forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			914 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			914 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// \file
 | 
						|
/// This is the LLVM vectorization plan. It represents a candidate for
 | 
						|
/// vectorization, allowing to plan and optimize how to vectorize a given loop
 | 
						|
/// before generating LLVM-IR.
 | 
						|
/// The vectorizer uses vectorization plans to estimate the costs of potential
 | 
						|
/// candidates and if profitable to execute the desired plan, generating vector
 | 
						|
/// LLVM-IR code.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "VPlan.h"
 | 
						|
#include "VPlanDominatorTree.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/GenericDomTreeConstruction.h"
 | 
						|
#include "llvm/Support/GraphWriter.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include <cassert>
 | 
						|
#include <iterator>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
extern cl::opt<bool> EnableVPlanNativePath;
 | 
						|
 | 
						|
#define DEBUG_TYPE "vplan"
 | 
						|
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
 | 
						|
  const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
 | 
						|
  VPSlotTracker SlotTracker(
 | 
						|
      (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
 | 
						|
  V.print(OS, SlotTracker);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
 | 
						|
  if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this))
 | 
						|
    Instr->print(OS, SlotTracker);
 | 
						|
  else
 | 
						|
    printAsOperand(OS, SlotTracker);
 | 
						|
}
 | 
						|
 | 
						|
// Get the top-most entry block of \p Start. This is the entry block of the
 | 
						|
// containing VPlan. This function is templated to support both const and non-const blocks
 | 
						|
template <typename T> static T *getPlanEntry(T *Start) {
 | 
						|
  T *Next = Start;
 | 
						|
  T *Current = Start;
 | 
						|
  while ((Next = Next->getParent()))
 | 
						|
    Current = Next;
 | 
						|
 | 
						|
  SmallSetVector<T *, 8> WorkList;
 | 
						|
  WorkList.insert(Current);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < WorkList.size(); i++) {
 | 
						|
    T *Current = WorkList[i];
 | 
						|
    if (Current->getNumPredecessors() == 0)
 | 
						|
      return Current;
 | 
						|
    auto &Predecessors = Current->getPredecessors();
 | 
						|
    WorkList.insert(Predecessors.begin(), Predecessors.end());
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("VPlan without any entry node without predecessors");
 | 
						|
}
 | 
						|
 | 
						|
VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
 | 
						|
 | 
						|
const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
 | 
						|
 | 
						|
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
 | 
						|
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
 | 
						|
  const VPBlockBase *Block = this;
 | 
						|
  while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | 
						|
    Block = Region->getEntry();
 | 
						|
  return cast<VPBasicBlock>(Block);
 | 
						|
}
 | 
						|
 | 
						|
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
 | 
						|
  VPBlockBase *Block = this;
 | 
						|
  while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | 
						|
    Block = Region->getEntry();
 | 
						|
  return cast<VPBasicBlock>(Block);
 | 
						|
}
 | 
						|
 | 
						|
void VPBlockBase::setPlan(VPlan *ParentPlan) {
 | 
						|
  assert(ParentPlan->getEntry() == this &&
 | 
						|
         "Can only set plan on its entry block.");
 | 
						|
  Plan = ParentPlan;
 | 
						|
}
 | 
						|
 | 
						|
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
 | 
						|
const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
 | 
						|
  const VPBlockBase *Block = this;
 | 
						|
  while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | 
						|
    Block = Region->getExit();
 | 
						|
  return cast<VPBasicBlock>(Block);
 | 
						|
}
 | 
						|
 | 
						|
VPBasicBlock *VPBlockBase::getExitBasicBlock() {
 | 
						|
  VPBlockBase *Block = this;
 | 
						|
  while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | 
						|
    Block = Region->getExit();
 | 
						|
  return cast<VPBasicBlock>(Block);
 | 
						|
}
 | 
						|
 | 
						|
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
 | 
						|
  if (!Successors.empty() || !Parent)
 | 
						|
    return this;
 | 
						|
  assert(Parent->getExit() == this &&
 | 
						|
         "Block w/o successors not the exit of its parent.");
 | 
						|
  return Parent->getEnclosingBlockWithSuccessors();
 | 
						|
}
 | 
						|
 | 
						|
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
 | 
						|
  if (!Predecessors.empty() || !Parent)
 | 
						|
    return this;
 | 
						|
  assert(Parent->getEntry() == this &&
 | 
						|
         "Block w/o predecessors not the entry of its parent.");
 | 
						|
  return Parent->getEnclosingBlockWithPredecessors();
 | 
						|
}
 | 
						|
 | 
						|
void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
 | 
						|
  SmallVector<VPBlockBase *, 8> Blocks;
 | 
						|
  for (VPBlockBase *Block : depth_first(Entry))
 | 
						|
    Blocks.push_back(Block);
 | 
						|
 | 
						|
  for (VPBlockBase *Block : Blocks)
 | 
						|
    delete Block;
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *
 | 
						|
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
 | 
						|
  // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
 | 
						|
  // Pred stands for Predessor. Prev stands for Previous - last visited/created.
