forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			596 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			596 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- FileAnalysis.cpp -----------------------------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "FileAnalysis.h"
 | 
						|
#include "GraphBuilder.h"
 | 
						|
 | 
						|
#include "llvm/BinaryFormat/ELF.h"
 | 
						|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
 | 
						|
#include "llvm/MC/MCInst.h"
 | 
						|
#include "llvm/MC/MCInstPrinter.h"
 | 
						|
#include "llvm/MC/MCInstrAnalysis.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
#include "llvm/MC/MCInstrInfo.h"
 | 
						|
#include "llvm/MC/MCObjectFileInfo.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/MC/MCSubtargetInfo.h"
 | 
						|
#include "llvm/MC/MCTargetOptions.h"
 | 
						|
#include "llvm/Object/Binary.h"
 | 
						|
#include "llvm/Object/COFF.h"
 | 
						|
#include "llvm/Object/ELFObjectFile.h"
 | 
						|
#include "llvm/Object/ObjectFile.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Error.h"
 | 
						|
#include "llvm/Support/MemoryBuffer.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
#include "llvm/Support/TargetSelect.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
 | 
						|
using Instr = llvm::cfi_verify::FileAnalysis::Instr;
 | 
						|
using LLVMSymbolizer = llvm::symbolize::LLVMSymbolizer;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
namespace cfi_verify {
 | 
						|
 | 
						|
bool IgnoreDWARFFlag;
 | 
						|
 | 
						|
static cl::opt<bool, true> IgnoreDWARFArg(
 | 
						|
    "ignore-dwarf",
 | 
						|
    cl::desc(
 | 
						|
        "Ignore all DWARF data. This relaxes the requirements for all "
 | 
						|
        "statically linked libraries to have been compiled with '-g', but "
 | 
						|
        "will result in false positives for 'CFI unprotected' instructions."),
 | 
						|
    cl::location(IgnoreDWARFFlag), cl::init(false));
 | 
						|
 | 
						|
StringRef stringCFIProtectionStatus(CFIProtectionStatus Status) {
 | 
						|
  switch (Status) {
 | 
						|
  case CFIProtectionStatus::PROTECTED:
 | 
						|
    return "PROTECTED";
 | 
						|
  case CFIProtectionStatus::FAIL_NOT_INDIRECT_CF:
 | 
						|
    return "FAIL_NOT_INDIRECT_CF";
 | 
						|
  case CFIProtectionStatus::FAIL_ORPHANS:
 | 
						|
    return "FAIL_ORPHANS";
 | 
						|
  case CFIProtectionStatus::FAIL_BAD_CONDITIONAL_BRANCH:
 | 
						|
    return "FAIL_BAD_CONDITIONAL_BRANCH";
 | 
						|
  case CFIProtectionStatus::FAIL_REGISTER_CLOBBERED:
 | 
						|
    return "FAIL_REGISTER_CLOBBERED";
 | 
						|
  case CFIProtectionStatus::FAIL_INVALID_INSTRUCTION:
 | 
						|
    return "FAIL_INVALID_INSTRUCTION";
 | 
						|
  }
 | 
						|
  llvm_unreachable("Attempted to stringify an unknown enum value.");
 | 
						|
}
 | 
						|
 | 
						|
Expected<FileAnalysis> FileAnalysis::Create(StringRef Filename) {
 | 
						|
  // Open the filename provided.
 | 
						|
  Expected<object::OwningBinary<object::Binary>> BinaryOrErr =
 | 
						|
      object::createBinary(Filename);
 | 
						|
  if (!BinaryOrErr)
 | 
						|
    return BinaryOrErr.takeError();
 | 
						|
 | 
						|
  // Construct the object and allow it to take ownership of the binary.
