forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1030 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1030 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InferAddressSpace.cpp - --------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// CUDA C/C++ includes memory space designation as variable type qualifers (such
 | 
						|
// as __global__ and __shared__). Knowing the space of a memory access allows
 | 
						|
// CUDA compilers to emit faster PTX loads and stores. For example, a load from
 | 
						|
// shared memory can be translated to `ld.shared` which is roughly 10% faster
 | 
						|
// than a generic `ld` on an NVIDIA Tesla K40c.
 | 
						|
//
 | 
						|
// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
 | 
						|
// compilers must infer the memory space of an address expression from
 | 
						|
// type-qualified variables.
 | 
						|
//
 | 
						|
// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
 | 
						|
// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
 | 
						|
// places only type-qualified variables in specific address spaces, and then
 | 
						|
// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
 | 
						|
// (so-called the generic address space) for other instructions to use.
 | 
						|
//
 | 
						|
// For example, the Clang translates the following CUDA code
 | 
						|
//   __shared__ float a[10];
 | 
						|
//   float v = a[i];
 | 
						|
// to
 | 
						|
//   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
 | 
						|
//   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
 | 
						|
//   %v = load float, float* %1 ; emits ld.f32
 | 
						|
// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
 | 
						|
// redirected to %0 (the generic version of @a).
 | 
						|
//
 | 
						|
// The optimization implemented in this file propagates specific address spaces
 | 
						|
// from type-qualified variable declarations to its users. For example, it
 | 
						|
// optimizes the above IR to
 | 
						|
//   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
 | 
						|
//   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
 | 
						|
// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
 | 
						|
// codegen is able to emit ld.shared.f32 for %v.
 | 
						|
//
 | 
						|
// Address space inference works in two steps. First, it uses a data-flow
 | 
						|
// analysis to infer as many generic pointers as possible to point to only one
 | 
						|
// specific address space. In the above example, it can prove that %1 only
 | 
						|
// points to addrspace(3). This algorithm was published in
 | 
						|
//   CUDA: Compiling and optimizing for a GPU platform
 | 
						|
//   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
 | 
						|
//   ICCS 2012
 | 
						|
//
 | 
						|
// Then, address space inference replaces all refinable generic pointers with
 | 
						|
// equivalent specific pointers.
 | 
						|
//
 | 
						|
// The major challenge of implementing this optimization is handling PHINodes,
 | 
						|
// which may create loops in the data flow graph. This brings two complications.
 | 
						|
//
 | 
						|
// First, the data flow analysis in Step 1 needs to be circular. For example,
 | 
						|
//     %generic.input = addrspacecast float addrspace(3)* %input to float*
 | 
						|
//   loop:
 | 
						|
//     %y = phi [ %generic.input, %y2 ]
 | 
						|
//     %y2 = getelementptr %y, 1
 | 
						|
//     %v = load %y2
 | 
						|
//     br ..., label %loop, ...
 | 
						|
// proving %y specific requires proving both %generic.input and %y2 specific,
 | 
						|
// but proving %y2 specific circles back to %y. To address this complication,
 | 
						|
// the data flow analysis operates on a lattice:
 | 
						|
//   uninitialized > specific address spaces > generic.
 | 
						|
// All address expressions (our implementation only considers phi, bitcast,
 | 
						|
// addrspacecast, and getelementptr) start with the uninitialized address space.
 | 
						|
// The monotone transfer function moves the address space of a pointer down a
 | 
						|
// lattice path from uninitialized to specific and then to generic. A join
 | 
						|
// operation of two different specific address spaces pushes the expression down
 | 
						|
// to the generic address space. The analysis completes once it reaches a fixed
 | 
						|
// point.
 | 
						|
//
 | 
						|
// Second, IR rewriting in Step 2 also needs to be circular. For example,
 | 
						|
// converting %y to addrspace(3) requires the compiler to know the converted
 | 
						|
// %y2, but converting %y2 needs the converted %y. To address this complication,
 | 
						|
// we break these cycles using "undef" placeholders. When converting an
 | 
						|
// instruction `I` to a new address space, if its operand `Op` is not converted
 | 
						|
// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
 | 
						|
// For instance, our algorithm first converts %y to
 | 
						|
//   %y' = phi float addrspace(3)* [ %input, undef ]
 | 
						|
// Then, it converts %y2 to
 | 
						|
//   %y2' = getelementptr %y', 1
 | 
						|
// Finally, it fixes the undef in %y' so that
 | 
						|
//   %y' = phi float addrspace(3)* [ %input, %y2' ]
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include <cassert>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#define DEBUG_TYPE "infer-address-spaces"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static const unsigned UninitializedAddressSpace =
 | 
						|
    std::numeric_limits<unsigned>::max();
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
 | 
						|
 | 
						|
/// InferAddressSpaces
 | 
						|
class InferAddressSpaces : public FunctionPass {
 | 
						|
  const TargetTransformInfo *TTI = nullptr;
 | 
						|
 | 
						|
  /// Target specific address space which uses of should be replaced if
 | 
						|
  /// possible.
