | 
						|
    switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_EQ:
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | 
						|
    case ICmpInst::ICMP_NE:
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | 
						|
    case ICmpInst::ICMP_SGT:
 | 
						|
    case ICmpInst::ICMP_SGE:
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
 | 
						|
                          Constant::getAllOnesValue(SRem->getType()));
 | 
						|
    case ICmpInst::ICMP_SLT:
 | 
						|
    case ICmpInst::ICMP_SLE:
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
 | 
						|
                          Constant::getNullValue(SRem->getType()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
 | 
						|
      BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
 | 
						|
    switch (BO0->getOpcode()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
 | 
						|
        return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | 
						|
 | 
						|
      const APInt *C;
 | 
						|
      if (match(BO0->getOperand(1), m_APInt(C))) {
 | 
						|
        // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
 | 
						|
        if (C->isSignMask()) {
 | 
						|
          ICmpInst::Predicate NewPred =
 | 
						|
              I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
 | 
						|
          return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
 | 
						|
        }
 | 
						|
 | 
						|
        // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
 | 
						|
        if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
 | 
						|
          ICmpInst::Predicate NewPred =
 | 
						|
              I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
 | 
						|
          NewPred = I.getSwappedPredicate(NewPred);
 | 
						|
          return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::Mul: {
 | 
						|
      if (!I.isEquality())
 | 
						|
        break;
 | 
						|
 | 
						|
      const APInt *C;
 | 
						|
      if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
 | 
						|
          !C->isOneValue()) {
 | 
						|
        // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
 | 
						|
        // Mask = -1 >> count-trailing-zeros(C).
 | 
						|
        if (unsigned TZs = C->countTrailingZeros()) {
 | 
						|
          Constant *Mask = ConstantInt::get(
 | 
						|
              BO0->getType(),
 | 
						|
              APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
 | 
						|
          Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
 | 
						|
          Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
 | 
						|
          return new ICmpInst(Pred, And1, And2);
 | 
						|
        }
 | 
						|
        // If there are no trailing zeros in the multiplier, just eliminate
 | 
						|
        // the multiplies (no masking is needed):
 | 
						|
        // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
 | 
						|
        return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::LShr:
 | 
						|
      if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
 | 
						|
        break;
 | 
						|
      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | 
						|
 | 
						|
    case Instruction::SDiv:
 | 
						|
      if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
 | 
						|
        break;
 | 
						|
      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | 
						|
 | 
						|
    case Instruction::AShr:
 | 
						|
      if (!BO0->isExact() || !BO1->isExact())
 | 
						|
        break;
 | 
						|
      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | 
						|
 | 
						|
    case Instruction::Shl: {
 | 
						|
      bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
 | 
						|
      bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
 | 
						|
      if (!NUW && !NSW)
 | 
						|
        break;
 | 
						|
      if (!NSW && I.isSigned())
 | 
						|
        break;
 | 
						|
      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (BO0) {
 | 
						|
    // Transform  A & (L - 1) `ult` L --> L != 0
 | 
						|
    auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
 | 
						|
    auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
 | 
						|
 | 
						|
    if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
 | 
						|
      auto *Zero = Constant::getNullValue(BO0->getType());
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
 | 
						|
    return replaceInstUsesWith(I, V);
 | 
						|
 | 
						|
  if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
 | 
						|
    return replaceInstUsesWith(I, V);
 | 
						|
 | 
						|
  if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
 | 
						|
    return replaceInstUsesWith(I, V);
 | 
						|
 | 
						|
  if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
 | 
						|
    return replaceInstUsesWith(I, V);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold icmp Pred min|max(X, Y), X.
 | 
						|
static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
 | 
						|
  ICmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  Value *Op0 = Cmp.getOperand(0);
 | 
						|
  Value *X = Cmp.getOperand(1);
 | 
						|
 | 
						|
  // Canonicalize minimum or maximum operand to LHS of the icmp.
 | 
						|
  if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
 | 
						|
      match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
 | 
						|
      match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
 | 
						|
      match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
 | 
						|
    std::swap(Op0, X);
 | 
						|
    Pred = Cmp.getSwappedPredicate();
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Y;
 | 
						|
  if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
 | 
						|
    // smin(X, Y)  == X --> X s<= Y
 | 
						|
    // smin(X, Y) s>= X --> X s<= Y
 | 
						|
    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
 | 
						|
 | 
						|
    // smin(X, Y) != X --> X s> Y
 | 
						|
    // smin(X, Y) s< X --> X s> Y
 | 
						|
    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
 | 
						|
 | 
						|
    // These cases should be handled in InstSimplify:
 | 
						|
    // smin(X, Y) s<= X --> true
 | 
						|
    // smin(X, Y) s> X --> false
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
 | 
						|
    // smax(X, Y)  == X --> X s>= Y
 | 
						|
    // smax(X, Y) s<= X --> X s>= Y
 | 
						|
    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
 | 
						|
 | 
						|
    // smax(X, Y) != X --> X s< Y
 | 
						|
    // smax(X, Y) s> X --> X s< Y
 | 
						|
    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
 | 
						|
 | 
						|
    // These cases should be handled in InstSimplify:
 | 
						|
    // smax(X, Y) s>= X --> true
 | 
						|
    // smax(X, Y) s< X --> false
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
 | 
						|
    // umin(X, Y)  == X --> X u<= Y
 | 
						|
    // umin(X, Y) u>= X --> X u<= Y
 | 
						|
    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
 | 
						|
 | 
						|
    // umin(X, Y) != X --> X u> Y
 | 
						|
    // umin(X, Y) u< X --> X u> Y
 | 
						|
    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
 | 
						|
 | 
						|
    // These cases should be handled in InstSimplify:
 | 
						|
    // umin(X, Y) u<= X --> true
 | 
						|
    // umin(X, Y) u> X --> false
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
 | 
						|
    // umax(X, Y)  == X --> X u>= Y
 | 
						|
    // umax(X, Y) u<= X --> X u>= Y
 | 
						|
    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
 | 
						|
 | 
						|
    // umax(X, Y) != X --> X u< Y
 | 
						|
    // umax(X, Y) u> X --> X u< Y
 | 
						|
    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
 | 
						|
 | 
						|
    // These cases should be handled in InstSimplify:
 | 
						|
    // umax(X, Y) u>= X --> true
 | 
						|
    // umax(X, Y) u< X --> false
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
 | 
						|
  if (!I.isEquality())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  const CmpInst::Predicate Pred = I.getPredicate();
 | 
						|
  Value *A, *B, *C, *D;
 | 
						|
  if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
 | 
						|
    if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
 | 
						|
      Value *OtherVal = A == Op1 ? B : A;
 | 
						|
      return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
 | 
						|
    }
 | 
						|
 | 
						|
    if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
 | 
						|
      // A^c1 == C^c2 --> A == C^(c1^c2)
 | 
						|
      ConstantInt *C1, *C2;
 | 
						|
      if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
 | 
						|
          Op1->hasOneUse()) {
 | 
						|
        Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
 | 
						|
        Value *Xor = Builder.CreateXor(C, NC);
 | 
						|
        return new ICmpInst(Pred, A, Xor);
 | 
						|
      }
 | 
						|
 | 
						|
      // A^B == A^D -> B == D
 | 
						|
      if (A == C)
 | 
						|
        return new ICmpInst(Pred, B, D);
 | 
						|
      if (A == D)
 | 
						|
        return new ICmpInst(Pred, B, C);
 | 
						|
      if (B == C)
 | 
						|
        return new ICmpInst(Pred, A, D);
 | 
						|
      if (B == D)
 | 
						|
        return new ICmpInst(Pred, A, C);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
 | 
						|
    // A == (A^B)  ->  B == 0
 | 
						|
    Value *OtherVal = A == Op0 ? B : A;
 | 
						|
    return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
 | 
						|
  if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
 | 
						|
      match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
 | 
						|
    Value *X = nullptr, *Y = nullptr, *Z = nullptr;
 | 
						|
 | 
						|
    if (A == C) {
 | 
						|
      X = B;
 | 
						|
      Y = D;
 | 
						|
      Z = A;
 | 
						|
    } else if (A == D) {
 | 
						|
      X = B;
 | 
						|
      Y = C;
 | 
						|
      Z = A;
 | 
						|
    } else if (B == C) {
 | 
						|
      X = A;
 | 
						|
      Y = D;
 | 
						|
      Z = B;
 | 
						|
    } else if (B == D) {
 | 
						|
      X = A;
 | 
						|
      Y = C;
 | 
						|
      Z = B;
 | 
						|
    }
 | 
						|
 | 
						|
    if (X) { // Build (X^Y) & Z
 | 
						|
      Op1 = Builder.CreateXor(X, Y);
 | 
						|
      Op1 = Builder.CreateAnd(Op1, Z);
 | 
						|
      return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
 | 
						|
  // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
 | 
						|
  ConstantInt *Cst1;
 | 
						|
  if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
 | 
						|
       match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
 | 
						|
      (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
 | 
						|
       match(Op1, m_ZExt(m_Value(A))))) {
 | 
						|
    APInt Pow2 = Cst1->getValue() + 1;
 | 
						|
    if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
 | 
						|
        Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
 | 
						|
      return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
 | 
						|
  // For lshr and ashr pairs.
 | 
						|
  if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
 | 
						|
       match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
 | 
						|
      (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
 | 
						|
       match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
 | 
						|
    unsigned TypeBits = Cst1->getBitWidth();
 | 
						|
    unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
 | 
						|
    if (ShAmt < TypeBits && ShAmt != 0) {
 | 
						|
      ICmpInst::Predicate NewPred =
 | 
						|
          Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
 | 
						|
      Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
 | 
						|
      APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
 | 
						|
      return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
 | 
						|
  if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
 | 
						|
      match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
 | 
						|
    unsigned TypeBits = Cst1->getBitWidth();
 | 
						|
    unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
 | 
						|
    if (ShAmt < TypeBits && ShAmt != 0) {
 | 
						|
      Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
 | 
						|
      APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
 | 
						|
      Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
 | 
						|
                                      I.getName() + ".mask");
 | 
						|
      return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
 | 
						|
  // "icmp (and X, mask), cst"
 | 
						|
  uint64_t ShAmt = 0;
 | 
						|
  if (Op0->hasOneUse() &&
 | 
						|
      match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
 | 
						|
      match(Op1, m_ConstantInt(Cst1)) &&
 | 
						|
      // Only do this when A has multiple uses.  This is most important to do
 | 
						|
      // when it exposes other optimizations.
 | 
						|
      !A->hasOneUse()) {
 | 
						|
    unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
    if (ShAmt < ASize) {
 | 
						|
      APInt MaskV =
 | 
						|
          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
 | 
						|
      MaskV <<= ShAmt;
 | 
						|
 | 
						|
      APInt CmpV = Cst1->getValue().zext(ASize);
 | 
						|
      CmpV <<= ShAmt;
 | 
						|
 | 
						|
      Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
 | 
						|
      return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If both operands are byte-swapped or bit-reversed, just compare the
 | 
						|
  // original values.
