forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2246 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2246 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineVectorOps.cpp -------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements instcombine for ExtractElement, InsertElement and
 | |
| // ShuffleVector.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| /// Return true if the value is cheaper to scalarize than it is to leave as a
 | |
| /// vector operation. IsConstantExtractIndex indicates whether we are extracting
 | |
| /// one known element from a vector constant.
 | |
| ///
 | |
| /// FIXME: It's possible to create more instructions than previously existed.
 | |
| static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
 | |
|   // If we can pick a scalar constant value out of a vector, that is free.
 | |
|   if (auto *C = dyn_cast<Constant>(V))
 | |
|     return IsConstantExtractIndex || C->getSplatValue();
 | |
| 
 | |
|   // An insertelement to the same constant index as our extract will simplify
 | |
|   // to the scalar inserted element. An insertelement to a different constant
 | |
|   // index is irrelevant to our extract.
 | |
|   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
 | |
|     return IsConstantExtractIndex;
 | |
| 
 | |
|   if (match(V, m_OneUse(m_Load(m_Value()))))
 | |
|     return true;
 | |
| 
 | |
|   if (match(V, m_OneUse(m_UnOp())))
 | |
|     return true;
 | |
| 
 | |
|   Value *V0, *V1;
 | |
|   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
 | |
|     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
 | |
|         cheapToScalarize(V1, IsConstantExtractIndex))
 | |
|       return true;
 | |
| 
 | |
|   CmpInst::Predicate UnusedPred;
 | |
|   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
 | |
|     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
 | |
|         cheapToScalarize(V1, IsConstantExtractIndex))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // If we have a PHI node with a vector type that is only used to feed
 | |
| // itself and be an operand of extractelement at a constant location,
 | |
| // try to replace the PHI of the vector type with a PHI of a scalar type.
 | |
| Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
 | |
|   SmallVector<Instruction *, 2> Extracts;
 | |
|   // The users we want the PHI to have are:
 | |
|   // 1) The EI ExtractElement (we already know this)
 | |
|   // 2) Possibly more ExtractElements with the same index.
 | |
|   // 3) Another operand, which will feed back into the PHI.
 | |
|   Instruction *PHIUser = nullptr;
 | |
|   for (auto U : PN->users()) {
 | |
|     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
 | |
|       if (EI.getIndexOperand() == EU->getIndexOperand())
 | |
|         Extracts.push_back(EU);
 | |
|       else
 | |
|         return nullptr;
 | |
|     } else if (!PHIUser) {
 | |
|       PHIUser = cast<Instruction>(U);
 | |
|     } else {
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!PHIUser)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Verify that this PHI user has one use, which is the PHI itself,
 | |
|   // and that it is a binary operation which is cheap to scalarize.
 | |
|   // otherwise return nullptr.
 | |
|   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
 | |
|       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Create a scalar PHI node that will replace the vector PHI node
 | |
|   // just before the current PHI node.
 | |
|   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
 | |
|       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
 | |
|   // Scalarize each PHI operand.
 | |
|   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
 | |
|     Value *PHIInVal = PN->getIncomingValue(i);
 | |
|     BasicBlock *inBB = PN->getIncomingBlock(i);
 | |
|     Value *Elt = EI.getIndexOperand();
 | |
|     // If the operand is the PHI induction variable:
 | |
|     if (PHIInVal == PHIUser) {
 | |
|       // Scalarize the binary operation. Its first operand is the
 | |
|       // scalar PHI, and the second operand is extracted from the other
 | |
|       // vector operand.
 | |
|       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
 | |
|       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
 | |
|       Value *Op = InsertNewInstWith(
 | |
|           ExtractElementInst::Create(B0->getOperand(opId), Elt,
 | |
|                                      B0->getOperand(opId)->getName() + ".Elt"),
 | |
|           *B0);
 | |
|       Value *newPHIUser = InsertNewInstWith(
 | |
|           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
 | |
|                                                 scalarPHI, Op, B0), *B0);
 | |
|       scalarPHI->addIncoming(newPHIUser, inBB);
 | |
|     } else {
 | |
|       // Scalarize PHI input:
 | |
|       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
 | |
|       // Insert the new instruction into the predecessor basic block.
 | |
|       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
 | |
|       BasicBlock::iterator InsertPos;
 | |
|       if (pos && !isa<PHINode>(pos)) {
 | |
|         InsertPos = ++pos->getIterator();
 | |
|       } else {
 | |
|         InsertPos = inBB->getFirstInsertionPt();
 | |
|       }
 | |
| 
 | |
|       InsertNewInstWith(newEI, *InsertPos);
 | |
| 
 | |
|       scalarPHI->addIncoming(newEI, inBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (auto E : Extracts)
 | |
|     replaceInstUsesWith(*E, scalarPHI);
 | |
| 
 | |
|   return &EI;
 | |
| }
 | |
| 
 | |
| static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
 | |
|                                       InstCombiner::BuilderTy &Builder,
 | |
|                                       bool IsBigEndian) {
 | |
|   Value *X;
 | |
|   uint64_t ExtIndexC;
 | |
|   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
 | |
|       !X->getType()->isVectorTy() ||
 | |
|       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this extractelement is using a bitcast from a vector of the same number
 | |
|   // of elements, see if we can find the source element from the source vector:
 | |
|   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
 | |
|   Type *SrcTy = X->getType();
 | |
|   Type *DestTy = Ext.getType();
 | |
|   unsigned NumSrcElts = SrcTy->getVectorNumElements();
 | |
|   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
 | |
|   if (NumSrcElts == NumElts)
 | |
|     if (Value *Elt = findScalarElement(X, ExtIndexC))
 | |
|       return new BitCastInst(Elt, DestTy);
 | |
| 
 | |
|   // If the source elements are wider than the destination, try to shift and
 | |
|   // truncate a subset of scalar bits of an insert op.
 | |
|   if (NumSrcElts < NumElts) {
 | |
|     Value *Scalar;
 | |
|     uint64_t InsIndexC;
 | |
|     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
 | |
|                                   m_ConstantInt(InsIndexC))))
 | |
|       return nullptr;
 | |
| 
 | |
|     // The extract must be from the subset of vector elements that we inserted
 | |
|     // into. Example: if we inserted element 1 of a <2 x i64> and we are
 | |
|     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
 | |
|     // of elements 4-7 of the bitcasted vector.
 | |
|     unsigned NarrowingRatio = NumElts / NumSrcElts;
 | |
|     if (ExtIndexC / NarrowingRatio != InsIndexC)
 | |
|       return nullptr;
 | |
| 
 | |
|     // We are extracting part of the original scalar. How that scalar is
 | |
|     // inserted into the vector depends on the endian-ness. Example:
 | |
|     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
 | |
|     //                                       +--+--+--+--+--+--+--+--+
 | |
|     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
 | |
|     // extelt <4 x i16> V', 3:               |                 |S2|S3|
 | |
|     //                                       +--+--+--+--+--+--+--+--+
 | |
|     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
 | |
|     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
 | |
|     // In this example, we must right-shift little-endian. Big-endian is just a
 | |
|     // truncate.
 | |
|     unsigned Chunk = ExtIndexC % NarrowingRatio;
 | |
|     if (IsBigEndian)
 | |
|       Chunk = NarrowingRatio - 1 - Chunk;
 | |
| 
 | |
|     // Bail out if this is an FP vector to FP vector sequence. That would take
 | |
|     // more instructions than we started with unless there is no shift, and it
 | |
|     // may not be handled as well in the backend.
 | |
|     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
 | |
|     bool NeedDestBitcast = DestTy->isFloatingPointTy();
 | |
|     if (NeedSrcBitcast && NeedDestBitcast)
 | |
|       return nullptr;
 | |
| 
 | |
|     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
 | |
|     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
 | |
|     unsigned ShAmt = Chunk * DestWidth;
 | |
| 
 | |
|     // TODO: This limitation is more strict than necessary. We could sum the
 | |
|     // number of new instructions and subtract the number eliminated to know if
 | |
|     // we can proceed.
 | |
|     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
 | |
|       if (NeedSrcBitcast || NeedDestBitcast)
 | |
|         return nullptr;
 | |
| 
 | |
|     if (NeedSrcBitcast) {
 | |
|       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
 | |
|       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
 | |
|     }
 | |
| 
 | |
|     if (ShAmt) {
 | |
|       // Bail out if we could end with more instructions than we started with.
 | |
|       if (!Ext.getVectorOperand()->hasOneUse())
 | |
|         return nullptr;
 | |
|       Scalar = Builder.CreateLShr(Scalar, ShAmt);
 | |
|     }
 | |
| 
 | |
|     if (NeedDestBitcast) {
 | |
|       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
 | |
|       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
 | |
|     }
 | |
|     return new TruncInst(Scalar, DestTy);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Find elements of V demanded by UserInstr.
 | |
| static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
 | |
|   unsigned VWidth = V->getType()->getVectorNumElements();
 | |
| 
 | |
|   // Conservatively assume that all elements are needed.
 | |
|   APInt UsedElts(APInt::getAllOnesValue(VWidth));
 | |
| 
 | |
|   switch (UserInstr->getOpcode()) {
 | |
|   case Instruction::ExtractElement: {
 | |
|     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
 | |
|     assert(EEI->getVectorOperand() == V);
 | |
|     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
 | |
|     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
 | |
|       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::ShuffleVector: {
 | |
|     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
 | |
|     unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();
 | |
| 
 | |
|     UsedElts = APInt(VWidth, 0);
 | |
|     for (unsigned i = 0; i < MaskNumElts; i++) {
 | |
|       unsigned MaskVal = Shuffle->getMaskValue(i);
 | |
|       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
 | |
|         continue;
 | |
|       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
 | |
|         UsedElts.setBit(MaskVal);
 | |
|       if (Shuffle->getOperand(1) == V &&
 | |
|           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
 | |
|         UsedElts.setBit(MaskVal - VWidth);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return UsedElts;
 | |
| }
 | |
| 
 | |
| /// Find union of elements of V demanded by all its users.
 | |
| /// If it is known by querying findDemandedEltsBySingleUser that
 | |
| /// no user demands an element of V, then the corresponding bit
 | |
| /// remains unset in the returned value.