 | 
						|
  object::OwningBinary<object::Binary> Binary = std::move(BinaryOrErr.get());
 | 
						|
  FileAnalysis Analysis(std::move(Binary));
 | 
						|
 | 
						|
  Analysis.Object = dyn_cast<object::ObjectFile>(Analysis.Binary.getBinary());
 | 
						|
  if (!Analysis.Object)
 | 
						|
    return make_error<UnsupportedDisassembly>("Failed to cast object");
 | 
						|
 | 
						|
  switch (Analysis.Object->getArch()) {
 | 
						|
    case Triple::x86:
 | 
						|
    case Triple::x86_64:
 | 
						|
    case Triple::aarch64:
 | 
						|
    case Triple::aarch64_be:
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return make_error<UnsupportedDisassembly>("Unsupported architecture.");
 | 
						|
  }
 | 
						|
 | 
						|
  Analysis.ObjectTriple = Analysis.Object->makeTriple();
 | 
						|
  Analysis.Features = Analysis.Object->getFeatures();
 | 
						|
 | 
						|
  // Init the rest of the object.
 | 
						|
  if (auto InitResponse = Analysis.initialiseDisassemblyMembers())
 | 
						|
    return std::move(InitResponse);
 | 
						|
 | 
						|
  if (auto SectionParseResponse = Analysis.parseCodeSections())
 | 
						|
    return std::move(SectionParseResponse);
 | 
						|
 | 
						|
  if (auto SymbolTableParseResponse = Analysis.parseSymbolTable())
 | 
						|
    return std::move(SymbolTableParseResponse);
 | 
						|
 | 
						|
  return std::move(Analysis);
 | 
						|
}
 | 
						|
 | 
						|
FileAnalysis::FileAnalysis(object::OwningBinary<object::Binary> Binary)
 | 
						|
    : Binary(std::move(Binary)) {}
 | 
						|
 | 
						|
FileAnalysis::FileAnalysis(const Triple &ObjectTriple,
 | 
						|
                           const SubtargetFeatures &Features)
 | 
						|
    : ObjectTriple(ObjectTriple), Features(Features) {}
 | 
						|
 | 
						|
const Instr *
 | 
						|
FileAnalysis::getPrevInstructionSequential(const Instr &InstrMeta) const {
 | 
						|
  std::map<uint64_t, Instr>::const_iterator KV =
 | 
						|
      Instructions.find(InstrMeta.VMAddress);
 | 
						|
  if (KV == Instructions.end() || KV == Instructions.begin())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!(--KV)->second.Valid)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return &KV->second;
 | 
						|
}
 | 
						|
 | 
						|
const Instr *
 | 
						|
FileAnalysis::getNextInstructionSequential(const Instr &InstrMeta) const {
 | 
						|
  std::map<uint64_t, Instr>::const_iterator KV =
 | 
						|
      Instructions.find(InstrMeta.VMAddress);
 | 
						|
  if (KV == Instructions.end() || ++KV == Instructions.end())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!KV->second.Valid)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return &KV->second;
 | 
						|
}
 | 
						|
 | 
						|
bool FileAnalysis::usesRegisterOperand(const Instr &InstrMeta) const {
 | 
						|
  for (const auto &Operand : InstrMeta.Instruction) {
 | 
						|
    if (Operand.isReg())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
const Instr *FileAnalysis::getInstruction(uint64_t Address) const {
 | 
						|
  const auto &InstrKV = Instructions.find(Address);
 | 
						|
  if (InstrKV == Instructions.end())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return &InstrKV->second;
 | 
						|
}
 | 
						|
 | 
						|
const Instr &FileAnalysis::getInstructionOrDie(uint64_t Address) const {
 | 
						|
  const auto &InstrKV = Instructions.find(Address);
 | 
						|
  assert(InstrKV != Instructions.end() && "Address doesn't exist.");
 | 
						|
  return InstrKV->second;
 | 
						|
}
 | 
						|
 | 
						|
bool FileAnalysis::isCFITrap(const Instr &InstrMeta) const {
 | 
