forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3007 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3007 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C++
		
	
	
	
| ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Sequence.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/GuardUtils.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopAnalysisManager.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/MemorySSA.h"
 | |
| #include "llvm/Analysis/MemorySSAUpdater.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GenericDomTree.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <numeric>
 | |
| #include <utility>
 | |
| 
 | |
| #define DEBUG_TYPE "simple-loop-unswitch"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBranches, "Number of branches unswitched");
 | |
| STATISTIC(NumSwitches, "Number of switches unswitched");
 | |
| STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
 | |
| STATISTIC(NumTrivial, "Number of unswitches that are trivial");
 | |
| STATISTIC(
 | |
|     NumCostMultiplierSkipped,
 | |
|     "Number of unswitch candidates that had their cost multiplier skipped");
 | |
| 
 | |
| static cl::opt<bool> EnableNonTrivialUnswitch(
 | |
|     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
 | |
|              "following the configuration passed into the pass."));
 | |
| 
 | |
| static cl::opt<int>
 | |
|     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
 | |
|                       cl::desc("The cost threshold for unswitching a loop."));
 | |
| 
 | |
| static cl::opt<bool> EnableUnswitchCostMultiplier(
 | |
|     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
 | |
|              "explosion in nontrivial unswitch."));
 | |
| static cl::opt<int> UnswitchSiblingsToplevelDiv(
 | |
|     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
 | |
|     cl::desc("Toplevel siblings divisor for cost multiplier."));
 | |
| static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
 | |
|     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
 | |
|     cl::desc("Number of unswitch candidates that are ignored when calculating "
 | |
|              "cost multiplier."));
 | |
| static cl::opt<bool> UnswitchGuards(
 | |
|     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
 | |
|     cl::desc("If enabled, simple loop unswitching will also consider "
 | |
|              "llvm.experimental.guard intrinsics as unswitch candidates."));
 | |
| 
 | |
| /// Collect all of the loop invariant input values transitively used by the
 | |
| /// homogeneous instruction graph from a given root.
 | |
| ///
 | |
| /// This essentially walks from a root recursively through loop variant operands
 | |
| /// which have the exact same opcode and finds all inputs which are loop
 | |
| /// invariant. For some operations these can be re-associated and unswitched out
 | |
| /// of the loop entirely.
 | |
| static TinyPtrVector<Value *>
 | |
| collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
 | |
|                                          LoopInfo &LI) {
 | |
|   assert(!L.isLoopInvariant(&Root) &&
 | |
|          "Only need to walk the graph if root itself is not invariant.");
 | |
|   TinyPtrVector<Value *> Invariants;
 | |
| 
 | |
|   // Build a worklist and recurse through operators collecting invariants.
 | |
|   SmallVector<Instruction *, 4> Worklist;
 | |
|   SmallPtrSet<Instruction *, 8> Visited;
 | |
|   Worklist.push_back(&Root);
 | |
|   Visited.insert(&Root);
 | |
|   do {
 | |
|     Instruction &I = *Worklist.pop_back_val();
 | |
|     for (Value *OpV : I.operand_values()) {
 | |
|       // Skip constants as unswitching isn't interesting for them.
 | |
|       if (isa<Constant>(OpV))
 | |
|         continue;
 | |
| 
 | |
|       // Add it to our result if loop invariant.
 | |
|       if (L.isLoopInvariant(OpV)) {
 | |
|         Invariants.push_back(OpV);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If not an instruction with the same opcode, nothing we can do.
 | |
|       Instruction *OpI = dyn_cast<Instruction>(OpV);
 | |
|       if (!OpI || OpI->getOpcode() != Root.getOpcode())
 | |
|         continue;
 | |
| 
 | |
|       // Visit this operand.
 | |
|       if (Visited.insert(OpI).second)
 | |
|         Worklist.push_back(OpI);
 | |
|     }
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   return Invariants;
 | |
| }
 | |
| 
 | |
| static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
 | |
|                                      Constant &Replacement) {
 | |
|   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
 | |
| 
 | |
|   // Replace uses of LIC in the loop with the given constant.
 | |
|   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
 | |
|     // Grab the use and walk past it so we can clobber it in the use list.
 | |
|     Use *U = &*UI++;
 | |
|     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
 | |
| 
 | |
|     // Replace this use within the loop body.
 | |
|     if (UserI && L.contains(UserI))
 | |
|       U->set(&Replacement);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
 | |
| /// incoming values along this edge.
 | |
| static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
 | |
|                                          BasicBlock &ExitBB) {
 | |
|   for (Instruction &I : ExitBB) {
 | |
|     auto *PN = dyn_cast<PHINode>(&I);
 | |
|     if (!PN)
 | |
|       // No more PHIs to check.
 | |
|       return true;
 | |
| 
 | |
|     // If the incoming value for this edge isn't loop invariant the unswitch
 | |
|     // won't be trivial.
 | |
|     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
 | |
|       return false;
 | |
|   }
 | |
|   llvm_unreachable("Basic blocks should never be empty!");
 | |
| }
 | |
| 
 | |
| /// Insert code to test a set of loop invariant values, and conditionally branch
 | |
| /// on them.
 | |
| static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
 | |
|                                                   ArrayRef<Value *> Invariants,
 | |
|                                                   bool Direction,
 | |
|                                                   BasicBlock &UnswitchedSucc,
 | |
|                                                   BasicBlock &NormalSucc) {
 | |
|   IRBuilder<> IRB(&BB);
 | |
| 
 | |
|   Value *Cond = Direction ? IRB.CreateOr(Invariants) :
 | |
|     IRB.CreateAnd(Invariants);
 | |
|   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
 | |
|                    Direction ? &NormalSucc : &UnswitchedSucc);
 | |
| }
 | |
| 
 | |
| /// Rewrite the PHI nodes in an unswitched loop exit basic block.
 | |
| ///
 | |
| /// Requires that the loop exit and unswitched basic block are the same, and
 | |
| /// that the exiting block was a unique predecessor of that block. Rewrites the
 | |
| /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
 | |
| /// PHI nodes from the old preheader that now contains the unswitched
 | |
| /// terminator.
 | |
| static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
 | |
|                                                   BasicBlock &OldExitingBB,
 | |
|                                                   BasicBlock &OldPH) {
 | |
|   for (PHINode &PN : UnswitchedBB.phis()) {
 | |
|     // When the loop exit is directly unswitched we just need to update the
 | |
|     // incoming basic block. We loop to handle weird cases with repeated
 | |
|     // incoming blocks, but expect to typically only have one operand here.
 | |
|     for (auto i : seq<int>(0, PN.getNumOperands())) {
 | |
|       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
 | |
|              "Found incoming block different from unique predecessor!");
 | |
|       PN.setIncomingBlock(i, &OldPH);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Rewrite the PHI nodes in the loop exit basic block and the split off
 | |
| /// unswitched block.
 | |
| ///
 | |
| /// Because the exit block remains an exit from the loop, this rewrites the
 | |
| /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
 | |
| /// nodes into the unswitched basic block to select between the value in the
 | |
| /// old preheader and the loop exit.
 | |
| static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
 | |
|                                                       BasicBlock &UnswitchedBB,
 | |
|                                                       BasicBlock &OldExitingBB,
 | |
|                                                       BasicBlock &OldPH,
 | |
|                                                       bool FullUnswitch) {
 | |
|   assert(&ExitBB != &UnswitchedBB &&
 | |
|          "Must have different loop exit and unswitched blocks!");
 | |
|   Instruction *InsertPt = &*UnswitchedBB.begin();
 | |
|   for (PHINode &PN : ExitBB.phis()) {
 | |
|     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
 | |
|                                   PN.getName() + ".split", InsertPt);
 | |
| 
 | |
|     // Walk backwards over the old PHI node's inputs to minimize the cost of
 | |
|     // removing each one. We have to do this weird loop manually so that we
 | |
|     // create the same number of new incoming edges in the new PHI as we expect
 | |
|     // each case-based edge to be included in the unswitched switch in some
 | |
|     // cases.
 | |
|     // FIXME: This is really, really gross. It would be much cleaner if LLVM
 | |
|     // allowed us to create a single entry for a predecessor block without
 | |
|     // having separate entries for each "edge" even though these edges are
 | |
|     // required to produce identical results.
 | |
|     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
 | |
|       if (PN.getIncomingBlock(i) != &OldExitingBB)
 | |
|         continue;
 | |
| 
 | |
|       Value *Incoming = PN.getIncomingValue(i);
 | |
|       if (FullUnswitch)
 | |
|         // No more edge from the old exiting block to the exit block.
 | |
|         PN.removeIncomingValue(i);
 | |
| 
 | |
|       NewPN->addIncoming(Incoming, &OldPH);
 | |
|     }
 | |
| 
 | |
|     // Now replace the old PHI with the new one and wire the old one in as an
 | |
|     // input to the new one.
 | |
|     PN.replaceAllUsesWith(NewPN);
 | |
|     NewPN->addIncoming(&PN, &ExitBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Hoist the current loop up to the innermost loop containing a remaining exit.
 | |
| ///
 | |
| /// Because we've removed an exit from the loop, we may have changed the set of
 | |
| /// loops reachable and need to move the current loop up the loop nest or even
 | |
| /// to an entirely separate nest.
 | |
| static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
 | |
|                                  DominatorTree &DT, LoopInfo &LI,
 | |
|                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
 | |
|   // If the loop is already at the top level, we can't hoist it anywhere.
 | |
|   Loop *OldParentL = L.getParentLoop();
 | |
|   if (!OldParentL)
 | |
|     return;
 | |
| 
 | |
|   SmallVector<BasicBlock *, 4> Exits;
 | |
|   L.getExitBlocks(Exits);
 | |
|   Loop *NewParentL = nullptr;
 | |
|   for (auto *ExitBB : Exits)
 | |
|     if (Loop *ExitL = LI.getLoopFor(ExitBB))
 | |
|       if (!NewParentL || NewParentL->contains(ExitL))
 | |
|         NewParentL = ExitL;
 | |
| 
 | |
|   if (NewParentL == OldParentL)
 | |
|     return;
 | |
| 
 | |
|   // The new parent loop (if different) should always contain the old one.
 | |
|   if (NewParentL)
 | |
|     assert(NewParentL->contains(OldParentL) &&
 | |
|            "Can only hoist this loop up the nest!");
 | |
| 
 | |
|   // The preheader will need to move with the body of this loop. However,
 | |
|   // because it isn't in this loop we also need to update the primary loop map.
 | |
|   assert(OldParentL == LI.getLoopFor(&Preheader) &&
 | |
|          "Parent loop of this loop should contain this loop's preheader!");
 | |
|   LI.changeLoopFor(&Preheader, NewParentL);
 | |
| 
 | |
|   // Remove this loop from its old parent.
 | |
|   OldParentL->removeChildLoop(&L);
 | |
| 
 | |
|   // Add the loop either to the new parent or as a top-level loop.
 | |
|   if (NewParentL)
 | |
|     NewParentL->addChildLoop(&L);
 | |
|   else
 | |
|     LI.addTopLevelLoop(&L);
 | |
| 
 | |
|   // Remove this loops blocks from the old parent and every other loop up the
 | |
|   // nest until reaching the new parent. Also update all of these
 | |
|   // no-longer-containing loops to reflect the nesting change.
 | |
|   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
 | |
|        OldContainingL = OldContainingL->getParentLoop()) {
 | |
|     llvm::erase_if(OldContainingL->getBlocksVector(),
 | |
|                    [&](const BasicBlock *BB) {
 | |
|                      return BB == &Preheader || L.contains(BB);
 | |
|                    });
 | |
| 
 | |
|     OldContainingL->getBlocksSet().erase(&Preheader);
 | |
|     for (BasicBlock *BB : L.blocks())
 | |
|       OldContainingL->getBlocksSet().erase(BB);
 | |
| 
 | |
|     // Because we just hoisted a loop out of this one, we have essentially
 | |
|     // created new exit paths from it. That means we need to form LCSSA PHI
 | |
|     // nodes for values used in the no-longer-nested loop.
 | |
|     formLCSSA(*OldContainingL, DT, &LI, SE);
 | |
| 
 | |
|     // We shouldn't need to form dedicated exits because the exit introduced
 | |
|     // here is the (just split by unswitching) preheader. However, after trivial
 | |
|     // unswitching it is possible to get new non-dedicated exits out of parent
 | |
|     // loop so let's conservatively form dedicated exit blocks and figure out
 | |
|     // if we can optimize later.
 | |
|     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
 | |
|                             /*PreserveLCSSA*/ true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return the top-most loop containing ExitBB and having ExitBB as exiting block
 | |
| // or the loop containing ExitBB, if there is no parent loop containing ExitBB
 | |
| // as exiting block.
 | |
| static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
 | |
|   Loop *TopMost = LI.getLoopFor(ExitBB);
 | |
|   Loop *Current = TopMost;
 | |
|   while (Current) {
 | |
|     if (Current->isLoopExiting(ExitBB))
 | |
|       TopMost = Current;
 | |
|     Current = Current->getParentLoop();
 | |
|   }
 | |
|   return TopMost;
 | |
| }
 | |
| 
 | |
| /// Unswitch a trivial branch if the condition is loop invariant.
 | |
| ///
 | |
| /// This routine should only be called when loop code leading to the branch has
 | |
| /// been validated as trivial (no side effects). This routine checks if the
 | |
| /// condition is invariant and one of the successors is a loop exit. This
 | |
| /// allows us to unswitch without duplicating the loop, making it trivial.
 | |
| ///
 | |
| /// If this routine fails to unswitch the branch it returns false.
 | |
| ///
 | |
| /// If the branch can be unswitched, this routine splits the preheader and
 | |
| /// hoists the branch above that split. Preserves loop simplified form
 | |
| /// (splitting the exit block as necessary). It simplifies the branch within
 | |
| /// the loop to an unconditional branch but doesn't remove it entirely. Further
 | |
| /// cleanup can be done with some simplify-cfg like pass.
 | |
| ///
 | |
| /// If `SE` is not null, it will be updated based on the potential loop SCEVs
 | |
| /// invalidated by this.
 | |
| static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
 | |
|                                   LoopInfo &LI, ScalarEvolution *SE,
 | |
|                                   MemorySSAUpdater *MSSAU) {
 | |
|   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
 | |
|   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
 | |
| 
 | |
|   // The loop invariant values that we want to unswitch.
 | |
|   TinyPtrVector<Value *> Invariants;
 | |
| 
 | |
|   // When true, we're fully unswitching the branch rather than just unswitching
 | |
|   // some input conditions to the branch.
 | |
|   bool FullUnswitch = false;
 | |
| 
 | |
|   if (L.isLoopInvariant(BI.getCondition())) {
 | |
|     Invariants.push_back(BI.getCondition());
 | |
|     FullUnswitch = true;
 | |
|   } else {
 | |
|     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
 | |
|       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
 | |
|     if (Invariants.empty())
 | |
|       // Couldn't find invariant inputs!
