forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			181 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include "llvm/Support/TypeSize.h"
 | |
| #include "gtest/gtest.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| TEST(ScalableVectorMVTsTest, IntegerMVTs) {
 | |
|   for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) {
 | |
|     ASSERT_TRUE(VecTy.isValid());
 | |
|     ASSERT_TRUE(VecTy.isInteger());
 | |
|     ASSERT_TRUE(VecTy.isVector());
 | |
|     ASSERT_TRUE(VecTy.isScalableVector());
 | |
|     ASSERT_TRUE(VecTy.getScalarType().isValid());
 | |
| 
 | |
|     ASSERT_FALSE(VecTy.isFloatingPoint());
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(ScalableVectorMVTsTest, FloatMVTs) {
 | |
|   for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) {
 | |
|     ASSERT_TRUE(VecTy.isValid());
 | |
|     ASSERT_TRUE(VecTy.isFloatingPoint());
 | |
|     ASSERT_TRUE(VecTy.isVector());
 | |
|     ASSERT_TRUE(VecTy.isScalableVector());
 | |
|     ASSERT_TRUE(VecTy.getScalarType().isValid());
 | |
| 
 | |
|     ASSERT_FALSE(VecTy.isInteger());
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(ScalableVectorMVTsTest, HelperFuncs) {
 | |
|   LLVMContext Ctx;
 | |
| 
 | |
|   // Create with scalable flag
 | |
|   EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true);
 | |
|   ASSERT_TRUE(Vnx4i32.isScalableVector());
 | |
| 
 | |
|   // Create with separate llvm::ElementCount
 | |
|   auto EltCnt = ElementCount(2, true);
 | |
|   EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt);
 | |
|   ASSERT_TRUE(Vnx2i32.isScalableVector());
 | |
| 
 | |
|   // Create with inline llvm::ElementCount
 | |
|   EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, {2, true});
 | |
|   ASSERT_TRUE(Vnx2i64.isScalableVector());
 | |
| 
 | |
|   // Check that changing scalar types/element count works
 | |
|   EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64);
 | |
|   EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32);
 | |
| 
 | |
|   // Check that overloaded '*' and '/' operators work
 | |
|   EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64);
 | |
|   EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt / 2), MVT::nxv1i64);
 | |
| 
 | |
|   // Check that float->int conversion works
 | |
|   EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, {2, true});
 | |
|   EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64);
 | |
| 
 | |
|   // Check fields inside llvm::ElementCount
 | |
|   EltCnt = Vnx4i32.getVectorElementCount();
 | |
|   EXPECT_EQ(EltCnt.Min, 4U);
 | |
|   ASSERT_TRUE(EltCnt.Scalable);
 | |
| 
 | |
|   // Check that fixed-length vector types aren't scalable.
 | |
|   EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8);
 | |
|   ASSERT_FALSE(V8i32.isScalableVector());
 | |
|   EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, false});
 | |
|   ASSERT_FALSE(V4f64.isScalableVector());
 | |
| 
 | |
|   // Check that llvm::ElementCount works for fixed-length types.
 | |
|   EltCnt = V8i32.getVectorElementCount();
 | |
|   EXPECT_EQ(EltCnt.Min, 8U);
 | |
|   ASSERT_FALSE(EltCnt.Scalable);
 | |
| }
 | |
| 
 | |
| TEST(ScalableVectorMVTsTest, IRToVTTranslation) {
 | |
|   LLVMContext Ctx;
 | |
| 
 | |
|   Type *Int64Ty = Type::getInt64Ty(Ctx);
 | |
|   VectorType *ScV8Int64Ty = VectorType::get(Int64Ty, {8, true});
 | |
| 
 | |
|   // Check that we can map a scalable IR type to an MVT 
 | |
|   MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty);
 | |
|   ASSERT_TRUE(Mnxv8i64.isScalableVector());
 | |
|   ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount());
 | |
|   ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()),
 | |
|             Mnxv8i64.getScalarType());
 | |
| 
 | |
|   // Check that we can map a scalable IR type to an EVT
 | |
|   EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty);
 | |
|   ASSERT_TRUE(Enxv8i64.isScalableVector());
 | |
|   ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount());
 | |
|   ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()),
 | |
|             Enxv8i64.getScalarType());
 | |
| }
 | |
| 
 | |
| TEST(ScalableVectorMVTsTest, VTToIRTranslation) {
 | |
|   LLVMContext Ctx;
 | |
| 
 | |
|   EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, true});
 | |
| 
 | |
|   Type *Ty = Enxv4f64.getTypeForEVT(Ctx);
 | |
|   VectorType *ScV4Float64Ty = cast<VectorType>(Ty);
 | |
|   ASSERT_TRUE(ScV4Float64Ty->isScalable());
 | |
|   ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount());
 | |
|   ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx),
 | |
|             ScV4Float64Ty->getElementType());
 | |
| }
 | |
| 
 | |
| TEST(ScalableVectorMVTsTest, SizeQueries) {
 | |
|   LLVMContext Ctx;
 | |
| 
 | |
|   EVT nxv4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/ true);
 | |
|   EVT nxv2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2, /*Scalable=*/ true);
 | |
|   EVT nxv2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2, /*Scalable=*/ true);
 | |
|   EVT nxv2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2, /*Scalable=*/ true);
 | |
| 
 | |
|   EVT v4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4);
 | |
|   EVT v2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2);
 | |
|   EVT v2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2);
 | |
|   EVT v2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2);
 | |
| 
 | |
|   // Check equivalence and ordering on scalable types.
