forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			737 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			737 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of ThreadSanitizer, a race detector.
 | |
| //
 | |
| // The tool is under development, for the details about previous versions see
 | |
| // http://code.google.com/p/data-race-test
 | |
| //
 | |
| // The instrumentation phase is quite simple:
 | |
| //   - Insert calls to run-time library before every memory access.
 | |
| //      - Optimizations may apply to avoid instrumenting some of the accesses.
 | |
| //   - Insert calls at function entry/exit.
 | |
| // The rest is handled by the run-time library.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/ProfileData/InstrProf.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Instrumentation.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/EscapeEnumerator.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/ModuleUtils.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "tsan"
 | |
| 
 | |
| static cl::opt<bool>  ClInstrumentMemoryAccesses(
 | |
|     "tsan-instrument-memory-accesses", cl::init(true),
 | |
|     cl::desc("Instrument memory accesses"), cl::Hidden);
 | |
| static cl::opt<bool>  ClInstrumentFuncEntryExit(
 | |
|     "tsan-instrument-func-entry-exit", cl::init(true),
 | |
|     cl::desc("Instrument function entry and exit"), cl::Hidden);
 | |
| static cl::opt<bool>  ClHandleCxxExceptions(
 | |
|     "tsan-handle-cxx-exceptions", cl::init(true),
 | |
|     cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
 | |
|     cl::Hidden);
 | |
| static cl::opt<bool>  ClInstrumentAtomics(
 | |
|     "tsan-instrument-atomics", cl::init(true),
 | |
|     cl::desc("Instrument atomics"), cl::Hidden);
 | |
| static cl::opt<bool>  ClInstrumentMemIntrinsics(
 | |
|     "tsan-instrument-memintrinsics", cl::init(true),
 | |
|     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
 | |
| 
 | |
| STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
 | |
| STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
 | |
| STATISTIC(NumOmittedReadsBeforeWrite,
 | |
|           "Number of reads ignored due to following writes");
 | |
| STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
 | |
| STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
 | |
| STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
 | |
| STATISTIC(NumOmittedReadsFromConstantGlobals,
 | |
|           "Number of reads from constant globals");
 | |
| STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
 | |
| STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
 | |
| 
 | |
| static const char *const kTsanModuleCtorName = "tsan.module_ctor";
 | |
| static const char *const kTsanInitName = "__tsan_init";
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// ThreadSanitizer: instrument the code in module to find races.
 | |
| ///
 | |
| /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
 | |
| /// declarations into the module if they don't exist already. Instantiating
 | |
| /// ensures the __tsan_init function is in the list of global constructors for
 | |
| /// the module.
 | |
| struct ThreadSanitizer {
 | |
|   bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
 | |
| 
 | |
| private:
 | |
|   void initialize(Module &M);
 | |
|   bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
 | |
|   bool instrumentAtomic(Instruction *I, const DataLayout &DL);
 | |
|   bool instrumentMemIntrinsic(Instruction *I);
 | |
|   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
 | |
|                                       SmallVectorImpl<Instruction *> &All,
 | |
|                                       const DataLayout &DL);
 | |
|   bool addrPointsToConstantData(Value *Addr);
 | |
|   int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
 | |
|   void InsertRuntimeIgnores(Function &F);
 | |
| 
 | |
|   Type *IntptrTy;
 | |
|   FunctionCallee TsanFuncEntry;
 | |
|   FunctionCallee TsanFuncExit;
 | |
|   FunctionCallee TsanIgnoreBegin;
 | |
|   FunctionCallee TsanIgnoreEnd;
 | |
|   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
 | |
|   static const size_t kNumberOfAccessSizes = 5;
 | |
|   FunctionCallee TsanRead[kNumberOfAccessSizes];
 | |
|   FunctionCallee TsanWrite[kNumberOfAccessSizes];
 | |
|   FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
 | |
|   FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
 | |
|   FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
 | |
|   FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
 | |
|   FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
 | |
|                               [kNumberOfAccessSizes];
 | |
|   FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
 | |
|   FunctionCallee TsanAtomicThreadFence;
 | |
|   FunctionCallee TsanAtomicSignalFence;
 | |
|   FunctionCallee TsanVptrUpdate;
 | |
|   FunctionCallee TsanVptrLoad;
 | |
|   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
 | |
| };
 | |
| 
 | |
| struct ThreadSanitizerLegacyPass : FunctionPass {
 | |
|   ThreadSanitizerLegacyPass() : FunctionPass(ID) {}
 | |
|   StringRef getPassName() const override;
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
|   bool runOnFunction(Function &F) override;
 | |
|   bool doInitialization(Module &M) override;
 | |
|   static char ID; // Pass identification, replacement for typeid.