 | 
						|
  BasicBlock *PrevBB = CFG.PrevBB;
 | 
						|
  BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
 | 
						|
                                         PrevBB->getParent(), CFG.LastBB);
 | 
						|
  LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
 | 
						|
 | 
						|
  // Hook up the new basic block to its predecessors.
 | 
						|
  for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
 | 
						|
    VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
 | 
						|
    auto &PredVPSuccessors = PredVPBB->getSuccessors();
 | 
						|
    BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
 | 
						|
 | 
						|
    // In outer loop vectorization scenario, the predecessor BBlock may not yet
 | 
						|
    // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
 | 
						|
    // vectorization. We do not encounter this case in inner loop vectorization
 | 
						|
    // as we start out by building a loop skeleton with the vector loop header
 | 
						|
    // and latch blocks. As a result, we never enter this function for the
 | 
						|
    // header block in the non VPlan-native path.
 | 
						|
    if (!PredBB) {
 | 
						|
      assert(EnableVPlanNativePath &&
 | 
						|
             "Unexpected null predecessor in non VPlan-native path");
 | 
						|
      CFG.VPBBsToFix.push_back(PredVPBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(PredBB && "Predecessor basic-block not found building successor.");
 | 
						|
    auto *PredBBTerminator = PredBB->getTerminator();
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
 | 
						|
    if (isa<UnreachableInst>(PredBBTerminator)) {
 | 
						|
      assert(PredVPSuccessors.size() == 1 &&
 | 
						|
             "Predecessor ending w/o branch must have single successor.");
 | 
						|
      PredBBTerminator->eraseFromParent();
 | 
						|
      BranchInst::Create(NewBB, PredBB);
 | 
						|
    } else {
 | 
						|
      assert(PredVPSuccessors.size() == 2 &&
 | 
						|
             "Predecessor ending with branch must have two successors.");
 | 
						|
      unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
 | 
						|
      assert(!PredBBTerminator->getSuccessor(idx) &&
 | 
						|
             "Trying to reset an existing successor block.");
 | 
						|
      PredBBTerminator->setSuccessor(idx, NewBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return NewBB;
 | 
						|
}
 | 
						|
 | 
						|
void VPBasicBlock::execute(VPTransformState *State) {
 | 
						|
  bool Replica = State->Instance &&
 | 
						|
                 !(State->Instance->Part == 0 && State->Instance->Lane == 0);
 | 
						|
  VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
 | 
						|
  VPBlockBase *SingleHPred = nullptr;
 | 
						|
  BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
 | 
						|
 | 
						|
  // 1. Create an IR basic block, or reuse the last one if possible.
 | 
						|
  // The last IR basic block is reused, as an optimization, in three cases:
 | 
						|
  // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
 | 
						|
  // B. when the current VPBB has a single (hierarchical) predecessor which
 | 
						|
  //    is PrevVPBB and the latter has a single (hierarchical) successor; and
 | 
						|
  // C. when the current VPBB is an entry of a region replica - where PrevVPBB
 | 
						|
  //    is the exit of this region from a previous instance, or the predecessor
 | 
						|
  //    of this region.
 | 
						|
  if (PrevVPBB && /* A */
 | 
						|
      !((SingleHPred = getSingleHierarchicalPredecessor()) &&
 | 
						|
        SingleHPred->getExitBasicBlock() == PrevVPBB &&
 | 
						|
        PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
 | 
						|
      !(Replica && getPredecessors().empty())) {       /* C */
 | 
						|
    NewBB = createEmptyBasicBlock(State->CFG);
 | 
						|
    State->Builder.SetInsertPoint(NewBB);
 | 
						|
    // Temporarily terminate with unreachable until CFG is rewired.
 | 
						|
    UnreachableInst *Terminator = State->Builder.CreateUnreachable();
 | 
						|
    State->Builder.SetInsertPoint(Terminator);
 | 
						|
    // Register NewBB in its loop. In innermost loops its the same for all BB's.
 | 
						|
    Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
 | 
						|
    L->addBasicBlockToLoop(NewBB, *State->LI);
 | 
						|
    State->CFG.PrevBB = NewBB;
 | 
						|
  }
 | 
						|
 | 
						|
  // 2. Fill the IR basic block with IR instructions.
 | 
						|
  LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
 | 
						|
                    << " in BB:" << NewBB->getName() << '\n');
 | 
						|
 | 
						|
  State->CFG.VPBB2IRBB[this] = NewBB;
 | 
						|
  State->CFG.PrevVPBB = this;
 | 
						|
 | 
						|
  for (VPRecipeBase &Recipe : Recipes)
 | 
						|
    Recipe.execute(*State);
 | 
						|
 | 
						|
  VPValue *CBV;
 | 
						|
  if (EnableVPlanNativePath && (CBV = getCondBit())) {
 | 
						|
    Value *IRCBV = CBV->getUnderlyingValue();
 | 
						|
    assert(IRCBV && "Unexpected null underlying value for condition bit");
 | 
						|
 | 
						|
    // Condition bit value in a VPBasicBlock is used as the branch selector. In
 | 
						|
    // the VPlan-native path case, since all branches are uniform we generate a
 | 
						|
    // branch instruction using the condition value from vector lane 0 and dummy
 | 
						|
    // successors. The successors are fixed later when the successor blocks are
 | 
						|
    // visited.
