forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2256 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2256 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LazyCallGraphTest.cpp - Unit tests for the lazy CG analysis --------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LazyCallGraph.h"
 | |
| #include "llvm/AsmParser/Parser.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/SourceMgr.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include <memory>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| std::unique_ptr<Module> parseAssembly(LLVMContext &Context,
 | |
|                                       const char *Assembly) {
 | |
|   SMDiagnostic Error;
 | |
|   std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
 | |
| 
 | |
|   std::string ErrMsg;
 | |
|   raw_string_ostream OS(ErrMsg);
 | |
|   Error.print("", OS);
 | |
| 
 | |
|   // A failure here means that the test itself is buggy.
 | |
|   if (!M)
 | |
|     report_fatal_error(OS.str().c_str());
 | |
| 
 | |
|   return M;
 | |
| }
 | |
| 
 | |
| /*
 | |
|    IR forming a call graph with a diamond of triangle-shaped SCCs:
 | |
| 
 | |
|            d1
 | |
|           /  \
 | |
|          d3--d2
 | |
|         /     \
 | |
|        b1     c1
 | |
|      /  \    /  \
 | |
|     b3--b2  c3--c2
 | |
|          \  /
 | |
|           a1
 | |
|          /  \
 | |
|         a3--a2
 | |
| 
 | |
|    All call edges go up between SCCs, and clockwise around the SCC.
 | |
|  */
 | |
| static const char DiamondOfTriangles[] =
 | |
|      "define void @a1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @a2()\n"
 | |
|      "  call void @b2()\n"
 | |
|      "  call void @c3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @a2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @a3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @a3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @a1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @b2()\n"
 | |
|      "  call void @d3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @b3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @b1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @c2()\n"
 | |
|      "  call void @d2()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @c3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @c1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @d2()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @d3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @d1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n";
 | |
| 
 | |
| /*
 | |
|    IR forming a reference graph with a diamond of triangle-shaped RefSCCs
 | |
| 
 | |
|            d1
 | |
|           /  \
 | |
|          d3--d2
 | |
|         /     \
 | |
|        b1     c1
 | |
|      /  \    /  \
 | |
|     b3--b2  c3--c2
 | |
|          \  /
 | |
|           a1
 | |
|          /  \
 | |
|         a3--a2
 | |
| 
 | |
|    All call edges go up between RefSCCs, and clockwise around the RefSCC.
 | |
|  */
 | |
| static const char DiamondOfTrianglesRefGraph[] =
 | |
|      "define void @a1() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @a2, void ()** %a\n"
 | |
|      "  store void ()* @b2, void ()** %a\n"
 | |
|      "  store void ()* @c3, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @a2() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @a3, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @a3() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @a1, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b1() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @b2, void ()** %a\n"
 | |
|      "  store void ()* @d3, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b2() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @b3, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b3() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @b1, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c1() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @c2, void ()** %a\n"
 | |
|      "  store void ()* @d2, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c2() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @c3, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c3() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @c1, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d1() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @d2, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d2() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @d3, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d3() {\n"
 | |
|      "entry:\n"
 | |
|      "  %a = alloca void ()*\n"
 | |
|      "  store void ()* @d1, void ()** %a\n"
 | |
|      "  ret void\n"
 | |
|      "}\n";
 | |
| 
 | |
| static LazyCallGraph buildCG(Module &M) {
 | |
|   TargetLibraryInfoImpl TLII(Triple(M.getTargetTriple()));
 | |
|   TargetLibraryInfo TLI(TLII);
 | |
|   auto GetTLI = [&TLI](Function &F) -> TargetLibraryInfo & { return TLI; };
 | |
| 
 | |
|   LazyCallGraph CG(M, GetTLI);
 | |
|   return CG;
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, BasicGraphFormation) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // The order of the entry nodes should be stable w.r.t. the source order of
 | |
|   // the IR, and everything in our module is an entry node, so just directly
 | |
|   // build variables for each node.
 | |
|   auto I = CG.begin();
 | |
|   LazyCallGraph::Node &A1 = (I++)->getNode();
 | |
|   EXPECT_EQ("a1", A1.getFunction().getName());
 | |
|   LazyCallGraph::Node &A2 = (I++)->getNode();
 | |
|   EXPECT_EQ("a2", A2.getFunction().getName());
 | |
|   LazyCallGraph::Node &A3 = (I++)->getNode();
 | |
|   EXPECT_EQ("a3", A3.getFunction().getName());
 | |
|   LazyCallGraph::Node &B1 = (I++)->getNode();
 | |
|   EXPECT_EQ("b1", B1.getFunction().getName());
 | |
|   LazyCallGraph::Node &B2 = (I++)->getNode();
 | |
|   EXPECT_EQ("b2", B2.getFunction().getName());
 | |
|   LazyCallGraph::Node &B3 = (I++)->getNode();
 | |
|   EXPECT_EQ("b3", B3.getFunction().getName());
 | |
|   LazyCallGraph::Node &C1 = (I++)->getNode();
 | |
|   EXPECT_EQ("c1", C1.getFunction().getName());
 | |
|   LazyCallGraph::Node &C2 = (I++)->getNode();
 | |
|   EXPECT_EQ("c2", C2.getFunction().getName());
 | |
|   LazyCallGraph::Node &C3 = (I++)->getNode();
 | |
|   EXPECT_EQ("c3", C3.getFunction().getName());
 | |
|   LazyCallGraph::Node &D1 = (I++)->getNode();
 | |
|   EXPECT_EQ("d1", D1.getFunction().getName());
 | |
|   LazyCallGraph::Node &D2 = (I++)->getNode();
 | |
|   EXPECT_EQ("d2", D2.getFunction().getName());
 | |
|   LazyCallGraph::Node &D3 = (I++)->getNode();
 | |
|   EXPECT_EQ("d3", D3.getFunction().getName());
 | |
|   EXPECT_EQ(CG.end(), I);
 | |
| 
 | |
|   // Build vectors and sort them for the rest of the assertions to make them
 | |
|   // independent of order.
 | |
|   std::vector<std::string> Nodes;
 | |
| 
 | |
|   for (LazyCallGraph::Edge &E : A1.populate())
 | |
|     Nodes.push_back(std::string(E.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ("a2", Nodes[0]);
 | |
|   EXPECT_EQ("b2", Nodes[1]);
 | |
|   EXPECT_EQ("c3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   A2.populate();
 | |
|   EXPECT_EQ(A2->end(), std::next(A2->begin()));
 | |
|   EXPECT_EQ("a3", A2->begin()->getFunction().getName());
 | |
|   A3.populate();
 | |
|   EXPECT_EQ(A3->end(), std::next(A3->begin()));
 | |
|   EXPECT_EQ("a1", A3->begin()->getFunction().getName());
 | |
| 
 | |
|   for (LazyCallGraph::Edge &E : B1.populate())
 | |
|     Nodes.push_back(std::string(E.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ("b2", Nodes[0]);
 | |
|   EXPECT_EQ("d3", Nodes[1]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   B2.populate();
 | |
|   EXPECT_EQ(B2->end(), std::next(B2->begin()));
 | |
|   EXPECT_EQ("b3", B2->begin()->getFunction().getName());
 | |
|   B3.populate();
 | |
|   EXPECT_EQ(B3->end(), std::next(B3->begin()));
 | |
|   EXPECT_EQ("b1", B3->begin()->getFunction().getName());
 | |
| 
 | |
|   for (LazyCallGraph::Edge &E : C1.populate())
 | |
|     Nodes.push_back(std::string(E.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ("c2", Nodes[0]);
 | |
|   EXPECT_EQ("d2", Nodes[1]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   C2.populate();
 | |
|   EXPECT_EQ(C2->end(), std::next(C2->begin()));
 | |
|   EXPECT_EQ("c3", C2->begin()->getFunction().getName());
 | |
|   C3.populate();
 | |
|   EXPECT_EQ(C3->end(), std::next(C3->begin()));
 | |
|   EXPECT_EQ("c1", C3->begin()->getFunction().getName());
 | |
| 
 | |
|   D1.populate();
 | |
|   EXPECT_EQ(D1->end(), std::next(D1->begin()));
 | |
|   EXPECT_EQ("d2", D1->begin()->getFunction().getName());
 | |
|   D2.populate();
 | |
|   EXPECT_EQ(D2->end(), std::next(D2->begin()));
 | |
|   EXPECT_EQ("d3", D2->begin()->getFunction().getName());
 | |
|   D3.populate();
 | |
|   EXPECT_EQ(D3->end(), std::next(D3->begin()));
 | |
|   EXPECT_EQ("d1", D3->begin()->getFunction().getName());
 | |
| 
 | |
|   // Now lets look at the RefSCCs and SCCs.
