forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1644 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1644 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InputFiles.cpp -----------------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InputFiles.h"
 | 
						|
#include "Driver.h"
 | 
						|
#include "InputSection.h"
 | 
						|
#include "LinkerScript.h"
 | 
						|
#include "SymbolTable.h"
 | 
						|
#include "Symbols.h"
 | 
						|
#include "SyntheticSections.h"
 | 
						|
#include "lld/Common/ErrorHandler.h"
 | 
						|
#include "lld/Common/Memory.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/CodeGen/Analysis.h"
 | 
						|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/LTO/LTO.h"
 | 
						|
#include "llvm/MC/StringTableBuilder.h"
 | 
						|
#include "llvm/Object/ELFObjectFile.h"
 | 
						|
#include "llvm/Support/ARMAttributeParser.h"
 | 
						|
#include "llvm/Support/ARMBuildAttributes.h"
 | 
						|
#include "llvm/Support/Endian.h"
 | 
						|
#include "llvm/Support/Path.h"
 | 
						|
#include "llvm/Support/TarWriter.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::ELF;
 | 
						|
using namespace llvm::object;
 | 
						|
using namespace llvm::sys;
 | 
						|
using namespace llvm::sys::fs;
 | 
						|
using namespace llvm::support::endian;
 | 
						|
 | 
						|
using namespace lld;
 | 
						|
using namespace lld::elf;
 | 
						|
 | 
						|
bool InputFile::IsInGroup;
 | 
						|
uint32_t InputFile::NextGroupId;
 | 
						|
std::vector<BinaryFile *> elf::BinaryFiles;
 | 
						|
std::vector<BitcodeFile *> elf::BitcodeFiles;
 | 
						|
std::vector<LazyObjFile *> elf::LazyObjFiles;
 | 
						|
std::vector<InputFile *> elf::ObjectFiles;
 | 
						|
std::vector<SharedFile *> elf::SharedFiles;
 | 
						|
 | 
						|
std::unique_ptr<TarWriter> elf::Tar;
 | 
						|
 | 
						|
static ELFKind getELFKind(MemoryBufferRef MB, StringRef ArchiveName) {
 | 
						|
  unsigned char Size;
 | 
						|
  unsigned char Endian;
 | 
						|
  std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
 | 
						|
 | 
						|
  auto Report = [&](StringRef Msg) {
 | 
						|
    StringRef Filename = MB.getBufferIdentifier();
 | 
						|
    if (ArchiveName.empty())
 | 
						|
      fatal(Filename + ": " + Msg);
 | 
						|
    else
 | 
						|
      fatal(ArchiveName + "(" + Filename + "): " + Msg);
 | 
						|
  };
 | 
						|
 | 
						|
  if (!MB.getBuffer().startswith(ElfMagic))
 | 
						|
    Report("not an ELF file");
 | 
						|
  if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
 | 
						|
    Report("corrupted ELF file: invalid data encoding");
 | 
						|
  if (Size != ELFCLASS32 && Size != ELFCLASS64)
 | 
						|
    Report("corrupted ELF file: invalid file class");
 | 
						|
 | 
						|
  size_t BufSize = MB.getBuffer().size();
 | 
						|
  if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
 | 
						|
      (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
 | 
						|
    Report("corrupted ELF file: file is too short");
 | 
						|
 | 
						|
  if (Size == ELFCLASS32)
 | 
						|
    return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
 | 
						|
  return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
 | 
						|
}
 | 
						|
 | 
						|
InputFile::InputFile(Kind K, MemoryBufferRef M)
 | 
						|
    : MB(M), GroupId(NextGroupId), FileKind(K) {
 | 
						|
  // All files within the same --{start,end}-group get the same group ID.
 | 
						|
  // Otherwise, a new file will get a new group ID.
 | 
						|
  if (!IsInGroup)
 | 
						|
    ++NextGroupId;
 | 
						|
}
 | 
						|
 | 
						|
Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
 | 
						|
  // The --chroot option changes our virtual root directory.
 | 
						|
  // This is useful when you are dealing with files created by --reproduce.
 | 
						|
  if (!Config->Chroot.empty() && Path.startswith("/"))
 | 
						|
    Path = Saver.save(Config->Chroot + Path);
 | 
						|
 | 
						|
  log(Path);
 | 
						|
 | 
						|
  auto MBOrErr = MemoryBuffer::getFile(Path, -1, false);
 | 
						|
  if (auto EC = MBOrErr.getError()) {
 | 
						|
    error("cannot open " + Path + ": " + EC.message());
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
 | 
						|
  MemoryBufferRef MBRef = MB->getMemBufferRef();
 | 
						|
  make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
 | 
						|
 | 
						|
  if (Tar)
 | 
						|
    Tar->append(relativeToRoot(Path), MBRef.getBuffer());
 | 
						|
  return MBRef;
 | 
						|
}
 | 
						|
 | 
						|
// All input object files must be for the same architecture
 | 
						|
// (e.g. it does not make sense to link x86 object files with
 | 
						|
// MIPS object files.) This function checks for that error.
 | 
						|
static bool isCompatible(InputFile *File) {
 | 
						|
  if (!File->isElf() && !isa<BitcodeFile>(File))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (File->EKind == Config->EKind && File->EMachine == Config->EMachine) {
 | 
						|
    if (Config->EMachine != EM_MIPS)
 | 
						|
      return true;
 | 
						|
    if (isMipsN32Abi(File) == Config->MipsN32Abi)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Config->Emulation.empty()) {
 | 
						|
    error(toString(File) + " is incompatible with " + Config->Emulation);
 | 
						|
  } else {
 | 
						|
    InputFile *Existing;
 | 
						|
    if (!ObjectFiles.empty())
 | 
						|
      Existing = ObjectFiles[0];
 | 
						|
    else if (!SharedFiles.empty())
 | 
						|
      Existing = SharedFiles[0];
 | 
						|
    else
 | 
						|
      Existing = BitcodeFiles[0];
 | 
						|
 | 
						|
    error(toString(File) + " is incompatible with " + toString(Existing));
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> static void doParseFile(InputFile *File) {
 | 
						|
  if (!isCompatible(File))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Binary file
 | 
						|
  if (auto *F = dyn_cast<BinaryFile>(File)) {
 | 
						|
    BinaryFiles.push_back(F);
 | 
						|
    F->parse();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // .a file
 | 
						|
  if (auto *F = dyn_cast<ArchiveFile>(File)) {
 | 
						|
    F->parse();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Lazy object file
 | 
						|
  if (auto *F = dyn_cast<LazyObjFile>(File)) {
 | 
						|
    LazyObjFiles.push_back(F);
 | 
						|
    F->parse<ELFT>();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Config->Trace)
 | 
						|
    message(toString(File));
 | 
						|
 | 
						|
  // .so file
 | 
						|
  if (auto *F = dyn_cast<SharedFile>(File)) {
 | 
						|
    F->parse<ELFT>();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // LLVM bitcode file
 | 
						|
  if (auto *F = dyn_cast<BitcodeFile>(File)) {
 | 
						|
    BitcodeFiles.push_back(F);
 | 
						|
    F->parse<ELFT>();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Regular object file
 | 
						|
  ObjectFiles.push_back(File);
 | 
						|
  cast<ObjFile<ELFT>>(File)->parse();
 | 
						|
}
 | 
						|
 | 
						|
// Add symbols in File to the symbol table.
 | 
						|
void elf::parseFile(InputFile *File) {
 | 
						|
  switch (Config->EKind) {
 | 
						|
  case ELF32LEKind:
 | 
						|
    doParseFile<ELF32LE>(File);
 | 
						|
    return;
 | 
						|
  case ELF32BEKind:
 | 
						|
    doParseFile<ELF32BE>(File);
 | 
						|
    return;
 | 
						|
  case ELF64LEKind:
 | 
						|
    doParseFile<ELF64LE>(File);
 | 
						|
    return;
 | 
						|
  case ELF64BEKind:
 | 
						|
    doParseFile<ELF64BE>(File);
 | 
						|
    return;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unknown ELFT");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Concatenates arguments to construct a string representing an error location.
 | 
						|
static std::string createFileLineMsg(StringRef Path, unsigned Line) {
 | 
						|
  std::string Filename = path::filename(Path);
 | 
						|
  std::string Lineno = ":" + std::to_string(Line);
 | 
						|
  if (Filename == Path)
 | 
						|
    return Filename + Lineno;
 | 
						|
  return Filename + Lineno + " (" + Path.str() + Lineno + ")";
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym,
 | 
						|
                                InputSectionBase &Sec, uint64_t Offset) {
 | 
						|
  // In DWARF, functions and variables are stored to different places.
 | 
						|
  // First, lookup a function for a given offset.
 | 
						|
  if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset))
 | 
						|
    return createFileLineMsg(Info->FileName, Info->Line);
 | 
						|
 | 
						|
  // If it failed, lookup again as a variable.
 | 
						|
  if (Optional<std::pair<std::string, unsigned>> FileLine =
 | 
						|
          File.getVariableLoc(Sym.getName()))
 | 
						|
    return createFileLineMsg(FileLine->first, FileLine->second);
 | 
						|
 | 
						|
  // File.SourceFile contains STT_FILE symbol, and that is a last resort.