						|
  const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
 | 
						|
  return InstrDesc.isTrap() || willTrapOnCFIViolation(InstrMeta);
 | 
						|
}
 | 
						|
 | 
						|
bool FileAnalysis::willTrapOnCFIViolation(const Instr &InstrMeta) const {
 | 
						|
  const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
 | 
						|
  if (!InstrDesc.isCall())
 | 
						|
    return false;
 | 
						|
  uint64_t Target;
 | 
						|
  if (!MIA->evaluateBranch(InstrMeta.Instruction, InstrMeta.VMAddress,
 | 
						|
                           InstrMeta.InstructionSize, Target))
 | 
						|
    return false;
 | 
						|
  return TrapOnFailFunctionAddresses.count(Target) > 0;
 | 
						|
}
 | 
						|
 | 
						|
bool FileAnalysis::canFallThrough(const Instr &InstrMeta) const {
 | 
						|
  if (!InstrMeta.Valid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isCFITrap(InstrMeta))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
 | 
						|
  if (InstrDesc.mayAffectControlFlow(InstrMeta.Instruction, *RegisterInfo))
 | 
						|
    return InstrDesc.isConditionalBranch();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
const Instr *
 | 
						|
FileAnalysis::getDefiniteNextInstruction(const Instr &InstrMeta) const {
 | 
						|
  if (!InstrMeta.Valid)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (isCFITrap(InstrMeta))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
 | 
						|
  const Instr *NextMetaPtr;
 | 
						|
  if (InstrDesc.mayAffectControlFlow(InstrMeta.Instruction, *RegisterInfo)) {
 | 
						|
    if (InstrDesc.isConditionalBranch())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    uint64_t Target;
 | 
						|
    if (!MIA->evaluateBranch(InstrMeta.Instruction, InstrMeta.VMAddress,
 | 
						|
                             InstrMeta.InstructionSize, Target))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    NextMetaPtr = getInstruction(Target);
 | 
						|
  } else {
 | 
						|
    NextMetaPtr =
 | 
						|
        getInstruction(InstrMeta.VMAddress + InstrMeta.InstructionSize);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!NextMetaPtr || !NextMetaPtr->Valid)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return NextMetaPtr;
 | 
						|
}
 | 
						|
 | 
						|
std::set<const Instr *>
 | 
						|
FileAnalysis::getDirectControlFlowXRefs(const Instr &InstrMeta) const {
 | 
						|
  std::set<const Instr *> CFCrossReferences;
 | 
						|
  const Instr *PrevInstruction = getPrevInstructionSequential(InstrMeta);
 | 
						|
 | 
						|
  if (PrevInstruction && canFallThrough(*PrevInstruction))
 | 
						|
    CFCrossReferences.insert(PrevInstruction);
 | 
						|
 | 
						|
  const auto &TargetRefsKV = StaticBranchTargetings.find(InstrMeta.VMAddress);
 | 
						|
  if (TargetRefsKV == StaticBranchTargetings.end())
 | 
						|
    return CFCrossReferences;
 | 
						|
 | 
						|
  for (uint64_t SourceInstrAddress : TargetRefsKV->second) {
 | 
						|
    const auto &SourceInstrKV = Instructions.find(SourceInstrAddress);
 | 
						|
    if (SourceInstrKV == Instructions.end()) {
 | 
						|
      errs() << "Failed to find source instruction at address "
 | 
						|
             << format_hex(SourceInstrAddress, 2)
 | 
						|
             << " for the cross-reference to instruction at address "
 | 
						|
             << format_hex(InstrMeta.VMAddress, 2) << ".\n";
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    CFCrossReferences.insert(&SourceInstrKV->second);
 | 
						|
  }
 | 
						|
 | 
						|
  return CFCrossReferences;
 | 
						|
}
 | 
						|
 | 
						|
const std::set<object::SectionedAddress> &