 | |
|   CG.buildRefSCCs();
 | |
|   auto J = CG.postorder_ref_scc_begin();
 | |
| 
 | |
|   LazyCallGraph::RefSCC &D = *J++;
 | |
|   ASSERT_EQ(1, D.size());
 | |
|   for (LazyCallGraph::Node &N : *D.begin())
 | |
|     Nodes.push_back(std::string(N.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("d1", Nodes[0]);
 | |
|   EXPECT_EQ("d2", Nodes[1]);
 | |
|   EXPECT_EQ("d3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_FALSE(D.isParentOf(D));
 | |
|   EXPECT_FALSE(D.isChildOf(D));
 | |
|   EXPECT_FALSE(D.isAncestorOf(D));
 | |
|   EXPECT_FALSE(D.isDescendantOf(D));
 | |
|   EXPECT_EQ(&D, &*CG.postorder_ref_scc_begin());
 | |
| 
 | |
|   LazyCallGraph::RefSCC &C = *J++;
 | |
|   ASSERT_EQ(1, C.size());
 | |
|   for (LazyCallGraph::Node &N : *C.begin())
 | |
|     Nodes.push_back(std::string(N.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("c1", Nodes[0]);
 | |
|   EXPECT_EQ("c2", Nodes[1]);
 | |
|   EXPECT_EQ("c3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_TRUE(C.isParentOf(D));
 | |
|   EXPECT_FALSE(C.isChildOf(D));
 | |
|   EXPECT_TRUE(C.isAncestorOf(D));
 | |
|   EXPECT_FALSE(C.isDescendantOf(D));
 | |
|   EXPECT_EQ(&C, &*std::next(CG.postorder_ref_scc_begin()));
 | |
| 
 | |
|   LazyCallGraph::RefSCC &B = *J++;
 | |
|   ASSERT_EQ(1, B.size());
 | |
|   for (LazyCallGraph::Node &N : *B.begin())
 | |
|     Nodes.push_back(std::string(N.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("b1", Nodes[0]);
 | |
|   EXPECT_EQ("b2", Nodes[1]);
 | |
|   EXPECT_EQ("b3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_TRUE(B.isParentOf(D));
 | |
|   EXPECT_FALSE(B.isChildOf(D));
 | |
|   EXPECT_TRUE(B.isAncestorOf(D));
 | |
|   EXPECT_FALSE(B.isDescendantOf(D));
 | |
|   EXPECT_FALSE(B.isAncestorOf(C));
 | |
|   EXPECT_FALSE(C.isAncestorOf(B));
 | |
|   EXPECT_EQ(&B, &*std::next(CG.postorder_ref_scc_begin(), 2));
 | |
| 
 | |
|   LazyCallGraph::RefSCC &A = *J++;
 | |
|   ASSERT_EQ(1, A.size());
 | |
|   for (LazyCallGraph::Node &N : *A.begin())
 | |
|     Nodes.push_back(std::string(N.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("a1", Nodes[0]);
 | |
|   EXPECT_EQ("a2", Nodes[1]);
 | |
|   EXPECT_EQ("a3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_TRUE(A.isParentOf(B));
 | |
|   EXPECT_TRUE(A.isParentOf(C));
 | |
|   EXPECT_FALSE(A.isParentOf(D));
 | |
|   EXPECT_TRUE(A.isAncestorOf(B));
 | |
|   EXPECT_TRUE(A.isAncestorOf(C));
 | |
|   EXPECT_TRUE(A.isAncestorOf(D));
 | |
|   EXPECT_EQ(&A, &*std::next(CG.postorder_ref_scc_begin(), 3));
 | |
| 
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), J);
 | |
|   EXPECT_EQ(J, std::next(CG.postorder_ref_scc_begin(), 4));
 | |
| }
 | |
| 
 | |
| static Function &lookupFunction(Module &M, StringRef Name) {
 | |
|   for (Function &F : M)
 | |
|     if (F.getName() == Name)
 | |
|       return F;
 | |
|   report_fatal_error("Couldn't find function!");
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, BasicGraphMutation) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @b() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @c() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   LazyCallGraph::Node &A = CG.get(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = CG.get(lookupFunction(*M, "b"));
 | |
|   A.populate();
 | |
|   EXPECT_EQ(2, std::distance(A->begin(), A->end()));
 | |
|   B.populate();
 | |
|   EXPECT_EQ(0, std::distance(B->begin(), B->end()));
 | |
| 
 | |
|   LazyCallGraph::Node &C = CG.get(lookupFunction(*M, "c"));
 | |
|   C.populate();
 | |
|   CG.insertEdge(B, C, LazyCallGraph::Edge::Call);
 | |
|   EXPECT_EQ(1, std::distance(B->begin(), B->end()));
 | |
|   EXPECT_EQ(0, std::distance(C->begin(), C->end()));
 | |
| 
 | |
|   CG.insertEdge(C, B, LazyCallGraph::Edge::Call);
 | |
|   EXPECT_EQ(1, std::distance(C->begin(), C->end()));
 | |
|   EXPECT_EQ(&B, &C->begin()->getNode());
 | |
| 
 | |
|   CG.insertEdge(C, C, LazyCallGraph::Edge::Call);
 | |
|   EXPECT_EQ(2, std::distance(C->begin(), C->end()));
 | |
|   EXPECT_EQ(&B, &C->begin()->getNode());
 | |
|   EXPECT_EQ(&C, &std::next(C->begin())->getNode());
 | |
| 
 | |
|   CG.removeEdge(C, B);
 | |
|   EXPECT_EQ(1, std::distance(C->begin(), C->end()));
 | |
|   EXPECT_EQ(&C, &C->begin()->getNode());
 | |
| 
 | |
|   CG.removeEdge(C, C);
 | |
|   EXPECT_EQ(0, std::distance(C->begin(), C->end()));
 | |
| 
 | |
|   CG.removeEdge(B, C);
 | |
|   EXPECT_EQ(0, std::distance(B->begin(), B->end()));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, BasicGraphMutationOutlining) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @b() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @c() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   LazyCallGraph::Node &A = CG.get(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = CG.get(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = CG.get(lookupFunction(*M, "c"));
 | |
|   A.populate();
 | |
|   B.populate();
 | |
|   C.populate();
 | |
|   CG.buildRefSCCs();
 | |
| 
 | |
|   // Add a new function that is called from @b and verify it is in the same SCC.
 | |
|   Function &BFn = B.getFunction();
 | |
|   Function *NewFn =
 | |
|       Function::Create(BFn.getFunctionType(), BFn.getLinkage(), "NewFn", *M);
 | |
|   auto IP = BFn.getEntryBlock().getFirstInsertionPt();
 | |
|   CallInst::Create(NewFn, "", &*IP);
 | |
|   CG.addNewFunctionIntoSCC(*NewFn, *CG.lookupSCC(B));
 | |
| 
 | |
|   EXPECT_EQ(CG.lookupSCC(A)->size(), 1);
 | |
|   EXPECT_EQ(CG.lookupSCC(B)->size(), 2);
 | |
|   EXPECT_EQ(CG.lookupSCC(C)->size(), 1);
 | |
|   EXPECT_EQ(CG.lookupSCC(*CG.lookup(*NewFn))->size(), 2);
 | |
|   EXPECT_EQ(CG.lookupSCC(*CG.lookup(*NewFn))->size(), CG.lookupSCC(B)->size());
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InnerSCCFormation) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Now mutate the graph to connect every node into a single RefSCC to ensure
 | |
|   // that our inner SCC formation handles the rest.
 | |
|   LazyCallGraph::Node &D1 = CG.get(lookupFunction(*M, "d1"));
 | |
|   LazyCallGraph::Node &A1 = CG.get(lookupFunction(*M, "a1"));
 | |
|   A1.populate();
 | |
|   D1.populate();
 | |
|   CG.insertEdge(D1, A1, LazyCallGraph::Edge::Ref);
 | |
| 
 | |
|   // Build vectors and sort them for the rest of the assertions to make them
 | |
|   // independent of order.
 | |
|   std::vector<std::string> Nodes;
 | |
| 
 | |
|   // We should build a single RefSCC for the entire graph.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   // Now walk the four SCCs which should be in post-order.
 | |
|   auto J = RC.begin();
 | |
|   LazyCallGraph::SCC &D = *J++;
 | |
|   for (LazyCallGraph::Node &N : D)
 | |
|     Nodes.push_back(std::string(N.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("d1", Nodes[0]);
 | |
|   EXPECT_EQ("d2", Nodes[1]);
 | |
|   EXPECT_EQ("d3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   LazyCallGraph::SCC &B = *J++;
 | |
|   for (LazyCallGraph::Node &N : B)
 | |
|     Nodes.push_back(std::string(N.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("b1", Nodes[0]);
 | |
|   EXPECT_EQ("b2", Nodes[1]);
 | |
|   EXPECT_EQ("b3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   LazyCallGraph::SCC &C = *J++;
 | |
|   for (LazyCallGraph::Node &N : C)
 | |
|     Nodes.push_back(std::string(N.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("c1", Nodes[0]);
 | |
|   EXPECT_EQ("c2", Nodes[1]);
 | |
|   EXPECT_EQ("c3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   LazyCallGraph::SCC &A = *J++;
 | |
|   for (LazyCallGraph::Node &N : A)
 | |
|     Nodes.push_back(std::string(N.getFunction().getName()));
 | |
|   llvm::sort(Nodes);
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("a1", Nodes[0]);
 | |
|   EXPECT_EQ("a2", Nodes[1]);
 | |
|   EXPECT_EQ("a3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   EXPECT_EQ(RC.end(), J);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, MultiArmSCC) {
 | |
|   LLVMContext Context;
 | |
|   // Two interlocking cycles. The really useful thing about this SCC is that it
 | |
|   // will require Tarjan's DFS to backtrack and finish processing all of the
 | |
|   // children of each node in the SCC. Since this involves call edges, both
 | |
|   // Tarjan implementations will have to successfully navigate the structure.