 | 
						|
  unsigned FlatAddrSpace = 0;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  InferAddressSpaces() :
 | 
						|
    FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
 | 
						|
  InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
private:
 | 
						|
  // Returns the new address space of V if updated; otherwise, returns None.
 | 
						|
  Optional<unsigned>
 | 
						|
  updateAddressSpace(const Value &V,
 | 
						|
                     const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
 | 
						|
 | 
						|
  // Tries to infer the specific address space of each address expression in
 | 
						|
  // Postorder.
 | 
						|
  void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
 | 
						|
                          ValueToAddrSpaceMapTy *InferredAddrSpace) const;
 | 
						|
 | 
						|
  bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
 | 
						|
 | 
						|
  // Changes the flat address expressions in function F to point to specific
 | 
						|
  // address spaces if InferredAddrSpace says so. Postorder is the postorder of
 | 
						|
  // all flat expressions in the use-def graph of function F.
 | 
						|
  bool rewriteWithNewAddressSpaces(
 | 
						|
      const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
 | 
						|
      const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
 | 
						|
 | 
						|
  void appendsFlatAddressExpressionToPostorderStack(
 | 
						|
    Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
 | 
						|
    DenseSet<Value *> &Visited) const;
 | 
						|
 | 
						|
  bool rewriteIntrinsicOperands(IntrinsicInst *II,
 | 
						|
                                Value *OldV, Value *NewV) const;
 | 
						|
  void collectRewritableIntrinsicOperands(
 | 
						|
    IntrinsicInst *II,
 | 
						|
    std::vector<std::pair<Value *, bool>> &PostorderStack,
 | 
						|
    DenseSet<Value *> &Visited) const;
 | 
						|
 | 
						|
  std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
 | 
						|
 | 
						|
  Value *cloneValueWithNewAddressSpace(
 | 
						|
    Value *V, unsigned NewAddrSpace,
 | 
						|
    const ValueToValueMapTy &ValueWithNewAddrSpace,
 | 
						|
    SmallVectorImpl<const Use *> *UndefUsesToFix) const;
 | 
						|
  unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char InferAddressSpaces::ID = 0;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void initializeInferAddressSpacesPass(PassRegistry &);
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
 | 
						|
                false, false)
 | 
						|
 | 
						|
// Returns true if V is an address expression.
 | 
						|
// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
 | 
						|
// getelementptr operators.
 | 
						|
static bool isAddressExpression(const Value &V) {
 | 
						|
  if (!isa<Operator>(V))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Operator &Op = cast<Operator>(V);
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  case Instruction::PHI:
 | 
						|
    assert(Op.getType()->isPointerTy());
 | 
						|
    return true;
 | 
						|
  case Instruction::BitCast:
 | 
						|
  case Instruction::AddrSpaceCast:
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return true;
 | 
						|
  case Instruction::Select:
 | 
						|
    return Op.getType()->isPointerTy();
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Returns the pointer operands of V.
 | 
						|
//
 | 
						|
// Precondition: V is an address expression.
 | 
						|
static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
 | 
						|
  const Operator &Op = cast<Operator>(V);
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  case Instruction::PHI: {
 | 
						|
    auto IncomingValues = cast<PHINode>(Op).incoming_values();
 | 
						|
    return SmallVector<Value *, 2>(IncomingValues.begin(),
 | 
						|
                                   IncomingValues.end());
 | 
						|
  }
 | 
						|
  case Instruction::BitCast:
 | 
						|
  case Instruction::AddrSpaceCast:
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return {Op.getOperand(0)};
 | 
						|
  case Instruction::Select:
 | 
						|
    return {Op.getOperand(1), Op.getOperand(2)};
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected instruction type.");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// TODO: Move logic to TTI?
 | 
						|
bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
 | 
						|
                                                  Value *OldV,
 | 
						|
                                                  Value *NewV) const {
 | 
						|
  Module *M = II->getParent()->getParent()->getParent();
 | 
						|
 | 
						|
  switch (II->getIntrinsicID()) {
 | 
						|
  case Intrinsic::objectsize: {
 | 
						|
    Type *DestTy = II->getType();
 | 
						|
    Type *SrcTy = NewV->getType();
 | 
						|
    Function *NewDecl =
 | 
						|
        Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
 | 
						|
    II->setArgOperand(0, NewV);
 | 
						|
    II->setCalledFunction(NewDecl);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InferAddressSpaces::collectRewritableIntrinsicOperands(
 | 
						|
    IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
 | 
						|
    DenseSet<Value *> &Visited) const {
 | 
						|
  auto IID = II->getIntrinsicID();
 | 
						|
  switch (IID) {
 | 
						|
  case Intrinsic::objectsize:
 | 
						|
    appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
 | 
						|
                                                 PostorderStack, Visited);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    SmallVector<int, 2> OpIndexes;
 | 
						|
    if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
 | 
						|
      for (int Idx : OpIndexes) {
 | 
						|
        appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
 | 
						|
                                                     PostorderStack, Visited);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Returns all flat address expressions in function F. The elements are
 | 
						|
// If V is an unvisited flat address expression, appends V to PostorderStack
 | 
						|
// and marks it as visited.
 | 
						|
void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
 | 
						|
    Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
 | 
						|
    DenseSet<Value *> &Visited) const {
 | 
						|
  assert(V->getType()->isPointerTy());
 | 
						|
 | 
						|
  // Generic addressing expressions may be hidden in nested constant
 | 
						|
  // expressions.
