forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			375 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			375 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass hoists and/or decomposes/recomposes integer division and remainder
 | 
						|
// instructions to enable CFG improvements and better codegen.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/DivRemPairs.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/DebugCounter.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "div-rem-pairs"
 | 
						|
STATISTIC(NumPairs, "Number of div/rem pairs");
 | 
						|
STATISTIC(NumRecomposed, "Number of instructions recomposed");
 | 
						|
STATISTIC(NumHoisted, "Number of instructions hoisted");
 | 
						|
STATISTIC(NumDecomposed, "Number of instructions decomposed");
 | 
						|
DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
 | 
						|
              "Controls transformations in div-rem-pairs pass");
 | 
						|
 | 
						|
namespace {
 | 
						|
struct ExpandedMatch {
 | 
						|
  DivRemMapKey Key;
 | 
						|
  Instruction *Value;
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// See if we can match: (which is the form we expand into)
 | 
						|
///   X - ((X ?/ Y) * Y)
 | 
						|
/// which is equivalent to:
 | 
						|
///   X ?% Y
 | 
						|
static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
 | 
						|
  Value *Dividend, *XroundedDownToMultipleOfY;
 | 
						|
  if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
 | 
						|
    return llvm::None;
 | 
						|
 | 
						|
  Value *Divisor;
 | 
						|
  Instruction *Div;
 | 
						|
  // Look for  ((X / Y) * Y)
 | 
						|
  if (!match(
 | 
						|
          XroundedDownToMultipleOfY,
 | 
						|
          m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
 | 
						|
                               m_Instruction(Div)),
 | 
						|
                  m_Deferred(Divisor))))
 | 
						|
    return llvm::None;
 | 
						|
 | 
						|
  ExpandedMatch M;
 | 
						|
  M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
 | 
						|
  M.Key.Dividend = Dividend;
 | 
						|
  M.Key.Divisor = Divisor;
 | 
						|
  M.Value = &I;
 | 
						|
  return M;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// A thin wrapper to store two values that we matched as div-rem pair.
 | 
						|
/// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
 | 
						|
struct DivRemPairWorklistEntry {
 | 
						|
  /// The actual udiv/sdiv instruction. Source of truth.
 | 
						|
  AssertingVH<Instruction> DivInst;
 | 
						|
 | 
						|
  /// The instruction that we have matched as a remainder instruction.
 | 
						|
  /// Should only be used as Value, don't introspect it.
 | 
						|
  AssertingVH<Instruction> RemInst;
 | 
						|
 | 
						|
  DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
 | 
						|
      : DivInst(DivInst_), RemInst(RemInst_) {
 | 
						|
    assert((DivInst->getOpcode() == Instruction::UDiv ||
 | 
						|
            DivInst->getOpcode() == Instruction::SDiv) &&
 | 
						|
           "Not a division.");
 | 
						|
    assert(DivInst->getType() == RemInst->getType() && "Types should match.");
 | 
						|
    // We can't check anything else about remainder instruction,
 | 
						|
    // it's not strictly required to be a urem/srem.
 | 
						|
  }
 | 
						|
 | 
						|
  /// The type for this pair, identical for both the div and rem.
 | 
						|
  Type *getType() const { return DivInst->getType(); }
 | 
						|
 | 
						|
  /// Is this pair signed or unsigned?
 | 
						|
  bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
 | 
						|
 | 
						|
  /// In this pair, what are the divident and divisor?
 | 
						|
  Value *getDividend() const { return DivInst->getOperand(0); }
 | 
						|
  Value *getDivisor() const { return DivInst->getOperand(1); }
 | 
						|
 | 
						|
  bool isRemExpanded() const {
 | 
						|
    switch (RemInst->getOpcode()) {
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::URem:
 | 
						|
      return false; // single 'rem' instruction - unexpanded form.
 | 
						|
    default:
 | 
						|
      return true; // anything else means we have remainder in expanded form.
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
 | 
						|
 | 
						|
/// Find matching pairs of integer div/rem ops (they have the same numerator,
 | 
						|
/// denominator, and signedness). Place those pairs into a worklist for further
 | 
						|
/// processing. This indirection is needed because we have to use TrackingVH<>
 | 
						|
/// because we will be doing RAUW, and if one of the rem instructions we change
 | 
						|
/// happens to be an input to another div/rem in the maps, we'd have problems.
 | 
						|
static DivRemWorklistTy getWorklist(Function &F) {
 | 
						|
  // Insert all divide and remainder instructions into maps keyed by their
 | 
						|
  // operands and opcode (signed or unsigned).
 | 
						|
  DenseMap<DivRemMapKey, Instruction *> DivMap;
 | 
						|
  // Use a MapVector for RemMap so that instructions are moved/inserted in a
 | 
						|
  // deterministic order.