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @f1() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f2()\n"
 | |
|                                                      "  call void @f4()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @f2() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f3()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @f3() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f1()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @f4() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f5()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @f5() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f1()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &N1 = *CG.lookup(lookupFunction(*M, "f1"));
 | |
|   LazyCallGraph::Node &N2 = *CG.lookup(lookupFunction(*M, "f2"));
 | |
|   LazyCallGraph::Node &N3 = *CG.lookup(lookupFunction(*M, "f3"));
 | |
|   LazyCallGraph::Node &N4 = *CG.lookup(lookupFunction(*M, "f4"));
 | |
|   LazyCallGraph::Node &N5 = *CG.lookup(lookupFunction(*M, "f4"));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(N1));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(N2));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(N3));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(N4));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(N5));
 | |
| 
 | |
|   ASSERT_EQ(1, RC.size());
 | |
| 
 | |
|   LazyCallGraph::SCC &C = *RC.begin();
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(N1));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(N2));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(N3));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(N4));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(N5));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, OutgoingEdgeMutation) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @b() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @d()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @c() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @d()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @d() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
 | |
|     dbgs() << "Formed RefSCC: " << RC << "\n";
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
 | |
|   LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A);
 | |
|   LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B);
 | |
|   LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C);
 | |
|   LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D);
 | |
|   EXPECT_TRUE(ARC.isParentOf(BRC));
 | |
|   EXPECT_TRUE(AC.isParentOf(BC));
 | |
|   EXPECT_TRUE(ARC.isParentOf(CRC));
 | |
|   EXPECT_TRUE(AC.isParentOf(CC));
 | |
|   EXPECT_FALSE(ARC.isParentOf(DRC));
 | |
|   EXPECT_FALSE(AC.isParentOf(DC));
 | |
|   EXPECT_TRUE(ARC.isAncestorOf(DRC));
 | |
|   EXPECT_TRUE(AC.isAncestorOf(DC));
 | |
|   EXPECT_FALSE(DRC.isChildOf(ARC));
 | |
|   EXPECT_FALSE(DC.isChildOf(AC));
 | |
|   EXPECT_TRUE(DRC.isDescendantOf(ARC));
 | |
|   EXPECT_TRUE(DC.isDescendantOf(AC));
 | |
|   EXPECT_TRUE(DRC.isChildOf(BRC));
 | |
|   EXPECT_TRUE(DC.isChildOf(BC));
 | |
|   EXPECT_TRUE(DRC.isChildOf(CRC));
 | |
|   EXPECT_TRUE(DC.isChildOf(CC));
 | |
| 
 | |
|   EXPECT_EQ(2, std::distance(A->begin(), A->end()));
 | |
|   ARC.insertOutgoingEdge(A, D, LazyCallGraph::Edge::Call);
 | |
|   EXPECT_EQ(3, std::distance(A->begin(), A->end()));
 | |
|   const LazyCallGraph::Edge &NewE = (*A)[D];
 | |
|   EXPECT_TRUE(NewE);
 | |
|   EXPECT_TRUE(NewE.isCall());
 | |
|   EXPECT_EQ(&D, &NewE.getNode());
 | |
| 
 | |
|   // Only the parent and child tests sholud have changed. The rest of the graph
 | |
|   // remains the same.
 | |
|   EXPECT_TRUE(ARC.isParentOf(DRC));
 | |
|   EXPECT_TRUE(AC.isParentOf(DC));
 | |
|   EXPECT_TRUE(ARC.isAncestorOf(DRC));
 | |
|   EXPECT_TRUE(AC.isAncestorOf(DC));
 | |
|   EXPECT_TRUE(DRC.isChildOf(ARC));
 | |
|   EXPECT_TRUE(DC.isChildOf(AC));
 | |
|   EXPECT_TRUE(DRC.isDescendantOf(ARC));
 | |
|   EXPECT_TRUE(DC.isDescendantOf(AC));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(&DC, CG.lookupSCC(D));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
 | |
| 
 | |
|   ARC.switchOutgoingEdgeToRef(A, D);
 | |
|   EXPECT_FALSE(NewE.isCall());
 | |
| 
 | |
|   // Verify the reference graph remains the same but the SCC graph is updated.
 | |
|   EXPECT_TRUE(ARC.isParentOf(DRC));
 | |
|   EXPECT_FALSE(AC.isParentOf(DC));
 | |
|   EXPECT_TRUE(ARC.isAncestorOf(DRC));
 | |
|   EXPECT_TRUE(AC.isAncestorOf(DC));
 | |
|   EXPECT_TRUE(DRC.isChildOf(ARC));
 | |
|   EXPECT_FALSE(DC.isChildOf(AC));
 | |
|   EXPECT_TRUE(DRC.isDescendantOf(ARC));
 | |
|   EXPECT_TRUE(DC.isDescendantOf(AC));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(&DC, CG.lookupSCC(D));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
 | |
| 
 | |
|   ARC.switchOutgoingEdgeToCall(A, D);
 | |
|   EXPECT_TRUE(NewE.isCall());
 | |
| 
 | |
|   // Verify the reference graph remains the same but the SCC graph is updated.
 | |
|   EXPECT_TRUE(ARC.isParentOf(DRC));
 | |
|   EXPECT_TRUE(AC.isParentOf(DC));
 | |
|   EXPECT_TRUE(ARC.isAncestorOf(DRC));
 | |
|   EXPECT_TRUE(AC.isAncestorOf(DC));
 | |
|   EXPECT_TRUE(DRC.isChildOf(ARC));
 | |
|   EXPECT_TRUE(DC.isChildOf(AC));
 | |
|   EXPECT_TRUE(DRC.isDescendantOf(ARC));
 | |
|   EXPECT_TRUE(DC.isDescendantOf(AC));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(&DC, CG.lookupSCC(D));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
 | |
| 
 | |
|   ARC.removeOutgoingEdge(A, D);
 | |
|   EXPECT_EQ(2, std::distance(A->begin(), A->end()));
 | |
| 
 | |
|   // Now the parent and child tests fail again but the rest remains the same.
 | |
|   EXPECT_FALSE(ARC.isParentOf(DRC));
 | |
|   EXPECT_FALSE(AC.isParentOf(DC));
 | |
|   EXPECT_TRUE(ARC.isAncestorOf(DRC));
 | |
|   EXPECT_TRUE(AC.isAncestorOf(DC));
 | |
|   EXPECT_FALSE(DRC.isChildOf(ARC));
 | |
|   EXPECT_FALSE(DC.isChildOf(AC));
 | |
|   EXPECT_TRUE(DRC.isDescendantOf(ARC));
 | |
|   EXPECT_TRUE(DC.isDescendantOf(AC));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(&DC, CG.lookupSCC(D));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, IncomingEdgeInsertion) {
 | |
|   LLVMContext Context;
 | |
|   // We want to ensure we can add edges even across complex diamond graphs, so
 | |
|   // we use the diamond of triangles graph defined above. The ascii diagram is
 | |
|   // repeated here for easy reference.
 | |
|   //
 | |
|   //         d1       |
 | |
|   //        /  \      |
 | |
|   //       d3--d2     |
 | |
|   //      /     \     |
 | |
|   //     b1     c1    |
 | |
|   //   /  \    /  \   |
 | |
|   //  b3--b2  c3--c2  |
 | |
|   //       \  /       |
 | |
|   //        a1        |
 | |
|   //       /  \       |
 | |
|   //      a3--a2      |
 | |
|   //
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
 | |
|     dbgs() << "Formed RefSCC: " << RC << "\n";
 | |
| 
 | |
|   LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1"));
 | |
|   LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2"));
 | |
|   LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3"));
 | |
|   LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
 | |
|   LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
 | |
|   LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
 | |
|   LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
 | |
|   LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
 | |
|   LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
 | |
|   LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
 | |
|   LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
 | |
|   LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
 | |
|   LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1);
 | |
|   LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1);
 | |
|   LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1);
 | |
|   LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1);
 | |
|   ASSERT_EQ(&ARC, CG.lookupRefSCC(A2));
 | |
|   ASSERT_EQ(&ARC, CG.lookupRefSCC(A3));
 | |
|   ASSERT_EQ(&BRC, CG.lookupRefSCC(B2));
 | |
|   ASSERT_EQ(&BRC, CG.lookupRefSCC(B3));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
 | |
|   ASSERT_EQ(1, std::distance(D2->begin(), D2->end()));
 | |
| 
 | |
|   // Add an edge to make the graph:
 | |
|   //
 | |
|   //         d1         |
 | |
|   //        /  \        |
 | |
|   //       d3--d2---.   |
 | |
|   //      /     \    |  |
 | |
|   //     b1     c1   |  |
 | |
|   //   /  \    /  \ /   |
 | |
|   //  b3--b2  c3--c2    |
 | |
|   //       \  /         |
 | |
|   //        a1          |
 | |
|   //       /  \         |
 | |
|   //      a3--a2        |
 | |
|   auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2);
 | |
|   // Make sure we connected the nodes.
 | |
|   for (LazyCallGraph::Edge E : *D2) {
 | |
|     if (&E.getNode() == &D3)
 | |
|       continue;
 | |
|     EXPECT_EQ(&C2, &E.getNode());
 | |
|   }
 | |
|   // And marked the D ref-SCC as no longer valid.
 | |
|   EXPECT_EQ(1u, MergedRCs.size());
 | |
|   EXPECT_EQ(&DRC, MergedRCs[0]);
 | |
| 
 | |
|   // Make sure we have the correct nodes in the SCC sets.
