forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			798 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			798 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements some loop unrolling utilities for peeling loops
 | 
						|
// with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
 | 
						|
// unrolling loops with compile-time constant trip counts.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopSimplify.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/UnrollLoop.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <limits>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unroll"
 | 
						|
 | 
						|
STATISTIC(NumPeeled, "Number of loops peeled");
 | 
						|
 | 
						|
static cl::opt<unsigned> UnrollPeelMaxCount(
 | 
						|
    "unroll-peel-max-count", cl::init(7), cl::Hidden,
 | 
						|
    cl::desc("Max average trip count which will cause loop peeling."));
 | 
						|
 | 
						|
static cl::opt<unsigned> UnrollForcePeelCount(
 | 
						|
    "unroll-force-peel-count", cl::init(0), cl::Hidden,
 | 
						|
    cl::desc("Force a peel count regardless of profiling information."));
 | 
						|
 | 
						|
static cl::opt<bool> UnrollPeelMultiDeoptExit(
 | 
						|
    "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden,
 | 
						|
    cl::desc("Allow peeling of loops with multiple deopt exits."));
 | 
						|
 | 
						|
static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
 | 
						|
 | 
						|
// Designates that a Phi is estimated to become invariant after an "infinite"
 | 
						|
// number of loop iterations (i.e. only may become an invariant if the loop is
 | 
						|
// fully unrolled).
 | 
						|
static const unsigned InfiniteIterationsToInvariance =
 | 
						|
    std::numeric_limits<unsigned>::max();
 | 
						|
 | 
						|
// Check whether we are capable of peeling this loop.
 | 
						|
bool llvm::canPeel(Loop *L) {
 | 
						|
  // Make sure the loop is in simplified form
 | 
						|
  if (!L->isLoopSimplifyForm())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (UnrollPeelMultiDeoptExit) {
 | 
						|
    SmallVector<BasicBlock *, 4> Exits;
 | 
						|
    L->getUniqueNonLatchExitBlocks(Exits);
 | 
						|
 | 
						|
    if (!Exits.empty()) {
 | 
						|
      // Latch's terminator is a conditional branch, Latch is exiting and
 | 
						|
      // all non Latch exits ends up with deoptimize.
 | 
						|
      const BasicBlock *Latch = L->getLoopLatch();
 | 
						|
      const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator());
 | 
						|
      return T && T->isConditional() && L->isLoopExiting(Latch) &&
 | 
						|
             all_of(Exits, [](const BasicBlock *BB) {
 | 
						|
               return BB->getTerminatingDeoptimizeCall();
 | 
						|
             });
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Only peel loops that contain a single exit
 | 
						|
  if (!L->getExitingBlock() || !L->getUniqueExitBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't try to peel loops where the latch is not the exiting block.
 | 
						|
  // This can be an indication of two different things:
 | 
						|
  // 1) The loop is not rotated.
 | 
						|
  // 2) The loop contains irreducible control flow that involves the latch.
 | 
						|
  if (L->getLoopLatch() != L->getExitingBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// This function calculates the number of iterations after which the given Phi
 | 
						|
// becomes an invariant. The pre-calculated values are memorized in the map. The
 | 
						|
// function (shortcut is I) is calculated according to the following definition:
 | 
						|
// Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
 | 
						|
//   If %y is a loop invariant, then I(%x) = 1.
 | 
						|
//   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
 | 
						|
//   Otherwise, I(%x) is infinite.
 | 
						|
// TODO: Actually if %y is an expression that depends only on Phi %z and some
 | 
						|
//       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
 | 
						|
//       looks like:
 | 
						|
//         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
 | 
						|
//         %y = phi(0, 5),
 | 
						|
//         %a = %y + 1.
 | 
						|
static unsigned calculateIterationsToInvariance(
 | 
						|
    PHINode *Phi, Loop *L, BasicBlock *BackEdge,
 | 
						|
    SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
 | 
						|
  assert(Phi->getParent() == L->getHeader() &&
 | 
						|
         "Non-loop Phi should not be checked for turning into invariant.");
 | 
						|
  assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
 | 
						|
  // If we already know the answer, take it from the map.