 | 
						|
FileAnalysis::getIndirectInstructions() const {
 | 
						|
  return IndirectInstructions;
 | 
						|
}
 | 
						|
 | 
						|
const MCRegisterInfo *FileAnalysis::getRegisterInfo() const {
 | 
						|
  return RegisterInfo.get();
 | 
						|
}
 | 
						|
 | 
						|
const MCInstrInfo *FileAnalysis::getMCInstrInfo() const { return MII.get(); }
 | 
						|
 | 
						|
const MCInstrAnalysis *FileAnalysis::getMCInstrAnalysis() const {
 | 
						|
  return MIA.get();
 | 
						|
}
 | 
						|
 | 
						|
Expected<DIInliningInfo>
 | 
						|
FileAnalysis::symbolizeInlinedCode(object::SectionedAddress Address) {
 | 
						|
  assert(Symbolizer != nullptr && "Symbolizer is invalid.");
 | 
						|
 | 
						|
  return Symbolizer->symbolizeInlinedCode(std::string(Object->getFileName()),
 | 
						|
                                          Address);
 | 
						|
}
 | 
						|
 | 
						|
CFIProtectionStatus
 | 
						|
FileAnalysis::validateCFIProtection(const GraphResult &Graph) const {
 | 
						|
  const Instr *InstrMetaPtr = getInstruction(Graph.BaseAddress);
 | 
						|
  if (!InstrMetaPtr)
 | 
						|
    return CFIProtectionStatus::FAIL_INVALID_INSTRUCTION;
 | 
						|
 | 
						|
  const auto &InstrDesc = MII->get(InstrMetaPtr->Instruction.getOpcode());
 | 
						|
  if (!InstrDesc.mayAffectControlFlow(InstrMetaPtr->Instruction, *RegisterInfo))
 | 
						|
    return CFIProtectionStatus::FAIL_NOT_INDIRECT_CF;
 | 
						|
 | 
						|
  if (!usesRegisterOperand(*InstrMetaPtr))
 | 
						|
    return CFIProtectionStatus::FAIL_NOT_INDIRECT_CF;
 | 
						|
 | 
						|
  if (!Graph.OrphanedNodes.empty())
 | 
						|
    return CFIProtectionStatus::FAIL_ORPHANS;
 | 
						|
 | 
						|
  for (const auto &BranchNode : Graph.ConditionalBranchNodes) {
 | 
						|
    if (!BranchNode.CFIProtection)
 | 
						|
      return CFIProtectionStatus::FAIL_BAD_CONDITIONAL_BRANCH;
 | 
						|
  }
 | 
						|
 | 
						|
  if (indirectCFOperandClobber(Graph) != Graph.BaseAddress)
 | 
						|
    return CFIProtectionStatus::FAIL_REGISTER_CLOBBERED;
 | 
						|
 | 
						|
  return CFIProtectionStatus::PROTECTED;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t FileAnalysis::indirectCFOperandClobber(const GraphResult &Graph) const {
 | 
						|
  assert(Graph.OrphanedNodes.empty() && "Orphaned nodes should be empty.");
 | 
						|
 | 
						|
  // Get the set of registers we must check to ensure they're not clobbered.
 | 
						|
  const Instr &IndirectCF = getInstructionOrDie(Graph.BaseAddress);
 | 
						|
  DenseSet<unsigned> RegisterNumbers;
 | 
						|
  for (const auto &Operand : IndirectCF.Instruction) {
 | 
						|
    if (Operand.isReg())
 | 
						|
      RegisterNumbers.insert(Operand.getReg());
 | 
						|
  }
 | 
						|
  assert(RegisterNumbers.size() && "Zero register operands on indirect CF.");
 | 
						|
 | 
						|
  // Now check all branches to indirect CFs and ensure no clobbering happens.
 | 
						|
  for (const auto &Branch : Graph.ConditionalBranchNodes) {
 | 
						|
    uint64_t Node;
 | 
						|
    if (Branch.IndirectCFIsOnTargetPath)
 | 
						|
      Node = Branch.Target;
 | 
						|
    else
 | 
						|
      Node = Branch.Fallthrough;
 | 
						|
 | 
						|
    // Some architectures (e.g., AArch64) cannot load in an indirect branch, so
 | 
						|
    // we allow them one load.
 | 
						|
    bool canLoad = !MII->get(IndirectCF.Instruction.getOpcode()).mayLoad();
 | 
						|
 | 
						|
    // We walk backwards from the indirect CF.  It is the last node returned by
 | 
						|
    // Graph.flattenAddress, so we skip it since we already handled it.