 | |
| static APInt findDemandedEltsByAllUsers(Value *V) {
 | |
|   unsigned VWidth = V->getType()->getVectorNumElements();
 | |
| 
 | |
|   APInt UnionUsedElts(VWidth, 0);
 | |
|   for (const Use &U : V->uses()) {
 | |
|     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
 | |
|       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
 | |
|     } else {
 | |
|       UnionUsedElts = APInt::getAllOnesValue(VWidth);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (UnionUsedElts.isAllOnesValue())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return UnionUsedElts;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
 | |
|   Value *SrcVec = EI.getVectorOperand();
 | |
|   Value *Index = EI.getIndexOperand();
 | |
|   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
 | |
|                                             SQ.getWithInstruction(&EI)))
 | |
|     return replaceInstUsesWith(EI, V);
 | |
| 
 | |
|   // If extracting a specified index from the vector, see if we can recursively
 | |
|   // find a previously computed scalar that was inserted into the vector.
 | |
|   auto *IndexC = dyn_cast<ConstantInt>(Index);
 | |
|   if (IndexC) {
 | |
|     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
 | |
| 
 | |
|     // InstSimplify should handle cases where the index is invalid.
 | |
|     if (!IndexC->getValue().ule(NumElts))
 | |
|       return nullptr;
 | |
| 
 | |
|     // This instruction only demands the single element from the input vector.
 | |
|     if (NumElts != 1) {
 | |
|       // If the input vector has a single use, simplify it based on this use
 | |
|       // property.
 | |
|       if (SrcVec->hasOneUse()) {
 | |
|         APInt UndefElts(NumElts, 0);
 | |
|         APInt DemandedElts(NumElts, 0);
 | |
|         DemandedElts.setBit(IndexC->getZExtValue());
 | |
|         if (Value *V =
 | |
|                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
 | |
|           EI.setOperand(0, V);
 | |
|           return &EI;
 | |
|         }
 | |
|       } else {
 | |
|         // If the input vector has multiple uses, simplify it based on a union
 | |
|         // of all elements used.
 | |
|         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
 | |
|         if (!DemandedElts.isAllOnesValue()) {
 | |
|           APInt UndefElts(NumElts, 0);
 | |
|           if (Value *V = SimplifyDemandedVectorElts(
 | |
|                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
 | |
|                   true /* AllowMultipleUsers */)) {
 | |
|             if (V != SrcVec) {
 | |
|               SrcVec->replaceAllUsesWith(V);
 | |
|               return &EI;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
 | |
|       return I;
 | |
| 
 | |
|     // If there's a vector PHI feeding a scalar use through this extractelement
 | |
|     // instruction, try to scalarize the PHI.
 | |
|     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
 | |
|       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
 | |
|         return ScalarPHI;
 | |
|   }
 | |
| 
 | |
|   // TODO come up with a n-ary matcher that subsumes both unary and
 | |
|   // binary matchers.
 | |
|   UnaryOperator *UO;
 | |
|   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) {
 | |
|     // extelt (unop X), Index --> unop (extelt X, Index)
 | |
|     Value *X = UO->getOperand(0);
 | |
|     Value *E = Builder.CreateExtractElement(X, Index);
 | |
|     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *BO;
 | |
|   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
 | |
|     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
 | |
|     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
 | |
|     Value *E0 = Builder.CreateExtractElement(X, Index);
 | |
|     Value *E1 = Builder.CreateExtractElement(Y, Index);
 | |
|     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
 | |
|   }
 | |
| 
 | |
|   Value *X, *Y;
 | |
|   CmpInst::Predicate Pred;
 | |
|   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
 | |
|       cheapToScalarize(SrcVec, IndexC)) {
 | |
|     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
 | |
|     Value *E0 = Builder.CreateExtractElement(X, Index);
 | |
|     Value *E1 = Builder.CreateExtractElement(Y, Index);
 | |
|     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
 | |
|   }
 | |
| 
 | |
|   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
 | |
|     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
 | |
|       // Extracting the inserted element?
 | |
|       if (IE->getOperand(2) == Index)
 | |
|         return replaceInstUsesWith(EI, IE->getOperand(1));
 | |
|       // If the inserted and extracted elements are constants, they must not
 | |
|       // be the same value, extract from the pre-inserted value instead.
 | |
|       if (isa<Constant>(IE->getOperand(2)) && IndexC)
 | |
|         return replaceOperand(EI, 0, IE->getOperand(0));
 | |
|     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
 | |
|       // If this is extracting an element from a shufflevector, figure out where
 | |
|       // it came from and extract from the appropriate input element instead.
 | |
|       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
 | |
|         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
 | |
|         Value *Src;
 | |
|         unsigned LHSWidth =
 | |
|           SVI->getOperand(0)->getType()->getVectorNumElements();
 | |
| 
 | |
|         if (SrcIdx < 0)
 | |
|           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | |
|         if (SrcIdx < (int)LHSWidth)
 | |
|           Src = SVI->getOperand(0);
 | |
|         else {
 | |
|           SrcIdx -= LHSWidth;
 | |
|           Src = SVI->getOperand(1);
 | |
|         }
 | |
|         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
 | |
|         return ExtractElementInst::Create(Src,
 | |
|                                           ConstantInt::get(Int32Ty,
 | |
|                                                            SrcIdx, false));
 | |
|       }
 | |
|     } else if (auto *CI = dyn_cast<CastInst>(I)) {
 | |
|       // Canonicalize extractelement(cast) -> cast(extractelement).
 | |
|       // Bitcasts can change the number of vector elements, and they cost
 | |
|       // nothing.
 | |
|       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
 | |
|         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
 | |
|         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// If V is a shuffle of values that ONLY returns elements from either LHS or
 | |
| /// RHS, return the shuffle mask and true. Otherwise, return false.
 | |
| static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
 | |
|                                          SmallVectorImpl<Constant*> &Mask) {
 | |
|   assert(LHS->getType() == RHS->getType() &&
 | |
|          "Invalid CollectSingleShuffleElements");
 | |
|   unsigned NumElts = V->getType()->getVectorNumElements();
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (V == LHS) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (V == RHS) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                                       i+NumElts));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert of an extract from some other vector, include it.
 | |
|     Value *VecOp    = IEI->getOperand(0);
 | |
|     Value *ScalarOp = IEI->getOperand(1);
 | |
|     Value *IdxOp    = IEI->getOperand(2);
 | |
| 
 | |
|     if (!isa<ConstantInt>(IdxOp))
 | |
|       return false;
 | |
|     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
| 
 | |
|     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
 | |
|       // We can handle this if the vector we are inserting into is
 | |
|       // transitively ok.
 | |
|       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | |
|         // If so, update the mask to reflect the inserted undef.
 | |
|         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
 | |
|         return true;
 | |
|       }
 | |
|     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
 | |
|       if (isa<ConstantInt>(EI->getOperand(1))) {
 | |
|         unsigned ExtractedIdx =
 | |
|         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
|         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
 | |
| 
 | |
|         // This must be extracting from either LHS or RHS.
 | |
|         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
 | |
|           // We can handle this if the vector we are inserting into is
 | |
|           // transitively ok.
 | |
|           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | |
|             // If so, update the mask to reflect the inserted value.
 | |
|             if (EI->getOperand(0) == LHS) {
 | |
|               Mask[InsertedIdx % NumElts] =
 | |
|               ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                                ExtractedIdx);
 | |
|             } else {
 | |
|               assert(EI->getOperand(0) == RHS);
 | |
|               Mask[InsertedIdx % NumElts] =
 | |
|               ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                                ExtractedIdx + NumLHSElts);
 | |
|             }
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// If we have insertion into a vector that is wider than the vector that we
 | |
| /// are extracting from, try to widen the source vector to allow a single
 | |
| /// shufflevector to replace one or more insert/extract pairs.
 | |
| static void replaceExtractElements(InsertElementInst *InsElt,
 | |
|                                    ExtractElementInst *ExtElt,
 | |
|                                    InstCombiner &IC) {
 | |
|   VectorType *InsVecType = InsElt->getType();
 | |
|   VectorType *ExtVecType = ExtElt->getVectorOperandType();
 | |
|   unsigned NumInsElts = InsVecType->getVectorNumElements();
 | |
|   unsigned NumExtElts = ExtVecType->getVectorNumElements();
 | |
| 
 | |
|   // The inserted-to vector must be wider than the extracted-from vector.
 | |
|   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
 | |
|       NumExtElts >= NumInsElts)
 | |
|     return;
 | |
| 
 | |
|   // Create a shuffle mask to widen the extended-from vector using undefined
 | |
|   // values. The mask selects all of the values of the original vector followed
 | |
|   // by as many undefined values as needed to create a vector of the same length
 | |
|   // as the inserted-to vector.
 | |
|   SmallVector<Constant *, 16> ExtendMask;
 | |
|   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
 | |
|   for (unsigned i = 0; i < NumExtElts; ++i)
 | |
|     ExtendMask.push_back(ConstantInt::get(IntType, i));
 | |
|   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
 | |
|     ExtendMask.push_back(UndefValue::get(IntType));
 | |
| 
 | |
|   Value *ExtVecOp = ExtElt->getVectorOperand();
 | |
|   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
 | |
|   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
 | |
|                                    ? ExtVecOpInst->getParent()
 | |
|                                    : ExtElt->getParent();
 | |
| 
 | |
|   // TODO: This restriction matches the basic block check below when creating
 | |
|   // new extractelement instructions. If that limitation is removed, this one
 | |
|   // could also be removed. But for now, we just bail out to ensure that we
 | |
|   // will replace the extractelement instruction that is feeding our
 | |
|   // insertelement instruction. This allows the insertelement to then be
 | |
|   // replaced by a shufflevector. If the insertelement is not replaced, we can
 | |
|   // induce infinite looping because there's an optimization for extractelement
 | |
|   // that will delete our widening shuffle. This would trigger another attempt
 | |
|   // here to create that shuffle, and we spin forever.
 | |
|   if (InsertionBlock != InsElt->getParent())
 | |
|     return;
 | |
| 
 | |
|   // TODO: This restriction matches the check in visitInsertElementInst() and
 | |
|   // prevents an infinite loop caused by not turning the extract/insert pair
 | |
|   // into a shuffle. We really should not need either check, but we're lacking
 | |
|   // folds for shufflevectors because we're afraid to generate shuffle masks
 | |
|   // that the backend can't handle.