 | 
						|
  return File.SourceFile;
 | 
						|
}
 | 
						|
 | 
						|
std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec,
 | 
						|
                                 uint64_t Offset) {
 | 
						|
  if (kind() != ObjKind)
 | 
						|
    return "";
 | 
						|
  switch (Config->EKind) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid kind");
 | 
						|
  case ELF32LEKind:
 | 
						|
    return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset);
 | 
						|
  case ELF32BEKind:
 | 
						|
    return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset);
 | 
						|
  case ELF64LEKind:
 | 
						|
    return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset);
 | 
						|
  case ELF64BEKind:
 | 
						|
    return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
 | 
						|
  Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this));
 | 
						|
  for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) {
 | 
						|
    auto Report = [](Error Err) {
 | 
						|
      handleAllErrors(std::move(Err),
 | 
						|
                      [](ErrorInfoBase &Info) { warn(Info.message()); });
 | 
						|
    };
 | 
						|
    Expected<const DWARFDebugLine::LineTable *> ExpectedLT =
 | 
						|
        Dwarf->getLineTableForUnit(CU.get(), Report);
 | 
						|
    const DWARFDebugLine::LineTable *LT = nullptr;
 | 
						|
    if (ExpectedLT)
 | 
						|
      LT = *ExpectedLT;
 | 
						|
    else
 | 
						|
      Report(ExpectedLT.takeError());
 | 
						|
    if (!LT)
 | 
						|
      continue;
 | 
						|
    LineTables.push_back(LT);
 | 
						|
 | 
						|
    // Loop over variable records and insert them to VariableLoc.
 | 
						|
    for (const auto &Entry : CU->dies()) {
 | 
						|
      DWARFDie Die(CU.get(), &Entry);
 | 
						|
      // Skip all tags that are not variables.
 | 
						|
      if (Die.getTag() != dwarf::DW_TAG_variable)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Skip if a local variable because we don't need them for generating
 | 
						|
      // error messages. In general, only non-local symbols can fail to be
 | 
						|
      // linked.
 | 
						|
      if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Get the source filename index for the variable.
 | 
						|
      unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
 | 
						|
      if (!LT->hasFileAtIndex(File))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Get the line number on which the variable is declared.
 | 
						|
      unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
 | 
						|
 | 
						|
      // Here we want to take the variable name to add it into VariableLoc.
 | 
						|
      // Variable can have regular and linkage name associated. At first, we try
 | 
						|
      // to get linkage name as it can be different, for example when we have
 | 
						|
      // two variables in different namespaces of the same object. Use common
 | 
						|
      // name otherwise, but handle the case when it also absent in case if the
 | 
						|
      // input object file lacks some debug info.
 | 
						|
      StringRef Name =
 | 
						|
          dwarf::toString(Die.find(dwarf::DW_AT_linkage_name),
 | 
						|
                          dwarf::toString(Die.find(dwarf::DW_AT_name), ""));
 | 
						|
      if (!Name.empty())
 | 
						|
        VariableLoc.insert({Name, {LT, File, Line}});
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Returns the pair of file name and line number describing location of data
 | 
						|
// object (variable, array, etc) definition.
 | 
						|
template <class ELFT>
 | 
						|
Optional<std::pair<std::string, unsigned>>
 | 
						|
ObjFile<ELFT>::getVariableLoc(StringRef Name) {
 | 
						|
  llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
 | 
						|
 | 
						|
  // Return if we have no debug information about data object.
 | 
						|
  auto It = VariableLoc.find(Name);
 | 
						|
  if (It == VariableLoc.end())
 | 
						|
    return None;
 | 
						|
 | 
						|
  // Take file name string from line table.
 | 
						|
  std::string FileName;
 | 
						|
  if (!It->second.LT->getFileNameByIndex(
 | 
						|
          It->second.File, nullptr,
 | 
						|
          DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
 | 
						|
    return None;
 | 
						|
 | 
						|
  return std::make_pair(FileName, It->second.Line);
 | 
						|
}
 | 
						|
 | 
						|
// Returns source line information for a given offset
 | 
						|
// using DWARF debug info.
 | 
						|
template <class ELFT>
 | 
						|
Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
 | 
						|
                                                  uint64_t Offset) {
 | 
						|
  llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
 | 
						|
 | 
						|
  // Detect SectionIndex for specified section.
 | 
						|
  uint64_t SectionIndex = object::SectionedAddress::UndefSection;
 | 
						|
  ArrayRef<InputSectionBase *> Sections = S->File->getSections();
 | 
						|
  for (uint64_t CurIndex = 0; CurIndex < Sections.size(); ++CurIndex) {
 | 
						|
    if (S == Sections[CurIndex]) {
 | 
						|
      SectionIndex = CurIndex;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Use fake address calcuated by adding section file offset and offset in
 | 
						|
  // section. See comments for ObjectInfo class.
 | 
						|
  DILineInfo Info;
 | 
						|
  for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) {
 | 
						|
    if (LT->getFileLineInfoForAddress(
 | 
						|
            {S->getOffsetInFile() + Offset, SectionIndex}, nullptr,
 | 
						|
            DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info))
 | 
						|
      return Info;
 | 
						|
  }
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
// Returns "<internal>", "foo.a(bar.o)" or "baz.o".
 | 
						|
std::string lld::toString(const InputFile *F) {
 | 
						|
  if (!F)
 | 
						|
    return "<internal>";
 | 
						|
 | 
						|
  if (F->ToStringCache.empty()) {
 | 
						|
    if (F->ArchiveName.empty())
 | 
						|
      F->ToStringCache = F->getName();
 | 
						|
    else
 | 
						|
      F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
 | 
						|
  }
 | 
						|
  return F->ToStringCache;
 | 
						|
}
 | 
						|
 | 
						|
ELFFileBase::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
 | 
						|
  EKind = getELFKind(MB, "");
 | 
						|
 | 
						|
  switch (EKind) {
 | 
						|
  case ELF32LEKind:
 | 
						|
    init<ELF32LE>();
 | 
						|
    break;
 | 
						|
  case ELF32BEKind:
 | 
						|
    init<ELF32BE>();
 | 
						|
    break;
 | 
						|
  case ELF64LEKind:
 | 
						|
    init<ELF64LE>();
 | 
						|
    break;
 | 
						|
  case ELF64BEKind:
 | 
						|
    init<ELF64BE>();
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("getELFKind");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Elf_Shdr>
 | 
						|
static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> Sections, uint32_t Type) {
 | 
						|
  for (const Elf_Shdr &Sec : Sections)
 | 
						|
    if (Sec.sh_type == Type)
 | 
						|
      return &Sec;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void ELFFileBase::init() {
 | 
						|
  using Elf_Shdr = typename ELFT::Shdr;
 | 
						|
  using Elf_Sym = typename ELFT::Sym;
 | 
						|
 | 
						|
  // Initialize trivial attributes.
 | 
						|
  const ELFFile<ELFT> &Obj = getObj<ELFT>();
 | 
						|
  EMachine = Obj.getHeader()->e_machine;
 | 
						|
  OSABI = Obj.getHeader()->e_ident[llvm::ELF::EI_OSABI];
 | 
						|
  ABIVersion = Obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION];
 | 
						|
 | 
						|
  ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this);
 | 
						|
 | 
						|
  // Find a symbol table.
 | 
						|
  bool IsDSO =
 | 
						|
      (identify_magic(MB.getBuffer()) == file_magic::elf_shared_object);
 | 
						|
  const Elf_Shdr *SymtabSec =
 | 
						|
      findSection(Sections, IsDSO ? SHT_DYNSYM : SHT_SYMTAB);
 | 
						|
 | 
						|
  if (!SymtabSec)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Initialize members corresponding to a symbol table.
 | 
						|
  FirstGlobal = SymtabSec->sh_info;
 | 
						|
 | 
						|
  ArrayRef<Elf_Sym> ESyms = CHECK(Obj.symbols(SymtabSec), this);
 | 
						|
  if (FirstGlobal == 0 || FirstGlobal > ESyms.size())
 | 
						|
    fatal(toString(this) + ": invalid sh_info in symbol table");
 | 
						|
 | 
						|
  ELFSyms = reinterpret_cast<const void *>(ESyms.data());
 | 
						|
  NumELFSyms = ESyms.size();
 | 
						|
  StringTable = CHECK(Obj.getStringTableForSymtab(*SymtabSec, Sections), this);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
 | 
						|
  return CHECK(
 | 
						|
      this->getObj().getSectionIndex(&Sym, getELFSyms<ELFT>(), ShndxTable),
 | 
						|
      this);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
 | 
						|
  if (this->Symbols.empty())
 | 
						|
    return {};
 | 
						|
  return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
 | 
						|
  return makeArrayRef(this->Symbols).slice(this->FirstGlobal);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void ObjFile<ELFT>::parse(bool IgnoreComdats) {
 | 
						|
  // Read a section table. JustSymbols is usually false.
 | 
						|
  if (this->JustSymbols)
 | 
						|
    initializeJustSymbols();
 | 
						|
  else
 | 
						|
    initializeSections(IgnoreComdats);
 | 
						|
 | 
						|
  // Read a symbol table.
 | 
						|
  initializeSymbols();
 | 
						|
}
 | 
						|
 | 
						|
// Sections with SHT_GROUP and comdat bits define comdat section groups.
 | 
						|
// They are identified and deduplicated by group name. This function
 | 
						|
// returns a group name.
 | 
						|
template <class ELFT>
 | 
						|
StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
 | 
						|
                                              const Elf_Shdr &Sec) {
 | 
						|
  const Elf_Sym *Sym =
 | 
						|
      CHECK(object::getSymbol<ELFT>(this->getELFSyms<ELFT>(), Sec.sh_info), this);
 | 
						|
  StringRef Signature = CHECK(Sym->getName(this->StringTable), this);
 | 
						|
 | 
						|
  // As a special case, if a symbol is a section symbol and has no name,
 | 
						|
  // we use a section name as a signature.