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | 
						|
    // TODO: Look in non-address parts, like icmp operands.
 | 
						|
    if (isAddressExpression(*CE) && Visited.insert(CE).second)
 | 
						|
      PostorderStack.push_back(std::make_pair(CE, false));
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isAddressExpression(*V) &&
 | 
						|
      V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
 | 
						|
    if (Visited.insert(V).second) {
 | 
						|
      PostorderStack.push_back(std::make_pair(V, false));
 | 
						|
 | 
						|
      Operator *Op = cast<Operator>(V);
 | 
						|
      for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
 | 
						|
        if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
 | 
						|
          if (isAddressExpression(*CE) && Visited.insert(CE).second)
 | 
						|
            PostorderStack.emplace_back(CE, false);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Returns all flat address expressions in function F. The elements are ordered
 | 
						|
// ordered in postorder.
 | 
						|
std::vector<WeakTrackingVH>
 | 
						|
InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
 | 
						|
  // This function implements a non-recursive postorder traversal of a partial
 | 
						|
  // use-def graph of function F.
 | 
						|
  std::vector<std::pair<Value *, bool>> PostorderStack;
 | 
						|
  // The set of visited expressions.
 | 
						|
  DenseSet<Value *> Visited;
 | 
						|
 | 
						|
  auto PushPtrOperand = [&](Value *Ptr) {
 | 
						|
    appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
 | 
						|
                                                 Visited);
 | 
						|
  };
 | 
						|
 | 
						|
  // Look at operations that may be interesting accelerate by moving to a known
 | 
						|
  // address space. We aim at generating after loads and stores, but pure
 | 
						|
  // addressing calculations may also be faster.
 | 
						|
  for (Instruction &I : instructions(F)) {
 | 
						|
    if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | 
						|
      if (!GEP->getType()->isVectorTy())
 | 
						|
        PushPtrOperand(GEP->getPointerOperand());
 | 
						|
    } else if (auto *LI = dyn_cast<LoadInst>(&I))
 | 
						|
      PushPtrOperand(LI->getPointerOperand());
 | 
						|
    else if (auto *SI = dyn_cast<StoreInst>(&I))
 | 
						|
      PushPtrOperand(SI->getPointerOperand());
 | 
						|
    else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
 | 
						|
      PushPtrOperand(RMW->getPointerOperand());
 | 
						|
    else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
 | 
						|
      PushPtrOperand(CmpX->getPointerOperand());
 | 
						|
    else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
 | 
						|
      // For memset/memcpy/memmove, any pointer operand can be replaced.
 | 
						|
      PushPtrOperand(MI->getRawDest());
 | 
						|
 | 
						|
      // Handle 2nd operand for memcpy/memmove.
 | 
						|
      if (auto *MTI = dyn_cast<MemTransferInst>(MI))
 | 
						|
        PushPtrOperand(MTI->getRawSource());
 | 
						|
    } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | 
						|
      collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
 | 
						|
    else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
 | 
						|
      // FIXME: Handle vectors of pointers
 | 
						|
      if (Cmp->getOperand(0)->getType()->isPointerTy()) {
 | 
						|
        PushPtrOperand(Cmp->getOperand(0));
 | 
						|
        PushPtrOperand(Cmp->getOperand(1));
 | 
						|
      }
 | 
						|
    } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
 | 
						|
      if (!ASC->getType()->isVectorTy())
 | 
						|
        PushPtrOperand(ASC->getPointerOperand());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
 | 
						|
  while (!PostorderStack.empty()) {
 | 
						|
    Value *TopVal = PostorderStack.back().first;
 | 
						|
    // If the operands of the expression on the top are already explored,
 | 
						|
    // adds that expression to the resultant postorder.
 | 
						|
    if (PostorderStack.back().second) {
 | 
						|
      if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
 | 
						|
        Postorder.push_back(TopVal);
 | 
						|
      PostorderStack.pop_back();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Otherwise, adds its operands to the stack and explores them.
 | 
						|
    PostorderStack.back().second = true;
 | 
						|
    for (Value *PtrOperand : getPointerOperands(*TopVal)) {
 | 
						|
      appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
 | 
						|
                                                   Visited);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Postorder;
 | 
						|
}
 | 
						|
 | 
						|
// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
 | 
						|
// of OperandUse.get() in the new address space. If the clone is not ready yet,
 | 
						|
// returns an undef in the new address space as a placeholder.
