forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2831 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2831 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineSelect.cpp ----------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitSelect function.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CmpInstAnalysis.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
 | |
| #include <cassert>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| static Value *createMinMax(InstCombiner::BuilderTy &Builder,
 | |
|                            SelectPatternFlavor SPF, Value *A, Value *B) {
 | |
|   CmpInst::Predicate Pred = getMinMaxPred(SPF);
 | |
|   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
 | |
|   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
 | |
| }
 | |
| 
 | |
| /// Replace a select operand based on an equality comparison with the identity
 | |
| /// constant of a binop.
 | |
| static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
 | |
|                                             const TargetLibraryInfo &TLI,
 | |
|                                             InstCombiner &IC) {
 | |
|   // The select condition must be an equality compare with a constant operand.
 | |
|   Value *X;
 | |
|   Constant *C;
 | |
|   CmpInst::Predicate Pred;
 | |
|   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
 | |
|     return nullptr;
 | |
| 
 | |
|   bool IsEq;
 | |
|   if (ICmpInst::isEquality(Pred))
 | |
|     IsEq = Pred == ICmpInst::ICMP_EQ;
 | |
|   else if (Pred == FCmpInst::FCMP_OEQ)
 | |
|     IsEq = true;
 | |
|   else if (Pred == FCmpInst::FCMP_UNE)
 | |
|     IsEq = false;
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // A select operand must be a binop.
 | |
|   BinaryOperator *BO;
 | |
|   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // The compare constant must be the identity constant for that binop.
 | |
|   // If this a floating-point compare with 0.0, any zero constant will do.
 | |
|   Type *Ty = BO->getType();
 | |
|   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
 | |
|   if (IdC != C) {
 | |
|     if (!IdC || !CmpInst::isFPPredicate(Pred))
 | |
|       return nullptr;
 | |
|     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Last, match the compare variable operand with a binop operand.
 | |
|   Value *Y;
 | |
|   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
 | |
|     return nullptr;
 | |
|   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // +0.0 compares equal to -0.0, and so it does not behave as required for this
 | |
|   // transform. Bail out if we can not exclude that possibility.
 | |
|   if (isa<FPMathOperator>(BO))
 | |
|     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
 | |
|       return nullptr;
 | |
| 
 | |
|   // BO = binop Y, X
 | |
|   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
 | |
|   // =>
 | |
|   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
 | |
|   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
 | |
| }
 | |
| 
 | |
| /// This folds:
 | |
| ///  select (icmp eq (and X, C1)), TC, FC
 | |
| ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
 | |
| /// To something like:
 | |
| ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
 | |
| /// Or:
 | |
| ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
 | |
| /// With some variations depending if FC is larger than TC, or the shift
 | |
| /// isn't needed, or the bit widths don't match.
 | |
| static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
 | |
|                                 InstCombiner::BuilderTy &Builder) {
 | |
|   const APInt *SelTC, *SelFC;
 | |
|   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
 | |
|       !match(Sel.getFalseValue(), m_APInt(SelFC)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is a vector select, we need a vector compare.
 | |
|   Type *SelType = Sel.getType();
 | |
|   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *V;
 | |
|   APInt AndMask;
 | |
|   bool CreateAnd = false;
 | |
|   ICmpInst::Predicate Pred = Cmp->getPredicate();
 | |
|   if (ICmpInst::isEquality(Pred)) {
 | |
|     if (!match(Cmp->getOperand(1), m_Zero()))
 | |
|       return nullptr;
 | |
| 
 | |
|     V = Cmp->getOperand(0);
 | |
|     const APInt *AndRHS;
 | |
|     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
 | |
|       return nullptr;
 | |
| 
 | |
|     AndMask = *AndRHS;
 | |
|   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
 | |
|                                   Pred, V, AndMask)) {
 | |
|     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
 | |
|     if (!AndMask.isPowerOf2())
 | |
|       return nullptr;
 | |
| 
 | |
|     CreateAnd = true;
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // In general, when both constants are non-zero, we would need an offset to
 | |
|   // replace the select. This would require more instructions than we started
 | |
|   // with. But there's one special-case that we handle here because it can
 | |
|   // simplify/reduce the instructions.
 | |
|   APInt TC = *SelTC;
 | |
|   APInt FC = *SelFC;
 | |
|   if (!TC.isNullValue() && !FC.isNullValue()) {
 | |
|     // If the select constants differ by exactly one bit and that's the same
 | |
|     // bit that is masked and checked by the select condition, the select can
 | |
|     // be replaced by bitwise logic to set/clear one bit of the constant result.
 | |
|     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
 | |
|       return nullptr;
 | |
|     if (CreateAnd) {
 | |
|       // If we have to create an 'and', then we must kill the cmp to not
 | |
|       // increase the instruction count.
 | |
|       if (!Cmp->hasOneUse())
 | |
|         return nullptr;
 | |
|       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
 | |
|     }
 | |
|     bool ExtraBitInTC = TC.ugt(FC);
 | |
|     if (Pred == ICmpInst::ICMP_EQ) {
 | |
|       // If the masked bit in V is clear, clear or set the bit in the result:
 | |
|       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
 | |
|       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
 | |
|       Constant *C = ConstantInt::get(SelType, TC);
 | |
|       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
 | |
|     }
 | |
|     if (Pred == ICmpInst::ICMP_NE) {
 | |
|       // If the masked bit in V is set, set or clear the bit in the result:
 | |
|       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
 | |
|       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
 | |
|       Constant *C = ConstantInt::get(SelType, FC);
 | |
|       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
 | |
|     }
 | |
|     llvm_unreachable("Only expecting equality predicates");
 | |
|   }
 | |
| 
 | |
|   // Make sure one of the select arms is a power-of-2.
 | |
|   if (!TC.isPowerOf2() && !FC.isPowerOf2())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Determine which shift is needed to transform result of the 'and' into the
 | |
|   // desired result.
 | |
|   const APInt &ValC = !TC.isNullValue() ? TC : FC;
 | |
|   unsigned ValZeros = ValC.logBase2();
 | |
|   unsigned AndZeros = AndMask.logBase2();
 | |
| 
 | |
|   // Insert the 'and' instruction on the input to the truncate.
 | |
|   if (CreateAnd)
 | |
|     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
 | |
| 
 | |
|   // If types don't match, we can still convert the select by introducing a zext
 | |
|   // or a trunc of the 'and'.
 | |
|   if (ValZeros > AndZeros) {
 | |
|     V = Builder.CreateZExtOrTrunc(V, SelType);
 | |
|     V = Builder.CreateShl(V, ValZeros - AndZeros);
 | |
|   } else if (ValZeros < AndZeros) {
 | |
|     V = Builder.CreateLShr(V, AndZeros - ValZeros);
 | |
|     V = Builder.CreateZExtOrTrunc(V, SelType);
 | |
|   } else {
 | |
|     V = Builder.CreateZExtOrTrunc(V, SelType);
 | |
|   }
 | |
| 
 | |
|   // Okay, now we know that everything is set up, we just don't know whether we
 | |
|   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
 | |
|   bool ShouldNotVal = !TC.isNullValue();
 | |
|   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
 | |
|   if (ShouldNotVal)
 | |
|     V = Builder.CreateXor(V, ValC);
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// We want to turn code that looks like this:
 | |
| ///   %C = or %A, %B
 | |
| ///   %D = select %cond, %C, %A
 | |
| /// into:
 | |
| ///   %C = select %cond, %B, 0
 | |
| ///   %D = or %A, %C
 | |
| ///
 | |
| /// Assuming that the specified instruction is an operand to the select, return
 | |
| /// a bitmask indicating which operands of this instruction are foldable if they
 | |
| /// equal the other incoming value of the select.
 | |
| static unsigned getSelectFoldableOperands(BinaryOperator *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     return 3;              // Can fold through either operand.
 | |
|   case Instruction::Sub:   // Can only fold on the amount subtracted.
 | |
|   case Instruction::Shl:   // Can only fold on the shift amount.
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     return 1;
 | |
|   default:
 | |
|     return 0;              // Cannot fold
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// For the same transformation as the previous function, return the identity
 | |
| /// constant that goes into the select.
 | |
| static APInt getSelectFoldableConstant(BinaryOperator *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   default: llvm_unreachable("This cannot happen!");
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
 | |
|   case Instruction::And:
 | |
|     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
 | |
|   case Instruction::Mul:
 | |
|     return APInt(I->getType()->getScalarSizeInBits(), 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
 | |
| Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
 | |
|                                           Instruction *FI) {
 | |
|   // Don't break up min/max patterns. The hasOneUse checks below prevent that
 | |
|   // for most cases, but vector min/max with bitcasts can be transformed. If the
 | |
|   // one-use restrictions are eased for other patterns, we still don't want to
 | |
|   // obfuscate min/max.
 | |
|   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
 | |
|        match(&SI, m_SMax(m_Value(), m_Value())) ||
 | |
|        match(&SI, m_UMin(m_Value(), m_Value())) ||
 | |
|        match(&SI, m_UMax(m_Value(), m_Value()))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is a cast from the same type, merge.
 | |
|   Value *Cond = SI.getCondition();
 | |
|   Type *CondTy = Cond->getType();
 | |
|   if (TI->getNumOperands() == 1 && TI->isCast()) {
 | |
|     Type *FIOpndTy = FI->getOperand(0)->getType();
 | |
|     if (TI->getOperand(0)->getType() != FIOpndTy)
 | |
|       return nullptr;
 | |
| 
 | |
|     // The select condition may be a vector. We may only change the operand
 | |
|     // type if the vector width remains the same (and matches the condition).
 | |
|     if (CondTy->isVectorTy()) {
 | |
|       if (!FIOpndTy->isVectorTy())
 | |
|         return nullptr;
 | |
|       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
 | |
|         return nullptr;
 | |
| 
 | |
|       // TODO: If the backend knew how to deal with casts better, we could
 | |
|       // remove this limitation. For now, there's too much potential to create
 | |
|       // worse codegen by promoting the select ahead of size-altering casts
 | |
|       // (PR28160).
 | |
|       //
 | |
|       // Note that ValueTracking's matchSelectPattern() looks through casts
 | |
|       // without checking 'hasOneUse' when it matches min/max patterns, so this
 | |
|       // transform may end up happening anyway.
 | |
|       if (TI->getOpcode() != Instruction::BitCast &&
 | |
|           (!TI->hasOneUse() || !FI->hasOneUse()))
 | |
|         return nullptr;
 | |
|     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
 | |
|       // TODO: The one-use restrictions for a scalar select could be eased if
 | |
|       // the fold of a select in visitLoadInst() was enhanced to match a pattern
 | |
|       // that includes a cast.