 | 
						|
  auto I = IterationsToInvariance.find(Phi);
 | 
						|
  if (I != IterationsToInvariance.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  // Otherwise we need to analyze the input from the back edge.
 | 
						|
  Value *Input = Phi->getIncomingValueForBlock(BackEdge);
 | 
						|
  // Place infinity to map to avoid infinite recursion for cycled Phis. Such
 | 
						|
  // cycles can never stop on an invariant.
 | 
						|
  IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
 | 
						|
  unsigned ToInvariance = InfiniteIterationsToInvariance;
 | 
						|
 | 
						|
  if (L->isLoopInvariant(Input))
 | 
						|
    ToInvariance = 1u;
 | 
						|
  else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
 | 
						|
    // Only consider Phis in header block.
 | 
						|
    if (IncPhi->getParent() != L->getHeader())
 | 
						|
      return InfiniteIterationsToInvariance;
 | 
						|
    // If the input becomes an invariant after X iterations, then our Phi
 | 
						|
    // becomes an invariant after X + 1 iterations.
 | 
						|
    unsigned InputToInvariance = calculateIterationsToInvariance(
 | 
						|
        IncPhi, L, BackEdge, IterationsToInvariance);
 | 
						|
    if (InputToInvariance != InfiniteIterationsToInvariance)
 | 
						|
      ToInvariance = InputToInvariance + 1u;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we found that this Phi lies in an invariant chain, update the map.
 | 
						|
  if (ToInvariance != InfiniteIterationsToInvariance)
 | 
						|
    IterationsToInvariance[Phi] = ToInvariance;
 | 
						|
  return ToInvariance;
 | 
						|
}
 | 
						|
 | 
						|
// Return the number of iterations to peel off that make conditions in the
 | 
						|
// body true/false. For example, if we peel 2 iterations off the loop below,
 | 
						|
// the condition i < 2 can be evaluated at compile time.
 | 
						|
//  for (i = 0; i < n; i++)
 | 
						|
//    if (i < 2)
 | 
						|
//      ..
 | 
						|
//    else
 | 
						|
//      ..
 | 
						|
//   }
 | 
						|
static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
 | 
						|
                                         ScalarEvolution &SE) {
 | 
						|
  assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
 | 
						|
  unsigned DesiredPeelCount = 0;
 | 
						|
 | 
						|
  for (auto *BB : L.blocks()) {
 | 
						|
    auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
    if (!BI || BI->isUnconditional())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Ignore loop exit condition.
 | 
						|
    if (L.getLoopLatch() == BB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Value *Condition = BI->getCondition();
 | 
						|
    Value *LeftVal, *RightVal;
 | 
						|
    CmpInst::Predicate Pred;
 | 
						|
    if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
 | 
						|
      continue;
 | 
						|
 | 
						|
    const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
 | 
						|
    const SCEV *RightSCEV = SE.getSCEV(RightVal);
 | 
						|
 | 
						|
    // Do not consider predicates that are known to be true or false
 | 
						|
    // independently of the loop iteration.
 | 
						|
    if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) ||
 | 
						|
        SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV,
 | 
						|
                            RightSCEV))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if we have a condition with one AddRec and one non AddRec
 | 
						|
    // expression. Normalize LeftSCEV to be the AddRec.
 | 
						|
    if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
 | 
						|
      if (isa<SCEVAddRecExpr>(RightSCEV)) {
 | 
						|
        std::swap(LeftSCEV, RightSCEV);
 | 
						|
        Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
      } else
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
 | 
						|
 | 
						|
    // Avoid huge SCEV computations in the loop below, make sure we only
 | 
						|
    // consider AddRecs of the loop we are trying to peel.
 | 
						|
    if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
 | 
						|
      continue;
 | 
						|
    bool Increasing;
 | 
						|
    if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
 | 
						|
        !SE.isMonotonicPredicate(LeftAR, Pred, Increasing))
 | 
						|
      continue;
 | 
						|
    (void)Increasing;
 | 
						|
 | 
						|
    // Check if extending the current DesiredPeelCount lets us evaluate Pred
 | 
						|
    // or !Pred in the loop body statically.