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check that one of the branch's successors exits, and which one.
 | |
|   bool ExitDirection = true;
 | |
|   int LoopExitSuccIdx = 0;
 | |
|   auto *LoopExitBB = BI.getSuccessor(0);
 | |
|   if (L.contains(LoopExitBB)) {
 | |
|     ExitDirection = false;
 | |
|     LoopExitSuccIdx = 1;
 | |
|     LoopExitBB = BI.getSuccessor(1);
 | |
|     if (L.contains(LoopExitBB))
 | |
|       return false;
 | |
|   }
 | |
|   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
 | |
|   auto *ParentBB = BI.getParent();
 | |
|   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
 | |
|     return false;
 | |
| 
 | |
|   // When unswitching only part of the branch's condition, we need the exit
 | |
|   // block to be reached directly from the partially unswitched input. This can
 | |
|   // be done when the exit block is along the true edge and the branch condition
 | |
|   // is a graph of `or` operations, or the exit block is along the false edge
 | |
|   // and the condition is a graph of `and` operations.
 | |
|   if (!FullUnswitch) {
 | |
|     if (ExitDirection) {
 | |
|       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
 | |
|         return false;
 | |
|     } else {
 | |
|       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "    unswitching trivial invariant conditions for: " << BI
 | |
|            << "\n";
 | |
|     for (Value *Invariant : Invariants) {
 | |
|       dbgs() << "      " << *Invariant << " == true";
 | |
|       if (Invariant != Invariants.back())
 | |
|         dbgs() << " ||";
 | |
|       dbgs() << "\n";
 | |
|     }
 | |
|   });
 | |
| 
 | |
|   // If we have scalar evolutions, we need to invalidate them including this
 | |
|   // loop, the loop containing the exit block and the topmost parent loop
 | |
|   // exiting via LoopExitBB.
 | |
|   if (SE) {
 | |
|     if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
 | |
|       SE->forgetLoop(ExitL);
 | |
|     else
 | |
|       // Forget the entire nest as this exits the entire nest.
 | |
|       SE->forgetTopmostLoop(&L);
 | |
|   }
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   // Split the preheader, so that we know that there is a safe place to insert
 | |
|   // the conditional branch. We will change the preheader to have a conditional
 | |
|   // branch on LoopCond.
 | |
|   BasicBlock *OldPH = L.getLoopPreheader();
 | |
|   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
 | |
| 
 | |
|   // Now that we have a place to insert the conditional branch, create a place
 | |
|   // to branch to: this is the exit block out of the loop that we are
 | |
|   // unswitching. We need to split this if there are other loop predecessors.
 | |
|   // Because the loop is in simplified form, *any* other predecessor is enough.
 | |
|   BasicBlock *UnswitchedBB;
 | |
|   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
 | |
|     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
 | |
|            "A branch's parent isn't a predecessor!");
 | |
|     UnswitchedBB = LoopExitBB;
 | |
|   } else {
 | |
|     UnswitchedBB =
 | |
|         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
 | |
|   }
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   // Actually move the invariant uses into the unswitched position. If possible,
 | |
|   // we do this by moving the instructions, but when doing partial unswitching
 | |
|   // we do it by building a new merge of the values in the unswitched position.
 | |
|   OldPH->getTerminator()->eraseFromParent();
 | |
|   if (FullUnswitch) {
 | |
|     // If fully unswitching, we can use the existing branch instruction.
 | |
|     // Splice it into the old PH to gate reaching the new preheader and re-point
 | |
|     // its successors.
 | |
|     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
 | |
|                                 BI);
 | |
|     if (MSSAU) {
 | |
|       // Temporarily clone the terminator, to make MSSA update cheaper by
 | |
|       // separating "insert edge" updates from "remove edge" ones.
 | |
|       ParentBB->getInstList().push_back(BI.clone());
 | |
|     } else {
 | |
|       // Create a new unconditional branch that will continue the loop as a new
 | |
|       // terminator.
 | |
|       BranchInst::Create(ContinueBB, ParentBB);
 | |
|     }
 | |
|     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
 | |
|     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
 | |
|   } else {
 | |
|     // Only unswitching a subset of inputs to the condition, so we will need to
 | |
|     // build a new branch that merges the invariant inputs.
 | |
|     if (ExitDirection)
 | |
|       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
 | |
|                  Instruction::Or &&
 | |
|              "Must have an `or` of `i1`s for the condition!");
 | |
|     else
 | |
|       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
 | |
|                  Instruction::And &&
 | |
|              "Must have an `and` of `i1`s for the condition!");
 | |
|     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
 | |
|                                           *UnswitchedBB, *NewPH);
 | |
|   }
 | |
| 
 | |
|   // Update the dominator tree with the added edge.
 | |
|   DT.insertEdge(OldPH, UnswitchedBB);
 | |
| 
 | |
|   // After the dominator tree was updated with the added edge, update MemorySSA
 | |
|   // if available.
 | |
|   if (MSSAU) {
 | |
|     SmallVector<CFGUpdate, 1> Updates;
 | |
|     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
 | |
|     MSSAU->applyInsertUpdates(Updates, DT);
 | |
|   }
 | |
| 
 | |
|   // Finish updating dominator tree and memory ssa for full unswitch.
 | |
|   if (FullUnswitch) {
 | |
|     if (MSSAU) {
 | |
|       // Remove the cloned branch instruction.
 | |
|       ParentBB->getTerminator()->eraseFromParent();
 | |
|       // Create unconditional branch now.
 | |
|       BranchInst::Create(ContinueBB, ParentBB);
 | |
|       MSSAU->removeEdge(ParentBB, LoopExitBB);
 | |
|     }
 | |
|     DT.deleteEdge(ParentBB, LoopExitBB);
 | |
|   }
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   // Rewrite the relevant PHI nodes.
 | |
|   if (UnswitchedBB == LoopExitBB)
 | |
|     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
 | |
|   else
 | |
|     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
 | |
|                                               *ParentBB, *OldPH, FullUnswitch);
 | |
| 
 | |
|   // The constant we can replace all of our invariants with inside the loop
 | |
|   // body. If any of the invariants have a value other than this the loop won't
 | |
|   // be entered.
 | |
|   ConstantInt *Replacement = ExitDirection
 | |
|                                  ? ConstantInt::getFalse(BI.getContext())
 | |
|                                  : ConstantInt::getTrue(BI.getContext());
 | |
| 
 | |
|   // Since this is an i1 condition we can also trivially replace uses of it
 | |
|   // within the loop with a constant.
 | |
|   for (Value *Invariant : Invariants)
 | |
|     replaceLoopInvariantUses(L, Invariant, *Replacement);
 | |
| 
 | |
|   // If this was full unswitching, we may have changed the nesting relationship
 | |
|   // for this loop so hoist it to its correct parent if needed.
 | |
|   if (FullUnswitch)
 | |
|     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
 | |
|   ++NumTrivial;
 | |
|   ++NumBranches;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Unswitch a trivial switch if the condition is loop invariant.
 | |
| ///
 | |
| /// This routine should only be called when loop code leading to the switch has
 | |
| /// been validated as trivial (no side effects). This routine checks if the
 | |
| /// condition is invariant and that at least one of the successors is a loop
 | |
| /// exit. This allows us to unswitch without duplicating the loop, making it
 | |
| /// trivial.
 | |
| ///
 | |
| /// If this routine fails to unswitch the switch it returns false.
 | |
| ///
 | |
| /// If the switch can be unswitched, this routine splits the preheader and
 | |
| /// copies the switch above that split. If the default case is one of the
 | |
| /// exiting cases, it copies the non-exiting cases and points them at the new
 | |
| /// preheader. If the default case is not exiting, it copies the exiting cases
 | |
| /// and points the default at the preheader. It preserves loop simplified form
 | |
| /// (splitting the exit blocks as necessary). It simplifies the switch within
 | |
| /// the loop by removing now-dead cases. If the default case is one of those
 | |
| /// unswitched, it replaces its destination with a new basic block containing
 | |
| /// only unreachable. Such basic blocks, while technically loop exits, are not
 | |
| /// considered for unswitching so this is a stable transform and the same
 | |
| /// switch will not be revisited. If after unswitching there is only a single
 | |
| /// in-loop successor, the switch is further simplified to an unconditional
 | |
| /// branch. Still more cleanup can be done with some simplify-cfg like pass.
 | |
| ///
 | |
| /// If `SE` is not null, it will be updated based on the potential loop SCEVs
 | |
| /// invalidated by this.
 | |
| static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
 | |
|                                   LoopInfo &LI, ScalarEvolution *SE,
 | |
|                                   MemorySSAUpdater *MSSAU) {
 | |
|   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
 | |
|   Value *LoopCond = SI.getCondition();
 | |
| 
 | |
|   // If this isn't switching on an invariant condition, we can't unswitch it.
 | |
|   if (!L.isLoopInvariant(LoopCond))
 | |
|     return false;
 | |
| 
 | |
|   auto *ParentBB = SI.getParent();
 | |
| 
 | |
|   SmallVector<int, 4> ExitCaseIndices;
 | |
|   for (auto Case : SI.cases()) {
 | |
|     auto *SuccBB = Case.getCaseSuccessor();
 | |
|     if (!L.contains(SuccBB) &&
 | |
|         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
 | |
|       ExitCaseIndices.push_back(Case.getCaseIndex());
 | |
|   }
 | |
|   BasicBlock *DefaultExitBB = nullptr;
 | |
|   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
 | |
|       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
 | |
|   if (!L.contains(SI.getDefaultDest()) &&
 | |
|       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
 | |
|       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) {
 | |
|     DefaultExitBB = SI.getDefaultDest();
 | |
|   } else if (ExitCaseIndices.empty())
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   // We may need to invalidate SCEVs for the outermost loop reached by any of
 | |
|   // the exits.
 | |
|   Loop *OuterL = &L;
 | |
| 
 | |
|   if (DefaultExitBB) {
 | |
|     // Clear out the default destination temporarily to allow accurate
 | |
|     // predecessor lists to be examined below.
 | |
|     SI.setDefaultDest(nullptr);
 | |
|     // Check the loop containing this exit.
 | |
|     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
 | |
|     if (!ExitL || ExitL->contains(OuterL))
 | |
|       OuterL = ExitL;
 | |
|   }
 | |
| 
 | |
|   // Store the exit cases into a separate data structure and remove them from
 | |
|   // the switch.
 | |
|   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
 | |
|                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
 | |
|               4> ExitCases;
 | |
|   ExitCases.reserve(ExitCaseIndices.size());
 | |
|   SwitchInstProfUpdateWrapper SIW(SI);
 | |
|   // We walk the case indices backwards so that we remove the last case first
 | |
|   // and don't disrupt the earlier indices.
 | |
|   for (unsigned Index : reverse(ExitCaseIndices)) {
 | |
|     auto CaseI = SI.case_begin() + Index;
 | |
|     // Compute the outer loop from this exit.
 | |
|     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
 | |
|     if (!ExitL || ExitL->contains(OuterL))
 | |
|       OuterL = ExitL;
 | |
|     // Save the value of this case.
 | |
|     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
 | |
|     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
 | |
|     // Delete the unswitched cases.
 | |
|     SIW.removeCase(CaseI);
 | |
|   }
 | |
| 
 | |
|   if (SE) {
 | |
|     if (OuterL)
 | |
|       SE->forgetLoop(OuterL);
 | |
|     else
 | |
|       SE->forgetTopmostLoop(&L);
 | |
|   }
 | |
| 
 | |
|   // Check if after this all of the remaining cases point at the same
 | |
|   // successor.
 | |
|   BasicBlock *CommonSuccBB = nullptr;
 | |
|   if (SI.getNumCases() > 0 &&
 | |
|       std::all_of(std::next(SI.case_begin()), SI.case_end(),
 | |
|                   [&SI](const SwitchInst::CaseHandle &Case) {
 | |
|                     return Case.getCaseSuccessor() ==
 | |
|                            SI.case_begin()->getCaseSuccessor();
 | |
|                   }))
 | |
|     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
 | |
|   if (!DefaultExitBB) {
 | |
|     // If we're not unswitching the default, we need it to match any cases to
 | |
|     // have a common successor or if we have no cases it is the common
 | |
|     // successor.
 | |
|     if (SI.getNumCases() == 0)
 | |
|       CommonSuccBB = SI.getDefaultDest();
 | |
|     else if (SI.getDefaultDest() != CommonSuccBB)
 | |
|       CommonSuccBB = nullptr;
 | |
|   }
 | |
| 
 | |
|   // Split the preheader, so that we know that there is a safe place to insert
 | |
|   // the switch.
 | |
|   BasicBlock *OldPH = L.getLoopPreheader();
 | |
|   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
 | |
|   OldPH->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // Now add the unswitched switch.
 | |
|   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
 | |
|   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
 | |
| 
 | |
|   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
 | |
|   // First, we split any exit blocks with remaining in-loop predecessors. Then
 | |
|   // we update the PHIs in one of two ways depending on if there was a split.
 | |
|   // We walk in reverse so that we split in the same order as the cases
 | |
|   // appeared. This is purely for convenience of reading the resulting IR, but
 | |
|   // it doesn't cost anything really.
 | |
|   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
 | |
|   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
 | |
|   // Handle the default exit if necessary.
 | |
|   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
 | |
|   // ranges aren't quite powerful enough yet.
 | |
|   if (DefaultExitBB) {
 | |
|     if (pred_empty(DefaultExitBB)) {
 | |
|       UnswitchedExitBBs.insert(DefaultExitBB);
 | |
|       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
 | |
|     } else {
 | |
|       auto *SplitBB =
 | |
|           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
 | |
|       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
 | |
|                                                 *ParentBB, *OldPH,
 | |
|                                                 /*FullUnswitch*/ true);
 | |
|       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
 | |
|     }
 | |
|   }
 | |
|   // Note that we must use a reference in the for loop so that we update the
 | |
|   // container.
 | |
|   for (auto &ExitCase : reverse(ExitCases)) {
 | |
|     // Grab a reference to the exit block in the pair so that we can update it.
 | |
|     BasicBlock *ExitBB = std::get<1>(ExitCase);
 | |
| 
 | |
|     // If this case is the last edge into the exit block, we can simply reuse it
 | |
|     // as it will no longer be a loop exit. No mapping necessary.
 | |
|     if (pred_empty(ExitBB)) {
 | |
|       // Only rewrite once.
 | |
|       if (UnswitchedExitBBs.insert(ExitBB).second)
 | |
|         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise we need to split the exit block so that we retain an exit
 | |
|     // block from the loop and a target for the unswitched condition.
 | |
|     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
 | |
|     if (!SplitExitBB) {
 | |
|       // If this is the first time we see this, do the split and remember it.
 | |
|       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
 | |
|       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
 | |
|                                                 *ParentBB, *OldPH,
 | |
|                                                 /*FullUnswitch*/ true);
 | |
|     }
 | |
|     // Update the case pair to point to the split block.
 | |
|     std::get<1>(ExitCase) = SplitExitBB;
 | |
|   }
 | |
| 
 | |
|   // Now add the unswitched cases. We do this in reverse order as we built them
 | |
|   // in reverse order.
 | |
|   for (auto &ExitCase : reverse(ExitCases)) {
 | |
|     ConstantInt *CaseVal = std::get<0>(ExitCase);
 | |
|     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
 | |
| 
 | |
|     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
 | |
|   }
 | |
| 
 | |
|   // If the default was unswitched, re-point it and add explicit cases for
 | |
|   // entering the loop.
 | |
|   if (DefaultExitBB) {
 | |
|     NewSIW->setDefaultDest(DefaultExitBB);
 | |
|     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
 | |
| 
 | |
|     // We removed all the exit cases, so we just copy the cases to the
 | |
|     // unswitched switch.
 | |
|     for (const auto &Case : SI.cases())
 | |
|       NewSIW.addCase(Case.getCaseValue(), NewPH,
 | |
|                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
 | |
|   } else if (DefaultCaseWeight) {
 | |
|     // We have to set branch weight of the default case.
