forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			151 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C
		
	
	
	
| //===-- lib/comparedf2.c - Double-precision comparisons -----------*- C -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is dual licensed under the MIT and the University of Illinois Open
 | |
| // Source Licenses. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // // This file implements the following soft-float comparison routines:
 | |
| //
 | |
| //   __eqdf2   __gedf2   __unorddf2
 | |
| //   __ledf2   __gtdf2
 | |
| //   __ltdf2
 | |
| //   __nedf2
 | |
| //
 | |
| // The semantics of the routines grouped in each column are identical, so there
 | |
| // is a single implementation for each, and wrappers to provide the other names.
 | |
| //
 | |
| // The main routines behave as follows:
 | |
| //
 | |
| //   __ledf2(a,b) returns -1 if a < b
 | |
| //                         0 if a == b
 | |
| //                         1 if a > b
 | |
| //                         1 if either a or b is NaN
 | |
| //
 | |
| //   __gedf2(a,b) returns -1 if a < b
 | |
| //                         0 if a == b
 | |
| //                         1 if a > b
 | |
| //                        -1 if either a or b is NaN
 | |
| //
 | |
| //   __unorddf2(a,b) returns 0 if both a and b are numbers
 | |
| //                           1 if either a or b is NaN
 | |
| //
 | |
| // Note that __ledf2( ) and __gedf2( ) are identical except in their handling of
 | |
| // NaN values.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DOUBLE_PRECISION
 | |
| #include "fp_lib.h"
 | |
| 
 | |
| enum LE_RESULT {
 | |
|     LE_LESS      = -1,
 | |
|     LE_EQUAL     =  0,
 | |
|     LE_GREATER   =  1,
 | |
|     LE_UNORDERED =  1
 | |
| };
 | |
| 
 | |
| COMPILER_RT_ABI enum LE_RESULT
 | |
| __ledf2(fp_t a, fp_t b) {
 | |
|     
 | |
|     const srep_t aInt = toRep(a);
 | |
|     const srep_t bInt = toRep(b);
 | |
|     const rep_t aAbs = aInt & absMask;
 | |
|     const rep_t bAbs = bInt & absMask;
 | |
|     
 | |
|     // If either a or b is NaN, they are unordered.
 | |
|     if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
 | |
|     
 | |
|     // If a and b are both zeros, they are equal.
 | |
|     if ((aAbs | bAbs) == 0) return LE_EQUAL;
 | |
|     
 | |
|     // If at least one of a and b is positive, we get the same result comparing
 | |
|     // a and b as signed integers as we would with a floating-point compare.
 | |
|     if ((aInt & bInt) >= 0) {
 | |
|         if (aInt < bInt) return LE_LESS;
 | |
|         else if (aInt == bInt) return LE_EQUAL;
 | |
|         else return LE_GREATER;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, both are negative, so we need to flip the sense of the
 | |
|     // comparison to get the correct result.  (This assumes a twos- or ones-
 | |
|     // complement integer representation; if integers are represented in a
 | |
|     // sign-magnitude representation, then this flip is incorrect).
 | |
|     else {
 | |
|         if (aInt > bInt) return LE_LESS;
 | |
|         else if (aInt == bInt) return LE_EQUAL;
 | |
|         else return LE_GREATER;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(__ELF__)
 | |
| // Alias for libgcc compatibility
 | |
| FNALIAS(__cmpdf2, __ledf2);
 | |
| #endif
 | |
| 
 | |
| enum GE_RESULT {
 | |
|     GE_LESS      = -1,
 | |
|     GE_EQUAL     =  0,
 | |
|     GE_GREATER   =  1,
 | |
|     GE_UNORDERED = -1   // Note: different from LE_UNORDERED
 | |
| };
 | |
| 
 | |
| COMPILER_RT_ABI enum GE_RESULT
 | |
| __gedf2(fp_t a, fp_t b) {
 | |
|     
 | |
|     const srep_t aInt = toRep(a);
 | |
|     const srep_t bInt = toRep(b);
 | |
|     const rep_t aAbs = aInt & absMask;
 | |
|     const rep_t bAbs = bInt & absMask;
 | |
|     
 | |
|     if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
 | |
|     if ((aAbs | bAbs) == 0) return GE_EQUAL;
 | |
|     if ((aInt & bInt) >= 0) {
 | |
|         if (aInt < bInt) return GE_LESS;
 | |
|         else if (aInt == bInt) return GE_EQUAL;
 | |
|         else return GE_GREATER;
 | |
|     } else {
 | |
|         if (aInt > bInt) return GE_LESS;
 | |
|         else if (aInt == bInt) return GE_EQUAL;
 | |
|         else return GE_GREATER;
 | |
|     }
 | |
| }
 | |
| 
 | |
| COMPILER_RT_ABI int
 | |
| __unorddf2(fp_t a, fp_t b) {
 | |
|     const rep_t aAbs = toRep(a) & absMask;
 | |
|     const rep_t bAbs = toRep(b) & absMask;
 | |
|     return aAbs > infRep || bAbs > infRep;
 | |
| }
 | |
| 
 | |
| // The following are alternative names for the preceding routines.
 | |
| 
 | |
| COMPILER_RT_ABI enum LE_RESULT
 | |
| __eqdf2(fp_t a, fp_t b) {
 | |
|     return __ledf2(a, b);
 | |
| }
 | |
| 
 | |
| COMPILER_RT_ABI enum LE_RESULT
 | |
| __ltdf2(fp_t a, fp_t b) {
 | |
|     return __ledf2(a, b);
 | |
| }
 | |
| 
 | |
| COMPILER_RT_ABI enum LE_RESULT
 | |
| __nedf2(fp_t a, fp_t b) {
 | |
|     return __ledf2(a, b);
 | |
| }
 | |
| 
 | |
| COMPILER_RT_ABI enum GE_RESULT
 | |
| __gtdf2(fp_t a, fp_t b) {
 | |
|     return __gedf2(a, b);
 | |
| }
 | |
| 
 | |
| #if defined(__ARM_EABI__)
 | |
| AEABI_RTABI int __aeabi_dcmpun(fp_t a, fp_t b) {
 | |
|   return __unorddf2(a, b);
 | |
| }
 | |
| #endif
 | |
| 
 |