 | 
						|
  //
 | 
						|
  // Such SHT_GROUP sections are invalid from the perspective of the ELF
 | 
						|
  // standard, but GNU gold 1.14 (the newest version as of July 2017) or
 | 
						|
  // older produce such sections as outputs for the -r option, so we need
 | 
						|
  // a bug-compatibility.
 | 
						|
  if (Signature.empty() && Sym->getType() == STT_SECTION)
 | 
						|
    return getSectionName(Sec);
 | 
						|
  return Signature;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
 | 
						|
  // On a regular link we don't merge sections if -O0 (default is -O1). This
 | 
						|
  // sometimes makes the linker significantly faster, although the output will
 | 
						|
  // be bigger.
 | 
						|
  //
 | 
						|
  // Doing the same for -r would create a problem as it would combine sections
 | 
						|
  // with different sh_entsize. One option would be to just copy every SHF_MERGE
 | 
						|
  // section as is to the output. While this would produce a valid ELF file with
 | 
						|
  // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
 | 
						|
  // they see two .debug_str. We could have separate logic for combining
 | 
						|
  // SHF_MERGE sections based both on their name and sh_entsize, but that seems
 | 
						|
  // to be more trouble than it is worth. Instead, we just use the regular (-O1)
 | 
						|
  // logic for -r.
 | 
						|
  if (Config->Optimize == 0 && !Config->Relocatable)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A mergeable section with size 0 is useless because they don't have
 | 
						|
  // any data to merge. A mergeable string section with size 0 can be
 | 
						|
  // argued as invalid because it doesn't end with a null character.
 | 
						|
  // We'll avoid a mess by handling them as if they were non-mergeable.
 | 
						|
  if (Sec.sh_size == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check for sh_entsize. The ELF spec is not clear about the zero
 | 
						|
  // sh_entsize. It says that "the member [sh_entsize] contains 0 if
 | 
						|
  // the section does not hold a table of fixed-size entries". We know
 | 
						|
  // that Rust 1.13 produces a string mergeable section with a zero
 | 
						|
  // sh_entsize. Here we just accept it rather than being picky about it.
 | 
						|
  uint64_t EntSize = Sec.sh_entsize;
 | 
						|
  if (EntSize == 0)
 | 
						|
    return false;
 | 
						|
  if (Sec.sh_size % EntSize)
 | 
						|
    fatal(toString(this) +
 | 
						|
          ": SHF_MERGE section size must be a multiple of sh_entsize");
 | 
						|
 | 
						|
  uint64_t Flags = Sec.sh_flags;
 | 
						|
  if (!(Flags & SHF_MERGE))
 | 
						|
    return false;
 | 
						|
  if (Flags & SHF_WRITE)
 | 
						|
    fatal(toString(this) + ": writable SHF_MERGE section is not supported");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// This is for --just-symbols.
 | 
						|
//
 | 
						|
// --just-symbols is a very minor feature that allows you to link your
 | 
						|
// output against other existing program, so that if you load both your
 | 
						|
// program and the other program into memory, your output can refer the
 | 
						|
// other program's symbols.
 | 
						|
//
 | 
						|
// When the option is given, we link "just symbols". The section table is
 | 
						|
// initialized with null pointers.
 | 
						|
template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
 | 
						|
  ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this);
 | 
						|
  this->Sections.resize(Sections.size());
 | 
						|
}
 | 
						|
 | 
						|
// An ELF object file may contain a `.deplibs` section. If it exists, the
 | 
						|
// section contains a list of library specifiers such as `m` for libm. This
 | 
						|
// function resolves a given name by finding the first matching library checking
 | 
						|
// the various ways that a library can be specified to LLD. This ELF extension
 | 
						|
// is a form of autolinking and is called `dependent libraries`. It is currently
 | 
						|
// unique to LLVM and lld.
 | 
						|
static void addDependentLibrary(StringRef Specifier, const InputFile *F) {
 | 
						|
  if (!Config->DependentLibraries)
 | 
						|
    return;
 | 
						|
  if (fs::exists(Specifier))
 | 
						|
    Driver->addFile(Specifier, /*WithLOption=*/false);
 | 
						|
  else if (Optional<std::string> S = findFromSearchPaths(Specifier))
 | 
						|
    Driver->addFile(*S, /*WithLOption=*/true);
 | 
						|
  else if (Optional<std::string> S = searchLibraryBaseName(Specifier))
 | 
						|
    Driver->addFile(*S, /*WithLOption=*/true);
 | 
						|
  else
 | 
						|
    error(toString(F) +
 | 
						|
          ": unable to find library from dependent library specifier: " +
 | 
						|
          Specifier);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void ObjFile<ELFT>::initializeSections(bool IgnoreComdats) {
 | 
						|
  const ELFFile<ELFT> &Obj = this->getObj();
 | 
						|
 | 
						|
  ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this);
 | 
						|
  uint64_t Size = ObjSections.size();
 | 
						|
  this->Sections.resize(Size);
 | 
						|
  this->SectionStringTable =
 | 
						|
      CHECK(Obj.getSectionStringTable(ObjSections), this);
 | 
						|
 | 
						|
  for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
 | 
						|
    if (this->Sections[I] == &InputSection::Discarded)
 | 
						|
      continue;
 | 
						|
    const Elf_Shdr &Sec = ObjSections[I];
 | 
						|
 | 
						|
    if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
 | 
						|
      CGProfile =
 | 
						|
          check(Obj.template getSectionContentsAsArray<Elf_CGProfile>(&Sec));
 | 
						|
 | 
						|
    // SHF_EXCLUDE'ed sections are discarded by the linker. However,
 | 
						|
    // if -r is given, we'll let the final link discard such sections.
 | 
						|
    // This is compatible with GNU.
 | 
						|
    if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
 | 
						|
      if (Sec.sh_type == SHT_LLVM_ADDRSIG) {
 | 
						|
        // We ignore the address-significance table if we know that the object
 | 
						|
        // file was created by objcopy or ld -r. This is because these tools
 | 
						|
        // will reorder the symbols in the symbol table, invalidating the data
 | 
						|
        // in the address-significance table, which refers to symbols by index.
 | 
						|
        if (Sec.sh_link != 0)
 | 
						|
          this->AddrsigSec = &Sec;
 | 
						|
        else if (Config->ICF == ICFLevel::Safe)
 | 
						|
          warn(toString(this) + ": --icf=safe is incompatible with object "
 | 
						|
                                "files created using objcopy or ld -r");
 | 
						|
      }
 | 
						|
      this->Sections[I] = &InputSection::Discarded;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Sec.sh_type) {
 | 
						|
    case SHT_GROUP: {
 | 
						|
      // De-duplicate section groups by their signatures.
 | 
						|
      StringRef Signature = getShtGroupSignature(ObjSections, Sec);
 | 
						|
      this->Sections[I] = &InputSection::Discarded;
 | 
						|
 | 
						|
 | 
						|
      ArrayRef<Elf_Word> Entries =
 | 
						|
          CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this);
 | 
						|
      if (Entries.empty())
 | 
						|
        fatal(toString(this) + ": empty SHT_GROUP");
 | 
						|
 | 
						|
      // The first word of a SHT_GROUP section contains flags. Currently,
 | 
						|
      // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
 | 
						|
      // An group with the empty flag doesn't define anything; such sections
 | 
						|
      // are just skipped.
 | 
						|
      if (Entries[0] == 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (Entries[0] != GRP_COMDAT)
 | 
						|
        fatal(toString(this) + ": unsupported SHT_GROUP format");
 | 
						|
 | 
						|
      bool IsNew =
 | 
						|
          IgnoreComdats ||
 | 
						|
          Symtab->ComdatGroups.try_emplace(CachedHashStringRef(Signature), this)
 | 
						|
              .second;
 | 
						|
      if (IsNew) {
 | 
						|
        if (Config->Relocatable)
 | 
						|
          this->Sections[I] = createInputSection(Sec);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, discard group members.
 | 
						|
      for (uint32_t SecIndex : Entries.slice(1)) {
 | 
						|
        if (SecIndex >= Size)
 | 
						|
          fatal(toString(this) +
 | 
						|
                ": invalid section index in group: " + Twine(SecIndex));
 | 
						|
        this->Sections[SecIndex] = &InputSection::Discarded;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case SHT_SYMTAB_SHNDX:
 | 
						|
      ShndxTable = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this);
 | 
						|
      break;
 | 
						|
    case SHT_SYMTAB:
 | 
						|
    case SHT_STRTAB:
 | 
						|
    case SHT_NULL:
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      this->Sections[I] = createInputSection(Sec);
 | 
						|
    }
 | 
						|
 | 
						|
    // .ARM.exidx sections have a reverse dependency on the InputSection they
 | 
						|
    // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
 | 
						|
    if (Sec.sh_flags & SHF_LINK_ORDER) {
 | 
						|
      InputSectionBase *LinkSec = nullptr;
 | 
						|
      if (Sec.sh_link < this->Sections.size())
 | 
						|
        LinkSec = this->Sections[Sec.sh_link];
 | 
						|
      if (!LinkSec)
 | 
						|
        fatal(toString(this) +
 | 
						|
              ": invalid sh_link index: " + Twine(Sec.sh_link));
 | 
						|
 | 
						|
      InputSection *IS = cast<InputSection>(this->Sections[I]);
 | 
						|
      LinkSec->DependentSections.push_back(IS);
 | 
						|
      if (!isa<InputSection>(LinkSec))
 | 
						|
        error("a section " + IS->Name +
 | 
						|
              " with SHF_LINK_ORDER should not refer a non-regular "
 | 
						|
              "section: " +
 | 
						|
              toString(LinkSec));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
 | 
						|
// flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
 | 
						|
// the input objects have been compiled.
 | 
						|
static void updateARMVFPArgs(const ARMAttributeParser &Attributes,
 | 
						|
                             const InputFile *F) {
 | 
						|
  if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args))
 | 
						|
    // If an ABI tag isn't present then it is implicitly given the value of 0
 | 
						|
    // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
 | 
						|
    // including some in glibc that don't use FP args (and should have value 3)
 | 
						|
    // don't have the attribute so we do not consider an implicit value of 0
 | 
						|
    // as a clash.