 | |
|     uint64_t SW = *DefaultCaseWeight;
 | |
|     for (const auto &Case : SI.cases()) {
 | |
|       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
 | |
|       assert(W &&
 | |
|              "case weight must be defined as default case weight is defined");
 | |
|       SW += *W;
 | |
|     }
 | |
|     NewSIW.setSuccessorWeight(0, SW);
 | |
|   }
 | |
| 
 | |
|   // If we ended up with a common successor for every path through the switch
 | |
|   // after unswitching, rewrite it to an unconditional branch to make it easy
 | |
|   // to recognize. Otherwise we potentially have to recognize the default case
 | |
|   // pointing at unreachable and other complexity.
 | |
|   if (CommonSuccBB) {
 | |
|     BasicBlock *BB = SI.getParent();
 | |
|     // We may have had multiple edges to this common successor block, so remove
 | |
|     // them as predecessors. We skip the first one, either the default or the
 | |
|     // actual first case.
 | |
|     bool SkippedFirst = DefaultExitBB == nullptr;
 | |
|     for (auto Case : SI.cases()) {
 | |
|       assert(Case.getCaseSuccessor() == CommonSuccBB &&
 | |
|              "Non-common successor!");
 | |
|       (void)Case;
 | |
|       if (!SkippedFirst) {
 | |
|         SkippedFirst = true;
 | |
|         continue;
 | |
|       }
 | |
|       CommonSuccBB->removePredecessor(BB,
 | |
|                                       /*KeepOneInputPHIs*/ true);
 | |
|     }
 | |
|     // Now nuke the switch and replace it with a direct branch.
 | |
|     SIW.eraseFromParent();
 | |
|     BranchInst::Create(CommonSuccBB, BB);
 | |
|   } else if (DefaultExitBB) {
 | |
|     assert(SI.getNumCases() > 0 &&
 | |
|            "If we had no cases we'd have a common successor!");
 | |
|     // Move the last case to the default successor. This is valid as if the
 | |
|     // default got unswitched it cannot be reached. This has the advantage of
 | |
|     // being simple and keeping the number of edges from this switch to
 | |
|     // successors the same, and avoiding any PHI update complexity.
 | |
|     auto LastCaseI = std::prev(SI.case_end());
 | |
| 
 | |
|     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
 | |
|     SIW.setSuccessorWeight(
 | |
|         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
 | |
|     SIW.removeCase(LastCaseI);
 | |
|   }
 | |
| 
 | |
|   // Walk the unswitched exit blocks and the unswitched split blocks and update
 | |
|   // the dominator tree based on the CFG edits. While we are walking unordered
 | |
|   // containers here, the API for applyUpdates takes an unordered list of
 | |
|   // updates and requires them to not contain duplicates.
 | |
|   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
 | |
|   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
 | |
|     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
 | |
|     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
 | |
|   }
 | |
|   for (auto SplitUnswitchedPair : SplitExitBBMap) {
 | |
|     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
 | |
|     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
 | |
|   }
 | |
|   DT.applyUpdates(DTUpdates);
 | |
| 
 | |
|   if (MSSAU) {
 | |
|     MSSAU->applyUpdates(DTUpdates, DT);
 | |
|     if (VerifyMemorySSA)
 | |
|       MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
|   }
 | |
| 
 | |
|   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
 | |
| 
 | |
|   // We may have changed the nesting relationship for this loop so hoist it to
 | |
|   // its correct parent if needed.
 | |
|   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   ++NumTrivial;
 | |
|   ++NumSwitches;
 | |
|   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This routine scans the loop to find a branch or switch which occurs before
 | |
| /// any side effects occur. These can potentially be unswitched without
 | |
| /// duplicating the loop. If a branch or switch is successfully unswitched the
 | |
| /// scanning continues to see if subsequent branches or switches have become
 | |
| /// trivial. Once all trivial candidates have been unswitched, this routine
 | |
| /// returns.
 | |
| ///
 | |
| /// The return value indicates whether anything was unswitched (and therefore
 | |
| /// changed).
 | |
| ///
 | |
| /// If `SE` is not null, it will be updated based on the potential loop SCEVs
 | |
| /// invalidated by this.
 | |
| static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
 | |
|                                          LoopInfo &LI, ScalarEvolution *SE,
 | |
|                                          MemorySSAUpdater *MSSAU) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // If loop header has only one reachable successor we should keep looking for
 | |
|   // trivial condition candidates in the successor as well. An alternative is
 | |
|   // to constant fold conditions and merge successors into loop header (then we
 | |
|   // only need to check header's terminator). The reason for not doing this in
 | |
|   // LoopUnswitch pass is that it could potentially break LoopPassManager's
 | |
|   // invariants. Folding dead branches could either eliminate the current loop
 | |
|   // or make other loops unreachable. LCSSA form might also not be preserved
 | |
|   // after deleting branches. The following code keeps traversing loop header's
 | |
|   // successors until it finds the trivial condition candidate (condition that
 | |
|   // is not a constant). Since unswitching generates branches with constant
 | |
|   // conditions, this scenario could be very common in practice.
 | |
|   BasicBlock *CurrentBB = L.getHeader();
 | |
|   SmallPtrSet<BasicBlock *, 8> Visited;
 | |
|   Visited.insert(CurrentBB);
 | |
|   do {
 | |
|     // Check if there are any side-effecting instructions (e.g. stores, calls,
 | |
|     // volatile loads) in the part of the loop that the code *would* execute
 | |
|     // without unswitching.
 | |
|     if (MSSAU) // Possible early exit with MSSA
 | |
|       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
 | |
|         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
 | |
|           return Changed;
 | |
|     if (llvm::any_of(*CurrentBB,
 | |
|                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
 | |
|       return Changed;
 | |
| 
 | |
|     Instruction *CurrentTerm = CurrentBB->getTerminator();
 | |
| 
 | |
|     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
 | |
|       // Don't bother trying to unswitch past a switch with a constant
 | |
|       // condition. This should be removed prior to running this pass by
 | |
|       // simplify-cfg.
 | |
|       if (isa<Constant>(SI->getCondition()))
 | |
|         return Changed;
 | |
| 
 | |
|       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
 | |
|         // Couldn't unswitch this one so we're done.
 | |
|         return Changed;
 | |
| 
 | |
|       // Mark that we managed to unswitch something.
 | |
|       Changed = true;
 | |
| 
 | |
|       // If unswitching turned the terminator into an unconditional branch then
 | |
|       // we can continue. The unswitching logic specifically works to fold any
 | |
|       // cases it can into an unconditional branch to make it easier to
 | |
|       // recognize here.
 | |
|       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
 | |
|       if (!BI || BI->isConditional())
 | |
|         return Changed;
 | |
| 
 | |
|       CurrentBB = BI->getSuccessor(0);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
 | |
|     if (!BI)
 | |
|       // We do not understand other terminator instructions.
 | |
|       return Changed;
 | |
| 
 | |
|     // Don't bother trying to unswitch past an unconditional branch or a branch
 | |
|     // with a constant value. These should be removed by simplify-cfg prior to
 | |
|     // running this pass.
 | |
|     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
 | |
|       return Changed;
 | |
| 
 | |
|     // Found a trivial condition candidate: non-foldable conditional branch. If
 | |
|     // we fail to unswitch this, we can't do anything else that is trivial.
 | |
|     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
 | |
|       return Changed;
 | |
| 
 | |
|     // Mark that we managed to unswitch something.
 | |
|     Changed = true;
 | |
| 
 | |
|     // If we only unswitched some of the conditions feeding the branch, we won't
 | |
|     // have collapsed it to a single successor.
 | |
|     BI = cast<BranchInst>(CurrentBB->getTerminator());
 | |
|     if (BI->isConditional())
 | |
|       return Changed;
 | |
| 
 | |
|     // Follow the newly unconditional branch into its successor.
 | |
|     CurrentBB = BI->getSuccessor(0);
 | |
| 
 | |
|     // When continuing, if we exit the loop or reach a previous visited block,
 | |
|     // then we can not reach any trivial condition candidates (unfoldable
 | |
|     // branch instructions or switch instructions) and no unswitch can happen.
 | |
|   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Build the cloned blocks for an unswitched copy of the given loop.
 | |
| ///
 | |
| /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
 | |
| /// after the split block (`SplitBB`) that will be used to select between the
 | |
| /// cloned and original loop.
 | |
| ///
 | |
| /// This routine handles cloning all of the necessary loop blocks and exit
 | |
| /// blocks including rewriting their instructions and the relevant PHI nodes.
 | |
| /// Any loop blocks or exit blocks which are dominated by a different successor
 | |
| /// than the one for this clone of the loop blocks can be trivially skipped. We
 | |
| /// use the `DominatingSucc` map to determine whether a block satisfies that
 | |
| /// property with a simple map lookup.
 | |
| ///
 | |
| /// It also correctly creates the unconditional branch in the cloned
 | |
| /// unswitched parent block to only point at the unswitched successor.
 | |
| ///
 | |
| /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
 | |
| /// block splitting is correctly reflected in `LoopInfo`, essentially all of
 | |
| /// the cloned blocks (and their loops) are left without full `LoopInfo`
 | |
| /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
 | |
| /// blocks to them but doesn't create the cloned `DominatorTree` structure and
 | |
| /// instead the caller must recompute an accurate DT. It *does* correctly
 | |
| /// update the `AssumptionCache` provided in `AC`.
 | |
| static BasicBlock *buildClonedLoopBlocks(
 | |
|     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
 | |
|     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
 | |
|     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
 | |
|     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
 | |
|     ValueToValueMapTy &VMap,
 | |
|     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
 | |
|     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
 | |
|   SmallVector<BasicBlock *, 4> NewBlocks;
 | |
|   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
 | |
| 
 | |
|   // We will need to clone a bunch of blocks, wrap up the clone operation in
 | |
|   // a helper.
 | |
|   auto CloneBlock = [&](BasicBlock *OldBB) {
 | |
|     // Clone the basic block and insert it before the new preheader.
 | |
|     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
 | |
|     NewBB->moveBefore(LoopPH);
 | |
| 
 | |
|     // Record this block and the mapping.
 | |
|     NewBlocks.push_back(NewBB);
 | |
|     VMap[OldBB] = NewBB;
 | |
| 
 | |
|     return NewBB;
 | |
|   };
 | |
| 
 | |
|   // We skip cloning blocks when they have a dominating succ that is not the
 | |
|   // succ we are cloning for.
 | |
|   auto SkipBlock = [&](BasicBlock *BB) {
 | |
|     auto It = DominatingSucc.find(BB);
 | |
|     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
 | |
|   };
 | |
| 
 | |
|   // First, clone the preheader.
 | |
|   auto *ClonedPH = CloneBlock(LoopPH);
 | |
| 
 | |
|   // Then clone all the loop blocks, skipping the ones that aren't necessary.
 | |
|   for (auto *LoopBB : L.blocks())
 | |
|     if (!SkipBlock(LoopBB))
 | |
|       CloneBlock(LoopBB);
 | |
| 
 | |
|   // Split all the loop exit edges so that when we clone the exit blocks, if
 | |
|   // any of the exit blocks are *also* a preheader for some other loop, we
 | |
|   // don't create multiple predecessors entering the loop header.
 | |
|   for (auto *ExitBB : ExitBlocks) {
 | |
|     if (SkipBlock(ExitBB))
 | |
|       continue;
 | |
| 
 | |
|     // When we are going to clone an exit, we don't need to clone all the
 | |
|     // instructions in the exit block and we want to ensure we have an easy
 | |
|     // place to merge the CFG, so split the exit first. This is always safe to
 | |
|     // do because there cannot be any non-loop predecessors of a loop exit in
 | |
|     // loop simplified form.
 | |
|     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
 | |
| 
 | |
|     // Rearrange the names to make it easier to write test cases by having the
 | |
|     // exit block carry the suffix rather than the merge block carrying the
 | |
|     // suffix.
 | |
|     MergeBB->takeName(ExitBB);
 | |
|     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
 | |
| 
 | |
|     // Now clone the original exit block.
 | |
|     auto *ClonedExitBB = CloneBlock(ExitBB);
 | |
|     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
 | |
|            "Exit block should have been split to have one successor!");
 | |
|     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
 | |
|            "Cloned exit block has the wrong successor!");
 | |
| 
 | |
|     // Remap any cloned instructions and create a merge phi node for them.
 | |
|     for (auto ZippedInsts : llvm::zip_first(
 | |
|              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
 | |
|              llvm::make_range(ClonedExitBB->begin(),
 | |
|                               std::prev(ClonedExitBB->end())))) {
 | |
|       Instruction &I = std::get<0>(ZippedInsts);
 | |
|       Instruction &ClonedI = std::get<1>(ZippedInsts);
 | |
| 
 | |
|       // The only instructions in the exit block should be PHI nodes and
 | |
|       // potentially a landing pad.
 | |
|       assert(
 | |
|           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
 | |
|           "Bad instruction in exit block!");
 | |
|       // We should have a value map between the instruction and its clone.
 | |
|       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
 | |
| 
 | |
|       auto *MergePN =
 | |
|           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
 | |
|                           &*MergeBB->getFirstInsertionPt());
 | |
|       I.replaceAllUsesWith(MergePN);
 | |
|       MergePN->addIncoming(&I, ExitBB);
 | |
|       MergePN->addIncoming(&ClonedI, ClonedExitBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Rewrite the instructions in the cloned blocks to refer to the instructions
 | |
|   // in the cloned blocks. We have to do this as a second pass so that we have
 | |
|   // everything available. Also, we have inserted new instructions which may
 | |
|   // include assume intrinsics, so we update the assumption cache while
 | |
|   // processing this.
 | |
|   for (auto *ClonedBB : NewBlocks)
 | |
|     for (Instruction &I : *ClonedBB) {
 | |
|       RemapInstruction(&I, VMap,
 | |
|                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | |
|       if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | |
|         if (II->getIntrinsicID() == Intrinsic::assume)
 | |
|           AC.registerAssumption(II);
 | |
|     }
 | |
| 
 | |
|   // Update any PHI nodes in the cloned successors of the skipped blocks to not
 | |
|   // have spurious incoming values.
 | |
|   for (auto *LoopBB : L.blocks())
 | |
|     if (SkipBlock(LoopBB))
 | |
|       for (auto *SuccBB : successors(LoopBB))
 | |
|         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
 | |
|           for (PHINode &PN : ClonedSuccBB->phis())
 | |
|             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
 | |
| 
 | |
|   // Remove the cloned parent as a predecessor of any successor we ended up
 | |
|   // cloning other than the unswitched one.
 | |
|   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
 | |
|   for (auto *SuccBB : successors(ParentBB)) {
 | |
|     if (SuccBB == UnswitchedSuccBB)
 | |
|       continue;
 | |
| 
 | |
|     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
 | |
|     if (!ClonedSuccBB)
 | |
|       continue;
 | |
| 
 | |
|     ClonedSuccBB->removePredecessor(ClonedParentBB,
 | |
|                                     /*KeepOneInputPHIs*/ true);
 | |
|   }
 | |
| 
 | |
|   // Replace the cloned branch with an unconditional branch to the cloned
 | |
|   // unswitched successor.
 | |
|   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
 | |
|   ClonedParentBB->getTerminator()->eraseFromParent();
 | |
|   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
 | |
| 
 | |
|   // If there are duplicate entries in the PHI nodes because of multiple edges
 | |
|   // to the unswitched successor, we need to nuke all but one as we replaced it
 | |
|   // with a direct branch.
 | |
|   for (PHINode &PN : ClonedSuccBB->phis()) {
 | |
|     bool Found = false;
 | |
|     // Loop over the incoming operands backwards so we can easily delete as we
 | |
|     // go without invalidating the index.
