forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1664 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1664 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// This file implements the loop fusion pass.
 | |
| /// The implementation is largely based on the following document:
 | |
| ///
 | |
| ///       Code Transformations to Augment the Scope of Loop Fusion in a
 | |
| ///         Production Compiler
 | |
| ///       Christopher Mark Barton
 | |
| ///       MSc Thesis
 | |
| ///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
 | |
| ///
 | |
| /// The general approach taken is to collect sets of control flow equivalent
 | |
| /// loops and test whether they can be fused. The necessary conditions for
 | |
| /// fusion are:
 | |
| ///    1. The loops must be adjacent (there cannot be any statements between
 | |
| ///       the two loops).
 | |
| ///    2. The loops must be conforming (they must execute the same number of
 | |
| ///       iterations).
 | |
| ///    3. The loops must be control flow equivalent (if one loop executes, the
 | |
| ///       other is guaranteed to execute).
 | |
| ///    4. There cannot be any negative distance dependencies between the loops.
 | |
| /// If all of these conditions are satisfied, it is safe to fuse the loops.
 | |
| ///
 | |
| /// This implementation creates FusionCandidates that represent the loop and the
 | |
| /// necessary information needed by fusion. It then operates on the fusion
 | |
| /// candidates, first confirming that the candidate is eligible for fusion. The
 | |
| /// candidates are then collected into control flow equivalent sets, sorted in
 | |
| /// dominance order. Each set of control flow equivalent candidates is then
 | |
| /// traversed, attempting to fuse pairs of candidates in the set. If all
 | |
| /// requirements for fusion are met, the two candidates are fused, creating a
 | |
| /// new (fused) candidate which is then added back into the set to consider for
 | |
| /// additional fusion.
 | |
| ///
 | |
| /// This implementation currently does not make any modifications to remove
 | |
| /// conditions for fusion. Code transformations to make loops conform to each of
 | |
| /// the conditions for fusion are discussed in more detail in the document
 | |
| /// above. These can be added to the current implementation in the future.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/LoopFuse.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/DependenceAnalysis.h"
 | |
| #include "llvm/Analysis/DomTreeUpdater.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/CodeMoverUtils.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-fusion"
 | |
| 
 | |
| STATISTIC(FuseCounter, "Loops fused");
 | |
| STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
 | |
| STATISTIC(InvalidPreheader, "Loop has invalid preheader");
 | |
| STATISTIC(InvalidHeader, "Loop has invalid header");
 | |
| STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
 | |
| STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
 | |
| STATISTIC(InvalidLatch, "Loop has invalid latch");
 | |
| STATISTIC(InvalidLoop, "Loop is invalid");
 | |
| STATISTIC(AddressTakenBB, "Basic block has address taken");
 | |
| STATISTIC(MayThrowException, "Loop may throw an exception");
 | |
| STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
 | |
| STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
 | |
| STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
 | |
| STATISTIC(UnknownTripCount, "Loop has unknown trip count");
 | |
| STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
 | |
| STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
 | |
| STATISTIC(NonAdjacent, "Loops are not adjacent");
 | |
| STATISTIC(
 | |
|     NonEmptyPreheader,
 | |
|     "Loop has a non-empty preheader with instructions that cannot be moved");
 | |
| STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
 | |
| STATISTIC(NonIdenticalGuards, "Candidates have different guards");
 | |
| STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
 | |
|                              "instructions that cannot be moved");
 | |
| STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
 | |
|                               "instructions that cannot be moved");
 | |
| STATISTIC(NotRotated, "Candidate is not rotated");
 | |
| 
 | |
| enum FusionDependenceAnalysisChoice {
 | |
|   FUSION_DEPENDENCE_ANALYSIS_SCEV,
 | |
|   FUSION_DEPENDENCE_ANALYSIS_DA,
 | |
|   FUSION_DEPENDENCE_ANALYSIS_ALL,
 | |
| };
 | |
| 
 | |
| static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
 | |
|     "loop-fusion-dependence-analysis",
 | |
|     cl::desc("Which dependence analysis should loop fusion use?"),
 | |
|     cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
 | |
|                           "Use the scalar evolution interface"),
 | |
|                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
 | |
|                           "Use the dependence analysis interface"),
 | |
|                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
 | |
|                           "Use all available analyses")),
 | |
|     cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool>
 | |
|     VerboseFusionDebugging("loop-fusion-verbose-debug",
 | |
|                            cl::desc("Enable verbose debugging for Loop Fusion"),
 | |
|                            cl::Hidden, cl::init(false), cl::ZeroOrMore);
 | |
| #endif
 | |
| 
 | |
| namespace {
 | |
| /// This class is used to represent a candidate for loop fusion. When it is
 | |
| /// constructed, it checks the conditions for loop fusion to ensure that it
 | |
| /// represents a valid candidate. It caches several parts of a loop that are
 | |
| /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
 | |
| /// of continually querying the underlying Loop to retrieve these values. It is
 | |
| /// assumed these will not change throughout loop fusion.
 | |
| ///
 | |
| /// The invalidate method should be used to indicate that the FusionCandidate is
 | |
| /// no longer a valid candidate for fusion. Similarly, the isValid() method can
 | |
| /// be used to ensure that the FusionCandidate is still valid for fusion.
 | |
| struct FusionCandidate {
 | |
|   /// Cache of parts of the loop used throughout loop fusion. These should not
 | |
|   /// need to change throughout the analysis and transformation.
 | |
|   /// These parts are cached to avoid repeatedly looking up in the Loop class.
 | |
| 
 | |
|   /// Preheader of the loop this candidate represents
 | |
|   BasicBlock *Preheader;
 | |
|   /// Header of the loop this candidate represents
 | |
|   BasicBlock *Header;
 | |
|   /// Blocks in the loop that exit the loop
 | |
|   BasicBlock *ExitingBlock;
 | |
|   /// The successor block of this loop (where the exiting blocks go to)
 | |
|   BasicBlock *ExitBlock;
 | |
|   /// Latch of the loop
 | |
|   BasicBlock *Latch;
 | |
|   /// The loop that this fusion candidate represents
 | |
|   Loop *L;
 | |
|   /// Vector of instructions in this loop that read from memory
 | |
|   SmallVector<Instruction *, 16> MemReads;
 | |
|   /// Vector of instructions in this loop that write to memory
 | |
|   SmallVector<Instruction *, 16> MemWrites;
 | |
|   /// Are all of the members of this fusion candidate still valid
 | |
|   bool Valid;
 | |
|   /// Guard branch of the loop, if it exists
 | |
|   BranchInst *GuardBranch;
 | |
| 
 | |
|   /// Dominator and PostDominator trees are needed for the
 | |
|   /// FusionCandidateCompare function, required by FusionCandidateSet to
 | |
|   /// determine where the FusionCandidate should be inserted into the set. These
 | |
|   /// are used to establish ordering of the FusionCandidates based on dominance.
 | |
|   const DominatorTree *DT;
 | |
|   const PostDominatorTree *PDT;
 | |
| 
 | |
|   OptimizationRemarkEmitter &ORE;
 | |
| 
 | |
|   FusionCandidate(Loop *L, const DominatorTree *DT,
 | |
|                   const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
 | |
|       : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
 | |
|         ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
 | |
|         Latch(L->getLoopLatch()), L(L), Valid(true),
 | |
|         GuardBranch(L->getLoopGuardBranch()), DT(DT), PDT(PDT), ORE(ORE) {
 | |
| 
 | |
|     // Walk over all blocks in the loop and check for conditions that may
 | |
|     // prevent fusion. For each block, walk over all instructions and collect
 | |
|     // the memory reads and writes If any instructions that prevent fusion are
 | |
|     // found, invalidate this object and return.