 | 
						|
    unsigned NewPeelCount = DesiredPeelCount;
 | 
						|
 | 
						|
    const SCEV *IterVal = LeftAR->evaluateAtIteration(
 | 
						|
        SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
 | 
						|
 | 
						|
    // If the original condition is not known, get the negated predicate
 | 
						|
    // (which holds on the else branch) and check if it is known. This allows
 | 
						|
    // us to peel of iterations that make the original condition false.
 | 
						|
    if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
 | 
						|
      Pred = ICmpInst::getInversePredicate(Pred);
 | 
						|
 | 
						|
    const SCEV *Step = LeftAR->getStepRecurrence(SE);
 | 
						|
    const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
 | 
						|
    auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
 | 
						|
                                 &NewPeelCount]() {
 | 
						|
      IterVal = NextIterVal;
 | 
						|
      NextIterVal = SE.getAddExpr(IterVal, Step);
 | 
						|
      NewPeelCount++;
 | 
						|
    };
 | 
						|
 | 
						|
    auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
 | 
						|
      return NewPeelCount < MaxPeelCount;
 | 
						|
    };
 | 
						|
 | 
						|
    while (CanPeelOneMoreIteration() &&
 | 
						|
           SE.isKnownPredicate(Pred, IterVal, RightSCEV))
 | 
						|
      PeelOneMoreIteration();
 | 
						|
 | 
						|
    // With *that* peel count, does the predicate !Pred become known in the
 | 
						|
    // first iteration of the loop body after peeling?
 | 
						|
    if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
 | 
						|
                             RightSCEV))
 | 
						|
      continue; // If not, give up.
 | 
						|
 | 
						|
    // However, for equality comparisons, that isn't always sufficient to
 | 
						|
    // eliminate the comparsion in loop body, we may need to peel one more
 | 
						|
    // iteration. See if that makes !Pred become unknown again.
 | 
						|
    if (ICmpInst::isEquality(Pred) &&
 | 
						|
        !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
 | 
						|
                             RightSCEV) &&
 | 
						|
        !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
 | 
						|
        SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
 | 
						|
      if (!CanPeelOneMoreIteration())
 | 
						|
        continue; // Need to peel one more iteration, but can't. Give up.
 | 
						|
      PeelOneMoreIteration(); // Great!
 | 
						|
    }
 | 
						|
 | 
						|
    DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
 | 
						|
  }
 | 
						|
 | 
						|
  return DesiredPeelCount;
 | 
						|
}
 | 
						|
 | 
						|
// Return the number of iterations we want to peel off.
 | 
						|
void llvm::computePeelCount(Loop *L, unsigned LoopSize,
 | 
						|
                            TargetTransformInfo::UnrollingPreferences &UP,
 | 
						|
                            unsigned &TripCount, ScalarEvolution &SE) {
 | 
						|
  assert(LoopSize > 0 && "Zero loop size is not allowed!");
 | 
						|
  // Save the UP.PeelCount value set by the target in
 | 
						|
  // TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
 | 
						|
  unsigned TargetPeelCount = UP.PeelCount;
 | 
						|
  UP.PeelCount = 0;
 | 
						|
  if (!canPeel(L))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Only try to peel innermost loops by default.
 | 
						|
  // The constraint can be relaxed by the target in TTI.getUnrollingPreferences
 | 
						|
  // or by the flag -unroll-allow-loop-nests-peeling.
 | 
						|
  if (!UP.AllowLoopNestsPeeling && !L->empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If the user provided a peel count, use that.
 | 
						|
  bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
 | 
						|
  if (UserPeelCount) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
 | 
						|
                      << " iterations.\n");
 | 
						|
    UP.PeelCount = UnrollForcePeelCount;
 | 
						|
    UP.PeelProfiledIterations = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip peeling if it's disabled.
 | 
						|
  if (!UP.AllowPeeling)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned AlreadyPeeled = 0;
 | 
						|
  if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
 | 
						|
    AlreadyPeeled = *Peeled;
 | 
						|
  // Stop if we already peeled off the maximum number of iterations.
 | 
						|
  if (AlreadyPeeled >= UnrollPeelMaxCount)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
 | 
						|
  // iterations of the loop. For this we compute the number for iterations after
 | 
						|
  // which every Phi is guaranteed to become an invariant, and try to peel the
 | 
						|
  // maximum number of iterations among these values, thus turning all those
 | 
						|
  // Phis into invariants.