 | 
						|
  // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
 | 
						|
  // and handle more intrinsics.
 | 
						|
  if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
 | 
						|
      (match(Op0, m_BitReverse(m_Value(A))) &&
 | 
						|
       match(Op1, m_BitReverse(m_Value(B)))))
 | 
						|
    return new ICmpInst(Pred, A, B);
 | 
						|
 | 
						|
  // Canonicalize checking for a power-of-2-or-zero value:
 | 
						|
  // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
 | 
						|
  // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
 | 
						|
  if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
 | 
						|
                                   m_Deferred(A)))) ||
 | 
						|
      !match(Op1, m_ZeroInt()))
 | 
						|
    A = nullptr;
 | 
						|
 | 
						|
  // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
 | 
						|
  // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
 | 
						|
  if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
 | 
						|
    A = Op1;
 | 
						|
  else if (match(Op1,
 | 
						|
                 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
 | 
						|
    A = Op0;
 | 
						|
 | 
						|
  if (A) {
 | 
						|
    Type *Ty = A->getType();
 | 
						|
    CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
 | 
						|
    return Pred == ICmpInst::ICMP_EQ
 | 
						|
        ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
 | 
						|
        : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
 | 
						|
                                           InstCombiner::BuilderTy &Builder) {
 | 
						|
  assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
 | 
						|
  auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
 | 
						|
  Value *X;
 | 
						|
  if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
 | 
						|
  bool IsSignedCmp = ICmp.isSigned();
 | 
						|
  if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
 | 
						|
    // If the signedness of the two casts doesn't agree (i.e. one is a sext
 | 
						|
    // and the other is a zext), then we can't handle this.
 | 
						|
    // TODO: This is too strict. We can handle some predicates (equality?).
 | 
						|
    if (CastOp0->getOpcode() != CastOp1->getOpcode())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Not an extension from the same type?
 | 
						|
    Value *Y = CastOp1->getOperand(0);
 | 
						|
    Type *XTy = X->getType(), *YTy = Y->getType();
 | 
						|
    if (XTy != YTy) {
 | 
						|
      // One of the casts must have one use because we are creating a new cast.
 | 
						|
      if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
 | 
						|
        return nullptr;
 | 
						|
      // Extend the narrower operand to the type of the wider operand.
 | 
						|
      if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
 | 
						|
        X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
 | 
						|
      else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
 | 
						|
        Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
 | 
						|
      else
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // (zext X) == (zext Y) --> X == Y
 | 
						|
    // (sext X) == (sext Y) --> X == Y
 | 
						|
    if (ICmp.isEquality())
 | 
						|
      return new ICmpInst(ICmp.getPredicate(), X, Y);
 | 
						|
 | 
						|
    // A signed comparison of sign extended values simplifies into a
 | 
						|
    // signed comparison.
 | 
						|
    if (IsSignedCmp && IsSignedExt)
 | 
						|
      return new ICmpInst(ICmp.getPredicate(), X, Y);
 | 
						|
 | 
						|
    // The other three cases all fold into an unsigned comparison.
 | 
						|
    return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
 | 
						|
  }
 | 
						|
 | 
						|
  // Below here, we are only folding a compare with constant.
 | 
						|
  auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
 | 
						|
  if (!C)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Compute the constant that would happen if we truncated to SrcTy then
 | 
						|
  // re-extended to DestTy.
 | 
						|
  Type *SrcTy = CastOp0->getSrcTy();
 | 
						|
  Type *DestTy = CastOp0->getDestTy();
 | 
						|
  Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
 | 
						|
  Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
 | 
						|
 | 
						|
  // If the re-extended constant didn't change...
 | 
						|
  if (Res2 == C) {
 | 
						|
    if (ICmp.isEquality())
 | 
						|
      return new ICmpInst(ICmp.getPredicate(), X, Res1);
 | 
						|
 | 
						|
    // A signed comparison of sign extended values simplifies into a
 | 
						|
    // signed comparison.
 | 
						|
    if (IsSignedExt && IsSignedCmp)
 | 
						|
      return new ICmpInst(ICmp.getPredicate(), X, Res1);
 | 
						|
 | 
						|
    // The other three cases all fold into an unsigned comparison.
 | 
						|
    return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
 | 
						|
  }
 | 
						|
 | 
						|
  // The re-extended constant changed, partly changed (in the case of a vector),
 | 
						|
  // or could not be determined to be equal (in the case of a constant
 | 
						|
  // expression), so the constant cannot be represented in the shorter type.
 | 
						|
  // All the cases that fold to true or false will have already been handled
 | 
						|
  // by SimplifyICmpInst, so only deal with the tricky case.
 | 
						|
  if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Is source op positive?
 | 
						|
  // icmp ult (sext X), C --> icmp sgt X, -1
 | 
						|
  if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
 | 
						|
    return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
 | 
						|
 | 
						|
  // Is source op negative?
 | 
						|
  // icmp ugt (sext X), C --> icmp slt X, 0
 | 
						|
  assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
 | 
						|
  return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
 | 
						|
}
 | 
						|
 | 
						|
/// Handle icmp (cast x), (cast or constant).
 | 
						|
Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
 | 
						|
  auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
 | 
						|
  if (!CastOp0)
 | 
						|
    return nullptr;
 | 
						|
  if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Op0Src = CastOp0->getOperand(0);
 | 
						|
  Type *SrcTy = CastOp0->getSrcTy();
 | 
						|
  Type *DestTy = CastOp0->getDestTy();
 | 
						|
 | 
						|
  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
 | 
						|
  // integer type is the same size as the pointer type.
 | 
						|
  auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
 | 
						|
    if (isa<VectorType>(SrcTy)) {
 | 
						|
      SrcTy = cast<VectorType>(SrcTy)->getElementType();
 | 
						|
      DestTy = cast<VectorType>(DestTy)->getElementType();
 | 
						|
    }
 | 
						|
    return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
 | 
						|
  };
 | 
						|
  if (CastOp0->getOpcode() == Instruction::PtrToInt &&
 | 
						|
      CompatibleSizes(SrcTy, DestTy)) {
 | 
						|
    Value *NewOp1 = nullptr;
 | 
						|
    if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
 | 
						|
      Value *PtrSrc = PtrToIntOp1->getOperand(0);
 | 
						|
      if (PtrSrc->getType()->getPointerAddressSpace() ==
 | 
						|
          Op0Src->getType()->getPointerAddressSpace()) {
 | 
						|
        NewOp1 = PtrToIntOp1->getOperand(0);
 | 
						|
        // If the pointer types don't match, insert a bitcast.
 | 
						|
        if (Op0Src->getType() != NewOp1->getType())
 | 
						|
          NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
 | 
						|
      }
 | 
						|
    } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
 | 
						|
      NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
 | 
						|
    }
 | 
						|
 | 
						|
    if (NewOp1)
 | 
						|
      return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
 | 
						|
  }
 | 
						|
 | 
						|
  return foldICmpWithZextOrSext(ICmp, Builder);
 | 
						|
}
 | 
						|
 | 
						|
static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
 | 
						|
  switch (BinaryOp) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unsupported binary op");
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
      return match(RHS, m_Zero());
 | 
						|
    case Instruction::Mul:
 | 
						|
      return match(RHS, m_One());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
OverflowResult InstCombiner::computeOverflow(
 | 
						|
    Instruction::BinaryOps BinaryOp, bool IsSigned,
 | 
						|
    Value *LHS, Value *RHS, Instruction *CxtI) const {
 | 
						|
  switch (BinaryOp) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unsupported binary op");
 | 
						|
    case Instruction::Add:
 | 
						|
      if (IsSigned)
 | 
						|
        return computeOverflowForSignedAdd(LHS, RHS, CxtI);
 | 
						|
      else
 | 
						|
        return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
 | 
						|
    case Instruction::Sub:
 | 
						|
      if (IsSigned)
 | 
						|
        return computeOverflowForSignedSub(LHS, RHS, CxtI);
 | 
						|
      else
 | 
						|
        return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
 | 
						|
    case Instruction::Mul:
 | 
						|
      if (IsSigned)
 | 
						|
        return computeOverflowForSignedMul(LHS, RHS, CxtI);
 | 
						|
      else
 | 
						|
        return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool InstCombiner::OptimizeOverflowCheck(
 | 
						|
    Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
 | 
						|
    Instruction &OrigI, Value *&Result, Constant *&Overflow) {
 | 
						|
  if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
 | 
						|
  // If the overflow check was an add followed by a compare, the insertion point
 | 
						|
  // may be pointing to the compare.  We want to insert the new instructions
 | 
						|
  // before the add in case there are uses of the add between the add and the
 | 
						|
  // compare.
 | 
						|
  Builder.SetInsertPoint(&OrigI);
 | 
						|
 | 
						|
  if (isNeutralValue(BinaryOp, RHS)) {
 | 
						|
    Result = LHS;
 | 
						|
    Overflow = Builder.getFalse();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
 | 
						|
    case OverflowResult::MayOverflow:
 | 
						|
      return false;
 | 
						|
    case OverflowResult::AlwaysOverflowsLow:
 | 
						|
    case OverflowResult::AlwaysOverflowsHigh:
 | 
						|
      Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
 | 
						|
      Result->takeName(&OrigI);
 | 
						|
      Overflow = Builder.getTrue();
 | 
						|
      return true;
 | 
						|
    case OverflowResult::NeverOverflows:
 | 
						|
      Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
 | 
						|
      Result->takeName(&OrigI);
 | 
						|
      Overflow = Builder.getFalse();
 | 
						|
      if (auto *Inst = dyn_cast<Instruction>(Result)) {
 | 
						|
        if (IsSigned)
 | 
						|
          Inst->setHasNoSignedWrap();
 | 
						|
        else
 | 
						|
          Inst->setHasNoUnsignedWrap();
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unexpected overflow result");
 | 
						|
}
 | 
						|
 | 
						|
/// Recognize and process idiom involving test for multiplication
 | 
						|
/// overflow.
 | 
						|
///
 | 
						|
/// The caller has matched a pattern of the form:
 | 
						|
///   I = cmp u (mul(zext A, zext B), V
 | 
						|
/// The function checks if this is a test for overflow and if so replaces
 | 
						|
/// multiplication with call to 'mul.with.overflow' intrinsic.
 | 
						|
///
 | 
						|
/// \param I Compare instruction.
 | 
						|
/// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
 | 
						|
///               the compare instruction.  Must be of integer type.
 | 
						|
/// \param OtherVal The other argument of compare instruction.
 | 
						|
/// \returns Instruction which must replace the compare instruction, NULL if no
 | 
						|
///          replacement required.
 | 
						|
static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
 | 
						|
                                         Value *OtherVal, InstCombiner &IC) {
 | 
						|
  // Don't bother doing this transformation for pointers, don't do it for
 | 
						|
  // vectors.
