forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			139 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
| //===-- lib/comparetf2.c - Quad-precision comparisons -------------*- C -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is dual licensed under the MIT and the University of Illinois Open
 | |
| // Source Licenses. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // // This file implements the following soft-float comparison routines:
 | |
| //
 | |
| //   __eqtf2   __getf2   __unordtf2
 | |
| //   __letf2   __gttf2
 | |
| //   __lttf2
 | |
| //   __netf2
 | |
| //
 | |
| // The semantics of the routines grouped in each column are identical, so there
 | |
| // is a single implementation for each, and wrappers to provide the other names.
 | |
| //
 | |
| // The main routines behave as follows:
 | |
| //
 | |
| //   __letf2(a,b) returns -1 if a < b
 | |
| //                         0 if a == b
 | |
| //                         1 if a > b
 | |
| //                         1 if either a or b is NaN
 | |
| //
 | |
| //   __getf2(a,b) returns -1 if a < b
 | |
| //                         0 if a == b
 | |
| //                         1 if a > b
 | |
| //                        -1 if either a or b is NaN
 | |
| //
 | |
| //   __unordtf2(a,b) returns 0 if both a and b are numbers
 | |
| //                           1 if either a or b is NaN
 | |
| //
 | |
| // Note that __letf2( ) and __getf2( ) are identical except in their handling of
 | |
| // NaN values.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define QUAD_PRECISION
 | |
| #include "fp_lib.h"
 | |
| 
 | |
| #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
 | |
| enum LE_RESULT {
 | |
|     LE_LESS      = -1,
 | |
|     LE_EQUAL     =  0,
 | |
|     LE_GREATER   =  1,
 | |
|     LE_UNORDERED =  1
 | |
| };
 | |
| 
 | |
| COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) {
 | |
| 
 | |
|     const srep_t aInt = toRep(a);
 | |
|     const srep_t bInt = toRep(b);
 | |
|     const rep_t aAbs = aInt & absMask;
 | |
|     const rep_t bAbs = bInt & absMask;
 | |
| 
 | |
|     // If either a or b is NaN, they are unordered.
 | |
|     if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
 | |
| 
 | |
|     // If a and b are both zeros, they are equal.
 | |
|     if ((aAbs | bAbs) == 0) return LE_EQUAL;
 | |
| 
 | |
|     // If at least one of a and b is positive, we get the same result comparing
 | |
|     // a and b as signed integers as we would with a floating-point compare.
 | |
|     if ((aInt & bInt) >= 0) {
 | |
|         if (aInt < bInt) return LE_LESS;
 | |
|         else if (aInt == bInt) return LE_EQUAL;
 | |
|         else return LE_GREATER;
 | |
|     }
 | |
|     else {
 | |
|         // Otherwise, both are negative, so we need to flip the sense of the
 | |
|         // comparison to get the correct result.  (This assumes a twos- or ones-
 | |
|         // complement integer representation; if integers are represented in a
 | |
|         // sign-magnitude representation, then this flip is incorrect).
 | |
|         if (aInt > bInt) return LE_LESS;
 | |
|         else if (aInt == bInt) return LE_EQUAL;
 | |
|         else return LE_GREATER;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(__ELF__)
 | |
| // Alias for libgcc compatibility
 | |
| FNALIAS(__cmptf2, __letf2);
 | |
| #endif
 | |
| 
 | |
| enum GE_RESULT {
 | |
|     GE_LESS      = -1,
 | |
|     GE_EQUAL     =  0,
 | |
|     GE_GREATER   =  1,
 | |
|     GE_UNORDERED = -1   // Note: different from LE_UNORDERED
 | |
| };
 | |
| 
 | |
| COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) {
 | |
| 
 | |
|     const srep_t aInt = toRep(a);
 | |
|     const srep_t bInt = toRep(b);
 | |
|     const rep_t aAbs = aInt & absMask;
 | |
|     const rep_t bAbs = bInt & absMask;
 | |
| 
 | |
|     if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
 | |
|     if ((aAbs | bAbs) == 0) return GE_EQUAL;
 | |
|     if ((aInt & bInt) >= 0) {
 | |
|         if (aInt < bInt) return GE_LESS;
 | |
|         else if (aInt == bInt) return GE_EQUAL;
 | |
|         else return GE_GREATER;
 | |
|     } else {
 | |
|         if (aInt > bInt) return GE_LESS;
 | |
|         else if (aInt == bInt) return GE_EQUAL;
 | |
|         else return GE_GREATER;
 | |
|     }
 | |
| }
 | |
| 
 | |
| COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) {
 | |
|     const rep_t aAbs = toRep(a) & absMask;
 | |
|     const rep_t bAbs = toRep(b) & absMask;
 | |
|     return aAbs > infRep || bAbs > infRep;
 | |
| }
 | |
| 
 | |
| // The following are alternative names for the preceding routines.
 | |
| 
 | |
| COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) {
 | |
|     return __letf2(a, b);
 | |
| }
 | |
| 
 | |
| COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) {
 | |
|     return __letf2(a, b);
 | |
| }
 | |
| 
 | |
| COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) {
 | |
|     return __letf2(a, b);
 | |
| }
 | |
| 
 | |
| COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) {
 | |
|     return __getf2(a, b);
 | |
| }
 | |
| 
 | |
| #endif
 |