 | 
						|
  // First, check that we can peel at least one iteration.
 | 
						|
  if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) {
 | 
						|
    // Store the pre-calculated values here.
 | 
						|
    SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
 | 
						|
    // Now go through all Phis to calculate their the number of iterations they
 | 
						|
    // need to become invariants.
 | 
						|
    // Start the max computation with the UP.PeelCount value set by the target
 | 
						|
    // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
 | 
						|
    unsigned DesiredPeelCount = TargetPeelCount;
 | 
						|
    BasicBlock *BackEdge = L->getLoopLatch();
 | 
						|
    assert(BackEdge && "Loop is not in simplified form?");
 | 
						|
    for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
 | 
						|
      PHINode *Phi = cast<PHINode>(&*BI);
 | 
						|
      unsigned ToInvariance = calculateIterationsToInvariance(
 | 
						|
          Phi, L, BackEdge, IterationsToInvariance);
 | 
						|
      if (ToInvariance != InfiniteIterationsToInvariance)
 | 
						|
        DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
 | 
						|
    }
 | 
						|
 | 
						|
    // Pay respect to limitations implied by loop size and the max peel count.
 | 
						|
    unsigned MaxPeelCount = UnrollPeelMaxCount;
 | 
						|
    MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1);
 | 
						|
 | 
						|
    DesiredPeelCount = std::max(DesiredPeelCount,
 | 
						|
                                countToEliminateCompares(*L, MaxPeelCount, SE));
 | 
						|
 | 
						|
    if (DesiredPeelCount > 0) {
 | 
						|
      DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
 | 
						|
      // Consider max peel count limitation.
 | 
						|
      assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
 | 
						|
      if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
 | 
						|
                          << " iteration(s) to turn"
 | 
						|
                          << " some Phis into invariants.\n");
 | 
						|
        UP.PeelCount = DesiredPeelCount;
 | 
						|
        UP.PeelProfiledIterations = false;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Bail if we know the statically calculated trip count.
 | 
						|
  // In this case we rather prefer partial unrolling.
 | 
						|
  if (TripCount)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Do not apply profile base peeling if it is disabled.
 | 
						|
  if (!UP.PeelProfiledIterations)
 | 
						|
    return;
 | 
						|
  // If we don't know the trip count, but have reason to believe the average
 | 
						|
  // trip count is low, peeling should be beneficial, since we will usually
 | 
						|
  // hit the peeled section.
 | 
						|
  // We only do this in the presence of profile information, since otherwise
 | 
						|
  // our estimates of the trip count are not reliable enough.
 | 
						|
  if (L->getHeader()->getParent()->hasProfileData()) {
 | 
						|
    Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
 | 
						|
    if (!PeelCount)
 | 
						|
      return;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
 | 
						|
                      << "\n");
 | 
						|
 | 
						|
    if (*PeelCount) {
 | 
						|
      if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
 | 
						|
          (LoopSize * (*PeelCount + 1) <= UP.Threshold)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
 | 
						|
                          << " iterations.\n");
 | 
						|
        UP.PeelCount = *PeelCount;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
 | 
						|
      LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
 | 
						|
      LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
 | 
						|
      LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
 | 
						|
                        << "\n");
 | 
						|
      LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Update the branch weights of the latch of a peeled-off loop
 | 
						|
/// iteration.
 | 
						|
/// This sets the branch weights for the latch of the recently peeled off loop
 | 
						|
/// iteration correctly.
 | 
						|
/// Let F is a weight of the edge from latch to header.
 | 
						|
/// Let E is a weight of the edge from latch to exit.
 | 
						|
/// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
 | 
						|
/// go to exit.
 | 
						|
/// Then, Estimated TripCount = F / E.
 | 
						|
/// For I-th (counting from 0) peeled off iteration we set the the weights for
 | 
						|
/// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
 | 
						|
/// The probability to go to exit 1/(TC-I) increases. At the same time
 | 
						|
/// the estimated trip count of remaining loop reduces by I.
 | 
						|
/// To avoid dealing with division rounding we can just multiple both part
 | 
						|
/// of weights to E and use weight as (F - I * E, E).
 | 
						|
///
 | 
						|
/// \param Header The copy of the header block that belongs to next iteration.