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Fold this by inserting a select from the input values.
 | |
|     Value *NewSI =
 | |
|         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
 | |
|                              SI.getName() + ".v", &SI);
 | |
|     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
 | |
|                             TI->getType());
 | |
|   }
 | |
| 
 | |
|   // Cond ? -X : -Y --> -(Cond ? X : Y)
 | |
|   Value *X, *Y;
 | |
|   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
 | |
|       (TI->hasOneUse() || FI->hasOneUse())) {
 | |
|     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
 | |
|     return UnaryOperator::CreateFNegFMF(NewSel, TI);
 | |
|   }
 | |
| 
 | |
|   // Only handle binary operators (including two-operand getelementptr) with
 | |
|   // one-use here. As with the cast case above, it may be possible to relax the
 | |
|   // one-use constraint, but that needs be examined carefully since it may not
 | |
|   // reduce the total number of instructions.
 | |
|   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
 | |
|       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
 | |
|       !TI->hasOneUse() || !FI->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Figure out if the operations have any operands in common.
 | |
|   Value *MatchOp, *OtherOpT, *OtherOpF;
 | |
|   bool MatchIsOpZero;
 | |
|   if (TI->getOperand(0) == FI->getOperand(0)) {
 | |
|     MatchOp  = TI->getOperand(0);
 | |
|     OtherOpT = TI->getOperand(1);
 | |
|     OtherOpF = FI->getOperand(1);
 | |
|     MatchIsOpZero = true;
 | |
|   } else if (TI->getOperand(1) == FI->getOperand(1)) {
 | |
|     MatchOp  = TI->getOperand(1);
 | |
|     OtherOpT = TI->getOperand(0);
 | |
|     OtherOpF = FI->getOperand(0);
 | |
|     MatchIsOpZero = false;
 | |
|   } else if (!TI->isCommutative()) {
 | |
|     return nullptr;
 | |
|   } else if (TI->getOperand(0) == FI->getOperand(1)) {
 | |
|     MatchOp  = TI->getOperand(0);
 | |
|     OtherOpT = TI->getOperand(1);
 | |
|     OtherOpF = FI->getOperand(0);
 | |
|     MatchIsOpZero = true;
 | |
|   } else if (TI->getOperand(1) == FI->getOperand(0)) {
 | |
|     MatchOp  = TI->getOperand(1);
 | |
|     OtherOpT = TI->getOperand(0);
 | |
|     OtherOpF = FI->getOperand(1);
 | |
|     MatchIsOpZero = true;
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If the select condition is a vector, the operands of the original select's
 | |
|   // operands also must be vectors. This may not be the case for getelementptr
 | |
|   // for example.
 | |
|   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
 | |
|                                !OtherOpF->getType()->isVectorTy()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we reach here, they do have operations in common.
 | |
|   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
 | |
|                                       SI.getName() + ".v", &SI);
 | |
|   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
 | |
|   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
 | |
|   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
 | |
|     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
 | |
|     NewBO->copyIRFlags(TI);
 | |
|     NewBO->andIRFlags(FI);
 | |
|     return NewBO;
 | |
|   }
 | |
|   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
 | |
|     auto *FGEP = cast<GetElementPtrInst>(FI);
 | |
|     Type *ElementType = TGEP->getResultElementType();
 | |
|     return TGEP->isInBounds() && FGEP->isInBounds()
 | |
|                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
 | |
|                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
 | |
|   }
 | |
|   llvm_unreachable("Expected BinaryOperator or GEP");
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static bool isSelect01(const APInt &C1I, const APInt &C2I) {
 | |
|   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
 | |
|     return false;
 | |
|   return C1I.isOneValue() || C1I.isAllOnesValue() ||
 | |
|          C2I.isOneValue() || C2I.isAllOnesValue();
 | |
| }
 | |
| 
 | |
| /// Try to fold the select into one of the operands to allow further
 | |
| /// optimization.
 | |
| Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
 | |
|                                             Value *FalseVal) {
 | |
|   // See the comment above GetSelectFoldableOperands for a description of the
 | |
|   // transformation we are doing here.
 | |
|   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
 | |
|     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
 | |
|       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
 | |
|         unsigned OpToFold = 0;
 | |
|         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
 | |
|           OpToFold = 1;
 | |
|         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
 | |
|           OpToFold = 2;
 | |
|         }
 | |
| 
 | |
|         if (OpToFold) {
 | |
|           APInt CI = getSelectFoldableConstant(TVI);
 | |
|           Value *OOp = TVI->getOperand(2-OpToFold);
 | |
|           // Avoid creating select between 2 constants unless it's selecting
 | |
|           // between 0, 1 and -1.
 | |
|           const APInt *OOpC;
 | |
|           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
 | |
|           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
 | |
|             Value *C = ConstantInt::get(OOp->getType(), CI);
 | |
|             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
 | |
|             NewSel->takeName(TVI);
 | |
|             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
 | |
|                                                         FalseVal, NewSel);
 | |
|             BO->copyIRFlags(TVI);
 | |
|             return BO;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
 | |
|     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
 | |
|       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
 | |
|         unsigned OpToFold = 0;
 | |
|         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
 | |
|           OpToFold = 1;
 | |
|         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
 | |
|           OpToFold = 2;
 | |
|         }
 | |
| 
 | |
|         if (OpToFold) {
 | |
|           APInt CI = getSelectFoldableConstant(FVI);
 | |
|           Value *OOp = FVI->getOperand(2-OpToFold);
 | |
|           // Avoid creating select between 2 constants unless it's selecting
 | |
|           // between 0, 1 and -1.
 | |
|           const APInt *OOpC;
 | |
|           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
 | |
|           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
 | |
|             Value *C = ConstantInt::get(OOp->getType(), CI);
 | |
|             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
 | |
|             NewSel->takeName(FVI);
 | |
|             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
 | |
|                                                         TrueVal, NewSel);
 | |
|             BO->copyIRFlags(FVI);
 | |
|             return BO;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// We want to turn:
 | |
| ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
 | |
| /// into:
 | |
| ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
 | |
| /// Note:
 | |
| ///   Z may be 0 if lshr is missing.
 | |
| /// Worst-case scenario is that we will replace 5 instructions with 5 different
 | |
| /// instructions, but we got rid of select.
 | |
| static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
 | |
|                                          Value *TVal, Value *FVal,
 | |
|                                          InstCombiner::BuilderTy &Builder) {
 | |
|   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
 | |
|         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
 | |
|         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
 | |
|     return nullptr;
 | |
| 
 | |
|   // The TrueVal has general form of:  and %B, 1
 | |
|   Value *B;
 | |
|   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Where %B may be optionally shifted:  lshr %X, %Z.
 | |
|   Value *X, *Z;
 | |
|   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
 | |
|   if (!HasShift)
 | |
|     X = B;
 | |
| 
 | |
|   Value *Y;
 | |
|   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
 | |
|   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
 | |
|   Constant *One = ConstantInt::get(SelType, 1);
 | |
|   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
 | |
|   Value *FullMask = Builder.CreateOr(Y, MaskB);
 | |
|   Value *MaskedX = Builder.CreateAnd(X, FullMask);
 | |
|   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
 | |
|   return new ZExtInst(ICmpNeZero, SelType);
 | |
| }
 | |
| 
 | |
| /// We want to turn:
 | |
| ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
 | |
| ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
 | |
| /// into:
 | |
| ///   ashr (X, Y)
 | |
| static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
 | |
|                                      Value *FalseVal,
 | |
|                                      InstCombiner::BuilderTy &Builder) {
 | |
|   ICmpInst::Predicate Pred = IC->getPredicate();
 | |
|   Value *CmpLHS = IC->getOperand(0);
 | |
|   Value *CmpRHS = IC->getOperand(1);
 | |
|   if (!CmpRHS->getType()->isIntOrIntVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *X, *Y;
 | |
|   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
 | |
|   if ((Pred != ICmpInst::ICMP_SGT ||
 | |
|        !match(CmpRHS,
 | |
|               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
 | |
|       (Pred != ICmpInst::ICMP_SLT ||
 | |
|        !match(CmpRHS,
 | |
|               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Canonicalize so that ashr is in FalseVal.
 | |
|   if (Pred == ICmpInst::ICMP_SLT)
 | |
|     std::swap(TrueVal, FalseVal);
 | |
| 
 | |
|   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
 | |
|       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
 | |
|       match(CmpLHS, m_Specific(X))) {
 | |
|     const auto *Ashr = cast<Instruction>(FalseVal);
 | |
|     // if lshr is not exact and ashr is, this new ashr must not be exact.
 | |
|     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
 | |
|     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// We want to turn:
 | |
| ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
 | |
| /// into:
 | |
| ///   (or (shl (and X, C1), C3), Y)
 | |
| /// iff:
 | |
| ///   C1 and C2 are both powers of 2
 | |
| /// where:
 | |
| ///   C3 = Log(C2) - Log(C1)
 | |
| ///
 | |
| /// This transform handles cases where:
 | |
| /// 1. The icmp predicate is inverted
 | |
| /// 2. The select operands are reversed
 | |
| /// 3. The magnitude of C2 and C1 are flipped
 | |
| static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
 | |
|                                   Value *FalseVal,
 | |
|                                   InstCombiner::BuilderTy &Builder) {
 | |
|   // Only handle integer compares. Also, if this is a vector select, we need a
 | |
|   // vector compare.
 | |
|   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
 | |
|       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *CmpLHS = IC->getOperand(0);
 | |
|   Value *CmpRHS = IC->getOperand(1);
 | |
| 
 | |
|   Value *V;
 | |
|   unsigned C1Log;
 | |
|   bool IsEqualZero;
 | |
|   bool NeedAnd = false;
 | |
|   if (IC->isEquality()) {
 | |
|     if (!match(CmpRHS, m_Zero()))
 | |
|       return nullptr;
 | |
| 
 | |
|     const APInt *C1;
 | |
|     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
 | |
|       return nullptr;
 | |
| 
 | |
|     V = CmpLHS;
 | |
|     C1Log = C1->logBase2();
 | |
|     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
 | |
|   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
 | |
|              IC->getPredicate() == ICmpInst::ICMP_SGT) {
 | |
|     // We also need to recognize (icmp slt (trunc (X)), 0) and
 | |
|     // (icmp sgt (trunc (X)), -1).
 | |
|     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
 | |
|     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
 | |
|         (!IsEqualZero && !match(CmpRHS, m_Zero())))
 | |
|       return nullptr;
 | |
| 
 | |
|     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
 | |
|       return nullptr;
 | |
| 
 | |
|     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
 | |
|     NeedAnd = true;
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   const APInt *C2;
 | |
|   bool OrOnTrueVal = false;
 | |
|   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
 | |
|   if (!OrOnFalseVal)
 | |
|     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
 | |
| 
 | |
|   if (!OrOnFalseVal && !OrOnTrueVal)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
 | |
| 
 | |
|   unsigned C2Log = C2->logBase2();
 | |
| 
 | |
|   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
 | |
|   bool NeedShift = C1Log != C2Log;
 | |
|   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
 | |
|                        V->getType()->getScalarSizeInBits();
 | |
| 
 | |
|   // Make sure we don't create more instructions than we save.
 | |
|   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
 | |
|   if ((NeedShift + NeedXor + NeedZExtTrunc) >
 | |
|       (IC->hasOneUse() + Or->hasOneUse()))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (NeedAnd) {
 | |
|     // Insert the AND instruction on the input to the truncate.
 | |
|     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
 | |
|     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
 | |
|   }
 | |
| 
 | |
|   if (C2Log > C1Log) {
 | |
|     V = Builder.CreateZExtOrTrunc(V, Y->getType());
 | |
|     V = Builder.CreateShl(V, C2Log - C1Log);
 | |
|   } else if (C1Log > C2Log) {
 | |
|     V = Builder.CreateLShr(V, C1Log - C2Log);
 | |
|     V = Builder.CreateZExtOrTrunc(V, Y->getType());
 | |
|   } else
 | |
|     V = Builder.CreateZExtOrTrunc(V, Y->getType());
 | |
| 
 | |
|   if (NeedXor)
 | |
|     V = Builder.CreateXor(V, *C2);
 | |
| 
 | |
|   return Builder.CreateOr(V, Y);
 | |
| }
 | |
| 
 | |
| /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
 | |
| /// There are 8 commuted/swapped variants of this pattern.
 | |
| /// TODO: Also support a - UMIN(a,b) patterns.
 | |
| static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
 | |
|                                             const Value *TrueVal,
 | |
|                                             const Value *FalseVal,
 | |
|                                             InstCombiner::BuilderTy &Builder) {
 | |
|   ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|   if (!ICmpInst::isUnsigned(Pred))
 | |
|     return nullptr;
 | |
| 
 | |
|   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
 | |
|   if (match(TrueVal, m_Zero())) {
 | |
|     Pred = ICmpInst::getInversePredicate(Pred);
 | |
|     std::swap(TrueVal, FalseVal);
 | |
|   }
 | |
|   if (!match(FalseVal, m_Zero()))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *A = ICI->getOperand(0);
 | |
|   Value *B = ICI->getOperand(1);
 | |
|   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
 | |
|     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
 | |
|     std::swap(A, B);
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
 | |
|          "Unexpected isUnsigned predicate!");
 | |
| 
 | |
|   // Ensure the sub is of the form:
 | |
|   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
 | |
|   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
 | |
|   // Checking for both a-b and a+(-b) as a constant.
 | |
|   bool IsNegative = false;
 | |
|   const APInt *C;
 | |
|   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
 | |
|       (match(A, m_APInt(C)) &&
 | |
|        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
 | |
|     IsNegative = true;
 | |
|   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
 | |
|            !(match(B, m_APInt(C)) &&
 | |
|              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we are adding a negate and the sub and icmp are used anywhere else, we
 | |
|   // would end up with more instructions.
 | |
|   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // (a > b) ? a - b : 0 -> usub.sat(a, b)
 | |
|   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
 | |
|   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
 | |
|   if (IsNegative)
 | |
|     Result = Builder.CreateNeg(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
 | |
|                                        InstCombiner::BuilderTy &Builder) {
 | |
|   if (!Cmp->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Match unsigned saturated add with constant.