 | 
						|
  if (!isa<IntegerType>(MulVal->getType()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
 | 
						|
  assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
 | 
						|
  auto *MulInstr = dyn_cast<Instruction>(MulVal);
 | 
						|
  if (!MulInstr)
 | 
						|
    return nullptr;
 | 
						|
  assert(MulInstr->getOpcode() == Instruction::Mul);
 | 
						|
 | 
						|
  auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
 | 
						|
       *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
 | 
						|
  assert(LHS->getOpcode() == Instruction::ZExt);
 | 
						|
  assert(RHS->getOpcode() == Instruction::ZExt);
 | 
						|
  Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
 | 
						|
 | 
						|
  // Calculate type and width of the result produced by mul.with.overflow.
 | 
						|
  Type *TyA = A->getType(), *TyB = B->getType();
 | 
						|
  unsigned WidthA = TyA->getPrimitiveSizeInBits(),
 | 
						|
           WidthB = TyB->getPrimitiveSizeInBits();
 | 
						|
  unsigned MulWidth;
 | 
						|
  Type *MulType;
 | 
						|
  if (WidthB > WidthA) {
 | 
						|
    MulWidth = WidthB;
 | 
						|
    MulType = TyB;
 | 
						|
  } else {
 | 
						|
    MulWidth = WidthA;
 | 
						|
    MulType = TyA;
 | 
						|
  }
 | 
						|
 | 
						|
  // In order to replace the original mul with a narrower mul.with.overflow,
 | 
						|
  // all uses must ignore upper bits of the product.  The number of used low
 | 
						|
  // bits must be not greater than the width of mul.with.overflow.
 | 
						|
  if (MulVal->hasNUsesOrMore(2))
 | 
						|
    for (User *U : MulVal->users()) {
 | 
						|
      if (U == &I)
 | 
						|
        continue;
 | 
						|
      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
 | 
						|
        // Check if truncation ignores bits above MulWidth.
 | 
						|
        unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
 | 
						|
        if (TruncWidth > MulWidth)
 | 
						|
          return nullptr;
 | 
						|
      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
 | 
						|
        // Check if AND ignores bits above MulWidth.
 | 
						|
        if (BO->getOpcode() != Instruction::And)
 | 
						|
          return nullptr;
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | 
						|
          const APInt &CVal = CI->getValue();
 | 
						|
          if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
 | 
						|
            return nullptr;
 | 
						|
        } else {
 | 
						|
          // In this case we could have the operand of the binary operation
 | 
						|
          // being defined in another block, and performing the replacement
 | 
						|
          // could break the dominance relation.
 | 
						|
          return nullptr;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Other uses prohibit this transformation.
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Recognize patterns
 | 
						|
  switch (I.getPredicate()) {
 | 
						|
  case ICmpInst::ICMP_EQ:
 | 
						|
  case ICmpInst::ICMP_NE:
 | 
						|
    // Recognize pattern:
 | 
						|
    //   mulval = mul(zext A, zext B)
 | 
						|
    //   cmp eq/neq mulval, zext trunc mulval
 | 
						|
    if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
 | 
						|
      if (Zext->hasOneUse()) {
 | 
						|
        Value *ZextArg = Zext->getOperand(0);
 | 
						|
        if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
 | 
						|
          if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
 | 
						|
            break; //Recognized
 | 
						|
      }
 | 
						|
 | 
						|
    // Recognize pattern:
 | 
						|
    //   mulval = mul(zext A, zext B)
 | 
						|
    //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
 | 
						|
    ConstantInt *CI;
 | 
						|
    Value *ValToMask;
 | 
						|
    if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
 | 
						|
      if (ValToMask != MulVal)
 | 
						|
        return nullptr;
 | 
						|
      const APInt &CVal = CI->getValue() + 1;
 | 
						|
      if (CVal.isPowerOf2()) {
 | 
						|
        unsigned MaskWidth = CVal.logBase2();
 | 
						|
        if (MaskWidth == MulWidth)
 | 
						|
          break; // Recognized
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
    // Recognize pattern:
 | 
						|
    //   mulval = mul(zext A, zext B)
 | 
						|
    //   cmp ugt mulval, max
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
 | 
						|
      APInt MaxVal = APInt::getMaxValue(MulWidth);
 | 
						|
      MaxVal = MaxVal.zext(CI->getBitWidth());
 | 
						|
      if (MaxVal.eq(CI->getValue()))
 | 
						|
        break; // Recognized
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  case ICmpInst::ICMP_UGE:
 | 
						|
    // Recognize pattern:
 | 
						|
    //   mulval = mul(zext A, zext B)
 | 
						|
    //   cmp uge mulval, max+1
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
 | 
						|
      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
 | 
						|
      if (MaxVal.eq(CI->getValue()))
 | 
						|
        break; // Recognized
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  case ICmpInst::ICMP_ULE:
 | 
						|
    // Recognize pattern:
 | 
						|
    //   mulval = mul(zext A, zext B)
 | 
						|
    //   cmp ule mulval, max
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
 | 
						|
      APInt MaxVal = APInt::getMaxValue(MulWidth);
 | 
						|
      MaxVal = MaxVal.zext(CI->getBitWidth());
 | 
						|
      if (MaxVal.eq(CI->getValue()))
 | 
						|
        break; // Recognized
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
    // Recognize pattern:
 | 
						|
    //   mulval = mul(zext A, zext B)
 | 
						|
    //   cmp ule mulval, max + 1
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
 | 
						|
      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
 | 
						|
      if (MaxVal.eq(CI->getValue()))
 | 
						|
        break; // Recognized
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  default:
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  InstCombiner::BuilderTy &Builder = IC.Builder;
 | 
						|
  Builder.SetInsertPoint(MulInstr);
 | 
						|
 | 
						|
  // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
 | 
						|
  Value *MulA = A, *MulB = B;
 | 
						|
  if (WidthA < MulWidth)
 | 
						|
    MulA = Builder.CreateZExt(A, MulType);
 | 
						|
  if (WidthB < MulWidth)
 | 
						|
    MulB = Builder.CreateZExt(B, MulType);
 | 
						|
  Function *F = Intrinsic::getDeclaration(
 | 
						|
      I.getModule(), Intrinsic::umul_with_overflow, MulType);
 | 
						|
  CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
 | 
						|
  IC.Worklist.push(MulInstr);
 | 
						|
 | 
						|
  // If there are uses of mul result other than the comparison, we know that
 | 
						|
  // they are truncation or binary AND. Change them to use result of
 | 
						|
  // mul.with.overflow and adjust properly mask/size.
 | 
						|
  if (MulVal->hasNUsesOrMore(2)) {
 | 
						|
    Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
 | 
						|
    for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
 | 
						|
      User *U = *UI++;
 | 
						|
      if (U == &I || U == OtherVal)
 | 
						|
        continue;
 | 
						|
      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
 | 
						|
        if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
 | 
						|
          IC.replaceInstUsesWith(*TI, Mul);
 | 
						|
        else
 | 
						|
          TI->setOperand(0, Mul);
 | 
						|
      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
 | 
						|
        assert(BO->getOpcode() == Instruction::And);
 | 
						|
        // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
 | 
						|
        ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
 | 
						|
        APInt ShortMask = CI->getValue().trunc(MulWidth);
 | 
						|
        Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
 | 
						|
        Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
 | 
						|
        IC.replaceInstUsesWith(*BO, Zext);
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("Unexpected Binary operation");
 | 
						|
      }
 | 
						|
      IC.Worklist.push(cast<Instruction>(U));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (isa<Instruction>(OtherVal))
 | 
						|
    IC.Worklist.push(cast<Instruction>(OtherVal));
 | 
						|
 | 
						|
  // The original icmp gets replaced with the overflow value, maybe inverted
 | 
						|
  // depending on predicate.
 | 
						|
  bool Inverse = false;
 | 
						|
  switch (I.getPredicate()) {
 | 
						|
  case ICmpInst::ICMP_NE:
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_EQ:
 | 
						|
    Inverse = true;
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
  case ICmpInst::ICMP_UGE:
 | 
						|
    if (I.getOperand(0) == MulVal)
 | 
						|
      break;
 | 
						|
    Inverse = true;
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
  case ICmpInst::ICMP_ULE:
 | 
						|
    if (I.getOperand(1) == MulVal)
 | 
						|
      break;
 | 
						|
    Inverse = true;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected predicate");
 | 
						|
  }
 | 
						|
  if (Inverse) {
 | 
						|
    Value *Res = Builder.CreateExtractValue(Call, 1);
 | 
						|
    return BinaryOperator::CreateNot(Res);
 | 
						|
  }
 | 
						|
 | 
						|
  return ExtractValueInst::Create(Call, 1);
 | 
						|
}
 | 
						|
 | 
						|
/// When performing a comparison against a constant, it is possible that not all
 | 
						|
/// the bits in the LHS are demanded. This helper method computes the mask that
 | 
						|
/// IS demanded.
 | 
						|
static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
 | 
						|
  const APInt *RHS;
 | 
						|
  if (!match(I.getOperand(1), m_APInt(RHS)))
 | 
						|
    return APInt::getAllOnesValue(BitWidth);
 | 
						|
 | 
						|
  // If this is a normal comparison, it demands all bits. If it is a sign bit
 | 
						|
  // comparison, it only demands the sign bit.
 | 
						|
  bool UnusedBit;
 | 
						|
  if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
 | 
						|
    return APInt::getSignMask(BitWidth);
 | 
						|
 | 
						|
  switch (I.getPredicate()) {
 | 
						|
  // For a UGT comparison, we don't care about any bits that
 | 
						|
  // correspond to the trailing ones of the comparand.  The value of these
 | 
						|
  // bits doesn't impact the outcome of the comparison, because any value
 | 
						|
  // greater than the RHS must differ in a bit higher than these due to carry.
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
    return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
 | 
						|
 | 
						|
  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
 | 
						|
  // Any value less than the RHS must differ in a higher bit because of carries.