 | 
						|
/// \param LatchBR The copy of the latch branch that belongs to this iteration.
 | 
						|
/// \param[in,out] FallThroughWeight The weight of the edge from latch to
 | 
						|
/// header before peeling (in) and after peeled off one iteration (out).
 | 
						|
static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
 | 
						|
                                uint64_t ExitWeight,
 | 
						|
                                uint64_t &FallThroughWeight) {
 | 
						|
  // FallThroughWeight is 0 means that there is no branch weights on original
 | 
						|
  // latch block or estimated trip count is zero.
 | 
						|
  if (!FallThroughWeight)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
 | 
						|
  MDBuilder MDB(LatchBR->getContext());
 | 
						|
  MDNode *WeightNode =
 | 
						|
      HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
 | 
						|
                : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
 | 
						|
  LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
 | 
						|
  FallThroughWeight =
 | 
						|
      FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize the weights.
 | 
						|
///
 | 
						|
/// \param Header The header block.
 | 
						|
/// \param LatchBR The latch branch.
 | 
						|
/// \param[out] ExitWeight The weight of the edge from Latch to Exit.
 | 
						|
/// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
 | 
						|
static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
 | 
						|
                              uint64_t &ExitWeight,
 | 
						|
                              uint64_t &FallThroughWeight) {
 | 
						|
  uint64_t TrueWeight, FalseWeight;
 | 
						|
  if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
 | 
						|
    return;
 | 
						|
  unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
 | 
						|
  ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
 | 
						|
  FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
 | 
						|
}
 | 
						|
 | 
						|
/// Update the weights of original Latch block after peeling off all iterations.
 | 
						|
///
 | 
						|
/// \param Header The header block.
 | 
						|
/// \param LatchBR The latch branch.
 | 
						|
/// \param ExitWeight The weight of the edge from Latch to Exit.
 | 
						|
/// \param FallThroughWeight The weight of the edge from Latch to Header.
 | 
						|
static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
 | 
						|
                               uint64_t ExitWeight,
 | 
						|
                               uint64_t FallThroughWeight) {
 | 
						|
  // FallThroughWeight is 0 means that there is no branch weights on original
 | 
						|
  // latch block or estimated trip count is zero.
 | 
						|
  if (!FallThroughWeight)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Sets the branch weights on the loop exit.
 | 
						|
  MDBuilder MDB(LatchBR->getContext());
 | 
						|
  unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
 | 
						|
  MDNode *WeightNode =
 | 
						|
      HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
 | 
						|
                : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
 | 
						|
  LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
 | 
						|
}
 | 
						|
 | 
						|
/// Clones the body of the loop L, putting it between \p InsertTop and \p
 | 
						|
/// InsertBot.
 | 
						|
/// \param IterNumber The serial number of the iteration currently being
 | 
						|
/// peeled off.
 | 
						|
/// \param ExitEdges The exit edges of the original loop.
 | 
						|
/// \param[out] NewBlocks A list of the blocks in the newly created clone
 | 
						|
/// \param[out] VMap The value map between the loop and the new clone.
 | 
						|
/// \param LoopBlocks A helper for DFS-traversal of the loop.
 | 
						|
/// \param LVMap A value-map that maps instructions from the original loop to
 | 
						|
/// instructions in the last peeled-off iteration.
 | 
						|
static void cloneLoopBlocks(
 | 
						|
    Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
 | 
						|
    SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *> > &ExitEdges,
 | 
						|
    SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
 | 
						|
    ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
 | 
						|
    LoopInfo *LI) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  BasicBlock *PreHeader = L->getLoopPreheader();
 | 
						|
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
 | 
						|
  Loop *ParentLoop = L->getParentLoop();
 | 
						|
 | 
						|
  // For each block in the original loop, create a new copy,
 | 
						|
  // and update the value map with the newly created values.
 | 
						|
  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | 
						|
    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
 | 
						|
    NewBlocks.push_back(NewBB);
 | 
						|
 | 
						|
    // If an original block is an immediate child of the loop L, its copy
 | 
						|
    // is a child of a ParentLoop after peeling. If a block is a child of
 | 
						|
    // a nested loop, it is handled in the cloneLoop() call below.
