forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1247 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1247 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The LoopPredication pass tries to convert loop variant range checks to loop
 | |
| // invariant by widening checks across loop iterations. For example, it will
 | |
| // convert
 | |
| //
 | |
| //   for (i = 0; i < n; i++) {
 | |
| //     guard(i < len);
 | |
| //     ...
 | |
| //   }
 | |
| //
 | |
| // to
 | |
| //
 | |
| //   for (i = 0; i < n; i++) {
 | |
| //     guard(n - 1 < len);
 | |
| //     ...
 | |
| //   }
 | |
| //
 | |
| // After this transformation the condition of the guard is loop invariant, so
 | |
| // loop-unswitch can later unswitch the loop by this condition which basically
 | |
| // predicates the loop by the widened condition:
 | |
| //
 | |
| //   if (n - 1 < len)
 | |
| //     for (i = 0; i < n; i++) {
 | |
| //       ...
 | |
| //     }
 | |
| //   else
 | |
| //     deoptimize
 | |
| //
 | |
| // It's tempting to rely on SCEV here, but it has proven to be problematic.
 | |
| // Generally the facts SCEV provides about the increment step of add
 | |
| // recurrences are true if the backedge of the loop is taken, which implicitly
 | |
| // assumes that the guard doesn't fail. Using these facts to optimize the
 | |
| // guard results in a circular logic where the guard is optimized under the
 | |
| // assumption that it never fails.
 | |
| //
 | |
| // For example, in the loop below the induction variable will be marked as nuw
 | |
| // basing on the guard. Basing on nuw the guard predicate will be considered
 | |
| // monotonic. Given a monotonic condition it's tempting to replace the induction
 | |
| // variable in the condition with its value on the last iteration. But this
 | |
| // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
 | |
| //
 | |
| //   for (int i = b; i != e; i++)
 | |
| //     guard(i u< len)
 | |
| //
 | |
| // One of the ways to reason about this problem is to use an inductive proof
 | |
| // approach. Given the loop:
 | |
| //
 | |
| //   if (B(0)) {
 | |
| //     do {
 | |
| //       I = PHI(0, I.INC)
 | |
| //       I.INC = I + Step
 | |
| //       guard(G(I));
 | |
| //     } while (B(I));
 | |
| //   }
 | |
| //
 | |
| // where B(x) and G(x) are predicates that map integers to booleans, we want a
 | |
| // loop invariant expression M such the following program has the same semantics
 | |
| // as the above:
 | |
| //
 | |
| //   if (B(0)) {
 | |
| //     do {
 | |
| //       I = PHI(0, I.INC)
 | |
| //       I.INC = I + Step
 | |
| //       guard(G(0) && M);
 | |
| //     } while (B(I));
 | |
| //   }
 | |
| //
 | |
| // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
 | |
| //
 | |
| // Informal proof that the transformation above is correct:
 | |
| //
 | |
| //   By the definition of guards we can rewrite the guard condition to:
 | |
| //     G(I) && G(0) && M
 | |
| //
 | |
| //   Let's prove that for each iteration of the loop:
 | |
| //     G(0) && M => G(I)
 | |
| //   And the condition above can be simplified to G(Start) && M.
 | |
| //
 | |
| //   Induction base.
 | |
| //     G(0) && M => G(0)
 | |
| //
 | |
| //   Induction step. Assuming G(0) && M => G(I) on the subsequent
 | |
| //   iteration:
 | |
| //
 | |
| //     B(I) is true because it's the backedge condition.
 | |
| //     G(I) is true because the backedge is guarded by this condition.
 | |
| //
 | |
| //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
 | |
| //
 | |
| // Note that we can use anything stronger than M, i.e. any condition which
 | |
| // implies M.
 | |
| //
 | |
| // When S = 1 (i.e. forward iterating loop), the transformation is supported
 | |
| // when:
 | |
| //   * The loop has a single latch with the condition of the form:
 | |
| //     B(X) = latchStart + X <pred> latchLimit,
 | |
| //     where <pred> is u<, u<=, s<, or s<=.
 | |
| //   * The guard condition is of the form
 | |
| //     G(X) = guardStart + X u< guardLimit
 | |
| //
 | |
| //   For the ult latch comparison case M is:
 | |
| //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
 | |
| //        guardStart + X + 1 u< guardLimit
 | |
| //
 | |
| //   The only way the antecedent can be true and the consequent can be false is
 | |
| //   if
 | |
| //     X == guardLimit - 1 - guardStart
 | |
| //   (and guardLimit is non-zero, but we won't use this latter fact).
 | |
| //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
 | |
| //     latchStart + guardLimit - 1 - guardStart u< latchLimit
 | |
| //   and its negation is
 | |
| //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
 | |
| //
 | |
| //   In other words, if
 | |
| //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
 | |
| //   then:
 | |
| //   (the ranges below are written in ConstantRange notation, where [A, B) is the
 | |
| //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
 | |
| //
 | |
| //      forall X . guardStart + X u< guardLimit &&
 | |
| //                 latchStart + X u< latchLimit =>
 | |
| //        guardStart + X + 1 u< guardLimit
 | |
| //   == forall X . guardStart + X u< guardLimit &&
 | |
| //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
 | |
| //        guardStart + X + 1 u< guardLimit
 | |
| //   == forall X . (guardStart + X) in [0, guardLimit) &&
 | |
| //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
 | |
| //        (guardStart + X + 1) in [0, guardLimit)
 | |
| //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
 | |
| //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
 | |
| //         X in [-guardStart - 1, guardLimit - guardStart - 1)
 | |
| //   == true
 | |
| //
 | |
| //   So the widened condition is:
 | |
| //     guardStart u< guardLimit &&
 | |
| //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
 | |
| //   Similarly for ule condition the widened condition is:
 | |
| //     guardStart u< guardLimit &&
 | |
| //     latchStart + guardLimit - 1 - guardStart u> latchLimit
 | |
| //   For slt condition the widened condition is:
 | |
| //     guardStart u< guardLimit &&
 | |
| //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
 | |
| //   For sle condition the widened condition is:
 | |
| //     guardStart u< guardLimit &&
 | |
| //     latchStart + guardLimit - 1 - guardStart s> latchLimit
 | |
| //
 | |
| // When S = -1 (i.e. reverse iterating loop), the transformation is supported
 | |
| // when:
 | |
| //   * The loop has a single latch with the condition of the form:
 | |
| //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
 | |
| //   * The guard condition is of the form
 | |
| //     G(X) = X - 1 u< guardLimit
 | |
| //
 | |
| //   For the ugt latch comparison case M is:
 | |
| //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
 | |
| //
 | |
| //   The only way the antecedent can be true and the consequent can be false is if
 | |
| //     X == 1.