 | 
						|
    Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
 | 
						|
    NewCond = State->Builder.CreateExtractElement(NewCond,
 | 
						|
                                                  State->Builder.getInt32(0));
 | 
						|
 | 
						|
    // Replace the temporary unreachable terminator with the new conditional
 | 
						|
    // branch.
 | 
						|
    auto *CurrentTerminator = NewBB->getTerminator();
 | 
						|
    assert(isa<UnreachableInst>(CurrentTerminator) &&
 | 
						|
           "Expected to replace unreachable terminator with conditional "
 | 
						|
           "branch.");
 | 
						|
    auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
 | 
						|
    CondBr->setSuccessor(0, nullptr);
 | 
						|
    ReplaceInstWithInst(CurrentTerminator, CondBr);
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
 | 
						|
}
 | 
						|
 | 
						|
void VPRegionBlock::execute(VPTransformState *State) {
 | 
						|
  ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
 | 
						|
 | 
						|
  if (!isReplicator()) {
 | 
						|
    // Visit the VPBlocks connected to "this", starting from it.
 | 
						|
    for (VPBlockBase *Block : RPOT) {
 | 
						|
      if (EnableVPlanNativePath) {
 | 
						|
        // The inner loop vectorization path does not represent loop preheader
 | 
						|
        // and exit blocks as part of the VPlan. In the VPlan-native path, skip
 | 
						|
        // vectorizing loop preheader block. In future, we may replace this
 | 
						|
        // check with the check for loop preheader.
 | 
						|
        if (Block->getNumPredecessors() == 0)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Skip vectorizing loop exit block. In future, we may replace this
 | 
						|
        // check with the check for loop exit.
 | 
						|
        if (Block->getNumSuccessors() == 0)
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
 | 
						|
      Block->execute(State);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!State->Instance && "Replicating a Region with non-null instance.");
 | 
						|
 | 
						|
  // Enter replicating mode.
 | 
						|
  State->Instance = {0, 0};
 | 
						|
 | 
						|
  for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
 | 
						|
    State->Instance->Part = Part;
 | 
						|
    for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
 | 
						|
      State->Instance->Lane = Lane;
 | 
						|
      // Visit the VPBlocks connected to \p this, starting from it.
 | 
						|
      for (VPBlockBase *Block : RPOT) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
 | 
						|
        Block->execute(State);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Exit replicating mode.
 | 
						|
  State->Instance.reset();
 | 
						|
}
 | 
						|
 | 
						|
void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
 | 
						|
  assert(!Parent && "Recipe already in some VPBasicBlock");
 | 
						|
  assert(InsertPos->getParent() &&
 | 
						|
         "Insertion position not in any VPBasicBlock");
 | 
						|
  Parent = InsertPos->getParent();
 | 
						|
  Parent->getRecipeList().insert(InsertPos->getIterator(), this);
 | 
						|
}
 | 
						|
 | 
						|
void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
 | 
						|
  assert(!Parent && "Recipe already in some VPBasicBlock");
 | 
						|
  assert(InsertPos->getParent() &&
 | 
						|
         "Insertion position not in any VPBasicBlock");
 | 
						|
  Parent = InsertPos->getParent();
 | 
						|
  Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
 | 
						|
}
 | 
						|
 | 
						|
void VPRecipeBase::removeFromParent() {
 | 
						|
  assert(getParent() && "Recipe not in any VPBasicBlock");
 | 
						|
  getParent()->getRecipeList().remove(getIterator());
 | 
						|
  Parent = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
 | 
						|
  assert(getParent() && "Recipe not in any VPBasicBlock");
 | 
						|
  return getParent()->getRecipeList().erase(getIterator());
 | 
						|
}
 | 
						|
 | 
						|
void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
 | 
						|
  removeFromParent();
 | 
						|
  insertAfter(InsertPos);
 | 
						|
}
 | 
						|
 | 
						|
void VPInstruction::generateInstruction(VPTransformState &State,
 | 
						|
                                        unsigned Part) {
 | 
						|
  IRBuilder<> &Builder = State.Builder;
 | 
						|
 | 
						|
  if (Instruction::isBinaryOp(getOpcode())) {
 | 
						|
    Value *A = State.get(getOperand(0), Part);
 | 
						|
    Value *B = State.get(getOperand(1), Part);
 | 
						|
    Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
 | 
						|
    State.set(this, V, Part);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (getOpcode()) {
 | 
						|
  case VPInstruction::Not: {
 | 
						|
    Value *A = State.get(getOperand(0), Part);
 | 
						|
    Value *V = Builder.CreateNot(A);
 | 
						|
    State.set(this, V, Part);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case VPInstruction::ICmpULE: {