 | |
|     for (BasicBlock *BB : L->blocks()) {
 | |
|       if (BB->hasAddressTaken()) {
 | |
|         invalidate();
 | |
|         reportInvalidCandidate(AddressTakenBB);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       for (Instruction &I : *BB) {
 | |
|         if (I.mayThrow()) {
 | |
|           invalidate();
 | |
|           reportInvalidCandidate(MayThrowException);
 | |
|           return;
 | |
|         }
 | |
|         if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
 | |
|           if (SI->isVolatile()) {
 | |
|             invalidate();
 | |
|             reportInvalidCandidate(ContainsVolatileAccess);
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | |
|           if (LI->isVolatile()) {
 | |
|             invalidate();
 | |
|             reportInvalidCandidate(ContainsVolatileAccess);
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|         if (I.mayWriteToMemory())
 | |
|           MemWrites.push_back(&I);
 | |
|         if (I.mayReadFromMemory())
 | |
|           MemReads.push_back(&I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Check if all members of the class are valid.
 | |
|   bool isValid() const {
 | |
|     return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
 | |
|            !L->isInvalid() && Valid;
 | |
|   }
 | |
| 
 | |
|   /// Verify that all members are in sync with the Loop object.
 | |
|   void verify() const {
 | |
|     assert(isValid() && "Candidate is not valid!!");
 | |
|     assert(!L->isInvalid() && "Loop is invalid!");
 | |
|     assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
 | |
|     assert(Header == L->getHeader() && "Header is out of sync");
 | |
|     assert(ExitingBlock == L->getExitingBlock() &&
 | |
|            "Exiting Blocks is out of sync");
 | |
|     assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
 | |
|     assert(Latch == L->getLoopLatch() && "Latch is out of sync");
 | |
|   }
 | |
| 
 | |
|   /// Get the entry block for this fusion candidate.
 | |
|   ///
 | |
|   /// If this fusion candidate represents a guarded loop, the entry block is the
 | |
|   /// loop guard block. If it represents an unguarded loop, the entry block is
 | |
|   /// the preheader of the loop.
 | |
|   BasicBlock *getEntryBlock() const {
 | |
|     if (GuardBranch)
 | |
|       return GuardBranch->getParent();
 | |
|     else
 | |
|       return Preheader;
 | |
|   }
 | |
| 
 | |
|   /// Given a guarded loop, get the successor of the guard that is not in the
 | |
|   /// loop.
 | |
|   ///
 | |
|   /// This method returns the successor of the loop guard that is not located
 | |
|   /// within the loop (i.e., the successor of the guard that is not the
 | |
|   /// preheader).
 | |
|   /// This method is only valid for guarded loops.
 | |
|   BasicBlock *getNonLoopBlock() const {
 | |
|     assert(GuardBranch && "Only valid on guarded loops.");
 | |
|     assert(GuardBranch->isConditional() &&
 | |
|            "Expecting guard to be a conditional branch.");
 | |
|     return (GuardBranch->getSuccessor(0) == Preheader)
 | |
|                ? GuardBranch->getSuccessor(1)
 | |
|                : GuardBranch->getSuccessor(0);
 | |
|   }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   LLVM_DUMP_METHOD void dump() const {
 | |
|     dbgs() << "\tGuardBranch: ";
 | |
|     if (GuardBranch)
 | |
|       dbgs() << *GuardBranch;
 | |
|     else
 | |
|       dbgs() << "nullptr";
 | |
|     dbgs() << "\n"
 | |
|            << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
 | |
|            << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
 | |
|            << "\n"
 | |
|            << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
 | |
|            << "\tExitingBB: "
 | |
|            << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
 | |
|            << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
 | |
|            << "\n"
 | |
|            << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
 | |
|            << "\tEntryBlock: "
 | |
|            << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
 | |
|            << "\n";
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /// Determine if a fusion candidate (representing a loop) is eligible for
 | |
|   /// fusion. Note that this only checks whether a single loop can be fused - it
 | |
|   /// does not check whether it is *legal* to fuse two loops together.
 | |
|   bool isEligibleForFusion(ScalarEvolution &SE) const {
 | |
|     if (!isValid()) {
 | |
|       LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
 | |
|       if (!Preheader)
 | |
|         ++InvalidPreheader;
 | |
|       if (!Header)
 | |
|         ++InvalidHeader;
 | |
|       if (!ExitingBlock)
 | |
|         ++InvalidExitingBlock;
 | |
|       if (!ExitBlock)
 | |
|         ++InvalidExitBlock;
 | |
|       if (!Latch)
 | |
|         ++InvalidLatch;
 | |
|       if (L->isInvalid())
 | |
|         ++InvalidLoop;
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Require ScalarEvolution to be able to determine a trip count.
 | |
|     if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
 | |
|       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
 | |
|                         << " trip count not computable!\n");
 | |
|       return reportInvalidCandidate(UnknownTripCount);
 | |
|     }
 | |
| 
 | |
|     if (!L->isLoopSimplifyForm()) {
 | |
|       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
 | |
|                         << " is not in simplified form!\n");
 | |
|       return reportInvalidCandidate(NotSimplifiedForm);
 | |
|     }
 | |
| 
 | |
|     if (!L->isRotatedForm()) {
 | |
|       LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
 | |
|       return reportInvalidCandidate(NotRotated);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // This is only used internally for now, to clear the MemWrites and MemReads
 | |
|   // list and setting Valid to false. I can't envision other uses of this right
 | |
|   // now, since once FusionCandidates are put into the FusionCandidateSet they
 | |
|   // are immutable. Thus, any time we need to change/update a FusionCandidate,
 | |
|   // we must create a new one and insert it into the FusionCandidateSet to
 | |
|   // ensure the FusionCandidateSet remains ordered correctly.
 | |
|   void invalidate() {
 | |
|     MemWrites.clear();
 | |
|     MemReads.clear();
 | |
|     Valid = false;
 | |
|   }
 | |
| 
 | |
|   bool reportInvalidCandidate(llvm::Statistic &Stat) const {
 | |
|     using namespace ore;
 | |
|     assert(L && Preheader && "Fusion candidate not initialized properly!");
 | |
|     ++Stat;
 | |
|     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
 | |
|                                         L->getStartLoc(), Preheader)
 | |
|              << "[" << Preheader->getParent()->getName() << "]: "
 | |
|              << "Loop is not a candidate for fusion: " << Stat.getDesc());
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct FusionCandidateCompare {
 | |
|   /// Comparison functor to sort two Control Flow Equivalent fusion candidates
 | |
|   /// into dominance order.
 | |
|   /// If LHS dominates RHS and RHS post-dominates LHS, return true;
 | |
|   /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
 | |
|   bool operator()(const FusionCandidate &LHS,
 | |
|                   const FusionCandidate &RHS) const {
 | |
|     const DominatorTree *DT = LHS.DT;
 | |
| 
 | |
|     BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
 | |
|     BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
 | |
| 
 | |
|     // Do not save PDT to local variable as it is only used in asserts and thus
 | |
|     // will trigger an unused variable warning if building without asserts.
 | |
|     assert(DT && LHS.PDT && "Expecting valid dominator tree");
 | |
| 
 | |
|     // Do this compare first so if LHS == RHS, function returns false.
 | |
|     if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
 | |
|       // RHS dominates LHS
 | |
|       // Verify LHS post-dominates RHS
 | |
|       assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
 | |
|       // Verify RHS Postdominates LHS
 | |
|       assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If LHS does not dominate RHS and RHS does not dominate LHS then there is
 | |
|     // no dominance relationship between the two FusionCandidates. Thus, they
 | |
|     // should not be in the same set together.
 | |
|     llvm_unreachable(
 | |
|         "No dominance relationship between these fusion candidates!");
 | |
|   }
 | |
| };
 | |
| 
 | |
| using LoopVector = SmallVector<Loop *, 4>;
 | |
| 
 | |
| // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
 | |
| // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
 | |
| // dominates FC1 and FC1 post-dominates FC0.
 | |
| // std::set was chosen because we want a sorted data structure with stable
 | |
| // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
 | |
| // loops by moving intervening code around. When this intervening code contains
 | |
| // loops, those loops will be moved also. The corresponding FusionCandidates
 | |
| // will also need to be moved accordingly. As this is done, having stable
 | |
| // iterators will simplify the logic. Similarly, having an efficient insert that
 | |
| // keeps the FusionCandidateSet sorted will also simplify the implementation.