 | 
						|
    if (ParentLoop && LI->getLoopFor(*BB) == L)
 | 
						|
      ParentLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
 | 
						|
    VMap[*BB] = NewBB;
 | 
						|
 | 
						|
    // If dominator tree is available, insert nodes to represent cloned blocks.
 | 
						|
    if (DT) {
 | 
						|
      if (Header == *BB)
 | 
						|
        DT->addNewBlock(NewBB, InsertTop);
 | 
						|
      else {
 | 
						|
        DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
 | 
						|
        // VMap must contain entry for IDom, as the iteration order is RPO.
 | 
						|
        DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Recursively create the new Loop objects for nested loops, if any,
 | 
						|
  // to preserve LoopInfo.
 | 
						|
  for (Loop *ChildLoop : *L) {
 | 
						|
    cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Hook-up the control flow for the newly inserted blocks.
 | 
						|
  // The new header is hooked up directly to the "top", which is either
 | 
						|
  // the original loop preheader (for the first iteration) or the previous
 | 
						|
  // iteration's exiting block (for every other iteration)
 | 
						|
  InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
 | 
						|
 | 
						|
  // Similarly, for the latch:
 | 
						|
  // The original exiting edge is still hooked up to the loop exit.
 | 
						|
  // The backedge now goes to the "bottom", which is either the loop's real
 | 
						|
  // header (for the last peeled iteration) or the copied header of the next
 | 
						|
  // iteration (for every other iteration)
 | 
						|
  BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
 | 
						|
  BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
 | 
						|
  for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
 | 
						|
    if (LatchBR->getSuccessor(idx) == Header) {
 | 
						|
      LatchBR->setSuccessor(idx, InsertBot);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  if (DT)
 | 
						|
    DT->changeImmediateDominator(InsertBot, NewLatch);
 | 
						|
 | 
						|
  // The new copy of the loop body starts with a bunch of PHI nodes
 | 
						|
  // that pick an incoming value from either the preheader, or the previous
 | 
						|
  // loop iteration. Since this copy is no longer part of the loop, we
 | 
						|
  // resolve this statically:
 | 
						|
  // For the first iteration, we use the value from the preheader directly.
 | 
						|
  // For any other iteration, we replace the phi with the value generated by
 | 
						|
  // the immediately preceding clone of the loop body (which represents
 | 
						|
  // the previous iteration).
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
 | 
						|
    if (IterNumber == 0) {
 | 
						|
      VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
 | 
						|
    } else {
 | 
						|
      Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
 | 
						|
      Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
 | 
						|
      if (LatchInst && L->contains(LatchInst))
 | 
						|
        VMap[&*I] = LVMap[LatchInst];
 | 
						|
      else
 | 
						|
        VMap[&*I] = LatchVal;
 | 
						|
    }
 | 
						|
    cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Fix up the outgoing values - we need to add a value for the iteration
 | 
						|
  // we've just created. Note that this must happen *after* the incoming
 | 
						|
  // values are adjusted, since the value going out of the latch may also be
 | 
						|
  // a value coming into the header.
 | 
						|
  for (auto Edge : ExitEdges)
 | 
						|
    for (PHINode &PHI : Edge.second->phis()) {
 | 
						|
      Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
 | 
						|
      Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
 | 
						|
      if (LatchInst && L->contains(LatchInst))
 | 
						|
        LatchVal = VMap[LatchVal];
 | 
						|
      PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
 | 
						|
    }
 | 
						|
 | 
						|
  // LastValueMap is updated with the values for the current loop
 | 
						|
  // which are used the next time this function is called.
 | 
						|
  for (auto KV : VMap)
 | 
						|
    LVMap[KV.first] = KV.second;
 | 
						|
}
 | 
						|
 | 
						|
/// Peel off the first \p PeelCount iterations of loop \p L.
 | 
						|
///
 | 
						|
/// Note that this does not peel them off as a single straight-line block.
 | 
						|
/// Rather, each iteration is peeled off separately, and needs to check the
 | 
						|
/// exit condition.
 | 
						|
/// For loops that dynamically execute \p PeelCount iterations or less
 | 
						|
/// this provides a benefit, since the peeled off iterations, which account
 | 
						|
/// for the bulk of dynamic execution, can be further simplified by scalar
 | 
						|
/// optimizations.