 | |
| private:
 | |
|   Optional<ThreadSanitizer> TSan;
 | |
| };
 | |
| 
 | |
| void insertModuleCtor(Module &M) {
 | |
|   getOrCreateSanitizerCtorAndInitFunctions(
 | |
|       M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
 | |
|       /*InitArgs=*/{},
 | |
|       // This callback is invoked when the functions are created the first
 | |
|       // time. Hook them into the global ctors list in that case:
 | |
|       [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| PreservedAnalyses ThreadSanitizerPass::run(Function &F,
 | |
|                                            FunctionAnalysisManager &FAM) {
 | |
|   ThreadSanitizer TSan;
 | |
|   if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
 | |
|     return PreservedAnalyses::none();
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| PreservedAnalyses ThreadSanitizerPass::run(Module &M,
 | |
|                                            ModuleAnalysisManager &MAM) {
 | |
|   insertModuleCtor(M);
 | |
|   return PreservedAnalyses::none();
 | |
| }
 | |
| 
 | |
| char ThreadSanitizerLegacyPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan",
 | |
|                       "ThreadSanitizer: detects data races.", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan",
 | |
|                     "ThreadSanitizer: detects data races.", false, false)
 | |
| 
 | |
| StringRef ThreadSanitizerLegacyPass::getPassName() const {
 | |
|   return "ThreadSanitizerLegacyPass";
 | |
| }
 | |
| 
 | |
| void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
| }
 | |
| 
 | |
| bool ThreadSanitizerLegacyPass::doInitialization(Module &M) {
 | |
|   insertModuleCtor(M);
 | |
|   TSan.emplace();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) {
 | |
|   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | |
|   TSan->sanitizeFunction(F, TLI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createThreadSanitizerLegacyPassPass() {
 | |
|   return new ThreadSanitizerLegacyPass();
 | |
| }
 | |
| 
 | |
| void ThreadSanitizer::initialize(Module &M) {
 | |
|   const DataLayout &DL = M.getDataLayout();
 | |
|   IntptrTy = DL.getIntPtrType(M.getContext());
 | |
| 
 | |
|   IRBuilder<> IRB(M.getContext());
 | |
|   AttributeList Attr;
 | |
|   Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex,
 | |
|                            Attribute::NoUnwind);
 | |
|   // Initialize the callbacks.