 | |
| using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
 | |
| using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
 | |
| 
 | |
| #if !defined(NDEBUG)
 | |
| static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
 | |
|                                      const FusionCandidate &FC) {
 | |
|   if (FC.isValid())
 | |
|     OS << FC.Preheader->getName();
 | |
|   else
 | |
|     OS << "<Invalid>";
 | |
| 
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
 | |
|                                      const FusionCandidateSet &CandSet) {
 | |
|   for (const FusionCandidate &FC : CandSet)
 | |
|     OS << FC << '\n';
 | |
| 
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| static void
 | |
| printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
 | |
|   dbgs() << "Fusion Candidates: \n";
 | |
|   for (const auto &CandidateSet : FusionCandidates) {
 | |
|     dbgs() << "*** Fusion Candidate Set ***\n";
 | |
|     dbgs() << CandidateSet;
 | |
|     dbgs() << "****************************\n";
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// Collect all loops in function at the same nest level, starting at the
 | |
| /// outermost level.
 | |
| ///
 | |
| /// This data structure collects all loops at the same nest level for a
 | |
| /// given function (specified by the LoopInfo object). It starts at the
 | |
| /// outermost level.
 | |
| struct LoopDepthTree {
 | |
|   using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
 | |
|   using iterator = LoopsOnLevelTy::iterator;
 | |
|   using const_iterator = LoopsOnLevelTy::const_iterator;
 | |
| 
 | |
|   LoopDepthTree(LoopInfo &LI) : Depth(1) {
 | |
|     if (!LI.empty())
 | |
|       LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
 | |
|   }
 | |
| 
 | |
|   /// Test whether a given loop has been removed from the function, and thus is
 | |
|   /// no longer valid.
 | |
|   bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
 | |
| 
 | |
|   /// Record that a given loop has been removed from the function and is no
 | |
|   /// longer valid.
 | |
|   void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
 | |
| 
 | |
|   /// Descend the tree to the next (inner) nesting level
 | |
|   void descend() {
 | |
|     LoopsOnLevelTy LoopsOnNextLevel;
 | |
| 
 | |
|     for (const LoopVector &LV : *this)
 | |
|       for (Loop *L : LV)
 | |
|         if (!isRemovedLoop(L) && L->begin() != L->end())
 | |
|           LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
 | |
| 
 | |
|     LoopsOnLevel = LoopsOnNextLevel;
 | |
|     RemovedLoops.clear();
 | |
|     Depth++;
 | |
|   }
 | |
| 
 | |
|   bool empty() const { return size() == 0; }
 | |
|   size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
 | |
|   unsigned getDepth() const { return Depth; }
 | |
| 
 | |
|   iterator begin() { return LoopsOnLevel.begin(); }
 | |
|   iterator end() { return LoopsOnLevel.end(); }
 | |
|   const_iterator begin() const { return LoopsOnLevel.begin(); }
 | |
|   const_iterator end() const { return LoopsOnLevel.end(); }
 | |
| 
 | |
| private:
 | |
|   /// Set of loops that have been removed from the function and are no longer
 | |
|   /// valid.
 | |
|   SmallPtrSet<const Loop *, 8> RemovedLoops;
 | |
| 
 | |
|   /// Depth of the current level, starting at 1 (outermost loops).
 | |
|   unsigned Depth;
 | |
| 
 | |
|   /// Vector of loops at the current depth level that have the same parent loop
 | |
|   LoopsOnLevelTy LoopsOnLevel;
 | |
| };
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static void printLoopVector(const LoopVector &LV) {
 | |
|   dbgs() << "****************************\n";
 | |
|   for (auto L : LV)
 | |
|     printLoop(*L, dbgs());
 | |
|   dbgs() << "****************************\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct LoopFuser {
 | |
| private:
 | |
|   // Sets of control flow equivalent fusion candidates for a given nest level.
 | |
|   FusionCandidateCollection FusionCandidates;
 | |
| 
 | |
|   LoopDepthTree LDT;
 | |
|   DomTreeUpdater DTU;
 | |
| 
 | |
|   LoopInfo &LI;
 | |
|   DominatorTree &DT;
 | |
|   DependenceInfo &DI;
 | |
|   ScalarEvolution &SE;
 | |
|   PostDominatorTree &PDT;
 | |
|   OptimizationRemarkEmitter &ORE;
 | |
| 
 | |
| public:
 | |
|   LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
 | |
|             ScalarEvolution &SE, PostDominatorTree &PDT,
 | |
|             OptimizationRemarkEmitter &ORE, const DataLayout &DL)
 | |
|       : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
 | |
|         DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
 | |
| 
 | |
|   /// This is the main entry point for loop fusion. It will traverse the
 | |
|   /// specified function and collect candidate loops to fuse, starting at the
 | |
|   /// outermost nesting level and working inwards.
 | |
|   bool fuseLoops(Function &F) {
 | |
| #ifndef NDEBUG
 | |
|     if (VerboseFusionDebugging) {
 | |
|       LI.print(dbgs());
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
 | |
|                       << "\n");
 | |
|     bool Changed = false;
 | |
| 
 | |
|     while (!LDT.empty()) {
 | |
|       LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
 | |
|                         << LDT.getDepth() << "\n";);
 | |
| 
 | |
|       for (const LoopVector &LV : LDT) {
 | |
|         assert(LV.size() > 0 && "Empty loop set was build!");
 | |
| 
 | |
|         // Skip singleton loop sets as they do not offer fusion opportunities on
 | |
|         // this level.
 | |
|         if (LV.size() == 1)
 | |
|           continue;
 | |
| #ifndef NDEBUG
 | |
|         if (VerboseFusionDebugging) {
 | |
|           LLVM_DEBUG({
 | |
|             dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
 | |
|             printLoopVector(LV);
 | |
|           });
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         collectFusionCandidates(LV);
 | |
|         Changed |= fuseCandidates();
 | |
|       }
 | |
| 
 | |
|       // Finished analyzing candidates at this level.
 | |
|       // Descend to the next level and clear all of the candidates currently
 | |
|       // collected. Note that it will not be possible to fuse any of the
 | |
|       // existing candidates with new candidates because the new candidates will
 | |
|       // be at a different nest level and thus not be control flow equivalent
 | |
|       // with all of the candidates collected so far.
 | |
|       LLVM_DEBUG(dbgs() << "Descend one level!\n");
 | |
|       LDT.descend();
 | |
|       FusionCandidates.clear();
 | |
|     }
 | |
| 
 | |
|     if (Changed)
 | |
|       LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     assert(DT.verify());
 | |
|     assert(PDT.verify());
 | |
|     LI.verify(DT);
 | |
|     SE.verify();
 | |
| #endif
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Determine if two fusion candidates are control flow equivalent.
 | |
|   ///
 | |
|   /// Two fusion candidates are control flow equivalent if when one executes,
 | |
|   /// the other is guaranteed to execute. This is determined using dominators
 | |
|   /// and post-dominators: if A dominates B and B post-dominates A then A and B
 | |
|   /// are control-flow equivalent.
 | |
|   bool isControlFlowEquivalent(const FusionCandidate &FC0,
 | |
|                                const FusionCandidate &FC1) const {
 | |
|     assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
 | |
| 
 | |
|     return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
 | |
|                                      DT, PDT);
 | |
|   }
 | |
| 
 | |
|   /// Iterate over all loops in the given loop set and identify the loops that
 | |
|   /// are eligible for fusion. Place all eligible fusion candidates into Control
 | |
|   /// Flow Equivalent sets, sorted by dominance.
 | |
|   void collectFusionCandidates(const LoopVector &LV) {
 | |
|     for (Loop *L : LV) {
 | |
|       FusionCandidate CurrCand(L, &DT, &PDT, ORE);
 | |
|       if (!CurrCand.isEligibleForFusion(SE))
 | |
|         continue;
 | |
| 
 | |
|       // Go through each list in FusionCandidates and determine if L is control
 | |
|       // flow equivalent with the first loop in that list. If it is, append LV.
 | |
|       // If not, go to the next list.
 | |
|       // If no suitable list is found, start another list and add it to
 | |
|       // FusionCandidates.