 | |
| //   If X == 1 then the second half of the antecedent is
 | |
| //     1 u> latchLimit, and its negation is latchLimit u>= 1.
 | |
| //
 | |
| //   So the widened condition is:
 | |
| //     guardStart u< guardLimit && latchLimit u>= 1.
 | |
| //   Similarly for sgt condition the widened condition is:
 | |
| //     guardStart u< guardLimit && latchLimit s>= 1.
 | |
| //   For uge condition the widened condition is:
 | |
| //     guardStart u< guardLimit && latchLimit u> 1.
 | |
| //   For sge condition the widened condition is:
 | |
| //     guardStart u< guardLimit && latchLimit s> 1.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/LoopPredication.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/GuardUtils.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/GuardUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| 
 | |
| #define DEBUG_TYPE "loop-predication"
 | |
| 
 | |
| STATISTIC(TotalConsidered, "Number of guards considered");
 | |
| STATISTIC(TotalWidened, "Number of checks widened");
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
 | |
|                                         cl::Hidden, cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
 | |
|                                         cl::Hidden, cl::init(true));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
 | |
|                             cl::Hidden, cl::init(false));
 | |
| 
 | |
| // This is the scale factor for the latch probability. We use this during
 | |
| // profitability analysis to find other exiting blocks that have a much higher
 | |
| // probability of exiting the loop instead of loop exiting via latch.
 | |
| // This value should be greater than 1 for a sane profitability check.
 | |
| static cl::opt<float> LatchExitProbabilityScale(
 | |
|     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
 | |
|     cl::desc("scale factor for the latch probability. Value should be greater "
 | |
|              "than 1. Lower values are ignored"));
 | |
| 
 | |
| static cl::opt<bool> PredicateWidenableBranchGuards(
 | |
|     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
 | |
|     cl::desc("Whether or not we should predicate guards "
 | |
|              "expressed as widenable branches to deoptimize blocks"),
 | |
|     cl::init(true));
 | |
| 
 | |
| namespace {
 | |
| /// Represents an induction variable check:
 | |
| ///   icmp Pred, <induction variable>, <loop invariant limit>
 | |
| struct LoopICmp {
 | |
|   ICmpInst::Predicate Pred;
 | |
|   const SCEVAddRecExpr *IV;
 | |
|   const SCEV *Limit;
 | |
|   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
 | |
|            const SCEV *Limit)
 | |
|     : Pred(Pred), IV(IV), Limit(Limit) {}
 | |
|   LoopICmp() {}
 | |
|   void dump() {
 | |
|     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
 | |
|            << ", Limit = " << *Limit << "\n";
 | |
|   }
 | |
| };
 | |
| 
 | |
| class LoopPredication {
 | |
|   AliasAnalysis *AA;
 | |
|   DominatorTree *DT;
 | |
|   ScalarEvolution *SE;
 | |
|   LoopInfo *LI;
 | |
|   BranchProbabilityInfo *BPI;
 | |
| 
 | |
|   Loop *L;
 | |
|   const DataLayout *DL;
 | |
|   BasicBlock *Preheader;
 | |
|   LoopICmp LatchCheck;
 | |
| 
 | |
|   bool isSupportedStep(const SCEV* Step);
 | |
|   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
 | |
|   Optional<LoopICmp> parseLoopLatchICmp();
 | |
| 
 | |
|   /// Return an insertion point suitable for inserting a safe to speculate
 | |
|   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
 | |
|   /// trivial result would be the at the User itself, but we try to return a
 | |
|   /// loop invariant location if possible.  
 | |
|   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
 | |
|   /// Same as above, *except* that this uses the SCEV definition of invariant
 | |
|   /// which is that an expression *can be made* invariant via SCEVExpander.
 | |
|   /// Thus, this version is only suitable for finding an insert point to be be
 | |
|   /// passed to SCEVExpander!
 | |
|   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
 | |
| 
 | |
|   /// Return true if the value is known to produce a single fixed value across
 | |
|   /// all iterations on which it executes.  Note that this does not imply
 | |
|   /// speculation safety.  That must be established seperately.  
 | |
|   bool isLoopInvariantValue(const SCEV* S);
 | |
| 
 | |
|   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
 | |
|                      ICmpInst::Predicate Pred, const SCEV *LHS,
 | |
|                      const SCEV *RHS);
 | |
| 
 | |
|   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
 | |
|                                         Instruction *Guard);
 | |
|   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
 | |
|                                                         LoopICmp RangeCheck,
 | |
|                                                         SCEVExpander &Expander,
 | |
|                                                         Instruction *Guard);
 | |
|   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
 | |
|                                                         LoopICmp RangeCheck,
 | |
|                                                         SCEVExpander &Expander,
 | |
|                                                         Instruction *Guard);
 | |
|   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
 | |
|                          SCEVExpander &Expander, Instruction *Guard);
 | |
|   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
 | |
|   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
 | |
|   // If the loop always exits through another block in the loop, we should not
 | |
|   // predicate based on the latch check. For example, the latch check can be a
 | |
|   // very coarse grained check and there can be more fine grained exit checks
 | |
|   // within the loop. We identify such unprofitable loops through BPI.