 | 
						|
    Value *IV = State.get(getOperand(0), Part);
 | 
						|
    Value *TC = State.get(getOperand(1), Part);
 | 
						|
    Value *V = Builder.CreateICmpULE(IV, TC);
 | 
						|
    State.set(this, V, Part);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Select: {
 | 
						|
    Value *Cond = State.get(getOperand(0), Part);
 | 
						|
    Value *Op1 = State.get(getOperand(1), Part);
 | 
						|
    Value *Op2 = State.get(getOperand(2), Part);
 | 
						|
    Value *V = Builder.CreateSelect(Cond, Op1, Op2);
 | 
						|
    State.set(this, V, Part);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unsupported opcode for instruction");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void VPInstruction::execute(VPTransformState &State) {
 | 
						|
  assert(!State.Instance && "VPInstruction executing an Instance");
 | 
						|
  for (unsigned Part = 0; Part < State.UF; ++Part)
 | 
						|
    generateInstruction(State, Part);
 | 
						|
}
 | 
						|
 | 
						|
void VPInstruction::print(raw_ostream &O, const Twine &Indent,
 | 
						|
                          VPSlotTracker &SlotTracker) const {
 | 
						|
  O << " +\n" << Indent << "\"EMIT ";
 | 
						|
  print(O, SlotTracker);
 | 
						|
  O << "\\l\"";
 | 
						|
}
 | 
						|
 | 
						|
void VPInstruction::print(raw_ostream &O) const {
 | 
						|
  VPSlotTracker SlotTracker(getParent()->getPlan());
 | 
						|
  print(O, SlotTracker);
 | 
						|
}
 | 
						|
 | 
						|
void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
 | 
						|
  printAsOperand(O, SlotTracker);
 | 
						|
  O << " = ";
 | 
						|
 | 
						|
  switch (getOpcode()) {
 | 
						|
  case VPInstruction::Not:
 | 
						|
    O << "not";
 | 
						|
    break;
 | 
						|
  case VPInstruction::ICmpULE:
 | 
						|
    O << "icmp ule";
 | 
						|
    break;
 | 
						|
  case VPInstruction::SLPLoad:
 | 
						|
    O << "combined load";
 | 
						|
    break;
 | 
						|
  case VPInstruction::SLPStore:
 | 
						|
    O << "combined store";
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    O << Instruction::getOpcodeName(getOpcode());
 | 
						|
  }
 | 
						|
 | 
						|
  for (const VPValue *Operand : operands()) {
 | 
						|
    O << " ";
 | 
						|
    Operand->printAsOperand(O, SlotTracker);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Generate the code inside the body of the vectorized loop. Assumes a single
 | 
						|
/// LoopVectorBody basic-block was created for this. Introduce additional
 | 
						|
/// basic-blocks as needed, and fill them all.
 | 
						|
void VPlan::execute(VPTransformState *State) {
 | 
						|
  // -1. Check if the backedge taken count is needed, and if so build it.
 | 
						|
  if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
 | 
						|
    Value *TC = State->TripCount;
 | 
						|
    IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
 | 
						|
    auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
 | 
						|
                                   "trip.count.minus.1");
 | 
						|
    Value2VPValue[TCMO] = BackedgeTakenCount;
 | 
						|
  }
 | 
						|
 | 
						|
  // 0. Set the reverse mapping from VPValues to Values for code generation.
 | 
						|
  for (auto &Entry : Value2VPValue)
 | 
						|
    State->VPValue2Value[Entry.second] = Entry.first;
 | 
						|
 | 
						|
  BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
 | 
						|
  BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
 | 
						|
  assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
 | 
						|
 | 
						|
  // 1. Make room to generate basic-blocks inside loop body if needed.
 | 
						|
  BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
 | 
						|
      VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
 | 
						|
  Loop *L = State->LI->getLoopFor(VectorHeaderBB);
 | 
						|
  L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
 | 
						|
  // Remove the edge between Header and Latch to allow other connections.
 | 
						|
  // Temporarily terminate with unreachable until CFG is rewired.
 | 
						|
  // Note: this asserts the generated code's assumption that
 | 
						|
  // getFirstInsertionPt() can be dereferenced into an Instruction.
 | 
						|
  VectorHeaderBB->getTerminator()->eraseFromParent();
 | 
						|
  State->Builder.SetInsertPoint(VectorHeaderBB);
 | 
						|
  UnreachableInst *Terminator = State->Builder.CreateUnreachable();
 | 
						|
  State->Builder.SetInsertPoint(Terminator);
 | 
						|
 | 
						|
  // 2. Generate code in loop body.
 | 
						|
  State->CFG.PrevVPBB = nullptr;
 | 
						|
  State->CFG.PrevBB = VectorHeaderBB;
 | 
						|
  State->CFG.LastBB = VectorLatchBB;
 | 
						|
 | 
						|
  for (VPBlockBase *Block : depth_first(Entry))
 | 
						|
    Block->execute(State);
 | 
						|
 | 
						|
  // Setup branch terminator successors for VPBBs in VPBBsToFix based on
 | 
						|
  // VPBB's successors.