 | 
						|
  MapVector<DivRemMapKey, Instruction *> RemMap;
 | 
						|
  for (auto &BB : F) {
 | 
						|
    for (auto &I : BB) {
 | 
						|
      if (I.getOpcode() == Instruction::SDiv)
 | 
						|
        DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
 | 
						|
      else if (I.getOpcode() == Instruction::UDiv)
 | 
						|
        DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
 | 
						|
      else if (I.getOpcode() == Instruction::SRem)
 | 
						|
        RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
 | 
						|
      else if (I.getOpcode() == Instruction::URem)
 | 
						|
        RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
 | 
						|
      else if (auto Match = matchExpandedRem(I))
 | 
						|
        RemMap[Match->Key] = Match->Value;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We'll accumulate the matching pairs of div-rem instructions here.
 | 
						|
  DivRemWorklistTy Worklist;
 | 
						|
 | 
						|
  // We can iterate over either map because we are only looking for matched
 | 
						|
  // pairs. Choose remainders for efficiency because they are usually even more
 | 
						|
  // rare than division.
 | 
						|
  for (auto &RemPair : RemMap) {
 | 
						|
    // Find the matching division instruction from the division map.
 | 
						|
    Instruction *DivInst = DivMap[RemPair.first];
 | 
						|
    if (!DivInst)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We have a matching pair of div/rem instructions.
 | 
						|
    NumPairs++;
 | 
						|
    Instruction *RemInst = RemPair.second;
 | 
						|
 | 
						|
    // Place it in the worklist.
 | 
						|
    Worklist.emplace_back(DivInst, RemInst);
 | 
						|
  }
 | 
						|
 | 
						|
  return Worklist;
 | 
						|
}
 | 
						|
 | 
						|
/// Find matching pairs of integer div/rem ops (they have the same numerator,
 | 
						|
/// denominator, and signedness). If they exist in different basic blocks, bring
 | 
						|
/// them together by hoisting or replace the common division operation that is
 | 
						|
/// implicit in the remainder:
 | 
						|
/// X % Y <--> X - ((X / Y) * Y).
 | 
						|
///
 | 
						|
/// We can largely ignore the normal safety and cost constraints on speculation
 | 
						|
/// of these ops when we find a matching pair. This is because we are already
 | 
						|
/// guaranteed that any exceptions and most cost are already incurred by the
 | 
						|
/// first member of the pair.
 | 
						|
///
 | 
						|
/// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
 | 
						|
/// SimplifyCFG, but it's split off on its own because it's different enough
 | 
						|
/// that it doesn't quite match the stated objectives of those passes.
 | 
						|
static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
 | 
						|
                           const DominatorTree &DT) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Get the matching pairs of div-rem instructions. We want this extra
 | 
						|
  // indirection to avoid dealing with having to RAUW the keys of the maps.
 | 
						|
  DivRemWorklistTy Worklist = getWorklist(F);
 | 
						|
 | 
						|
  // Process each entry in the worklist.
 | 
						|
  for (DivRemPairWorklistEntry &E : Worklist) {
 | 
						|
    if (!DebugCounter::shouldExecute(DRPCounter))
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
 | 
						|
 | 
						|
    auto &DivInst = E.DivInst;
 | 
						|
    auto &RemInst = E.RemInst;
 | 
						|
 | 
						|
    const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
 | 
						|
    (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
 | 
						|
 | 
						|
    if (HasDivRemOp && E.isRemExpanded()) {
 | 
						|
      // The target supports div+rem but the rem is expanded.
 | 
						|
      // We should recompose it first.
 | 
						|
      Value *X = E.getDividend();
 | 
						|
      Value *Y = E.getDivisor();
 | 
						|
      Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
 | 
						|
                                          : BinaryOperator::CreateURem(X, Y);
 | 
						|
      // Note that we place it right next to the original expanded instruction,
 | 
						|
      // and letting further handling to move it if needed.
 | 
						|
      RealRem->setName(RemInst->getName() + ".recomposed");
 | 
						|
      RealRem->insertAfter(RemInst);
 | 
						|
      Instruction *OrigRemInst = RemInst;
 | 
						|
      // Update AssertingVH<> with new instruction so it doesn't assert.
 | 
						|
      RemInst = RealRem;
 | 
						|
      // And replace the original instruction with the new one.
 | 
						|
      OrigRemInst->replaceAllUsesWith(RealRem);
 | 
						|
      OrigRemInst->eraseFromParent();
 | 
						|
      NumRecomposed++;
 | 
						|
      // Note that we have left ((X / Y) * Y) around.
 | 
						|
      // If it had other uses we could rewrite it as X - X % Y
 | 
						|
    }
 | 
						|
 | 
						|
    assert((!E.isRemExpanded() || !HasDivRemOp) &&
 | 
						|
           "*If* the target supports div-rem, then by now the RemInst *is* "
 | 
						|
           "Instruction::[US]Rem.");
 | 
						|
 | 
						|
    // If the target supports div+rem and the instructions are in the same block
 | 
						|
    // already, there's nothing to do. The backend should handle this. If the
 | 
						|
    // target does not support div+rem, then we will decompose the rem.
 | 
						|
    if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool DivDominates = DT.dominates(DivInst, RemInst);
 | 
						|
    if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
 | 
						|
      // We have matching div-rem pair, but they are in two different blocks,
 | 
						|
      // neither of which dominates one another.
 | 
						|
      // FIXME: We could hoist both ops to the common predecessor block?