 | |
|   bool isLoopProfitableToPredicate();
 | |
| 
 | |
|   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
 | |
| 
 | |
| public:
 | |
|   LoopPredication(AliasAnalysis *AA, DominatorTree *DT,
 | |
|                   ScalarEvolution *SE, LoopInfo *LI,
 | |
|                   BranchProbabilityInfo *BPI)
 | |
|     : AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI) {};
 | |
|   bool runOnLoop(Loop *L);
 | |
| };
 | |
| 
 | |
| class LoopPredicationLegacyPass : public LoopPass {
 | |
| public:
 | |
|   static char ID;
 | |
|   LoopPredicationLegacyPass() : LoopPass(ID) {
 | |
|     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<BranchProbabilityInfoWrapperPass>();
 | |
|     getLoopAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
 | |
|     if (skipLoop(L))
 | |
|       return false;
 | |
|     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     BranchProbabilityInfo &BPI =
 | |
|         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
 | |
|     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|     LoopPredication LP(AA, DT, SE, LI, &BPI);
 | |
|     return LP.runOnLoop(L);
 | |
|   }
 | |
| };
 | |
| 
 | |
| char LoopPredicationLegacyPass::ID = 0;
 | |
| } // end namespace
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
 | |
|                       "Loop predication", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | |
| INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
 | |
|                     "Loop predication", false, false)
 | |
| 
 | |
| Pass *llvm::createLoopPredicationPass() {
 | |
|   return new LoopPredicationLegacyPass();
 | |
| }
 | |
| 
 | |
| PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
 | |
|                                            LoopStandardAnalysisResults &AR,
 | |
|                                            LPMUpdater &U) {
 | |
|   Function *F = L.getHeader()->getParent();
 | |
|   // For the new PM, we also can't use BranchProbabilityInfo as an analysis
 | |
|   // pass. Function analyses need to be preserved across loop transformations
 | |
|   // but BPI is not preserved, hence a newly built one is needed.
 | |
|   BranchProbabilityInfo BPI;
 | |
|   BPI.calculate(*F, AR.LI);
 | |
|   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, &BPI);
 | |
|   if (!LP.runOnLoop(&L))
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   return getLoopPassPreservedAnalyses();
 | |
| }
 | |
| 
 | |
| Optional<LoopICmp>
 | |
| LoopPredication::parseLoopICmp(ICmpInst *ICI) {
 | |
|   auto Pred = ICI->getPredicate();
 | |
|   auto *LHS = ICI->getOperand(0);
 | |
|   auto *RHS = ICI->getOperand(1);
 | |
| 
 | |
|   const SCEV *LHSS = SE->getSCEV(LHS);
 | |
|   if (isa<SCEVCouldNotCompute>(LHSS))
 | |
|     return None;
 | |
|   const SCEV *RHSS = SE->getSCEV(RHS);
 | |
|   if (isa<SCEVCouldNotCompute>(RHSS))
 | |
|     return None;
 | |
| 
 | |
|   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
 | |
|   if (SE->isLoopInvariant(LHSS, L)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(LHSS, RHSS);
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
 | |
|   if (!AR || AR->getLoop() != L)
 | |
|     return None;
 | |
| 
 | |
|   return LoopICmp(Pred, AR, RHSS);
 | |
| }
 | |
| 
 | |
| Value *LoopPredication::expandCheck(SCEVExpander &Expander,
 | |
|                                     Instruction *Guard, 
 | |
|                                     ICmpInst::Predicate Pred, const SCEV *LHS,
 | |
|                                     const SCEV *RHS) {
 | |
|   Type *Ty = LHS->getType();
 | |
|   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
 | |
| 
 | |
|   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
 | |
|     IRBuilder<> Builder(Guard);
 | |
|     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
 | |
|       return Builder.getTrue();
 | |
|     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
 | |
|                                      LHS, RHS))
 | |
|       return Builder.getFalse();
 | |
|   }
 | |
| 
 | |
|   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
 | |
|   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
 | |
|   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
 | |
|   return Builder.CreateICmp(Pred, LHSV, RHSV);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if its safe to truncate the IV to RangeCheckType.
 | |
| // When the IV type is wider than the range operand type, we can still do loop
 | |
| // predication, by generating SCEVs for the range and latch that are of the
 | |
| // same type. We achieve this by generating a SCEV truncate expression for the
 | |
| // latch IV. This is done iff truncation of the IV is a safe operation,
 | |
| // without loss of information.
 | |
| // Another way to achieve this is by generating a wider type SCEV for the
 | |
| // range check operand, however, this needs a more involved check that
 | |
| // operands do not overflow. This can lead to loss of information when the
 | |
| // range operand is of the form: add i32 %offset, %iv. We need to prove that
 | |
| // sext(x + y) is same as sext(x) + sext(y).
 | |
| // This function returns true if we can safely represent the IV type in
 | |
| // the RangeCheckType without loss of information.
 | |
| static bool isSafeToTruncateWideIVType(const DataLayout &DL,
 | |
|                                        ScalarEvolution &SE,
 | |
|                                        const LoopICmp LatchCheck,
 | |
|                                        Type *RangeCheckType) {
 | |
|   if (!EnableIVTruncation)
 | |
|     return false;
 | |
|   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
 | |
|              DL.getTypeSizeInBits(RangeCheckType) &&
 | |
|          "Expected latch check IV type to be larger than range check operand "
 | |
|          "type!");
 | |
|   // The start and end values of the IV should be known. This is to guarantee
 | |
|   // that truncating the wide type will not lose information.
 | |
|   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
 | |
|   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
 | |
|   if (!Limit || !Start)
 | |
|     return false;
 | |
|   // This check makes sure that the IV does not change sign during loop
 | |
|   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
 | |
|   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
 | |
|   // IV wraps around, and the truncation of the IV would lose the range of
 | |
|   // iterations between 2^32 and 2^64.
 | |
|   bool Increasing;
 | |
|   if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
 | |
|     return false;
 | |
|   // The active bits should be less than the bits in the RangeCheckType. This
 | |
|   // guarantees that truncating the latch check to RangeCheckType is a safe
 | |
|   // operation.
 | |
|   auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
 | |
|   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
 | |
|          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
 | |
| // the requested type if safe to do so.  May involve the use of a new IV.
 | |
| static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
 | |
|                                                  ScalarEvolution &SE,
 | |
|                                                  const LoopICmp LatchCheck,
 | |
|                                                  Type *RangeCheckType) {
 | |
| 
 | |
|   auto *LatchType = LatchCheck.IV->getType();
 | |
|   if (RangeCheckType == LatchType)
 | |
|     return LatchCheck;
 | |
|   // For now, bail out if latch type is narrower than range type.