 | |
|   Value *Cmp0 = Cmp->getOperand(0);
 | |
|   Value *Cmp1 = Cmp->getOperand(1);
 | |
|   ICmpInst::Predicate Pred = Cmp->getPredicate();
 | |
|   Value *X;
 | |
|   const APInt *C, *CmpC;
 | |
|   if (Pred == ICmpInst::ICMP_ULT &&
 | |
|       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
 | |
|       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
 | |
|     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
 | |
|     return Builder.CreateBinaryIntrinsic(
 | |
|         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
 | |
|   }
 | |
| 
 | |
|   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
 | |
|   // There are 8 commuted variants.
 | |
|   // Canonicalize -1 (saturated result) to true value of the select. Just
 | |
|   // swapping the compare operands is legal, because the selected value is the
 | |
|   // same in case of equality, so we can interchange u< and u<=.
 | |
|   if (match(FVal, m_AllOnes())) {
 | |
|     std::swap(TVal, FVal);
 | |
|     std::swap(Cmp0, Cmp1);
 | |
|   }
 | |
|   if (!match(TVal, m_AllOnes()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Canonicalize predicate to 'ULT'.
 | |
|   if (Pred == ICmpInst::ICMP_UGT) {
 | |
|     Pred = ICmpInst::ICMP_ULT;
 | |
|     std::swap(Cmp0, Cmp1);
 | |
|   }
 | |
|   if (Pred != ICmpInst::ICMP_ULT)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
 | |
|   Value *Y;
 | |
|   if (match(Cmp0, m_Not(m_Value(X))) &&
 | |
|       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
 | |
|     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
 | |
|     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
 | |
|     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
 | |
|   }
 | |
|   // The 'not' op may be included in the sum but not the compare.
 | |
|   X = Cmp0;
 | |
|   Y = Cmp1;
 | |
|   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
 | |
|     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
 | |
|     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
 | |
|     BinaryOperator *BO = cast<BinaryOperator>(FVal);
 | |
|     return Builder.CreateBinaryIntrinsic(
 | |
|         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
 | |
|   }
 | |
|   // The overflow may be detected via the add wrapping round.
 | |
|   if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
 | |
|       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
 | |
|     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
 | |
|     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
 | |
|     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold the following code sequence:
 | |
| /// \code
 | |
| ///   int a = ctlz(x & -x);
 | |
| //    x ? 31 - a : a;
 | |
| /// \code
 | |
| ///
 | |
| /// into:
 | |
| ///   cttz(x)
 | |
| static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
 | |
|                                          Value *FalseVal,
 | |
|                                          InstCombiner::BuilderTy &Builder) {
 | |
|   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
 | |
|   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
 | |
|     std::swap(TrueVal, FalseVal);
 | |
| 
 | |
|   if (!match(FalseVal,
 | |
|              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *X = ICI->getOperand(0);
 | |
|   auto *II = cast<IntrinsicInst>(TrueVal);
 | |
|   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
 | |
|                                           II->getType());
 | |
|   return CallInst::Create(F, {X, II->getArgOperand(1)});
 | |
| }
 | |
| 
 | |
| /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
 | |
| /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
 | |
| ///
 | |
| /// For example, we can fold the following code sequence:
 | |
| /// \code
 | |
| ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
 | |
| ///   %1 = icmp ne i32 %x, 0
 | |
| ///   %2 = select i1 %1, i32 %0, i32 32
 | |
| /// \code
 | |
| ///
 | |
| /// into:
 | |
| ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
 | |
| static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
 | |
|                                  InstCombiner::BuilderTy &Builder) {
 | |
|   ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|   Value *CmpLHS = ICI->getOperand(0);
 | |
|   Value *CmpRHS = ICI->getOperand(1);
 | |
| 
 | |
|   // Check if the condition value compares a value for equality against zero.
 | |
|   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *SelectArg = FalseVal;
 | |
|   Value *ValueOnZero = TrueVal;
 | |
|   if (Pred == ICmpInst::ICMP_NE)
 | |
|     std::swap(SelectArg, ValueOnZero);
 | |
| 
 | |
|   // Skip zero extend/truncate.
 | |
|   Value *Count = nullptr;
 | |
|   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
 | |
|       !match(SelectArg, m_Trunc(m_Value(Count))))
 | |
|     Count = SelectArg;
 | |
| 
 | |
|   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
 | |
|   // input to the cttz/ctlz is used as LHS for the compare instruction.
 | |
|   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
 | |
|       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
 | |
|     return nullptr;
 | |
| 
 | |
|   IntrinsicInst *II = cast<IntrinsicInst>(Count);
 | |
| 
 | |
|   // Check if the value propagated on zero is a constant number equal to the
 | |
|   // sizeof in bits of 'Count'.
 | |
|   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
 | |
|   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
 | |
|     // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
 | |
|     // true to false on this flag, so we can replace it for all users.
 | |
|     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
 | |
|     return SelectArg;
 | |
|   }
 | |
| 
 | |
|   // If the ValueOnZero is not the bitwidth, we can at least make use of the
 | |
|   // fact that the cttz/ctlz result will not be used if the input is zero, so
 | |
|   // it's okay to relax it to undef for that case.
 | |
|   if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
 | |
|     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return true if we find and adjust an icmp+select pattern where the compare
 | |
| /// is with a constant that can be incremented or decremented to match the
 | |
| /// minimum or maximum idiom.
 | |
| static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   Value *CmpLHS = Cmp.getOperand(0);
 | |
|   Value *CmpRHS = Cmp.getOperand(1);
 | |
|   Value *TrueVal = Sel.getTrueValue();
 | |
|   Value *FalseVal = Sel.getFalseValue();
 | |
| 
 | |
|   // We may move or edit the compare, so make sure the select is the only user.
 | |
|   const APInt *CmpC;
 | |
|   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
 | |
|     return false;
 | |
| 
 | |
|   // These transforms only work for selects of integers or vector selects of
 | |
|   // integer vectors.
 | |
|   Type *SelTy = Sel.getType();
 | |
|   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
 | |
|   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
 | |
|     return false;
 | |
| 
 | |
|   Constant *AdjustedRHS;
 | |
|   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
 | |
|     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
 | |
|   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
 | |
|     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
 | |
|   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
 | |
|   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
 | |
|       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
 | |
|     ; // Nothing to do here. Values match without any sign/zero extension.
 | |
|   }
 | |
|   // Types do not match. Instead of calculating this with mixed types, promote
 | |
|   // all to the larger type. This enables scalar evolution to analyze this
 | |
|   // expression.
 | |
|   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
 | |
|     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
 | |
| 
 | |
|     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
 | |
|     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
 | |
|     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
 | |
|     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
 | |
|     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
 | |
|       CmpLHS = TrueVal;
 | |
|       AdjustedRHS = SextRHS;
 | |
|     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
 | |
|                SextRHS == TrueVal) {
 | |
|       CmpLHS = FalseVal;
 | |
|       AdjustedRHS = SextRHS;
 | |
|     } else if (Cmp.isUnsigned()) {
 | |
|       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
 | |
|       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
 | |
|       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
 | |
|       // zext + signed compare cannot be changed:
 | |
|       //    0xff <s 0x00, but 0x00ff >s 0x0000
 | |
|       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
 | |
|         CmpLHS = TrueVal;
 | |
|         AdjustedRHS = ZextRHS;
 | |
|       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
 | |
|                  ZextRHS == TrueVal) {
 | |
|         CmpLHS = FalseVal;
 | |
|         AdjustedRHS = ZextRHS;
 | |
|       } else {
 | |
|         return false;
 | |
|       }
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   CmpRHS = AdjustedRHS;
 | |
|   std::swap(FalseVal, TrueVal);
 | |
|   Cmp.setPredicate(Pred);
 | |
|   Cmp.setOperand(0, CmpLHS);
 | |
|   Cmp.setOperand(1, CmpRHS);
 | |
|   Sel.setOperand(1, TrueVal);
 | |
|   Sel.setOperand(2, FalseVal);
 | |
|   Sel.swapProfMetadata();
 | |
| 
 | |
|   // Move the compare instruction right before the select instruction. Otherwise
 | |
|   // the sext/zext value may be defined after the compare instruction uses it.
 | |
|   Cmp.moveBefore(&Sel);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// If this is an integer min/max (icmp + select) with a constant operand,
 | |
| /// create the canonical icmp for the min/max operation and canonicalize the
 | |
| /// constant to the 'false' operand of the select:
 | |
| /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
 | |
| /// Note: if C1 != C2, this will change the icmp constant to the existing
 | |
| /// constant operand of the select.
 | |
| static Instruction *
 | |
| canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
 | |
|                                InstCombiner &IC) {
 | |
|   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Canonicalize the compare predicate based on whether we have min or max.
 | |
|   Value *LHS, *RHS;
 | |
|   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
 | |
|   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Is this already canonical?
 | |
|   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
 | |
|   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
 | |
|       Cmp.getPredicate() == CanonicalPred)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Bail out on unsimplified X-0 operand (due to some worklist management bug),
 | |
|   // as this may cause an infinite combine loop. Let the sub be folded first.
 | |
|   if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
 | |
|       match(RHS, m_Sub(m_Value(), m_Zero())))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Create the canonical compare and plug it into the select.
 | |
|   IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
 | |
| 
 | |
|   // If the select operands did not change, we're done.
 | |
|   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
 | |
|     return &Sel;
 | |
| 
 | |
|   // If we are swapping the select operands, swap the metadata too.
 | |
|   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
 | |
|          "Unexpected results from matchSelectPattern");
 | |
|   Sel.swapValues();
 | |
|   Sel.swapProfMetadata();
 | |
|   return &Sel;
 | |
| }
 | |
| 
 | |
| /// There are many select variants for each of ABS/NABS.
 | |
| /// In matchSelectPattern(), there are different compare constants, compare
 | |
| /// predicates/operands and select operands.
 | |
| /// In isKnownNegation(), there are different formats of negated operands.
 | |
| /// Canonicalize all these variants to 1 pattern.
 | |
| /// This makes CSE more likely.
 | |
| static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
 | |
|                                         InstCombiner::BuilderTy &Builder) {
 | |
|   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Choose a sign-bit check for the compare (likely simpler for codegen).
 | |
|   // ABS:  (X <s 0) ? -X : X
 | |
|   // NABS: (X <s 0) ? X : -X
 | |
|   Value *LHS, *RHS;
 | |
|   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
 | |
|   if (SPF != SelectPatternFlavor::SPF_ABS &&
 | |
|       SPF != SelectPatternFlavor::SPF_NABS)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *TVal = Sel.getTrueValue();
 | |
|   Value *FVal = Sel.getFalseValue();
 | |
|   assert(isKnownNegation(TVal, FVal) &&
 | |
|          "Unexpected result from matchSelectPattern");
 | |
| 
 | |
|   // The compare may use the negated abs()/nabs() operand, or it may use
 | |
|   // negation in non-canonical form such as: sub A, B.
 | |
|   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
 | |
|                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
 | |
| 
 | |
|   bool CmpCanonicalized = !CmpUsesNegatedOp &&
 | |
|                           match(Cmp.getOperand(1), m_ZeroInt()) &&
 | |
|                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
 | |
|   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
 | |
| 
 | |
|   // Is this already canonical?
 | |
|   if (CmpCanonicalized && RHSCanonicalized)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If RHS is not canonical but is used by other instructions, don't
 | |
|   // canonicalize it and potentially increase the instruction count.
 | |
|   if (!RHSCanonicalized)
 | |
|     if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
 | |
|       return nullptr;
 | |
| 
 | |
|   // Create the canonical compare: icmp slt LHS 0.
 | |
|   if (!CmpCanonicalized) {
 | |
|     Cmp.setPredicate(ICmpInst::ICMP_SLT);
 | |
|     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
 | |
|     if (CmpUsesNegatedOp)
 | |
|       Cmp.setOperand(0, LHS);
 | |
|   }
 | |
| 
 | |
|   // Create the canonical RHS: RHS = sub (0, LHS).