 | 
						|
    DenseSet<unsigned> CurRegisterNumbers = RegisterNumbers;
 | 
						|
    std::vector<uint64_t> Nodes = Graph.flattenAddress(Node);
 | 
						|
    for (auto I = Nodes.rbegin() + 1, E = Nodes.rend(); I != E; ++I) {
 | 
						|
      Node = *I;
 | 
						|
      const Instr &NodeInstr = getInstructionOrDie(Node);
 | 
						|
      const auto &InstrDesc = MII->get(NodeInstr.Instruction.getOpcode());
 | 
						|
 | 
						|
      for (auto RI = CurRegisterNumbers.begin(), RE = CurRegisterNumbers.end();
 | 
						|
           RI != RE; ++RI) {
 | 
						|
        unsigned RegNum = *RI;
 | 
						|
        if (InstrDesc.hasDefOfPhysReg(NodeInstr.Instruction, RegNum,
 | 
						|
                                      *RegisterInfo)) {
 | 
						|
          if (!canLoad || !InstrDesc.mayLoad())
 | 
						|
            return Node;
 | 
						|
          canLoad = false;
 | 
						|
          CurRegisterNumbers.erase(RI);
 | 
						|
          // Add the registers this load reads to those we check for clobbers.
 | 
						|
          for (unsigned i = InstrDesc.getNumDefs(),
 | 
						|
                        e = InstrDesc.getNumOperands(); i != e; i++) {
 | 
						|
            const auto Operand = NodeInstr.Instruction.getOperand(i);
 | 
						|
            if (Operand.isReg())
 | 
						|
              CurRegisterNumbers.insert(Operand.getReg());
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Graph.BaseAddress;
 | 
						|
}
 | 
						|
 | 
						|
void FileAnalysis::printInstruction(const Instr &InstrMeta,
 | 
						|
                                    raw_ostream &OS) const {
 | 
						|
  Printer->printInst(&InstrMeta.Instruction, 0, "", *SubtargetInfo.get(), OS);
 | 
						|
}
 | 
						|
 | 
						|
Error FileAnalysis::initialiseDisassemblyMembers() {
 | 
						|
  std::string TripleName = ObjectTriple.getTriple();
 | 
						|
  ArchName = "";
 | 
						|
  MCPU = "";
 | 
						|
  std::string ErrorString;
 | 
						|
 | 
						|
  Symbolizer.reset(new LLVMSymbolizer());
 | 
						|
 | 
						|
  ObjectTarget =
 | 
						|
      TargetRegistry::lookupTarget(ArchName, ObjectTriple, ErrorString);
 | 
						|
  if (!ObjectTarget)
 | 
						|
    return make_error<UnsupportedDisassembly>(
 | 
						|
        (Twine("Couldn't find target \"") + ObjectTriple.getTriple() +
 | 
						|
         "\", failed with error: " + ErrorString)
 | 
						|
            .str());
 | 
						|
 | 
						|
  RegisterInfo.reset(ObjectTarget->createMCRegInfo(TripleName));
 | 
						|
  if (!RegisterInfo)
 | 
						|
    return make_error<UnsupportedDisassembly>(
 | 
						|
        "Failed to initialise RegisterInfo.");
 | 
						|
 | 
						|
  MCTargetOptions MCOptions;
 | 
						|
  AsmInfo.reset(
 | 
						|
      ObjectTarget->createMCAsmInfo(*RegisterInfo, TripleName, MCOptions));
 | 
						|
  if (!AsmInfo)
 | 
						|
    return make_error<UnsupportedDisassembly>("Failed to initialise AsmInfo.");
 | 
						|
 | 
						|
  SubtargetInfo.reset(ObjectTarget->createMCSubtargetInfo(
 | 
						|
      TripleName, MCPU, Features.getString()));
 | 
						|
  if (!SubtargetInfo)
 | 
						|
    return make_error<UnsupportedDisassembly>(
 | 
						|
        "Failed to initialise SubtargetInfo.");
 | 
						|
 | 
						|
  MII.reset(ObjectTarget->createMCInstrInfo());
 | 
						|
  if (!MII)
 | 
						|
    return make_error<UnsupportedDisassembly>("Failed to initialise MII.");
 | 
						|
 | 
						|
  Context.reset(new MCContext(AsmInfo.get(), RegisterInfo.get(), &MOFI));
 | 
						|
 | 
						|
  Disassembler.reset(
 | 
						|
      ObjectTarget->createMCDisassembler(*SubtargetInfo, *Context));
 | 
						|
 | 
						|
  if (!Disassembler)
 | 
						|
    return make_error<UnsupportedDisassembly>(
 | 
						|
        "No disassembler available for target");
 | 
						|
 | 
						|
  MIA.reset(ObjectTarget->createMCInstrAnalysis(MII.get()));
 | 
						|
 | 
						|