 | 
						|
static Value *operandWithNewAddressSpaceOrCreateUndef(
 | 
						|
    const Use &OperandUse, unsigned NewAddrSpace,
 | 
						|
    const ValueToValueMapTy &ValueWithNewAddrSpace,
 | 
						|
    SmallVectorImpl<const Use *> *UndefUsesToFix) {
 | 
						|
  Value *Operand = OperandUse.get();
 | 
						|
 | 
						|
  Type *NewPtrTy =
 | 
						|
      Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(Operand))
 | 
						|
    return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
 | 
						|
 | 
						|
  if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
 | 
						|
    return NewOperand;
 | 
						|
 | 
						|
  UndefUsesToFix->push_back(&OperandUse);
 | 
						|
  return UndefValue::get(NewPtrTy);
 | 
						|
}
 | 
						|
 | 
						|
// Returns a clone of `I` with its operands converted to those specified in
 | 
						|
// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
 | 
						|
// operand whose address space needs to be modified might not exist in
 | 
						|
// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
 | 
						|
// adds that operand use to UndefUsesToFix so that caller can fix them later.
 | 
						|
//
 | 
						|
// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
 | 
						|
// from a pointer whose type already matches. Therefore, this function returns a
 | 
						|
// Value* instead of an Instruction*.
 | 
						|
static Value *cloneInstructionWithNewAddressSpace(
 | 
						|
    Instruction *I, unsigned NewAddrSpace,
 | 
						|
    const ValueToValueMapTy &ValueWithNewAddrSpace,
 | 
						|
    SmallVectorImpl<const Use *> *UndefUsesToFix) {
 | 
						|
  Type *NewPtrType =
 | 
						|
      I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
 | 
						|
 | 
						|
  if (I->getOpcode() == Instruction::AddrSpaceCast) {
 | 
						|
    Value *Src = I->getOperand(0);
 | 
						|
    // Because `I` is flat, the source address space must be specific.
 | 
						|
    // Therefore, the inferred address space must be the source space, according
 | 
						|
    // to our algorithm.
 | 
						|
    assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
 | 
						|
    if (Src->getType() != NewPtrType)
 | 
						|
      return new BitCastInst(Src, NewPtrType);
 | 
						|
    return Src;
 | 
						|
  }
 | 
						|
 | 
						|
  // Computes the converted pointer operands.
 | 
						|
  SmallVector<Value *, 4> NewPointerOperands;
 | 
						|
  for (const Use &OperandUse : I->operands()) {
 | 
						|
    if (!OperandUse.get()->getType()->isPointerTy())
 | 
						|
      NewPointerOperands.push_back(nullptr);
 | 
						|
    else
 | 
						|
      NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
 | 
						|
                                     OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
 | 
						|
  }
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return new BitCastInst(NewPointerOperands[0], NewPtrType);
 | 
						|
  case Instruction::PHI: {
 | 
						|
    assert(I->getType()->isPointerTy());
 | 
						|
    PHINode *PHI = cast<PHINode>(I);
 | 
						|
    PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
 | 
						|
    for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
 | 
						|
      unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
 | 
						|
      NewPHI->addIncoming(NewPointerOperands[OperandNo],
 | 
						|
                          PHI->getIncomingBlock(Index));
 | 
						|
    }
 | 
						|
    return NewPHI;
 | 
						|
  }
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
 | 
						|
    GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
 | 
						|
        GEP->getSourceElementType(), NewPointerOperands[0],
 | 
						|
        SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
 | 
						|
    NewGEP->setIsInBounds(GEP->isInBounds());
 | 
						|
    return NewGEP;
 | 
						|
  }
 | 
						|
  case Instruction::Select:
 | 
						|
    assert(I->getType()->isPointerTy());
 | 
						|
    return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
 | 
						|
                              NewPointerOperands[2], "", nullptr, I);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected opcode");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
 | 
						|
// constant expression `CE` with its operands replaced as specified in
 | 
						|
// ValueWithNewAddrSpace.
 | 
						|
static Value *cloneConstantExprWithNewAddressSpace(
 | 
						|
  ConstantExpr *CE, unsigned NewAddrSpace,
 | 
						|
  const ValueToValueMapTy &ValueWithNewAddrSpace) {
 | 
						|
  Type *TargetType =
 | 
						|
    CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
 | 
						|
 | 
						|
  if (CE->getOpcode() == Instruction::AddrSpaceCast) {
 | 
						|
    // Because CE is flat, the source address space must be specific.
 | 
						|
    // Therefore, the inferred address space must be the source space according
 | 
						|
    // to our algorithm.
 | 
						|
    assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
 | 
						|
           NewAddrSpace);
 | 
						|
    return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CE->getOpcode() == Instruction::BitCast) {
 | 
						|
    if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
 | 
						|
      return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
 | 
						|
    return ConstantExpr::getAddrSpaceCast(CE, TargetType);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CE->getOpcode() == Instruction::Select) {
 | 
						|
    Constant *Src0 = CE->getOperand(1);
 | 
						|
    Constant *Src1 = CE->getOperand(2);
 | 
						|
    if (Src0->getType()->getPointerAddressSpace() ==
 | 
						|
        Src1->getType()->getPointerAddressSpace()) {
 | 
						|
 | 
						|
      return ConstantExpr::getSelect(
 | 
						|
          CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
 | 
						|
          ConstantExpr::getAddrSpaceCast(Src1, TargetType));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Computes the operands of the new constant expression.