 | |
|     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
 | |
|       if (PN.getIncomingBlock(i) != ClonedParentBB)
 | |
|         continue;
 | |
|       if (!Found) {
 | |
|         Found = true;
 | |
|         continue;
 | |
|       }
 | |
|       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Record the domtree updates for the new blocks.
 | |
|   SmallPtrSet<BasicBlock *, 4> SuccSet;
 | |
|   for (auto *ClonedBB : NewBlocks) {
 | |
|     for (auto *SuccBB : successors(ClonedBB))
 | |
|       if (SuccSet.insert(SuccBB).second)
 | |
|         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
 | |
|     SuccSet.clear();
 | |
|   }
 | |
| 
 | |
|   return ClonedPH;
 | |
| }
 | |
| 
 | |
| /// Recursively clone the specified loop and all of its children.
 | |
| ///
 | |
| /// The target parent loop for the clone should be provided, or can be null if
 | |
| /// the clone is a top-level loop. While cloning, all the blocks are mapped
 | |
| /// with the provided value map. The entire original loop must be present in
 | |
| /// the value map. The cloned loop is returned.
 | |
| static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
 | |
|                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
 | |
|   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
 | |
|     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
 | |
|     ClonedL.reserveBlocks(OrigL.getNumBlocks());
 | |
|     for (auto *BB : OrigL.blocks()) {
 | |
|       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
 | |
|       ClonedL.addBlockEntry(ClonedBB);
 | |
|       if (LI.getLoopFor(BB) == &OrigL)
 | |
|         LI.changeLoopFor(ClonedBB, &ClonedL);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // We specially handle the first loop because it may get cloned into
 | |
|   // a different parent and because we most commonly are cloning leaf loops.
 | |
|   Loop *ClonedRootL = LI.AllocateLoop();
 | |
|   if (RootParentL)
 | |
|     RootParentL->addChildLoop(ClonedRootL);
 | |
|   else
 | |
|     LI.addTopLevelLoop(ClonedRootL);
 | |
|   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
 | |
| 
 | |
|   if (OrigRootL.empty())
 | |
|     return ClonedRootL;
 | |
| 
 | |
|   // If we have a nest, we can quickly clone the entire loop nest using an
 | |
|   // iterative approach because it is a tree. We keep the cloned parent in the
 | |
|   // data structure to avoid repeatedly querying through a map to find it.
 | |
|   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
 | |
|   // Build up the loops to clone in reverse order as we'll clone them from the
 | |
|   // back.
 | |
|   for (Loop *ChildL : llvm::reverse(OrigRootL))
 | |
|     LoopsToClone.push_back({ClonedRootL, ChildL});
 | |
|   do {
 | |
|     Loop *ClonedParentL, *L;
 | |
|     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
 | |
|     Loop *ClonedL = LI.AllocateLoop();
 | |
|     ClonedParentL->addChildLoop(ClonedL);
 | |
|     AddClonedBlocksToLoop(*L, *ClonedL);
 | |
|     for (Loop *ChildL : llvm::reverse(*L))
 | |
|       LoopsToClone.push_back({ClonedL, ChildL});
 | |
|   } while (!LoopsToClone.empty());
 | |
| 
 | |
|   return ClonedRootL;
 | |
| }
 | |
| 
 | |
| /// Build the cloned loops of an original loop from unswitching.
 | |
| ///
 | |
| /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
 | |
| /// operation. We need to re-verify that there even is a loop (as the backedge
 | |
| /// may not have been cloned), and even if there are remaining backedges the
 | |
| /// backedge set may be different. However, we know that each child loop is
 | |
| /// undisturbed, we only need to find where to place each child loop within
 | |
| /// either any parent loop or within a cloned version of the original loop.
 | |
| ///
 | |
| /// Because child loops may end up cloned outside of any cloned version of the
 | |
| /// original loop, multiple cloned sibling loops may be created. All of them
 | |
| /// are returned so that the newly introduced loop nest roots can be
 | |
| /// identified.
 | |
| static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
 | |
|                              const ValueToValueMapTy &VMap, LoopInfo &LI,
 | |
|                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
 | |
|   Loop *ClonedL = nullptr;
 | |
| 
 | |
|   auto *OrigPH = OrigL.getLoopPreheader();
 | |
|   auto *OrigHeader = OrigL.getHeader();
 | |
| 
 | |
|   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
 | |
|   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
 | |
| 
 | |
|   // We need to know the loops of the cloned exit blocks to even compute the
 | |
|   // accurate parent loop. If we only clone exits to some parent of the
 | |
|   // original parent, we want to clone into that outer loop. We also keep track
 | |
|   // of the loops that our cloned exit blocks participate in.
 | |
|   Loop *ParentL = nullptr;
 | |
|   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
 | |
|   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
 | |
|   ClonedExitsInLoops.reserve(ExitBlocks.size());
 | |
|   for (auto *ExitBB : ExitBlocks)
 | |
|     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
 | |
|       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
 | |
|         ExitLoopMap[ClonedExitBB] = ExitL;
 | |
|         ClonedExitsInLoops.push_back(ClonedExitBB);
 | |
|         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
 | |
|           ParentL = ExitL;
 | |
|       }
 | |
|   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
 | |
|           ParentL->contains(OrigL.getParentLoop())) &&
 | |
|          "The computed parent loop should always contain (or be) the parent of "
 | |
|          "the original loop.");
 | |
| 
 | |
|   // We build the set of blocks dominated by the cloned header from the set of
 | |
|   // cloned blocks out of the original loop. While not all of these will
 | |
|   // necessarily be in the cloned loop, it is enough to establish that they
 | |
|   // aren't in unreachable cycles, etc.
 | |
|   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
 | |
|   for (auto *BB : OrigL.blocks())
 | |
|     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
 | |
|       ClonedLoopBlocks.insert(ClonedBB);
 | |
| 
 | |
|   // Rebuild the set of blocks that will end up in the cloned loop. We may have
 | |
|   // skipped cloning some region of this loop which can in turn skip some of
 | |
|   // the backedges so we have to rebuild the blocks in the loop based on the
 | |
|   // backedges that remain after cloning.
 | |
|   SmallVector<BasicBlock *, 16> Worklist;
 | |
|   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
 | |
|   for (auto *Pred : predecessors(ClonedHeader)) {
 | |
|     // The only possible non-loop header predecessor is the preheader because
 | |
|     // we know we cloned the loop in simplified form.
 | |
|     if (Pred == ClonedPH)
 | |
|       continue;
 | |
| 
 | |
|     // Because the loop was in simplified form, the only non-loop predecessor
 | |
|     // should be the preheader.
 | |
|     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
 | |
|                                            "header other than the preheader "
 | |
|                                            "that is not part of the loop!");
 | |
| 
 | |
|     // Insert this block into the loop set and on the first visit (and if it
 | |
|     // isn't the header we're currently walking) put it into the worklist to
 | |
|     // recurse through.
 | |
|     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
 | |
|       Worklist.push_back(Pred);
 | |
|   }
 | |
| 
 | |
|   // If we had any backedges then there *is* a cloned loop. Put the header into
 | |
|   // the loop set and then walk the worklist backwards to find all the blocks
 | |
|   // that remain within the loop after cloning.
 | |
|   if (!BlocksInClonedLoop.empty()) {
 | |
|     BlocksInClonedLoop.insert(ClonedHeader);
 | |
| 
 | |
|     while (!Worklist.empty()) {
 | |
|       BasicBlock *BB = Worklist.pop_back_val();
 | |
|       assert(BlocksInClonedLoop.count(BB) &&
 | |
|              "Didn't put block into the loop set!");
 | |
| 
 | |
|       // Insert any predecessors that are in the possible set into the cloned
 | |
|       // set, and if the insert is successful, add them to the worklist. Note
 | |
|       // that we filter on the blocks that are definitely reachable via the
 | |
|       // backedge to the loop header so we may prune out dead code within the
 | |
|       // cloned loop.
 | |
|       for (auto *Pred : predecessors(BB))
 | |
|         if (ClonedLoopBlocks.count(Pred) &&
 | |
|             BlocksInClonedLoop.insert(Pred).second)
 | |
|           Worklist.push_back(Pred);
 | |
|     }
 | |
| 
 | |
|     ClonedL = LI.AllocateLoop();
 | |
|     if (ParentL) {
 | |
|       ParentL->addBasicBlockToLoop(ClonedPH, LI);
 | |
|       ParentL->addChildLoop(ClonedL);
 | |
|     } else {
 | |
|       LI.addTopLevelLoop(ClonedL);
 | |
|     }
 | |
|     NonChildClonedLoops.push_back(ClonedL);
 | |
| 
 | |
|     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
 | |
|     // We don't want to just add the cloned loop blocks based on how we
 | |
|     // discovered them. The original order of blocks was carefully built in
 | |
|     // a way that doesn't rely on predecessor ordering. Rather than re-invent
 | |
|     // that logic, we just re-walk the original blocks (and those of the child
 | |
|     // loops) and filter them as we add them into the cloned loop.
 | |
|     for (auto *BB : OrigL.blocks()) {
 | |
|       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
 | |
|       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
 | |
|         continue;
 | |
| 
 | |
|       // Directly add the blocks that are only in this loop.
 | |
|       if (LI.getLoopFor(BB) == &OrigL) {
 | |
|         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We want to manually add it to this loop and parents.
 | |
|       // Registering it with LoopInfo will happen when we clone the top
 | |
|       // loop for this block.
 | |
|       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
 | |
|         PL->addBlockEntry(ClonedBB);
 | |
|     }
 | |
| 
 | |
|     // Now add each child loop whose header remains within the cloned loop. All
 | |
|     // of the blocks within the loop must satisfy the same constraints as the
 | |
|     // header so once we pass the header checks we can just clone the entire
 | |
|     // child loop nest.
 | |
|     for (Loop *ChildL : OrigL) {
 | |
|       auto *ClonedChildHeader =
 | |
|           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
 | |
|       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
 | |
|         continue;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       // We should never have a cloned child loop header but fail to have
 | |
|       // all of the blocks for that child loop.
 | |
|       for (auto *ChildLoopBB : ChildL->blocks())
 | |
|         assert(BlocksInClonedLoop.count(
 | |
|                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
 | |
|                "Child cloned loop has a header within the cloned outer "
 | |
|                "loop but not all of its blocks!");
 | |
| #endif
 | |
| 
 | |
|       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we've handled all the components of the original loop that were
 | |
|   // cloned into a new loop, we still need to handle anything from the original
 | |
|   // loop that wasn't in a cloned loop.
 | |
| 
 | |
|   // Figure out what blocks are left to place within any loop nest containing
 | |
|   // the unswitched loop. If we never formed a loop, the cloned PH is one of
 | |
|   // them.
 | |
|   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
 | |
|   if (BlocksInClonedLoop.empty())
 | |
|     UnloopedBlockSet.insert(ClonedPH);
 | |
|   for (auto *ClonedBB : ClonedLoopBlocks)
 | |
|     if (!BlocksInClonedLoop.count(ClonedBB))
 | |
|       UnloopedBlockSet.insert(ClonedBB);
 | |
| 
 | |
|   // Copy the cloned exits and sort them in ascending loop depth, we'll work
 | |
|   // backwards across these to process them inside out. The order shouldn't
 | |
|   // matter as we're just trying to build up the map from inside-out; we use
 | |
|   // the map in a more stably ordered way below.
 | |
|   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
 | |
|   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
 | |
|     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
 | |
|            ExitLoopMap.lookup(RHS)->getLoopDepth();
 | |
|   });
 | |
| 
 | |
|   // Populate the existing ExitLoopMap with everything reachable from each
 | |
|   // exit, starting from the inner most exit.
 | |
|   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
 | |
|     assert(Worklist.empty() && "Didn't clear worklist!");
 | |
| 
 | |
|     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
 | |
|     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
 | |
| 
 | |
|     // Walk the CFG back until we hit the cloned PH adding everything reachable
 | |
|     // and in the unlooped set to this exit block's loop.
 | |
|     Worklist.push_back(ExitBB);
 | |
|     do {
 | |
|       BasicBlock *BB = Worklist.pop_back_val();
 | |
|       // We can stop recursing at the cloned preheader (if we get there).
 | |
|       if (BB == ClonedPH)
 | |
|         continue;
 | |
| 
 | |
|       for (BasicBlock *PredBB : predecessors(BB)) {
 | |
|         // If this pred has already been moved to our set or is part of some
 | |
|         // (inner) loop, no update needed.
 | |
|         if (!UnloopedBlockSet.erase(PredBB)) {
 | |
|           assert(
 | |
|               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
 | |
|               "Predecessor not mapped to a loop!");
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // We just insert into the loop set here. We'll add these blocks to the
 | |
|         // exit loop after we build up the set in an order that doesn't rely on
 | |
|         // predecessor order (which in turn relies on use list order).
 | |
|         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
 | |
|         (void)Inserted;
 | |
|         assert(Inserted && "Should only visit an unlooped block once!");
 | |
| 
 | |
|         // And recurse through to its predecessors.
 | |
|         Worklist.push_back(PredBB);
 | |
|       }
 | |
|     } while (!Worklist.empty());
 | |
|   }
 | |
| 
 | |
|   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
 | |
|   // blocks to their outer loops, walk the cloned blocks and the cloned exits
 | |
|   // in their original order adding them to the correct loop.
 | |
| 
 | |
|   // We need a stable insertion order. We use the order of the original loop
 | |
|   // order and map into the correct parent loop.
 | |
|   for (auto *BB : llvm::concat<BasicBlock *const>(
 | |
|            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
 | |
|     if (Loop *OuterL = ExitLoopMap.lookup(BB))
 | |
|       OuterL->addBasicBlockToLoop(BB, LI);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (auto &BBAndL : ExitLoopMap) {
 | |
|     auto *BB = BBAndL.first;
 | |
|     auto *OuterL = BBAndL.second;
 | |
|     assert(LI.getLoopFor(BB) == OuterL &&
 | |
|            "Failed to put all blocks into outer loops!");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Now that all the blocks are placed into the correct containing loop in the
 | |
|   // absence of child loops, find all the potentially cloned child loops and
 | |
|   // clone them into whatever outer loop we placed their header into.
 | |
|   for (Loop *ChildL : OrigL) {
 | |
|     auto *ClonedChildHeader =
 | |
|         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
 | |
|     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
 | |
|       continue;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     for (auto *ChildLoopBB : ChildL->blocks())
 | |
|       assert(VMap.count(ChildLoopBB) &&
 | |
|              "Cloned a child loop header but not all of that loops blocks!");
 | |
| #endif
 | |
| 
 | |
|     NonChildClonedLoops.push_back(cloneLoopNest(
 | |
|         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void
 | |
| deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
 | |
|                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
 | |
|                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
 | |
|   // Find all the dead clones, and remove them from their successors.
 | |
|   SmallVector<BasicBlock *, 16> DeadBlocks;
 | |
|   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
 | |
|     for (auto &VMap : VMaps)
 | |
|       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
 | |
|         if (!DT.isReachableFromEntry(ClonedBB)) {
 | |
|           for (BasicBlock *SuccBB : successors(ClonedBB))
 | |
|             SuccBB->removePredecessor(ClonedBB);
 | |
|           DeadBlocks.push_back(ClonedBB);
 | |
|         }
 | |
| 
 | |
|   // Remove all MemorySSA in the dead blocks
 | |
|   if (MSSAU) {
 | |
|     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
 | |
|                                                  DeadBlocks.end());
 | |
|     MSSAU->removeBlocks(DeadBlockSet);
 | |
|   }
 | |
| 
 | |
|   // Drop any remaining references to break cycles.