 | |
|   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
 | |
|     return;
 | |
| 
 | |
|   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
 | |
|                                         ConstantVector::get(ExtendMask));
 | |
| 
 | |
|   // Insert the new shuffle after the vector operand of the extract is defined
 | |
|   // (as long as it's not a PHI) or at the start of the basic block of the
 | |
|   // extract, so any subsequent extracts in the same basic block can use it.
 | |
|   // TODO: Insert before the earliest ExtractElementInst that is replaced.
 | |
|   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
 | |
|     WideVec->insertAfter(ExtVecOpInst);
 | |
|   else
 | |
|     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
 | |
| 
 | |
|   // Replace extracts from the original narrow vector with extracts from the new
 | |
|   // wide vector.
 | |
|   for (User *U : ExtVecOp->users()) {
 | |
|     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
 | |
|     if (!OldExt || OldExt->getParent() != WideVec->getParent())
 | |
|       continue;
 | |
|     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
 | |
|     NewExt->insertAfter(OldExt);
 | |
|     IC.replaceInstUsesWith(*OldExt, NewExt);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// We are building a shuffle to create V, which is a sequence of insertelement,
 | |
| /// extractelement pairs. If PermittedRHS is set, then we must either use it or
 | |
| /// not rely on the second vector source. Return a std::pair containing the
 | |
| /// left and right vectors of the proposed shuffle (or 0), and set the Mask
 | |
| /// parameter as required.
 | |
| ///
 | |
| /// Note: we intentionally don't try to fold earlier shuffles since they have
 | |
| /// often been chosen carefully to be efficiently implementable on the target.
 | |
| using ShuffleOps = std::pair<Value *, Value *>;
 | |
| 
 | |
| static ShuffleOps collectShuffleElements(Value *V,
 | |
|                                          SmallVectorImpl<Constant *> &Mask,
 | |
|                                          Value *PermittedRHS,
 | |
|                                          InstCombiner &IC) {
 | |
|   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
 | |
|   unsigned NumElts = V->getType()->getVectorNumElements();
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
 | |
|     return std::make_pair(
 | |
|         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantAggregateZero>(V)) {
 | |
|     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
 | |
|     return std::make_pair(V, nullptr);
 | |
|   }
 | |
| 
 | |
|   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert of an extract from some other vector, include it.
 | |
|     Value *VecOp    = IEI->getOperand(0);
 | |
|     Value *ScalarOp = IEI->getOperand(1);
 | |
|     Value *IdxOp    = IEI->getOperand(2);
 | |
| 
 | |
|     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | |
|       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
 | |
|         unsigned ExtractedIdx =
 | |
|           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
|         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
| 
 | |
|         // Either the extracted from or inserted into vector must be RHSVec,
 | |
|         // otherwise we'd end up with a shuffle of three inputs.
 | |
|         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
 | |
|           Value *RHS = EI->getOperand(0);
 | |
|           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
 | |
|           assert(LR.second == nullptr || LR.second == RHS);
 | |
| 
 | |
|           if (LR.first->getType() != RHS->getType()) {
 | |
|             // Although we are giving up for now, see if we can create extracts
 | |
|             // that match the inserts for another round of combining.
 | |
|             replaceExtractElements(IEI, EI, IC);
 | |
| 
 | |
|             // We tried our best, but we can't find anything compatible with RHS
 | |
|             // further up the chain. Return a trivial shuffle.
 | |
|             for (unsigned i = 0; i < NumElts; ++i)
 | |
|               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
 | |
|             return std::make_pair(V, nullptr);
 | |
|           }
 | |
| 
 | |
|           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
 | |
|           Mask[InsertedIdx % NumElts] =
 | |
|             ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                              NumLHSElts+ExtractedIdx);
 | |
|           return std::make_pair(LR.first, RHS);
 | |
|         }
 | |
| 
 | |
|         if (VecOp == PermittedRHS) {
 | |
|           // We've gone as far as we can: anything on the other side of the
 | |
|           // extractelement will already have been converted into a shuffle.
 | |
|           unsigned NumLHSElts =
 | |
|               EI->getOperand(0)->getType()->getVectorNumElements();
 | |
|           for (unsigned i = 0; i != NumElts; ++i)
 | |
|             Mask.push_back(ConstantInt::get(
 | |
|                 Type::getInt32Ty(V->getContext()),
 | |
|                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
 | |
|           return std::make_pair(EI->getOperand(0), PermittedRHS);
 | |
|         }
 | |
| 
 | |
|         // If this insertelement is a chain that comes from exactly these two
 | |
|         // vectors, return the vector and the effective shuffle.
 | |
|         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
 | |
|             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
 | |
|                                          Mask))
 | |
|           return std::make_pair(EI->getOperand(0), PermittedRHS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we can't do anything fancy. Return an identity vector.
 | |
|   for (unsigned i = 0; i != NumElts; ++i)
 | |
|     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
 | |
|   return std::make_pair(V, nullptr);
 | |
| }
 | |
| 
 | |
| /// Try to find redundant insertvalue instructions, like the following ones:
 | |
| ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
 | |
| ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
 | |
| /// Here the second instruction inserts values at the same indices, as the
 | |
| /// first one, making the first one redundant.
 | |
| /// It should be transformed to:
 | |
| ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
 | |
| Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
 | |
|   bool IsRedundant = false;
 | |
|   ArrayRef<unsigned int> FirstIndices = I.getIndices();
 | |
| 
 | |
|   // If there is a chain of insertvalue instructions (each of them except the
 | |
|   // last one has only one use and it's another insertvalue insn from this
 | |
|   // chain), check if any of the 'children' uses the same indices as the first
 | |
|   // instruction. In this case, the first one is redundant.
 | |
|   Value *V = &I;
 | |
|   unsigned Depth = 0;
 | |
|   while (V->hasOneUse() && Depth < 10) {
 | |
|     User *U = V->user_back();
 | |
|     auto UserInsInst = dyn_cast<InsertValueInst>(U);
 | |
|     if (!UserInsInst || U->getOperand(0) != V)
 | |
|       break;
 | |
|     if (UserInsInst->getIndices() == FirstIndices) {
 | |
|       IsRedundant = true;
 | |
|       break;
 | |
|     }
 | |
|     V = UserInsInst;
 | |
|     Depth++;
 | |
|   }
 | |
| 
 | |
|   if (IsRedundant)
 | |
|     return replaceInstUsesWith(I, I.getOperand(0));
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
 | |
|   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
 | |
|   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
 | |
| 
 | |
|   // A vector select does not change the size of the operands.
 | |
|   if (MaskSize != VecSize)
 | |
|     return false;
 | |
| 
 | |
|   // Each mask element must be undefined or choose a vector element from one of
 | |
|   // the source operands without crossing vector lanes.
 | |
|   for (int i = 0; i != MaskSize; ++i) {
 | |
|     int Elt = Shuf.getMaskValue(i);
 | |
|     if (Elt != -1 && Elt != i && Elt != i + VecSize)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Turn a chain of inserts that splats a value into an insert + shuffle:
 | |
| /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
 | |
| /// shufflevector(insertelt(X, %k, 0), undef, zero)
 | |
| static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
 | |
|   // We are interested in the last insert in a chain. So if this insert has a
 | |
|   // single user and that user is an insert, bail.
 | |
|   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *VecTy = cast<VectorType>(InsElt.getType());
 | |
|   unsigned NumElements = VecTy->getNumElements();
 | |
| 
 | |
|   // Do not try to do this for a one-element vector, since that's a nop,
 | |
|   // and will cause an inf-loop.
 | |
|   if (NumElements == 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *SplatVal = InsElt.getOperand(1);
 | |
|   InsertElementInst *CurrIE = &InsElt;
 | |
|   SmallVector<bool, 16> ElementPresent(NumElements, false);
 | |
|   InsertElementInst *FirstIE = nullptr;
 | |
| 
 | |
|   // Walk the chain backwards, keeping track of which indices we inserted into,
 | |
|   // until we hit something that isn't an insert of the splatted value.
 | |
|   while (CurrIE) {
 | |
|     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
 | |
|     if (!Idx || CurrIE->getOperand(1) != SplatVal)
 | |
|       return nullptr;
 | |
| 
 | |
|     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
 | |
|     // Check none of the intermediate steps have any additional uses, except
 | |
|     // for the root insertelement instruction, which can be re-used, if it
 | |
|     // inserts at position 0.
 | |
|     if (CurrIE != &InsElt &&
 | |
|         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
 | |
|       return nullptr;
 | |
| 
 | |
|     ElementPresent[Idx->getZExtValue()] = true;
 | |
|     FirstIE = CurrIE;
 | |
|     CurrIE = NextIE;
 | |
|   }
 | |
| 
 | |
|   // If this is just a single insertelement (not a sequence), we are done.
 | |
|   if (FirstIE == &InsElt)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we are not inserting into an undef vector, make sure we've seen an
 | |
|   // insert into every element.
 | |
|   // TODO: If the base vector is not undef, it might be better to create a splat
 | |
|   //       and then a select-shuffle (blend) with the base vector.
 | |
|   if (!isa<UndefValue>(FirstIE->getOperand(0)))
 | |
|     if (any_of(ElementPresent, [](bool Present) { return !Present; }))
 | |
|       return nullptr;
 | |
| 
 | |
|   // Create the insert + shuffle.
 | |
|   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
 | |
|   UndefValue *UndefVec = UndefValue::get(VecTy);
 | |
|   Constant *Zero = ConstantInt::get(Int32Ty, 0);
 | |
|   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
 | |
|     FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
 | |
| 
 | |
|   // Splat from element 0, but replace absent elements with undef in the mask.
 | |
|   SmallVector<Constant *, 16> Mask(NumElements, Zero);
 | |
|   for (unsigned i = 0; i != NumElements; ++i)
 | |
|     if (!ElementPresent[i])
 | |
|       Mask[i] = UndefValue::get(Int32Ty);
 | |
| 
 | |
|   return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
 | |
| }
 | |
| 
 | |
| /// Try to fold an insert element into an existing splat shuffle by changing
 | |
| /// the shuffle's mask to include the index of this insert element.
 | |
| static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
 | |
|   // Check if the vector operand of this insert is a canonical splat shuffle.
 | |
|   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
 | |
|   if (!Shuf || !Shuf->isZeroEltSplat())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check for a constant insertion index.