 | |
|   if (!RHSCanonicalized) {
 | |
|     assert(RHS->hasOneUse() && "RHS use number is not right");
 | |
|     RHS = Builder.CreateNeg(LHS);
 | |
|     if (TVal == LHS) {
 | |
|       Sel.setFalseValue(RHS);
 | |
|       FVal = RHS;
 | |
|     } else {
 | |
|       Sel.setTrueValue(RHS);
 | |
|       TVal = RHS;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the select operands do not change, we're done.
 | |
|   if (SPF == SelectPatternFlavor::SPF_NABS) {
 | |
|     if (TVal == LHS)
 | |
|       return &Sel;
 | |
|     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
 | |
|   } else {
 | |
|     if (FVal == LHS)
 | |
|       return &Sel;
 | |
|     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
 | |
|   }
 | |
| 
 | |
|   // We are swapping the select operands, so swap the metadata too.
 | |
|   Sel.swapValues();
 | |
|   Sel.swapProfMetadata();
 | |
|   return &Sel;
 | |
| }
 | |
| 
 | |
| static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
 | |
|                                      const SimplifyQuery &Q) {
 | |
|   // If this is a binary operator, try to simplify it with the replaced op
 | |
|   // because we know Op and ReplaceOp are equivalant.
 | |
|   // For example: V = X + 1, Op = X, ReplaceOp = 42
 | |
|   // Simplifies as: add(42, 1) --> 43
 | |
|   if (auto *BO = dyn_cast<BinaryOperator>(V)) {
 | |
|     if (BO->getOperand(0) == Op)
 | |
|       return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
 | |
|     if (BO->getOperand(1) == Op)
 | |
|       return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// If we have a select with an equality comparison, then we know the value in
 | |
| /// one of the arms of the select. See if substituting this value into an arm
 | |
| /// and simplifying the result yields the same value as the other arm.
 | |
| ///
 | |
| /// To make this transform safe, we must drop poison-generating flags
 | |
| /// (nsw, etc) if we simplified to a binop because the select may be guarding
 | |
| /// that poison from propagating. If the existing binop already had no
 | |
| /// poison-generating flags, then this transform can be done by instsimplify.
 | |
| ///
 | |
| /// Consider:
 | |
| ///   %cmp = icmp eq i32 %x, 2147483647
 | |
| ///   %add = add nsw i32 %x, 1
 | |
| ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
 | |
| ///
 | |
| /// We can't replace %sel with %add unless we strip away the flags.
 | |
| /// TODO: Wrapping flags could be preserved in some cases with better analysis.
 | |
| static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
 | |
|                                          const SimplifyQuery &Q) {
 | |
|   if (!Cmp.isEquality())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
 | |
|   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
 | |
|   if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
 | |
|     std::swap(TrueVal, FalseVal);
 | |
| 
 | |
|   // Try each equivalence substitution possibility.
 | |
|   // We have an 'EQ' comparison, so the select's false value will propagate.
 | |
|   // Example:
 | |
|   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
 | |
|   // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
 | |
|   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
 | |
|   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
 | |
|       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
 | |
|       simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
 | |
|       simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
 | |
|     if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
 | |
|       FalseInst->dropPoisonGeneratingFlags();
 | |
|     return FalseVal;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // See if this is a pattern like:
 | |
| //   %old_cmp1 = icmp slt i32 %x, C2
 | |
| //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
 | |
| //   %old_x_offseted = add i32 %x, C1
 | |
| //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
 | |
| //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
 | |
| // This can be rewritten as more canonical pattern:
 | |
| //   %new_cmp1 = icmp slt i32 %x, -C1
 | |
| //   %new_cmp2 = icmp sge i32 %x, C0-C1
 | |
| //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
 | |
| //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
 | |
| // Iff -C1 s<= C2 s<= C0-C1
 | |
| // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
 | |
| //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
 | |
| static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
 | |
|                                           InstCombiner::BuilderTy &Builder) {
 | |
|   Value *X = Sel0.getTrueValue();
 | |
|   Value *Sel1 = Sel0.getFalseValue();
 | |
| 
 | |
|   // First match the condition of the outermost select.
 | |
|   // Said condition must be one-use.
 | |
|   if (!Cmp0.hasOneUse())
 | |
|     return nullptr;
 | |
|   Value *Cmp00 = Cmp0.getOperand(0);
 | |
|   Constant *C0;
 | |
|   if (!match(Cmp0.getOperand(1),
 | |
|              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
 | |
|     return nullptr;
 | |
|   // Canonicalize Cmp0 into the form we expect.
 | |
|   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
 | |
|   switch (Cmp0.getPredicate()) {
 | |
|   case ICmpInst::Predicate::ICMP_ULT:
 | |
|     break; // Great!
 | |
|   case ICmpInst::Predicate::ICMP_ULE:
 | |
|     // We'd have to increment C0 by one, and for that it must not have all-ones
 | |
|     // element, but then it would have been canonicalized to 'ult' before
 | |
|     // we get here. So we can't do anything useful with 'ule'.
 | |
|     return nullptr;
 | |
|   case ICmpInst::Predicate::ICMP_UGT:
 | |
|     // We want to canonicalize it to 'ult', so we'll need to increment C0,
 | |
|     // which again means it must not have any all-ones elements.
 | |
|     if (!match(C0,
 | |
|                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
 | |
|                                   APInt::getAllOnesValue(
 | |
|                                       C0->getType()->getScalarSizeInBits()))))
 | |
|       return nullptr; // Can't do, have all-ones element[s].
 | |
|     C0 = AddOne(C0);
 | |
|     std::swap(X, Sel1);
 | |
|     break;
 | |
|   case ICmpInst::Predicate::ICMP_UGE:
 | |
|     // The only way we'd get this predicate if this `icmp` has extra uses,
 | |
|     // but then we won't be able to do this fold.
 | |
|     return nullptr;
 | |
|   default:
 | |
|     return nullptr; // Unknown predicate.
 | |
|   }
 | |
| 
 | |
|   // Now that we've canonicalized the ICmp, we know the X we expect;
 | |
|   // the select in other hand should be one-use.
 | |
|   if (!Sel1->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // We now can finish matching the condition of the outermost select:
 | |
|   // it should either be the X itself, or an addition of some constant to X.
 | |
|   Constant *C1;
 | |
|   if (Cmp00 == X)
 | |
|     C1 = ConstantInt::getNullValue(Sel0.getType());
 | |
|   else if (!match(Cmp00,
 | |
|                   m_Add(m_Specific(X),
 | |
|                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Cmp1;
 | |
|   ICmpInst::Predicate Pred1;
 | |
|   Constant *C2;
 | |
|   Value *ReplacementLow, *ReplacementHigh;
 | |
|   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
 | |
|                             m_Value(ReplacementHigh))) ||
 | |
|       !match(Cmp1,
 | |
|              m_ICmp(Pred1, m_Specific(X),
 | |
|                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
 | |
|     return nullptr; // Not enough one-use instructions for the fold.
 | |
|   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
 | |
|   //        two comparisons we'll need to build.
 | |
| 
 | |
|   // Canonicalize Cmp1 into the form we expect.
 | |
|   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
 | |
|   switch (Pred1) {
 | |
|   case ICmpInst::Predicate::ICMP_SLT:
 | |
|     break;
 | |
|   case ICmpInst::Predicate::ICMP_SLE:
 | |
|     // We'd have to increment C2 by one, and for that it must not have signed
 | |
|     // max element, but then it would have been canonicalized to 'slt' before
 | |
|     // we get here. So we can't do anything useful with 'sle'.
 | |
|     return nullptr;
 | |
|   case ICmpInst::Predicate::ICMP_SGT:
 | |
|     // We want to canonicalize it to 'slt', so we'll need to increment C2,
 | |
|     // which again means it must not have any signed max elements.
 | |
|     if (!match(C2,
 | |
|                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
 | |
|                                   APInt::getSignedMaxValue(
 | |
|                                       C2->getType()->getScalarSizeInBits()))))
 | |
|       return nullptr; // Can't do, have signed max element[s].
 | |
|     C2 = AddOne(C2);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::Predicate::ICMP_SGE:
 | |
|     // Also non-canonical, but here we don't need to change C2,
 | |
|     // so we don't have any restrictions on C2, so we can just handle it.
 | |
|     std::swap(ReplacementLow, ReplacementHigh);
 | |
|     break;
 | |
|   default:
 | |
|     return nullptr; // Unknown predicate.
 | |
|   }
 | |
| 
 | |
|   // The thresholds of this clamp-like pattern.
 | |
|   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
 | |
|   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
 | |
| 
 | |
|   // The fold has a precondition 1: C2 s>= ThresholdLow
 | |
|   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
 | |
|                                          ThresholdLowIncl);
 | |
|   if (!match(Precond1, m_One()))
 | |
|     return nullptr;
 | |
|   // The fold has a precondition 2: C2 s<= ThresholdHigh
 | |
|   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
 | |
|                                          ThresholdHighExcl);
 | |
|   if (!match(Precond2, m_One()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // All good, finally emit the new pattern.
 | |
|   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
 | |
|   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
 | |
|   Value *MaybeReplacedLow =
 | |
|       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
 | |
|   Instruction *MaybeReplacedHigh =
 | |
|       SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
 | |
| 
 | |
|   return MaybeReplacedHigh;
 | |
| }
 | |
| 
 | |
| // If we have
 | |
| //  %cmp = icmp [canonical predicate] i32 %x, C0
 | |
| //  %r = select i1 %cmp, i32 %y, i32 C1
 | |
| // Where C0 != C1 and %x may be different from %y, see if the constant that we
 | |
| // will have if we flip the strictness of the predicate (i.e. without changing
 | |
| // the result) is identical to the C1 in select. If it matches we can change
 | |
| // original comparison to one with swapped predicate, reuse the constant,
 | |
| // and swap the hands of select.
 | |
| static Instruction *
 | |
| tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
 | |
|                                          InstCombiner &IC) {
 | |
|   ICmpInst::Predicate Pred;
 | |
|   Value *X;
 | |
|   Constant *C0;
 | |
|   if (!match(&Cmp, m_OneUse(m_ICmp(
 | |
|                        Pred, m_Value(X),
 | |
|                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If comparison predicate is non-relational, we won't be able to do anything.
 | |
|   if (ICmpInst::isEquality(Pred))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If comparison predicate is non-canonical, then we certainly won't be able
 | |
|   // to make it canonical; canonicalizeCmpWithConstant() already tried.
 | |
|   if (!isCanonicalPredicate(Pred))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the [input] type of comparison and select type are different, lets abort
 | |
|   // for now. We could try to compare constants with trunc/[zs]ext though.
 | |
|   if (C0->getType() != Sel.getType())
 | |
|     return nullptr;
 | |
| 
 | |
|   // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
 | |
| 
 | |
|   Value *SelVal0, *SelVal1; // We do not care which one is from where.
 | |
|   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
 | |
|   // At least one of these values we are selecting between must be a constant
 | |
|   // else we'll never succeed.
 | |
|   if (!match(SelVal0, m_AnyIntegralConstant()) &&
 | |
|       !match(SelVal1, m_AnyIntegralConstant()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Does this constant C match any of the `select` values?
 | |
|   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
 | |
|     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
 | |
|   };
 | |
| 
 | |
|   // If C0 *already* matches true/false value of select, we are done.
 | |
|   if (MatchesSelectValue(C0))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check the constant we'd have with flipped-strictness predicate.
 | |
|   auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
 | |
|   if (!FlippedStrictness)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If said constant doesn't match either, then there is no hope,
 | |
|   if (!MatchesSelectValue(FlippedStrictness->second))
 | |
|     return nullptr;
 | |
| 
 | |
|   // It matched! Lets insert the new comparison just before select.
 | |
|   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
 | |
|   IC.Builder.SetInsertPoint(&Sel);
 | |
| 
 | |
|   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
 | |
|   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
 | |
|                                         Cmp.getName() + ".inv");
 | |
|   IC.replaceOperand(Sel, 0, NewCmp);
 | |
|   Sel.swapValues();
 | |
|   Sel.swapProfMetadata();
 | |
| 
 | |
|   return &Sel;
 | |
| }
 | |
| 
 | |
| /// Visit a SelectInst that has an ICmpInst as its first operand.