 | |
|   TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
 | |
|                                         IRB.getVoidTy(), IRB.getInt8PtrTy());
 | |
|   TsanFuncExit =
 | |
|       M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
 | |
|   TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
 | |
|                                           IRB.getVoidTy());
 | |
|   TsanIgnoreEnd =
 | |
|       M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
 | |
|   IntegerType *OrdTy = IRB.getInt32Ty();
 | |
|   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
 | |
|     const unsigned ByteSize = 1U << i;
 | |
|     const unsigned BitSize = ByteSize * 8;
 | |
|     std::string ByteSizeStr = utostr(ByteSize);
 | |
|     std::string BitSizeStr = utostr(BitSize);
 | |
|     SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
 | |
|     TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
 | |
|                                         IRB.getInt8PtrTy());
 | |
| 
 | |
|     SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
 | |
|     TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
 | |
|                                          IRB.getInt8PtrTy());
 | |
| 
 | |
|     SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
 | |
|     TsanUnalignedRead[i] = M.getOrInsertFunction(
 | |
|         UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
 | |
| 
 | |
|     SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
 | |
|     TsanUnalignedWrite[i] = M.getOrInsertFunction(
 | |
|         UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
 | |
| 
 | |
|     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
 | |
|     Type *PtrTy = Ty->getPointerTo();
 | |
|     SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
 | |
|     TsanAtomicLoad[i] =
 | |
|         M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy);
 | |
| 
 | |
|     SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
 | |
|     TsanAtomicStore[i] = M.getOrInsertFunction(
 | |
|         AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy);
 | |
| 
 | |
|     for (int op = AtomicRMWInst::FIRST_BINOP;
 | |
|         op <= AtomicRMWInst::LAST_BINOP; ++op) {
 | |
|       TsanAtomicRMW[op][i] = nullptr;
 | |
|       const char *NamePart = nullptr;
 | |
|       if (op == AtomicRMWInst::Xchg)
 | |
|         NamePart = "_exchange";
 | |
|       else if (op == AtomicRMWInst::Add)
 | |
|         NamePart = "_fetch_add";
 | |
|       else if (op == AtomicRMWInst::Sub)
 | |
|         NamePart = "_fetch_sub";
 | |
|       else if (op == AtomicRMWInst::And)
 | |
|         NamePart = "_fetch_and";
 | |
|       else if (op == AtomicRMWInst::Or)
 | |
|         NamePart = "_fetch_or";
 | |
|       else if (op == AtomicRMWInst::Xor)
 | |
|         NamePart = "_fetch_xor";
 | |
|       else if (op == AtomicRMWInst::Nand)
 | |
|         NamePart = "_fetch_nand";
 | |
|       else
 | |
|         continue;
 | |
|       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
 | |
|       TsanAtomicRMW[op][i] =
 | |
|           M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy);
 | |
|     }
 | |
| 
 | |
|     SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
 | |
|                                   "_compare_exchange_val");
 | |
|     TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty,
 | |
|                                              Ty, OrdTy, OrdTy);
 | |
|   }
 | |
|   TsanVptrUpdate =
 | |
|       M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
 | |
|                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
 | |
|   TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
 | |
|                                        IRB.getVoidTy(), IRB.getInt8PtrTy());
 | |
|   TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence",
 | |
|                                                 Attr, IRB.getVoidTy(), OrdTy);
 | |
|   TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence",
 | |
|                                                 Attr, IRB.getVoidTy(), OrdTy);
 | |
| 
 | |
|   MemmoveFn =
 | |
|       M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(),
 | |
|                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
 | |
|   MemcpyFn =
 | |
|       M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(),
 | |
|                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
 | |
|   MemsetFn =
 | |
|       M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(),
 | |
|                             IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
 | |
| }
 | |
| 
 | |
| static bool isVtableAccess(Instruction *I) {
 | |
|   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
 | |
|     return Tag->isTBAAVtableAccess();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Do not instrument known races/"benign races" that come from compiler
 | |
| // instrumentatin. The user has no way of suppressing them.
 | |
| static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
 | |
|   // Peel off GEPs and BitCasts.
 | |
|   Addr = Addr->stripInBoundsOffsets();
 | |
| 
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
 | |
|     if (GV->hasSection()) {
 | |
|       StringRef SectionName = GV->getSection();
 | |
|       // Check if the global is in the PGO counters section.
 | |
|       auto OF = Triple(M->getTargetTriple()).getObjectFormat();
 | |
|       if (SectionName.endswith(
 | |
|               getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Check if the global is private gcov data.
 | |
|     if (GV->getName().startswith("__llvm_gcov") ||
 | |
|         GV->getName().startswith("__llvm_gcda"))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Do not instrument acesses from different address spaces; we cannot deal
 | |
|   // with them.
 | |
|   if (Addr) {
 | |
|     Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
 | |
|     if (PtrTy->getPointerAddressSpace() != 0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
 | |
|   // If this is a GEP, just analyze its pointer operand.