 | |
|   uint64_t IdxC;
 | |
|   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check if the splat shuffle's input is the same as this insert's scalar op.
 | |
|   Value *X = InsElt.getOperand(1);
 | |
|   Value *Op0 = Shuf->getOperand(0);
 | |
|   if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Replace the shuffle mask element at the index of this insert with a zero.
 | |
|   // For example:
 | |
|   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
 | |
|   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
 | |
|   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
 | |
|   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
 | |
|   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
 | |
|   Constant *Zero = ConstantInt::getNullValue(I32Ty);
 | |
|   for (unsigned i = 0; i != NumMaskElts; ++i)
 | |
|     NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
 | |
| 
 | |
|   Constant *NewMask = ConstantVector::get(NewMaskVec);
 | |
|   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
 | |
| }
 | |
| 
 | |
| /// Try to fold an extract+insert element into an existing identity shuffle by
 | |
| /// changing the shuffle's mask to include the index of this insert element.
 | |
| static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
 | |
|   // Check if the vector operand of this insert is an identity shuffle.
 | |
|   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
 | |
|   if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
 | |
|       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check for a constant insertion index.
 | |
|   uint64_t IdxC;
 | |
|   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check if this insert's scalar op is extracted from the identity shuffle's
 | |
|   // input vector.
 | |
|   Value *Scalar = InsElt.getOperand(1);
 | |
|   Value *X = Shuf->getOperand(0);
 | |
|   if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Replace the shuffle mask element at the index of this extract+insert with
 | |
|   // that same index value.
 | |
|   // For example:
 | |
|   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
 | |
|   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
 | |
|   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
 | |
|   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
 | |
|   Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
 | |
|   Constant *OldMask = Shuf->getMask();
 | |
|   for (unsigned i = 0; i != NumMaskElts; ++i) {
 | |
|     if (i != IdxC) {
 | |
|       // All mask elements besides the inserted element remain the same.
 | |
|       NewMaskVec[i] = OldMask->getAggregateElement(i);
 | |
|     } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
 | |
|       // If the mask element was already set, there's nothing to do
 | |
|       // (demanded elements analysis may unset it later).
 | |
|       return nullptr;
 | |
|     } else {
 | |
|       assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
 | |
|              "Unexpected shuffle mask element for identity shuffle");
 | |
|       NewMaskVec[i] = NewMaskEltC;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Constant *NewMask = ConstantVector::get(NewMaskVec);
 | |
|   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
 | |
| }
 | |
| 
 | |
| /// If we have an insertelement instruction feeding into another insertelement
 | |
| /// and the 2nd is inserting a constant into the vector, canonicalize that
 | |
| /// constant insertion before the insertion of a variable:
 | |
| ///
 | |
| /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
 | |
| /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
 | |
| ///
 | |
| /// This has the potential of eliminating the 2nd insertelement instruction
 | |
| /// via constant folding of the scalar constant into a vector constant.
 | |
| static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
 | |
|                                      InstCombiner::BuilderTy &Builder) {
 | |
|   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
 | |
|   if (!InsElt1 || !InsElt1->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *X, *Y;
 | |
|   Constant *ScalarC;
 | |
|   ConstantInt *IdxC1, *IdxC2;
 | |
|   if (match(InsElt1->getOperand(0), m_Value(X)) &&
 | |
|       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
 | |
|       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
 | |
|       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
 | |
|       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
 | |
|     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
 | |
|     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
 | |
| /// --> shufflevector X, CVec', Mask'
 | |
| static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
 | |
|   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
 | |
|   // Bail out if the parent has more than one use. In that case, we'd be
 | |
|   // replacing the insertelt with a shuffle, and that's not a clear win.
 | |
|   if (!Inst || !Inst->hasOneUse())
 | |
|     return nullptr;
 | |
|   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
 | |
|     // The shuffle must have a constant vector operand. The insertelt must have
 | |
|     // a constant scalar being inserted at a constant position in the vector.
 | |
|     Constant *ShufConstVec, *InsEltScalar;
 | |
|     uint64_t InsEltIndex;
 | |
|     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
 | |
|         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
 | |
|         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
 | |
|       return nullptr;
 | |
| 
 | |
|     // Adding an element to an arbitrary shuffle could be expensive, but a
 | |
|     // shuffle that selects elements from vectors without crossing lanes is
 | |
|     // assumed cheap.
 | |
|     // If we're just adding a constant into that shuffle, it will still be
 | |
|     // cheap.
 | |
|     if (!isShuffleEquivalentToSelect(*Shuf))
 | |
|       return nullptr;
 | |
| 
 | |
|     // From the above 'select' check, we know that the mask has the same number
 | |
|     // of elements as the vector input operands. We also know that each constant
 | |
|     // input element is used in its lane and can not be used more than once by
 | |
|     // the shuffle. Therefore, replace the constant in the shuffle's constant
 | |
|     // vector with the insertelt constant. Replace the constant in the shuffle's
 | |
|     // mask vector with the insertelt index plus the length of the vector
 | |
|     // (because the constant vector operand of a shuffle is always the 2nd
 | |
|     // operand).
 | |
|     Constant *Mask = Shuf->getMask();
 | |
|     unsigned NumElts = Mask->getType()->getVectorNumElements();
 | |
|     SmallVector<Constant *, 16> NewShufElts(NumElts);
 | |
|     SmallVector<Constant *, 16> NewMaskElts(NumElts);
 | |
|     for (unsigned I = 0; I != NumElts; ++I) {
 | |
|       if (I == InsEltIndex) {
 | |
|         NewShufElts[I] = InsEltScalar;
 | |
|         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
 | |
|         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
 | |
|       } else {
 | |
|         // Copy over the existing values.
 | |
|         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
 | |
|         NewMaskElts[I] = Mask->getAggregateElement(I);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Create new operands for a shuffle that includes the constant of the
 | |
|     // original insertelt. The old shuffle will be dead now.
 | |
|     return new ShuffleVectorInst(Shuf->getOperand(0),
 | |
|                                  ConstantVector::get(NewShufElts),
 | |
|                                  ConstantVector::get(NewMaskElts));
 | |
|   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
 | |
|     // Transform sequences of insertelements ops with constant data/indexes into
 | |
|     // a single shuffle op.
 | |
|     unsigned NumElts = InsElt.getType()->getNumElements();
 | |
| 
 | |
|     uint64_t InsertIdx[2];
 | |
|     Constant *Val[2];
 | |
|     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
 | |
|         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
 | |
|         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
 | |
|         !match(IEI->getOperand(1), m_Constant(Val[1])))
 | |
|       return nullptr;
 | |
|     SmallVector<Constant *, 16> Values(NumElts);
 | |
|     SmallVector<Constant *, 16> Mask(NumElts);
 | |
|     auto ValI = std::begin(Val);
 | |
|     // Generate new constant vector and mask.
 | |
|     // We have 2 values/masks from the insertelements instructions. Insert them
 | |
|     // into new value/mask vectors.
 | |
|     for (uint64_t I : InsertIdx) {
 | |
|       if (!Values[I]) {
 | |
|         assert(!Mask[I]);
 | |
|         Values[I] = *ValI;
 | |
|         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
 | |
|                                    NumElts + I);
 | |
|       }
 | |
|       ++ValI;
 | |
|     }
 | |
|     // Remaining values are filled with 'undef' values.
 | |
|     for (unsigned I = 0; I < NumElts; ++I) {
 | |
|       if (!Values[I]) {
 | |
|         assert(!Mask[I]);
 | |
|         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
 | |
|         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
 | |
|       }
 | |
|     }
 | |
|     // Create new operands for a shuffle that includes the constant of the
 | |
|     // original insertelt.
 | |
|     return new ShuffleVectorInst(IEI->getOperand(0),
 | |
|                                  ConstantVector::get(Values),
 | |
|                                  ConstantVector::get(Mask));
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
 | |
|   Value *VecOp    = IE.getOperand(0);
 | |
|   Value *ScalarOp = IE.getOperand(1);
 | |
|   Value *IdxOp    = IE.getOperand(2);
 | |
| 
 | |
|   if (auto *V = SimplifyInsertElementInst(
 | |
|           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
 | |
|     return replaceInstUsesWith(IE, V);
 | |
| 
 | |
|   // If the vector and scalar are both bitcast from the same element type, do
 | |
|   // the insert in that source type followed by bitcast.
 | |
|   Value *VecSrc, *ScalarSrc;
 | |
|   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
 | |
|       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
 | |
|       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
 | |
|       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
 | |
|       VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
 | |
|     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
 | |
|     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
 | |
|     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
 | |
|     return new BitCastInst(NewInsElt, IE.getType());
 | |
|   }
 | |
| 
 | |
|   // If the inserted element was extracted from some other vector and both
 | |
|   // indexes are valid constants, try to turn this into a shuffle.
 | |
|   uint64_t InsertedIdx, ExtractedIdx;
 | |
|   Value *ExtVecOp;
 | |
|   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
 | |
|       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
 | |
|                                        m_ConstantInt(ExtractedIdx))) &&
 | |
|       ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
 | |
|     // TODO: Looking at the user(s) to determine if this insert is a
 | |
|     // fold-to-shuffle opportunity does not match the usual instcombine
 | |
|     // constraints. We should decide if the transform is worthy based only
 | |
|     // on this instruction and its operands, but that may not work currently.
 | |
|     //
 | |
|     // Here, we are trying to avoid creating shuffles before reaching
 | |
|     // the end of a chain of extract-insert pairs. This is complicated because
 | |
|     // we do not generally form arbitrary shuffle masks in instcombine
 | |
|     // (because those may codegen poorly), but collectShuffleElements() does
 | |
|     // exactly that.
 | |
|     //
 | |
|     // The rules for determining what is an acceptable target-independent
 | |
|     // shuffle mask are fuzzy because they evolve based on the backend's
 | |
|     // capabilities and real-world impact.
 | |
|     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
 | |
|       if (!Insert.hasOneUse())
 | |
|         return true;
 | |
|       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
 | |
|       if (!InsertUser)
 | |
|         return true;
 | |
|       return false;
 | |
|     };
 | |
| 
 | |
|     // Try to form a shuffle from a chain of extract-insert ops.