 | |
| Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
 | |
|                                                   ICmpInst *ICI) {
 | |
|   if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
 | |
|     return NewSel;
 | |
| 
 | |
|   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
 | |
|     return NewAbs;
 | |
| 
 | |
|   if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
 | |
|     return NewAbs;
 | |
| 
 | |
|   if (Instruction *NewSel =
 | |
|           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
 | |
|     return NewSel;
 | |
| 
 | |
|   bool Changed = adjustMinMax(SI, *ICI);
 | |
| 
 | |
|   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
|   ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|   Value *CmpLHS = ICI->getOperand(0);
 | |
|   Value *CmpRHS = ICI->getOperand(1);
 | |
|   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
 | |
|     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
 | |
|       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
 | |
|       SI.setOperand(1, CmpRHS);
 | |
|       Changed = true;
 | |
|     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
 | |
|       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
 | |
|       SI.setOperand(2, CmpRHS);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
 | |
|   // decomposeBitTestICmp() might help.
 | |
|   {
 | |
|     unsigned BitWidth =
 | |
|         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
 | |
|     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
 | |
|     Value *X;
 | |
|     const APInt *Y, *C;
 | |
|     bool TrueWhenUnset;
 | |
|     bool IsBitTest = false;
 | |
|     if (ICmpInst::isEquality(Pred) &&
 | |
|         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
 | |
|         match(CmpRHS, m_Zero())) {
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
 | |
|     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
 | |
|       X = CmpLHS;
 | |
|       Y = &MinSignedValue;
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = false;
 | |
|     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
 | |
|       X = CmpLHS;
 | |
|       Y = &MinSignedValue;
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = true;
 | |
|     }
 | |
|     if (IsBitTest) {
 | |
|       Value *V = nullptr;
 | |
|       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
 | |
|       if (TrueWhenUnset && TrueVal == X &&
 | |
|           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder.CreateAnd(X, ~(*Y));
 | |
|       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
 | |
|       else if (!TrueWhenUnset && FalseVal == X &&
 | |
|                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder.CreateAnd(X, ~(*Y));
 | |
|       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
 | |
|       else if (TrueWhenUnset && FalseVal == X &&
 | |
|                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder.CreateOr(X, *Y);
 | |
|       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
 | |
|       else if (!TrueWhenUnset && TrueVal == X &&
 | |
|                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder.CreateOr(X, *Y);
 | |
| 
 | |
|       if (V)
 | |
|         return replaceInstUsesWith(SI, V);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *V =
 | |
|           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
 | |
|     return V;
 | |
| 
 | |
|   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
 | |
|     return V;
 | |
| 
 | |
|   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   return Changed ? &SI : nullptr;
 | |
| }
 | |
| 
 | |
| /// SI is a select whose condition is a PHI node (but the two may be in
 | |
| /// different blocks). See if the true/false values (V) are live in all of the
 | |
| /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
 | |
| ///
 | |
| ///   X = phi [ C1, BB1], [C2, BB2]
 | |
| ///   Y = add
 | |
| ///   Z = select X, Y, 0
 | |
| ///
 | |
| /// because Y is not live in BB1/BB2.
 | |
| static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
 | |
|                                                    const SelectInst &SI) {
 | |
|   // If the value is a non-instruction value like a constant or argument, it
 | |
|   // can always be mapped.
 | |
|   const Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return true;
 | |
| 
 | |
|   // If V is a PHI node defined in the same block as the condition PHI, we can
 | |
|   // map the arguments.
 | |
|   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
 | |
| 
 | |
|   if (const PHINode *VP = dyn_cast<PHINode>(I))
 | |
|     if (VP->getParent() == CondPHI->getParent())
 | |
|       return true;
 | |
| 
 | |
|   // Otherwise, if the PHI and select are defined in the same block and if V is
 | |
|   // defined in a different block, then we can transform it.
 | |
|   if (SI.getParent() == CondPHI->getParent() &&
 | |
|       I->getParent() != CondPHI->getParent())
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise we have a 'hard' case and we can't tell without doing more
 | |
|   // detailed dominator based analysis, punt.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// We have an SPF (e.g. a min or max) of an SPF of the form:
 | |
| ///   SPF2(SPF1(A, B), C)
 | |
| Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
 | |
|                                         SelectPatternFlavor SPF1,
 | |
|                                         Value *A, Value *B,
 | |
|                                         Instruction &Outer,
 | |
|                                         SelectPatternFlavor SPF2, Value *C) {
 | |
|   if (Outer.getType() != Inner->getType())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (C == A || C == B) {
 | |
|     // MAX(MAX(A, B), B) -> MAX(A, B)
 | |
|     // MIN(MIN(a, b), a) -> MIN(a, b)
 | |
|     // TODO: This could be done in instsimplify.
 | |
|     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
 | |
|       return replaceInstUsesWith(Outer, Inner);
 | |
| 
 | |
|     // MAX(MIN(a, b), a) -> a
 | |
|     // MIN(MAX(a, b), a) -> a
 | |
|     // TODO: This could be done in instsimplify.
 | |
|     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
 | |
|         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
 | |
|         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
 | |
|         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
 | |
|       return replaceInstUsesWith(Outer, C);
 | |
|   }
 | |
| 
 | |
|   if (SPF1 == SPF2) {
 | |
|     const APInt *CB, *CC;
 | |
|     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
 | |
|       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
 | |
|       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
 | |
|       // TODO: This could be done in instsimplify.
 | |
|       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
 | |
|           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
 | |
|           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
 | |
|           (SPF1 == SPF_SMAX && CB->sge(*CC)))
 | |
|         return replaceInstUsesWith(Outer, Inner);
 | |
| 
 | |
|       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
 | |
|       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
 | |
|       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
 | |
|           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
 | |
|           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
 | |
|           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
 | |
|         Outer.replaceUsesOfWith(Inner, A);
 | |
|         return &Outer;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // max(max(A, B), min(A, B)) --> max(A, B)
 | |
|   // min(min(A, B), max(A, B)) --> min(A, B)
 | |
|   // TODO: This could be done in instsimplify.
 | |
|   if (SPF1 == SPF2 &&
 | |
|       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
 | |
|        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
 | |
|        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
 | |
|        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
 | |
|     return replaceInstUsesWith(Outer, Inner);
 | |
| 
 | |
|   // ABS(ABS(X)) -> ABS(X)
 | |
|   // NABS(NABS(X)) -> NABS(X)
 | |
|   // TODO: This could be done in instsimplify.
 | |
|   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
 | |
|     return replaceInstUsesWith(Outer, Inner);
 | |
|   }
 | |
| 
 | |
|   // ABS(NABS(X)) -> ABS(X)
 | |
|   // NABS(ABS(X)) -> NABS(X)
 | |
|   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
 | |
|       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
 | |
|     SelectInst *SI = cast<SelectInst>(Inner);
 | |
|     Value *NewSI =
 | |
|         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
 | |
|                              SI->getTrueValue(), SI->getName(), SI);
 | |
|     return replaceInstUsesWith(Outer, NewSI);
 | |
|   }
 | |
| 
 | |
|   auto IsFreeOrProfitableToInvert =
 | |
|       [&](Value *V, Value *&NotV, bool &ElidesXor) {
 | |
|     if (match(V, m_Not(m_Value(NotV)))) {
 | |
|       // If V has at most 2 uses then we can get rid of the xor operation
 | |
|       // entirely.
 | |
|       ElidesXor |= !V->hasNUsesOrMore(3);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
 | |
|       NotV = nullptr;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   Value *NotA, *NotB, *NotC;
 | |
|   bool ElidesXor = false;
 | |
| 
 | |
|   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
 | |
|   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
 | |
|   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
 | |
|   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
 | |
|   //
 | |
|   // This transform is performance neutral if we can elide at least one xor from
 | |
|   // the set of three operands, since we'll be tacking on an xor at the very
 | |
|   // end.
 | |
|   if (SelectPatternResult::isMinOrMax(SPF1) &&
 | |
|       SelectPatternResult::isMinOrMax(SPF2) &&
 | |
|       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
 | |
|       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
 | |
|       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
 | |
|     if (!NotA)
 | |
|       NotA = Builder.CreateNot(A);
 | |
|     if (!NotB)
 | |
|       NotB = Builder.CreateNot(B);
 | |
|     if (!NotC)
 | |
|       NotC = Builder.CreateNot(C);
 | |
| 
 | |
|     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
 | |
|                                    NotB);
 | |
|     Value *NewOuter = Builder.CreateNot(
 | |
|         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
 | |
|     return replaceInstUsesWith(Outer, NewOuter);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
 | |
| /// This is even legal for FP.
 | |
| static Instruction *foldAddSubSelect(SelectInst &SI,
 | |
|                                      InstCombiner::BuilderTy &Builder) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
|   auto *TI = dyn_cast<Instruction>(TrueVal);
 | |
|   auto *FI = dyn_cast<Instruction>(FalseVal);
 | |
|   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   Instruction *AddOp = nullptr, *SubOp = nullptr;
 | |
|   if ((TI->getOpcode() == Instruction::Sub &&
 | |
|        FI->getOpcode() == Instruction::Add) ||
 | |
|       (TI->getOpcode() == Instruction::FSub &&
 | |
|        FI->getOpcode() == Instruction::FAdd)) {
 | |
|     AddOp = FI;
 | |
|     SubOp = TI;
 | |
|   } else if ((FI->getOpcode() == Instruction::Sub &&
 | |
|               TI->getOpcode() == Instruction::Add) ||
 | |
|              (FI->getOpcode() == Instruction::FSub &&
 | |
|               TI->getOpcode() == Instruction::FAdd)) {
 | |
|     AddOp = TI;
 | |
|     SubOp = FI;
 | |
|   }
 | |
| 
 | |
|   if (AddOp) {
 | |
|     Value *OtherAddOp = nullptr;
 | |
|     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
 | |
|       OtherAddOp = AddOp->getOperand(1);
 | |
|     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
 | |
|       OtherAddOp = AddOp->getOperand(0);
 | |
|     }
 | |
| 
 | |
|     if (OtherAddOp) {
 | |
|       // So at this point we know we have (Y -> OtherAddOp):
 | |
|       //        select C, (add X, Y), (sub X, Z)
 | |
|       Value *NegVal; // Compute -Z
 | |
|       if (SI.getType()->isFPOrFPVectorTy()) {
 | |
|         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
 | |
|         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
 | |
|           FastMathFlags Flags = AddOp->getFastMathFlags();
 | |
|           Flags &= SubOp->getFastMathFlags();
 | |
|           NegInst->setFastMathFlags(Flags);
 | |
|         }
 | |
|       } else {
 | |
|         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
 | |
|       }
 | |
| 
 | |
|       Value *NewTrueOp = OtherAddOp;
 | |
|       Value *NewFalseOp = NegVal;
 | |
|       if (AddOp != TI)
 | |
|         std::swap(NewTrueOp, NewFalseOp);
 | |
|       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
 | |
|                                            SI.getName() + ".p", &SI);
 | |
| 
 | |
|       if (SI.getType()->isFPOrFPVectorTy()) {
 | |
|         Instruction *RI =
 | |
|             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
 | |
| 
 | |
|         FastMathFlags Flags = AddOp->getFastMathFlags();
 | |
|         Flags &= SubOp->getFastMathFlags();
 | |
|         RI->setFastMathFlags(Flags);
 | |
|         return RI;
 | |
|       } else
 | |
|         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
 | |
| /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
 | |
| /// Along with a number of patterns similar to:
 | |
| /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
 | |
| /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
 | |
| static Instruction *
 | |
| foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
| 
 | |
|   WithOverflowInst *II;
 | |
|   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
 | |
|       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *X = II->getLHS();
 | |
|   Value *Y = II->getRHS();
 | |
| 
 | |
|   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
 | |
|     Type *Ty = Limit->getType();
 | |
| 
 | |
|     ICmpInst::Predicate Pred;
 | |
|     Value *TrueVal, *FalseVal, *Op;
 | |
|     const APInt *C;
 | |
|     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
 | |
|                                m_Value(TrueVal), m_Value(FalseVal))))
 | |
|       return false;
 | |
| 
 | |
|     auto IsZeroOrOne = [](const APInt &C) {
 | |
|       return C.isNullValue() || C.isOneValue();
 | |
|     };
 | |
|     auto IsMinMax = [&](Value *Min, Value *Max) {
 | |
|       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
 | |
|       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
 | |
|       return match(Min, m_SpecificInt(MinVal)) &&
 | |
|              match(Max, m_SpecificInt(MaxVal));
 | |
|     };
 | |
| 
 | |
|     if (Op != X && Op != Y)
 | |
|       return false;
 | |
| 
 | |
|     if (IsAdd) {
 | |
|       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
 | |
|       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
 | |
|       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
 | |
|       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
 | |
|       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
 | |
|           IsMinMax(TrueVal, FalseVal))
 | |
|         return true;
 | |
|       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
 | |
|       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
 | |
|       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
 | |
|       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
 | |
|       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
 | |
|           IsMinMax(FalseVal, TrueVal))
 | |
|         return true;
 | |
|     } else {
 | |
|       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
 | |
|       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
 | |
|       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
 | |
|           IsMinMax(TrueVal, FalseVal))
 | |
|         return true;
 | |
|       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
 | |
|       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
 | |
|       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
 | |
|           IsMinMax(FalseVal, TrueVal))
 | |
|         return true;
 | |
|       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
 | |
|       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
 | |
|       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
 | |
|           IsMinMax(FalseVal, TrueVal))
 | |
|         return true;
 | |
|       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
 | |
|       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
 | |
|       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
 | |
|           IsMinMax(TrueVal, FalseVal))
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   Intrinsic::ID NewIntrinsicID;
 | |
|   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
 | |
|       match(TrueVal, m_AllOnes()))
 | |
|     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
 | |
|     NewIntrinsicID = Intrinsic::uadd_sat;
 | |
|   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
 | |
|            match(TrueVal, m_Zero()))
 | |
|     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
 | |
|     NewIntrinsicID = Intrinsic::usub_sat;
 | |
|   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
 | |
|            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
 | |
|     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
 | |
|     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
 | |
|     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
 | |
|     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
 | |
|     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
 | |
|     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
 | |
|     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
 | |
|     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
 | |
|     NewIntrinsicID = Intrinsic::sadd_sat;
 | |
|   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
 | |
|            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
 | |
|     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
 | |
|     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
 | |
|     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
 | |
|     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
 | |
|     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
 | |
|     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
 | |
|     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
 | |
|     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
 | |
|     NewIntrinsicID = Intrinsic::ssub_sat;
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   Function *F =
 | |
|       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
 | |
|   return CallInst::Create(F, {X, Y});
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
 | |
|   Constant *C;
 | |
|   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
 | |
|       !match(Sel.getFalseValue(), m_Constant(C)))
 | |
|     return nullptr;
 | |
| 
 | |
|   Instruction *ExtInst;
 | |
|   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
 | |
|       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto ExtOpcode = ExtInst->getOpcode();
 | |
|   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we are extending from a boolean type or if we can create a select that
 | |
|   // has the same size operands as its condition, try to narrow the select.