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
 | |
|     Addr = GEP->getPointerOperand();
 | |
| 
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
 | |
|     if (GV->isConstant()) {
 | |
|       // Reads from constant globals can not race with any writes.
 | |
|       NumOmittedReadsFromConstantGlobals++;
 | |
|       return true;
 | |
|     }
 | |
|   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
 | |
|     if (isVtableAccess(L)) {
 | |
|       // Reads from a vtable pointer can not race with any writes.
 | |
|       NumOmittedReadsFromVtable++;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Instrumenting some of the accesses may be proven redundant.
 | |
| // Currently handled:
 | |
| //  - read-before-write (within same BB, no calls between)
 | |
| //  - not captured variables
 | |
| //
 | |
| // We do not handle some of the patterns that should not survive
 | |
| // after the classic compiler optimizations.
 | |
| // E.g. two reads from the same temp should be eliminated by CSE,
 | |
| // two writes should be eliminated by DSE, etc.
 | |
| //
 | |
| // 'Local' is a vector of insns within the same BB (no calls between).
 | |
| // 'All' is a vector of insns that will be instrumented.
 | |
| void ThreadSanitizer::chooseInstructionsToInstrument(
 | |
|     SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
 | |
|     const DataLayout &DL) {
 | |
|   SmallPtrSet<Value*, 8> WriteTargets;
 | |
|   // Iterate from the end.
 | |
|   for (Instruction *I : reverse(Local)) {
 | |
|     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
 | |
|       Value *Addr = Store->getPointerOperand();
 | |
|       if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
 | |
|         continue;
 | |
|       WriteTargets.insert(Addr);
 | |
|     } else {
 | |
|       LoadInst *Load = cast<LoadInst>(I);
 | |
|       Value *Addr = Load->getPointerOperand();
 | |
|       if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
 | |
|         continue;
 | |
|       if (WriteTargets.count(Addr)) {
 | |
|         // We will write to this temp, so no reason to analyze the read.
 | |
|         NumOmittedReadsBeforeWrite++;
 | |
|         continue;
 | |
|       }
 | |
|       if (addrPointsToConstantData(Addr)) {
 | |
|         // Addr points to some constant data -- it can not race with any writes.
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     Value *Addr = isa<StoreInst>(*I)
 | |
|         ? cast<StoreInst>(I)->getPointerOperand()
 | |
|         : cast<LoadInst>(I)->getPointerOperand();
 | |
|     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
 | |
|         !PointerMayBeCaptured(Addr, true, true)) {
 | |
|       // The variable is addressable but not captured, so it cannot be
 | |
|       // referenced from a different thread and participate in a data race
 | |
|       // (see llvm/Analysis/CaptureTracking.h for details).
 | |
|       NumOmittedNonCaptured++;
 | |
|       continue;
 | |
|     }
 | |
|     All.push_back(I);
 | |
|   }
 | |
|   Local.clear();
 | |
| }
 | |
| 
 | |
| static bool isAtomic(Instruction *I) {
 | |
|   // TODO: Ask TTI whether synchronization scope is between threads.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread;
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread;
 | |
|   if (isa<AtomicRMWInst>(I))
 | |
|     return true;
 | |
|   if (isa<AtomicCmpXchgInst>(I))
 | |
|     return true;
 | |
|   if (isa<FenceInst>(I))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
 | |
|   IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
 | |
|   IRB.CreateCall(TsanIgnoreBegin);
 | |
|   EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
 | |
|   while (IRBuilder<> *AtExit = EE.Next()) {
 | |
|     AtExit->CreateCall(TsanIgnoreEnd);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ThreadSanitizer::sanitizeFunction(Function &F,
 | |
|                                        const TargetLibraryInfo &TLI) {
 | |
|   // This is required to prevent instrumenting call to __tsan_init from within
 | |
|   // the module constructor.