 | |
|     if (isShuffleRootCandidate(IE)) {
 | |
|       SmallVector<Constant*, 16> Mask;
 | |
|       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
 | |
| 
 | |
|       // The proposed shuffle may be trivial, in which case we shouldn't
 | |
|       // perform the combine.
 | |
|       if (LR.first != &IE && LR.second != &IE) {
 | |
|         // We now have a shuffle of LHS, RHS, Mask.
 | |
|         if (LR.second == nullptr)
 | |
|           LR.second = UndefValue::get(LR.first->getType());
 | |
|         return new ShuffleVectorInst(LR.first, LR.second,
 | |
|                                      ConstantVector::get(Mask));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned VWidth = VecOp->getType()->getVectorNumElements();
 | |
|   APInt UndefElts(VWidth, 0);
 | |
|   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
 | |
|     if (V != &IE)
 | |
|       return replaceInstUsesWith(IE, V);
 | |
|     return &IE;
 | |
|   }
 | |
| 
 | |
|   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
 | |
|     return Shuf;
 | |
| 
 | |
|   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
 | |
|     return NewInsElt;
 | |
| 
 | |
|   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
 | |
|     return Broadcast;
 | |
| 
 | |
|   if (Instruction *Splat = foldInsEltIntoSplat(IE))
 | |
|     return Splat;
 | |
| 
 | |
|   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
 | |
|     return IdentityShuf;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return true if we can evaluate the specified expression tree if the vector
 | |
| /// elements were shuffled in a different order.
 | |
| static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
 | |
|                                 unsigned Depth = 5) {
 | |
|   // We can always reorder the elements of a constant.
 | |
|   if (isa<Constant>(V))
 | |
|     return true;
 | |
| 
 | |
|   // We won't reorder vector arguments. No IPO here.
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
| 
 | |
|   // Two users may expect different orders of the elements. Don't try it.
 | |
|   if (!I->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   if (Depth == 0) return false;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|       // Propagating an undefined shuffle mask element to integer div/rem is not
 | |
|       // allowed because those opcodes can create immediate undefined behavior
 | |
|       // from an undefined element in an operand.
 | |
|       if (llvm::any_of(Mask, [](int M){ return M == -1; }))
 | |
|         return false;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::GetElementPtr: {
 | |
|       // Bail out if we would create longer vector ops. We could allow creating
 | |
|       // longer vector ops, but that may result in more expensive codegen.
 | |
|       Type *ITy = I->getType();
 | |
|       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
 | |
|         return false;
 | |
|       for (Value *Operand : I->operands()) {
 | |
|         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
 | |
|           return false;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|     case Instruction::InsertElement: {
 | |
|       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
 | |
|       if (!CI) return false;
 | |
|       int ElementNumber = CI->getLimitedValue();
 | |
| 
 | |
|       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
 | |
|       // can't put an element into multiple indices.
 | |
|       bool SeenOnce = false;
 | |
|       for (int i = 0, e = Mask.size(); i != e; ++i) {
 | |
|         if (Mask[i] == ElementNumber) {
 | |
|           if (SeenOnce)
 | |
|             return false;
 | |
|           SeenOnce = true;
 | |
|         }
 | |
|       }
 | |
|       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Rebuild a new instruction just like 'I' but with the new operands given.
 | |
| /// In the event of type mismatch, the type of the operands is correct.
 | |
| static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
 | |
|   // We don't want to use the IRBuilder here because we want the replacement
 | |
|   // instructions to appear next to 'I', not the builder's insertion point.
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       BinaryOperator *BO = cast<BinaryOperator>(I);
 | |
|       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
 | |
|       BinaryOperator *New =
 | |
|           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
 | |
|                                  NewOps[0], NewOps[1], "", BO);
 | |
|       if (isa<OverflowingBinaryOperator>(BO)) {
 | |
|         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
 | |
|         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
 | |
|       }
 | |
|       if (isa<PossiblyExactOperator>(BO)) {
 | |
|         New->setIsExact(BO->isExact());
 | |
|       }
 | |
|       if (isa<FPMathOperator>(BO))
 | |
|         New->copyFastMathFlags(I);
 | |
|       return New;
 | |
|     }
 | |
|     case Instruction::ICmp:
 | |
|       assert(NewOps.size() == 2 && "icmp with #ops != 2");
 | |
|       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
 | |
|                           NewOps[0], NewOps[1]);
 | |
|     case Instruction::FCmp:
 | |
|       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
 | |
|       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
 | |
|                           NewOps[0], NewOps[1]);
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt: {
 | |
|       // It's possible that the mask has a different number of elements from
 | |
|       // the original cast. We recompute the destination type to match the mask.
 | |
|       Type *DestTy =
 | |
|           VectorType::get(I->getType()->getScalarType(),
 | |
|                           NewOps[0]->getType()->getVectorNumElements());
 | |
|       assert(NewOps.size() == 1 && "cast with #ops != 1");
 | |
|       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
 | |
|                               "", I);
 | |
|     }
 | |
|     case Instruction::GetElementPtr: {
 | |
|       Value *Ptr = NewOps[0];
 | |
|       ArrayRef<Value*> Idx = NewOps.slice(1);
 | |
|       GetElementPtrInst *GEP = GetElementPtrInst::Create(
 | |
|           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
 | |
|       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
 | |
|       return GEP;
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("failed to rebuild vector instructions");
 | |
| }
 | |
| 
 | |
| static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
 | |
|   // Mask.size() does not need to be equal to the number of vector elements.
 | |
| 
 | |
|   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
 | |
|   Type *EltTy = V->getType()->getScalarType();
 | |
|   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
 | |
|   if (isa<UndefValue>(V))
 | |
|     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
 | |
| 
 | |
|   if (isa<ConstantAggregateZero>(V))
 | |
|     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     SmallVector<Constant *, 16> MaskValues;
 | |
|     for (int i = 0, e = Mask.size(); i != e; ++i) {
 | |
|       if (Mask[i] == -1)
 | |
|         MaskValues.push_back(UndefValue::get(I32Ty));
 | |
|       else
 | |
|         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
 | |
|     }
 | |
|     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
 | |
|                                           ConstantVector::get(MaskValues));
 | |
|   }
 | |
| 
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::Select:
 | |
|     case Instruction::GetElementPtr: {
 | |
|       SmallVector<Value*, 8> NewOps;
 | |
|       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
 | |
|       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|         Value *V;
 | |
|         // Recursively call evaluateInDifferentElementOrder on vector arguments
 | |
|         // as well. E.g. GetElementPtr may have scalar operands even if the
 | |
|         // return value is a vector, so we need to examine the operand type.
 | |
|         if (I->getOperand(i)->getType()->isVectorTy())
 | |
|           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
 | |
|         else
 | |
|           V = I->getOperand(i);
 | |
|         NewOps.push_back(V);
 | |
|         NeedsRebuild |= (V != I->getOperand(i));
 | |
|       }
 | |
|       if (NeedsRebuild) {
 | |
|         return buildNew(I, NewOps);
 | |
|       }
 | |
|       return I;
 | |
|     }
 | |
|     case Instruction::InsertElement: {
 | |
|       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
 | |
| 
 | |
|       // The insertelement was inserting at Element. Figure out which element
 | |
|       // that becomes after shuffling. The answer is guaranteed to be unique
 | |
|       // by CanEvaluateShuffled.
 | |
|       bool Found = false;
 | |
|       int Index = 0;
 | |
|       for (int e = Mask.size(); Index != e; ++Index) {
 | |
|         if (Mask[Index] == Element) {
 | |
|           Found = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If element is not in Mask, no need to handle the operand 1 (element to
 | |
|       // be inserted). Just evaluate values in operand 0 according to Mask.
 | |
|       if (!Found)
 | |
|         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
 | |
| 
 | |
|       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
 | |
|       return InsertElementInst::Create(V, I->getOperand(1),
 | |
|                                        ConstantInt::get(I32Ty, Index), "", I);
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("failed to reorder elements of vector instruction!");
 | |
| }
 | |
| 
 | |
| // Returns true if the shuffle is extracting a contiguous range of values from
 | |
| // LHS, for example:
 | |
| //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
| //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
 | |
| //   Shuffles to:  |EE|FF|GG|HH|
 | |
| //                 +--+--+--+--+
 | |
| static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
 | |
|                                        SmallVector<int, 16> &Mask) {
 | |
|   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
 | |
|   unsigned MaskElems = Mask.size();
 | |
|   unsigned BegIdx = Mask.front();
 | |
|   unsigned EndIdx = Mask.back();
 | |
|   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
 | |
|     return false;
 | |
|   for (unsigned I = 0; I != MaskElems; ++I)
 | |
|     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// These are the ingredients in an alternate form binary operator as described
 | |
| /// below.
 | |
| struct BinopElts {
 | |
|   BinaryOperator::BinaryOps Opcode;
 | |
|   Value *Op0;
 | |
|   Value *Op1;
 | |
|   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
 | |
|             Value *V0 = nullptr, Value *V1 = nullptr) :
 | |
|       Opcode(Opc), Op0(V0), Op1(V1) {}
 | |
|   operator bool() const { return Opcode != 0; }
 | |
| };
 | |
| 
 | |
| /// Binops may be transformed into binops with different opcodes and operands.
 | |
| /// Reverse the usual canonicalization to enable folds with the non-canonical
 | |
| /// form of the binop. If a transform is possible, return the elements of the
 | |
| /// new binop. If not, return invalid elements.
 | |
| static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
 | |
|   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
 | |
|   Type *Ty = BO->getType();
 | |
|   switch (BO->getOpcode()) {
 | |
|     case Instruction::Shl: {
 | |
|       // shl X, C --> mul X, (1 << C)
 | |
|       Constant *C;
 | |
|       if (match(BO1, m_Constant(C))) {
 | |
|         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
 | |
|         return { Instruction::Mul, BO0, ShlOne };
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Or: {
 | |
|       // or X, C --> add X, C (when X and C have no common bits set)
 | |
|       const APInt *C;
 | |
|       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
 | |
|         return { Instruction::Add, BO0, BO1 };
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       break;
 | |
|   }
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
 | |
|   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
 | |
| 
 | |
|   // Are we shuffling together some value and that same value after it has been
 | |
|   // modified by a binop with a constant?