 | |
|   Value *X = ExtInst->getOperand(0);
 | |
|   Type *SmallType = X->getType();
 | |
|   Value *Cond = Sel.getCondition();
 | |
|   auto *Cmp = dyn_cast<CmpInst>(Cond);
 | |
|   if (!SmallType->isIntOrIntVectorTy(1) &&
 | |
|       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the constant is the same after truncation to the smaller type and
 | |
|   // extension to the original type, we can narrow the select.
 | |
|   Type *SelType = Sel.getType();
 | |
|   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
 | |
|   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
 | |
|   if (ExtC == C) {
 | |
|     Value *TruncCVal = cast<Value>(TruncC);
 | |
|     if (ExtInst == Sel.getFalseValue())
 | |
|       std::swap(X, TruncCVal);
 | |
| 
 | |
|     // select Cond, (ext X), C --> ext(select Cond, X, C')
 | |
|     // select Cond, C, (ext X) --> ext(select Cond, C', X)
 | |
|     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
 | |
|     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
 | |
|   }
 | |
| 
 | |
|   // If one arm of the select is the extend of the condition, replace that arm
 | |
|   // with the extension of the appropriate known bool value.
 | |
|   if (Cond == X) {
 | |
|     if (ExtInst == Sel.getTrueValue()) {
 | |
|       // select X, (sext X), C --> select X, -1, C
 | |
|       // select X, (zext X), C --> select X,  1, C
 | |
|       Constant *One = ConstantInt::getTrue(SmallType);
 | |
|       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
 | |
|       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
 | |
|     } else {
 | |
|       // select X, C, (sext X) --> select X, C, 0
 | |
|       // select X, C, (zext X) --> select X, C, 0
 | |
|       Constant *Zero = ConstantInt::getNullValue(SelType);
 | |
|       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to transform a vector select with a constant condition vector into a
 | |
| /// shuffle for easier combining with other shuffles and insert/extract.
 | |
| static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Constant *CondC;
 | |
|   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned NumElts = CondVal->getType()->getVectorNumElements();
 | |
|   SmallVector<Constant *, 16> Mask;
 | |
|   Mask.reserve(NumElts);
 | |
|   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     Constant *Elt = CondC->getAggregateElement(i);
 | |
|     if (!Elt)
 | |
|       return nullptr;
 | |
| 
 | |
|     if (Elt->isOneValue()) {
 | |
|       // If the select condition element is true, choose from the 1st vector.
 | |
|       Mask.push_back(ConstantInt::get(Int32Ty, i));
 | |
|     } else if (Elt->isNullValue()) {
 | |
|       // If the select condition element is false, choose from the 2nd vector.
 | |
|       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
 | |
|     } else if (isa<UndefValue>(Elt)) {
 | |
|       // Undef in a select condition (choose one of the operands) does not mean
 | |
|       // the same thing as undef in a shuffle mask (any value is acceptable), so
 | |
|       // give up.
 | |
|       return nullptr;
 | |
|     } else {
 | |
|       // Bail out on a constant expression.
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
 | |
|                                ConstantVector::get(Mask));
 | |
| }
 | |
| 
 | |
| /// If we have a select of vectors with a scalar condition, try to convert that
 | |
| /// to a vector select by splatting the condition. A splat may get folded with
 | |
| /// other operations in IR and having all operands of a select be vector types
 | |
| /// is likely better for vector codegen.
 | |
| static Instruction *canonicalizeScalarSelectOfVecs(
 | |
|     SelectInst &Sel, InstCombiner &IC) {
 | |
|   Type *Ty = Sel.getType();
 | |
|   if (!Ty->isVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   // We can replace a single-use extract with constant index.
 | |
|   Value *Cond = Sel.getCondition();
 | |
|   if (!match(Cond, m_OneUse(m_ExtractElement(m_Value(), m_ConstantInt()))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
 | |
|   // Splatting the extracted condition reduces code (we could directly create a
 | |
|   // splat shuffle of the source vector to eliminate the intermediate step).
 | |
|   unsigned NumElts = Ty->getVectorNumElements();
 | |
|   return IC.replaceOperand(Sel, 0, IC.Builder.CreateVectorSplat(NumElts, Cond));
 | |
| }
 | |
| 
 | |
| /// Reuse bitcasted operands between a compare and select:
 | |
| /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
 | |
| /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
 | |
| static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
 | |
|                                           InstCombiner::BuilderTy &Builder) {
 | |
|   Value *Cond = Sel.getCondition();
 | |
|   Value *TVal = Sel.getTrueValue();
 | |
|   Value *FVal = Sel.getFalseValue();
 | |
| 
 | |
|   CmpInst::Predicate Pred;
 | |
|   Value *A, *B;
 | |
|   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // The select condition is a compare instruction. If the select's true/false
 | |
|   // values are already the same as the compare operands, there's nothing to do.
 | |
|   if (TVal == A || TVal == B || FVal == A || FVal == B)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *C, *D;
 | |
|   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
 | |
|   Value *TSrc, *FSrc;
 | |
|   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
 | |
|       !match(FVal, m_BitCast(m_Value(FSrc))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the select true/false values are *different bitcasts* of the same source
 | |
|   // operands, make the select operands the same as the compare operands and
 | |
|   // cast the result. This is the canonical select form for min/max.
 | |
|   Value *NewSel;
 | |
|   if (TSrc == C && FSrc == D) {
 | |
|     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
 | |
|     // bitcast (select (cmp A, B), A, B)
 | |
|     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
 | |
|   } else if (TSrc == D && FSrc == C) {
 | |
|     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
 | |
|     // bitcast (select (cmp A, B), B, A)
 | |
|     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
|   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
 | |
| }
 | |
| 
 | |
| /// Try to eliminate select instructions that test the returned flag of cmpxchg
 | |
| /// instructions.
 | |
| ///
 | |
| /// If a select instruction tests the returned flag of a cmpxchg instruction and
 | |
| /// selects between the returned value of the cmpxchg instruction its compare
 | |
| /// operand, the result of the select will always be equal to its false value.
 | |
| /// For example:
 | |
| ///
 | |
| ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
 | |
| ///   %1 = extractvalue { i64, i1 } %0, 1
 | |
| ///   %2 = extractvalue { i64, i1 } %0, 0
 | |
| ///   %3 = select i1 %1, i64 %compare, i64 %2
 | |
| ///   ret i64 %3
 | |
| ///
 | |
| /// The returned value of the cmpxchg instruction (%2) is the original value
 | |
| /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
 | |
| /// must have been equal to %compare. Thus, the result of the select is always
 | |
| /// equal to %2, and the code can be simplified to:
 | |
| ///
 | |
| ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
 | |
| ///   %1 = extractvalue { i64, i1 } %0, 0
 | |
| ///   ret i64 %1
 | |
| ///
 | |
| static Instruction *foldSelectCmpXchg(SelectInst &SI) {
 | |
|   // A helper that determines if V is an extractvalue instruction whose
 | |
|   // aggregate operand is a cmpxchg instruction and whose single index is equal
 | |
|   // to I. If such conditions are true, the helper returns the cmpxchg
 | |
|   // instruction; otherwise, a nullptr is returned.
 | |
|   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
 | |
|     auto *Extract = dyn_cast<ExtractValueInst>(V);
 | |
|     if (!Extract)
 | |
|       return nullptr;
 | |
|     if (Extract->getIndices()[0] != I)
 | |
|       return nullptr;
 | |
|     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
 | |
|   };
 | |
| 
 | |
|   // If the select has a single user, and this user is a select instruction that
 | |
|   // we can simplify, skip the cmpxchg simplification for now.
 | |
|   if (SI.hasOneUse())
 | |
|     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
 | |
|       if (Select->getCondition() == SI.getCondition())
 | |
|         if (Select->getFalseValue() == SI.getTrueValue() ||
 | |
|             Select->getTrueValue() == SI.getFalseValue())
 | |
|           return nullptr;
 | |
| 
 | |
|   // Ensure the select condition is the returned flag of a cmpxchg instruction.
 | |
|   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
 | |
|   if (!CmpXchg)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check the true value case: The true value of the select is the returned
 | |
|   // value of the same cmpxchg used by the condition, and the false value is the
 | |
|   // cmpxchg instruction's compare operand.
 | |
|   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
 | |
|     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
 | |
|       SI.setTrueValue(SI.getFalseValue());
 | |
|       return &SI;
 | |
|     }
 | |
| 
 | |
|   // Check the false value case: The false value of the select is the returned
 | |
|   // value of the same cmpxchg used by the condition, and the true value is the
 | |
|   // cmpxchg instruction's compare operand.
 | |
|   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
 | |
|     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
 | |
|       SI.setTrueValue(SI.getFalseValue());
 | |
|       return &SI;
 | |
|     }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
 | |
|                                        Value *Y,
 | |
|                                        InstCombiner::BuilderTy &Builder) {
 | |
|   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
 | |
|   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
 | |
|                     SPF == SelectPatternFlavor::SPF_UMAX;
 | |
|   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
 | |
|   // the constant value check to an assert.
 | |
|   Value *A;
 | |
|   const APInt *C1, *C2;
 | |
|   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
 | |
|       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
 | |
|     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
 | |
|     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
 | |
|     Value *NewMinMax = createMinMax(Builder, SPF, A,
 | |
|                                     ConstantInt::get(X->getType(), *C2 - *C1));
 | |
|     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
 | |
|                                      ConstantInt::get(X->getType(), *C1));
 | |
|   }
 | |
| 
 | |
|   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
 | |
|       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
 | |
|     bool Overflow;
 | |
|     APInt Diff = C2->ssub_ov(*C1, Overflow);
 | |
|     if (!Overflow) {
 | |
|       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
 | |
|       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
 | |
|       Value *NewMinMax = createMinMax(Builder, SPF, A,
 | |
|                                       ConstantInt::get(X->getType(), Diff));
 | |
|       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
 | |
|                                        ConstantInt::get(X->getType(), *C1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
 | |
| Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) {
 | |
|   Type *Ty = MinMax1.getType();
 | |
| 
 | |
|   // We are looking for a tree of:
 | |
|   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
 | |
|   // Where the min and max could be reversed
 | |
|   Instruction *MinMax2;
 | |
|   BinaryOperator *AddSub;
 | |
|   const APInt *MinValue, *MaxValue;
 | |
|   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
 | |
|     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
 | |
|       return nullptr;
 | |
|   } else if (match(&MinMax1,
 | |
|                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
 | |
|     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
 | |
|       return nullptr;
 | |
|   } else
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check that the constants clamp a saturate, and that the new type would be
 | |
|   // sensible to convert to.