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A1));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A2));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A3));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B1));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B2));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B3));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D1));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D2));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D3));
 | |
| 
 | |
|   // And that ancestry tests have been updated.
 | |
|   EXPECT_TRUE(ARC.isParentOf(CRC));
 | |
|   EXPECT_TRUE(BRC.isParentOf(CRC));
 | |
| 
 | |
|   // And verify the post-order walk reflects the updated structure.
 | |
|   auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
 | |
|   ASSERT_NE(I, E);
 | |
|   EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I;
 | |
|   ASSERT_NE(++I, E);
 | |
|   EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I;
 | |
|   ASSERT_NE(++I, E);
 | |
|   EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I;
 | |
|   EXPECT_EQ(++I, E);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, IncomingEdgeInsertionRefGraph) {
 | |
|   LLVMContext Context;
 | |
|   // Another variation of the above test but with all the edges switched to
 | |
|   // references rather than calls.
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context, DiamondOfTrianglesRefGraph);
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
 | |
|     dbgs() << "Formed RefSCC: " << RC << "\n";
 | |
| 
 | |
|   LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1"));
 | |
|   LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2"));
 | |
|   LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3"));
 | |
|   LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
 | |
|   LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
 | |
|   LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
 | |
|   LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
 | |
|   LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
 | |
|   LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
 | |
|   LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
 | |
|   LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
 | |
|   LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
 | |
|   LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1);
 | |
|   LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1);
 | |
|   LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1);
 | |
|   LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1);
 | |
|   ASSERT_EQ(&ARC, CG.lookupRefSCC(A2));
 | |
|   ASSERT_EQ(&ARC, CG.lookupRefSCC(A3));
 | |
|   ASSERT_EQ(&BRC, CG.lookupRefSCC(B2));
 | |
|   ASSERT_EQ(&BRC, CG.lookupRefSCC(B3));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
 | |
|   ASSERT_EQ(1, std::distance(D2->begin(), D2->end()));
 | |
| 
 | |
|   // Add an edge to make the graph:
 | |
|   //
 | |
|   //         d1         |
 | |
|   //        /  \        |
 | |
|   //       d3--d2---.   |
 | |
|   //      /     \    |  |
 | |
|   //     b1     c1   |  |
 | |
|   //   /  \    /  \ /   |
 | |
|   //  b3--b2  c3--c2    |
 | |
|   //       \  /         |
 | |
|   //        a1          |
 | |
|   //       /  \         |
 | |
|   //      a3--a2        |
 | |
|   auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2);
 | |
|   // Make sure we connected the nodes.
 | |
|   for (LazyCallGraph::Edge E : *D2) {
 | |
|     if (&E.getNode() == &D3)
 | |
|       continue;
 | |
|     EXPECT_EQ(&C2, &E.getNode());
 | |
|   }
 | |
|   // And marked the D ref-SCC as no longer valid.
 | |
|   EXPECT_EQ(1u, MergedRCs.size());
 | |
|   EXPECT_EQ(&DRC, MergedRCs[0]);
 | |
| 
 | |
|   // Make sure we have the correct nodes in the SCC sets.
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A1));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A2));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A3));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B1));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B2));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B3));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D1));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D2));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D3));
 | |
| 
 | |
|   // And that ancestry tests have been updated.
 | |
|   EXPECT_TRUE(ARC.isParentOf(CRC));
 | |
|   EXPECT_TRUE(BRC.isParentOf(CRC));
 | |
| 
 | |
|   // And verify the post-order walk reflects the updated structure.
 | |
|   auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
 | |
|   ASSERT_NE(I, E);
 | |
|   EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I;
 | |
|   ASSERT_NE(++I, E);
 | |
|   EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I;
 | |
|   ASSERT_NE(++I, E);
 | |
|   EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I;
 | |
|   EXPECT_EQ(++I, E);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, IncomingEdgeInsertionLargeCallCycle) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @b() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @c() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @d()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @d() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
 | |
|     dbgs() << "Formed RefSCC: " << RC << "\n";
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
 | |
|   LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A);
 | |
|   LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B);
 | |
|   LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C);
 | |
|   LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D);
 | |
| 
 | |
|   // Connect the top to the bottom forming a large RefSCC made up mostly of calls.
 | |
|   auto MergedRCs = ARC.insertIncomingRefEdge(D, A);
 | |
|   // Make sure we connected the nodes.
 | |
|   EXPECT_NE(D->begin(), D->end());
 | |
|   EXPECT_EQ(&A, &D->begin()->getNode());
 | |
| 
 | |
|   // Check that we have the dead RCs, but ignore the order.
 | |
|   EXPECT_EQ(3u, MergedRCs.size());
 | |
|   EXPECT_NE(find(MergedRCs, &BRC), MergedRCs.end());
 | |
|   EXPECT_NE(find(MergedRCs, &CRC), MergedRCs.end());
 | |
|   EXPECT_NE(find(MergedRCs, &DRC), MergedRCs.end());
 | |
| 
 | |
|   // Make sure the nodes point to the right place now.
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(D));
 | |
| 
 | |
|   // Check that the SCCs are in postorder.
 | |
|   EXPECT_EQ(4, ARC.size());
 | |
|   EXPECT_EQ(&DC, &ARC[0]);
 | |
|   EXPECT_EQ(&CC, &ARC[1]);
 | |
|   EXPECT_EQ(&BC, &ARC[2]);
 | |
|   EXPECT_EQ(&AC, &ARC[3]);
 | |
| 
 | |
|   // And verify the post-order walk reflects the updated structure.
 | |
|   auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
 | |
|   ASSERT_NE(I, E);
 | |
|   EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I;
 | |
|   EXPECT_EQ(++I, E);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, IncomingEdgeInsertionLargeRefCycle) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context, "define void @a() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  %p = alloca void ()*\n"
 | |
|                              "  store void ()* @b, void ()** %p\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  %p = alloca void ()*\n"
 | |
|                              "  store void ()* @c, void ()** %p\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  %p = alloca void ()*\n"
 | |
|                              "  store void ()* @d, void ()** %p\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @d() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
 | |
|     dbgs() << "Formed RefSCC: " << RC << "\n";
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A);
 | |
|   LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B);
 | |
|   LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C);
 | |
|   LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D);
 | |
| 
 | |
|   // Connect the top to the bottom forming a large RefSCC made up just of
 | |
|   // references.
 | |
|   auto MergedRCs = ARC.insertIncomingRefEdge(D, A);
 | |
|   // Make sure we connected the nodes.
 | |
|   EXPECT_NE(D->begin(), D->end());
 | |
|   EXPECT_EQ(&A, &D->begin()->getNode());
 | |
| 
 | |
|   // Check that we have the dead RCs, but ignore the order.
 | |
|   EXPECT_EQ(3u, MergedRCs.size());
 | |
|   EXPECT_NE(find(MergedRCs, &BRC), MergedRCs.end());
 | |
|   EXPECT_NE(find(MergedRCs, &CRC), MergedRCs.end());
 | |
|   EXPECT_NE(find(MergedRCs, &DRC), MergedRCs.end());
 | |
| 
 | |
|   // Make sure the nodes point to the right place now.
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(D));
 | |
| 
 | |
|   // And verify the post-order walk reflects the updated structure.
 | |
|   auto I = CG.postorder_ref_scc_begin(), End = CG.postorder_ref_scc_end();
 | |
|   ASSERT_NE(I, End);
 | |
|   EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I;
 | |
|   EXPECT_EQ(++I, End);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InlineAndDeleteFunction) {
 | |
|   LLVMContext Context;
 | |
|   // We want to ensure we can delete nodes from relatively complex graphs and
 | |
|   // so use the diamond of triangles graph defined above.
 | |
|   //
 | |
|   // The ascii diagram is repeated here for easy reference.
 | |
|   //
 | |
|   //         d1       |
 | |
|   //        /  \      |
 | |
|   //       d3--d2     |
 | |
|   //      /     \     |
 | |
|   //     b1     c1    |
 | |
|   //   /  \    /  \   |
 | |
|   //  b3--b2  c3--c2  |
 | |
|   //       \  /       |
 | |
|   //        a1        |
 | |
|   //       /  \       |
 | |
|   //      a3--a2      |
 | |
|   //
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
 | |
|     dbgs() << "Formed RefSCC: " << RC << "\n";
 | |
| 
 | |
|   LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1"));
 | |
|   LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2"));
 | |
|   LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3"));
 | |
|   LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
 | |
|   LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
 | |
|   LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
 | |
|   LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
 | |
|   LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
 | |
|   LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
 | |
|   LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
 | |
|   LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
 | |
|   LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
 | |
|   LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1);
 | |
|   LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1);
 | |
|   LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1);
 | |
|   LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1);
 | |
|   ASSERT_EQ(&ARC, CG.lookupRefSCC(A2));
 | |
|   ASSERT_EQ(&ARC, CG.lookupRefSCC(A3));
 | |
|   ASSERT_EQ(&BRC, CG.lookupRefSCC(B2));
 | |
|   ASSERT_EQ(&BRC, CG.lookupRefSCC(B3));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
 | |
|   ASSERT_EQ(1, std::distance(D2->begin(), D2->end()));
 | |
| 
 | |
|   // Delete d2 from the graph, as if it had been inlined.