 | |
|   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
 | |
|   Constant *C;
 | |
|   bool Op0IsBinop;
 | |
|   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
 | |
|     Op0IsBinop = true;
 | |
|   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
 | |
|     Op0IsBinop = false;
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // The identity constant for a binop leaves a variable operand unchanged. For
 | |
|   // a vector, this is a splat of something like 0, -1, or 1.
 | |
|   // If there's no identity constant for this binop, we're done.
 | |
|   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
 | |
|   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
 | |
|   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
 | |
|   if (!IdC)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Shuffle identity constants into the lanes that return the original value.
 | |
|   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
 | |
|   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
 | |
|   // The existing binop constant vector remains in the same operand position.
 | |
|   Constant *Mask = Shuf.getMask();
 | |
|   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
 | |
|                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
 | |
| 
 | |
|   bool MightCreatePoisonOrUB =
 | |
|       Mask->containsUndefElement() &&
 | |
|       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
 | |
|   if (MightCreatePoisonOrUB)
 | |
|     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
 | |
| 
 | |
|   // shuf (bop X, C), X, M --> bop X, C'
 | |
|   // shuf X, (bop X, C), M --> bop X, C'
 | |
|   Value *X = Op0IsBinop ? Op1 : Op0;
 | |
|   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
 | |
|   NewBO->copyIRFlags(BO);
 | |
| 
 | |
|   // An undef shuffle mask element may propagate as an undef constant element in
 | |
|   // the new binop. That would produce poison where the original code might not.
 | |
|   // If we already made a safe constant, then there's no danger.
 | |
|   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
 | |
|     NewBO->dropPoisonGeneratingFlags();
 | |
|   return NewBO;
 | |
| }
 | |
| 
 | |
| /// If we have an insert of a scalar to a non-zero element of an undefined
 | |
| /// vector and then shuffle that value, that's the same as inserting to the zero
 | |
| /// element and shuffling. Splatting from the zero element is recognized as the
 | |
| /// canonical form of splat.
 | |
| static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
 | |
|                                             InstCombiner::BuilderTy &Builder) {
 | |
|   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
 | |
|   Constant *Mask = Shuf.getMask();
 | |
|   Value *X;
 | |
|   uint64_t IndexC;
 | |
| 
 | |
|   // Match a shuffle that is a splat to a non-zero element.
 | |
|   if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
 | |
|                                            m_ConstantInt(IndexC)))) ||
 | |
|       !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Insert into element 0 of an undef vector.
 | |
|   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
 | |
|   Constant *Zero = Builder.getInt32(0);
 | |
|   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
 | |
| 
 | |
|   // Splat from element 0. Any mask element that is undefined remains undefined.
 | |
|   // For example:
 | |
|   // shuf (inselt undef, X, 2), undef, <2,2,undef>
 | |
|   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
 | |
|   unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
 | |
|   SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
 | |
|   for (unsigned i = 0; i != NumMaskElts; ++i)
 | |
|     if (isa<UndefValue>(Mask->getAggregateElement(i)))
 | |
|       NewMask[i] = Mask->getAggregateElement(i);
 | |
| 
 | |
|   return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
 | |
| }
 | |
| 
 | |
| /// Try to fold shuffles that are the equivalent of a vector select.
 | |
| static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
 | |
|                                       InstCombiner::BuilderTy &Builder,
 | |
|                                       const DataLayout &DL) {
 | |
|   if (!Shuf.isSelect())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
 | |
|   // Commuting undef to operand 0 conflicts with another canonicalization.
 | |
|   unsigned NumElts = Shuf.getType()->getVectorNumElements();
 | |
|   if (!isa<UndefValue>(Shuf.getOperand(1)) &&
 | |
|       Shuf.getMaskValue(0) >= (int)NumElts) {
 | |
|     // TODO: Can we assert that both operands of a shuffle-select are not undef
 | |
|     // (otherwise, it would have been folded by instsimplify?
 | |
|     Shuf.commute();
 | |
|     return &Shuf;
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
 | |
|     return I;
 | |
| 
 | |
|   BinaryOperator *B0, *B1;
 | |
|   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
 | |
|       !match(Shuf.getOperand(1), m_BinOp(B1)))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *X, *Y;
 | |
|   Constant *C0, *C1;
 | |
|   bool ConstantsAreOp1;
 | |
|   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
 | |
|       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
 | |
|     ConstantsAreOp1 = true;
 | |
|   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
 | |
|            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
 | |
|     ConstantsAreOp1 = false;
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // We need matching binops to fold the lanes together.
 | |
|   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
 | |
|   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
 | |
|   bool DropNSW = false;
 | |
|   if (ConstantsAreOp1 && Opc0 != Opc1) {
 | |
|     // TODO: We drop "nsw" if shift is converted into multiply because it may
 | |
|     // not be correct when the shift amount is BitWidth - 1. We could examine
 | |
|     // each vector element to determine if it is safe to keep that flag.
 | |
|     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
 | |
|       DropNSW = true;
 | |
|     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
 | |
|       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
 | |
|       Opc0 = AltB0.Opcode;
 | |
|       C0 = cast<Constant>(AltB0.Op1);
 | |
|     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
 | |
|       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
 | |
|       Opc1 = AltB1.Opcode;
 | |
|       C1 = cast<Constant>(AltB1.Op1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Opc0 != Opc1)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The opcodes must be the same. Use a new name to make that clear.
 | |
|   BinaryOperator::BinaryOps BOpc = Opc0;
 | |
| 
 | |
|   // Select the constant elements needed for the single binop.
 | |
|   Constant *Mask = Shuf.getMask();
 | |
|   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
 | |
| 
 | |
|   // We are moving a binop after a shuffle. When a shuffle has an undefined
 | |
|   // mask element, the result is undefined, but it is not poison or undefined
 | |
|   // behavior. That is not necessarily true for div/rem/shift.
 | |
|   bool MightCreatePoisonOrUB =
 | |
|       Mask->containsUndefElement() &&
 | |
|       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
 | |
|   if (MightCreatePoisonOrUB)
 | |
|     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
 | |
| 
 | |
|   Value *V;
 | |
|   if (X == Y) {
 | |
|     // Remove a binop and the shuffle by rearranging the constant:
 | |
|     // shuffle (op V, C0), (op V, C1), M --> op V, C'
 | |
|     // shuffle (op C0, V), (op C1, V), M --> op C', V
 | |
|     V = X;
 | |
|   } else {
 | |
|     // If there are 2 different variable operands, we must create a new shuffle
 | |
|     // (select) first, so check uses to ensure that we don't end up with more
 | |
|     // instructions than we started with.
 | |
|     if (!B0->hasOneUse() && !B1->hasOneUse())
 | |
|       return nullptr;
 | |
| 
 | |
|     // If we use the original shuffle mask and op1 is *variable*, we would be
 | |
|     // putting an undef into operand 1 of div/rem/shift. This is either UB or
 | |
|     // poison. We do not have to guard against UB when *constants* are op1
 | |
|     // because safe constants guarantee that we do not overflow sdiv/srem (and
 | |
|     // there's no danger for other opcodes).
 | |
|     // TODO: To allow this case, create a new shuffle mask with no undefs.
 | |
|     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Note: In general, we do not create new shuffles in InstCombine because we
 | |
|     // do not know if a target can lower an arbitrary shuffle optimally. In this
 | |
|     // case, the shuffle uses the existing mask, so there is no additional risk.
 | |
| 
 | |
|     // Select the variable vectors first, then perform the binop:
 | |
|     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
 | |
|     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
 | |
|     V = Builder.CreateShuffleVector(X, Y, Mask);
 | |
|   }
 | |
| 
 | |
|   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
 | |
|                                          BinaryOperator::Create(BOpc, NewC, V);
 | |
| 
 | |
|   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
 | |
|   // 1. If we changed an opcode, poison conditions might have changed.
 | |
|   // 2. If the shuffle had undef mask elements, the new binop might have undefs
 | |
|   //    where the original code did not. But if we already made a safe constant,
 | |
|   //    then there's no danger.
 | |
|   NewBO->copyIRFlags(B0);
 | |
|   NewBO->andIRFlags(B1);
 | |
|   if (DropNSW)
 | |
|     NewBO->setHasNoSignedWrap(false);
 | |
|   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
 | |
|     NewBO->dropPoisonGeneratingFlags();
 | |
|   return NewBO;
 | |
| }
 | |
| 
 | |
| /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
 | |
| /// narrowing (concatenating with undef and extracting back to the original
 | |
| /// length). This allows replacing the wide select with a narrow select.
 | |
| static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
 | |
|                                        InstCombiner::BuilderTy &Builder) {
 | |
|   // This must be a narrowing identity shuffle. It extracts the 1st N elements
 | |
|   // of the 1st vector operand of a shuffle.
 | |
|   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
 | |
|     return nullptr;
 | |
| 
 | |
|   // The vector being shuffled must be a vector select that we can eliminate.
 | |
|   // TODO: The one-use requirement could be eased if X and/or Y are constants.
 | |
|   Value *Cond, *X, *Y;
 | |
|   if (!match(Shuf.getOperand(0),
 | |
|              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // We need a narrow condition value. It must be extended with undef elements
 | |
|   // and have the same number of elements as this shuffle.
 | |
|   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
 | |
|   Value *NarrowCond;
 | |
|   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
 | |
|                                             m_Constant()))) ||
 | |
|       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
 | |
|       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
 | |
|     return nullptr;
 | |
| 
 | |
|   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
 | |
|   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
 | |
|   Value *Undef = UndefValue::get(X->getType());
 | |
|   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
 | |
|   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
 | |
|   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
 | |
| }
 | |
| 
 | |
| /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
 | |
| static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
 | |
|   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
 | |
|   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *X, *Y;
 | |
|   Constant *Mask;
 | |
|   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
 | |
|   // then combining may result in worse codegen.
 | |
|   if (!Op0->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // We are extracting a subvector from a shuffle. Remove excess elements from
 | |
|   // the 1st shuffle mask to eliminate the extract.
 | |
|   //
 | |
|   // This transform is conservatively limited to identity extracts because we do
 | |
|   // not allow arbitrary shuffle mask creation as a target-independent transform
 | |
|   // (because we can't guarantee that will lower efficiently).