 | |
|   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
 | |
|     return nullptr;
 | |
|   // In what bitwidth can this be treated as saturating arithmetics?
 | |
|   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
 | |
|   // FIXME: This isn't quite right for vectors, but using the scalar type is a
 | |
|   // good first approximation for what should be done there.
 | |
|   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Also make sure that the number of uses is as expected. The "3"s are for the
 | |
|   // the two items of min/max (the compare and the select).
 | |
|   if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Create the new type (which can be a vector type)
 | |
|   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
 | |
|   // Match the two extends from the add/sub
 | |
|   Value *A, *B;
 | |
|   if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
 | |
|     return nullptr;
 | |
|   // And check the incoming values are of a type smaller than or equal to the
 | |
|   // size of the saturation. Otherwise the higher bits can cause different
 | |
|   // results.
 | |
|   if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
 | |
|       B->getType()->getScalarSizeInBits() > NewBitWidth)
 | |
|     return nullptr;
 | |
| 
 | |
|   Intrinsic::ID IntrinsicID;
 | |
|   if (AddSub->getOpcode() == Instruction::Add)
 | |
|     IntrinsicID = Intrinsic::sadd_sat;
 | |
|   else if (AddSub->getOpcode() == Instruction::Sub)
 | |
|     IntrinsicID = Intrinsic::ssub_sat;
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // Finally create and return the sat intrinsic, truncated to the new type
 | |
|   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
 | |
|   Value *AT = Builder.CreateSExt(A, NewTy);
 | |
|   Value *BT = Builder.CreateSExt(B, NewTy);
 | |
|   Value *Sat = Builder.CreateCall(F, {AT, BT});
 | |
|   return CastInst::Create(Instruction::SExt, Sat, Ty);
 | |
| }
 | |
| 
 | |
| /// Reduce a sequence of min/max with a common operand.
 | |
| static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
 | |
|                                         Value *RHS,
 | |
|                                         InstCombiner::BuilderTy &Builder) {
 | |
|   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
 | |
|   // TODO: Allow FP min/max with nnan/nsz.
 | |
|   if (!LHS->getType()->isIntOrIntVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
 | |
|   Value *A, *B, *C, *D;
 | |
|   SelectPatternResult L = matchSelectPattern(LHS, A, B);
 | |
|   SelectPatternResult R = matchSelectPattern(RHS, C, D);
 | |
|   if (SPF != L.Flavor || L.Flavor != R.Flavor)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look for a common operand. The use checks are different than usual because
 | |
|   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
 | |
|   // the select.
 | |
|   Value *MinMaxOp = nullptr;
 | |
|   Value *ThirdOp = nullptr;
 | |
|   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
 | |
|     // If the LHS is only used in this chain and the RHS is used outside of it,
 | |
|     // reuse the RHS min/max because that will eliminate the LHS.
 | |
|     if (D == A || C == A) {
 | |
|       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
 | |
|       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
 | |
|       MinMaxOp = RHS;
 | |
|       ThirdOp = B;
 | |
|     } else if (D == B || C == B) {
 | |
|       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
 | |
|       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
 | |
|       MinMaxOp = RHS;
 | |
|       ThirdOp = A;
 | |
|     }
 | |
|   } else if (!RHS->hasNUsesOrMore(3)) {
 | |
|     // Reuse the LHS. This will eliminate the RHS.
 | |
|     if (D == A || D == B) {
 | |
|       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
 | |
|       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
 | |
|       MinMaxOp = LHS;
 | |
|       ThirdOp = C;
 | |
|     } else if (C == A || C == B) {
 | |
|       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
 | |
|       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
 | |
|       MinMaxOp = LHS;
 | |
|       ThirdOp = D;
 | |
|     }
 | |
|   }
 | |
|   if (!MinMaxOp || !ThirdOp)
 | |
|     return nullptr;
 | |
| 
 | |
|   CmpInst::Predicate P = getMinMaxPred(SPF);
 | |
|   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
 | |
|   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
 | |
| }
 | |
| 
 | |
| /// Try to reduce a rotate pattern that includes a compare and select into a
 | |
| /// funnel shift intrinsic. Example:
 | |
| /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
 | |
| ///              --> call llvm.fshl.i32(a, a, b)
 | |
| static Instruction *foldSelectRotate(SelectInst &Sel) {
 | |
|   // The false value of the select must be a rotate of the true value.
 | |
|   Value *Or0, *Or1;
 | |
|   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *TVal = Sel.getTrueValue();
 | |
|   Value *SA0, *SA1;
 | |
|   if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
 | |
|       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
 | |
|   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
 | |
|   if (ShiftOpcode0 == ShiftOpcode1)
 | |
|     return nullptr;
 | |
| 
 | |
|   // We have one of these patterns so far:
 | |
|   // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
 | |
|   // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
 | |
|   // This must be a power-of-2 rotate for a bitmasking transform to be valid.
 | |
|   unsigned Width = Sel.getType()->getScalarSizeInBits();
 | |
|   if (!isPowerOf2_32(Width))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check the shift amounts to see if they are an opposite pair.
 | |
|   Value *ShAmt;
 | |
|   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
 | |
|     ShAmt = SA0;
 | |
|   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
 | |
|     ShAmt = SA1;
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // Finally, see if the select is filtering out a shift-by-zero.
 | |
|   Value *Cond = Sel.getCondition();
 | |
|   ICmpInst::Predicate Pred;
 | |
|   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
 | |
|       Pred != ICmpInst::ICMP_EQ)
 | |
|     return nullptr;
 | |
| 
 | |
|   // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
 | |
|   // Convert to funnel shift intrinsic.
 | |
|   bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
 | |
|                 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
 | |
|   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
 | |
|   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
 | |
|   return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
 | |
| }
 | |
| 
 | |
| static Instruction *foldSelectToCopysign(SelectInst &Sel,
 | |
|                                          InstCombiner::BuilderTy &Builder) {
 | |
|   Value *Cond = Sel.getCondition();
 | |
|   Value *TVal = Sel.getTrueValue();
 | |
|   Value *FVal = Sel.getFalseValue();
 | |
|   Type *SelType = Sel.getType();
 | |
| 
 | |
|   // Match select ?, TC, FC where the constants are equal but negated.
 | |
|   // TODO: Generalize to handle a negated variable operand?
 | |
|   const APFloat *TC, *FC;
 | |
|   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
 | |
|       !abs(*TC).bitwiseIsEqual(abs(*FC)))
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(TC != FC && "Expected equal select arms to simplify");
 | |
| 
 | |
|   Value *X;
 | |
|   const APInt *C;
 | |
|   bool IsTrueIfSignSet;
 | |
|   ICmpInst::Predicate Pred;
 | |
|   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
 | |
|       !isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If needed, negate the value that will be the sign argument of the copysign:
 | |
|   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
 | |
|   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
 | |
|   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
 | |
|   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
 | |
|   if (IsTrueIfSignSet ^ TC->isNegative())
 | |
|     X = Builder.CreateFNegFMF(X, &Sel);
 | |
| 
 | |
|   // Canonicalize the magnitude argument as the positive constant since we do
 | |
|   // not care about its sign.
 | |
|   Value *MagArg = TC->isNegative() ? FVal : TVal;
 | |
|   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
 | |
|                                           Sel.getType());
 | |
|   Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X });
 | |
|   CopySign->setFastMathFlags(Sel.getFastMathFlags());
 | |
|   return CopySign;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
|   Type *SelType = SI.getType();
 | |
| 
 | |
|   // FIXME: Remove this workaround when freeze related patches are done.
 | |
|   // For select with undef operand which feeds into an equality comparison,
 | |
|   // don't simplify it so loop unswitch can know the equality comparison
 | |
|   // may have an undef operand. This is a workaround for PR31652 caused by
 | |
|   // descrepancy about branch on undef between LoopUnswitch and GVN.
 | |
|   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
 | |
|     if (llvm::any_of(SI.users(), [&](User *U) {
 | |
|           ICmpInst *CI = dyn_cast<ICmpInst>(U);
 | |
|           if (CI && CI->isEquality())
 | |
|             return true;
 | |
|           return false;
 | |
|         })) {
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
 | |
|                                     SQ.getWithInstruction(&SI)))
 | |
|     return replaceInstUsesWith(SI, V);
 | |
| 
 | |
|   if (Instruction *I = canonicalizeSelectToShuffle(SI))
 | |
|     return I;
 | |
| 
 | |
|   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
 | |
|     return I;
 | |
| 
 | |
|   // Canonicalize a one-use integer compare with a non-canonical predicate by
 | |
|   // inverting the predicate and swapping the select operands. This matches a
 | |
|   // compare canonicalization for conditional branches.
 | |
|   // TODO: Should we do the same for FP compares?
 | |
|   CmpInst::Predicate Pred;
 | |
|   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
 | |
|       !isCanonicalPredicate(Pred)) {
 | |
|     // Swap true/false values and condition.
 | |
|     CmpInst *Cond = cast<CmpInst>(CondVal);
 | |
|     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
 | |
|     SI.swapValues();
 | |
|     SI.swapProfMetadata();
 | |
|     Worklist.push(Cond);
 | |
|     return &SI;
 | |
|   }
 | |
| 
 | |
|   if (SelType->isIntOrIntVectorTy(1) &&
 | |
|       TrueVal->getType() == CondVal->getType()) {
 | |
|     if (match(TrueVal, m_One())) {
 | |
|       // Change: A = select B, true, C --> A = or B, C
 | |
|       return BinaryOperator::CreateOr(CondVal, FalseVal);
 | |
|     }
 | |
|     if (match(TrueVal, m_Zero())) {
 | |
|       // Change: A = select B, false, C --> A = and !B, C
 | |
|       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
 | |
|       return BinaryOperator::CreateAnd(NotCond, FalseVal);
 | |
|     }
 | |
|     if (match(FalseVal, m_Zero())) {
 | |
|       // Change: A = select B, C, false --> A = and B, C
 | |
|       return BinaryOperator::CreateAnd(CondVal, TrueVal);
 | |
|     }
 | |
|     if (match(FalseVal, m_One())) {
 | |
|       // Change: A = select B, C, true --> A = or !B, C
 | |
|       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
 | |
|       return BinaryOperator::CreateOr(NotCond, TrueVal);
 | |
|     }
 | |
| 
 | |
|     // select a, a, b  -> a | b
 | |
|     // select a, b, a  -> a & b
 | |
|     if (CondVal == TrueVal)
 | |
|       return BinaryOperator::CreateOr(CondVal, FalseVal);
 | |
|     if (CondVal == FalseVal)
 | |
|       return BinaryOperator::CreateAnd(CondVal, TrueVal);
 | |
| 
 | |
|     // select a, ~a, b -> (~a) & b
 | |
|     // select a, b, ~a -> (~a) | b
 | |
|     if (match(TrueVal, m_Not(m_Specific(CondVal))))
 | |
|       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
 | |
|     if (match(FalseVal, m_Not(m_Specific(CondVal))))
 | |
|       return BinaryOperator::CreateOr(TrueVal, FalseVal);
 | |
|   }
 | |
| 
 | |
|   // Selecting between two integer or vector splat integer constants?
 | |
|   //
 | |
|   // Note that we don't handle a scalar select of vectors:
 | |
|   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
 | |
|   // because that may need 3 instructions to splat the condition value:
 | |
|   // extend, insertelement, shufflevector.