 | |
|   for (BasicBlock *BB : DeadBlocks)
 | |
|     BB->dropAllReferences();
 | |
|   // Erase them from the IR.
 | |
|   for (BasicBlock *BB : DeadBlocks)
 | |
|     BB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| static void deleteDeadBlocksFromLoop(Loop &L,
 | |
|                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
 | |
|                                      DominatorTree &DT, LoopInfo &LI,
 | |
|                                      MemorySSAUpdater *MSSAU) {
 | |
|   // Find all the dead blocks tied to this loop, and remove them from their
 | |
|   // successors.
 | |
|   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
 | |
| 
 | |
|   // Start with loop/exit blocks and get a transitive closure of reachable dead
 | |
|   // blocks.
 | |
|   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
 | |
|                                                 ExitBlocks.end());
 | |
|   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
 | |
|   while (!DeathCandidates.empty()) {
 | |
|     auto *BB = DeathCandidates.pop_back_val();
 | |
|     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
 | |
|       for (BasicBlock *SuccBB : successors(BB)) {
 | |
|         SuccBB->removePredecessor(BB);
 | |
|         DeathCandidates.push_back(SuccBB);
 | |
|       }
 | |
|       DeadBlockSet.insert(BB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove all MemorySSA in the dead blocks
 | |
|   if (MSSAU)
 | |
|     MSSAU->removeBlocks(DeadBlockSet);
 | |
| 
 | |
|   // Filter out the dead blocks from the exit blocks list so that it can be
 | |
|   // used in the caller.
 | |
|   llvm::erase_if(ExitBlocks,
 | |
|                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
 | |
| 
 | |
|   // Walk from this loop up through its parents removing all of the dead blocks.
 | |
|   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
 | |
|     for (auto *BB : DeadBlockSet)
 | |
|       ParentL->getBlocksSet().erase(BB);
 | |
|     llvm::erase_if(ParentL->getBlocksVector(),
 | |
|                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
 | |
|   }
 | |
| 
 | |
|   // Now delete the dead child loops. This raw delete will clear them
 | |
|   // recursively.
 | |
|   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
 | |
|     if (!DeadBlockSet.count(ChildL->getHeader()))
 | |
|       return false;
 | |
| 
 | |
|     assert(llvm::all_of(ChildL->blocks(),
 | |
|                         [&](BasicBlock *ChildBB) {
 | |
|                           return DeadBlockSet.count(ChildBB);
 | |
|                         }) &&
 | |
|            "If the child loop header is dead all blocks in the child loop must "
 | |
|            "be dead as well!");
 | |
|     LI.destroy(ChildL);
 | |
|     return true;
 | |
|   });
 | |
| 
 | |
|   // Remove the loop mappings for the dead blocks and drop all the references
 | |
|   // from these blocks to others to handle cyclic references as we start
 | |
|   // deleting the blocks themselves.
 | |
|   for (auto *BB : DeadBlockSet) {
 | |
|     // Check that the dominator tree has already been updated.
 | |
|     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
 | |
|     LI.changeLoopFor(BB, nullptr);
 | |
|     BB->dropAllReferences();
 | |
|   }
 | |
| 
 | |
|   // Actually delete the blocks now that they've been fully unhooked from the
 | |
|   // IR.
 | |
|   for (auto *BB : DeadBlockSet)
 | |
|     BB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// Recompute the set of blocks in a loop after unswitching.
 | |
| ///
 | |
| /// This walks from the original headers predecessors to rebuild the loop. We
 | |
| /// take advantage of the fact that new blocks can't have been added, and so we
 | |
| /// filter by the original loop's blocks. This also handles potentially
 | |
| /// unreachable code that we don't want to explore but might be found examining
 | |
| /// the predecessors of the header.
 | |
| ///
 | |
| /// If the original loop is no longer a loop, this will return an empty set. If
 | |
| /// it remains a loop, all the blocks within it will be added to the set
 | |
| /// (including those blocks in inner loops).
 | |
| static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
 | |
|                                                                  LoopInfo &LI) {
 | |
|   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
 | |
| 
 | |
|   auto *PH = L.getLoopPreheader();
 | |
|   auto *Header = L.getHeader();
 | |
| 
 | |
|   // A worklist to use while walking backwards from the header.
 | |
|   SmallVector<BasicBlock *, 16> Worklist;
 | |
| 
 | |
|   // First walk the predecessors of the header to find the backedges. This will
 | |
|   // form the basis of our walk.
 | |
|   for (auto *Pred : predecessors(Header)) {
 | |
|     // Skip the preheader.
 | |
|     if (Pred == PH)
 | |
|       continue;
 | |
| 
 | |
|     // Because the loop was in simplified form, the only non-loop predecessor
 | |
|     // is the preheader.
 | |
|     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
 | |
|                                "than the preheader that is not part of the "
 | |
|                                "loop!");
 | |
| 
 | |
|     // Insert this block into the loop set and on the first visit and, if it
 | |
|     // isn't the header we're currently walking, put it into the worklist to
 | |
|     // recurse through.
 | |
|     if (LoopBlockSet.insert(Pred).second && Pred != Header)
 | |
|       Worklist.push_back(Pred);
 | |
|   }
 | |
| 
 | |
|   // If no backedges were found, we're done.
 | |
|   if (LoopBlockSet.empty())
 | |
|     return LoopBlockSet;
 | |
| 
 | |
|   // We found backedges, recurse through them to identify the loop blocks.
 | |
|   while (!Worklist.empty()) {
 | |
|     BasicBlock *BB = Worklist.pop_back_val();
 | |
|     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
 | |
| 
 | |
|     // No need to walk past the header.
 | |
|     if (BB == Header)
 | |
|       continue;
 | |
| 
 | |
|     // Because we know the inner loop structure remains valid we can use the
 | |
|     // loop structure to jump immediately across the entire nested loop.
 | |
|     // Further, because it is in loop simplified form, we can directly jump
 | |
|     // to its preheader afterward.
 | |
|     if (Loop *InnerL = LI.getLoopFor(BB))
 | |
|       if (InnerL != &L) {
 | |
|         assert(L.contains(InnerL) &&
 | |
|                "Should not reach a loop *outside* this loop!");
 | |
|         // The preheader is the only possible predecessor of the loop so
 | |
|         // insert it into the set and check whether it was already handled.
 | |
|         auto *InnerPH = InnerL->getLoopPreheader();
 | |
|         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
 | |
|                                       "but not contain the inner loop "
 | |
|                                       "preheader!");
 | |
|         if (!LoopBlockSet.insert(InnerPH).second)
 | |
|           // The only way to reach the preheader is through the loop body
 | |
|           // itself so if it has been visited the loop is already handled.
 | |
|           continue;
 | |
| 
 | |
|         // Insert all of the blocks (other than those already present) into
 | |
|         // the loop set. We expect at least the block that led us to find the
 | |
|         // inner loop to be in the block set, but we may also have other loop
 | |
|         // blocks if they were already enqueued as predecessors of some other
 | |
|         // outer loop block.
 | |
|         for (auto *InnerBB : InnerL->blocks()) {
 | |
|           if (InnerBB == BB) {
 | |
|             assert(LoopBlockSet.count(InnerBB) &&
 | |
|                    "Block should already be in the set!");
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           LoopBlockSet.insert(InnerBB);
 | |
|         }
 | |
| 
 | |
|         // Add the preheader to the worklist so we will continue past the
 | |
|         // loop body.
 | |
|         Worklist.push_back(InnerPH);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     // Insert any predecessors that were in the original loop into the new
 | |
|     // set, and if the insert is successful, add them to the worklist.
 | |
|     for (auto *Pred : predecessors(BB))
 | |
|       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
 | |
|         Worklist.push_back(Pred);
 | |
|   }
 | |
| 
 | |
|   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
 | |
| 
 | |
|   // We've found all the blocks participating in the loop, return our completed
 | |
|   // set.
 | |
|   return LoopBlockSet;
 | |
| }
 | |
| 
 | |
| /// Rebuild a loop after unswitching removes some subset of blocks and edges.
 | |
| ///
 | |
| /// The removal may have removed some child loops entirely but cannot have
 | |
| /// disturbed any remaining child loops. However, they may need to be hoisted
 | |
| /// to the parent loop (or to be top-level loops). The original loop may be
 | |
| /// completely removed.
 | |
| ///
 | |
| /// The sibling loops resulting from this update are returned. If the original
 | |
| /// loop remains a valid loop, it will be the first entry in this list with all
 | |
| /// of the newly sibling loops following it.
 | |
| ///
 | |
| /// Returns true if the loop remains a loop after unswitching, and false if it
 | |
| /// is no longer a loop after unswitching (and should not continue to be
 | |
| /// referenced).
 | |
| static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
 | |
|                                      LoopInfo &LI,
 | |
|                                      SmallVectorImpl<Loop *> &HoistedLoops) {
 | |
|   auto *PH = L.getLoopPreheader();
 | |
| 
 | |
|   // Compute the actual parent loop from the exit blocks. Because we may have
 | |
|   // pruned some exits the loop may be different from the original parent.
 | |
|   Loop *ParentL = nullptr;
 | |
|   SmallVector<Loop *, 4> ExitLoops;
 | |
|   SmallVector<BasicBlock *, 4> ExitsInLoops;
 | |
|   ExitsInLoops.reserve(ExitBlocks.size());
 | |
|   for (auto *ExitBB : ExitBlocks)
 | |
|     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
 | |
|       ExitLoops.push_back(ExitL);
 | |
|       ExitsInLoops.push_back(ExitBB);
 | |
|       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
 | |
|         ParentL = ExitL;
 | |
|     }
 | |
| 
 | |
|   // Recompute the blocks participating in this loop. This may be empty if it
 | |
|   // is no longer a loop.
 | |
|   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
 | |
| 
 | |
|   // If we still have a loop, we need to re-set the loop's parent as the exit
 | |
|   // block set changing may have moved it within the loop nest. Note that this
 | |
|   // can only happen when this loop has a parent as it can only hoist the loop
 | |
|   // *up* the nest.
 | |
|   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
 | |
|     // Remove this loop's (original) blocks from all of the intervening loops.
 | |
|     for (Loop *IL = L.getParentLoop(); IL != ParentL;
 | |
|          IL = IL->getParentLoop()) {
 | |
|       IL->getBlocksSet().erase(PH);
 | |
|       for (auto *BB : L.blocks())
 | |
|         IL->getBlocksSet().erase(BB);
 | |
|       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
 | |
|         return BB == PH || L.contains(BB);
 | |
|       });
 | |
|     }
 | |
| 
 | |
|     LI.changeLoopFor(PH, ParentL);
 | |
|     L.getParentLoop()->removeChildLoop(&L);
 | |
|     if (ParentL)
 | |
|       ParentL->addChildLoop(&L);
 | |
|     else
 | |
|       LI.addTopLevelLoop(&L);
 | |
|   }
 | |
| 
 | |
|   // Now we update all the blocks which are no longer within the loop.
 | |
|   auto &Blocks = L.getBlocksVector();
 | |
|   auto BlocksSplitI =
 | |
|       LoopBlockSet.empty()
 | |
|           ? Blocks.begin()
 | |
|           : std::stable_partition(
 | |
|                 Blocks.begin(), Blocks.end(),
 | |
|                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
 | |
| 
 | |
|   // Before we erase the list of unlooped blocks, build a set of them.
 | |
|   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
 | |
|   if (LoopBlockSet.empty())
 | |
|     UnloopedBlocks.insert(PH);
 | |
| 
 | |
|   // Now erase these blocks from the loop.
 | |
|   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
 | |
|     L.getBlocksSet().erase(BB);
 | |
|   Blocks.erase(BlocksSplitI, Blocks.end());
 | |
| 
 | |
|   // Sort the exits in ascending loop depth, we'll work backwards across these
 | |
|   // to process them inside out.
 | |
|   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
 | |
|     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
 | |
|   });
 | |
| 
 | |
|   // We'll build up a set for each exit loop.
 | |
|   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
 | |
|   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
 | |
| 
 | |
|   auto RemoveUnloopedBlocksFromLoop =
 | |
|       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
 | |
|         for (auto *BB : UnloopedBlocks)
 | |
|           L.getBlocksSet().erase(BB);
 | |
|         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
 | |
|           return UnloopedBlocks.count(BB);
 | |
|         });
 | |
|       };
 | |
| 
 | |
|   SmallVector<BasicBlock *, 16> Worklist;
 | |
|   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
 | |
|     assert(Worklist.empty() && "Didn't clear worklist!");
 | |
|     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
 | |
| 
 | |
|     // Grab the next exit block, in decreasing loop depth order.
 | |
|     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
 | |
|     Loop &ExitL = *LI.getLoopFor(ExitBB);
 | |
|     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
 | |
| 
 | |
|     // Erase all of the unlooped blocks from the loops between the previous
 | |
|     // exit loop and this exit loop. This works because the ExitInLoops list is
 | |
|     // sorted in increasing order of loop depth and thus we visit loops in
 | |
|     // decreasing order of loop depth.
 | |
|     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
 | |
|       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
 | |
| 
 | |
|     // Walk the CFG back until we hit the cloned PH adding everything reachable
 | |
|     // and in the unlooped set to this exit block's loop.
 | |
|     Worklist.push_back(ExitBB);
 | |
|     do {
 | |
|       BasicBlock *BB = Worklist.pop_back_val();
 | |
|       // We can stop recursing at the cloned preheader (if we get there).
 | |
|       if (BB == PH)
 | |
|         continue;
 | |
| 
 | |
|       for (BasicBlock *PredBB : predecessors(BB)) {
 | |
|         // If this pred has already been moved to our set or is part of some
 | |
|         // (inner) loop, no update needed.
 | |
|         if (!UnloopedBlocks.erase(PredBB)) {
 | |
|           assert((NewExitLoopBlocks.count(PredBB) ||
 | |
|                   ExitL.contains(LI.getLoopFor(PredBB))) &&
 | |
|                  "Predecessor not in a nested loop (or already visited)!");
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // We just insert into the loop set here. We'll add these blocks to the
 | |
|         // exit loop after we build up the set in a deterministic order rather
 | |
|         // than the predecessor-influenced visit order.
 | |
|         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
 | |
|         (void)Inserted;
 | |
|         assert(Inserted && "Should only visit an unlooped block once!");
 | |
| 
 | |
|         // And recurse through to its predecessors.
 | |
|         Worklist.push_back(PredBB);
 | |
|       }
 | |
|     } while (!Worklist.empty());
 | |
| 
 | |
|     // If blocks in this exit loop were directly part of the original loop (as
 | |
|     // opposed to a child loop) update the map to point to this exit loop. This
 | |
|     // just updates a map and so the fact that the order is unstable is fine.
 | |
|     for (auto *BB : NewExitLoopBlocks)
 | |
|       if (Loop *BBL = LI.getLoopFor(BB))
 | |
|         if (BBL == &L || !L.contains(BBL))
 | |
|           LI.changeLoopFor(BB, &ExitL);
 | |
| 
 | |
|     // We will remove the remaining unlooped blocks from this loop in the next
 | |
|     // iteration or below.
 | |
|     NewExitLoopBlocks.clear();
 | |
|   }
 | |
| 
 | |
|   // Any remaining unlooped blocks are no longer part of any loop unless they
 | |
|   // are part of some child loop.