 | |
|   if (F.getName() == kTsanModuleCtorName)
 | |
|     return false;
 | |
|   initialize(*F.getParent());
 | |
|   SmallVector<Instruction*, 8> AllLoadsAndStores;
 | |
|   SmallVector<Instruction*, 8> LocalLoadsAndStores;
 | |
|   SmallVector<Instruction*, 8> AtomicAccesses;
 | |
|   SmallVector<Instruction*, 8> MemIntrinCalls;
 | |
|   bool Res = false;
 | |
|   bool HasCalls = false;
 | |
|   bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
 | |
|   const DataLayout &DL = F.getParent()->getDataLayout();
 | |
| 
 | |
|   // Traverse all instructions, collect loads/stores/returns, check for calls.
 | |
|   for (auto &BB : F) {
 | |
|     for (auto &Inst : BB) {
 | |
|       if (isAtomic(&Inst))
 | |
|         AtomicAccesses.push_back(&Inst);
 | |
|       else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
 | |
|         LocalLoadsAndStores.push_back(&Inst);
 | |
|       else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
 | |
|         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
 | |
|           maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
 | |
|         if (isa<MemIntrinsic>(Inst))
 | |
|           MemIntrinCalls.push_back(&Inst);
 | |
|         HasCalls = true;
 | |
|         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
 | |
|                                        DL);
 | |
|       }
 | |
|     }
 | |
|     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
 | |
|   }
 | |
| 
 | |
|   // We have collected all loads and stores.
 | |
|   // FIXME: many of these accesses do not need to be checked for races
 | |
|   // (e.g. variables that do not escape, etc).
 | |
| 
 | |
|   // Instrument memory accesses only if we want to report bugs in the function.
 | |
|   if (ClInstrumentMemoryAccesses && SanitizeFunction)
 | |
|     for (auto Inst : AllLoadsAndStores) {
 | |
|       Res |= instrumentLoadOrStore(Inst, DL);
 | |
|     }
 | |
| 
 | |
|   // Instrument atomic memory accesses in any case (they can be used to
 | |
|   // implement synchronization).
 | |
|   if (ClInstrumentAtomics)
 | |
|     for (auto Inst : AtomicAccesses) {
 | |
|       Res |= instrumentAtomic(Inst, DL);
 | |
|     }
 | |
| 
 | |
|   if (ClInstrumentMemIntrinsics && SanitizeFunction)
 | |
|     for (auto Inst : MemIntrinCalls) {
 | |
|       Res |= instrumentMemIntrinsic(Inst);
 | |
|     }
 | |
| 
 | |
|   if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
 | |
|     assert(!F.hasFnAttribute(Attribute::SanitizeThread));
 | |
|     if (HasCalls)
 | |
|       InsertRuntimeIgnores(F);
 | |
|   }
 | |
| 
 | |
|   // Instrument function entry/exit points if there were instrumented accesses.
 | |
|   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
 | |
|     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
 | |
|     Value *ReturnAddress = IRB.CreateCall(
 | |
|         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
 | |
|         IRB.getInt32(0));
 | |
|     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
 | |
| 
 | |
|     EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
 | |
|     while (IRBuilder<> *AtExit = EE.Next()) {
 | |
|       AtExit->CreateCall(TsanFuncExit, {});
 | |
|     }
 | |
|     Res = true;
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
 | |
|                                             const DataLayout &DL) {
 | |
|   IRBuilder<> IRB(I);
 | |
|   bool IsWrite = isa<StoreInst>(*I);
 | |
|   Value *Addr = IsWrite
 | |
|       ? cast<StoreInst>(I)->getPointerOperand()
 | |
|       : cast<LoadInst>(I)->getPointerOperand();
 | |
| 
 | |
|   // swifterror memory addresses are mem2reg promoted by instruction selection.
 | |
|   // As such they cannot have regular uses like an instrumentation function and
 | |
|   // it makes no sense to track them as memory.
 | |
|   if (Addr->isSwiftError())
 | |
|     return false;
 | |
| 
 | |
|   int Idx = getMemoryAccessFuncIndex(Addr, DL);
 | |
|   if (Idx < 0)
 | |
|     return false;
 | |
|   if (IsWrite && isVtableAccess(I)) {
 | |
|     LLVM_DEBUG(dbgs() << "  VPTR : " << *I << "\n");
 | |
|     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
 | |
|     // StoredValue may be a vector type if we are storing several vptrs at once.