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // The target does not have a single div/rem operation,
 | 
						|
    // and the rem is already in expanded form. Nothing to do.
 | 
						|
    if (!HasDivRemOp && E.isRemExpanded())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (HasDivRemOp) {
 | 
						|
      // The target has a single div/rem operation. Hoist the lower instruction
 | 
						|
      // to make the matched pair visible to the backend.
 | 
						|
      if (DivDominates)
 | 
						|
        RemInst->moveAfter(DivInst);
 | 
						|
      else
 | 
						|
        DivInst->moveAfter(RemInst);
 | 
						|
      NumHoisted++;
 | 
						|
    } else {
 | 
						|
      // The target does not have a single div/rem operation,
 | 
						|
      // and the rem is *not* in a already-expanded form.
 | 
						|
      // Decompose the remainder calculation as:
 | 
						|
      // X % Y --> X - ((X / Y) * Y).
 | 
						|
 | 
						|
      assert(!RemOriginallyWasInExpandedForm &&
 | 
						|
             "We should not be expanding if the rem was in expanded form to "
 | 
						|
             "begin with.");
 | 
						|
 | 
						|
      Value *X = E.getDividend();
 | 
						|
      Value *Y = E.getDivisor();
 | 
						|
      Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
 | 
						|
      Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
 | 
						|
 | 
						|
      // If the remainder dominates, then hoist the division up to that block:
 | 
						|
      //
 | 
						|
      // bb1:
 | 
						|
      //   %rem = srem %x, %y
 | 
						|
      // bb2:
 | 
						|
      //   %div = sdiv %x, %y
 | 
						|
      // -->
 | 
						|
      // bb1:
 | 
						|
      //   %div = sdiv %x, %y
 | 
						|
      //   %mul = mul %div, %y
 | 
						|
      //   %rem = sub %x, %mul
 | 
						|
      //
 | 
						|
      // If the division dominates, it's already in the right place. The mul+sub
 | 
						|
      // will be in a different block because we don't assume that they are
 | 
						|
      // cheap to speculatively execute:
 | 
						|
      //
 | 
						|
      // bb1:
 | 
						|
      //   %div = sdiv %x, %y
 | 
						|
      // bb2:
 | 
						|
      //   %rem = srem %x, %y
 | 
						|
      // -->
 | 
						|
      // bb1:
 | 
						|
      //   %div = sdiv %x, %y
 | 
						|
      // bb2:
 | 
						|
      //   %mul = mul %div, %y
 | 
						|
      //   %rem = sub %x, %mul
 | 
						|
      //
 | 
						|
      // If the div and rem are in the same block, we do the same transform,
 | 
						|
      // but any code movement would be within the same block.
 | 
						|
 | 
						|
      if (!DivDominates)
 | 
						|
        DivInst->moveBefore(RemInst);
 | 
						|
      Mul->insertAfter(RemInst);
 | 
						|
      Sub->insertAfter(Mul);
 | 
						|
 | 
						|
      // Now kill the explicit remainder. We have replaced it with:
 | 
						|
      // (sub X, (mul (div X, Y), Y)
 | 
						|
      Sub->setName(RemInst->getName() + ".decomposed");
 | 
						|
      Instruction *OrigRemInst = RemInst;
 | 
						|
      // Update AssertingVH<> with new instruction so it doesn't assert.
 | 
						|
      RemInst = Sub;
 | 
						|
      // And replace the original instruction with the new one.
 | 
						|
      OrigRemInst->replaceAllUsesWith(Sub);
 | 
						|
      OrigRemInst->eraseFromParent();
 | 
						|
      NumDecomposed++;
 | 
						|
    }
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// Pass manager boilerplate below here.
 | 
						|
 | 
						|
namespace {
 | 
						|
struct DivRemPairsLegacyPass : public FunctionPass {
 | 
						|
  static char ID;
 | 
						|
  DivRemPairsLegacyPass() : FunctionPass(ID) {
 | 
						|
    initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
    FunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipFunction(F))
 | 
						|
      return false;
 | 
						|
    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						|
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    return optimizeDivRem(F, TTI, DT);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
char DivRemPairsLegacyPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
 | 
						|
                      "Hoist/decompose integer division and remainder", false,
 | 
						|
                      false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
 | 
						|
                    "Hoist/decompose integer division and remainder", false,
 | 
						|
                    false)
 | 
						|
FunctionPass *llvm::createDivRemPairsPass() {
 | 
						|
  return new DivRemPairsLegacyPass();
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses DivRemPairsPass::run(Function &F,
 | 
						|
                                       FunctionAnalysisManager &FAM) {
 | 
						|
  TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
 | 
						|
  DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  if (!optimizeDivRem(F, TTI, DT))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserveSet<CFGAnalyses>();
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  return PA;
 | 
						|
}
 |