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
 | 
						|
  ARMVFPArgKind Arg;
 | 
						|
  switch (VFPArgs) {
 | 
						|
  case ARMBuildAttrs::BaseAAPCS:
 | 
						|
    Arg = ARMVFPArgKind::Base;
 | 
						|
    break;
 | 
						|
  case ARMBuildAttrs::HardFPAAPCS:
 | 
						|
    Arg = ARMVFPArgKind::VFP;
 | 
						|
    break;
 | 
						|
  case ARMBuildAttrs::ToolChainFPPCS:
 | 
						|
    // Tool chain specific convention that conforms to neither AAPCS variant.
 | 
						|
    Arg = ARMVFPArgKind::ToolChain;
 | 
						|
    break;
 | 
						|
  case ARMBuildAttrs::CompatibleFPAAPCS:
 | 
						|
    // Object compatible with all conventions.
 | 
						|
    return;
 | 
						|
  default:
 | 
						|
    error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Follow ld.bfd and error if there is a mix of calling conventions.
 | 
						|
  if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default)
 | 
						|
    error(toString(F) + ": incompatible Tag_ABI_VFP_args");
 | 
						|
  else
 | 
						|
    Config->ARMVFPArgs = Arg;
 | 
						|
}
 | 
						|
 | 
						|
// The ARM support in lld makes some use of instructions that are not available
 | 
						|
// on all ARM architectures. Namely:
 | 
						|
// - Use of BLX instruction for interworking between ARM and Thumb state.
 | 
						|
// - Use of the extended Thumb branch encoding in relocation.
 | 
						|
// - Use of the MOVT/MOVW instructions in Thumb Thunks.
 | 
						|
// The ARM Attributes section contains information about the architecture chosen
 | 
						|
// at compile time. We follow the convention that if at least one input object
 | 
						|
// is compiled with an architecture that supports these features then lld is
 | 
						|
// permitted to use them.
 | 
						|
static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) {
 | 
						|
  if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
 | 
						|
    return;
 | 
						|
  auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
 | 
						|
  switch (Arch) {
 | 
						|
  case ARMBuildAttrs::Pre_v4:
 | 
						|
  case ARMBuildAttrs::v4:
 | 
						|
  case ARMBuildAttrs::v4T:
 | 
						|
    // Architectures prior to v5 do not support BLX instruction
 | 
						|
    break;
 | 
						|
  case ARMBuildAttrs::v5T:
 | 
						|
  case ARMBuildAttrs::v5TE:
 | 
						|
  case ARMBuildAttrs::v5TEJ:
 | 
						|
  case ARMBuildAttrs::v6:
 | 
						|
  case ARMBuildAttrs::v6KZ:
 | 
						|
  case ARMBuildAttrs::v6K:
 | 
						|
    Config->ARMHasBlx = true;
 | 
						|
    // Architectures used in pre-Cortex processors do not support
 | 
						|
    // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
 | 
						|
    // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // All other Architectures have BLX and extended branch encoding
 | 
						|
    Config->ARMHasBlx = true;
 | 
						|
    Config->ARMJ1J2BranchEncoding = true;
 | 
						|
    if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M)
 | 
						|
      // All Architectures used in Cortex processors with the exception
 | 
						|
      // of v6-M and v6S-M have the MOVT and MOVW instructions.
 | 
						|
      Config->ARMHasMovtMovw = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// If a source file is compiled with x86 hardware-assisted call flow control
 | 
						|
// enabled, the generated object file contains feature flags indicating that
 | 
						|
// fact. This function reads the feature flags and returns it.
 | 
						|
//
 | 
						|
// Essentially we want to read a single 32-bit value in this function, but this
 | 
						|
// function is rather complicated because the value is buried deep inside a
 | 
						|
// .note.gnu.property section.
 | 
						|
//
 | 
						|
// The section consists of one or more NOTE records. Each NOTE record consists
 | 
						|
// of zero or more type-length-value fields. We want to find a field of a
 | 
						|
// certain type. It seems a bit too much to just store a 32-bit value, perhaps
 | 
						|
// the ABI is unnecessarily complicated.
 | 
						|
template <class ELFT>
 | 
						|
static uint32_t readAndFeatures(ObjFile<ELFT> *Obj, ArrayRef<uint8_t> Data) {
 | 
						|
  using Elf_Nhdr = typename ELFT::Nhdr;
 | 
						|
  using Elf_Note = typename ELFT::Note;
 | 
						|
 | 
						|
  uint32_t FeaturesSet = 0;
 | 
						|
  while (!Data.empty()) {
 | 
						|
    // Read one NOTE record.
 | 
						|
    if (Data.size() < sizeof(Elf_Nhdr))
 | 
						|
      fatal(toString(Obj) + ": .note.gnu.property: section too short");
 | 
						|
 | 
						|
    auto *Nhdr = reinterpret_cast<const Elf_Nhdr *>(Data.data());
 | 
						|
    if (Data.size() < Nhdr->getSize())
 | 
						|
      fatal(toString(Obj) + ": .note.gnu.property: section too short");
 | 
						|
 | 
						|
    Elf_Note Note(*Nhdr);
 | 
						|
    if (Nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || Note.getName() != "GNU") {
 | 
						|
      Data = Data.slice(Nhdr->getSize());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    uint32_t FeatureAndType = Config->EMachine == EM_AARCH64
 | 
						|
                                  ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
 | 
						|
                                  : GNU_PROPERTY_X86_FEATURE_1_AND;
 | 
						|
 | 
						|
    // Read a body of a NOTE record, which consists of type-length-value fields.
 | 
						|
    ArrayRef<uint8_t> Desc = Note.getDesc();
 | 
						|
    while (!Desc.empty()) {
 | 
						|
      if (Desc.size() < 8)
 | 
						|
        fatal(toString(Obj) + ": .note.gnu.property: section too short");
 | 
						|
 | 
						|
      uint32_t Type = read32le(Desc.data());
 | 
						|
      uint32_t Size = read32le(Desc.data() + 4);
 | 
						|
 | 
						|
      if (Type == FeatureAndType) {
 | 
						|
        // We found a FEATURE_1_AND field. There may be more than one of these
 | 
						|
        // in a .note.gnu.propery section, for a relocatable object we
 | 
						|
        // accumulate the bits set.
 | 
						|
        FeaturesSet |= read32le(Desc.data() + 8);
 | 
						|
      }
 | 
						|
 | 
						|
      // On 64-bit, a payload may be followed by a 4-byte padding to make its
 | 
						|
      // size a multiple of 8.
 | 
						|
      if (ELFT::Is64Bits)
 | 
						|
        Size = alignTo(Size, 8);
 | 
						|
 | 
						|
      Desc = Desc.slice(Size + 8); // +8 for Type and Size
 | 
						|
    }
 | 
						|
 | 
						|
    // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
 | 
						|
    Data = Data.slice(Nhdr->getSize());
 | 
						|
  }
 | 
						|
 | 
						|
  return FeaturesSet;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
 | 
						|
  uint32_t Idx = Sec.sh_info;
 | 
						|
  if (Idx >= this->Sections.size())
 | 
						|
    fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
 | 
						|
  InputSectionBase *Target = this->Sections[Idx];
 | 
						|
 | 
						|
  // Strictly speaking, a relocation section must be included in the
 | 
						|
  // group of the section it relocates. However, LLVM 3.3 and earlier
 | 
						|
  // would fail to do so, so we gracefully handle that case.
 | 
						|
  if (Target == &InputSection::Discarded)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!Target)
 | 
						|
    fatal(toString(this) + ": unsupported relocation reference");
 | 
						|
  return Target;
 | 
						|
}
 | 
						|
 | 
						|
// Create a regular InputSection class that has the same contents
 | 
						|
// as a given section.
 | 
						|
static InputSection *toRegularSection(MergeInputSection *Sec) {
 | 
						|
  return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment,
 | 
						|
                            Sec->data(), Sec->Name);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
 | 
						|
  StringRef Name = getSectionName(Sec);
 | 
						|
 | 
						|
  switch (Sec.sh_type) {
 | 
						|
  case SHT_ARM_ATTRIBUTES: {
 | 
						|
    if (Config->EMachine != EM_ARM)
 | 
						|
      break;
 | 
						|
    ARMAttributeParser Attributes;
 | 
						|
    ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
 | 
						|
    Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind);
 | 
						|
    updateSupportedARMFeatures(Attributes);
 | 
						|
    updateARMVFPArgs(Attributes, this);
 | 
						|
 | 
						|
    // FIXME: Retain the first attribute section we see. The eglibc ARM
 | 
						|
    // dynamic loaders require the presence of an attribute section for dlopen
 | 
						|
    // to work. In a full implementation we would merge all attribute sections.