 | |
|   //
 | |
|   // If the extracting shuffle has an undef mask element, it transfers to the
 | |
|   // new shuffle mask. Otherwise, copy the original mask element. Example:
 | |
|   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
 | |
|   //   shuf X, Y, <C0, undef, C2, undef>
 | |
|   unsigned NumElts = Shuf.getType()->getVectorNumElements();
 | |
|   SmallVector<Constant *, 16> NewMask(NumElts);
 | |
|   assert(NumElts < Mask->getType()->getVectorNumElements() &&
 | |
|          "Identity with extract must have less elements than its inputs");
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
 | |
|     Constant *MaskElt = Mask->getAggregateElement(i);
 | |
|     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
 | |
|   }
 | |
|   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
 | |
| }
 | |
| 
 | |
| /// Try to replace a shuffle with an insertelement or try to replace a shuffle
 | |
| /// operand with the operand of an insertelement.
 | |
| static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
 | |
|                                           InstCombiner &IC) {
 | |
|   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
 | |
|   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
 | |
| 
 | |
|   // The shuffle must not change vector sizes.
 | |
|   // TODO: This restriction could be removed if the insert has only one use
 | |
|   //       (because the transform would require a new length-changing shuffle).
 | |
|   int NumElts = Mask.size();
 | |
|   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
 | |
|   // not be able to handle it there if the insertelement has >1 use.
 | |
|   // If the shuffle has an insertelement operand but does not choose the
 | |
|   // inserted scalar element from that value, then we can replace that shuffle
 | |
|   // operand with the source vector of the insertelement.
 | |
|   Value *X;
 | |
|   uint64_t IdxC;
 | |
|   if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
 | |
|     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
 | |
|     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
 | |
|       return IC.replaceOperand(Shuf, 0, X);
 | |
|   }
 | |
|   if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
 | |
|     // Offset the index constant by the vector width because we are checking for
 | |
|     // accesses to the 2nd vector input of the shuffle.
 | |
|     IdxC += NumElts;
 | |
|     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
 | |
|     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
 | |
|       return IC.replaceOperand(Shuf, 1, X);
 | |
|   }
 | |
| 
 | |
|   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
 | |
|   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
 | |
|     // We need an insertelement with a constant index.
 | |
|     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
 | |
|                                    m_ConstantInt(IndexC))))
 | |
|       return false;
 | |
| 
 | |
|     // Test the shuffle mask to see if it splices the inserted scalar into the
 | |
|     // operand 1 vector of the shuffle.
 | |
|     int NewInsIndex = -1;
 | |
|     for (int i = 0; i != NumElts; ++i) {
 | |
|       // Ignore undef mask elements.
 | |
|       if (Mask[i] == -1)
 | |
|         continue;
 | |
| 
 | |
|       // The shuffle takes elements of operand 1 without lane changes.
 | |
|       if (Mask[i] == NumElts + i)
 | |
|         continue;
 | |
| 
 | |
|       // The shuffle must choose the inserted scalar exactly once.
 | |
|       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
 | |
|         return false;
 | |
| 
 | |
|       // The shuffle is placing the inserted scalar into element i.
 | |
|       NewInsIndex = i;
 | |
|     }
 | |
| 
 | |
|     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
 | |
| 
 | |
|     // Index is updated to the potentially translated insertion lane.
 | |
|     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // If the shuffle is unnecessary, insert the scalar operand directly into
 | |
|   // operand 1 of the shuffle. Example:
 | |
|   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
 | |
|   Value *Scalar;
 | |
|   ConstantInt *IndexC;
 | |
|   if (isShufflingScalarIntoOp1(Scalar, IndexC))
 | |
|     return InsertElementInst::Create(V1, Scalar, IndexC);
 | |
| 
 | |
|   // Try again after commuting shuffle. Example:
 | |
|   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
 | |
|   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
 | |
|   std::swap(V0, V1);
 | |
|   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
 | |
|   if (isShufflingScalarIntoOp1(Scalar, IndexC))
 | |
|     return InsertElementInst::Create(V1, Scalar, IndexC);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
 | |
|   // Match the operands as identity with padding (also known as concatenation
 | |
|   // with undef) shuffles of the same source type. The backend is expected to
 | |
|   // recreate these concatenations from a shuffle of narrow operands.
 | |
|   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
 | |
|   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
 | |
|   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
 | |
|       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
 | |
|     return nullptr;
 | |
| 
 | |
|   // We limit this transform to power-of-2 types because we expect that the
 | |
|   // backend can convert the simplified IR patterns to identical nodes as the
 | |
|   // original IR.
 | |
|   // TODO: If we can verify the same behavior for arbitrary types, the
 | |
|   //       power-of-2 checks can be removed.
 | |
|   Value *X = Shuffle0->getOperand(0);
 | |
|   Value *Y = Shuffle1->getOperand(0);
 | |
|   if (X->getType() != Y->getType() ||
 | |
|       !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
 | |
|       !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
 | |
|       !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
 | |
|       isa<UndefValue>(X) || isa<UndefValue>(Y))
 | |
|     return nullptr;
 | |
|   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
 | |
|          isa<UndefValue>(Shuffle1->getOperand(1)) &&
 | |
|          "Unexpected operand for identity shuffle");
 | |
| 
 | |
|   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
 | |
|   // operands directly by adjusting the shuffle mask to account for the narrower
 | |
|   // types:
 | |
|   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
 | |
|   int NarrowElts = X->getType()->getVectorNumElements();
 | |
|   int WideElts = Shuffle0->getType()->getVectorNumElements();
 | |
|   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
 | |
| 
 | |
|   Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
 | |
|   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
 | |
|   SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
 | |
|   for (int i = 0, e = Mask.size(); i != e; ++i) {
 | |
|     if (Mask[i] == -1)
 | |
|       continue;
 | |
| 
 | |
|     // If this shuffle is choosing an undef element from 1 of the sources, that
 | |
|     // element is undef.
 | |
|     if (Mask[i] < WideElts) {
 | |
|       if (Shuffle0->getMaskValue(Mask[i]) == -1)
 | |
|         continue;
 | |
|     } else {
 | |
|       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // If this shuffle is choosing from the 1st narrow op, the mask element is
 | |
|     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
 | |
|     // element is offset down to adjust for the narrow vector widths.
 | |
|     if (Mask[i] < WideElts) {
 | |
|       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
 | |
|       NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
 | |
|     } else {
 | |
|       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
 | |
|       NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
 | |
|     }
 | |
|   }
 | |
|   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | |
|   Value *LHS = SVI.getOperand(0);
 | |
|   Value *RHS = SVI.getOperand(1);
 | |
|   if (auto *V = SimplifyShuffleVectorInst(
 | |
|           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
 | |
|     return replaceInstUsesWith(SVI, V);
 | |
| 
 | |
|   // shuffle x, x, mask --> shuffle x, undef, mask'
 | |
|   unsigned VWidth = SVI.getType()->getVectorNumElements();
 | |
|   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
 | |
|   SmallVector<int, 16> Mask = SVI.getShuffleMask();
 | |
|   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
 | |
|   if (LHS == RHS) {
 | |
|     assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
 | |
|     // Remap any references to RHS to use LHS.
 | |
|     SmallVector<Constant*, 16> Elts;
 | |
|     for (unsigned i = 0; i != VWidth; ++i) {
 | |
|       // Propagate undef elements or force mask to LHS.
 | |
|       if (Mask[i] < 0)
 | |
|         Elts.push_back(UndefValue::get(Int32Ty));
 | |
|       else
 | |
|         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i] % LHSWidth));
 | |
|     }
 | |
|     return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()),
 | |
|                                  ConstantVector::get(Elts));
 | |
|   }
 | |
| 
 | |
|   // shuffle undef, x, mask --> shuffle x, undef, mask'
 | |
|   if (isa<UndefValue>(LHS)) {
 | |
|     SVI.commute();
 | |
|     return &SVI;
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
 | |
|     return I;
 | |
| 
 | |
|   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
 | |
|     return I;
 | |
| 
 | |
|   if (Instruction *I = narrowVectorSelect(SVI, Builder))
 | |
|     return I;
 | |
| 
 | |
|   APInt UndefElts(VWidth, 0);
 | |
|   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
 | |
|     if (V != &SVI)
 | |
|       return replaceInstUsesWith(SVI, V);
 | |
|     return &SVI;
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = foldIdentityExtractShuffle(SVI))
 | |
|     return I;
 | |
| 
 | |
|   // These transforms have the potential to lose undef knowledge, so they are
 | |
|   // intentionally placed after SimplifyDemandedVectorElts().
 | |
|   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
 | |
|     return I;
 | |
|   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
 | |
|     return I;
 | |
| 
 | |
|   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
 | |
|     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
 | |
|     return replaceInstUsesWith(SVI, V);
 | |
|   }
 | |
| 
 | |
|   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
 | |
|   // a non-vector type. We can instead bitcast the original vector followed by
 | |
|   // an extract of the desired element:
 | |
|   //
 | |
|   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
 | |
|   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
 | |
|   //   %1 = bitcast <4 x i8> %sroa to i32
 | |
|   // Becomes:
 | |
|   //   %bc = bitcast <16 x i8> %in to <4 x i32>
 | |
|   //   %ext = extractelement <4 x i32> %bc, i32 0
 | |
|   //
 | |
|   // If the shuffle is extracting a contiguous range of values from the input
 | |
|   // vector then each use which is a bitcast of the extracted size can be
 | |
|   // replaced. This will work if the vector types are compatible, and the begin
 | |
|   // index is aligned to a value in the casted vector type. If the begin index
 | |
|   // isn't aligned then we can shuffle the original vector (keeping the same
 | |
|   // vector type) before extracting.
 | |
|   //
 | |
|   // This code will bail out if the target type is fundamentally incompatible
 | |
|   // with vectors of the source type.
 | |
|   //
 | |
|   // Example of <16 x i8>, target type i32:
 | |
|   // Index range [4,8):         v-----------v Will work.
 | |
|   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
|   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 | |
|   //     <4 x i32>: |           |           |           |           |
 | |
|   //                +-----------+-----------+-----------+-----------+
 | |
|   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
 | |
|   // Target type i40:           ^--------------^ Won't work, bail.