  Printer.reset(ObjectTarget->createMCInstPrinter(
 | 
						|
      ObjectTriple, AsmInfo->getAssemblerDialect(), *AsmInfo, *MII,
 | 
						|
      *RegisterInfo));
 | 
						|
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
Error FileAnalysis::parseCodeSections() {
 | 
						|
  if (!IgnoreDWARFFlag) {
 | 
						|
    std::unique_ptr<DWARFContext> DWARF = DWARFContext::create(*Object);
 | 
						|
    if (!DWARF)
 | 
						|
      return make_error<StringError>("Could not create DWARF information.",
 | 
						|
                                     inconvertibleErrorCode());
 | 
						|
 | 
						|
    bool LineInfoValid = false;
 | 
						|
 | 
						|
    for (auto &Unit : DWARF->compile_units()) {
 | 
						|
      const auto &LineTable = DWARF->getLineTableForUnit(Unit.get());
 | 
						|
      if (LineTable && !LineTable->Rows.empty()) {
 | 
						|
        LineInfoValid = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!LineInfoValid)
 | 
						|
      return make_error<StringError>(
 | 
						|
          "DWARF line information missing. Did you compile with '-g'?",
 | 
						|
          inconvertibleErrorCode());
 | 
						|
  }
 | 
						|
 | 
						|
  for (const object::SectionRef &Section : Object->sections()) {
 | 
						|
    // Ensure only executable sections get analysed.
 | 
						|
    if (!(object::ELFSectionRef(Section).getFlags() & ELF::SHF_EXECINSTR))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Avoid checking the PLT since it produces spurious failures on AArch64
 | 
						|
    // when ignoring DWARF data.
 | 
						|
    Expected<StringRef> NameOrErr = Section.getName();
 | 
						|
    if (NameOrErr && *NameOrErr == ".plt")
 | 
						|
      continue;
 | 
						|
    consumeError(NameOrErr.takeError());
 | 
						|
 | 
						|
    Expected<StringRef> Contents = Section.getContents();
 | 
						|
    if (!Contents)
 | 
						|
      return Contents.takeError();
 | 
						|
    ArrayRef<uint8_t> SectionBytes = arrayRefFromStringRef(*Contents);
 | 
						|
 | 
						|
    parseSectionContents(SectionBytes,
 | 
						|
                         {Section.getAddress(), Section.getIndex()});
 | 
						|
  }
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
void FileAnalysis::parseSectionContents(ArrayRef<uint8_t> SectionBytes,
 | 
						|
                                        object::SectionedAddress Address) {
 | 
						|
  assert(Symbolizer && "Symbolizer is uninitialised.");
 | 
						|
  MCInst Instruction;
 | 
						|
  Instr InstrMeta;
 | 
						|
  uint64_t InstructionSize;
 | 
						|
 | 
						|
  for (uint64_t Byte = 0; Byte < SectionBytes.size();) {
 | 
						|
    bool ValidInstruction =
 | 
						|
        Disassembler->getInstruction(Instruction, InstructionSize,
 | 
						|
                                     SectionBytes.drop_front(Byte), 0,
 | 
						|
                                     outs()) == MCDisassembler::Success;
 | 
						|
 | 
						|
    Byte += InstructionSize;
 | 
						|
 | 
						|
    uint64_t VMAddress = Address.Address + Byte - InstructionSize;
 | 
						|
    InstrMeta.Instruction = Instruction;
 | 
						|
    InstrMeta.VMAddress = VMAddress;
 | 
						|
    InstrMeta.InstructionSize = InstructionSize;
 | 
						|
    InstrMeta.Valid = ValidInstruction;
 | 
						|
 | 
						|
    addInstruction(InstrMeta);
 | 
						|
 | 
						|
    if (!ValidInstruction)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip additional parsing for instructions that do not affect the control
 | 
						|
    // flow.
 | 
						|
    const auto &InstrDesc = MII->get(Instruction.getOpcode());
 | 
						|
    if (!InstrDesc.mayAffectControlFlow(Instruction, *RegisterInfo))
 | 
						|
      continue;
 | 
						|
 | 
						|
    uint64_t Target;
 | 
						|
    if (MIA->evaluateBranch(Instruction, VMAddress, InstructionSize, Target)) {
 | 
						|
      // If the target can be evaluated, it's not indirect.