 | 
						|
    if (In.ARMAttributes == nullptr) {
 | 
						|
      In.ARMAttributes = make<InputSection>(*this, Sec, Name);
 | 
						|
      return In.ARMAttributes;
 | 
						|
    }
 | 
						|
    return &InputSection::Discarded;
 | 
						|
  }
 | 
						|
  case SHT_LLVM_DEPENDENT_LIBRARIES: {
 | 
						|
    if (Config->Relocatable)
 | 
						|
      break;
 | 
						|
    ArrayRef<char> Data =
 | 
						|
        CHECK(this->getObj().template getSectionContentsAsArray<char>(&Sec), this);
 | 
						|
    if (!Data.empty() && Data.back() != '\0') {
 | 
						|
      error(toString(this) +
 | 
						|
            ": corrupted dependent libraries section (unterminated string): " +
 | 
						|
            Name);
 | 
						|
      return &InputSection::Discarded;
 | 
						|
    }
 | 
						|
    for (const char *D = Data.begin(), *E = Data.end(); D < E;) {
 | 
						|
      StringRef S(D);
 | 
						|
      addDependentLibrary(S, this);
 | 
						|
      D += S.size() + 1;
 | 
						|
    }
 | 
						|
    return &InputSection::Discarded;
 | 
						|
  }
 | 
						|
  case SHT_RELA:
 | 
						|
  case SHT_REL: {
 | 
						|
    // Find a relocation target section and associate this section with that.
 | 
						|
    // Target may have been discarded if it is in a different section group
 | 
						|
    // and the group is discarded, even though it's a violation of the
 | 
						|
    // spec. We handle that situation gracefully by discarding dangling
 | 
						|
    // relocation sections.
 | 
						|
    InputSectionBase *Target = getRelocTarget(Sec);
 | 
						|
    if (!Target)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // This section contains relocation information.
 | 
						|
    // If -r is given, we do not interpret or apply relocation
 | 
						|
    // but just copy relocation sections to output.
 | 
						|
    if (Config->Relocatable) {
 | 
						|
      InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
 | 
						|
      // We want to add a dependency to target, similar like we do for
 | 
						|
      // -emit-relocs below. This is useful for the case when linker script
 | 
						|
      // contains the "/DISCARD/". It is perhaps uncommon to use a script with
 | 
						|
      // -r, but we faced it in the Linux kernel and have to handle such case
 | 
						|
      // and not to crash.
 | 
						|
      Target->DependentSections.push_back(RelocSec);
 | 
						|
      return RelocSec;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Target->FirstRelocation)
 | 
						|
      fatal(toString(this) +
 | 
						|
            ": multiple relocation sections to one section are not supported");
 | 
						|
 | 
						|
    // ELF spec allows mergeable sections with relocations, but they are
 | 
						|
    // rare, and it is in practice hard to merge such sections by contents,
 | 
						|
    // because applying relocations at end of linking changes section
 | 
						|
    // contents. So, we simply handle such sections as non-mergeable ones.
 | 
						|
    // Degrading like this is acceptable because section merging is optional.
 | 
						|
    if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
 | 
						|
      Target = toRegularSection(MS);
 | 
						|
      this->Sections[Sec.sh_info] = Target;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Sec.sh_type == SHT_RELA) {
 | 
						|
      ArrayRef<Elf_Rela> Rels = CHECK(getObj().relas(&Sec), this);
 | 
						|
      Target->FirstRelocation = Rels.begin();
 | 
						|
      Target->NumRelocations = Rels.size();
 | 
						|
      Target->AreRelocsRela = true;
 | 
						|
    } else {
 | 
						|
      ArrayRef<Elf_Rel> Rels = CHECK(getObj().rels(&Sec), this);
 | 
						|
      Target->FirstRelocation = Rels.begin();
 | 
						|
      Target->NumRelocations = Rels.size();
 | 
						|
      Target->AreRelocsRela = false;
 | 
						|
    }
 | 
						|
    assert(isUInt<31>(Target->NumRelocations));
 | 
						|
 | 
						|
    // Relocation sections processed by the linker are usually removed
 | 
						|
    // from the output, so returning `nullptr` for the normal case.
 | 
						|
    // However, if -emit-relocs is given, we need to leave them in the output.
 | 
						|
    // (Some post link analysis tools need this information.)
 | 
						|
    if (Config->EmitRelocs) {
 | 
						|
      InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
 | 
						|
      // We will not emit relocation section if target was discarded.
 | 
						|
      Target->DependentSections.push_back(RelocSec);
 | 
						|
      return RelocSec;
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // The GNU linker uses .note.GNU-stack section as a marker indicating
 | 
						|
  // that the code in the object file does not expect that the stack is
 | 
						|
  // executable (in terms of NX bit). If all input files have the marker,
 | 
						|
  // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
 | 
						|
  // make the stack non-executable. Most object files have this section as
 | 
						|
  // of 2017.
 | 
						|
  //
 | 
						|
  // But making the stack non-executable is a norm today for security
 | 
						|
  // reasons. Failure to do so may result in a serious security issue.
 | 
						|
  // Therefore, we make LLD always add PT_GNU_STACK unless it is
 | 
						|
  // explicitly told to do otherwise (by -z execstack). Because the stack
 | 
						|
  // executable-ness is controlled solely by command line options,
 | 
						|
  // .note.GNU-stack sections are simply ignored.
 | 
						|
  if (Name == ".note.GNU-stack")
 | 
						|
    return &InputSection::Discarded;
 | 
						|
 | 
						|
  // Object files that use processor features such as Intel Control-Flow
 | 
						|
  // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
 | 
						|
  // .note.gnu.property section containing a bitfield of feature bits like the
 | 
						|
  // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
 | 
						|
  //
 | 
						|
  // Since we merge bitmaps from multiple object files to create a new
 | 
						|
  // .note.gnu.property containing a single AND'ed bitmap, we discard an input
 | 
						|
  // file's .note.gnu.property section.
 | 
						|
  if (Name == ".note.gnu.property") {
 | 
						|
    ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
 | 
						|
    this->AndFeatures = readAndFeatures(this, Contents);
 | 
						|
    return &InputSection::Discarded;
 | 
						|
  }
 | 
						|
 | 
						|
  // Split stacks is a feature to support a discontiguous stack,
 | 
						|
  // commonly used in the programming language Go. For the details,
 | 
						|
  // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
 | 
						|
  // for split stack will include a .note.GNU-split-stack section.
 | 
						|
  if (Name == ".note.GNU-split-stack") {
 | 
						|
    if (Config->Relocatable) {
 | 
						|
      error("cannot mix split-stack and non-split-stack in a relocatable link");
 | 
						|
      return &InputSection::Discarded;
 | 
						|
    }
 | 
						|
    this->SplitStack = true;
 | 
						|
    return &InputSection::Discarded;
 | 
						|
  }
 | 
						|
 | 
						|
  // An object file cmpiled for split stack, but where some of the
 | 
						|
  // functions were compiled with the no_split_stack_attribute will
 | 
						|
  // include a .note.GNU-no-split-stack section.
 | 
						|
  if (Name == ".note.GNU-no-split-stack") {
 | 
						|
    this->SomeNoSplitStack = true;
 | 
						|
    return &InputSection::Discarded;
 | 
						|
  }
 | 
						|
 | 
						|
  // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
 | 
						|
  // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
 | 
						|
  // sections. Drop those sections to avoid duplicate symbol errors.
 | 
						|
  // FIXME: This is glibc PR20543, we should remove this hack once that has been
 | 
						|
  // fixed for a while.
 | 
						|
  if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
 | 
						|
      Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
 | 
						|
    return &InputSection::Discarded;
 | 
						|
 | 
						|
  // If we are creating a new .build-id section, strip existing .build-id
 | 
						|
  // sections so that the output won't have more than one .build-id.
 | 
						|
  // This is not usually a problem because input object files normally don't
 | 
						|
  // have .build-id sections, but you can create such files by
 | 
						|
  // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
 | 
						|
  if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None)
 | 
						|
    return &InputSection::Discarded;
 | 
						|
 | 
						|
  // The linker merges EH (exception handling) frames and creates a
 | 
						|
  // .eh_frame_hdr section for runtime. So we handle them with a special
 | 
						|
  // class. For relocatable outputs, they are just passed through.
 | 
						|
  if (Name == ".eh_frame" && !Config->Relocatable)
 | 
						|
    return make<EhInputSection>(*this, Sec, Name);
 | 
						|
 | 
						|
  if (shouldMerge(Sec))
 | 
						|
    return make<MergeInputSection>(*this, Sec, Name);
 | 
						|
  return make<InputSection>(*this, Sec, Name);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
 | 
						|
  return CHECK(getObj().getSectionName(&Sec, SectionStringTable), this);
 | 
						|
}
 | 
						|
 | 
						|
// Initialize this->Symbols. this->Symbols is a parallel array as
 | 
						|
// its corresponding ELF symbol table.
 | 
						|
template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
 | 
						|
  ArrayRef<Elf_Sym> ESyms = this->getELFSyms<ELFT>();
 | 
						|
  this->Symbols.resize(ESyms.size());
 | 
						|
 | 
						|
  // Our symbol table may have already been partially initialized
 | 
						|
  // because of LazyObjFile.
 | 
						|
  for (size_t I = 0, End = ESyms.size(); I != End; ++I)
 | 
						|
    if (!this->Symbols[I] && ESyms[I].getBinding() != STB_LOCAL)
 | 
						|
      this->Symbols[I] =
 | 
						|
          Symtab->insert(CHECK(ESyms[I].getName(this->StringTable), this));
 | 
						|
 | 
						|
  // Fill this->Symbols. A symbol is either local or global.
 | 
						|
  for (size_t I = 0, End = ESyms.size(); I != End; ++I) {
 | 
						|
    const Elf_Sym &ESym = ESyms[I];
 | 
						|
 | 
						|
    // Read symbol attributes.