 | |
|   if (SelType->isIntOrIntVectorTy() &&
 | |
|       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
 | |
|     // select C, 1, 0 -> zext C to int
 | |
|     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
 | |
|       return new ZExtInst(CondVal, SelType);
 | |
| 
 | |
|     // select C, -1, 0 -> sext C to int
 | |
|     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
 | |
|       return new SExtInst(CondVal, SelType);
 | |
| 
 | |
|     // select C, 0, 1 -> zext !C to int
 | |
|     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
 | |
|       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
 | |
|       return new ZExtInst(NotCond, SelType);
 | |
|     }
 | |
| 
 | |
|     // select C, 0, -1 -> sext !C to int
 | |
|     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
 | |
|       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
 | |
|       return new SExtInst(NotCond, SelType);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we are selecting two values based on a comparison of the two values.
 | |
|   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
 | |
|     Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
 | |
|     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
 | |
|         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
 | |
|       // Canonicalize to use ordered comparisons by swapping the select
 | |
|       // operands.
 | |
|       //
 | |
|       // e.g.
 | |
|       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
 | |
|       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
 | |
|         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
 | |
|         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
 | |
|         // FIXME: The FMF should propagate from the select, not the fcmp.
 | |
|         Builder.setFastMathFlags(FCI->getFastMathFlags());
 | |
|         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
 | |
|                                             FCI->getName() + ".inv");
 | |
|         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
 | |
|         return replaceInstUsesWith(SI, NewSel);
 | |
|       }
 | |
| 
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
 | |
|   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
 | |
|   // also require nnan because we do not want to unintentionally change the
 | |
|   // sign of a NaN value.
 | |
|   // FIXME: These folds should test/propagate FMF from the select, not the
 | |
|   //        fsub or fneg.
 | |
|   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
 | |
|   Instruction *FSub;
 | |
|   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
 | |
|       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
 | |
|       match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
 | |
|       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
 | |
|     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
 | |
|     return replaceInstUsesWith(SI, Fabs);
 | |
|   }
 | |
|   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
 | |
|   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
 | |
|       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
 | |
|       match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
 | |
|       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
 | |
|     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
 | |
|     return replaceInstUsesWith(SI, Fabs);
 | |
|   }
 | |
|   // With nnan and nsz:
 | |
|   // (X <  +/-0.0) ? -X : X --> fabs(X)
 | |
|   // (X <= +/-0.0) ? -X : X --> fabs(X)
 | |
|   Instruction *FNeg;
 | |
|   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
 | |
|       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
 | |
|       match(TrueVal, m_Instruction(FNeg)) &&
 | |
|       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
 | |
|       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
 | |
|        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
 | |
|     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
 | |
|     return replaceInstUsesWith(SI, Fabs);
 | |
|   }
 | |
|   // With nnan and nsz:
 | |
|   // (X >  +/-0.0) ? X : -X --> fabs(X)
 | |
|   // (X >= +/-0.0) ? X : -X --> fabs(X)
 | |
|   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
 | |
|       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
 | |
|       match(FalseVal, m_Instruction(FNeg)) &&
 | |
|       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
 | |
|       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
 | |
|        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
 | |
|     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
 | |
|     return replaceInstUsesWith(SI, Fabs);
 | |
|   }
 | |
| 
 | |
|   // See if we are selecting two values based on a comparison of the two values.
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
 | |
|     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
 | |
|       return Result;
 | |
| 
 | |
|   if (Instruction *Add = foldAddSubSelect(SI, Builder))
 | |
|     return Add;
 | |
|   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
 | |
|     return Add;
 | |
| 
 | |
|   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
 | |
|   auto *TI = dyn_cast<Instruction>(TrueVal);
 | |
|   auto *FI = dyn_cast<Instruction>(FalseVal);
 | |
|   if (TI && FI && TI->getOpcode() == FI->getOpcode())
 | |
|     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
 | |
|       return IV;
 | |
| 
 | |
|   if (Instruction *I = foldSelectExtConst(SI))
 | |
|     return I;
 | |
| 
 | |
|   // See if we can fold the select into one of our operands.
 | |
|   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
 | |
|     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
 | |
|       return FoldI;
 | |
| 
 | |
|     Value *LHS, *RHS;
 | |
|     Instruction::CastOps CastOp;
 | |
|     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
 | |
|     auto SPF = SPR.Flavor;
 | |
|     if (SPF) {
 | |
|       Value *LHS2, *RHS2;
 | |
|       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
 | |
|         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
 | |
|                                           RHS2, SI, SPF, RHS))
 | |
|           return R;
 | |
|       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
 | |
|         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
 | |
|                                           RHS2, SI, SPF, LHS))
 | |
|           return R;
 | |
|       // TODO.
 | |
|       // ABS(-X) -> ABS(X)
 | |
|     }
 | |
| 
 | |
|     if (SelectPatternResult::isMinOrMax(SPF)) {
 | |
|       // Canonicalize so that
 | |
|       // - type casts are outside select patterns.
 | |
|       // - float clamp is transformed to min/max pattern
 | |
| 
 | |
|       bool IsCastNeeded = LHS->getType() != SelType;
 | |
|       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
 | |
|       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
 | |
|       if (IsCastNeeded ||
 | |
|           (LHS->getType()->isFPOrFPVectorTy() &&
 | |
|            ((CmpLHS != LHS && CmpLHS != RHS) ||
 | |
|             (CmpRHS != LHS && CmpRHS != RHS)))) {
 | |
|         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
 | |
| 
 | |
|         Value *Cmp;
 | |
|         if (CmpInst::isIntPredicate(MinMaxPred)) {
 | |
|           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
 | |
|         } else {
 | |
|           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
 | |
|           auto FMF =
 | |
|               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
 | |
|           Builder.setFastMathFlags(FMF);
 | |
|           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
 | |
|         }
 | |
| 
 | |
|         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
 | |
|         if (!IsCastNeeded)
 | |
|           return replaceInstUsesWith(SI, NewSI);
 | |
| 
 | |
|         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
 | |
|         return replaceInstUsesWith(SI, NewCast);
 | |
|       }
 | |
| 
 | |
|       // MAX(~a, ~b) -> ~MIN(a, b)
 | |
|       // MAX(~a, C)  -> ~MIN(a, ~C)
 | |
|       // MIN(~a, ~b) -> ~MAX(a, b)
 | |
|       // MIN(~a, C)  -> ~MAX(a, ~C)
 | |
|       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
 | |
|         Value *A;
 | |
|         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
 | |
|             !isFreeToInvert(A, A->hasOneUse()) &&
 | |
|             // Passing false to only consider m_Not and constants.
 | |
|             isFreeToInvert(Y, false)) {
 | |
|           Value *B = Builder.CreateNot(Y);
 | |
|           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
 | |
|                                           A, B);
 | |
|           // Copy the profile metadata.
 | |
|           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
 | |
|             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
 | |
|             // Swap the metadata if the operands are swapped.
 | |
|             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
 | |
|               cast<SelectInst>(NewMinMax)->swapProfMetadata();
 | |
|           }
 | |
| 
 | |
|           return BinaryOperator::CreateNot(NewMinMax);
 | |
|         }
 | |
| 
 | |
|         return nullptr;
 | |
|       };
 | |
| 
 | |
|       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
 | |
|         return I;
 | |
|       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
 | |
|         return I;
 | |
| 
 | |
|       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
 | |
|         return I;
 | |
| 
 | |
|       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
 | |
|         return I;
 | |
|       if (Instruction *I = matchSAddSubSat(SI))
 | |
|         return I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Canonicalize select of FP values where NaN and -0.0 are not valid as
 | |
|   // minnum/maxnum intrinsics.
 | |
|   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
 | |
|     Value *X, *Y;
 | |
|     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
 | |
|       return replaceInstUsesWith(
 | |
|           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
 | |
| 
 | |
|     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
 | |
|       return replaceInstUsesWith(
 | |
|           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
 | |
|   }
 | |
| 
 | |
|   // See if we can fold the select into a phi node if the condition is a select.
 | |
|   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
 | |
|     // The true/false values have to be live in the PHI predecessor's blocks.
 | |
|     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
 | |
|         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
 | |
|       if (Instruction *NV = foldOpIntoPhi(SI, PN))
 | |
|         return NV;
 | |
| 
 | |
|   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
 | |
|     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
 | |
|       // select(C, select(C, a, b), c) -> select(C, a, c)
 | |
|       if (TrueSI->getCondition() == CondVal) {
 | |
|         if (SI.getTrueValue() == TrueSI->getTrueValue())
 | |
|           return nullptr;
 | |
|         return replaceOperand(SI, 1, TrueSI->getTrueValue());
 | |
|       }
 | |
|       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
 | |
|       // We choose this as normal form to enable folding on the And and shortening
 | |
|       // paths for the values (this helps GetUnderlyingObjects() for example).
 | |
|       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
 | |
|         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
 | |
|         SI.setOperand(0, And);
 | |
|         SI.setOperand(1, TrueSI->getTrueValue());
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
 | |
|     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
 | |
|       // select(C, a, select(C, b, c)) -> select(C, a, c)
 | |
|       if (FalseSI->getCondition() == CondVal) {
 | |
|         if (SI.getFalseValue() == FalseSI->getFalseValue())
 | |
|           return nullptr;
 | |
|         return replaceOperand(SI, 2, FalseSI->getFalseValue());
 | |
|       }
 | |
|       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
 | |
|       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
 | |
|         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
 | |
|         SI.setOperand(0, Or);
 | |
|         SI.setOperand(2, FalseSI->getFalseValue());
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
 | |
|     // The select might be preventing a division by 0.
 | |
|     switch (BO->getOpcode()) {
 | |
|     default:
 | |
|       return true;
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::UDiv:
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Try to simplify a binop sandwiched between 2 selects with the same
 | |
|   // condition.
 | |
|   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
 | |
|   BinaryOperator *TrueBO;
 | |
|   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
 | |
|       canMergeSelectThroughBinop(TrueBO)) {
 | |
|     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
 | |
|       if (TrueBOSI->getCondition() == CondVal) {
 | |
|         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
 | |
|         Worklist.push(TrueBO);
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
 | |
|       if (TrueBOSI->getCondition() == CondVal) {
 | |
|         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
 | |
|         Worklist.push(TrueBO);
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
 | |
|   BinaryOperator *FalseBO;
 | |
|   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
 | |
|       canMergeSelectThroughBinop(FalseBO)) {
 | |
|     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
 | |
|       if (FalseBOSI->getCondition() == CondVal) {
 | |
|         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
 | |
|         Worklist.push(FalseBO);
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
 | |
|       if (FalseBOSI->getCondition() == CondVal) {
 | |
|         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
 | |
|         Worklist.push(FalseBO);
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Value *NotCond;
 | |
|   if (match(CondVal, m_Not(m_Value(NotCond)))) {
 | |
|     replaceOperand(SI, 0, NotCond);
 | |
|     SI.swapValues();
 | |
|     SI.swapProfMetadata();
 | |
|     return &SI;
 | |
|   }
 | |
| 
 | |
|   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
 | |
|     unsigned VWidth = VecTy->getNumElements();
 | |
|     APInt UndefElts(VWidth, 0);
 | |
|     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
 | |
|       if (V != &SI)
 | |
|         return replaceInstUsesWith(SI, V);
 | |
|       return &SI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we can compute the condition, there's no need for a select.
 | |
|   // Like the above fold, we are attempting to reduce compile-time cost by
 | |
|   // putting this fold here with limitations rather than in InstSimplify.
 | |
|   // The motivation for this call into value tracking is to take advantage of
 | |
|   // the assumption cache, so make sure that is populated.
 | |
|   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
 | |
|     KnownBits Known(1);
 | |
|     computeKnownBits(CondVal, Known, 0, &SI);
 | |
|     if (Known.One.isOneValue())
 | |
|       return replaceInstUsesWith(SI, TrueVal);
 | |
|     if (Known.Zero.isOneValue())
 | |
|       return replaceInstUsesWith(SI, FalseVal);
 | |
|   }
 | |
| 
 | |
|   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
 | |
|     return BitCastSel;
 | |
| 
 | |
|   // Simplify selects that test the returned flag of cmpxchg instructions.
 | |
|   if (Instruction *Select = foldSelectCmpXchg(SI))
 | |
|     return Select;
 | |
| 
 | |
|   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
 | |
|     return Select;
 | |
| 
 | |
|   if (Instruction *Rot = foldSelectRotate(SI))
 | |
|     return Rot;
 | |
| 
 | |
|   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
 | |
|     return Copysign;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 |