 | 
						|
      StaticBranchTargetings[Target].push_back(VMAddress);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!usesRegisterOperand(InstrMeta))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (InstrDesc.isReturn())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if this instruction exists in the range of the DWARF metadata.
 | 
						|
    if (!IgnoreDWARFFlag) {
 | 
						|
      auto LineInfo =
 | 
						|
          Symbolizer->symbolizeCode(std::string(Object->getFileName()),
 | 
						|
                                    {VMAddress, Address.SectionIndex});
 | 
						|
      if (!LineInfo) {
 | 
						|
        handleAllErrors(LineInfo.takeError(), [](const ErrorInfoBase &E) {
 | 
						|
          errs() << "Symbolizer failed to get line: " << E.message() << "\n";
 | 
						|
        });
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (LineInfo->FileName == DILineInfo::BadString)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    IndirectInstructions.insert({VMAddress, Address.SectionIndex});
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void FileAnalysis::addInstruction(const Instr &Instruction) {
 | 
						|
  const auto &KV =
 | 
						|
      Instructions.insert(std::make_pair(Instruction.VMAddress, Instruction));
 | 
						|
  if (!KV.second) {
 | 
						|
    errs() << "Failed to add instruction at address "
 | 
						|
           << format_hex(Instruction.VMAddress, 2)
 | 
						|
           << ": Instruction at this address already exists.\n";
 | 
						|
    exit(EXIT_FAILURE);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Error FileAnalysis::parseSymbolTable() {
 | 
						|
  // Functions that will trap on CFI violations.
 | 
						|
  SmallSet<StringRef, 4> TrapOnFailFunctions;
 | 
						|
  TrapOnFailFunctions.insert("__cfi_slowpath");
 | 
						|
  TrapOnFailFunctions.insert("__cfi_slowpath_diag");
 | 
						|
  TrapOnFailFunctions.insert("abort");
 | 
						|
 | 
						|
  // Look through the list of symbols for functions that will trap on CFI
 | 
						|
  // violations.
 | 
						|
  for (auto &Sym : Object->symbols()) {
 | 
						|
    auto SymNameOrErr = Sym.getName();
 | 
						|
    if (!SymNameOrErr)
 | 
						|
      consumeError(SymNameOrErr.takeError());
 | 
						|
    else if (TrapOnFailFunctions.count(*SymNameOrErr) > 0) {
 | 
						|
      auto AddrOrErr = Sym.getAddress();
 | 
						|
      if (!AddrOrErr)
 | 
						|
        consumeError(AddrOrErr.takeError());
 | 
						|
      else
 | 
						|
        TrapOnFailFunctionAddresses.insert(*AddrOrErr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (auto *ElfObject = dyn_cast<object::ELFObjectFileBase>(Object)) {
 | 
						|
    for (const auto &Addr : ElfObject->getPltAddresses()) {
 | 
						|
      object::SymbolRef Sym(Addr.first, Object);
 | 
						|
      auto SymNameOrErr = Sym.getName();
 | 
						|
      if (!SymNameOrErr)
 | 
						|
        consumeError(SymNameOrErr.takeError());
 | 
						|
      else if (TrapOnFailFunctions.count(*SymNameOrErr) > 0)
 | 
						|
        TrapOnFailFunctionAddresses.insert(Addr.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
UnsupportedDisassembly::UnsupportedDisassembly(StringRef Text)
 | 
						|
    : Text(std::string(Text)) {}
 | 
						|
 | 
						|
char UnsupportedDisassembly::ID;
 | 
						|
void UnsupportedDisassembly::log(raw_ostream &OS) const {
 | 
						|
  OS << "Could not initialise disassembler: " << Text;
 | 
						|
}
 | 
						|
 | 
						|
std::error_code UnsupportedDisassembly::convertToErrorCode() const {
 | 
						|
  return std::error_code();
 | 
						|
}
 | 
						|
 | 
						|
} // namespace cfi_verify
 | 
						|
} // namespace llvm
 |