 | |
|     // In this case, just take the first element of the vector since this is
 | |
|     // enough to find vptr races.
 | |
|     if (isa<VectorType>(StoredValue->getType()))
 | |
|       StoredValue = IRB.CreateExtractElement(
 | |
|           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
 | |
|     if (StoredValue->getType()->isIntegerTy())
 | |
|       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
 | |
|     // Call TsanVptrUpdate.
 | |
|     IRB.CreateCall(TsanVptrUpdate,
 | |
|                    {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
 | |
|                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
 | |
|     NumInstrumentedVtableWrites++;
 | |
|     return true;
 | |
|   }
 | |
|   if (!IsWrite && isVtableAccess(I)) {
 | |
|     IRB.CreateCall(TsanVptrLoad,
 | |
|                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
 | |
|     NumInstrumentedVtableReads++;
 | |
|     return true;
 | |
|   }
 | |
|   const unsigned Alignment = IsWrite
 | |
|       ? cast<StoreInst>(I)->getAlignment()
 | |
|       : cast<LoadInst>(I)->getAlignment();
 | |
|   Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
 | |
|   const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
 | |
|   FunctionCallee OnAccessFunc = nullptr;
 | |
|   if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
 | |
|     OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
 | |
|   else
 | |
|     OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
 | |
|   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
 | |
|   if (IsWrite) NumInstrumentedWrites++;
 | |
|   else         NumInstrumentedReads++;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
 | |
|   uint32_t v = 0;
 | |
|   switch (ord) {
 | |
|     case AtomicOrdering::NotAtomic:
 | |
|       llvm_unreachable("unexpected atomic ordering!");
 | |
|     case AtomicOrdering::Unordered:              LLVM_FALLTHROUGH;
 | |
|     case AtomicOrdering::Monotonic:              v = 0; break;
 | |
|     // Not specified yet:
 | |
|     // case AtomicOrdering::Consume:                v = 1; break;
 | |
|     case AtomicOrdering::Acquire:                v = 2; break;
 | |
|     case AtomicOrdering::Release:                v = 3; break;
 | |
|     case AtomicOrdering::AcquireRelease:         v = 4; break;
 | |
|     case AtomicOrdering::SequentiallyConsistent: v = 5; break;
 | |
|   }
 | |
|   return IRB->getInt32(v);
 | |
| }
 | |
| 
 | |
| // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
 | |
| // So, we either need to ensure the intrinsic is not inlined, or instrument it.
 | |
| // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
 | |
| // instead we simply replace them with regular function calls, which are then
 | |
| // intercepted by the run-time.
 | |
| // Since tsan is running after everyone else, the calls should not be
 | |
| // replaced back with intrinsics. If that becomes wrong at some point,
 | |
| // we will need to call e.g. __tsan_memset to avoid the intrinsics.
 | |
| bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
 | |
|   IRBuilder<> IRB(I);
 | |
|   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
 | |
|     IRB.CreateCall(
 | |
|         MemsetFn,
 | |
|         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
 | |
|          IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
 | |
|          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
 | |
|     I->eraseFromParent();
 | |
|   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
 | |
|     IRB.CreateCall(
 | |
|         isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
 | |
|         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
 | |
|          IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
 | |
|          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
 | |
|     I->eraseFromParent();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
 | |
| // standards.  For background see C++11 standard.  A slightly older, publicly
 | |
| // available draft of the standard (not entirely up-to-date, but close enough
 | |
| // for casual browsing) is available here:
 | |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
 | |
| // The following page contains more background information:
 | |
| // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
 | |
| 
 | |
| bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
 | |
|   IRBuilder<> IRB(I);
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     Value *Addr = LI->getPointerOperand();
 | |
|     int Idx = getMemoryAccessFuncIndex(Addr, DL);
 | |
|     if (Idx < 0)
 | |
|       return false;
 | |
|     const unsigned ByteSize = 1U << Idx;
 | |
|     const unsigned BitSize = ByteSize * 8;
 | |