 | |
|   bool MadeChange = false;
 | |
|   if (isShuffleExtractingFromLHS(SVI, Mask)) {
 | |
|     Value *V = LHS;
 | |
|     unsigned MaskElems = Mask.size();
 | |
|     VectorType *SrcTy = cast<VectorType>(V->getType());
 | |
|     unsigned VecBitWidth = SrcTy->getBitWidth();
 | |
|     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
 | |
|     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
 | |
|     unsigned SrcNumElems = SrcTy->getNumElements();
 | |
|     SmallVector<BitCastInst *, 8> BCs;
 | |
|     DenseMap<Type *, Value *> NewBCs;
 | |
|     for (User *U : SVI.users())
 | |
|       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
 | |
|         if (!BC->use_empty())
 | |
|           // Only visit bitcasts that weren't previously handled.
 | |
|           BCs.push_back(BC);
 | |
|     for (BitCastInst *BC : BCs) {
 | |
|       unsigned BegIdx = Mask.front();
 | |
|       Type *TgtTy = BC->getDestTy();
 | |
|       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
 | |
|       if (!TgtElemBitWidth)
 | |
|         continue;
 | |
|       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
 | |
|       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
 | |
|       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
 | |
|       if (!VecBitWidthsEqual)
 | |
|         continue;
 | |
|       if (!VectorType::isValidElementType(TgtTy))
 | |
|         continue;
 | |
|       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
 | |
|       if (!BegIsAligned) {
 | |
|         // Shuffle the input so [0,NumElements) contains the output, and
 | |
|         // [NumElems,SrcNumElems) is undef.
 | |
|         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
 | |
|                                                 UndefValue::get(Int32Ty));
 | |
|         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
 | |
|           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
 | |
|                                         ConstantVector::get(ShuffleMask),
 | |
|                                         SVI.getName() + ".extract");
 | |
|         BegIdx = 0;
 | |
|       }
 | |
|       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
 | |
|       assert(SrcElemsPerTgtElem);
 | |
|       BegIdx /= SrcElemsPerTgtElem;
 | |
|       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
 | |
|       auto *NewBC =
 | |
|           BCAlreadyExists
 | |
|               ? NewBCs[CastSrcTy]
 | |
|               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
 | |
|       if (!BCAlreadyExists)
 | |
|         NewBCs[CastSrcTy] = NewBC;
 | |
|       auto *Ext = Builder.CreateExtractElement(
 | |
|           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
 | |
|       // The shufflevector isn't being replaced: the bitcast that used it
 | |
|       // is. InstCombine will visit the newly-created instructions.
 | |
|       replaceInstUsesWith(*BC, Ext);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the LHS is a shufflevector itself, see if we can combine it with this
 | |
|   // one without producing an unusual shuffle.
 | |
|   // Cases that might be simplified:
 | |
|   // 1.
 | |
|   // x1=shuffle(v1,v2,mask1)
 | |
|   //  x=shuffle(x1,undef,mask)
 | |
|   //        ==>
 | |
|   //  x=shuffle(v1,undef,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
 | |
|   // 2.
 | |
|   // x1=shuffle(v1,undef,mask1)
 | |
|   //  x=shuffle(x1,x2,mask)
 | |
|   // where v1.size() == mask1.size()
 | |
|   //        ==>
 | |
|   //  x=shuffle(v1,x2,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
 | |
|   // 3.
 | |
|   // x2=shuffle(v2,undef,mask2)
 | |
|   //  x=shuffle(x1,x2,mask)
 | |
|   // where v2.size() == mask2.size()
 | |
|   //        ==>
 | |
|   //  x=shuffle(x1,v2,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size())
 | |
|   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
 | |
|   // 4.
 | |
|   // x1=shuffle(v1,undef,mask1)
 | |
|   // x2=shuffle(v2,undef,mask2)
 | |
|   //  x=shuffle(x1,x2,mask)
 | |
|   // where v1.size() == v2.size()
 | |
|   //        ==>
 | |
|   //  x=shuffle(v1,v2,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size())
 | |
|   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
 | |
|   //
 | |
|   // Here we are really conservative:
 | |
|   // we are absolutely afraid of producing a shuffle mask not in the input
 | |
|   // program, because the code gen may not be smart enough to turn a merged
 | |
|   // shuffle into two specific shuffles: it may produce worse code.  As such,
 | |
|   // we only merge two shuffles if the result is either a splat or one of the
 | |
|   // input shuffle masks.  In this case, merging the shuffles just removes
 | |
|   // one instruction, which we know is safe.  This is good for things like
 | |
|   // turning: (splat(splat)) -> splat, or
 | |
|   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
 | |
|   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
 | |
|   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
 | |
|   if (LHSShuffle)
 | |
|     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
 | |
|       LHSShuffle = nullptr;
 | |
|   if (RHSShuffle)
 | |
|     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
 | |
|       RHSShuffle = nullptr;
 | |
|   if (!LHSShuffle && !RHSShuffle)
 | |
|     return MadeChange ? &SVI : nullptr;
 | |
| 
 | |
|   Value* LHSOp0 = nullptr;
 | |
|   Value* LHSOp1 = nullptr;
 | |
|   Value* RHSOp0 = nullptr;
 | |
|   unsigned LHSOp0Width = 0;
 | |
|   unsigned RHSOp0Width = 0;
 | |
|   if (LHSShuffle) {
 | |
|     LHSOp0 = LHSShuffle->getOperand(0);
 | |
|     LHSOp1 = LHSShuffle->getOperand(1);
 | |
|     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
 | |
|   }
 | |
|   if (RHSShuffle) {
 | |
|     RHSOp0 = RHSShuffle->getOperand(0);
 | |
|     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
 | |
|   }
 | |
|   Value* newLHS = LHS;
 | |
|   Value* newRHS = RHS;
 | |
|   if (LHSShuffle) {
 | |
|     // case 1
 | |
|     if (isa<UndefValue>(RHS)) {
 | |
|       newLHS = LHSOp0;
 | |
|       newRHS = LHSOp1;
 | |
|     }
 | |
|     // case 2 or 4
 | |
|     else if (LHSOp0Width == LHSWidth) {
 | |
|       newLHS = LHSOp0;
 | |
|     }
 | |
|   }
 | |
|   // case 3 or 4
 | |
|   if (RHSShuffle && RHSOp0Width == LHSWidth) {
 | |
|     newRHS = RHSOp0;
 | |
|   }
 | |
|   // case 4
 | |
|   if (LHSOp0 == RHSOp0) {
 | |
|     newLHS = LHSOp0;
 | |
|     newRHS = nullptr;
 | |
|   }
 | |
| 
 | |
|   if (newLHS == LHS && newRHS == RHS)
 | |
|     return MadeChange ? &SVI : nullptr;
 | |
| 
 | |
|   SmallVector<int, 16> LHSMask;
 | |
|   SmallVector<int, 16> RHSMask;
 | |
|   if (newLHS != LHS)
 | |
|     LHSMask = LHSShuffle->getShuffleMask();
 | |
|   if (RHSShuffle && newRHS != RHS)
 | |
|     RHSMask = RHSShuffle->getShuffleMask();
 | |
| 
 | |
|   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
 | |
|   SmallVector<int, 16> newMask;
 | |
|   bool isSplat = true;
 | |
|   int SplatElt = -1;
 | |
|   // Create a new mask for the new ShuffleVectorInst so that the new
 | |
|   // ShuffleVectorInst is equivalent to the original one.
 | |
|   for (unsigned i = 0; i < VWidth; ++i) {
 | |
|     int eltMask;
 | |
|     if (Mask[i] < 0) {
 | |
|       // This element is an undef value.
 | |
|       eltMask = -1;
 | |
|     } else if (Mask[i] < (int)LHSWidth) {
 | |
|       // This element is from left hand side vector operand.
 | |
|       //
 | |
|       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
 | |
|       // new mask value for the element.
 | |
|       if (newLHS != LHS) {
 | |
|         eltMask = LHSMask[Mask[i]];
 | |
|         // If the value selected is an undef value, explicitly specify it
 | |
|         // with a -1 mask value.
 | |
|         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
 | |
|           eltMask = -1;
 | |
|       } else
 | |
|         eltMask = Mask[i];
 | |
|     } else {
 | |
|       // This element is from right hand side vector operand
 | |
|       //
 | |
|       // If the value selected is an undef value, explicitly specify it
 | |
|       // with a -1 mask value. (case 1)
 | |
|       if (isa<UndefValue>(RHS))
 | |
|         eltMask = -1;
 | |
|       // If RHS is going to be replaced (case 3 or 4), calculate the
 | |
|       // new mask value for the element.
 | |
|       else if (newRHS != RHS) {
 | |
|         eltMask = RHSMask[Mask[i]-LHSWidth];
 | |
|         // If the value selected is an undef value, explicitly specify it
 | |
|         // with a -1 mask value.
 | |
|         if (eltMask >= (int)RHSOp0Width) {
 | |
|           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
 | |
|                  && "should have been check above");
 | |
|           eltMask = -1;
 | |
|         }
 | |
|       } else
 | |
|         eltMask = Mask[i]-LHSWidth;
 | |
| 
 | |
|       // If LHS's width is changed, shift the mask value accordingly.
 | |
|       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
 | |
|       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
 | |
|       // If newRHS == newLHS, we want to remap any references from newRHS to
 | |
|       // newLHS so that we can properly identify splats that may occur due to
 | |
|       // obfuscation across the two vectors.
 | |
|       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
 | |
|         eltMask += newLHSWidth;
 | |
|     }
 | |
| 
 | |
|     // Check if this could still be a splat.
 | |
|     if (eltMask >= 0) {
 | |
|       if (SplatElt >= 0 && SplatElt != eltMask)
 | |
|         isSplat = false;
 | |
|       SplatElt = eltMask;
 | |
|     }
 | |
| 
 | |
|     newMask.push_back(eltMask);
 | |
|   }
 | |
| 
 | |
|   // If the result mask is equal to one of the original shuffle masks,
 | |
|   // or is a splat, do the replacement.
 | |
|   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
 | |
|     SmallVector<Constant*, 16> Elts;
 | |
|     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
 | |
|       if (newMask[i] < 0) {
 | |
|         Elts.push_back(UndefValue::get(Int32Ty));
 | |
|       } else {
 | |
|         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
 | |
|       }
 | |
|     }
 | |
|     if (!newRHS)
 | |
|       newRHS = UndefValue::get(newLHS->getType());
 | |
|     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
 | |
|   }
 | |
| 
 | |
|   return MadeChange ? &SVI : nullptr;
 | |
| }
 |