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
    return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
 | 
						|
 | 
						|
  default:
 | 
						|
    return APInt::getAllOnesValue(BitWidth);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
 | 
						|
/// should be swapped.
 | 
						|
/// The decision is based on how many times these two operands are reused
 | 
						|
/// as subtract operands and their positions in those instructions.
 | 
						|
/// The rationale is that several architectures use the same instruction for
 | 
						|
/// both subtract and cmp. Thus, it is better if the order of those operands
 | 
						|
/// match.
 | 
						|
/// \return true if Op0 and Op1 should be swapped.
 | 
						|
static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
 | 
						|
  // Filter out pointer values as those cannot appear directly in subtract.
 | 
						|
  // FIXME: we may want to go through inttoptrs or bitcasts.
 | 
						|
  if (Op0->getType()->isPointerTy())
 | 
						|
    return false;
 | 
						|
  // If a subtract already has the same operands as a compare, swapping would be
 | 
						|
  // bad. If a subtract has the same operands as a compare but in reverse order,
 | 
						|
  // then swapping is good.
 | 
						|
  int GoodToSwap = 0;
 | 
						|
  for (const User *U : Op0->users()) {
 | 
						|
    if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
 | 
						|
      GoodToSwap++;
 | 
						|
    else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
 | 
						|
      GoodToSwap--;
 | 
						|
  }
 | 
						|
  return GoodToSwap > 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that one use is in the same block as the definition and all
 | 
						|
/// other uses are in blocks dominated by a given block.
 | 
						|
///
 | 
						|
/// \param DI Definition
 | 
						|
/// \param UI Use
 | 
						|
/// \param DB Block that must dominate all uses of \p DI outside
 | 
						|
///           the parent block
 | 
						|
/// \return true when \p UI is the only use of \p DI in the parent block
 | 
						|
/// and all other uses of \p DI are in blocks dominated by \p DB.
 | 
						|
///
 | 
						|
bool InstCombiner::dominatesAllUses(const Instruction *DI,
 | 
						|
                                    const Instruction *UI,
 | 
						|
                                    const BasicBlock *DB) const {
 | 
						|
  assert(DI && UI && "Instruction not defined\n");
 | 
						|
  // Ignore incomplete definitions.
 | 
						|
  if (!DI->getParent())
 | 
						|
    return false;
 | 
						|
  // DI and UI must be in the same block.
 | 
						|
  if (DI->getParent() != UI->getParent())
 | 
						|
    return false;
 | 
						|
  // Protect from self-referencing blocks.
 | 
						|
  if (DI->getParent() == DB)
 | 
						|
    return false;
 | 
						|
  for (const User *U : DI->users()) {
 | 
						|
    auto *Usr = cast<Instruction>(U);
 | 
						|
    if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true when the instruction sequence within a block is select-cmp-br.
 | 
						|
static bool isChainSelectCmpBranch(const SelectInst *SI) {
 | 
						|
  const BasicBlock *BB = SI->getParent();
 | 
						|
  if (!BB)
 | 
						|
    return false;
 | 
						|
  auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || BI->getNumSuccessors() != 2)
 | 
						|
    return false;
 | 
						|
  auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
 | 
						|
  if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// True when a select result is replaced by one of its operands
 | 
						|
/// in select-icmp sequence. This will eventually result in the elimination
 | 
						|
/// of the select.
 | 
						|
///
 | 
						|
/// \param SI    Select instruction
 | 
						|
/// \param Icmp  Compare instruction
 | 
						|
/// \param SIOpd Operand that replaces the select
 | 
						|
///
 | 
						|
/// Notes:
 | 
						|
/// - The replacement is global and requires dominator information
 | 
						|
/// - The caller is responsible for the actual replacement
 | 
						|
///
 | 
						|
/// Example:
 | 
						|
///
 | 
						|
/// entry:
 | 
						|
///  %4 = select i1 %3, %C* %0, %C* null
 | 
						|
///  %5 = icmp eq %C* %4, null
 | 
						|
///  br i1 %5, label %9, label %7
 | 
						|
///  ...
 | 
						|
///  ; <label>:7                                       ; preds = %entry
 | 
						|
///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
 | 
						|
///  ...
 | 
						|
///
 | 
						|
/// can be transformed to
 | 
						|
///
 | 
						|
///  %5 = icmp eq %C* %0, null
 | 
						|
///  %6 = select i1 %3, i1 %5, i1 true
 | 
						|
///  br i1 %6, label %9, label %7
 | 
						|
///  ...
 | 
						|
///  ; <label>:7                                       ; preds = %entry
 | 
						|
///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
 | 
						|
///
 | 
						|
/// Similar when the first operand of the select is a constant or/and
 | 
						|
/// the compare is for not equal rather than equal.
 | 
						|
///
 | 
						|
/// NOTE: The function is only called when the select and compare constants
 | 
						|
/// are equal, the optimization can work only for EQ predicates. This is not a
 | 
						|
/// major restriction since a NE compare should be 'normalized' to an equal
 | 
						|
/// compare, which usually happens in the combiner and test case
 | 
						|
/// select-cmp-br.ll checks for it.
 | 
						|
bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
 | 
						|
                                             const ICmpInst *Icmp,
 | 
						|
                                             const unsigned SIOpd) {
 | 
						|
  assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
 | 
						|
  if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
 | 
						|
    BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
 | 
						|
    // The check for the single predecessor is not the best that can be
 | 
						|
    // done. But it protects efficiently against cases like when SI's
 | 
						|
    // home block has two successors, Succ and Succ1, and Succ1 predecessor
 | 
						|
    // of Succ. Then SI can't be replaced by SIOpd because the use that gets
 | 
						|
    // replaced can be reached on either path. So the uniqueness check
 | 
						|
    // guarantees that the path all uses of SI (outside SI's parent) are on
 | 
						|
    // is disjoint from all other paths out of SI. But that information
 | 
						|
    // is more expensive to compute, and the trade-off here is in favor
 | 
						|
    // of compile-time. It should also be noticed that we check for a single
 | 
						|
    // predecessor and not only uniqueness. This to handle the situation when
 | 
						|
    // Succ and Succ1 points to the same basic block.
 | 
						|
    if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
 | 
						|
      NumSel++;
 | 
						|
      SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to fold the comparison based on range information we can get by checking
 | 
						|
/// whether bits are known to be zero or one in the inputs.
 | 
						|
Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  Type *Ty = Op0->getType();
 | 
						|
  ICmpInst::Predicate Pred = I.getPredicate();
 | 
						|
 | 
						|
  // Get scalar or pointer size.
 | 
						|
  unsigned BitWidth = Ty->isIntOrIntVectorTy()
 | 
						|
                          ? Ty->getScalarSizeInBits()
 | 
						|
                          : DL.getPointerTypeSizeInBits(Ty->getScalarType());
 | 
						|
 | 
						|
  if (!BitWidth)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  KnownBits Op0Known(BitWidth);
 | 
						|
  KnownBits Op1Known(BitWidth);
 | 
						|
 | 
						|
  if (SimplifyDemandedBits(&I, 0,
 | 
						|
                           getDemandedBitsLHSMask(I, BitWidth),
 | 
						|
                           Op0Known, 0))
 | 
						|
    return &I;
 | 
						|
 | 
						|
  if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
 | 
						|
                           Op1Known, 0))
 | 
						|
    return &I;
 | 
						|
 | 
						|
  // Given the known and unknown bits, compute a range that the LHS could be
 | 
						|
  // in.  Compute the Min, Max and RHS values based on the known bits. For the
 | 
						|
  // EQ and NE we use unsigned values.
 | 
						|
  APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
 | 
						|
  APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
 | 
						|
  if (I.isSigned()) {
 | 
						|
    computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
 | 
						|
    computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
 | 
						|
  } else {
 | 
						|
    computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
 | 
						|
    computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
 | 
						|
  }
 | 
						|
 | 
						|
  // If Min and Max are known to be the same, then SimplifyDemandedBits figured
 | 
						|
  // out that the LHS or RHS is a constant. Constant fold this now, so that
 | 
						|
  // code below can assume that Min != Max.
 | 
						|
  if (!isa<Constant>(Op0) && Op0Min == Op0Max)
 | 
						|
    return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
 | 
						|
  if (!isa<Constant>(Op1) && Op1Min == Op1Max)
 | 
						|
    return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
 | 
						|
 | 
						|
  // Based on the range information we know about the LHS, see if we can
 | 
						|
  // simplify this comparison.  For example, (x&4) < 8 is always true.
 | 
						|
  switch (Pred) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown icmp opcode!");
 | 
						|
  case ICmpInst::ICMP_EQ:
 | 
						|
  case ICmpInst::ICMP_NE: {
 | 
						|
    if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
 | 
						|
      return Pred == CmpInst::ICMP_EQ
 | 
						|
                 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
 | 
						|
                 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | 
						|
    }
 | 
						|
 | 
						|
    // If all bits are known zero except for one, then we know at most one bit
 | 
						|
    // is set. If the comparison is against zero, then this is a check to see if
 | 
						|
    // *that* bit is set.
 | 
						|
    APInt Op0KnownZeroInverted = ~Op0Known.Zero;
 | 
						|
    if (Op1Known.isZero()) {
 | 
						|
      // If the LHS is an AND with the same constant, look through it.
 | 
						|
      Value *LHS = nullptr;
 | 
						|
      const APInt *LHSC;
 | 
						|
      if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
 | 
						|
          *LHSC != Op0KnownZeroInverted)
 | 
						|
        LHS = Op0;
 | 
						|
 | 
						|
      Value *X;
 | 
						|
      if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
 | 
						|
        APInt ValToCheck = Op0KnownZeroInverted;
 | 
						|
        Type *XTy = X->getType();
 | 
						|
        if (ValToCheck.isPowerOf2()) {
 | 
						|
          // ((1 << X) & 8) == 0 -> X != 3
 | 
						|
          // ((1 << X) & 8) != 0 -> X == 3
 | 
						|
          auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
 | 
						|
          auto NewPred = ICmpInst::getInversePredicate(Pred);
 | 
						|
          return new ICmpInst(NewPred, X, CmpC);
 | 
						|
        } else if ((++ValToCheck).isPowerOf2()) {
 | 
						|
          // ((1 << X) & 7) == 0 -> X >= 3
 | 
						|
          // ((1 << X) & 7) != 0 -> X  < 3
 | 
						|
          auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
 | 
						|
          auto NewPred =
 | 
						|
              Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
 | 
						|
          return new ICmpInst(NewPred, X, CmpC);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
 | 
						|
      const APInt *CI;
 | 
						|
      if (Op0KnownZeroInverted.isOneValue() &&
 | 
						|
          match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
 | 
						|
        // ((8 >>u X) & 1) == 0 -> X != 3
 | 
						|
        // ((8 >>u X) & 1) != 0 -> X == 3
 | 
						|
        unsigned CmpVal = CI->countTrailingZeros();
 | 
						|
        auto NewPred = ICmpInst::getInversePredicate(Pred);
 | 
						|
        return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_ULT: {
 | 
						|
    if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | 
						|
    if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | 
						|
    if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | 
						|
 | 
						|
    const APInt *CmpC;
 | 
						|
    if (match(Op1, m_APInt(CmpC))) {
 | 
						|
      // A <u C -> A == C-1 if min(A)+1 == C
 | 
						|
      if (*CmpC == Op0Min + 1)
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | 
						|
                            ConstantInt::get(Op1->getType(), *CmpC - 1));
 | 
						|
      // X <u C --> X == 0, if the number of zero bits in the bottom of X
 | 
						|
      // exceeds the log2 of C.