 | |
|   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
 | |
|     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
 | |
|   for (auto *BB : UnloopedBlocks)
 | |
|     if (Loop *BBL = LI.getLoopFor(BB))
 | |
|       if (BBL == &L || !L.contains(BBL))
 | |
|         LI.changeLoopFor(BB, nullptr);
 | |
| 
 | |
|   // Sink all the child loops whose headers are no longer in the loop set to
 | |
|   // the parent (or to be top level loops). We reach into the loop and directly
 | |
|   // update its subloop vector to make this batch update efficient.
 | |
|   auto &SubLoops = L.getSubLoopsVector();
 | |
|   auto SubLoopsSplitI =
 | |
|       LoopBlockSet.empty()
 | |
|           ? SubLoops.begin()
 | |
|           : std::stable_partition(
 | |
|                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
 | |
|                   return LoopBlockSet.count(SubL->getHeader());
 | |
|                 });
 | |
|   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
 | |
|     HoistedLoops.push_back(HoistedL);
 | |
|     HoistedL->setParentLoop(nullptr);
 | |
| 
 | |
|     // To compute the new parent of this hoisted loop we look at where we
 | |
|     // placed the preheader above. We can't lookup the header itself because we
 | |
|     // retained the mapping from the header to the hoisted loop. But the
 | |
|     // preheader and header should have the exact same new parent computed
 | |
|     // based on the set of exit blocks from the original loop as the preheader
 | |
|     // is a predecessor of the header and so reached in the reverse walk. And
 | |
|     // because the loops were all in simplified form the preheader of the
 | |
|     // hoisted loop can't be part of some *other* loop.
 | |
|     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
 | |
|       NewParentL->addChildLoop(HoistedL);
 | |
|     else
 | |
|       LI.addTopLevelLoop(HoistedL);
 | |
|   }
 | |
|   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
 | |
| 
 | |
|   // Actually delete the loop if nothing remained within it.
 | |
|   if (Blocks.empty()) {
 | |
|     assert(SubLoops.empty() &&
 | |
|            "Failed to remove all subloops from the original loop!");
 | |
|     if (Loop *ParentL = L.getParentLoop())
 | |
|       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
 | |
|     else
 | |
|       LI.removeLoop(llvm::find(LI, &L));
 | |
|     LI.destroy(&L);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Helper to visit a dominator subtree, invoking a callable on each node.
 | |
| ///
 | |
| /// Returning false at any point will stop walking past that node of the tree.
 | |
| template <typename CallableT>
 | |
| void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
 | |
|   SmallVector<DomTreeNode *, 4> DomWorklist;
 | |
|   DomWorklist.push_back(DT[BB]);
 | |
| #ifndef NDEBUG
 | |
|   SmallPtrSet<DomTreeNode *, 4> Visited;
 | |
|   Visited.insert(DT[BB]);
 | |
| #endif
 | |
|   do {
 | |
|     DomTreeNode *N = DomWorklist.pop_back_val();
 | |
| 
 | |
|     // Visit this node.
 | |
|     if (!Callable(N->getBlock()))
 | |
|       continue;
 | |
| 
 | |
|     // Accumulate the child nodes.
 | |
|     for (DomTreeNode *ChildN : *N) {
 | |
|       assert(Visited.insert(ChildN).second &&
 | |
|              "Cannot visit a node twice when walking a tree!");
 | |
|       DomWorklist.push_back(ChildN);
 | |
|     }
 | |
|   } while (!DomWorklist.empty());
 | |
| }
 | |
| 
 | |
| static void unswitchNontrivialInvariants(
 | |
|     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
 | |
|     SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
 | |
|     AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
 | |
|     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
 | |
|   auto *ParentBB = TI.getParent();
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(&TI);
 | |
|   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
 | |
| 
 | |
|   // We can only unswitch switches, conditional branches with an invariant
 | |
|   // condition, or combining invariant conditions with an instruction.
 | |
|   assert((SI || (BI && BI->isConditional())) &&
 | |
|          "Can only unswitch switches and conditional branch!");
 | |
|   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
 | |
|   if (FullUnswitch)
 | |
|     assert(Invariants.size() == 1 &&
 | |
|            "Cannot have other invariants with full unswitching!");
 | |
|   else
 | |
|     assert(isa<Instruction>(BI->getCondition()) &&
 | |
|            "Partial unswitching requires an instruction as the condition!");
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   // Constant and BBs tracking the cloned and continuing successor. When we are
 | |
|   // unswitching the entire condition, this can just be trivially chosen to
 | |
|   // unswitch towards `true`. However, when we are unswitching a set of
 | |
|   // invariants combined with `and` or `or`, the combining operation determines
 | |
|   // the best direction to unswitch: we want to unswitch the direction that will
 | |
|   // collapse the branch.
 | |
|   bool Direction = true;
 | |
|   int ClonedSucc = 0;
 | |
|   if (!FullUnswitch) {
 | |
|     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
 | |
|       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
 | |
|                  Instruction::And &&
 | |
|              "Only `or` and `and` instructions can combine invariants being "
 | |
|              "unswitched.");
 | |
|       Direction = false;
 | |
|       ClonedSucc = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BasicBlock *RetainedSuccBB =
 | |
|       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
 | |
|   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
 | |
|   if (BI)
 | |
|     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
 | |
|   else
 | |
|     for (auto Case : SI->cases())
 | |
|       if (Case.getCaseSuccessor() != RetainedSuccBB)
 | |
|         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
 | |
| 
 | |
|   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
 | |
|          "Should not unswitch the same successor we are retaining!");
 | |
| 
 | |
|   // The branch should be in this exact loop. Any inner loop's invariant branch
 | |
|   // should be handled by unswitching that inner loop. The caller of this
 | |
|   // routine should filter out any candidates that remain (but were skipped for
 | |
|   // whatever reason).
 | |
|   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
 | |
| 
 | |
|   // Compute the parent loop now before we start hacking on things.
 | |
|   Loop *ParentL = L.getParentLoop();
 | |
|   // Get blocks in RPO order for MSSA update, before changing the CFG.
 | |
|   LoopBlocksRPO LBRPO(&L);
 | |
|   if (MSSAU)
 | |
|     LBRPO.perform(&LI);
 | |
| 
 | |
|   // Compute the outer-most loop containing one of our exit blocks. This is the
 | |
|   // furthest up our loopnest which can be mutated, which we will use below to
 | |
|   // update things.
 | |
|   Loop *OuterExitL = &L;
 | |
|   for (auto *ExitBB : ExitBlocks) {
 | |
|     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
 | |
|     if (!NewOuterExitL) {
 | |
|       // We exited the entire nest with this block, so we're done.
 | |
|       OuterExitL = nullptr;
 | |
|       break;
 | |
|     }
 | |
|     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
 | |
|       OuterExitL = NewOuterExitL;
 | |
|   }
 | |
| 
 | |
|   // At this point, we're definitely going to unswitch something so invalidate
 | |
|   // any cached information in ScalarEvolution for the outer most loop
 | |
|   // containing an exit block and all nested loops.
 | |
|   if (SE) {
 | |
|     if (OuterExitL)
 | |
|       SE->forgetLoop(OuterExitL);
 | |
|     else
 | |
|       SE->forgetTopmostLoop(&L);
 | |
|   }
 | |
| 
 | |
|   // If the edge from this terminator to a successor dominates that successor,
 | |
|   // store a map from each block in its dominator subtree to it. This lets us
 | |
|   // tell when cloning for a particular successor if a block is dominated by
 | |
|   // some *other* successor with a single data structure. We use this to
 | |
|   // significantly reduce cloning.
 | |
|   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
 | |
|   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
 | |
|            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
 | |
|     if (SuccBB->getUniquePredecessor() ||
 | |
|         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
 | |
|           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
 | |
|         }))
 | |
|       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
 | |
|         DominatingSucc[BB] = SuccBB;
 | |
|         return true;
 | |
|       });
 | |
| 
 | |
|   // Split the preheader, so that we know that there is a safe place to insert
 | |
|   // the conditional branch. We will change the preheader to have a conditional
 | |
|   // branch on LoopCond. The original preheader will become the split point
 | |
|   // between the unswitched versions, and we will have a new preheader for the
 | |
|   // original loop.
 | |
|   BasicBlock *SplitBB = L.getLoopPreheader();
 | |
|   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
 | |
| 
 | |
|   // Keep track of the dominator tree updates needed.
 | |
|   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
 | |
| 
 | |
|   // Clone the loop for each unswitched successor.
 | |
|   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
 | |
|   VMaps.reserve(UnswitchedSuccBBs.size());
 | |
|   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
 | |
|   for (auto *SuccBB : UnswitchedSuccBBs) {
 | |
|     VMaps.emplace_back(new ValueToValueMapTy());
 | |
|     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
 | |
|         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
 | |
|         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
 | |
|   }
 | |
| 
 | |
|   // The stitching of the branched code back together depends on whether we're
 | |
|   // doing full unswitching or not with the exception that we always want to
 | |
|   // nuke the initial terminator placed in the split block.
 | |
|   SplitBB->getTerminator()->eraseFromParent();
 | |
|   if (FullUnswitch) {
 | |
|     // Splice the terminator from the original loop and rewrite its
 | |
|     // successors.
 | |
|     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
 | |
| 
 | |
|     // Keep a clone of the terminator for MSSA updates.
 | |
|     Instruction *NewTI = TI.clone();
 | |
|     ParentBB->getInstList().push_back(NewTI);
 | |
| 
 | |
|     // First wire up the moved terminator to the preheaders.
 | |
|     if (BI) {
 | |
|       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
 | |
|       BI->setSuccessor(ClonedSucc, ClonedPH);
 | |
|       BI->setSuccessor(1 - ClonedSucc, LoopPH);
 | |
|       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
 | |
|     } else {
 | |
|       assert(SI && "Must either be a branch or switch!");
 | |
| 
 | |
|       // Walk the cases and directly update their successors.
 | |
|       assert(SI->getDefaultDest() == RetainedSuccBB &&
 | |
|              "Not retaining default successor!");
 | |
|       SI->setDefaultDest(LoopPH);
 | |
|       for (auto &Case : SI->cases())
 | |
|         if (Case.getCaseSuccessor() == RetainedSuccBB)
 | |
|           Case.setSuccessor(LoopPH);
 | |
|         else
 | |
|           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
 | |
| 
 | |
|       // We need to use the set to populate domtree updates as even when there
 | |
|       // are multiple cases pointing at the same successor we only want to
 | |
|       // remove and insert one edge in the domtree.
 | |
|       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
 | |
|         DTUpdates.push_back(
 | |
|             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
 | |
|     }
 | |
| 
 | |
|     if (MSSAU) {
 | |
|       DT.applyUpdates(DTUpdates);
 | |
|       DTUpdates.clear();
 | |
| 
 | |
|       // Remove all but one edge to the retained block and all unswitched
 | |
|       // blocks. This is to avoid having duplicate entries in the cloned Phis,
 | |
|       // when we know we only keep a single edge for each case.
 | |
|       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
 | |
|       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
 | |
|         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
 | |
| 
 | |
|       for (auto &VMap : VMaps)
 | |
|         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
 | |
|                                    /*IgnoreIncomingWithNoClones=*/true);
 | |
|       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
 | |
| 
 | |
|       // Remove all edges to unswitched blocks.
 | |
|       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
 | |
|         MSSAU->removeEdge(ParentBB, SuccBB);
 | |
|     }
 | |
| 
 | |
|     // Now unhook the successor relationship as we'll be replacing
 | |
|     // the terminator with a direct branch. This is much simpler for branches
 | |
|     // than switches so we handle those first.
 | |
|     if (BI) {
 | |
|       // Remove the parent as a predecessor of the unswitched successor.
 | |
|       assert(UnswitchedSuccBBs.size() == 1 &&
 | |
|              "Only one possible unswitched block for a branch!");
 | |
|       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
 | |
|       UnswitchedSuccBB->removePredecessor(ParentBB,
 | |
|                                           /*KeepOneInputPHIs*/ true);
 | |
|       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
 | |
|     } else {
 | |
|       // Note that we actually want to remove the parent block as a predecessor
 | |
|       // of *every* case successor. The case successor is either unswitched,
 | |
|       // completely eliminating an edge from the parent to that successor, or it
 | |
|       // is a duplicate edge to the retained successor as the retained successor
 | |
|       // is always the default successor and as we'll replace this with a direct
 | |
|       // branch we no longer need the duplicate entries in the PHI nodes.
 | |
|       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
 | |
|       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
 | |
|              "Not retaining default successor!");
 | |
|       for (auto &Case : NewSI->cases())
 | |
|         Case.getCaseSuccessor()->removePredecessor(
 | |
|             ParentBB,
 | |
|             /*KeepOneInputPHIs*/ true);
 | |
| 
 | |
|       // We need to use the set to populate domtree updates as even when there
 | |
|       // are multiple cases pointing at the same successor we only want to
 | |
|       // remove and insert one edge in the domtree.
 | |
|       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
 | |
|         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
 | |
|     }
 | |
| 
 | |
|     // After MSSAU update, remove the cloned terminator instruction NewTI.
 | |
|     ParentBB->getTerminator()->eraseFromParent();
 | |
| 
 | |
|     // Create a new unconditional branch to the continuing block (as opposed to
 | |
|     // the one cloned).
 | |
|     BranchInst::Create(RetainedSuccBB, ParentBB);
 | |
|   } else {
 | |
|     assert(BI && "Only branches have partial unswitching.");
 | |
|     assert(UnswitchedSuccBBs.size() == 1 &&
 | |
|            "Only one possible unswitched block for a branch!");
 | |
|     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
 | |
|     // When doing a partial unswitch, we have to do a bit more work to build up
 | |
|     // the branch in the split block.
 | |
|     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
 | |
|                                           *ClonedPH, *LoopPH);
 | |
|     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
 | |
| 
 | |
|     if (MSSAU) {
 | |
|       DT.applyUpdates(DTUpdates);
 | |
|       DTUpdates.clear();
 | |
| 
 | |
|       // Perform MSSA cloning updates.
 | |
|       for (auto &VMap : VMaps)
 | |
|         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
 | |
|                                    /*IgnoreIncomingWithNoClones=*/true);
 | |
|       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Apply the updates accumulated above to get an up-to-date dominator tree.
 | |
|   DT.applyUpdates(DTUpdates);
 | |
| 
 | |
|   // Now that we have an accurate dominator tree, first delete the dead cloned
 | |
|   // blocks so that we can accurately build any cloned loops. It is important to
 | |
|   // not delete the blocks from the original loop yet because we still want to
 | |
|   // reference the original loop to understand the cloned loop's structure.
 | |
|   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
 | |
| 
 | |
|   // Build the cloned loop structure itself. This may be substantially
 | |
|   // different from the original structure due to the simplified CFG. This also
 | |
|   // handles inserting all the cloned blocks into the correct loops.
 | |
|   SmallVector<Loop *, 4> NonChildClonedLoops;
 | |
|   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
 | |
|     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
 | |
| 
 | |
|   // Now that our cloned loops have been built, we can update the original loop.
 | |
|   // First we delete the dead blocks from it and then we rebuild the loop
 | |
|   // structure taking these deletions into account.
 | |
|   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   SmallVector<Loop *, 4> HoistedLoops;
 | |
|   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   // This transformation has a high risk of corrupting the dominator tree, and
 | |
|   // the below steps to rebuild loop structures will result in hard to debug
 | |
|   // errors in that case so verify that the dominator tree is sane first.