 | 
						|
bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
 | 
						|
                    ScalarEvolution *SE, DominatorTree *DT,
 | 
						|
                    AssumptionCache *AC, bool PreserveLCSSA) {
 | 
						|
  assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
 | 
						|
  assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
 | 
						|
 | 
						|
  LoopBlocksDFS LoopBlocks(L);
 | 
						|
  LoopBlocks.perform(LI);
 | 
						|
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *PreHeader = L->getLoopPreheader();
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
 | 
						|
  L->getExitEdges(ExitEdges);
 | 
						|
 | 
						|
  DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
 | 
						|
  if (DT) {
 | 
						|
    // We'd like to determine the idom of exit block after peeling one
 | 
						|
    // iteration.
 | 
						|
    // Let Exit is exit block.
 | 
						|
    // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
 | 
						|
    // blocks.
 | 
						|
    // Let Latch' and ExitingSet' are copies after a peeling.
 | 
						|
    // We'd like to find an idom'(Exit) - idom of Exit after peeling.
 | 
						|
    // It is an evident that idom'(Exit) will be the nearest common dominator
 | 
						|
    // of ExitingSet and ExitingSet'.
 | 
						|
    // idom(Exit) is a nearest common dominator of ExitingSet.
 | 
						|
    // idom(Exit)' is a nearest common dominator of ExitingSet'.
 | 
						|
    // Taking into account that we have a single Latch, Latch' will dominate
 | 
						|
    // Header and idom(Exit).
 | 
						|
    // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
 | 
						|
    // All these basic blocks are in the same loop, so what we find is
 | 
						|
    // (nearest common dominator of idom(Exit) and Latch)'.
 | 
						|
    // In the loop below we remember nearest common dominator of idom(Exit) and
 | 
						|
    // Latch to update idom of Exit later.
 | 
						|
    assert(L->hasDedicatedExits() && "No dedicated exits?");
 | 
						|
    for (auto Edge : ExitEdges) {
 | 
						|
      if (ExitIDom.count(Edge.second))
 | 
						|
        continue;
 | 
						|
      BasicBlock *BB = DT->findNearestCommonDominator(
 | 
						|
          DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
 | 
						|
      assert(L->contains(BB) && "IDom is not in a loop");
 | 
						|
      ExitIDom[Edge.second] = BB;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Function *F = Header->getParent();
 | 
						|
 | 
						|
  // Set up all the necessary basic blocks. It is convenient to split the
 | 
						|
  // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
 | 
						|
  // body, and a new preheader for the "real" loop.
 | 
						|
 | 
						|
  // Peeling the first iteration transforms.
 | 
						|
  //
 | 
						|
  // PreHeader:
 | 
						|
  // ...
 | 
						|
  // Header:
 | 
						|
  //   LoopBody
 | 
						|
  //   If (cond) goto Header
 | 
						|
  // Exit:
 | 
						|
  //
 | 
						|
  // into
 | 
						|
  //
 | 
						|
  // InsertTop:
 | 
						|
  //   LoopBody
 | 
						|
  //   If (!cond) goto Exit
 | 
						|
  // InsertBot:
 | 
						|
  // NewPreHeader:
 | 
						|
  // ...
 | 
						|
  // Header:
 | 
						|
  //  LoopBody
 | 
						|
  //  If (cond) goto Header
 | 
						|
  // Exit:
 | 
						|
  //
 | 
						|
  // Each following iteration will split the current bottom anchor in two,
 | 
						|
  // and put the new copy of the loop body between these two blocks. That is,
 | 
						|
  // after peeling another iteration from the example above, we'll split
 | 
						|
  // InsertBot, and get:
 | 
						|
  //
 | 
						|
  // InsertTop:
 | 
						|
  //   LoopBody
 | 
						|
  //   If (!cond) goto Exit
 | 
						|
  // InsertBot:
 | 
						|
  //   LoopBody
 | 
						|
  //   If (!cond) goto Exit
 | 
						|
  // InsertBot.next:
 | 
						|
  // NewPreHeader:
 | 
						|
  // ...