 | |
|       bool FoundSet = false;
 | |
| 
 | |
|       for (auto &CurrCandSet : FusionCandidates) {
 | |
|         if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
 | |
|           CurrCandSet.insert(CurrCand);
 | |
|           FoundSet = true;
 | |
| #ifndef NDEBUG
 | |
|           if (VerboseFusionDebugging)
 | |
|             LLVM_DEBUG(dbgs() << "Adding " << CurrCand
 | |
|                               << " to existing candidate set\n");
 | |
| #endif
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!FoundSet) {
 | |
|         // No set was found. Create a new set and add to FusionCandidates
 | |
| #ifndef NDEBUG
 | |
|         if (VerboseFusionDebugging)
 | |
|           LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
 | |
| #endif
 | |
|         FusionCandidateSet NewCandSet;
 | |
|         NewCandSet.insert(CurrCand);
 | |
|         FusionCandidates.push_back(NewCandSet);
 | |
|       }
 | |
|       NumFusionCandidates++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Determine if it is beneficial to fuse two loops.
 | |
|   ///
 | |
|   /// For now, this method simply returns true because we want to fuse as much
 | |
|   /// as possible (primarily to test the pass). This method will evolve, over
 | |
|   /// time, to add heuristics for profitability of fusion.
 | |
|   bool isBeneficialFusion(const FusionCandidate &FC0,
 | |
|                           const FusionCandidate &FC1) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Determine if two fusion candidates have the same trip count (i.e., they
 | |
|   /// execute the same number of iterations).
 | |
|   ///
 | |
|   /// Note that for now this method simply returns a boolean value because there
 | |
|   /// are no mechanisms in loop fusion to handle different trip counts. In the
 | |
|   /// future, this behaviour can be extended to adjust one of the loops to make
 | |
|   /// the trip counts equal (e.g., loop peeling). When this is added, this
 | |
|   /// interface may need to change to return more information than just a
 | |
|   /// boolean value.
 | |
|   bool identicalTripCounts(const FusionCandidate &FC0,
 | |
|                            const FusionCandidate &FC1) const {
 | |
|     const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
 | |
|     if (isa<SCEVCouldNotCompute>(TripCount0)) {
 | |
|       UncomputableTripCount++;
 | |
|       LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
 | |
|     if (isa<SCEVCouldNotCompute>(TripCount1)) {
 | |
|       UncomputableTripCount++;
 | |
|       LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
 | |
|       return false;
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
 | |
|                       << *TripCount1 << " are "
 | |
|                       << (TripCount0 == TripCount1 ? "identical" : "different")
 | |
|                       << "\n");
 | |
| 
 | |
|     return (TripCount0 == TripCount1);
 | |
|   }
 | |
| 
 | |
|   /// Walk each set of control flow equivalent fusion candidates and attempt to
 | |
|   /// fuse them. This does a single linear traversal of all candidates in the
 | |
|   /// set. The conditions for legal fusion are checked at this point. If a pair
 | |
|   /// of fusion candidates passes all legality checks, they are fused together
 | |
|   /// and a new fusion candidate is created and added to the FusionCandidateSet.
 | |
|   /// The original fusion candidates are then removed, as they are no longer
 | |
|   /// valid.
 | |
|   bool fuseCandidates() {
 | |
|     bool Fused = false;
 | |
|     LLVM_DEBUG(printFusionCandidates(FusionCandidates));
 | |
|     for (auto &CandidateSet : FusionCandidates) {
 | |
|       if (CandidateSet.size() < 2)
 | |
|         continue;
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
 | |
|                         << CandidateSet << "\n");
 | |
| 
 | |
|       for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
 | |
|         assert(!LDT.isRemovedLoop(FC0->L) &&
 | |
|                "Should not have removed loops in CandidateSet!");
 | |
|         auto FC1 = FC0;
 | |
|         for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
 | |
|           assert(!LDT.isRemovedLoop(FC1->L) &&
 | |
|                  "Should not have removed loops in CandidateSet!");
 | |
| 
 | |
|           LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
 | |
|                      dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
 | |
| 
 | |
|           FC0->verify();
 | |
|           FC1->verify();
 | |
| 
 | |
|           if (!identicalTripCounts(*FC0, *FC1)) {
 | |
|             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
 | |
|                                  "counts. Not fusing.\n");
 | |
|             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
 | |
|                                                        NonEqualTripCount);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           if (!isAdjacent(*FC0, *FC1)) {
 | |
|             LLVM_DEBUG(dbgs()
 | |
|                        << "Fusion candidates are not adjacent. Not fusing.\n");
 | |
|             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           // Ensure that FC0 and FC1 have identical guards.
 | |
|           // If one (or both) are not guarded, this check is not necessary.
 | |
|           if (FC0->GuardBranch && FC1->GuardBranch &&
 | |
|               !haveIdenticalGuards(*FC0, *FC1)) {
 | |
|             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
 | |
|                                  "guards. Not Fusing.\n");
 | |
|             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
 | |
|                                                        NonIdenticalGuards);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           if (!isSafeToMoveBefore(*FC1->Preheader,
 | |
|                                   *FC0->Preheader->getTerminator(), DT, PDT,
 | |
|                                   DI)) {
 | |
|             LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
 | |
|                                  "instructions in preheader. Not fusing.\n");
 | |
|             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
 | |
|                                                        NonEmptyPreheader);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           if (FC0->GuardBranch) {
 | |
|             assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");
 | |
| 
 | |
|             if (!isSafeToMoveBefore(*FC0->ExitBlock,
 | |
|                                     *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
 | |
|                                     PDT, DI)) {
 | |
|               LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
 | |
|                                    "instructions in exit block. Not fusing.\n");
 | |
|               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
 | |
|                                                          NonEmptyExitBlock);
 | |
|               continue;
 | |
|             }
 | |
| 
 | |
|             if (!isSafeToMoveBefore(
 | |
|                     *FC1->GuardBranch->getParent(),
 | |
|                     *FC0->GuardBranch->getParent()->getTerminator(), DT, PDT,
 | |
|                     DI)) {
 | |
|               LLVM_DEBUG(dbgs()
 | |
|                          << "Fusion candidate contains unsafe "
 | |
|                             "instructions in guard block. Not fusing.\n");
 | |
|               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
 | |
|                                                          NonEmptyGuardBlock);
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // Check the dependencies across the loops and do not fuse if it would
 | |
|           // violate them.
 | |
|           if (!dependencesAllowFusion(*FC0, *FC1)) {
 | |
|             LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
 | |
|             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
 | |
|                                                        InvalidDependencies);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "\tFusion appears to be "
 | |
|                      << (BeneficialToFuse ? "" : "un") << "profitable!\n");
 | |
|           if (!BeneficialToFuse) {
 | |
|             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
 | |
|                                                        FusionNotBeneficial);
 | |
|             continue;
 | |
|           }
 | |
|           // All analysis has completed and has determined that fusion is legal
 | |
|           // and profitable. At this point, start transforming the code and
 | |
|           // perform fusion.
 | |
| 
 | |
|           LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
 | |
|                             << *FC1 << "\n");
 | |
| 
 | |
|           // Report fusion to the Optimization Remarks.
 | |
|           // Note this needs to be done *before* performFusion because
 | |
|           // performFusion will change the original loops, making it not
 | |
|           // possible to identify them after fusion is complete.
 | |
|           reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);
 | |
| 
 | |
|           FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
 | |
|           FusedCand.verify();
 | |
|           assert(FusedCand.isEligibleForFusion(SE) &&
 | |
|                  "Fused candidate should be eligible for fusion!");
 | |
| 
 | |
|           // Notify the loop-depth-tree that these loops are not valid objects
 | |
|           LDT.removeLoop(FC1->L);
 | |
| 
 | |
|           CandidateSet.erase(FC0);
 | |
|           CandidateSet.erase(FC1);
 | |
| 
 | |
|           auto InsertPos = CandidateSet.insert(FusedCand);
 | |
| 
 | |
|           assert(InsertPos.second &&
 | |
|                  "Unable to insert TargetCandidate in CandidateSet!");
 | |
| 
 | |
|           // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
 | |
|           // of the FC1 loop will attempt to fuse the new (fused) loop with the
 | |
|           // remaining candidates in the current candidate set.
 | |
|           FC0 = FC1 = InsertPos.first;
 | |
| 
 | |
|           LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
 | |
|                             << "\n");
 | |
| 
 | |
|           Fused = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return Fused;
 | |
|   }
 | |
| 
 | |
|   /// Rewrite all additive recurrences in a SCEV to use a new loop.