 | |
|   //
 | |
|   //         d1         |
 | |
|   //        / /         |
 | |
|   //       d3--.        |
 | |
|   //      /     \       |
 | |
|   //     b1     c1      |
 | |
|   //   /  \    /  \     |
 | |
|   //  b3--b2  c3--c2    |
 | |
|   //       \  /         |
 | |
|   //        a1          |
 | |
|   //       /  \         |
 | |
|   //      a3--a2        |
 | |
| 
 | |
|   Function &D2F = D2.getFunction();
 | |
|   CallInst *C1Call = nullptr, *D1Call = nullptr;
 | |
|   for (User *U : D2F.users()) {
 | |
|     CallInst *CI = dyn_cast<CallInst>(U);
 | |
|     ASSERT_TRUE(CI) << "Expected a call: " << *U;
 | |
|     if (CI->getParent()->getParent() == &C1.getFunction()) {
 | |
|       ASSERT_EQ(nullptr, C1Call) << "Found too many C1 calls: " << *CI;
 | |
|       C1Call = CI;
 | |
|     } else if (CI->getParent()->getParent() == &D1.getFunction()) {
 | |
|       ASSERT_EQ(nullptr, D1Call) << "Found too many D1 calls: " << *CI;
 | |
|       D1Call = CI;
 | |
|     } else {
 | |
|       FAIL() << "Found an unexpected call instruction: " << *CI;
 | |
|     }
 | |
|   }
 | |
|   ASSERT_NE(C1Call, nullptr);
 | |
|   ASSERT_NE(D1Call, nullptr);
 | |
|   ASSERT_EQ(&D2F, C1Call->getCalledFunction());
 | |
|   ASSERT_EQ(&D2F, D1Call->getCalledFunction());
 | |
|   C1Call->setCalledFunction(&D3.getFunction());
 | |
|   D1Call->setCalledFunction(&D3.getFunction());
 | |
|   ASSERT_EQ(0u, D2F.getNumUses());
 | |
| 
 | |
|   // Insert new edges first.
 | |
|   CRC.insertTrivialCallEdge(C1, D3);
 | |
|   DRC.insertTrivialCallEdge(D1, D3);
 | |
| 
 | |
|   // Then remove the old ones.
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D2);
 | |
|   auto NewCs = DRC.switchInternalEdgeToRef(D1, D2);
 | |
|   EXPECT_EQ(&DC, CG.lookupSCC(D2));
 | |
|   EXPECT_EQ(NewCs.end(), std::next(NewCs.begin()));
 | |
|   LazyCallGraph::SCC &NewDC = *NewCs.begin();
 | |
|   EXPECT_EQ(&NewDC, CG.lookupSCC(D1));
 | |
|   EXPECT_EQ(&NewDC, CG.lookupSCC(D3));
 | |
|   auto NewRCs = DRC.removeInternalRefEdge(D1, {&D2});
 | |
|   ASSERT_EQ(2u, NewRCs.size());
 | |
|   LazyCallGraph::RefSCC &NewDRC = *NewRCs[0];
 | |
|   EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1));
 | |
|   EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3));
 | |
|   LazyCallGraph::RefSCC &D2RC = *NewRCs[1];
 | |
|   EXPECT_EQ(&D2RC, CG.lookupRefSCC(D2));
 | |
|   EXPECT_FALSE(NewDRC.isParentOf(D2RC));
 | |
|   EXPECT_TRUE(CRC.isParentOf(D2RC));
 | |
|   EXPECT_TRUE(CRC.isParentOf(NewDRC));
 | |
|   EXPECT_TRUE(D2RC.isParentOf(NewDRC));
 | |
|   CRC.removeOutgoingEdge(C1, D2);
 | |
|   EXPECT_FALSE(CRC.isParentOf(D2RC));
 | |
|   EXPECT_TRUE(CRC.isParentOf(NewDRC));
 | |
|   EXPECT_TRUE(D2RC.isParentOf(NewDRC));
 | |
| 
 | |
|   // Now that we've updated the call graph, D2 is dead, so remove it.
 | |
|   CG.removeDeadFunction(D2F);
 | |
| 
 | |
|   // Check that the graph still looks the same.
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A1));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A2));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A3));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B1));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B2));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B3));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
 | |
|   EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1));
 | |
|   EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3));
 | |
|   EXPECT_TRUE(CRC.isParentOf(NewDRC));
 | |
| 
 | |
|   // Verify the post-order walk hasn't changed.
 | |
|   auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
 | |
|   ASSERT_NE(I, E);
 | |
|   EXPECT_EQ(&NewDRC, &*I) << "Actual RefSCC: " << *I;
 | |
|   ASSERT_NE(++I, E);
 | |
|   EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I;
 | |
|   ASSERT_NE(++I, E);
 | |
|   EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I;
 | |
|   ASSERT_NE(++I, E);
 | |
|   EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I;
 | |
|   EXPECT_EQ(++I, E);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalEdgeMutation) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @b() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @c() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @a()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(1, RC.size());
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C));
 | |
| 
 | |
|   // Insert an edge from 'a' to 'c'. Nothing changes about the graph.
 | |
|   RC.insertInternalRefEdge(A, C);
 | |
|   EXPECT_EQ(2, std::distance(A->begin(), A->end()));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(1, RC.size());
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C));
 | |
| 
 | |
|   // Switch the call edge from 'b' to 'c' to a ref edge. This will break the
 | |
|   // call cycle and cause us to form more SCCs. The RefSCC will remain the same
 | |
|   // though.
 | |
|   auto NewCs = RC.switchInternalEdgeToRef(B, C);
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
|   auto J = RC.begin();
 | |
|   // The SCCs must be in *post-order* which means successors before
 | |
|   // predecessors. At this point we have call edges from C to A and from A to
 | |
|   // B. The only valid postorder is B, A, C.
 | |
|   EXPECT_EQ(&*J++, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&*J++, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&*J++, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(RC.end(), J);
 | |
|   // And the returned range must be the slice of this sequence containing new
 | |
|   // SCCs.
 | |
|   EXPECT_EQ(RC.begin(), NewCs.begin());
 | |
|   EXPECT_EQ(std::prev(RC.end()), NewCs.end());
 | |
| 
 | |
|   // Test turning the ref edge from A to C into a call edge. This will form an
 | |
|   // SCC out of A and C. Since we previously had a call edge from C to A, the
 | |
|   // C SCC should be preserved and have A merged into it while the A SCC should
 | |
|   // be invalidated.
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
 | |
|   EXPECT_TRUE(RC.switchInternalEdgeToCall(A, C, [&](ArrayRef<LazyCallGraph::SCC *> MergedCs) {
 | |
|     ASSERT_EQ(1u, MergedCs.size());
 | |
|     EXPECT_EQ(&AC, MergedCs[0]);
 | |
|   }));
 | |
|   EXPECT_EQ(2, CC.size());
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   J = RC.begin();
 | |
|   EXPECT_EQ(&*J++, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&*J++, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(RC.end(), J);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalEdgeRemoval) {
 | |
|   LLVMContext Context;
 | |
|   // A nice fully connected (including self-edges) RefSCC.
 | |
|   std::unique_ptr<Module> M = parseAssembly(
 | |
|       Context, "define void @a(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n"
 | |
|                "define void @b(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n"
 | |
|                "define void @c(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
 | |
|   LazyCallGraph::RefSCC &RC = *I;
 | |
|   EXPECT_EQ(E, std::next(I));
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
| 
 | |
|   // Remove the edge from b -> a, which should leave the 3 functions still in
 | |
|   // a single connected component because of a -> b -> c -> a.
 | |
|   SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs =
 | |
|       RC.removeInternalRefEdge(B, {&A});
 | |
|   EXPECT_EQ(0u, NewRCs.size());
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
|   auto J = CG.postorder_ref_scc_begin();
 | |
|   EXPECT_EQ(I, J);
 | |
|   EXPECT_EQ(&RC, &*J);
 | |
|   EXPECT_EQ(E, std::next(J));
 | |
| 
 | |
|   // Increment I before we actually mutate the structure so that it remains
 | |
|   // a valid iterator.
 | |
|   ++I;
 | |
| 
 | |
|   // Remove the edge from c -> a, which should leave 'a' in the original RefSCC
 | |
|   // and form a new RefSCC for 'b' and 'c'.
 | |
|   NewRCs = RC.removeInternalRefEdge(C, {&A});
 | |
|   ASSERT_EQ(2u, NewRCs.size());
 | |
|   LazyCallGraph::RefSCC &BCRC = *NewRCs[0];
 | |
|   LazyCallGraph::RefSCC &ARC = *NewRCs[1];
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(1, std::distance(ARC.begin(), ARC.end()));
 | |
|   EXPECT_EQ(&BCRC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&BCRC, CG.lookupRefSCC(C));
 | |
|   J = CG.postorder_ref_scc_begin();
 | |
|   EXPECT_NE(I, J);
 | |
|   EXPECT_EQ(&BCRC, &*J);
 | |
|   ++J;
 | |
|   EXPECT_NE(I, J);
 | |
|   EXPECT_EQ(&ARC, &*J);
 | |
|   ++J;
 | |
|   EXPECT_EQ(I, J);
 | |
|   EXPECT_EQ(E, J);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalMultiEdgeRemoval) {
 | |
|   LLVMContext Context;
 | |
|   // A nice fully connected (including self-edges) RefSCC.