 | 
						|
  // Header:
 | 
						|
  //  LoopBody
 | 
						|
  //  If (cond) goto Header
 | 
						|
  // Exit:
 | 
						|
 | 
						|
  BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
 | 
						|
  BasicBlock *InsertBot =
 | 
						|
      SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
 | 
						|
  BasicBlock *NewPreHeader =
 | 
						|
      SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
 | 
						|
 | 
						|
  InsertTop->setName(Header->getName() + ".peel.begin");
 | 
						|
  InsertBot->setName(Header->getName() + ".peel.next");
 | 
						|
  NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
 | 
						|
 | 
						|
  ValueToValueMapTy LVMap;
 | 
						|
 | 
						|
  // If we have branch weight information, we'll want to update it for the
 | 
						|
  // newly created branches.
 | 
						|
  BranchInst *LatchBR =
 | 
						|
      cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
 | 
						|
  uint64_t ExitWeight = 0, FallThroughWeight = 0;
 | 
						|
  initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
 | 
						|
 | 
						|
  // For each peeled-off iteration, make a copy of the loop.
 | 
						|
  for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
 | 
						|
    SmallVector<BasicBlock *, 8> NewBlocks;
 | 
						|
    ValueToValueMapTy VMap;
 | 
						|
 | 
						|
    cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
 | 
						|
                    LoopBlocks, VMap, LVMap, DT, LI);
 | 
						|
 | 
						|
    // Remap to use values from the current iteration instead of the
 | 
						|
    // previous one.
 | 
						|
    remapInstructionsInBlocks(NewBlocks, VMap);
 | 
						|
 | 
						|
    if (DT) {
 | 
						|
      // Latches of the cloned loops dominate over the loop exit, so idom of the
 | 
						|
      // latter is the first cloned loop body, as original PreHeader dominates
 | 
						|
      // the original loop body.
 | 
						|
      if (Iter == 0)
 | 
						|
        for (auto Exit : ExitIDom)
 | 
						|
          DT->changeImmediateDominator(Exit.first,
 | 
						|
                                       cast<BasicBlock>(LVMap[Exit.second]));
 | 
						|
#ifdef EXPENSIVE_CHECKS
 | 
						|
      assert(DT->verify(DominatorTree::VerificationLevel::Fast));
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
 | 
						|
    updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
 | 
						|
    // Remove Loop metadata from the latch branch instruction
 | 
						|
    // because it is not the Loop's latch branch anymore.
 | 
						|
    LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
 | 
						|
 | 
						|
    InsertTop = InsertBot;
 | 
						|
    InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
 | 
						|
    InsertBot->setName(Header->getName() + ".peel.next");
 | 
						|
 | 
						|
    F->getBasicBlockList().splice(InsertTop->getIterator(),
 | 
						|
                                  F->getBasicBlockList(),
 | 
						|
                                  NewBlocks[0]->getIterator(), F->end());
 | 
						|
  }
 | 
						|
 | 
						|
  // Now adjust the phi nodes in the loop header to get their initial values
 | 
						|
  // from the last peeled-off iteration instead of the preheader.
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PHI = cast<PHINode>(I);
 | 
						|
    Value *NewVal = PHI->getIncomingValueForBlock(Latch);
 | 
						|
    Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
 | 
						|
    if (LatchInst && L->contains(LatchInst))
 | 
						|
      NewVal = LVMap[LatchInst];
 | 
						|
 | 
						|
    PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
 | 
						|
  }
 | 
						|
 | 
						|
  fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
 | 
						|
 | 
						|
  // Update Metadata for count of peeled off iterations.
 | 
						|
  unsigned AlreadyPeeled = 0;
 | 
						|
  if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
 | 
						|
    AlreadyPeeled = *Peeled;
 | 
						|
  addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
 | 
						|
 | 
						|
  if (Loop *ParentLoop = L->getParentLoop())
 | 
						|
    L = ParentLoop;
 | 
						|
 | 
						|
  // We modified the loop, update SE.
 | 
						|
  SE->forgetTopmostLoop(L);
 | 
						|
 | 
						|
  // Finally DomtTree must be correct.
 | 
						|
  assert(DT->verify(DominatorTree::VerificationLevel::Fast));
 | 
						|
 | 
						|
  // FIXME: Incrementally update loop-simplify
 | 
						|
  simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);
 | 
						|
 | 
						|
  NumPeeled++;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 |