 | 
						|
  bool IsNew = false;
 | 
						|
  SmallVector<Constant *, 4> NewOperands;
 | 
						|
  for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
 | 
						|
    Constant *Operand = CE->getOperand(Index);
 | 
						|
    // If the address space of `Operand` needs to be modified, the new operand
 | 
						|
    // with the new address space should already be in ValueWithNewAddrSpace
 | 
						|
    // because (1) the constant expressions we consider (i.e. addrspacecast,
 | 
						|
    // bitcast, and getelementptr) do not incur cycles in the data flow graph
 | 
						|
    // and (2) this function is called on constant expressions in postorder.
 | 
						|
    if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
 | 
						|
      IsNew = true;
 | 
						|
      NewOperands.push_back(cast<Constant>(NewOperand));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (auto CExpr = dyn_cast<ConstantExpr>(Operand))
 | 
						|
      if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
 | 
						|
              CExpr, NewAddrSpace, ValueWithNewAddrSpace)) {
 | 
						|
        IsNew = true;
 | 
						|
        NewOperands.push_back(cast<Constant>(NewOperand));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    // Otherwise, reuses the old operand.
 | 
						|
    NewOperands.push_back(Operand);
 | 
						|
  }
 | 
						|
 | 
						|
  // If !IsNew, we will replace the Value with itself. However, replaced values
 | 
						|
  // are assumed to wrapped in a addrspace cast later so drop it now.
 | 
						|
  if (!IsNew)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
    // Needs to specify the source type while constructing a getelementptr
 | 
						|
    // constant expression.
 | 
						|
    return CE->getWithOperands(
 | 
						|
      NewOperands, TargetType, /*OnlyIfReduced=*/false,
 | 
						|
      NewOperands[0]->getType()->getPointerElementType());
 | 
						|
  }
 | 
						|
 | 
						|
  return CE->getWithOperands(NewOperands, TargetType);
 | 
						|
}
 | 
						|
 | 
						|
// Returns a clone of the value `V`, with its operands replaced as specified in
 | 
						|
// ValueWithNewAddrSpace. This function is called on every flat address
 | 
						|
// expression whose address space needs to be modified, in postorder.
 | 
						|
//
 | 
						|
// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
 | 
						|
Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
 | 
						|
  Value *V, unsigned NewAddrSpace,
 | 
						|
  const ValueToValueMapTy &ValueWithNewAddrSpace,
 | 
						|
  SmallVectorImpl<const Use *> *UndefUsesToFix) const {
 | 
						|
  // All values in Postorder are flat address expressions.
 | 
						|
  assert(isAddressExpression(*V) &&
 | 
						|
         V->getType()->getPointerAddressSpace() == FlatAddrSpace);
 | 
						|
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    Value *NewV = cloneInstructionWithNewAddressSpace(
 | 
						|
      I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
 | 
						|
    if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
 | 
						|
      if (NewI->getParent() == nullptr) {
 | 
						|
        NewI->insertBefore(I);
 | 
						|
        NewI->takeName(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return NewV;
 | 
						|
  }
 | 
						|
 | 
						|
  return cloneConstantExprWithNewAddressSpace(
 | 
						|
    cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
 | 
						|
}
 | 
						|
 | 
						|
// Defines the join operation on the address space lattice (see the file header
 | 
						|
// comments).
 | 
						|
unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
 | 
						|
                                               unsigned AS2) const {
 | 
						|
  if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
 | 
						|
    return FlatAddrSpace;
 | 
						|
 | 
						|
  if (AS1 == UninitializedAddressSpace)
 | 
						|
    return AS2;
 | 
						|
  if (AS2 == UninitializedAddressSpace)
 | 
						|
    return AS1;
 | 
						|
 | 
						|
  // The join of two different specific address spaces is flat.
 | 
						|
  return (AS1 == AS2) ? AS1 : FlatAddrSpace;
 | 
						|
}
 | 
						|
 | 
						|
bool InferAddressSpaces::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						|
 | 
						|
  if (FlatAddrSpace == UninitializedAddressSpace) {
 | 
						|
    FlatAddrSpace = TTI->getFlatAddressSpace();
 | 
						|
    if (FlatAddrSpace == UninitializedAddressSpace)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Collects all flat address expressions in postorder.
 | 
						|
  std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
 | 
						|
 | 
						|
  // Runs a data-flow analysis to refine the address spaces of every expression
 | 
						|
  // in Postorder.
 | 
						|
  ValueToAddrSpaceMapTy InferredAddrSpace;
 | 
						|
  inferAddressSpaces(Postorder, &InferredAddrSpace);
 | 
						|
 | 
						|
  // Changes the address spaces of the flat address expressions who are inferred
 | 
						|
  // to point to a specific address space.
 | 
						|
  return rewriteWithNewAddressSpaces(*TTI, Postorder, InferredAddrSpace, &F);
 | 
						|
}
 | 
						|
 | 
						|
// Constants need to be tracked through RAUW to handle cases with nested
 | 
						|
// constant expressions, so wrap values in WeakTrackingVH.