 | |
|   // FIXME: Remove this when the bugs stop showing up and rely on existing
 | |
|   // verification steps.
 | |
|   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
 | |
| 
 | |
|   if (BI) {
 | |
|     // If we unswitched a branch which collapses the condition to a known
 | |
|     // constant we want to replace all the uses of the invariants within both
 | |
|     // the original and cloned blocks. We do this here so that we can use the
 | |
|     // now updated dominator tree to identify which side the users are on.
 | |
|     assert(UnswitchedSuccBBs.size() == 1 &&
 | |
|            "Only one possible unswitched block for a branch!");
 | |
|     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
 | |
| 
 | |
|     // When considering multiple partially-unswitched invariants
 | |
|     // we cant just go replace them with constants in both branches.
 | |
|     //
 | |
|     // For 'AND' we infer that true branch ("continue") means true
 | |
|     // for each invariant operand.
 | |
|     // For 'OR' we can infer that false branch ("continue") means false
 | |
|     // for each invariant operand.
 | |
|     // So it happens that for multiple-partial case we dont replace
 | |
|     // in the unswitched branch.
 | |
|     bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
 | |
| 
 | |
|     ConstantInt *UnswitchedReplacement =
 | |
|         Direction ? ConstantInt::getTrue(BI->getContext())
 | |
|                   : ConstantInt::getFalse(BI->getContext());
 | |
|     ConstantInt *ContinueReplacement =
 | |
|         Direction ? ConstantInt::getFalse(BI->getContext())
 | |
|                   : ConstantInt::getTrue(BI->getContext());
 | |
|     for (Value *Invariant : Invariants)
 | |
|       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
 | |
|            UI != UE;) {
 | |
|         // Grab the use and walk past it so we can clobber it in the use list.
 | |
|         Use *U = &*UI++;
 | |
|         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
 | |
|         if (!UserI)
 | |
|           continue;
 | |
| 
 | |
|         // Replace it with the 'continue' side if in the main loop body, and the
 | |
|         // unswitched if in the cloned blocks.
 | |
|         if (DT.dominates(LoopPH, UserI->getParent()))
 | |
|           U->set(ContinueReplacement);
 | |
|         else if (ReplaceUnswitched &&
 | |
|                  DT.dominates(ClonedPH, UserI->getParent()))
 | |
|           U->set(UnswitchedReplacement);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // We can change which blocks are exit blocks of all the cloned sibling
 | |
|   // loops, the current loop, and any parent loops which shared exit blocks
 | |
|   // with the current loop. As a consequence, we need to re-form LCSSA for
 | |
|   // them. But we shouldn't need to re-form LCSSA for any child loops.
 | |
|   // FIXME: This could be made more efficient by tracking which exit blocks are
 | |
|   // new, and focusing on them, but that isn't likely to be necessary.
 | |
|   //
 | |
|   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
 | |
|   // loop nest and update every loop that could have had its exits changed. We
 | |
|   // also need to cover any intervening loops. We add all of these loops to
 | |
|   // a list and sort them by loop depth to achieve this without updating
 | |
|   // unnecessary loops.
 | |
|   auto UpdateLoop = [&](Loop &UpdateL) {
 | |
| #ifndef NDEBUG
 | |
|     UpdateL.verifyLoop();
 | |
|     for (Loop *ChildL : UpdateL) {
 | |
|       ChildL->verifyLoop();
 | |
|       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
 | |
|              "Perturbed a child loop's LCSSA form!");
 | |
|     }
 | |
| #endif
 | |
|     // First build LCSSA for this loop so that we can preserve it when
 | |
|     // forming dedicated exits. We don't want to perturb some other loop's
 | |
|     // LCSSA while doing that CFG edit.
 | |
|     formLCSSA(UpdateL, DT, &LI, SE);
 | |
| 
 | |
|     // For loops reached by this loop's original exit blocks we may
 | |
|     // introduced new, non-dedicated exits. At least try to re-form dedicated
 | |
|     // exits for these loops. This may fail if they couldn't have dedicated
 | |
|     // exits to start with.
 | |
|     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
 | |
|   };
 | |
| 
 | |
|   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
 | |
|   // and we can do it in any order as they don't nest relative to each other.
 | |
|   //
 | |
|   // Also check if any of the loops we have updated have become top-level loops
 | |
|   // as that will necessitate widening the outer loop scope.
 | |
|   for (Loop *UpdatedL :
 | |
|        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
 | |
|     UpdateLoop(*UpdatedL);
 | |
|     if (!UpdatedL->getParentLoop())
 | |
|       OuterExitL = nullptr;
 | |
|   }
 | |
|   if (IsStillLoop) {
 | |
|     UpdateLoop(L);
 | |
|     if (!L.getParentLoop())
 | |
|       OuterExitL = nullptr;
 | |
|   }
 | |
| 
 | |
|   // If the original loop had exit blocks, walk up through the outer most loop
 | |
|   // of those exit blocks to update LCSSA and form updated dedicated exits.
 | |
|   if (OuterExitL != &L)
 | |
|     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
 | |
|          OuterL = OuterL->getParentLoop())
 | |
|       UpdateLoop(*OuterL);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Verify the entire loop structure to catch any incorrect updates before we
 | |
|   // progress in the pass pipeline.
 | |
|   LI.verify(DT);
 | |
| #endif
 | |
| 
 | |
|   // Now that we've unswitched something, make callbacks to report the changes.
 | |
|   // For that we need to merge together the updated loops and the cloned loops
 | |
|   // and check whether the original loop survived.
 | |
|   SmallVector<Loop *, 4> SibLoops;
 | |
|   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
 | |
|     if (UpdatedL->getParentLoop() == ParentL)
 | |
|       SibLoops.push_back(UpdatedL);
 | |
|   UnswitchCB(IsStillLoop, SibLoops);
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   if (BI)
 | |
|     ++NumBranches;
 | |
|   else
 | |
|     ++NumSwitches;
 | |
| }
 | |
| 
 | |
| /// Recursively compute the cost of a dominator subtree based on the per-block
 | |
| /// cost map provided.
 | |
| ///
 | |
| /// The recursive computation is memozied into the provided DT-indexed cost map
 | |
| /// to allow querying it for most nodes in the domtree without it becoming
 | |
| /// quadratic.
 | |
| static int
 | |
| computeDomSubtreeCost(DomTreeNode &N,
 | |
|                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
 | |
|                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
 | |
|   // Don't accumulate cost (or recurse through) blocks not in our block cost
 | |
|   // map and thus not part of the duplication cost being considered.
 | |
|   auto BBCostIt = BBCostMap.find(N.getBlock());
 | |
|   if (BBCostIt == BBCostMap.end())
 | |
|     return 0;
 | |
| 
 | |
|   // Lookup this node to see if we already computed its cost.
 | |
|   auto DTCostIt = DTCostMap.find(&N);
 | |
|   if (DTCostIt != DTCostMap.end())
 | |
|     return DTCostIt->second;
 | |
| 
 | |
|   // If not, we have to compute it. We can't use insert above and update
 | |
|   // because computing the cost may insert more things into the map.
 | |
|   int Cost = std::accumulate(
 | |
|       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
 | |
|         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
 | |
|       });
 | |
|   bool Inserted = DTCostMap.insert({&N, Cost}).second;
 | |
|   (void)Inserted;
 | |
|   assert(Inserted && "Should not insert a node while visiting children!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
 | |
| /// making the following replacement:
 | |
| ///
 | |
| ///   --code before guard--
 | |
| ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
 | |
| ///   --code after guard--
 | |
| ///
 | |
| /// into
 | |
| ///
 | |
| ///   --code before guard--
 | |
| ///   br i1 %cond, label %guarded, label %deopt
 | |
| ///
 | |
| /// guarded:
 | |
| ///   --code after guard--
 | |
| ///
 | |
| /// deopt:
 | |
| ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
 | |
| ///   unreachable
 | |
| ///
 | |
| /// It also makes all relevant DT and LI updates, so that all structures are in
 | |
| /// valid state after this transform.
 | |
| static BranchInst *
 | |
| turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
 | |
|                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
 | |
|                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
 | |
|   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
 | |
|   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
 | |
|   BasicBlock *CheckBB = GI->getParent();
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|      MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   // Remove all CheckBB's successors from DomTree. A block can be seen among
 | |
|   // successors more than once, but for DomTree it should be added only once.
 | |
|   SmallPtrSet<BasicBlock *, 4> Successors;
 | |
|   for (auto *Succ : successors(CheckBB))
 | |
|     if (Successors.insert(Succ).second)
 | |
|       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
 | |
| 
 | |
|   Instruction *DeoptBlockTerm =
 | |
|       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
 | |
|   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
 | |
|   // SplitBlockAndInsertIfThen inserts control flow that branches to
 | |
|   // DeoptBlockTerm if the condition is true.  We want the opposite.
 | |
|   CheckBI->swapSuccessors();
 | |
| 
 | |
|   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
 | |
|   GuardedBlock->setName("guarded");
 | |
|   CheckBI->getSuccessor(1)->setName("deopt");
 | |
|   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
 | |
| 
 | |
|   // We now have a new exit block.
 | |
|   ExitBlocks.push_back(CheckBI->getSuccessor(1));
 | |
| 
 | |
|   if (MSSAU)
 | |
|     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
 | |
| 
 | |
|   GI->moveBefore(DeoptBlockTerm);
 | |
|   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
 | |
| 
 | |
|   // Add new successors of CheckBB into DomTree.
 | |
|   for (auto *Succ : successors(CheckBB))
 | |
|     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
 | |
| 
 | |
|   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
 | |
|   // successors.
 | |
|   for (auto *Succ : Successors)
 | |
|     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
 | |
| 
 | |
|   // Make proper changes to DT.
 | |
|   DT.applyUpdates(DTUpdates);
 | |
|   // Inform LI of a new loop block.
 | |
|   L.addBasicBlockToLoop(GuardedBlock, LI);
 | |
| 
 | |
|   if (MSSAU) {
 | |
|     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
 | |
|     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
 | |
|     if (VerifyMemorySSA)
 | |
|       MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
|   }
 | |
| 
 | |
|   ++NumGuards;
 | |
|   return CheckBI;
 | |
| }
 | |
| 
 | |
| /// Cost multiplier is a way to limit potentially exponential behavior
 | |
| /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
 | |
| /// candidates available. Also accounting for the number of "sibling" loops with
 | |
| /// the idea to account for previous unswitches that already happened on this
 | |
| /// cluster of loops. There was an attempt to keep this formula simple,
 | |
| /// just enough to limit the worst case behavior. Even if it is not that simple
 | |
| /// now it is still not an attempt to provide a detailed heuristic size
 | |
| /// prediction.
 | |
| ///
 | |
| /// TODO: Make a proper accounting of "explosion" effect for all kinds of
 | |
| /// unswitch candidates, making adequate predictions instead of wild guesses.
 | |
| /// That requires knowing not just the number of "remaining" candidates but
 | |
| /// also costs of unswitching for each of these candidates.
 | |
| static int CalculateUnswitchCostMultiplier(
 | |
|     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
 | |
|     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
 | |
|         UnswitchCandidates) {
 | |
| 
 | |
|   // Guards and other exiting conditions do not contribute to exponential
 | |
|   // explosion as soon as they dominate the latch (otherwise there might be
 | |
|   // another path to the latch remaining that does not allow to eliminate the
 | |
|   // loop copy on unswitch).
 | |
|   BasicBlock *Latch = L.getLoopLatch();
 | |
|   BasicBlock *CondBlock = TI.getParent();
 | |
|   if (DT.dominates(CondBlock, Latch) &&
 | |
|       (isGuard(&TI) ||
 | |
|        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
 | |
|          return L.contains(SuccBB);
 | |
|        }) <= 1)) {
 | |
|     NumCostMultiplierSkipped++;
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   auto *ParentL = L.getParentLoop();
 | |
|   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
 | |
|                                : std::distance(LI.begin(), LI.end()));
 | |
|   // Count amount of clones that all the candidates might cause during
 | |
|   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
 | |
|   int UnswitchedClones = 0;
 | |
|   for (auto Candidate : UnswitchCandidates) {
 | |
|     Instruction *CI = Candidate.first;
 | |
|     BasicBlock *CondBlock = CI->getParent();
 | |
|     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
 | |
|     if (isGuard(CI)) {
 | |
|       if (!SkipExitingSuccessors)
 | |
|         UnswitchedClones++;
 | |
|       continue;
 | |
|     }
 | |
|     int NonExitingSuccessors = llvm::count_if(
 | |
|         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
 | |
|           return !SkipExitingSuccessors || L.contains(SuccBB);
 | |
|         });
 | |
|     UnswitchedClones += Log2_32(NonExitingSuccessors);
 | |
|   }
 | |
| 
 | |
|   // Ignore up to the "unscaled candidates" number of unswitch candidates
 | |
|   // when calculating the power-of-two scaling of the cost. The main idea
 | |
|   // with this control is to allow a small number of unswitches to happen
 | |
|   // and rely more on siblings multiplier (see below) when the number
 | |
|   // of candidates is small.
 | |
|   unsigned ClonesPower =
 | |
|       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
 | |
| 
 | |
|   // Allowing top-level loops to spread a bit more than nested ones.
 | |
|   int SiblingsMultiplier =
 | |
|       std::max((ParentL ? SiblingsCount
 | |
|                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
 | |
|                1);
 | |
|   // Compute the cost multiplier in a way that won't overflow by saturating
 | |
|   // at an upper bound.
 | |
|   int CostMultiplier;
 | |
|   if (ClonesPower > Log2_32(UnswitchThreshold) ||
 | |
|       SiblingsMultiplier > UnswitchThreshold)
 | |
|     CostMultiplier = UnswitchThreshold;
 | |
|   else
 | |
|     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
 | |
|                               (int)UnswitchThreshold);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
 | |
|                     << " (siblings " << SiblingsMultiplier << " * clones "
 | |
|                     << (1 << ClonesPower) << ")"
 | |
|                     << " for unswitch candidate: " << TI << "\n");
 | |
|   return CostMultiplier;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
 | |
|                       AssumptionCache &AC, TargetTransformInfo &TTI,
 | |
|                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
 | |
|                       ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
 | |
|   // Collect all invariant conditions within this loop (as opposed to an inner
 | |
|   // loop which would be handled when visiting that inner loop).
 | |
|   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
 | |
|       UnswitchCandidates;
 | |
| 
 | |
|   // Whether or not we should also collect guards in the loop.
 | |
|   bool CollectGuards = false;
 | |
|   if (UnswitchGuards) {
 | |
|     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
 | |
|         Intrinsic::getName(Intrinsic::experimental_guard));
 | |
|     if (GuardDecl && !GuardDecl->use_empty())
 | |
|       CollectGuards = true;
 | |
|   }
 | |
| 
 | |
|   for (auto *BB : L.blocks()) {
 | |
|     if (LI.getLoopFor(BB) != &L)
 | |
|       continue;
 | |
| 
 | |
|     if (CollectGuards)
 | |
|       for (auto &I : *BB)
 | |
|         if (isGuard(&I)) {
 | |
|           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
 | |
|           // TODO: Support AND, OR conditions and partial unswitching.
 | |
|           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
 | |
|             UnswitchCandidates.push_back({&I, {Cond}});
 | |
|         }
 | |
| 
 | |
|     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
 | |
|       // We can only consider fully loop-invariant switch conditions as we need
 | |
|       // to completely eliminate the switch after unswitching.