 | 
						|
  for (auto VPBB : State->CFG.VPBBsToFix) {
 | 
						|
    assert(EnableVPlanNativePath &&
 | 
						|
           "Unexpected VPBBsToFix in non VPlan-native path");
 | 
						|
    BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
 | 
						|
    assert(BB && "Unexpected null basic block for VPBB");
 | 
						|
 | 
						|
    unsigned Idx = 0;
 | 
						|
    auto *BBTerminator = BB->getTerminator();
 | 
						|
 | 
						|
    for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
 | 
						|
      VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
 | 
						|
      BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // 3. Merge the temporary latch created with the last basic-block filled.
 | 
						|
  BasicBlock *LastBB = State->CFG.PrevBB;
 | 
						|
  // Connect LastBB to VectorLatchBB to facilitate their merge.
 | 
						|
  assert((EnableVPlanNativePath ||
 | 
						|
          isa<UnreachableInst>(LastBB->getTerminator())) &&
 | 
						|
         "Expected InnerLoop VPlan CFG to terminate with unreachable");
 | 
						|
  assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
 | 
						|
         "Expected VPlan CFG to terminate with branch in NativePath");
 | 
						|
  LastBB->getTerminator()->eraseFromParent();
 | 
						|
  BranchInst::Create(VectorLatchBB, LastBB);
 | 
						|
 | 
						|
  // Merge LastBB with Latch.
 | 
						|
  bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
 | 
						|
  (void)Merged;
 | 
						|
  assert(Merged && "Could not merge last basic block with latch.");
 | 
						|
  VectorLatchBB = LastBB;
 | 
						|
 | 
						|
  // We do not attempt to preserve DT for outer loop vectorization currently.
 | 
						|
  if (!EnableVPlanNativePath)
 | 
						|
    updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
 | 
						|
                        L->getExitBlock());
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void VPlan::dump() const { dbgs() << *this << '\n'; }
 | 
						|
#endif
 | 
						|
 | 
						|
void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
 | 
						|
                                BasicBlock *LoopLatchBB,
 | 
						|
                                BasicBlock *LoopExitBB) {
 | 
						|
  BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
 | 
						|
  assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
 | 
						|
  // The vector body may be more than a single basic-block by this point.
 | 
						|
  // Update the dominator tree information inside the vector body by propagating
 | 
						|
  // it from header to latch, expecting only triangular control-flow, if any.
 | 
						|
  BasicBlock *PostDomSucc = nullptr;
 | 
						|
  for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
 | 
						|
    // Get the list of successors of this block.
 | 
						|
    std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
 | 
						|
    assert(Succs.size() <= 2 &&
 | 
						|
           "Basic block in vector loop has more than 2 successors.");
 | 
						|
    PostDomSucc = Succs[0];
 | 
						|
    if (Succs.size() == 1) {
 | 
						|
      assert(PostDomSucc->getSinglePredecessor() &&
 | 
						|
             "PostDom successor has more than one predecessor.");
 | 
						|
      DT->addNewBlock(PostDomSucc, BB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    BasicBlock *InterimSucc = Succs[1];
 | 
						|
    if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
 | 
						|
      PostDomSucc = Succs[1];
 | 
						|
      InterimSucc = Succs[0];
 | 
						|
    }
 | 
						|
    assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
 | 
						|
           "One successor of a basic block does not lead to the other.");
 | 
						|
    assert(InterimSucc->getSinglePredecessor() &&
 | 
						|
           "Interim successor has more than one predecessor.");
 | 
						|
    assert(PostDomSucc->hasNPredecessors(2) &&
 | 
						|
           "PostDom successor has more than two predecessors.");
 | 
						|
    DT->addNewBlock(InterimSucc, BB);
 | 
						|
    DT->addNewBlock(PostDomSucc, BB);
 | 
						|
  }
 | 
						|
  // Latch block is a new dominator for the loop exit.