 | 
						|
    uint32_t SecIdx = getSectionIndex(ESym);
 | 
						|
    if (SecIdx >= this->Sections.size())
 | 
						|
      fatal(toString(this) + ": invalid section index: " + Twine(SecIdx));
 | 
						|
 | 
						|
    InputSectionBase *Sec = this->Sections[SecIdx];
 | 
						|
    uint8_t Binding = ESym.getBinding();
 | 
						|
    uint8_t StOther = ESym.st_other;
 | 
						|
    uint8_t Type = ESym.getType();
 | 
						|
    uint64_t Value = ESym.st_value;
 | 
						|
    uint64_t Size = ESym.st_size;
 | 
						|
    StringRefZ Name = this->StringTable.data() + ESym.st_name;
 | 
						|
 | 
						|
    // Handle local symbols. Local symbols are not added to the symbol
 | 
						|
    // table because they are not visible from other object files. We
 | 
						|
    // allocate symbol instances and add their pointers to Symbols.
 | 
						|
    if (Binding == STB_LOCAL) {
 | 
						|
      if (ESym.getType() == STT_FILE)
 | 
						|
        SourceFile = CHECK(ESym.getName(this->StringTable), this);
 | 
						|
 | 
						|
      if (this->StringTable.size() <= ESym.st_name)
 | 
						|
        fatal(toString(this) + ": invalid symbol name offset");
 | 
						|
 | 
						|
      if (ESym.st_shndx == SHN_UNDEF)
 | 
						|
        this->Symbols[I] = make<Undefined>(this, Name, Binding, StOther, Type);
 | 
						|
      else if (Sec == &InputSection::Discarded)
 | 
						|
        this->Symbols[I] = make<Undefined>(this, Name, Binding, StOther, Type,
 | 
						|
                                           /*DiscardedSecIdx=*/SecIdx);
 | 
						|
      else
 | 
						|
        this->Symbols[I] =
 | 
						|
            make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle global undefined symbols.
 | 
						|
    if (ESym.st_shndx == SHN_UNDEF) {
 | 
						|
      this->Symbols[I]->resolve(Undefined{this, Name, Binding, StOther, Type});
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle global common symbols.
 | 
						|
    if (ESym.st_shndx == SHN_COMMON) {
 | 
						|
      if (Value == 0 || Value >= UINT32_MAX)
 | 
						|
        fatal(toString(this) + ": common symbol '" + StringRef(Name.Data) +
 | 
						|
              "' has invalid alignment: " + Twine(Value));
 | 
						|
      this->Symbols[I]->resolve(
 | 
						|
          CommonSymbol{this, Name, Binding, StOther, Type, Value, Size});
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If a defined symbol is in a discarded section, handle it as if it
 | 
						|
    // were an undefined symbol. Such symbol doesn't comply with the
 | 
						|
    // standard, but in practice, a .eh_frame often directly refer
 | 
						|
    // COMDAT member sections, and if a comdat group is discarded, some
 | 
						|
    // defined symbol in a .eh_frame becomes dangling symbols.
 | 
						|
    if (Sec == &InputSection::Discarded) {
 | 
						|
      this->Symbols[I]->resolve(
 | 
						|
          Undefined{this, Name, Binding, StOther, Type, SecIdx});
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle global defined symbols.
 | 
						|
    if (Binding == STB_GLOBAL || Binding == STB_WEAK ||
 | 
						|
        Binding == STB_GNU_UNIQUE) {
 | 
						|
      this->Symbols[I]->resolve(
 | 
						|
          Defined{this, Name, Binding, StOther, Type, Value, Size, Sec});
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    fatal(toString(this) + ": unexpected binding: " + Twine((int)Binding));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
 | 
						|
    : InputFile(ArchiveKind, File->getMemoryBufferRef()),
 | 
						|
      File(std::move(File)) {}
 | 
						|
 | 
						|
void ArchiveFile::parse() {
 | 
						|
  for (const Archive::Symbol &Sym : File->symbols())
 | 
						|
    Symtab->addSymbol(LazyArchive{*this, Sym});
 | 
						|
}
 | 
						|
 | 
						|
// Returns a buffer pointing to a member file containing a given symbol.
 | 
						|
void ArchiveFile::fetch(const Archive::Symbol &Sym) {
 | 
						|
  Archive::Child C =
 | 
						|
      CHECK(Sym.getMember(), toString(this) +
 | 
						|
                                 ": could not get the member for symbol " +
 | 
						|
                                 Sym.getName());
 | 
						|
 | 
						|
  if (!Seen.insert(C.getChildOffset()).second)
 | 
						|
    return;
 | 
						|
 | 
						|
  MemoryBufferRef MB =
 | 
						|
      CHECK(C.getMemoryBufferRef(),
 | 
						|
            toString(this) +
 | 
						|
                ": could not get the buffer for the member defining symbol " +
 | 
						|
                Sym.getName());
 | 
						|
 | 
						|
  if (Tar && C.getParent()->isThin())
 | 
						|
    Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer());
 | 
						|
 | 
						|
  InputFile *File = createObjectFile(
 | 
						|
      MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset());
 | 
						|
  File->GroupId = GroupId;
 | 
						|
  parseFile(File);
 | 
						|
}
 | 
						|
 | 
						|
unsigned SharedFile::VernauxNum;
 | 
						|
 | 
						|
// Parse the version definitions in the object file if present, and return a
 | 
						|
// vector whose nth element contains a pointer to the Elf_Verdef for version
 | 
						|
// identifier n. Version identifiers that are not definitions map to nullptr.
 | 
						|
template <typename ELFT>
 | 
						|
static std::vector<const void *> parseVerdefs(const uint8_t *Base,
 | 
						|
                                              const typename ELFT::Shdr *Sec) {
 | 
						|
  if (!Sec)
 | 
						|
    return {};
 | 
						|
 | 
						|
  // We cannot determine the largest verdef identifier without inspecting
 | 
						|
  // every Elf_Verdef, but both bfd and gold assign verdef identifiers
 | 
						|
  // sequentially starting from 1, so we predict that the largest identifier
 | 
						|
  // will be VerdefCount.
 | 
						|
  unsigned VerdefCount = Sec->sh_info;
 | 
						|
  std::vector<const void *> Verdefs(VerdefCount + 1);
 | 
						|
 | 
						|
  // Build the Verdefs array by following the chain of Elf_Verdef objects
 | 
						|
  // from the start of the .gnu.version_d section.
 | 
						|
  const uint8_t *Verdef = Base + Sec->sh_offset;
 | 
						|
  for (unsigned I = 0; I != VerdefCount; ++I) {
 | 
						|
    auto *CurVerdef = reinterpret_cast<const typename ELFT::Verdef *>(Verdef);
 | 
						|
    Verdef += CurVerdef->vd_next;
 | 
						|
    unsigned VerdefIndex = CurVerdef->vd_ndx;
 | 
						|
    Verdefs.resize(VerdefIndex + 1);
 | 
						|
    Verdefs[VerdefIndex] = CurVerdef;
 | 
						|
  }
 | 
						|
  return Verdefs;
 | 
						|
}
 | 
						|
 | 
						|
// We do not usually care about alignments of data in shared object
 | 
						|
// files because the loader takes care of it. However, if we promote a
 | 
						|
// DSO symbol to point to .bss due to copy relocation, we need to keep
 | 
						|
// the original alignment requirements. We infer it in this function.
 | 
						|
template <typename ELFT>
 | 
						|
static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> Sections,
 | 
						|
                             const typename ELFT::Sym &Sym) {
 | 
						|
  uint64_t Ret = UINT64_MAX;
 | 
						|
  if (Sym.st_value)
 | 
						|
    Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
 | 
						|
  if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size())
 | 
						|
    Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign);
 | 
						|
  return (Ret > UINT32_MAX) ? 0 : Ret;
 | 
						|
}
 | 
						|
 | 
						|
// Fully parse the shared object file.
 | 
						|
//
 | 
						|
// This function parses symbol versions. If a DSO has version information,
 | 
						|
// the file has a ".gnu.version_d" section which contains symbol version
 | 
						|
// definitions. Each symbol is associated to one version through a table in
 | 
						|
// ".gnu.version" section. That table is a parallel array for the symbol
 | 
						|
// table, and each table entry contains an index in ".gnu.version_d".
 | 
						|
//
 | 
						|
// The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
 | 
						|
// VER_NDX_GLOBAL. There's no table entry for these special versions in
 | 
						|
// ".gnu.version_d".
 | 
						|
//
 | 
						|
// The file format for symbol versioning is perhaps a bit more complicated
 | 
						|
// than necessary, but you can easily understand the code if you wrap your
 | 
						|
// head around the data structure described above.