 | |
|   if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
 | |
|     return None;
 | |
|   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
 | |
|     return None;
 | |
|   // We can now safely identify the truncated version of the IV and limit for
 | |
|   // RangeCheckType.
 | |
|   LoopICmp NewLatchCheck;
 | |
|   NewLatchCheck.Pred = LatchCheck.Pred;
 | |
|   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
 | |
|       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
 | |
|   if (!NewLatchCheck.IV)
 | |
|     return None;
 | |
|   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
 | |
|   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
 | |
|                     << "can be represented as range check type:"
 | |
|                     << *RangeCheckType << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
 | |
|   return NewLatchCheck;
 | |
| }
 | |
| 
 | |
| bool LoopPredication::isSupportedStep(const SCEV* Step) {
 | |
|   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
 | |
| }
 | |
| 
 | |
| Instruction *LoopPredication::findInsertPt(Instruction *Use,
 | |
|                                            ArrayRef<Value*> Ops) {
 | |
|   for (Value *Op : Ops)
 | |
|     if (!L->isLoopInvariant(Op))
 | |
|       return Use;
 | |
|   return Preheader->getTerminator();
 | |
| }
 | |
| 
 | |
| Instruction *LoopPredication::findInsertPt(Instruction *Use,
 | |
|                                            ArrayRef<const SCEV*> Ops) {
 | |
|   // Subtlety: SCEV considers things to be invariant if the value produced is
 | |
|   // the same across iterations.  This is not the same as being able to
 | |
|   // evaluate outside the loop, which is what we actually need here.
 | |
|   for (const SCEV *Op : Ops)
 | |
|     if (!SE->isLoopInvariant(Op, L) ||
 | |
|         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
 | |
|       return Use;
 | |
|   return Preheader->getTerminator();
 | |
| }
 | |
| 
 | |
| bool LoopPredication::isLoopInvariantValue(const SCEV* S) { 
 | |
|   // Handling expressions which produce invariant results, but *haven't* yet
 | |
|   // been removed from the loop serves two important purposes.
 | |
|   // 1) Most importantly, it resolves a pass ordering cycle which would
 | |
|   // otherwise need us to iteration licm, loop-predication, and either
 | |
|   // loop-unswitch or loop-peeling to make progress on examples with lots of
 | |
|   // predicable range checks in a row.  (Since, in the general case,  we can't
 | |
|   // hoist the length checks until the dominating checks have been discharged
 | |
|   // as we can't prove doing so is safe.)
 | |
|   // 2) As a nice side effect, this exposes the value of peeling or unswitching
 | |
|   // much more obviously in the IR.  Otherwise, the cost modeling for other
 | |
|   // transforms would end up needing to duplicate all of this logic to model a
 | |
|   // check which becomes predictable based on a modeled peel or unswitch.
 | |
|   // 
 | |
|   // The cost of doing so in the worst case is an extra fill from the stack  in
 | |
|   // the loop to materialize the loop invariant test value instead of checking
 | |
|   // against the original IV which is presumable in a register inside the loop.
 | |
|   // Such cases are presumably rare, and hint at missing oppurtunities for
 | |
|   // other passes. 
 | |
| 
 | |
|   if (SE->isLoopInvariant(S, L))
 | |
|     // Note: This the SCEV variant, so the original Value* may be within the
 | |
|     // loop even though SCEV has proven it is loop invariant.
 | |
|     return true;
 | |
| 
 | |
|   // Handle a particular important case which SCEV doesn't yet know about which
 | |
|   // shows up in range checks on arrays with immutable lengths.  
 | |
|   // TODO: This should be sunk inside SCEV.
 | |
|   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
 | |
|     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
 | |
|       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
 | |
|         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
 | |
|             LI->hasMetadata(LLVMContext::MD_invariant_load))
 | |
|           return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
 | |
|     LoopICmp LatchCheck, LoopICmp RangeCheck,
 | |
|     SCEVExpander &Expander, Instruction *Guard) {
 | |
|   auto *Ty = RangeCheck.IV->getType();
 | |
|   // Generate the widened condition for the forward loop:
 | |
|   //   guardStart u< guardLimit &&
 | |
|   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
 | |
|   // where <pred> depends on the latch condition predicate. See the file
 | |
|   // header comment for the reasoning.
 | |
|   // guardLimit - guardStart + latchStart - 1
 | |
|   const SCEV *GuardStart = RangeCheck.IV->getStart();
 | |
|   const SCEV *GuardLimit = RangeCheck.Limit;
 | |
|   const SCEV *LatchStart = LatchCheck.IV->getStart();
 | |
|   const SCEV *LatchLimit = LatchCheck.Limit;
 | |
|   // Subtlety: We need all the values to be *invariant* across all iterations,
 | |
|   // but we only need to check expansion safety for those which *aren't*
 | |
|   // already guaranteed to dominate the guard.  
 | |
|   if (!isLoopInvariantValue(GuardStart) ||
 | |
|       !isLoopInvariantValue(GuardLimit) ||
 | |
|       !isLoopInvariantValue(LatchStart) ||
 | |
|       !isLoopInvariantValue(LatchLimit)) {
 | |
|     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
 | |
|     return None;
 | |
|   }
 | |
|   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
 | |
|       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
 | |
|     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   // guardLimit - guardStart + latchStart - 1
 | |
|   const SCEV *RHS =
 | |
|       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
 | |
|                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
 | |
|   auto LimitCheckPred =
 | |
|       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
 | |
|   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
 | |
|  
 | |
|   auto *LimitCheck =
 | |
|       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
 | |
|   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
 | |
|                                           GuardStart, GuardLimit);
 | |
|   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
 | |
|   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
 | |
| }
 | |
| 
 | |
| Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
 | |
|     LoopICmp LatchCheck, LoopICmp RangeCheck,
 | |
|     SCEVExpander &Expander, Instruction *Guard) {
 | |
|   auto *Ty = RangeCheck.IV->getType();
 | |
|   const SCEV *GuardStart = RangeCheck.IV->getStart();
 | |
|   const SCEV *GuardLimit = RangeCheck.Limit;
 | |
|   const SCEV *LatchStart = LatchCheck.IV->getStart();
 | |
|   const SCEV *LatchLimit = LatchCheck.Limit;
 | |
|   // Subtlety: We need all the values to be *invariant* across all iterations,
 | |
|   // but we only need to check expansion safety for those which *aren't*
 | |
|   // already guaranteed to dominate the guard.  