 | 
						|
      if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | 
						|
                            Constant::getNullValue(Op1->getType()));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_UGT: {
 | 
						|
    if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | 
						|
    if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | 
						|
    if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | 
						|
 | 
						|
    const APInt *CmpC;
 | 
						|
    if (match(Op1, m_APInt(CmpC))) {
 | 
						|
      // A >u C -> A == C+1 if max(a)-1 == C
 | 
						|
      if (*CmpC == Op0Max - 1)
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | 
						|
                            ConstantInt::get(Op1->getType(), *CmpC + 1));
 | 
						|
      // X >u C --> X != 0, if the number of zero bits in the bottom of X
 | 
						|
      // exceeds the log2 of C.
 | 
						|
      if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_NE, Op0,
 | 
						|
                            Constant::getNullValue(Op1->getType()));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_SLT: {
 | 
						|
    if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | 
						|
    if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | 
						|
    if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | 
						|
    const APInt *CmpC;
 | 
						|
    if (match(Op1, m_APInt(CmpC))) {
 | 
						|
      if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | 
						|
                            ConstantInt::get(Op1->getType(), *CmpC - 1));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_SGT: {
 | 
						|
    if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | 
						|
    if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | 
						|
    if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | 
						|
    const APInt *CmpC;
 | 
						|
    if (match(Op1, m_APInt(CmpC))) {
 | 
						|
      if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
 | 
						|
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | 
						|
                            ConstantInt::get(Op1->getType(), *CmpC + 1));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICmpInst::ICMP_SGE:
 | 
						|
    assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
 | 
						|
    if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | 
						|
    if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | 
						|
    if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_SLE:
 | 
						|
    assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
 | 
						|
    if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | 
						|
    if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | 
						|
    if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_UGE:
 | 
						|
    assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
 | 
						|
    if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | 
						|
    if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | 
						|
    if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
 | 
						|
    break;
 | 
						|
  case ICmpInst::ICMP_ULE:
 | 
						|
    assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
 | 
						|
    if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | 
						|
    if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
 | 
						|
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | 
						|
    if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn a signed comparison into an unsigned one if both operands are known to
 | 
						|
  // have the same sign.
 | 
						|
  if (I.isSigned() &&
 | 
						|
      ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
 | 
						|
       (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
 | 
						|
    return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
 | 
						|
llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
 | 
						|
                                               Constant *C) {
 | 
						|
  assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
 | 
						|
         "Only for relational integer predicates.");
 | 
						|
 | 
						|
  Type *Type = C->getType();
 | 
						|
  bool IsSigned = ICmpInst::isSigned(Pred);
 | 
						|
 | 
						|
  CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
 | 
						|
  bool WillIncrement =
 | 
						|
      UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
 | 
						|
 | 
						|
  // Check if the constant operand can be safely incremented/decremented
 | 
						|
  // without overflowing/underflowing.
 | 
						|
  auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
 | 
						|
    return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
 | 
						|
  };
 | 
						|
 | 
						|
  Constant *SafeReplacementConstant = nullptr;
 | 
						|
  if (auto *CI = dyn_cast<ConstantInt>(C)) {
 | 
						|
    // Bail out if the constant can't be safely incremented/decremented.
 | 
						|
    if (!ConstantIsOk(CI))
 | 
						|
      return llvm::None;
 | 
						|
  } else if (Type->isVectorTy()) {
 | 
						|
    unsigned NumElts = Type->getVectorNumElements();
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
      Constant *Elt = C->getAggregateElement(i);
 | 
						|
      if (!Elt)
 | 
						|
        return llvm::None;
 | 
						|
 | 
						|
      if (isa<UndefValue>(Elt))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Bail out if we can't determine if this constant is min/max or if we
 | 
						|
      // know that this constant is min/max.
 | 
						|
      auto *CI = dyn_cast<ConstantInt>(Elt);
 | 
						|
      if (!CI || !ConstantIsOk(CI))
 | 
						|
        return llvm::None;
 | 
						|
 | 
						|
      if (!SafeReplacementConstant)
 | 
						|
        SafeReplacementConstant = CI;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // ConstantExpr?
 | 
						|
    return llvm::None;
 | 
						|
  }
 | 
						|
 | 
						|
  // It may not be safe to change a compare predicate in the presence of
 | 
						|
  // undefined elements, so replace those elements with the first safe constant
 | 
						|
  // that we found.
 | 
						|
  if (C->containsUndefElement()) {
 | 
						|
    assert(SafeReplacementConstant && "Replacement constant not set");
 | 
						|
    C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
 | 
						|
  }
 | 
						|
 | 
						|
  CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
 | 
						|
 | 
						|
  // Increment or decrement the constant.
 | 
						|
  Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
 | 
						|
  Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
 | 
						|
 | 
						|
  return std::make_pair(NewPred, NewC);
 | 
						|
}
 | 
						|
 | 
						|
/// If we have an icmp le or icmp ge instruction with a constant operand, turn
 | 
						|
/// it into the appropriate icmp lt or icmp gt instruction. This transform
 | 
						|
/// allows them to be folded in visitICmpInst.
 | 
						|
static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
 | 
						|
  ICmpInst::Predicate Pred = I.getPredicate();
 | 
						|
  if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
 | 
						|
      isCanonicalPredicate(Pred))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Op0 = I.getOperand(0);
 | 
						|
  Value *Op1 = I.getOperand(1);
 | 
						|
  auto *Op1C = dyn_cast<Constant>(Op1);
 | 
						|
  if (!Op1C)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
 | 
						|
  if (!FlippedStrictness)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
 | 
						|
}
 | 
						|
 | 
						|
/// Integer compare with boolean values can always be turned into bitwise ops.
 | 
						|
static Instruction *canonicalizeICmpBool(ICmpInst &I,
 | 
						|
                                         InstCombiner::BuilderTy &Builder) {
 | 
						|
  Value *A = I.getOperand(0), *B = I.getOperand(1);
 | 
						|
  assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
 | 
						|
 | 
						|
  // A boolean compared to true/false can be simplified to Op0/true/false in
 | 
						|
  // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
 | 
						|
  // Cases not handled by InstSimplify are always 'not' of Op0.
 | 
						|
  if (match(B, m_Zero())) {
 | 
						|
    switch (I.getPredicate()) {
 | 
						|
      case CmpInst::ICMP_EQ:  // A ==   0 -> !A
 | 
						|
      case CmpInst::ICMP_ULE: // A <=u  0 -> !A
 | 
						|
      case CmpInst::ICMP_SGE: // A >=s  0 -> !A
 | 
						|
        return BinaryOperator::CreateNot(A);
 | 
						|
      default:
 | 
						|
        llvm_unreachable("ICmp i1 X, C not simplified as expected.");
 | 
						|
    }
 | 
						|
  } else if (match(B, m_One())) {
 | 
						|
    switch (I.getPredicate()) {
 | 
						|
      case CmpInst::ICMP_NE:  // A !=  1 -> !A
 | 
						|
      case CmpInst::ICMP_ULT: // A <u  1 -> !A
 | 
						|
      case CmpInst::ICMP_SGT: // A >s -1 -> !A
 | 
						|
        return BinaryOperator::CreateNot(A);
 | 
						|
      default:
 | 
						|
        llvm_unreachable("ICmp i1 X, C not simplified as expected.");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  switch (I.getPredicate()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid icmp instruction!");
 | 
						|
  case ICmpInst::ICMP_EQ:
 | 
						|
    // icmp eq i1 A, B -> ~(A ^ B)
 | 
						|
    return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
 | 
						|
 | 
						|
  case ICmpInst::ICMP_NE:
 | 
						|
    // icmp ne i1 A, B -> A ^ B
 | 
						|
    return BinaryOperator::CreateXor(A, B);
 | 
						|
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
    // icmp ugt -> icmp ult
 | 
						|
    std::swap(A, B);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
    // icmp ult i1 A, B -> ~A & B
 | 
						|
    return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
 | 
						|
 | 
						|
  case ICmpInst::ICMP_SGT:
 | 
						|
    // icmp sgt -> icmp slt
 | 
						|
    std::swap(A, B);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ICmpInst::ICMP_SLT:
 | 
						|
    // icmp slt i1 A, B -> A & ~B
 | 
						|
    return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
 | 
						|
 | 
						|
  case ICmpInst::ICMP_UGE:
 | 
						|
    // icmp uge -> icmp ule
 | 
						|
    std::swap(A, B);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ICmpInst::ICMP_ULE:
 | 
						|
    // icmp ule i1 A, B -> ~A | B
 | 
						|
    return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
 | 
						|
 | 
						|
  case ICmpInst::ICMP_SGE:
 | 
						|
    // icmp sge -> icmp sle
 | 
						|
    std::swap(A, B);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ICmpInst::ICMP_SLE:
 | 
						|
    // icmp sle i1 A, B -> A | ~B
 | 
						|
    return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Transform pattern like:
 | 
						|
//   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
 | 
						|
//   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
 | 
						|
// Into:
 | 
						|
//   (X l>> Y) != 0
 | 
						|
//   (X l>> Y) == 0
 | 
						|
static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
 | 
						|
                                            InstCombiner::BuilderTy &Builder) {
 | 
						|
  ICmpInst::Predicate Pred, NewPred;
 | 
						|
  Value *X, *Y;
 | 
						|
  if (match(&Cmp,
 | 
						|
            m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
 | 
						|
    switch (Pred) {
 | 
						|
    case ICmpInst::ICMP_ULE:
 | 
						|
      NewPred = ICmpInst::ICMP_NE;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_UGT:
 | 
						|
      NewPred = ICmpInst::ICMP_EQ;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  } else if (match(&Cmp, m_c_ICmp(Pred,
 | 
						|
                                  m_OneUse(m_CombineOr(
 | 
						|
                                      m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
 | 
						|
                                      m_Add(m_Shl(m_One(), m_Value(Y)),
 | 
						|
                                            m_AllOnes()))),
 | 
						|
                                  m_Value(X)))) {
 | 
						|
    // The variant with 'add' is not canonical, (the variant with 'not' is)
 | 
						|
    // we only get it because it has extra uses, and can't be canonicalized,
 | 
						|
 | 
						|
    switch (Pred) {
 | 
						|
    case ICmpInst::ICMP_ULT:
 | 
						|
      NewPred = ICmpInst::ICMP_NE;
 | 
						|
      break;
 | 
						|
    case ICmpInst::ICMP_UGE:
 | 
						|
      NewPred = ICmpInst::ICMP_EQ;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
 | 
						|
  Constant *Zero = Constant::getNullValue(NewX->getType());
 | 
						|
  return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *foldVectorCmp(CmpInst &Cmp,
 | 
						|
                                  InstCombiner::BuilderTy &Builder) {
 | 
						|
  const CmpInst::Predicate Pred = Cmp.getPredicate();
 | 
						|
  Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
 | 
						|
  bool IsFP = isa<FCmpInst>(Cmp);
 | 
						|
 | 
						|
  Value *V1, *V2;
 | 
						|
  Constant *M;
 | 
						|
  if (!match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If both arguments of the cmp are shuffles that use the same mask and
 | 
						|
  // shuffle within a single vector, move the shuffle after the cmp:
 | 
						|
  // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
 | 
						|
  Type *V1Ty = V1->getType();
 | 
						|
  if (match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
 | 
						|
      V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
 | 
						|
    Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, V2)
 | 
						|
                         : Builder.CreateICmp(Pred, V1, V2);
 | 
						|
    return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to canonicalize compare with splatted operand and splat constant.