 | 
						|
  DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
 | 
						|
  assert(DT->verify(DominatorTree::VerificationLevel::Fast));
 | 
						|
}
 | 
						|
 | 
						|
const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
 | 
						|
  return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
 | 
						|
         Twine(getOrCreateBID(Block));
 | 
						|
}
 | 
						|
 | 
						|
const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
 | 
						|
  const std::string &Name = Block->getName();
 | 
						|
  if (!Name.empty())
 | 
						|
    return Name;
 | 
						|
  return "VPB" + Twine(getOrCreateBID(Block));
 | 
						|
}
 | 
						|
 | 
						|
void VPlanPrinter::dump() {
 | 
						|
  Depth = 1;
 | 
						|
  bumpIndent(0);
 | 
						|
  OS << "digraph VPlan {\n";
 | 
						|
  OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
 | 
						|
  if (!Plan.getName().empty())
 | 
						|
    OS << "\\n" << DOT::EscapeString(Plan.getName());
 | 
						|
  if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) {
 | 
						|
    OS << ", where:";
 | 
						|
    if (Plan.BackedgeTakenCount) {
 | 
						|
      OS << "\\n";
 | 
						|
      Plan.BackedgeTakenCount->print(OS, SlotTracker);
 | 
						|
      OS << " := BackedgeTakenCount";
 | 
						|
    }
 | 
						|
    for (auto Entry : Plan.Value2VPValue) {
 | 
						|
      OS << "\\n";
 | 
						|
      Entry.second->print(OS, SlotTracker);
 | 
						|
      OS << DOT::EscapeString(" := ");
 | 
						|
      Entry.first->printAsOperand(OS, false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OS << "\"]\n";
 | 
						|
  OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
 | 
						|
  OS << "edge [fontname=Courier, fontsize=30]\n";
 | 
						|
  OS << "compound=true\n";
 | 
						|
 | 
						|
  for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
 | 
						|
    dumpBlock(Block);
 | 
						|
 | 
						|
  OS << "}\n";
 | 
						|
}
 | 
						|
 | 
						|
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
 | 
						|
  if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
 | 
						|
    dumpBasicBlock(BasicBlock);
 | 
						|
  else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | 
						|
    dumpRegion(Region);
 | 
						|
  else
 | 
						|
    llvm_unreachable("Unsupported kind of VPBlock.");
 | 
						|
}
 | 
						|
 | 
						|
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
 | 
						|
                            bool Hidden, const Twine &Label) {
 | 
						|
  // Due to "dot" we print an edge between two regions as an edge between the
 | 
						|
  // exit basic block and the entry basic of the respective regions.
 | 
						|
  const VPBlockBase *Tail = From->getExitBasicBlock();
 | 
						|
  const VPBlockBase *Head = To->getEntryBasicBlock();
 | 
						|
  OS << Indent << getUID(Tail) << " -> " << getUID(Head);
 | 
						|
  OS << " [ label=\"" << Label << '\"';
 | 
						|
  if (Tail != From)
 | 
						|
    OS << " ltail=" << getUID(From);
 | 
						|
  if (Head != To)
 | 
						|
    OS << " lhead=" << getUID(To);
 | 
						|
  if (Hidden)
 | 
						|
    OS << "; splines=none";
 | 
						|
  OS << "]\n";
 | 
						|
}
 | 
						|
 | 
						|
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
 | 
						|
  auto &Successors = Block->getSuccessors();
 | 
						|
  if (Successors.size() == 1)
 | 
						|
    drawEdge(Block, Successors.front(), false, "");
 | 
						|
  else if (Successors.size() == 2) {
 | 
						|
    drawEdge(Block, Successors.front(), false, "T");
 | 
						|
    drawEdge(Block, Successors.back(), false, "F");
 | 
						|
  } else {
 | 
						|
    unsigned SuccessorNumber = 0;
 | 
						|
    for (auto *Successor : Successors)
 | 
						|
      drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
 | 
						|
  OS << Indent << getUID(BasicBlock) << " [label =\n";
 | 
						|
  bumpIndent(1);
 | 
						|
  OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
 | 
						|
  bumpIndent(1);
 | 
						|
 | 
						|
  // Dump the block predicate.
 | 
						|
  const VPValue *Pred = BasicBlock->getPredicate();
 | 
						|
  if (Pred) {
 | 
						|
    OS << " +\n" << Indent << " \"BlockPredicate: ";
 | 
						|
    if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
 | 
						|
      PredI->printAsOperand(OS, SlotTracker);
 | 
						|
      OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
 | 
						|
         << ")\\l\"";
 | 
						|
    } else
 | 
						|
      Pred->printAsOperand(OS, SlotTracker);
 | 
						|
  }
 | 
						|
 | 
						|
  for (const VPRecipeBase &Recipe : *BasicBlock)
 | 
						|
    Recipe.print(OS, Indent, SlotTracker);
 | 
						|
 | 
						|
  // Dump the condition bit.
 | 
						|
  const VPValue *CBV = BasicBlock->getCondBit();
 | 
						|
  if (CBV) {
 | 
						|
    OS << " +\n" << Indent << " \"CondBit: ";
 | 
						|
    if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
 | 
						|
      CBI->printAsOperand(OS, SlotTracker);
 | 
						|
      OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
 | 
						|
    } else {
 | 
						|
      CBV->printAsOperand(OS, SlotTracker);
 | 
						|
      OS << "\"";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bumpIndent(-2);
 | 
						|
  OS << "\n" << Indent << "]\n";
 | 
						|
  dumpEdges(BasicBlock);
 | 
						|
}
 | 
						|
 | 
						|
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
 | 
						|
  OS << Indent << "subgraph " << getUID(Region) << " {\n";
 | 
						|
  bumpIndent(1);
 | 
						|
  OS << Indent << "fontname=Courier\n"
 | 
						|
     << Indent << "label=\""
 | 
						|
     << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
 | 
						|
     << DOT::EscapeString(Region->getName()) << "\"\n";
 | 
						|
  // Dump the blocks of the region.