 | |
|   std::unique_ptr<Module> M = parseAssembly(
 | |
|       Context, "define void @a(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n"
 | |
|                "define void @b(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n"
 | |
|                "define void @c(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
 | |
|   LazyCallGraph::RefSCC &RC = *I;
 | |
|   EXPECT_EQ(E, std::next(I));
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
| 
 | |
|   // Increment I before we actually mutate the structure so that it remains
 | |
|   // a valid iterator.
 | |
|   ++I;
 | |
| 
 | |
|   // Remove the edges from b -> a and b -> c, leaving b in its own RefSCC.
 | |
|   SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs =
 | |
|       RC.removeInternalRefEdge(B, {&A, &C});
 | |
| 
 | |
|   ASSERT_EQ(2u, NewRCs.size());
 | |
|   LazyCallGraph::RefSCC &BRC = *NewRCs[0];
 | |
|   LazyCallGraph::RefSCC &ACRC = *NewRCs[1];
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(1, std::distance(BRC.begin(), BRC.end()));
 | |
|   EXPECT_EQ(&ACRC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&ACRC, CG.lookupRefSCC(C));
 | |
|   auto J = CG.postorder_ref_scc_begin();
 | |
|   EXPECT_NE(I, J);
 | |
|   EXPECT_EQ(&BRC, &*J);
 | |
|   ++J;
 | |
|   EXPECT_NE(I, J);
 | |
|   EXPECT_EQ(&ACRC, &*J);
 | |
|   ++J;
 | |
|   EXPECT_EQ(I, J);
 | |
|   EXPECT_EQ(E, J);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalNoOpEdgeRemoval) {
 | |
|   LLVMContext Context;
 | |
|   // A graph with a single cycle formed both from call and reference edges
 | |
|   // which makes the reference edges trivial to delete. The graph looks like:
 | |
|   //
 | |
|   // Reference edges: a -> b -> c -> a
 | |
|   //      Call edges: a -> c -> b -> a
 | |
|   std::unique_ptr<Module> M = parseAssembly(
 | |
|       Context, "define void @a(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  call void @b(i8** %ptr)\n"
 | |
|                "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n"
 | |
|                "define void @b(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
 | |
|                "  call void @c(i8** %ptr)\n"
 | |
|                "  ret void\n"
 | |
|                "}\n"
 | |
|                "define void @c(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  call void @a(i8** %ptr)\n"
 | |
|                "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
 | |
|   LazyCallGraph::RefSCC &RC = *I;
 | |
|   EXPECT_EQ(E, std::next(I));
 | |
| 
 | |
|   LazyCallGraph::SCC &C = *RC.begin();
 | |
|   EXPECT_EQ(RC.end(), std::next(RC.begin()));
 | |
| 
 | |
|   LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(AN));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(BN));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(CN));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(AN));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(BN));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(CN));
 | |
| 
 | |
|   // Remove the edge from a -> c which doesn't change anything.
 | |
|   SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs =
 | |
|       RC.removeInternalRefEdge(AN, {&CN});
 | |
|   EXPECT_EQ(0u, NewRCs.size());
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(AN));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(BN));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(CN));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(AN));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(BN));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(CN));
 | |
|   auto J = CG.postorder_ref_scc_begin();
 | |
|   EXPECT_EQ(I, J);
 | |
|   EXPECT_EQ(&RC, &*J);
 | |
|   EXPECT_EQ(E, std::next(J));
 | |
| 
 | |
|   // Remove the edge from b -> a and c -> b; again this doesn't change
 | |
|   // anything.
 | |
|   NewRCs = RC.removeInternalRefEdge(BN, {&AN});
 | |
|   NewRCs = RC.removeInternalRefEdge(CN, {&BN});
 | |
|   EXPECT_EQ(0u, NewRCs.size());
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(AN));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(BN));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(CN));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(AN));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(BN));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(CN));
 | |
|   J = CG.postorder_ref_scc_begin();
 | |
|   EXPECT_EQ(I, J);
 | |
|   EXPECT_EQ(&RC, &*J);
 | |
|   EXPECT_EQ(E, std::next(J));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalCallEdgeToRef) {
 | |
|   LLVMContext Context;
 | |
|   // A nice fully connected (including self-edges) SCC (and RefSCC)
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @a()\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @b() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @a()\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @c() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @a()\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   EXPECT_EQ(1, RC.size());
 | |
|   LazyCallGraph::SCC &AC = *RC.begin();
 | |
| 
 | |
|   LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(AN));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(BN));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(CN));
 | |
| 
 | |
|   // Remove the call edge from b -> a to a ref edge, which should leave the
 | |
|   // 3 functions still in a single connected component because of a -> b ->
 | |
|   // c -> a.
 | |
|   auto NewCs = RC.switchInternalEdgeToRef(BN, AN);
 | |
|   EXPECT_EQ(NewCs.begin(), NewCs.end());
 | |
|   EXPECT_EQ(1, RC.size());
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(AN));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(BN));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(CN));
 | |
| 
 | |
|   // Remove the edge from c -> a, which should leave 'a' in the original SCC
 | |
|   // and form a new SCC for 'b' and 'c'.
 | |
|   NewCs = RC.switchInternalEdgeToRef(CN, AN);
 | |
|   EXPECT_EQ(1, std::distance(NewCs.begin(), NewCs.end()));
 | |
|   EXPECT_EQ(2, RC.size());
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(AN));
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(BN);
 | |
|   EXPECT_NE(&BC, &AC);
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(CN));
 | |
|   auto J = RC.find(AC);
 | |
|   EXPECT_EQ(&AC, &*J);
 | |
|   --J;
 | |
|   EXPECT_EQ(&BC, &*J);
 | |
|   EXPECT_EQ(RC.begin(), J);
 | |
|   EXPECT_EQ(J, NewCs.begin());
 | |
| 
 | |
|   // Remove the edge from c -> b, which should leave 'b' in the original SCC
 | |
|   // and form a new SCC for 'c'. It shouldn't change 'a's SCC.
 | |
|   NewCs = RC.switchInternalEdgeToRef(CN, BN);
 | |
|   EXPECT_EQ(1, std::distance(NewCs.begin(), NewCs.end()));
 | |
|   EXPECT_EQ(3, RC.size());
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(AN));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(BN));
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(CN);
 | |
|   EXPECT_NE(&CC, &AC);
 | |
|   EXPECT_NE(&CC, &BC);
 | |
|   J = RC.find(AC);
 | |
|   EXPECT_EQ(&AC, &*J);
 | |
|   --J;
 | |
|   EXPECT_EQ(&BC, &*J);
 | |
|   --J;
 | |
|   EXPECT_EQ(&CC, &*J);
 | |
|   EXPECT_EQ(RC.begin(), J);
 | |
|   EXPECT_EQ(J, NewCs.begin());
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalRefEdgeToCall) {
 | |
|   LLVMContext Context;
 | |
|   // Basic tests for making a ref edge a call. This hits the basics of the
 | |
|   // process only.
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context, "define void @a() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @b()\n"
 | |
|                              "  call void @c()\n"
 | |
|                              "  store void()* @d, void()** undef\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @c, void()** undef\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @b, void()** undef\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @d() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @a, void()** undef\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
 | |
| 
 | |
|   // Check the initial post-order. Note that B and C could be flipped here (and
 | |
|   // in our mutation) without changing the nature of this test.
 | |
|   ASSERT_EQ(4, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&BC, &RC[1]);
 | |
|   EXPECT_EQ(&CC, &RC[2]);
 | |
|   EXPECT_EQ(&AC, &RC[3]);
 | |
| 
 | |
|   // Switch the ref edge from A -> D to a call edge. This should have no
 | |
|   // effect as it is already in postorder and no new cycles are formed.
 | |
|   EXPECT_FALSE(RC.switchInternalEdgeToCall(A, D));
 | |
|   ASSERT_EQ(4, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&BC, &RC[1]);
 | |
|   EXPECT_EQ(&CC, &RC[2]);
 | |
|   EXPECT_EQ(&AC, &RC[3]);
 | |
| 
 | |
|   // Switch B -> C to a call edge. This doesn't form any new cycles but does
 | |
|   // require reordering the SCCs.
 | |
|   EXPECT_FALSE(RC.switchInternalEdgeToCall(B, C));
 | |
|   ASSERT_EQ(4, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&CC, &RC[1]);
 | |
|   EXPECT_EQ(&BC, &RC[2]);
 | |
|   EXPECT_EQ(&AC, &RC[3]);
 | |
| 
 | |
|   // Switch C -> B to a call edge. This forms a cycle and forces merging SCCs.
 | |
|   EXPECT_TRUE(RC.switchInternalEdgeToCall(C, B, [&](ArrayRef<LazyCallGraph::SCC *> MergedCs) {
 | |
|     ASSERT_EQ(1u, MergedCs.size());
 | |
|     EXPECT_EQ(&CC, MergedCs[0]);
 | |
|   }));
 | |
|   ASSERT_EQ(3, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&BC, &RC[1]);
 | |
|   EXPECT_EQ(&AC, &RC[2]);
 | |
|   EXPECT_EQ(2, BC.size());
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(C));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalRefEdgeToCallNoCycleInterleaved) {
 | |
|   LLVMContext Context;
 | |
|   // Test for having a post-order prior to changing a ref edge to a call edge
 | |
|   // with SCCs connecting to the source and connecting to the target, but not
 | |
|   // connecting to both, interleaved between the source and target. This
 | |
|   // ensures we correctly partition the range rather than simply moving one or
 | |
|   // the other.