 | 
						|
  // TODO: We could generalize this for more than splats. See/use the code in
 | 
						|
  //       InstCombiner::foldVectorBinop().
 | 
						|
  Constant *C;
 | 
						|
  if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Length-changing splats are ok, so adjust the constants as needed:
 | 
						|
  // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
 | 
						|
  Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
 | 
						|
  Constant *ScalarM = M->getSplatValue(/* AllowUndefs */ true);
 | 
						|
  if (ScalarC && ScalarM) {
 | 
						|
    // We allow undefs in matching, but this transform removes those for safety.
 | 
						|
    // Demanded elements analysis should be able to recover some/all of that.
 | 
						|
    C = ConstantVector::getSplat(V1Ty->getVectorElementCount(), ScalarC);
 | 
						|
    M = ConstantVector::getSplat(M->getType()->getVectorElementCount(),
 | 
						|
                                 ScalarM);
 | 
						|
    Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, C)
 | 
						|
                         : Builder.CreateICmp(Pred, V1, C);
 | 
						|
    return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// extract(uadd.with.overflow(A, B), 0) ult A
 | 
						|
//  -> extract(uadd.with.overflow(A, B), 1)
 | 
						|
static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
 | 
						|
  CmpInst::Predicate Pred = I.getPredicate();
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
 | 
						|
  Value *UAddOv;
 | 
						|
  Value *A, *B;
 | 
						|
  auto UAddOvResultPat = m_ExtractValue<0>(
 | 
						|
      m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
 | 
						|
  if (match(Op0, UAddOvResultPat) &&
 | 
						|
      ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
 | 
						|
       (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
 | 
						|
        (match(A, m_One()) || match(B, m_One()))) ||
 | 
						|
       (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
 | 
						|
        (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
 | 
						|
    // extract(uadd.with.overflow(A, B), 0) < A
 | 
						|
    // extract(uadd.with.overflow(A, 1), 0) == 0
 | 
						|
    // extract(uadd.with.overflow(A, -1), 0) != -1
 | 
						|
    UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
 | 
						|
  else if (match(Op1, UAddOvResultPat) &&
 | 
						|
           Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
 | 
						|
    // A > extract(uadd.with.overflow(A, B), 0)
 | 
						|
    UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ExtractValueInst::Create(UAddOv, 1);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
 | 
						|
  bool Changed = false;
 | 
						|
  const SimplifyQuery Q = SQ.getWithInstruction(&I);
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  unsigned Op0Cplxity = getComplexity(Op0);
 | 
						|
  unsigned Op1Cplxity = getComplexity(Op1);
 | 
						|
 | 
						|
  /// Orders the operands of the compare so that they are listed from most
 | 
						|
  /// complex to least complex.  This puts constants before unary operators,
 | 
						|
  /// before binary operators.
 | 
						|
  if (Op0Cplxity < Op1Cplxity ||
 | 
						|
      (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
 | 
						|
    I.swapOperands();
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
 | 
						|
    return replaceInstUsesWith(I, V);
 | 
						|
 | 
						|
  // Comparing -val or val with non-zero is the same as just comparing val
 | 
						|
  // ie, abs(val) != 0 -> val != 0
 | 
						|
  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
 | 
						|
    Value *Cond, *SelectTrue, *SelectFalse;
 | 
						|
    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
 | 
						|
                            m_Value(SelectFalse)))) {
 | 
						|
      if (Value *V = dyn_castNegVal(SelectTrue)) {
 | 
						|
        if (V == SelectFalse)
 | 
						|
          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
 | 
						|
      }
 | 
						|
      else if (Value *V = dyn_castNegVal(SelectFalse)) {
 | 
						|
        if (V == SelectTrue)
 | 
						|
          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op0->getType()->isIntOrIntVectorTy(1))
 | 
						|
    if (Instruction *Res = canonicalizeICmpBool(I, Builder))
 | 
						|
      return Res;
 | 
						|
 | 
						|
  if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
 | 
						|
    return NewICmp;
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpWithConstant(I))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpWithDominatingICmp(I))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpBinOp(I, Q))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpUsingKnownBits(I))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Test if the ICmpInst instruction is used exclusively by a select as
 | 
						|
  // part of a minimum or maximum operation. If so, refrain from doing
 | 
						|
  // any other folding. This helps out other analyses which understand
 | 
						|
  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
 | 
						|
  // and CodeGen. And in this case, at least one of the comparison
 | 
						|
  // operands has at least one user besides the compare (the select),
 | 
						|
  // which would often largely negate the benefit of folding anyway.
 | 
						|
  //
 | 
						|
  // Do the same for the other patterns recognized by matchSelectPattern.
 | 
						|
  if (I.hasOneUse())
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
 | 
						|
      Value *A, *B;
 | 
						|
      SelectPatternResult SPR = matchSelectPattern(SI, A, B);
 | 
						|
      if (SPR.Flavor != SPF_UNKNOWN)
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
  // Do this after checking for min/max to prevent infinite looping.
 | 
						|
  if (Instruction *Res = foldICmpWithZero(I))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // FIXME: We only do this after checking for min/max to prevent infinite
 | 
						|
  // looping caused by a reverse canonicalization of these patterns for min/max.
 | 
						|
  // FIXME: The organization of folds is a mess. These would naturally go into
 | 
						|
  // canonicalizeCmpWithConstant(), but we can't move all of the above folds
 | 
						|
  // down here after the min/max restriction.
 | 
						|
  ICmpInst::Predicate Pred = I.getPredicate();
 | 
						|
  const APInt *C;
 | 
						|
  if (match(Op1, m_APInt(C))) {
 | 
						|
    // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
 | 
						|
    if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
 | 
						|
      Constant *Zero = Constant::getNullValue(Op0->getType());
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
 | 
						|
    }
 | 
						|
 | 
						|
    // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
 | 
						|
    if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
 | 
						|
      Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
 | 
						|
      return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpInstWithConstant(I))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Try to match comparison as a sign bit test. Intentionally do this after
 | 
						|
  // foldICmpInstWithConstant() to potentially let other folds to happen first.
 | 
						|
  if (Instruction *New = foldSignBitTest(I))
 | 
						|
    return New;
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
 | 
						|
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
 | 
						|
    if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
 | 
						|
      return NI;
 | 
						|
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
 | 
						|
    if (Instruction *NI = foldGEPICmp(GEP, Op0,
 | 
						|
                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
 | 
						|
      return NI;
 | 
						|
 | 
						|
  // Try to optimize equality comparisons against alloca-based pointers.
 | 
						|
  if (Op0->getType()->isPointerTy() && I.isEquality()) {
 | 
						|
    assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
 | 
						|
    if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
 | 
						|
      if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
 | 
						|
        return New;
 | 
						|
    if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
 | 
						|
      if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
 | 
						|
        return New;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpBitCast(I, Builder))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (Instruction *R = foldICmpWithCastOp(I))
 | 
						|
    return R;
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpWithMinMax(I))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  {
 | 
						|
    Value *A, *B;
 | 
						|
    // Transform (A & ~B) == 0 --> (A & B) != 0
 | 
						|
    // and       (A & ~B) != 0 --> (A & B) == 0
 | 
						|
    // if A is a power of 2.
 | 
						|
    if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
 | 
						|
        match(Op1, m_Zero()) &&
 | 
						|
        isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
 | 
						|
      return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
 | 
						|
                          Op1);
 | 
						|
 | 
						|
    // ~X < ~Y --> Y < X
 | 
						|
    // ~X < C -->  X > ~C
 | 
						|
    if (match(Op0, m_Not(m_Value(A)))) {
 | 
						|
      if (match(Op1, m_Not(m_Value(B))))
 | 
						|
        return new ICmpInst(I.getPredicate(), B, A);
 | 
						|
 | 
						|
      const APInt *C;
 | 
						|
      if (match(Op1, m_APInt(C)))
 | 
						|
        return new ICmpInst(I.getSwappedPredicate(), A,
 | 
						|
                            ConstantInt::get(Op1->getType(), ~(*C)));
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *AddI = nullptr;
 | 
						|
    if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
 | 
						|
                                     m_Instruction(AddI))) &&
 | 
						|
        isa<IntegerType>(A->getType())) {
 | 
						|
      Value *Result;
 | 
						|
      Constant *Overflow;
 | 
						|
      // m_UAddWithOverflow can match patterns that do not include  an explicit
 | 
						|
      // "add" instruction, so check the opcode of the matched op.
 | 
						|
      if (AddI->getOpcode() == Instruction::Add &&
 | 
						|
          OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
 | 
						|
                                Result, Overflow)) {
 | 
						|
        replaceInstUsesWith(*AddI, Result);
 | 
						|
        return replaceInstUsesWith(I, Overflow);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // (zext a) * (zext b)  --> llvm.umul.with.overflow.
 | 
						|
    if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
 | 
						|
      if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
 | 
						|
        return R;
 | 
						|
    }
 | 
						|
    if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
 | 
						|
      if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
 | 
						|
        return R;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpEquality(I))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpOfUAddOv(I))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // The 'cmpxchg' instruction returns an aggregate containing the old value and
 | 
						|
  // an i1 which indicates whether or not we successfully did the swap.
 | 
						|
  //
 | 
						|
  // Replace comparisons between the old value and the expected value with the
 | 
						|
  // indicator that 'cmpxchg' returns.
 | 
						|
  //
 | 
						|
  // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
 | 
						|
  // spuriously fail.  In those cases, the old value may equal the expected
 | 
						|
  // value but it is possible for the swap to not occur.
 | 
						|
  if (I.getPredicate() == ICmpInst::ICMP_EQ)
 | 
						|
    if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
 | 
						|
      if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
 | 
						|
        if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
 | 
						|
            !ACXI->isWeak())
 | 
						|
          return ExtractValueInst::Create(ACXI, 1);
 | 
						|
 | 
						|
  {
 | 
						|
    Value *X;
 | 
						|
    const APInt *C;
 | 
						|
    // icmp X+Cst, X
 | 
						|
    if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
 | 
						|
      return foldICmpAddOpConst(X, *C, I.getPredicate());
 | 
						|
 | 
						|
    // icmp X, X+Cst
 | 
						|
    if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
 | 
						|
      return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (I.getType()->isVectorTy())
 | 
						|
    if (Instruction *Res = foldVectorCmp(I, Builder))
 | 
						|
      return Res;
 | 
						|
 | 
						|
  return Changed ? &I : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold fcmp ([us]itofp x, cst) if possible.