 | 
						|
  assert(Region->getEntry() && "Region contains no inner blocks.");
 | 
						|
  for (const VPBlockBase *Block : depth_first(Region->getEntry()))
 | 
						|
    dumpBlock(Block);
 | 
						|
  bumpIndent(-1);
 | 
						|
  OS << Indent << "}\n";
 | 
						|
  dumpEdges(Region);
 | 
						|
}
 | 
						|
 | 
						|
void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
 | 
						|
  std::string IngredientString;
 | 
						|
  raw_string_ostream RSO(IngredientString);
 | 
						|
  if (auto *Inst = dyn_cast<Instruction>(V)) {
 | 
						|
    if (!Inst->getType()->isVoidTy()) {
 | 
						|
      Inst->printAsOperand(RSO, false);
 | 
						|
      RSO << " = ";
 | 
						|
    }
 | 
						|
    RSO << Inst->getOpcodeName() << " ";
 | 
						|
    unsigned E = Inst->getNumOperands();
 | 
						|
    if (E > 0) {
 | 
						|
      Inst->getOperand(0)->printAsOperand(RSO, false);
 | 
						|
      for (unsigned I = 1; I < E; ++I)
 | 
						|
        Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
 | 
						|
    }
 | 
						|
  } else // !Inst
 | 
						|
    V->printAsOperand(RSO, false);
 | 
						|
  RSO.flush();
 | 
						|
  O << DOT::EscapeString(IngredientString);
 | 
						|
}
 | 
						|
 | 
						|
void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
 | 
						|
                          VPSlotTracker &SlotTracker) const {
 | 
						|
  O << " +\n" << Indent << "\"WIDEN\\l\"";
 | 
						|
  for (auto &Instr : make_range(Begin, End))
 | 
						|
    O << " +\n" << Indent << "\"  " << VPlanIngredient(&Instr) << "\\l\"";
 | 
						|
}
 | 
						|
 | 
						|
void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
 | 
						|
                                          VPSlotTracker &SlotTracker) const {
 | 
						|
  O << " +\n" << Indent << "\"WIDEN-INDUCTION";
 | 
						|
  if (Trunc) {
 | 
						|
    O << "\\l\"";
 | 
						|
    O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
 | 
						|
    O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc) << "\\l\"";
 | 
						|
  } else
 | 
						|
    O << " " << VPlanIngredient(IV) << "\\l\"";
 | 
						|
}
 | 
						|
 | 
						|
void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
 | 
						|
                             VPSlotTracker &SlotTracker) const {
 | 
						|
  O << " +\n" << Indent << "\"WIDEN-GEP ";
 | 
						|
  O << (IsPtrLoopInvariant ? "Inv" : "Var");
 | 
						|
  size_t IndicesNumber = IsIndexLoopInvariant.size();
 | 
						|
  for (size_t I = 0; I < IndicesNumber; ++I)
 | 
						|
    O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
 | 
						|
  O << "\\l\"";
 | 
						|
  O << " +\n" << Indent << "\"  "  << VPlanIngredient(GEP) << "\\l\"";
 | 
						|
}
 | 
						|
 | 
						|
void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
 | 
						|
                             VPSlotTracker &SlotTracker) const {
 | 
						|
  O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\"";
 | 
						|
}
 | 
						|
 | 
						|
void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
 | 
						|
                          VPSlotTracker &SlotTracker) const {
 | 
						|
  O << " +\n" << Indent << "\"BLEND ";
 | 
						|
  Phi->printAsOperand(O, false);
 | 
						|
  O << " =";
 | 
						|
  if (!User) {
 | 
						|
    // Not a User of any mask: not really blending, this is a
 | 
						|
    // single-predecessor phi.