 | |
|   EXPECT_EQ(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
 | |
|   EXPECT_EQ(nxv2f64.getSizeInBits(), nxv2i64.getSizeInBits());
 | |
|   EXPECT_NE(nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
 | |
|   EXPECT_LT(nxv2i32.getSizeInBits(), nxv2i64.getSizeInBits());
 | |
|   EXPECT_LE(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
 | |
|   EXPECT_GT(nxv4i32.getSizeInBits(), nxv2i32.getSizeInBits());
 | |
|   EXPECT_GE(nxv2i64.getSizeInBits(), nxv4i32.getSizeInBits());
 | |
| 
 | |
|   // Check equivalence and ordering on fixed types.
 | |
|   EXPECT_EQ(v4i32.getSizeInBits(), v2i64.getSizeInBits());
 | |
|   EXPECT_EQ(v2f64.getSizeInBits(), v2i64.getSizeInBits());
 | |
|   EXPECT_NE(v2i32.getSizeInBits(), v4i32.getSizeInBits());
 | |
|   EXPECT_LT(v2i32.getSizeInBits(), v2i64.getSizeInBits());
 | |
|   EXPECT_LE(v4i32.getSizeInBits(), v2i64.getSizeInBits());
 | |
|   EXPECT_GT(v4i32.getSizeInBits(), v2i32.getSizeInBits());
 | |
|   EXPECT_GE(v2i64.getSizeInBits(), v4i32.getSizeInBits());
 | |
| 
 | |
|   // Check that scalable and non-scalable types with the same minimum size
 | |
|   // are not considered equal.
 | |
|   ASSERT_TRUE(v4i32.getSizeInBits() != nxv4i32.getSizeInBits());
 | |
|   ASSERT_FALSE(v2i64.getSizeInBits() == nxv2f64.getSizeInBits());
 | |
| 
 | |
|   // Check that we can obtain a known-exact size from a non-scalable type.
 | |
|   EXPECT_EQ(v4i32.getSizeInBits(), 128U);
 | |
|   EXPECT_EQ(v2i64.getSizeInBits().getFixedSize(), 128U);
 | |
| 
 | |
|   // Check that we can query the known minimum size for both scalable and
 | |
|   // fixed length types.
 | |
|   EXPECT_EQ(nxv2i32.getSizeInBits().getKnownMinSize(), 64U);
 | |
|   EXPECT_EQ(nxv2f64.getSizeInBits().getKnownMinSize(), 128U);
 | |
|   EXPECT_EQ(v2i32.getSizeInBits().getKnownMinSize(),
 | |
|             nxv2i32.getSizeInBits().getKnownMinSize());
 | |
| 
 | |
|   // Check scalable property.
 | |
|   ASSERT_FALSE(v4i32.getSizeInBits().isScalable());
 | |
|   ASSERT_TRUE(nxv4i32.getSizeInBits().isScalable());
 | |
| 
 | |
|   // Check convenience size scaling methods.
 | |
|   EXPECT_EQ(v2i32.getSizeInBits() * 2, v4i32.getSizeInBits());
 | |
|   EXPECT_EQ(2 * nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
 | |
|   EXPECT_EQ(nxv2f64.getSizeInBits() / 2, nxv2i32.getSizeInBits());
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 |