 | |
|   if (!isLoopInvariantValue(GuardStart) ||
 | |
|       !isLoopInvariantValue(GuardLimit) ||
 | |
|       !isLoopInvariantValue(LatchStart) ||
 | |
|       !isLoopInvariantValue(LatchLimit)) {
 | |
|     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
 | |
|     return None;
 | |
|   }
 | |
|   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
 | |
|       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
 | |
|     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
 | |
|     return None;
 | |
|   }
 | |
|   // The decrement of the latch check IV should be the same as the
 | |
|   // rangeCheckIV.
 | |
|   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
 | |
|   if (RangeCheck.IV != PostDecLatchCheckIV) {
 | |
|     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
 | |
|                       << *PostDecLatchCheckIV
 | |
|                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   // Generate the widened condition for CountDownLoop:
 | |
|   // guardStart u< guardLimit &&
 | |
|   // latchLimit <pred> 1.
 | |
|   // See the header comment for reasoning of the checks.
 | |
|   auto LimitCheckPred =
 | |
|       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
 | |
|   auto *FirstIterationCheck = expandCheck(Expander, Guard,
 | |
|                                           ICmpInst::ICMP_ULT,
 | |
|                                           GuardStart, GuardLimit);
 | |
|   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
 | |
|                                  SE->getOne(Ty));
 | |
|   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
 | |
|   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
 | |
| }
 | |
| 
 | |
| static void normalizePredicate(ScalarEvolution *SE, Loop *L,
 | |
|                                LoopICmp& RC) {
 | |
|   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
 | |
|   // ULT/UGE form for ease of handling by our caller. 
 | |
|   if (ICmpInst::isEquality(RC.Pred) &&
 | |
|       RC.IV->getStepRecurrence(*SE)->isOne() &&
 | |
|       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
 | |
|     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
 | |
|       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// If ICI can be widened to a loop invariant condition emits the loop
 | |
| /// invariant condition in the loop preheader and return it, otherwise
 | |
| /// returns None.
 | |
| Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
 | |
|                                                        SCEVExpander &Expander,
 | |
|                                                        Instruction *Guard) {
 | |
|   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
 | |
|   LLVM_DEBUG(ICI->dump());
 | |
| 
 | |
|   // parseLoopStructure guarantees that the latch condition is:
 | |
|   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
 | |
|   // We are looking for the range checks of the form:
 | |
|   //   i u< guardLimit
 | |
|   auto RangeCheck = parseLoopICmp(ICI);
 | |
|   if (!RangeCheck) {
 | |
|     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
 | |
|     return None;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Guard check:\n");
 | |
|   LLVM_DEBUG(RangeCheck->dump());
 | |
|   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
 | |
|     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
 | |
|                       << RangeCheck->Pred << ")!\n");
 | |
|     return None;
 | |
|   }
 | |
|   auto *RangeCheckIV = RangeCheck->IV;
 | |
|   if (!RangeCheckIV->isAffine()) {
 | |
|     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
 | |
|     return None;
 | |
|   }
 | |
|   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
 | |
|   // We cannot just compare with latch IV step because the latch and range IVs
 | |
|   // may have different types.
 | |
|   if (!isSupportedStep(Step)) {
 | |
|     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
 | |
|     return None;
 | |
|   }
 | |
|   auto *Ty = RangeCheckIV->getType();
 | |
|   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
 | |
|   if (!CurrLatchCheckOpt) {
 | |
|     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
 | |
|                          "corresponding to range type: "
 | |
|                       << *Ty << "\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
 | |
|   // At this point, the range and latch step should have the same type, but need
 | |
|   // not have the same value (we support both 1 and -1 steps).
 | |
|   assert(Step->getType() ==
 | |
|              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
 | |
|          "Range and latch steps should be of same type!");
 | |
|   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
 | |
|     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   if (Step->isOne())
 | |
|     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
 | |
|                                                Expander, Guard);
 | |
|   else {
 | |
|     assert(Step->isAllOnesValue() && "Step should be -1!");
 | |
|     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
 | |
|                                                Expander, Guard);
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
 | |
|                                         Value *Condition,
 | |
|                                         SCEVExpander &Expander,
 | |
|                                         Instruction *Guard) {
 | |
|   unsigned NumWidened = 0;
 | |
|   // The guard condition is expected to be in form of:
 | |
|   //   cond1 && cond2 && cond3 ...
 | |
|   // Iterate over subconditions looking for icmp conditions which can be
 | |
|   // widened across loop iterations. Widening these conditions remember the
 | |
|   // resulting list of subconditions in Checks vector.
 | |
|   SmallVector<Value *, 4> Worklist(1, Condition);
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   Value *WideableCond = nullptr;
 | |
|   do {
 | |
|     Value *Condition = Worklist.pop_back_val();
 | |
|     if (!Visited.insert(Condition).second)
 | |
|       continue;
 | |
| 
 | |
|     Value *LHS, *RHS;
 | |
|     using namespace llvm::PatternMatch;
 | |
|     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
 | |
|       Worklist.push_back(LHS);
 | |
|       Worklist.push_back(RHS);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (match(Condition,
 | |
|               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
 | |
|       // Pick any, we don't care which
 | |
|       WideableCond = Condition;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
 | |
|       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
 | |
|                                                    Guard)) {
 | |
|         Checks.push_back(NewRangeCheck.getValue());
 | |
|         NumWidened++;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Save the condition as is if we can't widen it
 | |
|     Checks.push_back(Condition);
 | |
|   } while (!Worklist.empty());
 | |
|   // At the moment, our matching logic for wideable conditions implicitly
 | |
|   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
 | |
|   // Note that if there were multiple calls to wideable condition in the
 | |
|   // traversal, we only need to keep one, and which one is arbitrary.