 | |
|       if (!isa<Constant>(SI->getCondition()) &&
 | |
|           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
 | |
|         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
 | |
|         BI->getSuccessor(0) == BI->getSuccessor(1))
 | |
|       continue;
 | |
| 
 | |
|     if (L.isLoopInvariant(BI->getCondition())) {
 | |
|       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Instruction &CondI = *cast<Instruction>(BI->getCondition());
 | |
|     if (CondI.getOpcode() != Instruction::And &&
 | |
|       CondI.getOpcode() != Instruction::Or)
 | |
|       continue;
 | |
| 
 | |
|     TinyPtrVector<Value *> Invariants =
 | |
|         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
 | |
|     if (Invariants.empty())
 | |
|       continue;
 | |
| 
 | |
|     UnswitchCandidates.push_back({BI, std::move(Invariants)});
 | |
|   }
 | |
| 
 | |
|   // If we didn't find any candidates, we're done.
 | |
|   if (UnswitchCandidates.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
 | |
|   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
 | |
|   // irreducible control flow into reducible control flow and introduce new
 | |
|   // loops "out of thin air". If we ever discover important use cases for doing
 | |
|   // this, we can add support to loop unswitch, but it is a lot of complexity
 | |
|   // for what seems little or no real world benefit.
 | |
|   LoopBlocksRPO RPOT(&L);
 | |
|   RPOT.perform(&LI);
 | |
|   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<BasicBlock *, 4> ExitBlocks;
 | |
|   L.getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
 | |
|   // don't know how to split those exit blocks.
 | |
|   // FIXME: We should teach SplitBlock to handle this and remove this
 | |
|   // restriction.
 | |
|   for (auto *ExitBB : ExitBlocks)
 | |
|     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
 | |
|       dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   LLVM_DEBUG(
 | |
|       dbgs() << "Considering " << UnswitchCandidates.size()
 | |
|              << " non-trivial loop invariant conditions for unswitching.\n");
 | |
| 
 | |
|   // Given that unswitching these terminators will require duplicating parts of
 | |
|   // the loop, so we need to be able to model that cost. Compute the ephemeral
 | |
|   // values and set up a data structure to hold per-BB costs. We cache each
 | |
|   // block's cost so that we don't recompute this when considering different
 | |
|   // subsets of the loop for duplication during unswitching.
 | |
|   SmallPtrSet<const Value *, 4> EphValues;
 | |
|   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
 | |
|   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
 | |
| 
 | |
|   // Compute the cost of each block, as well as the total loop cost. Also, bail
 | |
|   // out if we see instructions which are incompatible with loop unswitching
 | |
|   // (convergent, noduplicate, or cross-basic-block tokens).
 | |
|   // FIXME: We might be able to safely handle some of these in non-duplicated
 | |
|   // regions.
 | |
|   int LoopCost = 0;
 | |
|   for (auto *BB : L.blocks()) {
 | |
|     int Cost = 0;
 | |
|     for (auto &I : *BB) {
 | |
|       if (EphValues.count(&I))
 | |
|         continue;
 | |
| 
 | |
|       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
 | |
|         return false;
 | |
|       if (auto CS = CallSite(&I))
 | |
|         if (CS.isConvergent() || CS.cannotDuplicate())
 | |
|           return false;
 | |
| 
 | |
|       Cost += TTI.getUserCost(&I);
 | |
|     }
 | |
|     assert(Cost >= 0 && "Must not have negative costs!");
 | |
|     LoopCost += Cost;
 | |
|     assert(LoopCost >= 0 && "Must not have negative loop costs!");
 | |
|     BBCostMap[BB] = Cost;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
 | |
| 
 | |
|   // Now we find the best candidate by searching for the one with the following
 | |
|   // properties in order:
 | |
|   //
 | |
|   // 1) An unswitching cost below the threshold
 | |
|   // 2) The smallest number of duplicated unswitch candidates (to avoid
 | |
|   //    creating redundant subsequent unswitching)
 | |
|   // 3) The smallest cost after unswitching.
 | |
|   //
 | |
|   // We prioritize reducing fanout of unswitch candidates provided the cost
 | |
|   // remains below the threshold because this has a multiplicative effect.
 | |
|   //
 | |
|   // This requires memoizing each dominator subtree to avoid redundant work.
 | |
|   //
 | |
|   // FIXME: Need to actually do the number of candidates part above.
 | |
|   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
 | |
|   // Given a terminator which might be unswitched, computes the non-duplicated
 | |
|   // cost for that terminator.
 | |
|   auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
 | |
|     BasicBlock &BB = *TI.getParent();
 | |
|     SmallPtrSet<BasicBlock *, 4> Visited;
 | |
| 
 | |
|     int Cost = LoopCost;
 | |
|     for (BasicBlock *SuccBB : successors(&BB)) {
 | |
|       // Don't count successors more than once.
 | |
|       if (!Visited.insert(SuccBB).second)
 | |
|         continue;
 | |
| 
 | |
|       // If this is a partial unswitch candidate, then it must be a conditional
 | |
|       // branch with a condition of either `or` or `and`. In that case, one of
 | |
|       // the successors is necessarily duplicated, so don't even try to remove
 | |
|       // its cost.
 | |
|       if (!FullUnswitch) {
 | |
|         auto &BI = cast<BranchInst>(TI);
 | |
|         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
 | |
|             Instruction::And) {
 | |
|           if (SuccBB == BI.getSuccessor(1))
 | |
|             continue;
 | |
|         } else {
 | |
|           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
 | |
|                      Instruction::Or &&
 | |
|                  "Only `and` and `or` conditions can result in a partial "
 | |
|                  "unswitch!");
 | |
|           if (SuccBB == BI.getSuccessor(0))
 | |
|             continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // This successor's domtree will not need to be duplicated after
 | |
|       // unswitching if the edge to the successor dominates it (and thus the
 | |
|       // entire tree). This essentially means there is no other path into this
 | |
|       // subtree and so it will end up live in only one clone of the loop.
 | |
|       if (SuccBB->getUniquePredecessor() ||
 | |
|           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
 | |
|             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
 | |
|           })) {
 | |
|         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
 | |
|         assert(Cost >= 0 &&
 | |
|                "Non-duplicated cost should never exceed total loop cost!");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now scale the cost by the number of unique successors minus one. We
 | |
|     // subtract one because there is already at least one copy of the entire
 | |
|     // loop. This is computing the new cost of unswitching a condition.
 | |
|     // Note that guards always have 2 unique successors that are implicit and
 | |
|     // will be materialized if we decide to unswitch it.
 | |
|     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
 | |
|     assert(SuccessorsCount > 1 &&
 | |
|            "Cannot unswitch a condition without multiple distinct successors!");
 | |
|     return Cost * (SuccessorsCount - 1);
 | |
|   };
 | |
|   Instruction *BestUnswitchTI = nullptr;
 | |
|   int BestUnswitchCost = 0;
 | |
|   ArrayRef<Value *> BestUnswitchInvariants;
 | |
|   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
 | |
|     Instruction &TI = *TerminatorAndInvariants.first;
 | |
|     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(&TI);
 | |
|     int CandidateCost = ComputeUnswitchedCost(
 | |
|         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
 | |
|                                      Invariants[0] == BI->getCondition()));
 | |
|     // Calculate cost multiplier which is a tool to limit potentially
 | |
|     // exponential behavior of loop-unswitch.
 | |
|     if (EnableUnswitchCostMultiplier) {
 | |
|       int CostMultiplier =
 | |
|           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
 | |
|       assert(
 | |
|           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
 | |
|           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
 | |
|       CandidateCost *= CostMultiplier;
 | |
|       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
 | |
|                         << " (multiplier: " << CostMultiplier << ")"
 | |
|                         << " for unswitch candidate: " << TI << "\n");
 | |
|     } else {
 | |
|       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
 | |
|                         << " for unswitch candidate: " << TI << "\n");
 | |
|     }
 | |
| 
 | |
|     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
 | |
|       BestUnswitchTI = &TI;
 | |
|       BestUnswitchCost = CandidateCost;
 | |
|       BestUnswitchInvariants = Invariants;
 | |
|     }
 | |
|   }
 | |
|   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
 | |
| 
 | |
|   if (BestUnswitchCost >= UnswitchThreshold) {
 | |
|     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
 | |
|                       << BestUnswitchCost << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the best candidate is a guard, turn it into a branch.
 | |
|   if (isGuard(BestUnswitchTI))
 | |
|     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
 | |
|                                          ExitBlocks, DT, LI, MSSAU);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
 | |
|                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
 | |
|                     << "\n");
 | |
|   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
 | |
|                                ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Unswitch control flow predicated on loop invariant conditions.
 | |
| ///
 | |
| /// This first hoists all branches or switches which are trivial (IE, do not
 | |
| /// require duplicating any part of the loop) out of the loop body. It then
 | |
| /// looks at other loop invariant control flows and tries to unswitch those as
 | |
| /// well by cloning the loop if the result is small enough.
 | |
| ///
 | |
| /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
 | |
| /// updated based on the unswitch.
 | |
| /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
 | |
| ///
 | |
| /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
 | |
| /// true, we will attempt to do non-trivial unswitching as well as trivial
 | |
| /// unswitching.
 | |
| ///
 | |
| /// The `UnswitchCB` callback provided will be run after unswitching is
 | |
| /// complete, with the first parameter set to `true` if the provided loop
 | |
| /// remains a loop, and a list of new sibling loops created.
 | |
| ///
 | |
| /// If `SE` is non-null, we will update that analysis based on the unswitching
 | |
| /// done.
 | |
| static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
 | |
|                          AssumptionCache &AC, TargetTransformInfo &TTI,
 | |
|                          bool NonTrivial,
 | |
|                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
 | |
|                          ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
 | |
|   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
 | |
|          "Loops must be in LCSSA form before unswitching.");
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Must be in loop simplified form: we need a preheader and dedicated exits.
 | |
|   if (!L.isLoopSimplifyForm())
 | |
|     return false;
 | |
| 
 | |
|   // Try trivial unswitch first before loop over other basic blocks in the loop.
 | |
|   if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
 | |
|     // If we unswitched successfully we will want to clean up the loop before
 | |
|     // processing it further so just mark it as unswitched and return.
 | |
|     UnswitchCB(/*CurrentLoopValid*/ true, {});
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If we're not doing non-trivial unswitching, we're done. We both accept
 | |
|   // a parameter but also check a local flag that can be used for testing
 | |
|   // a debugging.
 | |
|   if (!NonTrivial && !EnableNonTrivialUnswitch)
 | |
|     return false;
 | |
| 
 | |
|   // For non-trivial unswitching, because it often creates new loops, we rely on
 | |
|   // the pass manager to iterate on the loops rather than trying to immediately
 | |
|   // reach a fixed point. There is no substantial advantage to iterating
 | |
|   // internally, and if any of the new loops are simplified enough to contain
 | |
|   // trivial unswitching we want to prefer those.
 | |
| 
 | |
|   // Try to unswitch the best invariant condition. We prefer this full unswitch to
 | |
|   // a partial unswitch when possible below the threshold.
 | |
|   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
 | |
|     return true;
 | |
| 
 | |
|   // No other opportunities to unswitch.
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
 | |
|                                               LoopStandardAnalysisResults &AR,
 | |
|                                               LPMUpdater &U) {
 | |
|   Function &F = *L.getHeader()->getParent();
 | |
|   (void)F;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
 | |
|                     << "\n");
 | |
| 
 | |
|   // Save the current loop name in a variable so that we can report it even
 | |
|   // after it has been deleted.
 | |
|   std::string LoopName = std::string(L.getName());
 | |
| 
 | |
|   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
 | |
|                                         ArrayRef<Loop *> NewLoops) {
 | |
|     // If we did a non-trivial unswitch, we have added new (cloned) loops.
 | |
|     if (!NewLoops.empty())
 | |
|       U.addSiblingLoops(NewLoops);
 | |
| 
 | |
|     // If the current loop remains valid, we should revisit it to catch any
 | |
|     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
 | |
|     if (CurrentLoopValid)
 | |
|       U.revisitCurrentLoop();
 | |
|     else
 | |
|       U.markLoopAsDeleted(L, LoopName);
 | |
|   };
 | |
| 
 | |
|   Optional<MemorySSAUpdater> MSSAU;
 | |
|   if (AR.MSSA) {
 | |
|     MSSAU = MemorySSAUpdater(AR.MSSA);
 | |
|     if (VerifyMemorySSA)
 | |
|       AR.MSSA->verifyMemorySSA();
 | |
|   }
 | |
|   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
 | |
|                     &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   if (AR.MSSA && VerifyMemorySSA)
 | |
|     AR.MSSA->verifyMemorySSA();
 | |
| 
 | |
|   // Historically this pass has had issues with the dominator tree so verify it
 | |
|   // in asserts builds.
 | |
|   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
 | |
| 
 | |
|   auto PA = getLoopPassPreservedAnalyses();
 | |
|   if (AR.MSSA)
 | |
|     PA.preserve<MemorySSAAnalysis>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class SimpleLoopUnswitchLegacyPass : public LoopPass {
 | |
|   bool NonTrivial;
 | |
| 
 | |
| public:
 | |
|   static char ID; // Pass ID, replacement for typeid
 | |
| 
 | |
|   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
 | |
|       : LoopPass(ID), NonTrivial(NonTrivial) {
 | |
|     initializeSimpleLoopUnswitchLegacyPassPass(
 | |
|         *PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<AssumptionCacheTracker>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     if (EnableMSSALoopDependency) {
 | |
|       AU.addRequired<MemorySSAWrapperPass>();
 | |
|       AU.addPreserved<MemorySSAWrapperPass>();
 | |
|     }
 | |
|     getLoopAnalysisUsage(AU);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   if (skipLoop(L))
 | |
|     return false;
 | |
| 
 | |
|   Function &F = *L->getHeader()->getParent();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
 | |
|                     << "\n");
 | |
| 
 | |
|   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|   MemorySSA *MSSA = nullptr;
 | |
|   Optional<MemorySSAUpdater> MSSAU;
 | |
|   if (EnableMSSALoopDependency) {
 | |
|     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
 | |
|     MSSAU = MemorySSAUpdater(MSSA);
 | |
|   }
 | |
| 
 | |
|   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
 | |
|   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
 | |
| 
 | |
|   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
 | |
|                                ArrayRef<Loop *> NewLoops) {
 | |
|     // If we did a non-trivial unswitch, we have added new (cloned) loops.
 | |
|     for (auto *NewL : NewLoops)
 | |
|       LPM.addLoop(*NewL);
 | |
| 
 | |
|     // If the current loop remains valid, re-add it to the queue. This is
 | |
|     // a little wasteful as we'll finish processing the current loop as well,
 | |
|     // but it is the best we can do in the old PM.
 | |
|     if (CurrentLoopValid)
 | |
|       LPM.addLoop(*L);
 | |
|     else
 | |
|       LPM.markLoopAsDeleted(*L);
 | |
|   };
 | |
| 
 | |
|   if (MSSA && VerifyMemorySSA)
 | |
|     MSSA->verifyMemorySSA();
 | |
| 
 | |
|   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
 | |
|                               MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
 | |
| 
 | |
|   if (MSSA && VerifyMemorySSA)
 | |
|     MSSA->verifyMemorySSA();
 | |
| 
 | |
|   // Historically this pass has had issues with the dominator tree so verify it
 | |
|   // in asserts builds.
 | |
|   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| char SimpleLoopUnswitchLegacyPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
 | |
|                       "Simple unswitch loops", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
 | |
|                     "Simple unswitch loops", false, false)
 | |
| 
 | |
| Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
 | |
|   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
 | |
| }
 |