 | |
|   class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
 | |
|   public:
 | |
|     AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
 | |
|                        bool UseMax = true)
 | |
|         : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
 | |
|           NewL(NewL) {}
 | |
| 
 | |
|     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
 | |
|       const Loop *ExprL = Expr->getLoop();
 | |
|       SmallVector<const SCEV *, 2> Operands;
 | |
|       if (ExprL == &OldL) {
 | |
|         Operands.append(Expr->op_begin(), Expr->op_end());
 | |
|         return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
 | |
|       }
 | |
| 
 | |
|       if (OldL.contains(ExprL)) {
 | |
|         bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
 | |
|         if (!UseMax || !Pos || !Expr->isAffine()) {
 | |
|           Valid = false;
 | |
|           return Expr;
 | |
|         }
 | |
|         return visit(Expr->getStart());
 | |
|       }
 | |
| 
 | |
|       for (const SCEV *Op : Expr->operands())
 | |
|         Operands.push_back(visit(Op));
 | |
|       return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
 | |
|     }
 | |
| 
 | |
|     bool wasValidSCEV() const { return Valid; }
 | |
| 
 | |
|   private:
 | |
|     bool Valid, UseMax;
 | |
|     const Loop &OldL, &NewL;
 | |
|   };
 | |
| 
 | |
|   /// Return false if the access functions of \p I0 and \p I1 could cause
 | |
|   /// a negative dependence.
 | |
|   bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
 | |
|                             Instruction &I1, bool EqualIsInvalid) {
 | |
|     Value *Ptr0 = getLoadStorePointerOperand(&I0);
 | |
|     Value *Ptr1 = getLoadStorePointerOperand(&I1);
 | |
|     if (!Ptr0 || !Ptr1)
 | |
|       return false;
 | |
| 
 | |
|     const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
 | |
|     const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
 | |
| #ifndef NDEBUG
 | |
|     if (VerboseFusionDebugging)
 | |
|       LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
 | |
|                         << *SCEVPtr1 << "\n");
 | |
| #endif
 | |
|     AddRecLoopReplacer Rewriter(SE, L0, L1);
 | |
|     SCEVPtr0 = Rewriter.visit(SCEVPtr0);
 | |
| #ifndef NDEBUG
 | |
|     if (VerboseFusionDebugging)
 | |
|       LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
 | |
|                         << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
 | |
| #endif
 | |
|     if (!Rewriter.wasValidSCEV())
 | |
|       return false;
 | |
| 
 | |
|     // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
 | |
|     //       L0) and the other is not. We could check if it is monotone and test
 | |
|     //       the beginning and end value instead.
 | |
| 
 | |
|     BasicBlock *L0Header = L0.getHeader();
 | |
|     auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
 | |
|       const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
 | |
|       if (!AddRec)
 | |
|         return false;
 | |
|       return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
 | |
|              !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
 | |
|     };
 | |
|     if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
 | |
|       return false;
 | |
| 
 | |
|     ICmpInst::Predicate Pred =
 | |
|         EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
 | |
|     bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
 | |
| #ifndef NDEBUG
 | |
|     if (VerboseFusionDebugging)
 | |
|       LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
 | |
|                         << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
 | |
|                         << "\n");
 | |
| #endif
 | |
|     return IsAlwaysGE;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
 | |
|   /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
 | |
|   /// specified by @p DepChoice are used to determine this.
 | |
|   bool dependencesAllowFusion(const FusionCandidate &FC0,
 | |
|                               const FusionCandidate &FC1, Instruction &I0,
 | |
|                               Instruction &I1, bool AnyDep,
 | |
|                               FusionDependenceAnalysisChoice DepChoice) {
 | |
| #ifndef NDEBUG
 | |
|     if (VerboseFusionDebugging) {
 | |
|       LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
 | |
|                         << DepChoice << "\n");
 | |
|     }
 | |
| #endif
 | |
|     switch (DepChoice) {
 | |
|     case FUSION_DEPENDENCE_ANALYSIS_SCEV:
 | |
|       return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
 | |
|     case FUSION_DEPENDENCE_ANALYSIS_DA: {
 | |
|       auto DepResult = DI.depends(&I0, &I1, true);
 | |
|       if (!DepResult)
 | |
|         return true;
 | |
| #ifndef NDEBUG
 | |
|       if (VerboseFusionDebugging) {
 | |
|         LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
 | |
|                    dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
 | |
|                           << (DepResult->isOrdered() ? "true" : "false")
 | |
|                           << "]\n");
 | |
|         LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
 | |
|                           << "\n");
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
 | |
|         LLVM_DEBUG(
 | |
|             dbgs() << "TODO: Implement pred/succ dependence handling!\n");
 | |
| 
 | |
|       // TODO: Can we actually use the dependence info analysis here?
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     case FUSION_DEPENDENCE_ANALYSIS_ALL:
 | |
|       return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
 | |
|                                     FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
 | |
|              dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
 | |
|                                     FUSION_DEPENDENCE_ANALYSIS_DA);
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("Unknown fusion dependence analysis choice!");
 | |
|   }
 | |
| 
 | |
|   /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
 | |
|   bool dependencesAllowFusion(const FusionCandidate &FC0,
 | |
|                               const FusionCandidate &FC1) {
 | |
|     LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
 | |
|                       << "\n");
 | |
|     assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
 | |
|     assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
 | |
| 
 | |
|     for (Instruction *WriteL0 : FC0.MemWrites) {
 | |
|       for (Instruction *WriteL1 : FC1.MemWrites)
 | |
|         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
 | |
|                                     /* AnyDep */ false,
 | |
|                                     FusionDependenceAnalysis)) {
 | |
|           InvalidDependencies++;
 | |
|           return false;
 | |
|         }
 | |
|       for (Instruction *ReadL1 : FC1.MemReads)
 | |
|         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
 | |
|                                     /* AnyDep */ false,
 | |
|                                     FusionDependenceAnalysis)) {
 | |
|           InvalidDependencies++;
 | |
|           return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (Instruction *WriteL1 : FC1.MemWrites) {
 | |
|       for (Instruction *WriteL0 : FC0.MemWrites)
 | |
|         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
 | |
|                                     /* AnyDep */ false,
 | |
|                                     FusionDependenceAnalysis)) {
 | |
|           InvalidDependencies++;
 | |
|           return false;
 | |
|         }
 | |
|       for (Instruction *ReadL0 : FC0.MemReads)
 | |
|         if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
 | |
|                                     /* AnyDep */ false,
 | |
|                                     FusionDependenceAnalysis)) {
 | |
|           InvalidDependencies++;
 | |
|           return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Walk through all uses in FC1. For each use, find the reaching def. If the
 | |
|     // def is located in FC0 then it is is not safe to fuse.
 | |
|     for (BasicBlock *BB : FC1.L->blocks())
 | |
|       for (Instruction &I : *BB)
 | |
|         for (auto &Op : I.operands())
 | |
|           if (Instruction *Def = dyn_cast<Instruction>(Op))
 | |
|             if (FC0.L->contains(Def->getParent())) {
 | |
|               InvalidDependencies++;
 | |
|               return false;
 | |
|             }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Determine if two fusion candidates are adjacent in the CFG.
 | |
|   ///
 | |
|   /// This method will determine if there are additional basic blocks in the CFG
 | |
|   /// between the exit of \p FC0 and the entry of \p FC1.
 | |
|   /// If the two candidates are guarded loops, then it checks whether the
 | |
|   /// non-loop successor of the \p FC0 guard branch is the entry block of \p
 | |
|   /// FC1. If not, then the loops are not adjacent. If the two candidates are
 | |
|   /// not guarded loops, then it checks whether the exit block of \p FC0 is the
 | |
|   /// preheader of \p FC1.
 | |
|   bool isAdjacent(const FusionCandidate &FC0,
 | |
|                   const FusionCandidate &FC1) const {
 | |
|     // If the successor of the guard branch is FC1, then the loops are adjacent
 | |
|     if (FC0.GuardBranch)
 | |
|       return FC0.getNonLoopBlock() == FC1.getEntryBlock();
 | |
|     else
 | |
|       return FC0.ExitBlock == FC1.getEntryBlock();
 | |
|   }
 | |
| 
 | |
|   /// Determine if two fusion candidates have identical guards
 | |
|   ///
 | |
|   /// This method will determine if two fusion candidates have the same guards.