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context, "define void @a() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @b1()\n"
 | |
|                              "  call void @c1()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b1() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @c1()\n"
 | |
|                              "  call void @b2()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c1() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @b2()\n"
 | |
|                              "  call void @c2()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b2() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @c2()\n"
 | |
|                              "  call void @b3()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c2() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @b3()\n"
 | |
|                              "  call void @c3()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b3() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @c3()\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c3() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @b1, void()** undef\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @d() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @a, void()** undef\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
 | |
|   LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
 | |
|   LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
 | |
|   LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
 | |
|   LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
 | |
|   LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &B1C = *CG.lookupSCC(B1);
 | |
|   LazyCallGraph::SCC &B2C = *CG.lookupSCC(B2);
 | |
|   LazyCallGraph::SCC &B3C = *CG.lookupSCC(B3);
 | |
|   LazyCallGraph::SCC &C1C = *CG.lookupSCC(C1);
 | |
|   LazyCallGraph::SCC &C2C = *CG.lookupSCC(C2);
 | |
|   LazyCallGraph::SCC &C3C = *CG.lookupSCC(C3);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
 | |
| 
 | |
|   // Several call edges are initially present to force a particual post-order.
 | |
|   // Remove them now, leaving an interleaved post-order pattern.
 | |
|   RC.switchTrivialInternalEdgeToRef(B3, C3);
 | |
|   RC.switchTrivialInternalEdgeToRef(C2, B3);
 | |
|   RC.switchTrivialInternalEdgeToRef(B2, C2);
 | |
|   RC.switchTrivialInternalEdgeToRef(C1, B2);
 | |
|   RC.switchTrivialInternalEdgeToRef(B1, C1);
 | |
| 
 | |
|   // Check the initial post-order. We ensure this order with the extra edges
 | |
|   // that are nuked above.
 | |
|   ASSERT_EQ(8, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&C3C, &RC[1]);
 | |
|   EXPECT_EQ(&B3C, &RC[2]);
 | |
|   EXPECT_EQ(&C2C, &RC[3]);
 | |
|   EXPECT_EQ(&B2C, &RC[4]);
 | |
|   EXPECT_EQ(&C1C, &RC[5]);
 | |
|   EXPECT_EQ(&B1C, &RC[6]);
 | |
|   EXPECT_EQ(&AC, &RC[7]);
 | |
| 
 | |
|   // Switch C3 -> B1 to a call edge. This doesn't form any new cycles but does
 | |
|   // require reordering the SCCs in the face of tricky internal node
 | |
|   // structures.
 | |
|   EXPECT_FALSE(RC.switchInternalEdgeToCall(C3, B1));
 | |
|   ASSERT_EQ(8, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&B3C, &RC[1]);
 | |
|   EXPECT_EQ(&B2C, &RC[2]);
 | |
|   EXPECT_EQ(&B1C, &RC[3]);
 | |
|   EXPECT_EQ(&C3C, &RC[4]);
 | |
|   EXPECT_EQ(&C2C, &RC[5]);
 | |
|   EXPECT_EQ(&C1C, &RC[6]);
 | |
|   EXPECT_EQ(&AC, &RC[7]);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalRefEdgeToCallBothPartitionAndMerge) {
 | |
|   LLVMContext Context;
 | |
|   // Test for having a postorder where between the source and target are all
 | |
|   // three kinds of other SCCs:
 | |
|   // 1) One connected to the target only that have to be shifted below the
 | |
|   //    source.
 | |
|   // 2) One connected to the source only that have to be shifted below the
 | |
|   //    target.
 | |
|   // 3) One connected to both source and target that has to remain and get
 | |
|   //    merged away.
 | |
|   //
 | |
|   // To achieve this we construct a heavily connected graph to force
 | |
|   // a particular post-order. Then we remove the forcing edges and connect
 | |
|   // a cycle.
 | |
|   //
 | |
|   // Diagram for the graph we want on the left and the graph we use to force
 | |
|   // the ordering on the right. Edges ponit down or right.
 | |
|   //
 | |
|   //   A    |    A    |
 | |
|   //  / \   |   / \   |
 | |
|   // B   E  |  B   \  |
 | |
|   // |\  |  |  |\  |  |
 | |
|   // | D |  |  C-D-E  |
 | |
|   // |  \|  |  |  \|  |
 | |
|   // C   F  |  \   F  |
 | |
|   //  \ /   |   \ /   |
 | |
|   //   G    |    G    |
 | |
|   //
 | |
|   // And we form a cycle by connecting F to B.
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context, "define void @a() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @b()\n"
 | |
|                              "  call void @e()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @c()\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  call void @g()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @d() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @e()\n"
 | |
|                              "  call void @f()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @e() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @f()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @f() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @b, void()** undef\n"
 | |
|                              "  call void @g()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @g() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @a, void()** undef\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e"));
 | |
|   LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f"));
 | |
|   LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
 | |
|   LazyCallGraph::SCC &EC = *CG.lookupSCC(E);
 | |
|   LazyCallGraph::SCC &FC = *CG.lookupSCC(F);
 | |
|   LazyCallGraph::SCC &GC = *CG.lookupSCC(G);
 | |
| 
 | |
|   // Remove the extra edges that were used to force a particular post-order.
 | |
|   RC.switchTrivialInternalEdgeToRef(C, D);
 | |
|   RC.switchTrivialInternalEdgeToRef(D, E);
 | |
| 
 | |
|   // Check the initial post-order. We ensure this order with the extra edges
 | |
|   // that are nuked above.
 | |
|   ASSERT_EQ(7, RC.size());
 | |
|   EXPECT_EQ(&GC, &RC[0]);
 | |
|   EXPECT_EQ(&FC, &RC[1]);
 | |
|   EXPECT_EQ(&EC, &RC[2]);
 | |
|   EXPECT_EQ(&DC, &RC[3]);
 | |
|   EXPECT_EQ(&CC, &RC[4]);
 | |
|   EXPECT_EQ(&BC, &RC[5]);
 | |
|   EXPECT_EQ(&AC, &RC[6]);
 | |
| 
 | |
|   // Switch F -> B to a call edge. This merges B, D, and F into a single SCC,
 | |
|   // and has to place the C and E SCCs on either side of it:
 | |
|   //   A          A    |
 | |
|   //  / \        / \   |
 | |
|   // B   E      |   E  |
 | |
|   // |\  |       \ /   |
 | |
|   // | D |  ->    B    |
 | |
|   // |  \|       / \   |
 | |
|   // C   F      C   |  |
 | |
|   //  \ /        \ /   |
 | |
|   //   G          G    |
 | |
|   EXPECT_TRUE(RC.switchInternalEdgeToCall(
 | |
|       F, B, [&](ArrayRef<LazyCallGraph::SCC *> MergedCs) {
 | |
|         ASSERT_EQ(2u, MergedCs.size());
 | |
|         EXPECT_EQ(&FC, MergedCs[0]);
 | |
|         EXPECT_EQ(&DC, MergedCs[1]);
 | |
|       }));
 | |
|   EXPECT_EQ(3, BC.size());
 | |
| 
 | |
|   // And make sure the postorder was updated.
 | |
|   ASSERT_EQ(5, RC.size());
 | |
|   EXPECT_EQ(&GC, &RC[0]);
 | |
|   EXPECT_EQ(&CC, &RC[1]);
 | |
|   EXPECT_EQ(&BC, &RC[2]);
 | |
|   EXPECT_EQ(&EC, &RC[3]);
 | |
|   EXPECT_EQ(&AC, &RC[4]);
 | |
| }
 | |
| 
 | |
| // Test for IR containing constants using blockaddress constant expressions.
 | |
| // These are truly unique constructs: constant expressions with non-constant
 | |
| // operands.
 | |
| TEST(LazyCallGraphTest, HandleBlockAddress) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context, "define void @f() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  ret void\n"
 | |
|                              "bb:\n"
 | |
|                              "  unreachable\n"
 | |
|                              "}\n"
 | |
|                              "define void @g(i8** %ptr) {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store i8* blockaddress(@f, %bb), i8** %ptr\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &FRC = *I++;
 | |
|   LazyCallGraph::RefSCC &GRC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f"));
 | |
|   LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g"));
 | |
|   EXPECT_EQ(&FRC, CG.lookupRefSCC(F));
 | |
|   EXPECT_EQ(&GRC, CG.lookupRefSCC(G));
 | |
|   EXPECT_TRUE(GRC.isParentOf(FRC));
 | |
| }
 | |
| 
 | |
| // Test that a blockaddress that refers to itself creates no new RefSCC
 | |
| // connections. https://bugs.llvm.org/show_bug.cgi?id=40722
 | |
| TEST(LazyCallGraphTest, HandleBlockAddress2) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context, "define void @f() {\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @g(i8** %ptr) {\n"
 | |
|                              "bb:\n"
 | |
|                              "  store i8* blockaddress(@g, %bb), i8** %ptr\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &GRC = *I++;
 | |
|   LazyCallGraph::RefSCC &FRC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f"));
 | |
|   LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g"));
 | |
|   EXPECT_EQ(&FRC, CG.lookupRefSCC(F));
 | |
|   EXPECT_EQ(&GRC, CG.lookupRefSCC(G));
 | |
|   EXPECT_FALSE(GRC.isParentOf(FRC));
 | |
|   EXPECT_FALSE(FRC.isParentOf(GRC));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, ReplaceNodeFunction) {
 | |
|   LLVMContext Context;
 | |
|   // A graph with several different kinds of edges pointing at a particular
 | |
|   // function.