 | 
						|
void InferAddressSpaces::inferAddressSpaces(
 | 
						|
    ArrayRef<WeakTrackingVH> Postorder,
 | 
						|
    ValueToAddrSpaceMapTy *InferredAddrSpace) const {
 | 
						|
  SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
 | 
						|
  // Initially, all expressions are in the uninitialized address space.
 | 
						|
  for (Value *V : Postorder)
 | 
						|
    (*InferredAddrSpace)[V] = UninitializedAddressSpace;
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Value *V = Worklist.pop_back_val();
 | 
						|
 | 
						|
    // Tries to update the address space of the stack top according to the
 | 
						|
    // address spaces of its operands.
 | 
						|
    LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
 | 
						|
    Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
 | 
						|
    if (!NewAS.hasValue())
 | 
						|
      continue;
 | 
						|
    // If any updates are made, grabs its users to the worklist because
 | 
						|
    // their address spaces can also be possibly updated.
 | 
						|
    LLVM_DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
 | 
						|
    (*InferredAddrSpace)[V] = NewAS.getValue();
 | 
						|
 | 
						|
    for (Value *User : V->users()) {
 | 
						|
      // Skip if User is already in the worklist.
 | 
						|
      if (Worklist.count(User))
 | 
						|
        continue;
 | 
						|
 | 
						|
      auto Pos = InferredAddrSpace->find(User);
 | 
						|
      // Our algorithm only updates the address spaces of flat address
 | 
						|
      // expressions, which are those in InferredAddrSpace.
 | 
						|
      if (Pos == InferredAddrSpace->end())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Function updateAddressSpace moves the address space down a lattice
 | 
						|
      // path. Therefore, nothing to do if User is already inferred as flat (the
 | 
						|
      // bottom element in the lattice).
 | 
						|
      if (Pos->second == FlatAddrSpace)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Worklist.insert(User);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Optional<unsigned> InferAddressSpaces::updateAddressSpace(
 | 
						|
    const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
 | 
						|
  assert(InferredAddrSpace.count(&V));
 | 
						|
 | 
						|
  // The new inferred address space equals the join of the address spaces
 | 
						|
  // of all its pointer operands.
 | 
						|
  unsigned NewAS = UninitializedAddressSpace;
 | 
						|
 | 
						|
  const Operator &Op = cast<Operator>(V);
 | 
						|
  if (Op.getOpcode() == Instruction::Select) {
 | 
						|
    Value *Src0 = Op.getOperand(1);
 | 
						|
    Value *Src1 = Op.getOperand(2);
 | 
						|
 | 
						|
    auto I = InferredAddrSpace.find(Src0);
 | 
						|
    unsigned Src0AS = (I != InferredAddrSpace.end()) ?
 | 
						|
      I->second : Src0->getType()->getPointerAddressSpace();
 | 
						|
 | 
						|
    auto J = InferredAddrSpace.find(Src1);
 | 
						|
    unsigned Src1AS = (J != InferredAddrSpace.end()) ?
 | 
						|
      J->second : Src1->getType()->getPointerAddressSpace();
 | 
						|
 | 
						|
    auto *C0 = dyn_cast<Constant>(Src0);
 | 
						|
    auto *C1 = dyn_cast<Constant>(Src1);
 | 
						|
 | 
						|
    // If one of the inputs is a constant, we may be able to do a constant
 | 
						|
    // addrspacecast of it. Defer inferring the address space until the input
 | 
						|
    // address space is known.
 | 
						|
    if ((C1 && Src0AS == UninitializedAddressSpace) ||
 | 
						|
        (C0 && Src1AS == UninitializedAddressSpace))
 | 
						|
      return None;
 | 
						|
 | 
						|
    if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
 | 
						|
      NewAS = Src1AS;
 | 
						|
    else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
 | 
						|
      NewAS = Src0AS;
 | 
						|
    else
 | 
						|
      NewAS = joinAddressSpaces(Src0AS, Src1AS);
 | 
						|
  } else {
 | 
						|
    for (Value *PtrOperand : getPointerOperands(V)) {
 | 
						|
      auto I = InferredAddrSpace.find(PtrOperand);
 | 
						|
      unsigned OperandAS = I != InferredAddrSpace.end() ?
 | 
						|
        I->second : PtrOperand->getType()->getPointerAddressSpace();
 | 
						|
 | 
						|
      // join(flat, *) = flat. So we can break if NewAS is already flat.
 | 
						|
      NewAS = joinAddressSpaces(NewAS, OperandAS);
 | 
						|
      if (NewAS == FlatAddrSpace)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned OldAS = InferredAddrSpace.lookup(&V);
 | 
						|
  assert(OldAS != FlatAddrSpace);
 | 
						|
  if (OldAS == NewAS)
 | 
						|
    return None;
 | 
						|
  return NewAS;
 | 
						|
}
 | 
						|
 | 
						|
/// \p returns true if \p U is the pointer operand of a memory instruction with
 | 
						|
/// a single pointer operand that can have its address space changed by simply
 | 
						|
/// mutating the use to a new value. If the memory instruction is volatile,
 | 
						|
/// return true only if the target allows the memory instruction to be volatile
 | 
						|
/// in the new address space.