 | |
|   /// The guards are considered the same if:
 | |
|   ///   1. The instructions to compute the condition used in the compare are
 | |
|   ///      identical.
 | |
|   ///   2. The successors of the guard have the same flow into/around the loop.
 | |
|   /// If the compare instructions are identical, then the first successor of the
 | |
|   /// guard must go to the same place (either the preheader of the loop or the
 | |
|   /// NonLoopBlock). In other words, the the first successor of both loops must
 | |
|   /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
 | |
|   /// the NonLoopBlock). The same must be true for the second successor.
 | |
|   bool haveIdenticalGuards(const FusionCandidate &FC0,
 | |
|                            const FusionCandidate &FC1) const {
 | |
|     assert(FC0.GuardBranch && FC1.GuardBranch &&
 | |
|            "Expecting FC0 and FC1 to be guarded loops.");
 | |
| 
 | |
|     if (auto FC0CmpInst =
 | |
|             dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
 | |
|       if (auto FC1CmpInst =
 | |
|               dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
 | |
|         if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
 | |
|           return false;
 | |
| 
 | |
|     // The compare instructions are identical.
 | |
|     // Now make sure the successor of the guards have the same flow into/around
 | |
|     // the loop
 | |
|     if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
 | |
|       return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
 | |
|     else
 | |
|       return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
 | |
|   }
 | |
| 
 | |
|   /// Simplify the condition of the latch branch of \p FC to true, when both of
 | |
|   /// its successors are the same.
 | |
|   void simplifyLatchBranch(const FusionCandidate &FC) const {
 | |
|     BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
 | |
|     if (FCLatchBranch) {
 | |
|       assert(FCLatchBranch->isConditional() &&
 | |
|              FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
 | |
|              "Expecting the two successors of FCLatchBranch to be the same");
 | |
|       FCLatchBranch->setCondition(
 | |
|           llvm::ConstantInt::getTrue(FCLatchBranch->getCondition()->getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
 | |
|   /// successor, then merge FC0.Latch with its unique successor.
 | |
|   void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
 | |
|     moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
 | |
|     if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
 | |
|       MergeBlockIntoPredecessor(Succ, &DTU, &LI);
 | |
|       DTU.flush();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Fuse two fusion candidates, creating a new fused loop.
 | |
|   ///
 | |
|   /// This method contains the mechanics of fusing two loops, represented by \p
 | |
|   /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
 | |
|   /// postdominates \p FC0 (making them control flow equivalent). It also
 | |
|   /// assumes that the other conditions for fusion have been met: adjacent,
 | |
|   /// identical trip counts, and no negative distance dependencies exist that
 | |
|   /// would prevent fusion. Thus, there is no checking for these conditions in
 | |
|   /// this method.
 | |
|   ///
 | |
|   /// Fusion is performed by rewiring the CFG to update successor blocks of the
 | |
|   /// components of tho loop. Specifically, the following changes are done:
 | |
|   ///
 | |
|   ///   1. The preheader of \p FC1 is removed as it is no longer necessary
 | |
|   ///   (because it is currently only a single statement block).
 | |
|   ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
 | |
|   ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
 | |
|   ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
 | |
|   ///
 | |
|   /// All of these modifications are done with dominator tree updates, thus
 | |
|   /// keeping the dominator (and post dominator) information up-to-date.
 | |
|   ///
 | |
|   /// This can be improved in the future by actually merging blocks during
 | |
|   /// fusion. For example, the preheader of \p FC1 can be merged with the
 | |
|   /// preheader of \p FC0. This would allow loops with more than a single
 | |
|   /// statement in the preheader to be fused. Similarly, the latch blocks of the
 | |
|   /// two loops could also be fused into a single block. This will require
 | |
|   /// analysis to prove it is safe to move the contents of the block past
 | |
|   /// existing code, which currently has not been implemented.
 | |
|   Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
 | |
|     assert(FC0.isValid() && FC1.isValid() &&
 | |
|            "Expecting valid fusion candidates");
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
 | |
|                dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
 | |
| 
 | |
|     // Move instructions from the preheader of FC1 to the end of the preheader
 | |
|     // of FC0.
 | |
|     moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
 | |
| 
 | |
|     // Fusing guarded loops is handled slightly differently than non-guarded
 | |
|     // loops and has been broken out into a separate method instead of trying to
 | |
|     // intersperse the logic within a single method.
 | |
|     if (FC0.GuardBranch)
 | |
|       return fuseGuardedLoops(FC0, FC1);
 | |
| 
 | |
|     assert(FC1.Preheader == FC0.ExitBlock);
 | |
|     assert(FC1.Preheader->size() == 1 &&
 | |
|            FC1.Preheader->getSingleSuccessor() == FC1.Header);
 | |
| 
 | |
|     // Remember the phi nodes originally in the header of FC0 in order to rewire
 | |
|     // them later. However, this is only necessary if the new loop carried
 | |
|     // values might not dominate the exiting branch. While we do not generally
 | |
|     // test if this is the case but simply insert intermediate phi nodes, we
 | |
|     // need to make sure these intermediate phi nodes have different
 | |
|     // predecessors. To this end, we filter the special case where the exiting
 | |
|     // block is the latch block of the first loop. Nothing needs to be done
 | |
|     // anyway as all loop carried values dominate the latch and thereby also the
 | |
|     // exiting branch.
 | |
|     SmallVector<PHINode *, 8> OriginalFC0PHIs;
 | |
|     if (FC0.ExitingBlock != FC0.Latch)
 | |
|       for (PHINode &PHI : FC0.Header->phis())
 | |
|         OriginalFC0PHIs.push_back(&PHI);
 | |
| 
 | |
|     // Replace incoming blocks for header PHIs first.
 | |
|     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
 | |
|     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
 | |
| 
 | |
|     // Then modify the control flow and update DT and PDT.
 | |
|     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
 | |
| 
 | |
|     // The old exiting block of the first loop (FC0) has to jump to the header
 | |
|     // of the second as we need to execute the code in the second header block
 | |
|     // regardless of the trip count. That is, if the trip count is 0, so the
 | |
|     // back edge is never taken, we still have to execute both loop headers,
 | |
|     // especially (but not only!) if the second is a do-while style loop.
 | |
|     // However, doing so might invalidate the phi nodes of the first loop as
 | |
|     // the new values do only need to dominate their latch and not the exiting
 | |
|     // predicate. To remedy this potential problem we always introduce phi
 | |
|     // nodes in the header of the second loop later that select the loop carried
 | |
|     // value, if the second header was reached through an old latch of the
 | |
|     // first, or undef otherwise. This is sound as exiting the first implies the
 | |
|     // second will exit too, __without__ taking the back-edge. [Their
 | |
|     // trip-counts are equal after all.
 | |
|     // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
 | |
|     // to FC1.Header? I think this is basically what the three sequences are
 | |
|     // trying to accomplish; however, doing this directly in the CFG may mean
 | |
|     // the DT/PDT becomes invalid
 | |
|     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
 | |
|                                                          FC1.Header);
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|         DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
 | |
| 
 | |
|     // The pre-header of L1 is not necessary anymore.
 | |
|     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
 | |
|     FC1.Preheader->getTerminator()->eraseFromParent();
 | |
|     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|         DominatorTree::Delete, FC1.Preheader, FC1.Header));
 | |
| 
 | |
|     // Moves the phi nodes from the second to the first loops header block.
 | |
|     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
 | |
|       if (SE.isSCEVable(PHI->getType()))
 | |
|         SE.forgetValue(PHI);
 | |
|       if (PHI->hasNUsesOrMore(1))
 | |
|         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
 | |
|       else
 | |
|         PHI->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     // Introduce new phi nodes in the second loop header to ensure
 | |
|     // exiting the first and jumping to the header of the second does not break
 | |
|     // the SSA property of the phis originally in the first loop. See also the
 | |
|     // comment above.