 | 
						|
template <class ELFT> void SharedFile::parse() {
 | 
						|
  using Elf_Dyn = typename ELFT::Dyn;
 | 
						|
  using Elf_Shdr = typename ELFT::Shdr;
 | 
						|
  using Elf_Sym = typename ELFT::Sym;
 | 
						|
  using Elf_Verdef = typename ELFT::Verdef;
 | 
						|
  using Elf_Versym = typename ELFT::Versym;
 | 
						|
 | 
						|
  ArrayRef<Elf_Dyn> DynamicTags;
 | 
						|
  const ELFFile<ELFT> Obj = this->getObj<ELFT>();
 | 
						|
  ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this);
 | 
						|
 | 
						|
  const Elf_Shdr *VersymSec = nullptr;
 | 
						|
  const Elf_Shdr *VerdefSec = nullptr;
 | 
						|
 | 
						|
  // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
 | 
						|
  for (const Elf_Shdr &Sec : Sections) {
 | 
						|
    switch (Sec.sh_type) {
 | 
						|
    default:
 | 
						|
      continue;
 | 
						|
    case SHT_DYNAMIC:
 | 
						|
      DynamicTags =
 | 
						|
          CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(&Sec), this);
 | 
						|
      break;
 | 
						|
    case SHT_GNU_versym:
 | 
						|
      VersymSec = &Sec;
 | 
						|
      break;
 | 
						|
    case SHT_GNU_verdef:
 | 
						|
      VerdefSec = &Sec;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VersymSec && NumELFSyms == 0) {
 | 
						|
    error("SHT_GNU_versym should be associated with symbol table");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Search for a DT_SONAME tag to initialize this->SoName.
 | 
						|
  for (const Elf_Dyn &Dyn : DynamicTags) {
 | 
						|
    if (Dyn.d_tag == DT_NEEDED) {
 | 
						|
      uint64_t Val = Dyn.getVal();
 | 
						|
      if (Val >= this->StringTable.size())
 | 
						|
        fatal(toString(this) + ": invalid DT_NEEDED entry");
 | 
						|
      DtNeeded.push_back(this->StringTable.data() + Val);
 | 
						|
    } else if (Dyn.d_tag == DT_SONAME) {
 | 
						|
      uint64_t Val = Dyn.getVal();
 | 
						|
      if (Val >= this->StringTable.size())
 | 
						|
        fatal(toString(this) + ": invalid DT_SONAME entry");
 | 
						|
      SoName = this->StringTable.data() + Val;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // DSOs are uniquified not by filename but by soname.
 | 
						|
  DenseMap<StringRef, SharedFile *>::iterator It;
 | 
						|
  bool WasInserted;
 | 
						|
  std::tie(It, WasInserted) = Symtab->SoNames.try_emplace(SoName, this);
 | 
						|
 | 
						|
  // If a DSO appears more than once on the command line with and without
 | 
						|
  // --as-needed, --no-as-needed takes precedence over --as-needed because a
 | 
						|
  // user can add an extra DSO with --no-as-needed to force it to be added to
 | 
						|
  // the dependency list.
 | 
						|
  It->second->IsNeeded |= IsNeeded;
 | 
						|
  if (!WasInserted)
 | 
						|
    return;
 | 
						|
 | 
						|
  SharedFiles.push_back(this);
 | 
						|
 | 
						|
  Verdefs = parseVerdefs<ELFT>(Obj.base(), VerdefSec);
 | 
						|
 | 
						|
  // Parse ".gnu.version" section which is a parallel array for the symbol
 | 
						|
  // table. If a given file doesn't have a ".gnu.version" section, we use
 | 
						|
  // VER_NDX_GLOBAL.
 | 
						|
  size_t Size = NumELFSyms - FirstGlobal;
 | 
						|
  std::vector<uint32_t> Versyms(Size, VER_NDX_GLOBAL);
 | 
						|
  if (VersymSec) {
 | 
						|
    ArrayRef<Elf_Versym> Versym =
 | 
						|
        CHECK(Obj.template getSectionContentsAsArray<Elf_Versym>(VersymSec),
 | 
						|
              this)
 | 
						|
            .slice(FirstGlobal);
 | 
						|
    for (size_t I = 0; I < Size; ++I)
 | 
						|
      Versyms[I] = Versym[I].vs_index;
 | 
						|
  }
 | 
						|
 | 
						|
  // System libraries can have a lot of symbols with versions. Using a
 | 
						|
  // fixed buffer for computing the versions name (foo@ver) can save a
 | 
						|
  // lot of allocations.
 | 
						|
  SmallString<0> VersionedNameBuffer;
 | 
						|
 | 
						|
  // Add symbols to the symbol table.
 | 
						|
  ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms<ELFT>();
 | 
						|
  for (size_t I = 0; I < Syms.size(); ++I) {
 | 
						|
    const Elf_Sym &Sym = Syms[I];
 | 
						|
 | 
						|
    // ELF spec requires that all local symbols precede weak or global
 | 
						|
    // symbols in each symbol table, and the index of first non-local symbol
 | 
						|
    // is stored to sh_info. If a local symbol appears after some non-local
 | 
						|
    // symbol, that's a violation of the spec.
 | 
						|
    StringRef Name = CHECK(Sym.getName(this->StringTable), this);
 | 
						|
    if (Sym.getBinding() == STB_LOCAL) {
 | 
						|
      warn("found local symbol '" + Name +
 | 
						|
           "' in global part of symbol table in file " + toString(this));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Sym.isUndefined()) {
 | 
						|
      Symbol *S = Symtab->addSymbol(
 | 
						|
          Undefined{this, Name, Sym.getBinding(), Sym.st_other, Sym.getType()});
 | 
						|
      S->ExportDynamic = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
 | 
						|
    // assigns VER_NDX_LOCAL to this section global symbol. Here is a
 | 
						|
    // workaround for this bug.
 | 
						|
    uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN;
 | 
						|
    if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL &&
 | 
						|
        Name == "_gp_disp")
 | 
						|
      continue;
 | 
						|
 | 
						|
    uint32_t Alignment = getAlignment<ELFT>(Sections, Sym);
 | 
						|
    if (!(Versyms[I] & VERSYM_HIDDEN)) {
 | 
						|
      Symtab->addSymbol(SharedSymbol{*this, Name, Sym.getBinding(),
 | 
						|
                                     Sym.st_other, Sym.getType(), Sym.st_value,
 | 
						|
                                     Sym.st_size, Alignment, Idx});
 | 
						|
    }
 | 
						|
 | 
						|
    // Also add the symbol with the versioned name to handle undefined symbols
 | 
						|
    // with explicit versions.
 | 
						|
    if (Idx == VER_NDX_GLOBAL)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) {
 | 
						|
      error("corrupt input file: version definition index " + Twine(Idx) +
 | 
						|
            " for symbol " + Name + " is out of bounds\n>>> defined in " +
 | 
						|
            toString(this));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    StringRef VerName =
 | 
						|
        this->StringTable.data() +
 | 
						|
        reinterpret_cast<const Elf_Verdef *>(Verdefs[Idx])->getAux()->vda_name;
 | 
						|
    VersionedNameBuffer.clear();
 | 
						|
    Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer);
 | 
						|
    Symtab->addSymbol(SharedSymbol{*this, Saver.save(Name), Sym.getBinding(),
 | 
						|
                                   Sym.st_other, Sym.getType(), Sym.st_value,
 | 
						|
                                   Sym.st_size, Alignment, Idx});
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static ELFKind getBitcodeELFKind(const Triple &T) {
 | 
						|
  if (T.isLittleEndian())
 | 
						|
    return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
 | 
						|
  return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
 | 
						|
}
 | 
						|
 | 
						|
static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
 | 
						|
  switch (T.getArch()) {
 | 
						|
  case Triple::aarch64:
 | 
						|
    return EM_AARCH64;
 | 
						|
  case Triple::amdgcn:
 | 
						|
  case Triple::r600:
 | 
						|
    return EM_AMDGPU;
 | 
						|
  case Triple::arm:
 | 
						|
  case Triple::thumb:
 | 
						|
    return EM_ARM;
 | 
						|
  case Triple::avr:
 | 
						|
    return EM_AVR;
 | 
						|
  case Triple::mips:
 | 
						|
  case Triple::mipsel:
 | 
						|
  case Triple::mips64:
 | 
						|
  case Triple::mips64el:
 | 
						|
    return EM_MIPS;
 | 
						|
  case Triple::msp430:
 | 
						|
    return EM_MSP430;
 | 
						|
  case Triple::ppc:
 | 
						|
    return EM_PPC;
 | 
						|
  case Triple::ppc64:
 | 
						|
  case Triple::ppc64le:
 | 
						|
    return EM_PPC64;
 | 
						|
  case Triple::riscv32:
 | 
						|
  case Triple::riscv64:
 | 
						|
    return EM_RISCV;
 | 
						|
  case Triple::x86:
 | 
						|
    return T.isOSIAMCU() ? EM_IAMCU : EM_386;
 | 
						|
  case Triple::x86_64:
 | 
						|
    return EM_X86_64;
 | 
						|
  default:
 | 
						|
    error(Path + ": could not infer e_machine from bitcode target triple " +
 | 
						|
          T.str());
 | 
						|
    return EM_NONE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
 | 
						|
                         uint64_t OffsetInArchive)
 | 
						|
    : InputFile(BitcodeKind, MB) {
 | 
						|
  this->ArchiveName = ArchiveName;
 | 
						|
 | 
						|
  std::string Path = MB.getBufferIdentifier().str();
 | 
						|
  if (Config->ThinLTOIndexOnly)
 | 
						|
    Path = replaceThinLTOSuffix(MB.getBufferIdentifier());
 | 
						|
 | 
						|
  // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
 | 
						|
  // name. If two archives define two members with the same name, this
 | 
						|
  // causes a collision which result in only one of the objects being taken
 | 
						|
  // into consideration at LTO time (which very likely causes undefined
 | 
						|
  // symbols later in the link stage). So we append file offset to make
 | 
						|
  // filename unique.