 | 
						|
    O << " ";
 | 
						|
    Phi->getIncomingValue(0)->printAsOperand(O, false);
 | 
						|
  } else {
 | 
						|
    for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
 | 
						|
      O << " ";
 | 
						|
      Phi->getIncomingValue(I)->printAsOperand(O, false);
 | 
						|
      O << "/";
 | 
						|
      User->getOperand(I)->printAsOperand(O, SlotTracker);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  O << "\\l\"";
 | 
						|
}
 | 
						|
 | 
						|
void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
 | 
						|
                              VPSlotTracker &SlotTracker) const {
 | 
						|
  O << " +\n"
 | 
						|
    << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
 | 
						|
    << VPlanIngredient(Ingredient);
 | 
						|
  if (AlsoPack)
 | 
						|
    O << " (S->V)";
 | 
						|
  O << "\\l\"";
 | 
						|
}
 | 
						|
 | 
						|
void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
 | 
						|
                                VPSlotTracker &SlotTracker) const {
 | 
						|
  O << " +\n"
 | 
						|
    << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst)
 | 
						|
    << "\\l\"";
 | 
						|
}
 | 
						|
 | 
						|
void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
 | 
						|
                                           VPSlotTracker &SlotTracker) const {
 | 
						|
  O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr);
 | 
						|
  O << ", ";
 | 
						|
  getAddr()->printAsOperand(O, SlotTracker);
 | 
						|
  VPValue *Mask = getMask();
 | 
						|
  if (Mask) {
 | 
						|
    O << ", ";
 | 
						|
    Mask->printAsOperand(O, SlotTracker);
 | 
						|
  }
 | 
						|
  O << "\\l\"";
 | 
						|
}
 | 
						|
 | 
						|
template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
 | 
						|
 | 
						|
void VPValue::replaceAllUsesWith(VPValue *New) {
 | 
						|
  for (VPUser *User : users())
 | 
						|
    for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
 | 
						|
      if (User->getOperand(I) == this)
 | 
						|
        User->setOperand(I, New);
 | 
						|
}
 | 
						|
 | 
						|
void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
 | 
						|
  unsigned Slot = Tracker.getSlot(this);
 | 
						|
  if (Slot == unsigned(-1))
 | 
						|
    OS << "<badref>";
 | 
						|
  else
 | 
						|
    OS << "%vp" << Tracker.getSlot(this);
 | 
						|
}
 | 
						|
 | 
						|
void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
 | 
						|
                                          Old2NewTy &Old2New,
 | 
						|
                                          InterleavedAccessInfo &IAI) {
 | 
						|
  ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
 | 
						|
  for (VPBlockBase *Base : RPOT) {
 | 
						|
    visitBlock(Base, Old2New, IAI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
 | 
						|
                                         InterleavedAccessInfo &IAI) {
 | 
						|
  if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
 | 
						|
    for (VPRecipeBase &VPI : *VPBB) {
 | 
						|
      assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
 | 
						|
      auto *VPInst = cast<VPInstruction>(&VPI);
 | 
						|
      auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
 | 
						|
      auto *IG = IAI.getInterleaveGroup(Inst);
 | 
						|
      if (!IG)
 | 
						|
        continue;
 | 
						|
 | 
						|
      auto NewIGIter = Old2New.find(IG);
 | 
						|
      if (NewIGIter == Old2New.end())
 | 
						|
        Old2New[IG] = new InterleaveGroup<VPInstruction>(
 | 
						|
            IG->getFactor(), IG->isReverse(), Align(IG->getAlignment()));
 | 
						|
 | 
						|
      if (Inst == IG->getInsertPos())
 | 
						|
        Old2New[IG]->setInsertPos(VPInst);
 | 
						|
 | 
						|
      InterleaveGroupMap[VPInst] = Old2New[IG];
 | 
						|
      InterleaveGroupMap[VPInst]->insertMember(
 | 
						|
          VPInst, IG->getIndex(Inst),
 | 
						|
          Align(IG->isReverse() ? (-1) * int(IG->getFactor())
 | 
						|
                                : IG->getFactor()));
 | 
						|
    }
 | 
						|
  } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | 
						|
    visitRegion(Region, Old2New, IAI);
 | 
						|
  else
 | 
						|
    llvm_unreachable("Unsupported kind of VPBlock.");
 | 
						|
}
 | 
						|
 | 
						|
VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
 | 
						|
                                                 InterleavedAccessInfo &IAI) {
 | 
						|
  Old2NewTy Old2New;
 | 
						|
  visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
 | 
						|
}
 | 
						|
 | 
						|
void VPSlotTracker::assignSlot(const VPValue *V) {
 | 
						|
  assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
 | 
						|
  Slots[V] = NextSlot++;
 | 
						|
}
 | 
						|
 | 
						|
void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
 | 
						|
  if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
 | 
						|
    assignSlots(Region);
 | 
						|
  else
 | 
						|
    assignSlots(cast<VPBasicBlock>(VPBB));
 | 
						|
}
 | 
						|
 | 
						|
void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
 | 
						|
  ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
 | 
						|
  for (const VPBlockBase *Block : RPOT)
 | 
						|
    assignSlots(Block);
 | 
						|
}
 | 
						|
 | 
						|
void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
 | 
						|
  for (const VPRecipeBase &Recipe : *VPBB) {
 | 
						|
    if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe))
 | 
						|
      assignSlot(VPI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void VPSlotTracker::assignSlots(const VPlan &Plan) {
 | 
						|
 | 
						|
  for (const VPValue *V : Plan.VPExternalDefs)
 | 
						|
    assignSlot(V);
 | 
						|
 | 
						|
  for (auto &E : Plan.Value2VPValue)
 | 
						|
    if (!isa<VPInstruction>(E.second))
 | 
						|
      assignSlot(E.second);
 | 
						|
 | 
						|
  for (const VPValue *V : Plan.VPCBVs)
 | 
						|
    assignSlot(V);
 | 
						|
 | 
						|
  if (Plan.BackedgeTakenCount)
 | 
						|
    assignSlot(Plan.BackedgeTakenCount);
 | 
						|
 | 
						|
  ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
 | 
						|
  for (const VPBlockBase *Block : RPOT)
 | 
						|
    assignSlots(Block);
 | 
						|
}
 |