|     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
 | |
|     Type *PtrTy = Ty->getPointerTo();
 | |
|     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
 | |
|                      createOrdering(&IRB, LI->getOrdering())};
 | |
|     Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
 | |
|     Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
 | |
|     Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
 | |
|     I->replaceAllUsesWith(Cast);
 | |
|   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|     Value *Addr = SI->getPointerOperand();
 | |
|     int Idx = getMemoryAccessFuncIndex(Addr, DL);
 | |
|     if (Idx < 0)
 | |
|       return false;
 | |
|     const unsigned ByteSize = 1U << Idx;
 | |
|     const unsigned BitSize = ByteSize * 8;
 | |
|     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
 | |
|     Type *PtrTy = Ty->getPointerTo();
 | |
|     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
 | |
|                      IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
 | |
|                      createOrdering(&IRB, SI->getOrdering())};
 | |
|     CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
 | |
|     ReplaceInstWithInst(I, C);
 | |
|   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
 | |
|     Value *Addr = RMWI->getPointerOperand();
 | |
|     int Idx = getMemoryAccessFuncIndex(Addr, DL);
 | |
|     if (Idx < 0)
 | |
|       return false;
 | |
|     FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
 | |
|     if (!F)
 | |
|       return false;
 | |
|     const unsigned ByteSize = 1U << Idx;
 | |
|     const unsigned BitSize = ByteSize * 8;
 | |
|     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
 | |
|     Type *PtrTy = Ty->getPointerTo();
 | |
|     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
 | |
|                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
 | |
|                      createOrdering(&IRB, RMWI->getOrdering())};
 | |
|     CallInst *C = CallInst::Create(F, Args);
 | |
|     ReplaceInstWithInst(I, C);
 | |
|   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
 | |
|     Value *Addr = CASI->getPointerOperand();
 | |
|     int Idx = getMemoryAccessFuncIndex(Addr, DL);
 | |
|     if (Idx < 0)
 | |
|       return false;
 | |
|     const unsigned ByteSize = 1U << Idx;
 | |
|     const unsigned BitSize = ByteSize * 8;
 | |
|     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
 | |
|     Type *PtrTy = Ty->getPointerTo();
 | |
|     Value *CmpOperand =
 | |
|       IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
 | |
|     Value *NewOperand =
 | |
|       IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
 | |
|     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
 | |
|                      CmpOperand,
 | |
|                      NewOperand,
 | |
|                      createOrdering(&IRB, CASI->getSuccessOrdering()),
 | |
|                      createOrdering(&IRB, CASI->getFailureOrdering())};
 | |
|     CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
 | |
|     Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
 | |
|     Value *OldVal = C;
 | |
|     Type *OrigOldValTy = CASI->getNewValOperand()->getType();
 | |
|     if (Ty != OrigOldValTy) {
 | |
|       // The value is a pointer, so we need to cast the return value.
 | |
|       OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
 | |
|     }
 | |
| 
 | |
|     Value *Res =
 | |
|       IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
 | |
|     Res = IRB.CreateInsertValue(Res, Success, 1);
 | |
| 
 | |
|     I->replaceAllUsesWith(Res);
 | |
|     I->eraseFromParent();
 | |
|   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
 | |
|     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
 | |
|     FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
 | |
|                            ? TsanAtomicSignalFence
 | |
|                            : TsanAtomicThreadFence;
 | |
|     CallInst *C = CallInst::Create(F, Args);
 | |
|     ReplaceInstWithInst(I, C);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
 | |
|                                               const DataLayout &DL) {
 | |
|   Type *OrigPtrTy = Addr->getType();
 | |
|   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
 | |
|   assert(OrigTy->isSized());
 | |
|   uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
 | |
|   if (TypeSize != 8  && TypeSize != 16 &&
 | |
|       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
 | |
|     NumAccessesWithBadSize++;
 | |
|     // Ignore all unusual sizes.
 | |
|     return -1;
 | |
|   }
 | |
|   size_t Idx = countTrailingZeros(TypeSize / 8);
 | |
|   assert(Idx < kNumberOfAccessSizes);
 | |
|   return Idx;
 | |
| }
 |