 | |
|     Instruction *L1HeaderIP = &FC1.Header->front();
 | |
|     for (PHINode *LCPHI : OriginalFC0PHIs) {
 | |
|       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
 | |
|       assert(L1LatchBBIdx >= 0 &&
 | |
|              "Expected loop carried value to be rewired at this point!");
 | |
| 
 | |
|       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
 | |
| 
 | |
|       PHINode *L1HeaderPHI = PHINode::Create(
 | |
|           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
 | |
|       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
 | |
|       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
 | |
|                                FC0.ExitingBlock);
 | |
| 
 | |
|       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
 | |
|     }
 | |
| 
 | |
|     // Replace latch terminator destinations.
 | |
|     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
 | |
|     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
 | |
| 
 | |
|     // Change the condition of FC0 latch branch to true, as both successors of
 | |
|     // the branch are the same.
 | |
|     simplifyLatchBranch(FC0);
 | |
| 
 | |
|     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
 | |
|     // performed the updates above.
 | |
|     if (FC0.Latch != FC0.ExitingBlock)
 | |
|       TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|           DominatorTree::Insert, FC0.Latch, FC1.Header));
 | |
| 
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
 | |
|                                                        FC0.Latch, FC0.Header));
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
 | |
|                                                        FC1.Latch, FC0.Header));
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
 | |
|                                                        FC1.Latch, FC1.Header));
 | |
| 
 | |
|     // Update DT/PDT
 | |
|     DTU.applyUpdates(TreeUpdates);
 | |
| 
 | |
|     LI.removeBlock(FC1.Preheader);
 | |
|     DTU.deleteBB(FC1.Preheader);
 | |
|     DTU.flush();
 | |
| 
 | |
|     // Is there a way to keep SE up-to-date so we don't need to forget the loops
 | |
|     // and rebuild the information in subsequent passes of fusion?
 | |
|     // Note: Need to forget the loops before merging the loop latches, as
 | |
|     // mergeLatch may remove the only block in FC1.
 | |
|     SE.forgetLoop(FC1.L);
 | |
|     SE.forgetLoop(FC0.L);
 | |
| 
 | |
|     // Move instructions from FC0.Latch to FC1.Latch.
 | |
|     // Note: mergeLatch requires an updated DT.
 | |
|     mergeLatch(FC0, FC1);
 | |
| 
 | |
|     // Merge the loops.
 | |
|     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
 | |
|                                         FC1.L->block_end());
 | |
|     for (BasicBlock *BB : Blocks) {
 | |
|       FC0.L->addBlockEntry(BB);
 | |
|       FC1.L->removeBlockFromLoop(BB);
 | |
|       if (LI.getLoopFor(BB) != FC1.L)
 | |
|         continue;
 | |
|       LI.changeLoopFor(BB, FC0.L);
 | |
|     }
 | |
|     while (!FC1.L->empty()) {
 | |
|       const auto &ChildLoopIt = FC1.L->begin();
 | |
|       Loop *ChildLoop = *ChildLoopIt;
 | |
|       FC1.L->removeChildLoop(ChildLoopIt);
 | |
|       FC0.L->addChildLoop(ChildLoop);
 | |
|     }
 | |
| 
 | |
|     // Delete the now empty loop L1.
 | |
|     LI.erase(FC1.L);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
 | |
|     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
 | |
|     assert(PDT.verify());
 | |
|     LI.verify(DT);
 | |
|     SE.verify();
 | |
| #endif
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Fusion done:\n");
 | |
| 
 | |
|     return FC0.L;
 | |
|   }
 | |
| 
 | |
|   /// Report details on loop fusion opportunities.
 | |
|   ///
 | |
|   /// This template function can be used to report both successful and missed
 | |
|   /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
 | |
|   /// be one of:
 | |
|   ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
 | |
|   ///     given two valid fusion candidates.
 | |
|   ///   - OptimizationRemark to report successful fusion of two fusion
 | |
|   ///     candidates.
 | |
|   /// The remarks will be printed using the form:
 | |
|   ///    <path/filename>:<line number>:<column number>: [<function name>]:
 | |
|   ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
 | |
|   template <typename RemarkKind>
 | |
|   void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
 | |
|                         llvm::Statistic &Stat) {
 | |
|     assert(FC0.Preheader && FC1.Preheader &&
 | |
|            "Expecting valid fusion candidates");
 | |
|     using namespace ore;
 | |
|     ++Stat;
 | |
|     ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
 | |
|                         FC0.Preheader)
 | |
|              << "[" << FC0.Preheader->getParent()->getName()
 | |
|              << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
 | |
|              << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
 | |
|              << ": " << Stat.getDesc());
 | |
|   }
 | |
| 
 | |
|   /// Fuse two guarded fusion candidates, creating a new fused loop.
 | |
|   ///
 | |
|   /// Fusing guarded loops is handled much the same way as fusing non-guarded
 | |
|   /// loops. The rewiring of the CFG is slightly different though, because of
 | |
|   /// the presence of the guards around the loops and the exit blocks after the
 | |
|   /// loop body. As such, the new loop is rewired as follows:
 | |
|   ///    1. Keep the guard branch from FC0 and use the non-loop block target
 | |
|   /// from the FC1 guard branch.
 | |
|   ///    2. Remove the exit block from FC0 (this exit block should be empty
 | |
|   /// right now).
 | |
|   ///    3. Remove the guard branch for FC1
 | |
|   ///    4. Remove the preheader for FC1.
 | |
|   /// The exit block successor for the latch of FC0 is updated to be the header
 | |
|   /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
 | |
|   /// be the header of FC0, thus creating the fused loop.
 | |
|   Loop *fuseGuardedLoops(const FusionCandidate &FC0,
 | |
|                          const FusionCandidate &FC1) {
 | |
|     assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
 | |
| 
 | |
|     BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
 | |
|     BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
 | |
|     BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
 | |
|     BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
 | |
| 
 | |
|     // Move instructions from the exit block of FC0 to the beginning of the exit
 | |
|     // block of FC1.
 | |
|     moveInstructionsToTheBeginning(*FC0.ExitBlock, *FC1.ExitBlock, DT, PDT, DI);
 | |
| 
 | |
|     // Move instructions from the guard block of FC1 to the end of the guard
 | |
|     // block of FC0.
 | |
|     moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
 | |
| 
 | |
|     assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
 | |
| 
 | |
|     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
 | |
| 
 | |
|     ////////////////////////////////////////////////////////////////////////////
 | |
|     // Update the Loop Guard
 | |
|     ////////////////////////////////////////////////////////////////////////////
 | |
|     // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
 | |
|     // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
 | |
|     // Thus, one path from the guard goes to the preheader for FC0 (and thus
 | |
|     // executes the new fused loop) and the other path goes to the NonLoopBlock
 | |
|     // for FC1 (where FC1 guard would have gone if FC1 was not executed).
 | |
|     FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
 | |
|     FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock,
 | |
|                                                       FC1.Header);
 | |
| 
 | |
|     // The guard of FC1 is not necessary anymore.
 | |
|     FC1.GuardBranch->eraseFromParent();
 | |
|     new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
 | |
| 
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|         DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|         DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|         DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|         DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
 | |
| 
 | |
|     assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
 | |
|            "Expecting guard block to have no predecessors");
 | |
|     assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
 | |
|            "Expecting guard block to have no successors");
 | |
| 
 | |
|     // Remember the phi nodes originally in the header of FC0 in order to rewire
 | |
|     // them later. However, this is only necessary if the new loop carried
 | |
|     // values might not dominate the exiting branch. While we do not generally
 | |
|     // test if this is the case but simply insert intermediate phi nodes, we
 | |
|     // need to make sure these intermediate phi nodes have different
 | |
|     // predecessors. To this end, we filter the special case where the exiting
 | |
|     // block is the latch block of the first loop. Nothing needs to be done
 | |
|     // anyway as all loop carried values dominate the latch and thereby also the
 | |
|     // exiting branch.
 | |
|     // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
 | |
|     // (because the loops are rotated. Thus, nothing will ever be added to
 | |
|     // OriginalFC0PHIs.
 | |
|     SmallVector<PHINode *, 8> OriginalFC0PHIs;
 | |
|     if (FC0.ExitingBlock != FC0.Latch)
 | |
|       for (PHINode &PHI : FC0.Header->phis())
 | |
|         OriginalFC0PHIs.push_back(&PHI);
 | |
| 
 | |
|     assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
 | |
| 
 | |
|     // Replace incoming blocks for header PHIs first.