 | 
						|
Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
 | 
						|
                                                Constant *RHSC) {
 | 
						|
  if (!isa<ConstantFP>(RHSC)) return nullptr;
 | 
						|
  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
 | 
						|
 | 
						|
  // Get the width of the mantissa.  We don't want to hack on conversions that
 | 
						|
  // might lose information from the integer, e.g. "i64 -> float"
 | 
						|
  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
 | 
						|
  if (MantissaWidth == -1) return nullptr;  // Unknown.
 | 
						|
 | 
						|
  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
 | 
						|
 | 
						|
  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
 | 
						|
 | 
						|
  if (I.isEquality()) {
 | 
						|
    FCmpInst::Predicate P = I.getPredicate();
 | 
						|
    bool IsExact = false;
 | 
						|
    APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
 | 
						|
    RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
 | 
						|
 | 
						|
    // If the floating point constant isn't an integer value, we know if we will
 | 
						|
    // ever compare equal / not equal to it.
 | 
						|
    if (!IsExact) {
 | 
						|
      // TODO: Can never be -0.0 and other non-representable values
 | 
						|
      APFloat RHSRoundInt(RHS);
 | 
						|
      RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
 | 
						|
      if (RHS != RHSRoundInt) {
 | 
						|
        if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
 | 
						|
          return replaceInstUsesWith(I, Builder.getFalse());
 | 
						|
 | 
						|
        assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
 | 
						|
        return replaceInstUsesWith(I, Builder.getTrue());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: If the constant is exactly representable, is it always OK to do
 | 
						|
    // equality compares as integer?
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see that the input is converted from an integer type that is small
 | 
						|
  // enough that preserves all bits.  TODO: check here for "known" sign bits.
 | 
						|
  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
 | 
						|
  unsigned InputSize = IntTy->getScalarSizeInBits();
 | 
						|
 | 
						|
  // Following test does NOT adjust InputSize downwards for signed inputs,
 | 
						|
  // because the most negative value still requires all the mantissa bits
 | 
						|
  // to distinguish it from one less than that value.
 | 
						|
  if ((int)InputSize > MantissaWidth) {
 | 
						|
    // Conversion would lose accuracy. Check if loss can impact comparison.
 | 
						|
    int Exp = ilogb(RHS);
 | 
						|
    if (Exp == APFloat::IEK_Inf) {
 | 
						|
      int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
 | 
						|
      if (MaxExponent < (int)InputSize - !LHSUnsigned)
 | 
						|
        // Conversion could create infinity.
 | 
						|
        return nullptr;
 | 
						|
    } else {
 | 
						|
      // Note that if RHS is zero or NaN, then Exp is negative
 | 
						|
      // and first condition is trivially false.
 | 
						|
      if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
 | 
						|
        // Conversion could affect comparison.
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we can potentially simplify the comparison.  We know that it
 | 
						|
  // will always come through as an integer value and we know the constant is
 | 
						|
  // not a NAN (it would have been previously simplified).
 | 
						|
  assert(!RHS.isNaN() && "NaN comparison not already folded!");
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred;
 | 
						|
  switch (I.getPredicate()) {
 | 
						|
  default: llvm_unreachable("Unexpected predicate!");
 | 
						|
  case FCmpInst::FCMP_UEQ:
 | 
						|
  case FCmpInst::FCMP_OEQ:
 | 
						|
    Pred = ICmpInst::ICMP_EQ;
 | 
						|
    break;
 | 
						|
  case FCmpInst::FCMP_UGT:
 | 
						|
  case FCmpInst::FCMP_OGT:
 | 
						|
    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
 | 
						|
    break;
 | 
						|
  case FCmpInst::FCMP_UGE:
 | 
						|
  case FCmpInst::FCMP_OGE:
 | 
						|
    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
 | 
						|
    break;
 | 
						|
  case FCmpInst::FCMP_ULT:
 | 
						|
  case FCmpInst::FCMP_OLT:
 | 
						|
    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
 | 
						|
    break;
 | 
						|
  case FCmpInst::FCMP_ULE:
 | 
						|
  case FCmpInst::FCMP_OLE:
 | 
						|
    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
 | 
						|
    break;
 | 
						|
  case FCmpInst::FCMP_UNE:
 | 
						|
  case FCmpInst::FCMP_ONE:
 | 
						|
    Pred = ICmpInst::ICMP_NE;
 | 
						|
    break;
 | 
						|
  case FCmpInst::FCMP_ORD:
 | 
						|
    return replaceInstUsesWith(I, Builder.getTrue());
 | 
						|
  case FCmpInst::FCMP_UNO:
 | 
						|
    return replaceInstUsesWith(I, Builder.getFalse());
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that the APFloat is a normal number, zero or inf.
 | 
						|
 | 
						|
  // See if the FP constant is too large for the integer.  For example,
 | 
						|
  // comparing an i8 to 300.0.
 | 
						|
  unsigned IntWidth = IntTy->getScalarSizeInBits();
 | 
						|
 | 
						|
  if (!LHSUnsigned) {
 | 
						|
    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
 | 
						|
    // and large values.
 | 
						|
    APFloat SMax(RHS.getSemantics());
 | 
						|
    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
 | 
						|
                          APFloat::rmNearestTiesToEven);
 | 
						|
    if (SMax < RHS) { // smax < 13123.0
 | 
						|
      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
 | 
						|
          Pred == ICmpInst::ICMP_SLE)
 | 
						|
        return replaceInstUsesWith(I, Builder.getTrue());
 | 
						|
      return replaceInstUsesWith(I, Builder.getFalse());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // If the RHS value is > UnsignedMax, fold the comparison. This handles
 | 
						|
    // +INF and large values.
 | 
						|
    APFloat UMax(RHS.getSemantics());
 | 
						|
    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
 | 
						|
                          APFloat::rmNearestTiesToEven);
 | 
						|
    if (UMax < RHS) { // umax < 13123.0
 | 
						|
      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
 | 
						|
          Pred == ICmpInst::ICMP_ULE)
 | 
						|
        return replaceInstUsesWith(I, Builder.getTrue());
 | 
						|
      return replaceInstUsesWith(I, Builder.getFalse());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!LHSUnsigned) {
 | 
						|
    // See if the RHS value is < SignedMin.
 | 
						|
    APFloat SMin(RHS.getSemantics());
 | 
						|
    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
 | 
						|
                          APFloat::rmNearestTiesToEven);
 | 
						|
    if (SMin > RHS) { // smin > 12312.0
 | 
						|
      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
 | 
						|
          Pred == ICmpInst::ICMP_SGE)
 | 
						|
        return replaceInstUsesWith(I, Builder.getTrue());
 | 
						|
      return replaceInstUsesWith(I, Builder.getFalse());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // See if the RHS value is < UnsignedMin.
 | 
						|
    APFloat UMin(RHS.getSemantics());
 | 
						|
    UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
 | 
						|
                          APFloat::rmNearestTiesToEven);
 | 
						|
    if (UMin > RHS) { // umin > 12312.0
 | 
						|
      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
 | 
						|
          Pred == ICmpInst::ICMP_UGE)
 | 
						|
        return replaceInstUsesWith(I, Builder.getTrue());
 | 
						|
      return replaceInstUsesWith(I, Builder.getFalse());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
 | 
						|
  // [0, UMAX], but it may still be fractional.  See if it is fractional by
 | 
						|
  // casting the FP value to the integer value and back, checking for equality.
 | 
						|
  // Don't do this for zero, because -0.0 is not fractional.
 | 
						|
  Constant *RHSInt = LHSUnsigned
 | 
						|
    ? ConstantExpr::getFPToUI(RHSC, IntTy)
 | 
						|
    : ConstantExpr::getFPToSI(RHSC, IntTy);
 | 
						|
  if (!RHS.isZero()) {
 | 
						|
    bool Equal = LHSUnsigned
 | 
						|
      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
 | 
						|
      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
 | 
						|
    if (!Equal) {
 | 
						|
      // If we had a comparison against a fractional value, we have to adjust
 | 
						|
      // the compare predicate and sometimes the value.  RHSC is rounded towards
 | 
						|
      // zero at this point.
 | 
						|
      switch (Pred) {
 | 
						|
      default: llvm_unreachable("Unexpected integer comparison!");
 | 
						|
      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
 | 
						|
        return replaceInstUsesWith(I, Builder.getTrue());
 | 
						|
      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
 | 
						|
        return replaceInstUsesWith(I, Builder.getFalse());
 | 
						|
      case ICmpInst::ICMP_ULE:
 | 
						|
        // (float)int <= 4.4   --> int <= 4
 | 
						|
        // (float)int <= -4.4  --> false
 | 
						|
        if (RHS.isNegative())
 | 
						|
          return replaceInstUsesWith(I, Builder.getFalse());
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_SLE:
 | 
						|
        // (float)int <= 4.4   --> int <= 4
 | 
						|
        // (float)int <= -4.4  --> int < -4
 | 
						|
        if (RHS.isNegative())
 | 
						|
          Pred = ICmpInst::ICMP_SLT;
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_ULT:
 | 
						|
        // (float)int < -4.4   --> false
 | 
						|
        // (float)int < 4.4    --> int <= 4
 | 
						|
        if (RHS.isNegative())
 | 
						|
          return replaceInstUsesWith(I, Builder.getFalse());
 | 
						|
        Pred = ICmpInst::ICMP_ULE;
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_SLT:
 | 
						|
        // (float)int < -4.4   --> int < -4
 | 
						|
        // (float)int < 4.4    --> int <= 4
 | 
						|
        if (!RHS.isNegative())
 | 
						|
          Pred = ICmpInst::ICMP_SLE;
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_UGT:
 | 
						|
        // (float)int > 4.4    --> int > 4
 | 
						|
        // (float)int > -4.4   --> true
 | 
						|
        if (RHS.isNegative())
 | 
						|
          return replaceInstUsesWith(I, Builder.getTrue());
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_SGT:
 | 
						|
        // (float)int > 4.4    --> int > 4
 | 
						|
        // (float)int > -4.4   --> int >= -4
 | 
						|
        if (RHS.isNegative())
 | 
						|
          Pred = ICmpInst::ICMP_SGE;
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_UGE:
 | 
						|
        // (float)int >= -4.4   --> true
 | 
						|
        // (float)int >= 4.4    --> int > 4
 | 
						|
        if (RHS.isNegative())
 | 
						|
          return replaceInstUsesWith(I, Builder.getTrue());
 | 
						|
        Pred = ICmpInst::ICMP_UGT;
 | 
						|
        break;
 | 
						|
      case ICmpInst::ICMP_SGE:
 | 
						|
        // (float)int >= -4.4   --> int >= -4
 | 
						|
        // (float)int >= 4.4    --> int > 4
 | 
						|
        if (!RHS.isNegative())
 | 
						|
          Pred = ICmpInst::ICMP_SGT;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower this FP comparison into an appropriate integer version of the
 | 
						|
  // comparison.