 | |
|   if (WideableCond)
 | |
|     Checks.push_back(WideableCond);
 | |
|   return NumWidened;
 | |
| }
 | |
| 
 | |
| bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
 | |
|                                            SCEVExpander &Expander) {
 | |
|   LLVM_DEBUG(dbgs() << "Processing guard:\n");
 | |
|   LLVM_DEBUG(Guard->dump());
 | |
| 
 | |
|   TotalConsidered++;
 | |
|   SmallVector<Value *, 4> Checks;
 | |
|   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
 | |
|                                       Guard);
 | |
|   if (NumWidened == 0)
 | |
|     return false;
 | |
| 
 | |
|   TotalWidened += NumWidened;
 | |
| 
 | |
|   // Emit the new guard condition
 | |
|   IRBuilder<> Builder(findInsertPt(Guard, Checks));
 | |
|   Value *AllChecks = Builder.CreateAnd(Checks);
 | |
|   auto *OldCond = Guard->getOperand(0);
 | |
|   Guard->setOperand(0, AllChecks);
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopPredication::widenWidenableBranchGuardConditions(
 | |
|     BranchInst *BI, SCEVExpander &Expander) {
 | |
|   assert(isGuardAsWidenableBranch(BI) && "Must be!");
 | |
|   LLVM_DEBUG(dbgs() << "Processing guard:\n");
 | |
|   LLVM_DEBUG(BI->dump());
 | |
| 
 | |
|   TotalConsidered++;
 | |
|   SmallVector<Value *, 4> Checks;
 | |
|   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
 | |
|                                       Expander, BI);
 | |
|   if (NumWidened == 0)
 | |
|     return false;
 | |
| 
 | |
|   TotalWidened += NumWidened;
 | |
| 
 | |
|   // Emit the new guard condition
 | |
|   IRBuilder<> Builder(findInsertPt(BI, Checks));
 | |
|   Value *AllChecks = Builder.CreateAnd(Checks);
 | |
|   auto *OldCond = BI->getCondition();
 | |
|   BI->setCondition(AllChecks);
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
 | |
|   assert(isGuardAsWidenableBranch(BI) &&
 | |
|          "Stopped being a guard after transform?");
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
 | |
|   using namespace PatternMatch;
 | |
| 
 | |
|   BasicBlock *LoopLatch = L->getLoopLatch();
 | |
|   if (!LoopLatch) {
 | |
|     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
 | |
|   if (!BI || !BI->isConditional()) {
 | |
|     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
 | |
|     return None;
 | |
|   }
 | |
|   BasicBlock *TrueDest = BI->getSuccessor(0);
 | |
|   assert(
 | |
|       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
 | |
|       "One of the latch's destinations must be the header");
 | |
| 
 | |
|   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
 | |
|   if (!ICI) {
 | |
|     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
 | |
|     return None;
 | |
|   }
 | |
|   auto Result = parseLoopICmp(ICI);
 | |
|   if (!Result) {
 | |
|     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   if (TrueDest != L->getHeader())
 | |
|     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
 | |
| 
 | |
|   // Check affine first, so if it's not we don't try to compute the step
 | |
|   // recurrence.
 | |
|   if (!Result->IV->isAffine()) {
 | |
|     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   auto *Step = Result->IV->getStepRecurrence(*SE);
 | |
|   if (!isSupportedStep(Step)) {
 | |
|     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
 | |
|     if (Step->isOne()) {
 | |
|       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
 | |
|              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
 | |
|     } else {
 | |
|       assert(Step->isAllOnesValue() && "Step should be -1!");
 | |
|       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
 | |
|              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   normalizePredicate(SE, L, *Result);
 | |
|   if (IsUnsupportedPredicate(Step, Result->Pred)) {
 | |
|     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
 | |
|                       << ")!\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool LoopPredication::isLoopProfitableToPredicate() {
 | |
|   if (SkipProfitabilityChecks || !BPI)
 | |
|     return true;
 | |
| 
 | |
|   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
 | |
|   L->getExitEdges(ExitEdges);
 | |
|   // If there is only one exiting edge in the loop, it is always profitable to
 | |
|   // predicate the loop.
 | |
|   if (ExitEdges.size() == 1)
 | |
|     return true;
 | |
| 
 | |
|   // Calculate the exiting probabilities of all exiting edges from the loop,
 | |
|   // starting with the LatchExitProbability.
 | |
|   // Heuristic for profitability: If any of the exiting blocks' probability of
 | |
|   // exiting the loop is larger than exiting through the latch block, it's not
 | |
|   // profitable to predicate the loop.
 | |
|   auto *LatchBlock = L->getLoopLatch();
 | |
|   assert(LatchBlock && "Should have a single latch at this point!");
 | |
|   auto *LatchTerm = LatchBlock->getTerminator();
 | |
|   assert(LatchTerm->getNumSuccessors() == 2 &&
 | |
|          "expected to be an exiting block with 2 succs!");
 | |
|   unsigned LatchBrExitIdx =
 | |
|       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
 | |
|   BranchProbability LatchExitProbability =
 | |
|       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
 | |
| 
 | |
|   // Protect against degenerate inputs provided by the user. Providing a value
 | |
|   // less than one, can invert the definition of profitable loop predication.
 | |
|   float ScaleFactor = LatchExitProbabilityScale;
 | |
|   if (ScaleFactor < 1) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs()
 | |
|         << "Ignored user setting for loop-predication-latch-probability-scale: "
 | |
|         << LatchExitProbabilityScale << "\n");
 | |
|     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
 | |
|     ScaleFactor = 1.0;
 | |
|   }
 | |
|   const auto LatchProbabilityThreshold =
 | |
|       LatchExitProbability * ScaleFactor;
 | |
| 
 | |
|   for (const auto &ExitEdge : ExitEdges) {
 | |
|     BranchProbability ExitingBlockProbability =
 | |
|         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
 | |
|     // Some exiting edge has higher probability than the latch exiting edge.
 | |
|     // No longer profitable to predicate.
 | |
|     if (ExitingBlockProbability > LatchProbabilityThreshold)
 | |
|       return false;
 | |
|   }
 | |
|   // Using BPI, we have concluded that the most probable way to exit from the
 | |
|   // loop is through the latch (or there's no profile information and all
 | |
|   // exits are equally likely).