 | 
						|
static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
 | 
						|
                                             Use &U, unsigned AddrSpace) {
 | 
						|
  User *Inst = U.getUser();
 | 
						|
  unsigned OpNo = U.getOperandNo();
 | 
						|
  bool VolatileIsAllowed = false;
 | 
						|
  if (auto *I = dyn_cast<Instruction>(Inst))
 | 
						|
    VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
 | 
						|
 | 
						|
  if (auto *LI = dyn_cast<LoadInst>(Inst))
 | 
						|
    return OpNo == LoadInst::getPointerOperandIndex() &&
 | 
						|
           (VolatileIsAllowed || !LI->isVolatile());
 | 
						|
 | 
						|
  if (auto *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
    return OpNo == StoreInst::getPointerOperandIndex() &&
 | 
						|
           (VolatileIsAllowed || !SI->isVolatile());
 | 
						|
 | 
						|
  if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
 | 
						|
    return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
 | 
						|
           (VolatileIsAllowed || !RMW->isVolatile());
 | 
						|
 | 
						|
  if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
 | 
						|
    return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
 | 
						|
           (VolatileIsAllowed || !CmpX->isVolatile());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Update memory intrinsic uses that require more complex processing than
 | 
						|
/// simple memory instructions. Thse require re-mangling and may have multiple
 | 
						|
/// pointer operands.
 | 
						|
static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
 | 
						|
                                     Value *NewV) {
 | 
						|
  IRBuilder<> B(MI);
 | 
						|
  MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
 | 
						|
  MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
 | 
						|
  MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
 | 
						|
 | 
						|
  if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
 | 
						|
    B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(),
 | 
						|
                   MaybeAlign(MSI->getDestAlignment()),
 | 
						|
                   false, // isVolatile
 | 
						|
                   TBAA, ScopeMD, NoAliasMD);
 | 
						|
  } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
 | 
						|
    Value *Src = MTI->getRawSource();
 | 
						|
    Value *Dest = MTI->getRawDest();
 | 
						|
 | 
						|
    // Be careful in case this is a self-to-self copy.
 | 
						|
    if (Src == OldV)
 | 
						|
      Src = NewV;
 | 
						|
 | 
						|
    if (Dest == OldV)
 | 
						|
      Dest = NewV;
 | 
						|
 | 
						|
    if (isa<MemCpyInst>(MTI)) {
 | 
						|
      MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
 | 
						|
      B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
 | 
						|
                     MTI->getLength(),
 | 
						|
                     false, // isVolatile
 | 
						|
                     TBAA, TBAAStruct, ScopeMD, NoAliasMD);
 | 
						|
    } else {
 | 
						|
      assert(isa<MemMoveInst>(MTI));
 | 
						|
      B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
 | 
						|
                      MTI->getLength(),
 | 
						|
                      false, // isVolatile
 | 
						|
                      TBAA, ScopeMD, NoAliasMD);
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    llvm_unreachable("unhandled MemIntrinsic");
 | 
						|
 | 
						|
  MI->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// \p returns true if it is OK to change the address space of constant \p C with
 | 
						|
// a ConstantExpr addrspacecast.
 | 
						|
bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
 | 
						|
  assert(NewAS != UninitializedAddressSpace);
 | 
						|
 | 
						|
  unsigned SrcAS = C->getType()->getPointerAddressSpace();
 | 
						|
  if (SrcAS == NewAS || isa<UndefValue>(C))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Prevent illegal casts between different non-flat address spaces.
 | 
						|
  if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isa<ConstantPointerNull>(C))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (auto *Op = dyn_cast<Operator>(C)) {
 | 
						|
    // If we already have a constant addrspacecast, it should be safe to cast it
 | 
						|
    // off.
 | 
						|
    if (Op->getOpcode() == Instruction::AddrSpaceCast)
 | 
						|
      return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
 | 
						|
 | 
						|
    if (Op->getOpcode() == Instruction::IntToPtr &&
 | 
						|
        Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static Value::use_iterator skipToNextUser(Value::use_iterator I,
 | 
						|
                                          Value::use_iterator End) {
 | 
						|
  User *CurUser = I->getUser();
 | 
						|
  ++I;
 | 
						|
 | 
						|
  while (I != End && I->getUser() == CurUser)
 | 
						|
    ++I;
 | 
						|
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
bool InferAddressSpaces::rewriteWithNewAddressSpaces(
 | 
						|
    const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
 | 
						|
    const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
 | 
						|
  // For each address expression to be modified, creates a clone of it with its
 | 
						|
  // pointer operands converted to the new address space. Since the pointer
 | 
						|
  // operands are converted, the clone is naturally in the new address space by
 | 
						|
  // construction.