 | 
						|
  StringRef Name = ArchiveName.empty()
 | 
						|
                       ? Saver.save(Path)
 | 
						|
                       : Saver.save(ArchiveName + "(" + Path + " at " +
 | 
						|
                                    utostr(OffsetInArchive) + ")");
 | 
						|
  MemoryBufferRef MBRef(MB.getBuffer(), Name);
 | 
						|
 | 
						|
  Obj = CHECK(lto::InputFile::create(MBRef), this);
 | 
						|
 | 
						|
  Triple T(Obj->getTargetTriple());
 | 
						|
  EKind = getBitcodeELFKind(T);
 | 
						|
  EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
 | 
						|
}
 | 
						|
 | 
						|
static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
 | 
						|
  switch (GvVisibility) {
 | 
						|
  case GlobalValue::DefaultVisibility:
 | 
						|
    return STV_DEFAULT;
 | 
						|
  case GlobalValue::HiddenVisibility:
 | 
						|
    return STV_HIDDEN;
 | 
						|
  case GlobalValue::ProtectedVisibility:
 | 
						|
    return STV_PROTECTED;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unknown visibility");
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
 | 
						|
                                   const lto::InputFile::Symbol &ObjSym,
 | 
						|
                                   BitcodeFile &F) {
 | 
						|
  StringRef Name = Saver.save(ObjSym.getName());
 | 
						|
  uint8_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
 | 
						|
  uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
 | 
						|
  uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
 | 
						|
  bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
 | 
						|
 | 
						|
  int C = ObjSym.getComdatIndex();
 | 
						|
  if (ObjSym.isUndefined() || (C != -1 && !KeptComdats[C])) {
 | 
						|
    Undefined New(&F, Name, Binding, Visibility, Type);
 | 
						|
    if (CanOmitFromDynSym)
 | 
						|
      New.ExportDynamic = false;
 | 
						|
    return Symtab->addSymbol(New);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ObjSym.isCommon())
 | 
						|
    return Symtab->addSymbol(
 | 
						|
        CommonSymbol{&F, Name, Binding, Visibility, STT_OBJECT,
 | 
						|
                     ObjSym.getCommonAlignment(), ObjSym.getCommonSize()});
 | 
						|
 | 
						|
  Defined New(&F, Name, Binding, Visibility, Type, 0, 0, nullptr);
 | 
						|
  if (CanOmitFromDynSym)
 | 
						|
    New.ExportDynamic = false;
 | 
						|
  return Symtab->addSymbol(New);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void BitcodeFile::parse() {
 | 
						|
  std::vector<bool> KeptComdats;
 | 
						|
  for (StringRef S : Obj->getComdatTable())
 | 
						|
    KeptComdats.push_back(
 | 
						|
        Symtab->ComdatGroups.try_emplace(CachedHashStringRef(S), this).second);
 | 
						|
 | 
						|
  for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
 | 
						|
    Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this));
 | 
						|
 | 
						|
  for (auto L : Obj->getDependentLibraries())
 | 
						|
    addDependentLibrary(L, this);
 | 
						|
}
 | 
						|
 | 
						|
void BinaryFile::parse() {
 | 
						|
  ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer());
 | 
						|
  auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
 | 
						|
                                     8, Data, ".data");
 | 
						|
  Sections.push_back(Section);
 | 
						|
 | 
						|
  // For each input file foo that is embedded to a result as a binary
 | 
						|
  // blob, we define _binary_foo_{start,end,size} symbols, so that
 | 
						|
  // user programs can access blobs by name. Non-alphanumeric
 | 
						|
  // characters in a filename are replaced with underscore.
 | 
						|
  std::string S = "_binary_" + MB.getBufferIdentifier().str();
 | 
						|
  for (size_t I = 0; I < S.size(); ++I)
 | 
						|
    if (!isAlnum(S[I]))
 | 
						|
      S[I] = '_';
 | 
						|
 | 
						|
  Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_start"), STB_GLOBAL,
 | 
						|
                            STV_DEFAULT, STT_OBJECT, 0, 0, Section});
 | 
						|
  Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_end"), STB_GLOBAL,
 | 
						|
                            STV_DEFAULT, STT_OBJECT, Data.size(), 0, Section});
 | 
						|
  Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_size"), STB_GLOBAL,
 | 
						|
                            STV_DEFAULT, STT_OBJECT, Data.size(), 0, nullptr});
 | 
						|
}
 | 
						|
 | 
						|
InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
 | 
						|
                                 uint64_t OffsetInArchive) {
 | 
						|
  if (isBitcode(MB))
 | 
						|
    return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
 | 
						|
 | 
						|
  switch (getELFKind(MB, ArchiveName)) {
 | 
						|
  case ELF32LEKind:
 | 
						|
    return make<ObjFile<ELF32LE>>(MB, ArchiveName);
 | 
						|
  case ELF32BEKind:
 | 
						|
    return make<ObjFile<ELF32BE>>(MB, ArchiveName);
 | 
						|
  case ELF64LEKind:
 | 
						|
    return make<ObjFile<ELF64LE>>(MB, ArchiveName);
 | 
						|
  case ELF64BEKind:
 | 
						|
    return make<ObjFile<ELF64BE>>(MB, ArchiveName);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("getELFKind");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LazyObjFile::fetch() {
 | 
						|
  if (MB.getBuffer().empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  InputFile *File = createObjectFile(MB, ArchiveName, OffsetInArchive);
 | 
						|
  File->GroupId = GroupId;
 | 
						|
 | 
						|
  MB = {};
 | 
						|
 | 
						|
  // Copy symbol vector so that the new InputFile doesn't have to
 | 
						|
  // insert the same defined symbols to the symbol table again.
 | 
						|
  File->Symbols = std::move(Symbols);
 | 
						|
 | 
						|
  parseFile(File);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void LazyObjFile::parse() {
 | 
						|
  using Elf_Sym = typename ELFT::Sym;
 | 
						|
 | 
						|
  // A lazy object file wraps either a bitcode file or an ELF file.
 | 
						|
  if (isBitcode(this->MB)) {
 | 
						|
    std::unique_ptr<lto::InputFile> Obj =
 | 
						|
        CHECK(lto::InputFile::create(this->MB), this);
 | 
						|
    for (const lto::InputFile::Symbol &Sym : Obj->symbols()) {
 | 
						|
      if (Sym.isUndefined())
 | 
						|
        continue;
 | 
						|
      Symtab->addSymbol(LazyObject{*this, Saver.save(Sym.getName())});
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getELFKind(this->MB, ArchiveName) != Config->EKind) {
 | 
						|
    error("incompatible file: " + this->MB.getBufferIdentifier());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find a symbol table.
 | 
						|
  ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer()));
 | 
						|
  ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this);
 | 
						|
 | 
						|
  for (const typename ELFT::Shdr &Sec : Sections) {
 | 
						|
    if (Sec.sh_type != SHT_SYMTAB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // A symbol table is found.
 | 
						|
    ArrayRef<Elf_Sym> ESyms = CHECK(Obj.symbols(&Sec), this);
 | 
						|
    uint32_t FirstGlobal = Sec.sh_info;
 | 
						|
    StringRef Strtab = CHECK(Obj.getStringTableForSymtab(Sec, Sections), this);
 | 
						|
    this->Symbols.resize(ESyms.size());
 | 
						|
 | 
						|
    // Get existing symbols or insert placeholder symbols.
 | 
						|
    for (size_t I = FirstGlobal, End = ESyms.size(); I != End; ++I)
 | 
						|
      if (ESyms[I].st_shndx != SHN_UNDEF)
 | 
						|
        this->Symbols[I] = Symtab->insert(CHECK(ESyms[I].getName(Strtab), this));
 | 
						|
 | 
						|
    // Replace existing symbols with LazyObject symbols.
 | 
						|
    //
 | 
						|
    // resolve() may trigger this->fetch() if an existing symbol is an
 | 
						|
    // undefined symbol. If that happens, this LazyObjFile has served
 | 
						|
    // its purpose, and we can exit from the loop early.
 | 
						|
    for (Symbol *Sym : this->Symbols) {
 | 
						|
      if (!Sym)
 | 
						|
        continue;
 | 
						|
      Sym->resolve(LazyObject{*this, Sym->getName()});
 | 
						|
 | 
						|
      // MemoryBuffer is emptied if this file is instantiated as ObjFile.
 | 
						|
      if (MB.getBuffer().empty())
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::string elf::replaceThinLTOSuffix(StringRef Path) {
 | 
						|
  StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first;
 | 
						|
  StringRef Repl = Config->ThinLTOObjectSuffixReplace.second;
 | 
						|
 | 
						|
  if (Path.consume_back(Suffix))
 | 
						|
    return (Path + Repl).str();
 | 
						|
  return Path;
 | 
						|
}
 | 
						|
 | 
						|
template void BitcodeFile::parse<ELF32LE>();
 | 
						|
template void BitcodeFile::parse<ELF32BE>();
 | 
						|
template void BitcodeFile::parse<ELF64LE>();
 | 
						|
template void BitcodeFile::parse<ELF64BE>();
 | 
						|
 | 
						|
template void LazyObjFile::parse<ELF32LE>();
 | 
						|
template void LazyObjFile::parse<ELF32BE>();
 | 
						|
template void LazyObjFile::parse<ELF64LE>();
 | 
						|
template void LazyObjFile::parse<ELF64BE>();
 | 
						|
 | 
						|
template class elf::ObjFile<ELF32LE>;
 | 
						|
template class elf::ObjFile<ELF32BE>;
 | 
						|
template class elf::ObjFile<ELF64LE>;
 | 
						|
template class elf::ObjFile<ELF64BE>;
 | 
						|
 | 
						|
template void SharedFile::parse<ELF32LE>();
 | 
						|
template void SharedFile::parse<ELF32BE>();
 | 
						|
template void SharedFile::parse<ELF64LE>();
 | 
						|
template void SharedFile::parse<ELF64BE>();
 |