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// If we can (cheaply) find a widenable branch which controls entry into the
 | |
| /// loop, return it.
 | |
| static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
 | |
|   // Walk back through any unconditional executed blocks and see if we can find
 | |
|   // a widenable condition which seems to control execution of this loop.  Note
 | |
|   // that we predict that maythrow calls are likely untaken and thus that it's
 | |
|   // profitable to widen a branch before a maythrow call with a condition
 | |
|   // afterwards even though that may cause the slow path to run in a case where
 | |
|   // it wouldn't have otherwise.
 | |
|   BasicBlock *BB = L->getLoopPreheader();
 | |
|   if (!BB)
 | |
|     return nullptr;
 | |
|   do {
 | |
|     if (BasicBlock *Pred = BB->getSinglePredecessor())
 | |
|       if (BB == Pred->getSingleSuccessor()) {
 | |
|         BB = Pred;
 | |
|         continue;
 | |
|       }
 | |
|     break;
 | |
|   } while (true);
 | |
| 
 | |
|   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
 | |
|     auto *Term = Pred->getTerminator();
 | |
| 
 | |
|     Value *Cond, *WC;
 | |
|     BasicBlock *IfTrueBB, *IfFalseBB;
 | |
|     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
 | |
|         IfTrueBB == BB)
 | |
|       return cast<BranchInst>(Term);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return the minimum of all analyzeable exit counts.  This is an upper bound
 | |
| /// on the actual exit count.  If there are not at least two analyzeable exits,
 | |
| /// returns SCEVCouldNotCompute.
 | |
| static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
 | |
|                                                        DominatorTree &DT,
 | |
|                                                        Loop *L) {
 | |
|   SmallVector<BasicBlock *, 16> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
| 
 | |
|   SmallVector<const SCEV *, 4> ExitCounts;
 | |
|   for (BasicBlock *ExitingBB : ExitingBlocks) {
 | |
|     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
 | |
|     if (isa<SCEVCouldNotCompute>(ExitCount))
 | |
|       continue;
 | |
|     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
 | |
|            "We should only have known counts for exiting blocks that "
 | |
|            "dominate latch!");
 | |
|     ExitCounts.push_back(ExitCount);
 | |
|   }
 | |
|   if (ExitCounts.size() < 2)
 | |
|     return SE.getCouldNotCompute();
 | |
|   return SE.getUMinFromMismatchedTypes(ExitCounts);
 | |
| }
 | |
| 
 | |
| /// This implements an analogous, but entirely distinct transform from the main
 | |
| /// loop predication transform.  This one is phrased in terms of using a
 | |
| /// widenable branch *outside* the loop to allow us to simplify loop exits in a
 | |
| /// following loop.  This is close in spirit to the IndVarSimplify transform
 | |
| /// of the same name, but is materially different widening loosens legality
 | |
| /// sharply.
 | |
| bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
 | |
|   // The transformation performed here aims to widen a widenable condition
 | |
|   // above the loop such that all analyzeable exit leading to deopt are dead.
 | |
|   // It assumes that the latch is the dominant exit for profitability and that
 | |
|   // exits branching to deoptimizing blocks are rarely taken. It relies on the
 | |
|   // semantics of widenable expressions for legality. (i.e. being able to fall
 | |
|   // down the widenable path spuriously allows us to ignore exit order,
 | |
|   // unanalyzeable exits, side effects, exceptional exits, and other challenges
 | |
|   // which restrict the applicability of the non-WC based version of this
 | |
|   // transform in IndVarSimplify.)
 | |
|   //
 | |
|   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
 | |
|   // imply flags on the expression being hoisted and inserting new uses (flags
 | |
|   // are only correct for current uses).  The result is that we may be
 | |
|   // inserting a branch on the value which can be either poison or undef.  In
 | |
|   // this case, the branch can legally go either way; we just need to avoid
 | |
|   // introducing UB.  This is achieved through the use of the freeze
 | |
|   // instruction.  
 | |
| 
 | |
|   SmallVector<BasicBlock *, 16> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
| 
 | |
|   if (ExitingBlocks.empty())
 | |
|     return false; // Nothing to do.
 | |
| 
 | |
|   auto *Latch = L->getLoopLatch();
 | |
|   if (!Latch)
 | |
|     return false;
 | |
| 
 | |
|   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
 | |
|   if (!WidenableBR)
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *LatchEC = SE->getExitCount(L, Latch);
 | |
|   if (isa<SCEVCouldNotCompute>(LatchEC))
 | |
|     return false; // profitability - want hot exit in analyzeable set
 | |
| 
 | |
|   // At this point, we have found an analyzeable latch, and a widenable
 | |
|   // condition above the loop.  If we have a widenable exit within the loop
 | |
|   // (for which we can't compute exit counts), drop the ability to further
 | |
|   // widen so that we gain ability to analyze it's exit count and perform this
 | |
|   // transform.  TODO: It'd be nice to know for sure the exit became
 | |
|   // analyzeable after dropping widenability.
 | |
|   {
 | |
|     bool Invalidate = false;
 | |
|     
 | |
|     for (auto *ExitingBB : ExitingBlocks) {
 | |
|       if (LI->getLoopFor(ExitingBB) != L)
 | |
|         continue;
 | |
| 
 | |
|       auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
 | |
|       if (!BI)
 | |
|         continue;
 | |
| 
 | |
|       Use *Cond, *WC;
 | |
|       BasicBlock *IfTrueBB, *IfFalseBB;
 | |
|       if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
 | |
|           L->contains(IfTrueBB)) {
 | |
|         WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
 | |
|         Invalidate = true;
 | |
|       }
 | |
|     }
 | |
|     if (Invalidate)
 | |
|       SE->forgetLoop(L);
 | |
|   }
 | |
| 
 | |
|   // The use of umin(all analyzeable exits) instead of latch is subtle, but
 | |
|   // important for profitability.  We may have a loop which hasn't been fully
 | |
|   // canonicalized just yet.  If the exit we chose to widen is provably never
 | |
|   // taken, we want the widened form to *also* be provably never taken.  We
 | |
|   // can't guarantee this as a current unanalyzeable exit may later become
 | |
|   // analyzeable, but we can at least avoid the obvious cases.