 | 
						|
  ValueToValueMapTy ValueWithNewAddrSpace;
 | 
						|
  SmallVector<const Use *, 32> UndefUsesToFix;
 | 
						|
  for (Value* V : Postorder) {
 | 
						|
    unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
 | 
						|
    if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
 | 
						|
      ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
 | 
						|
        V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ValueWithNewAddrSpace.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
 | 
						|
  for (const Use *UndefUse : UndefUsesToFix) {
 | 
						|
    User *V = UndefUse->getUser();
 | 
						|
    User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
 | 
						|
    unsigned OperandNo = UndefUse->getOperandNo();
 | 
						|
    assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
 | 
						|
    NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<Instruction *, 16> DeadInstructions;
 | 
						|
 | 
						|
  // Replaces the uses of the old address expressions with the new ones.
 | 
						|
  for (const WeakTrackingVH &WVH : Postorder) {
 | 
						|
    assert(WVH && "value was unexpectedly deleted");
 | 
						|
    Value *V = WVH;
 | 
						|
    Value *NewV = ValueWithNewAddrSpace.lookup(V);
 | 
						|
    if (NewV == nullptr)
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
 | 
						|
                      << *NewV << '\n');
 | 
						|
 | 
						|
    if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
      Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
 | 
						|
                                                         C->getType());
 | 
						|
      if (C != Replace) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
 | 
						|
                          << ": " << *Replace << '\n');
 | 
						|
        C->replaceAllUsesWith(Replace);
 | 
						|
        V = Replace;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Value::use_iterator I, E, Next;
 | 
						|
    for (I = V->use_begin(), E = V->use_end(); I != E; ) {
 | 
						|
      Use &U = *I;
 | 
						|
 | 
						|
      // Some users may see the same pointer operand in multiple operands. Skip
 | 
						|
      // to the next instruction.
 | 
						|
      I = skipToNextUser(I, E);
 | 
						|
 | 
						|
      if (isSimplePointerUseValidToReplace(
 | 
						|
              TTI, U, V->getType()->getPointerAddressSpace())) {
 | 
						|
        // If V is used as the pointer operand of a compatible memory operation,
 | 
						|
        // sets the pointer operand to NewV. This replacement does not change
 | 
						|
        // the element type, so the resultant load/store is still valid.
 | 
						|
        U.set(NewV);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      User *CurUser = U.getUser();
 | 
						|
      // Handle more complex cases like intrinsic that need to be remangled.
 | 
						|
      if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
 | 
						|
        if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
 | 
						|
        if (rewriteIntrinsicOperands(II, V, NewV))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<Instruction>(CurUser)) {
 | 
						|
        if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
 | 
						|
          // If we can infer that both pointers are in the same addrspace,
 | 
						|
          // transform e.g.
 | 
						|
          //   %cmp = icmp eq float* %p, %q
 | 
						|
          // into
 | 
						|
          //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
 | 
						|
 | 
						|
          unsigned NewAS = NewV->getType()->getPointerAddressSpace();
 | 
						|
          int SrcIdx = U.getOperandNo();
 | 
						|
          int OtherIdx = (SrcIdx == 0) ? 1 : 0;
 | 
						|
          Value *OtherSrc = Cmp->getOperand(OtherIdx);
 | 
						|
 | 
						|
          if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
 | 
						|
            if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
 | 
						|
              Cmp->setOperand(OtherIdx, OtherNewV);
 | 
						|
              Cmp->setOperand(SrcIdx, NewV);
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          // Even if the type mismatches, we can cast the constant.
 | 
						|
          if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
 | 
						|
            if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
 | 
						|
              Cmp->setOperand(SrcIdx, NewV);
 | 
						|
              Cmp->setOperand(OtherIdx,
 | 
						|
                ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
 | 
						|
          unsigned NewAS = NewV->getType()->getPointerAddressSpace();
 | 
						|
          if (ASC->getDestAddressSpace() == NewAS) {
 | 
						|
            if (ASC->getType()->getPointerElementType() !=
 | 
						|
                NewV->getType()->getPointerElementType()) {
 | 
						|
              NewV = CastInst::Create(Instruction::BitCast, NewV,
 | 
						|
                                      ASC->getType(), "", ASC);
 | 
						|
            }
 | 
						|
            ASC->replaceAllUsesWith(NewV);
 | 
						|
            DeadInstructions.push_back(ASC);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Otherwise, replaces the use with flat(NewV).
 | 
						|
        if (Instruction *Inst = dyn_cast<Instruction>(V)) {
 | 
						|
          // Don't create a copy of the original addrspacecast.
 | 
						|
          if (U == V && isa<AddrSpaceCastInst>(V))
 | 
						|
            continue;
 | 
						|
 | 
						|
          BasicBlock::iterator InsertPos = std::next(Inst->getIterator());
 | 
						|
          while (isa<PHINode>(InsertPos))
 | 
						|
            ++InsertPos;
 | 
						|
          U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
 | 
						|
        } else {
 | 
						|
          U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
 | 
						|
                                               V->getType()));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (V->use_empty()) {
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
        DeadInstructions.push_back(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (Instruction *I : DeadInstructions)
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(I);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
 | 
						|
  return new InferAddressSpaces(AddressSpace);
 | 
						|
}
 |