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context,
 | |
|                     "define void @a(i8** %ptr) {\n"
 | |
|                     "entry:\n"
 | |
|                     "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n"
 | |
|                     "  ret void\n"
 | |
|                     "}\n"
 | |
|                     "define void @b(i8** %ptr) {\n"
 | |
|                     "entry:\n"
 | |
|                     "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n"
 | |
|                     "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n"
 | |
|                     "  call void @d(i8** %ptr)"
 | |
|                     "  ret void\n"
 | |
|                     "}\n"
 | |
|                     "define void @c(i8** %ptr) {\n"
 | |
|                     "entry:\n"
 | |
|                     "  call void @d(i8** %ptr)"
 | |
|                     "  call void @d(i8** %ptr)"
 | |
|                     "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n"
 | |
|                     "  ret void\n"
 | |
|                     "}\n"
 | |
|                     "define void @d(i8** %ptr) {\n"
 | |
|                     "entry:\n"
 | |
|                     "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                     "  call void @c(i8** %ptr)"
 | |
|                     "  call void @d(i8** %ptr)"
 | |
|                     "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n"
 | |
|                     "  ret void\n"
 | |
|                     "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC1 = *I++;
 | |
|   LazyCallGraph::RefSCC &RC2 = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   ASSERT_EQ(2, RC1.size());
 | |
|   LazyCallGraph::SCC &C1 = RC1[0];
 | |
|   LazyCallGraph::SCC &C2 = RC1[1];
 | |
| 
 | |
|   LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &DN = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   EXPECT_EQ(&C1, CG.lookupSCC(DN));
 | |
|   EXPECT_EQ(&C1, CG.lookupSCC(CN));
 | |
|   EXPECT_EQ(&C2, CG.lookupSCC(BN));
 | |
|   EXPECT_EQ(&RC1, CG.lookupRefSCC(DN));
 | |
|   EXPECT_EQ(&RC1, CG.lookupRefSCC(CN));
 | |
|   EXPECT_EQ(&RC1, CG.lookupRefSCC(BN));
 | |
|   EXPECT_EQ(&RC2, CG.lookupRefSCC(AN));
 | |
| 
 | |
|   // Now we need to build a new function 'e' with the same signature as 'd'.
 | |
|   Function &D = DN.getFunction();
 | |
|   Function &E = *Function::Create(D.getFunctionType(), D.getLinkage(), "e");
 | |
|   D.getParent()->getFunctionList().insert(D.getIterator(), &E);
 | |
| 
 | |
|   // Change each use of 'd' to use 'e'. This is particularly easy as they have
 | |
|   // the same type.
 | |
|   D.replaceAllUsesWith(&E);
 | |
| 
 | |
|   // Splice the body of the old function into the new one.
 | |
|   E.getBasicBlockList().splice(E.begin(), D.getBasicBlockList());
 | |
|   // And fix up the one argument.
 | |
|   D.arg_begin()->replaceAllUsesWith(&*E.arg_begin());
 | |
|   E.arg_begin()->takeName(&*D.arg_begin());
 | |
| 
 | |
|   // Now replace the function in the graph.
 | |
|   RC1.replaceNodeFunction(DN, E);
 | |
| 
 | |
|   EXPECT_EQ(&E, &DN.getFunction());
 | |
|   EXPECT_EQ(&DN, &(*CN)[DN].getNode());
 | |
|   EXPECT_EQ(&DN, &(*BN)[DN].getNode());
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, RemoveFunctionWithSpurriousRef) {
 | |
|   LLVMContext Context;
 | |
|   // A graph with a couple of RefSCCs.
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context,
 | |
|                     "define void @a(i8** %ptr) {\n"
 | |
|                     "entry:\n"
 | |
|                     "  store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n"
 | |
|                     "  ret void\n"
 | |
|                     "}\n"
 | |
|                     "define void @b(i8** %ptr) {\n"
 | |
|                     "entry:\n"
 | |
|                     "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                     "  ret void\n"
 | |
|                     "}\n"
 | |
|                     "define void @c(i8** %ptr) {\n"
 | |
|                     "entry:\n"
 | |
|                     "  call void @d(i8** %ptr)"
 | |
|                     "  ret void\n"
 | |
|                     "}\n"
 | |
|                     "define void @d(i8** %ptr) {\n"
 | |
|                     "entry:\n"
 | |
|                     "  call void @c(i8** %ptr)"
 | |
|                     "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                     "  ret void\n"
 | |
|                     "}\n"
 | |
|                     "define void @dead() {\n"
 | |
|                     "entry:\n"
 | |
|                     "  ret void\n"
 | |
|                     "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
| 
 | |
|   // Insert spurious ref edges.
 | |
|   LazyCallGraph::Node &AN = CG.get(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &BN = CG.get(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &CN = CG.get(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &DN = CG.get(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::Node &DeadN = CG.get(lookupFunction(*M, "dead"));
 | |
|   AN.populate();
 | |
|   BN.populate();
 | |
|   CN.populate();
 | |
|   DN.populate();
 | |
|   DeadN.populate();
 | |
|   CG.insertEdge(AN, DeadN, LazyCallGraph::Edge::Ref);
 | |
|   CG.insertEdge(BN, DeadN, LazyCallGraph::Edge::Ref);
 | |
|   CG.insertEdge(CN, DeadN, LazyCallGraph::Edge::Ref);
 | |
|   CG.insertEdge(DN, DeadN, LazyCallGraph::Edge::Ref);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   CG.buildRefSCCs();
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &DeadRC = *I++;
 | |
|   LazyCallGraph::RefSCC &RC1 = *I++;
 | |
|   LazyCallGraph::RefSCC &RC2 = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   ASSERT_EQ(2, RC1.size());
 | |
|   LazyCallGraph::SCC &C1 = RC1[0];
 | |
|   LazyCallGraph::SCC &C2 = RC1[1];
 | |
| 
 | |
|   EXPECT_EQ(&DeadRC, CG.lookupRefSCC(DeadN));
 | |
|   EXPECT_EQ(&C1, CG.lookupSCC(DN));
 | |
|   EXPECT_EQ(&C1, CG.lookupSCC(CN));
 | |
|   EXPECT_EQ(&C2, CG.lookupSCC(BN));
 | |
|   EXPECT_EQ(&RC1, CG.lookupRefSCC(DN));
 | |
|   EXPECT_EQ(&RC1, CG.lookupRefSCC(CN));
 | |
|   EXPECT_EQ(&RC1, CG.lookupRefSCC(BN));
 | |
|   EXPECT_EQ(&RC2, CG.lookupRefSCC(AN));
 | |
| 
 | |
|   // Now delete 'dead'. There are no uses of this function but there are
 | |
|   // spurious references.
 | |
|   CG.removeDeadFunction(DeadN.getFunction());
 | |
| 
 | |
|   // The only observable change should be that the RefSCC is gone from the
 | |
|   // postorder sequence.
 | |
|   I = CG.postorder_ref_scc_begin();
 | |
|   EXPECT_EQ(&RC1, &*I++);
 | |
|   EXPECT_EQ(&RC2, &*I++);
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, AddNewFunctionIntoRefSCC) {
 | |
|   LLVMContext Context;
 | |
|   // Build and populate a graph composed of a single, self-referential node.
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @f() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG = buildCG(*M);
 | |
|   CG.buildRefSCCs();
 | |
| 
 | |
|   // At this point 'f' is in the call graph.
 | |
|   auto &F = lookupFunction(*M, "f");
 | |
|   LazyCallGraph::Node *FN = CG.lookup(F);
 | |
|   EXPECT_NE(FN, nullptr);
 | |
| 
 | |
|   // And it has an SCC, of course.
 | |
|   auto *FSCC = CG.lookupSCC(*FN);
 | |
|   EXPECT_NE(FSCC, nullptr);
 | |
| 
 | |
|   // Now, create a new function 'g'.
 | |
|   auto *G = Function::Create(F.getFunctionType(), F.getLinkage(),
 | |
|                              F.getAddressSpace(), "g", F.getParent());
 | |
|   BasicBlock::Create(F.getParent()->getContext(), "entry", G);
 | |
| 
 | |
|   // Instruct the LazyCallGraph to create a new node for 'g', within the same
 | |
|   // RefSCC as 'f', but in a separate SCC.
 | |
|   CG.addNewFunctionIntoRefSCC(*G, FSCC->getOuterRefSCC());
 | |
| 
 | |
|   // 'g' should now be in the call graph.
 | |
|   LazyCallGraph::Node *GN = CG.lookup(*G);
 | |
|   EXPECT_NE(GN, nullptr);
 | |
|   // 'g' should have an SCC, composed of the singular node 'g'.
 | |
|   // ('f' should not be included in the 'g' SCC.)
 | |
|   LazyCallGraph::SCC *GSCC = CG.lookupSCC(*GN);
 | |
|   EXPECT_NE(GSCC, nullptr);
 | |
|   EXPECT_EQ(GSCC->size(), 1);
 | |
|   EXPECT_NE(GSCC, FSCC);
 | |
|   // 'g' and 'f' should be part of the same RefSCC.
 | |
|   EXPECT_EQ(&GSCC->getOuterRefSCC(), &FSCC->getOuterRefSCC());
 | |
| }
 | |
| }
 |