 | |
|   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
 | |
|   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
 | |
|       !SE->isLoopInvariant(MinEC, L) ||
 | |
|       !isSafeToExpandAt(MinEC, WidenableBR, *SE))
 | |
|     return false;
 | |
| 
 | |
|   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
 | |
|   // that it can only have one transitive use at the moment, and thus moving
 | |
|   // that use to just before the branch and inserting code before it and then
 | |
|   // modifying the operand is legal.
 | |
|   auto *IP = cast<Instruction>(WidenableBR->getCondition());
 | |
|   IP->moveBefore(WidenableBR);
 | |
|   Rewriter.setInsertPoint(IP);
 | |
|   IRBuilder<> B(IP);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   Value *MinECV = nullptr; // lazily generated if needed
 | |
|   for (BasicBlock *ExitingBB : ExitingBlocks) {
 | |
|     // If our exiting block exits multiple loops, we can only rewrite the
 | |
|     // innermost one.  Otherwise, we're changing how many times the innermost
 | |
|     // loop runs before it exits.
 | |
|     if (LI->getLoopFor(ExitingBB) != L)
 | |
|       continue;
 | |
| 
 | |
|     // Can't rewrite non-branch yet.
 | |
|     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
 | |
|     if (!BI)
 | |
|       continue;
 | |
| 
 | |
|     // If already constant, nothing to do.
 | |
|     if (isa<Constant>(BI->getCondition()))
 | |
|       continue;
 | |
| 
 | |
|     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
 | |
|     if (isa<SCEVCouldNotCompute>(ExitCount) ||
 | |
|         ExitCount->getType()->isPointerTy() ||
 | |
|         !isSafeToExpandAt(ExitCount, WidenableBR, *SE))
 | |
|       continue;
 | |
| 
 | |
|     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
 | |
|     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
 | |
|     if (!ExitBB->getPostdominatingDeoptimizeCall())
 | |
|       continue;
 | |
| 
 | |
|     /// Here we can be fairly sure that executing this exit will most likely
 | |
|     /// lead to executing llvm.experimental.deoptimize.
 | |
|     /// This is a profitability heuristic, not a legality constraint.
 | |
| 
 | |
|     // If we found a widenable exit condition, do two things:
 | |
|     // 1) fold the widened exit test into the widenable condition
 | |
|     // 2) fold the branch to untaken - avoids infinite looping
 | |
| 
 | |
|     Value *ECV = Rewriter.expandCodeFor(ExitCount);
 | |
|     if (!MinECV)
 | |
|       MinECV = Rewriter.expandCodeFor(MinEC);
 | |
|     Value *RHS = MinECV;
 | |
|     if (ECV->getType() != RHS->getType()) {
 | |
|       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
 | |
|       ECV = B.CreateZExt(ECV, WiderTy);
 | |
|       RHS = B.CreateZExt(RHS, WiderTy);
 | |
|     }
 | |
|     assert(!Latch || DT->dominates(ExitingBB, Latch));
 | |
|     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
 | |
|     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
 | |
|     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
 | |
|     // context.
 | |
|     NewCond = B.CreateFreeze(NewCond);
 | |
| 
 | |
|     widenWidenableBranch(WidenableBR, NewCond);
 | |
| 
 | |
|     Value *OldCond = BI->getCondition();
 | |
|     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   if (Changed)
 | |
|     // We just mutated a bunch of loop exits changing there exit counts
 | |
|     // widely.  We need to force recomputation of the exit counts given these
 | |
|     // changes.  Note that all of the inserted exits are never taken, and
 | |
|     // should be removed next time the CFG is modified.
 | |
|     SE->forgetLoop(L);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool LoopPredication::runOnLoop(Loop *Loop) {
 | |
|   L = Loop;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Analyzing ");
 | |
|   LLVM_DEBUG(L->dump());
 | |
| 
 | |
|   Module *M = L->getHeader()->getModule();
 | |
| 
 | |
|   // There is nothing to do if the module doesn't use guards
 | |
|   auto *GuardDecl =
 | |
|       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
 | |
|   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
 | |
|   auto *WCDecl = M->getFunction(
 | |
|       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
 | |
|   bool HasWidenableConditions =
 | |
|       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
 | |
|   if (!HasIntrinsicGuards && !HasWidenableConditions)
 | |
|     return false;
 | |
| 
 | |
|   DL = &M->getDataLayout();
 | |
| 
 | |
|   Preheader = L->getLoopPreheader();
 | |
|   if (!Preheader)
 | |
|     return false;
 | |
| 
 | |
|   auto LatchCheckOpt = parseLoopLatchICmp();
 | |
|   if (!LatchCheckOpt)
 | |
|     return false;
 | |
|   LatchCheck = *LatchCheckOpt;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Latch check:\n");
 | |
|   LLVM_DEBUG(LatchCheck.dump());
 | |
| 
 | |
|   if (!isLoopProfitableToPredicate()) {
 | |
|     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
 | |
|     return false;
 | |
|   }
 | |
|   // Collect all the guards into a vector and process later, so as not
 | |
|   // to invalidate the instruction iterator.
 | |
|   SmallVector<IntrinsicInst *, 4> Guards;
 | |
|   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
 | |
|   for (const auto BB : L->blocks()) {
 | |
|     for (auto &I : *BB)
 | |
|       if (isGuard(&I))
 | |
|         Guards.push_back(cast<IntrinsicInst>(&I));
 | |
|     if (PredicateWidenableBranchGuards &&
 | |
|         isGuardAsWidenableBranch(BB->getTerminator()))
 | |
|       GuardsAsWidenableBranches.push_back(
 | |
|           cast<BranchInst>(BB->getTerminator()));
 | |
|   }
 | |
| 
 | |
|   SCEVExpander Expander(*SE, *DL, "loop-predication");
 | |
|   bool Changed = false;
 | |
|   for (auto *Guard : Guards)
 | |
|     Changed |= widenGuardConditions(Guard, Expander);
 | |
|   for (auto *Guard : GuardsAsWidenableBranches)
 | |
|     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
 | |
|   Changed |= predicateLoopExits(L, Expander);
 | |
|   return Changed;
 | |
| }
 |