 | |
|     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
 | |
|     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
 | |
| 
 | |
|     // The old exiting block of the first loop (FC0) has to jump to the header
 | |
|     // of the second as we need to execute the code in the second header block
 | |
|     // regardless of the trip count. That is, if the trip count is 0, so the
 | |
|     // back edge is never taken, we still have to execute both loop headers,
 | |
|     // especially (but not only!) if the second is a do-while style loop.
 | |
|     // However, doing so might invalidate the phi nodes of the first loop as
 | |
|     // the new values do only need to dominate their latch and not the exiting
 | |
|     // predicate. To remedy this potential problem we always introduce phi
 | |
|     // nodes in the header of the second loop later that select the loop carried
 | |
|     // value, if the second header was reached through an old latch of the
 | |
|     // first, or undef otherwise. This is sound as exiting the first implies the
 | |
|     // second will exit too, __without__ taking the back-edge (their
 | |
|     // trip-counts are equal after all).
 | |
|     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
 | |
|                                                          FC1.Header);
 | |
| 
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|         DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
 | |
| 
 | |
|     // Remove FC0 Exit Block
 | |
|     // The exit block for FC0 is no longer needed since control will flow
 | |
|     // directly to the header of FC1. Since it is an empty block, it can be
 | |
|     // removed at this point.
 | |
|     // TODO: In the future, we can handle non-empty exit blocks my merging any
 | |
|     // instructions from FC0 exit block into FC1 exit block prior to removing
 | |
|     // the block.
 | |
|     assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
 | |
|            "Expecting exit block to be empty");
 | |
|     FC0.ExitBlock->getTerminator()->eraseFromParent();
 | |
|     new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
 | |
| 
 | |
|     // Remove FC1 Preheader
 | |
|     // The pre-header of L1 is not necessary anymore.
 | |
|     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
 | |
|     FC1.Preheader->getTerminator()->eraseFromParent();
 | |
|     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|         DominatorTree::Delete, FC1.Preheader, FC1.Header));
 | |
| 
 | |
|     // Moves the phi nodes from the second to the first loops header block.
 | |
|     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
 | |
|       if (SE.isSCEVable(PHI->getType()))
 | |
|         SE.forgetValue(PHI);
 | |
|       if (PHI->hasNUsesOrMore(1))
 | |
|         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
 | |
|       else
 | |
|         PHI->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     // Introduce new phi nodes in the second loop header to ensure
 | |
|     // exiting the first and jumping to the header of the second does not break
 | |
|     // the SSA property of the phis originally in the first loop. See also the
 | |
|     // comment above.
 | |
|     Instruction *L1HeaderIP = &FC1.Header->front();
 | |
|     for (PHINode *LCPHI : OriginalFC0PHIs) {
 | |
|       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
 | |
|       assert(L1LatchBBIdx >= 0 &&
 | |
|              "Expected loop carried value to be rewired at this point!");
 | |
| 
 | |
|       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
 | |
| 
 | |
|       PHINode *L1HeaderPHI = PHINode::Create(
 | |
|           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
 | |
|       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
 | |
|       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
 | |
|                                FC0.ExitingBlock);
 | |
| 
 | |
|       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
 | |
|     }
 | |
| 
 | |
|     // Update the latches
 | |
| 
 | |
|     // Replace latch terminator destinations.
 | |
|     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
 | |
|     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
 | |
| 
 | |
|     // Change the condition of FC0 latch branch to true, as both successors of
 | |
|     // the branch are the same.
 | |
|     simplifyLatchBranch(FC0);
 | |
| 
 | |
|     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
 | |
|     // performed the updates above.
 | |
|     if (FC0.Latch != FC0.ExitingBlock)
 | |
|       TreeUpdates.emplace_back(DominatorTree::UpdateType(
 | |
|           DominatorTree::Insert, FC0.Latch, FC1.Header));
 | |
| 
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
 | |
|                                                        FC0.Latch, FC0.Header));
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
 | |
|                                                        FC1.Latch, FC0.Header));
 | |
|     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
 | |
|                                                        FC1.Latch, FC1.Header));
 | |
| 
 | |
|     // All done
 | |
|     // Apply the updates to the Dominator Tree and cleanup.
 | |
| 
 | |
|     assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
 | |
|            "FC1GuardBlock has successors!!");
 | |
|     assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
 | |
|            "FC1GuardBlock has predecessors!!");
 | |
| 
 | |
|     // Update DT/PDT
 | |
|     DTU.applyUpdates(TreeUpdates);
 | |
| 
 | |
|     LI.removeBlock(FC1.Preheader);
 | |
|     DTU.deleteBB(FC1.Preheader);
 | |
|     DTU.deleteBB(FC0.ExitBlock);
 | |
|     DTU.flush();
 | |
| 
 | |
|     // Is there a way to keep SE up-to-date so we don't need to forget the loops
 | |
|     // and rebuild the information in subsequent passes of fusion?
 | |
|     // Note: Need to forget the loops before merging the loop latches, as
 | |
|     // mergeLatch may remove the only block in FC1.
 | |
|     SE.forgetLoop(FC1.L);
 | |
|     SE.forgetLoop(FC0.L);
 | |
| 
 | |
|     // Move instructions from FC0.Latch to FC1.Latch.
 | |
|     // Note: mergeLatch requires an updated DT.
 | |
|     mergeLatch(FC0, FC1);
 | |
| 
 | |
|     // Merge the loops.
 | |
|     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
 | |
|                                         FC1.L->block_end());
 | |
|     for (BasicBlock *BB : Blocks) {
 | |
|       FC0.L->addBlockEntry(BB);
 | |
|       FC1.L->removeBlockFromLoop(BB);
 | |
|       if (LI.getLoopFor(BB) != FC1.L)
 | |
|         continue;
 | |
|       LI.changeLoopFor(BB, FC0.L);
 | |
|     }
 | |
|     while (!FC1.L->empty()) {
 | |
|       const auto &ChildLoopIt = FC1.L->begin();
 | |
|       Loop *ChildLoop = *ChildLoopIt;
 | |
|       FC1.L->removeChildLoop(ChildLoopIt);
 | |
|       FC0.L->addChildLoop(ChildLoop);
 | |
|     }
 | |
| 
 | |
|     // Delete the now empty loop L1.
 | |
|     LI.erase(FC1.L);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
 | |
|     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
 | |
|     assert(PDT.verify());
 | |
|     LI.verify(DT);
 | |
|     SE.verify();
 | |
| #endif
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Fusion done:\n");
 | |
| 
 | |
|     return FC0.L;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct LoopFuseLegacy : public FunctionPass {
 | |
| 
 | |
|   static char ID;
 | |
| 
 | |
|   LoopFuseLegacy() : FunctionPass(ID) {
 | |
|     initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequiredID(LoopSimplifyID);
 | |
|     AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<PostDominatorTreeWrapperPass>();
 | |
|     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | |
|     AU.addRequired<DependenceAnalysisWrapperPass>();
 | |
| 
 | |
|     AU.addPreserved<ScalarEvolutionWrapperPass>();
 | |
|     AU.addPreserved<LoopInfoWrapperPass>();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<PostDominatorTreeWrapperPass>();
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipFunction(F))
 | |
|       return false;
 | |
|     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
 | |
|     auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
 | |
|     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
 | |
| 
 | |
|     const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|     LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
 | |
|     return LF.fuseLoops(F);
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   auto &LI = AM.getResult<LoopAnalysis>(F);
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto &DI = AM.getResult<DependenceAnalysis>(F);
 | |
|   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
 | |
|   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
 | |
|   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | |
| 
 | |
|   const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|   LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
 | |
|   bool Changed = LF.fuseLoops(F);
 | |
|   if (!Changed)
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserve<DominatorTreeAnalysis>();
 | |
|   PA.preserve<PostDominatorTreeAnalysis>();
 | |
|   PA.preserve<ScalarEvolutionAnalysis>();
 | |
|   PA.preserve<LoopAnalysis>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| char LoopFuseLegacy::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
 | |
|                       false)
 | |
| INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
 | |
| INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
 |