 | 
						|
  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
 | 
						|
}
 | 
						|
 | 
						|
/// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
 | 
						|
static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
 | 
						|
                                              Constant *RHSC) {
 | 
						|
  // When C is not 0.0 and infinities are not allowed:
 | 
						|
  // (C / X) < 0.0 is a sign-bit test of X
 | 
						|
  // (C / X) < 0.0 --> X < 0.0 (if C is positive)
 | 
						|
  // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
 | 
						|
  //
 | 
						|
  // Proof:
 | 
						|
  // Multiply (C / X) < 0.0 by X * X / C.
 | 
						|
  // - X is non zero, if it is the flag 'ninf' is violated.
 | 
						|
  // - C defines the sign of X * X * C. Thus it also defines whether to swap
 | 
						|
  //   the predicate. C is also non zero by definition.
 | 
						|
  //
 | 
						|
  // Thus X * X / C is non zero and the transformation is valid. [qed]
 | 
						|
 | 
						|
  FCmpInst::Predicate Pred = I.getPredicate();
 | 
						|
 | 
						|
  // Check that predicates are valid.
 | 
						|
  if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
 | 
						|
      (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check that RHS operand is zero.
 | 
						|
  if (!match(RHSC, m_AnyZeroFP()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check fastmath flags ('ninf').
 | 
						|
  if (!LHSI->hasNoInfs() || !I.hasNoInfs())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check the properties of the dividend. It must not be zero to avoid a
 | 
						|
  // division by zero (see Proof).
 | 
						|
  const APFloat *C;
 | 
						|
  if (!match(LHSI->getOperand(0), m_APFloat(C)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (C->isZero())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Get swapped predicate if necessary.
 | 
						|
  if (C->isNegative())
 | 
						|
    Pred = I.getSwappedPredicate();
 | 
						|
 | 
						|
  return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
 | 
						|
}
 | 
						|
 | 
						|
/// Optimize fabs(X) compared with zero.
 | 
						|
static Instruction *foldFabsWithFcmpZero(FCmpInst &I) {
 | 
						|
  Value *X;
 | 
						|
  if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
 | 
						|
      !match(I.getOperand(1), m_PosZeroFP()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
 | 
						|
    I->setPredicate(P);
 | 
						|
    I->setOperand(0, X);
 | 
						|
    return I;
 | 
						|
  };
 | 
						|
 | 
						|
  switch (I.getPredicate()) {
 | 
						|
  case FCmpInst::FCMP_UGE:
 | 
						|
  case FCmpInst::FCMP_OLT:
 | 
						|
    // fabs(X) >= 0.0 --> true
 | 
						|
    // fabs(X) <  0.0 --> false
 | 
						|
    llvm_unreachable("fcmp should have simplified");
 | 
						|
 | 
						|
  case FCmpInst::FCMP_OGT:
 | 
						|
    // fabs(X) > 0.0 --> X != 0.0
 | 
						|
    return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
 | 
						|
 | 
						|
  case FCmpInst::FCMP_UGT:
 | 
						|
    // fabs(X) u> 0.0 --> X u!= 0.0
 | 
						|
    return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
 | 
						|
 | 
						|
  case FCmpInst::FCMP_OLE:
 | 
						|
    // fabs(X) <= 0.0 --> X == 0.0
 | 
						|
    return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
 | 
						|
 | 
						|
  case FCmpInst::FCMP_ULE:
 | 
						|
    // fabs(X) u<= 0.0 --> X u== 0.0
 | 
						|
    return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
 | 
						|
 | 
						|
  case FCmpInst::FCMP_OGE:
 | 
						|
    // fabs(X) >= 0.0 --> !isnan(X)
 | 
						|
    assert(!I.hasNoNaNs() && "fcmp should have simplified");
 | 
						|
    return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
 | 
						|
 | 
						|
  case FCmpInst::FCMP_ULT:
 | 
						|
    // fabs(X) u< 0.0 --> isnan(X)
 | 
						|
    assert(!I.hasNoNaNs() && "fcmp should have simplified");
 | 
						|
    return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
 | 
						|
 | 
						|
  case FCmpInst::FCMP_OEQ:
 | 
						|
  case FCmpInst::FCMP_UEQ:
 | 
						|
  case FCmpInst::FCMP_ONE:
 | 
						|
  case FCmpInst::FCMP_UNE:
 | 
						|
  case FCmpInst::FCMP_ORD:
 | 
						|
  case FCmpInst::FCMP_UNO:
 | 
						|
    // Look through the fabs() because it doesn't change anything but the sign.
 | 
						|
    // fabs(X) == 0.0 --> X == 0.0,
 | 
						|
    // fabs(X) != 0.0 --> X != 0.0
 | 
						|
    // isnan(fabs(X)) --> isnan(X)
 | 
						|
    // !isnan(fabs(X) --> !isnan(X)
 | 
						|
    return replacePredAndOp0(&I, I.getPredicate(), X);
 | 
						|
 | 
						|
  default:
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  /// Orders the operands of the compare so that they are listed from most
 | 
						|
  /// complex to least complex.  This puts constants before unary operators,
 | 
						|
  /// before binary operators.
 | 
						|
  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
 | 
						|
    I.swapOperands();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  const CmpInst::Predicate Pred = I.getPredicate();
 | 
						|
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | 
						|
  if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
 | 
						|
                                  SQ.getWithInstruction(&I)))
 | 
						|
    return replaceInstUsesWith(I, V);
 | 
						|
 | 
						|
  // Simplify 'fcmp pred X, X'
 | 
						|
  Type *OpType = Op0->getType();
 | 
						|
  assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
 | 
						|
  if (Op0 == Op1) {
 | 
						|
    switch (Pred) {
 | 
						|
      default: break;
 | 
						|
    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
 | 
						|
    case FCmpInst::FCMP_ULT:    // True if unordered or less than
 | 
						|
    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
 | 
						|
    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
 | 
						|
      // Canonicalize these to be 'fcmp uno %X, 0.0'.
 | 
						|
      I.setPredicate(FCmpInst::FCMP_UNO);
 | 
						|
      I.setOperand(1, Constant::getNullValue(OpType));
 | 
						|
      return &I;
 | 
						|
 | 
						|
    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
 | 
						|
    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
 | 
						|
    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
 | 
						|
    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
 | 
						|
      // Canonicalize these to be 'fcmp ord %X, 0.0'.
 | 
						|
      I.setPredicate(FCmpInst::FCMP_ORD);
 | 
						|
      I.setOperand(1, Constant::getNullValue(OpType));
 | 
						|
      return &I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
 | 
						|
  // then canonicalize the operand to 0.0.
 | 
						|
  if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
 | 
						|
    if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
 | 
						|
      return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
 | 
						|
 | 
						|
    if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
 | 
						|
      return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
 | 
						|
  }
 | 
						|
 | 
						|
  // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
 | 
						|
  Value *X, *Y;
 | 
						|
  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
 | 
						|
    return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
 | 
						|
 | 
						|
  // Test if the FCmpInst instruction is used exclusively by a select as
 | 
						|
  // part of a minimum or maximum operation. If so, refrain from doing
 | 
						|
  // any other folding. This helps out other analyses which understand
 | 
						|
  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
 | 
						|
  // and CodeGen. And in this case, at least one of the comparison
 | 
						|
  // operands has at least one user besides the compare (the select),
 | 
						|
  // which would often largely negate the benefit of folding anyway.
 | 
						|
  if (I.hasOneUse())
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
 | 
						|
      Value *A, *B;
 | 
						|
      SelectPatternResult SPR = matchSelectPattern(SI, A, B);
 | 
						|
      if (SPR.Flavor != SPF_UNKNOWN)
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
  // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
 | 
						|
  // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
 | 
						|
  if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
 | 
						|
    return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
 | 
						|
 | 
						|
  // Handle fcmp with instruction LHS and constant RHS.
 | 
						|
  Instruction *LHSI;
 | 
						|
  Constant *RHSC;
 | 
						|
  if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
 | 
						|
    switch (LHSI->getOpcode()) {
 | 
						|
    case Instruction::PHI:
 | 
						|
      // Only fold fcmp into the PHI if the phi and fcmp are in the same
 | 
						|
      // block.  If in the same block, we're encouraging jump threading.  If
 | 
						|
      // not, we are just pessimizing the code by making an i1 phi.
 | 
						|
      if (LHSI->getParent() == I.getParent())
 | 
						|
        if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
 | 
						|
          return NV;
 | 
						|
      break;
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
      if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
 | 
						|
        return NV;
 | 
						|
      break;
 | 
						|
    case Instruction::FDiv:
 | 
						|
      if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
 | 
						|
        return NV;
 | 
						|
      break;
 | 
						|
    case Instruction::Load:
 | 
						|
      if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
 | 
						|
        if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
 | 
						|
          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
 | 
						|
              !cast<LoadInst>(LHSI)->isVolatile())
 | 
						|
            if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
 | 
						|
              return Res;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *R = foldFabsWithFcmpZero(I))
 | 
						|
    return R;
 | 
						|
 | 
						|
  if (match(Op0, m_FNeg(m_Value(X)))) {
 | 
						|
    // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
 | 
						|
    Constant *C;
 | 
						|
    if (match(Op1, m_Constant(C))) {
 | 
						|
      Constant *NegC = ConstantExpr::getFNeg(C);
 | 
						|
      return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(Op0, m_FPExt(m_Value(X)))) {
 | 
						|
    // fcmp (fpext X), (fpext Y) -> fcmp X, Y
 | 
						|
    if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
 | 
						|
      return new FCmpInst(Pred, X, Y, "", &I);
 | 
						|
 | 
						|
    // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
 | 
						|
    const APFloat *C;
 | 
						|
    if (match(Op1, m_APFloat(C))) {
 | 
						|
      const fltSemantics &FPSem =
 | 
						|
          X->getType()->getScalarType()->getFltSemantics();
 | 
						|
      bool Lossy;
 | 
						|
      APFloat TruncC = *C;
 | 
						|
      TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
 | 
						|
 | 
						|
      // Avoid lossy conversions and denormals.
 | 
						|
      // Zero is a special case that's OK to convert.
 | 
						|
      APFloat Fabs = TruncC;
 | 
						|
      Fabs.clearSign();
 | 
						|
      if (!Lossy &&
 | 
						|
          (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
 | 
						|
        Constant *NewC = ConstantFP::get(X->getType(), TruncC);
 | 
						|
        return new FCmpInst(Pred, X, NewC, "", &I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (I.getType()->isVectorTy())
 | 
						|
    if (Instruction *Res = foldVectorCmp(I, Builder))
 | 
						|
      return Res;
 | 
						|
 | 
						|
  return Changed ? &I : nullptr;
 | 
						|
}
 |