forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			191 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
| //===-- lib/divdf3.c - Double-precision division ------------------*- C -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is dual licensed under the MIT and the University of Illinois Open
 | |
| // Source Licenses. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements double-precision soft-float division
 | |
| // with the IEEE-754 default rounding (to nearest, ties to even).
 | |
| //
 | |
| // For simplicity, this implementation currently flushes denormals to zero.
 | |
| // It should be a fairly straightforward exercise to implement gradual
 | |
| // underflow with correct rounding.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DOUBLE_PRECISION
 | |
| #include "fp_lib.h"
 | |
| 
 | |
| COMPILER_RT_ABI fp_t
 | |
| __divdf3(fp_t a, fp_t b) {
 | |
|     
 | |
|     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
 | |
|     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
 | |
|     const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
 | |
|     
 | |
|     rep_t aSignificand = toRep(a) & significandMask;
 | |
|     rep_t bSignificand = toRep(b) & significandMask;
 | |
|     int scale = 0;
 | |
|     
 | |
|     // Detect if a or b is zero, denormal, infinity, or NaN.
 | |
|     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
 | |
|         
 | |
|         const rep_t aAbs = toRep(a) & absMask;
 | |
|         const rep_t bAbs = toRep(b) & absMask;
 | |
|         
 | |
|         // NaN / anything = qNaN
 | |
|         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
 | |
|         // anything / NaN = qNaN
 | |
|         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
 | |
|         
 | |
|         if (aAbs == infRep) {
 | |
|             // infinity / infinity = NaN
 | |
|             if (bAbs == infRep) return fromRep(qnanRep);
 | |
|             // infinity / anything else = +/- infinity
 | |
|             else return fromRep(aAbs | quotientSign);
 | |
|         }
 | |
|         
 | |
|         // anything else / infinity = +/- 0
 | |
|         if (bAbs == infRep) return fromRep(quotientSign);
 | |
|         
 | |
|         if (!aAbs) {
 | |
|             // zero / zero = NaN
 | |
|             if (!bAbs) return fromRep(qnanRep);
 | |
|             // zero / anything else = +/- zero
 | |
|             else return fromRep(quotientSign);
 | |
|         }
 | |
|         // anything else / zero = +/- infinity
 | |
|         if (!bAbs) return fromRep(infRep | quotientSign);
 | |
|         
 | |
|         // one or both of a or b is denormal, the other (if applicable) is a
 | |
|         // normal number.  Renormalize one or both of a and b, and set scale to
 | |
|         // include the necessary exponent adjustment.
 | |
|         if (aAbs < implicitBit) scale += normalize(&aSignificand);
 | |
|         if (bAbs < implicitBit) scale -= normalize(&bSignificand);
 | |
|     }
 | |
|     
 | |
|     // Or in the implicit significand bit.  (If we fell through from the
 | |
|     // denormal path it was already set by normalize( ), but setting it twice
 | |
|     // won't hurt anything.)
 | |
|     aSignificand |= implicitBit;
 | |
|     bSignificand |= implicitBit;
 | |
|     int quotientExponent = aExponent - bExponent + scale;
 | |
|     
 | |
|     // Align the significand of b as a Q31 fixed-point number in the range
 | |
|     // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
 | |
|     // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
 | |
|     // is accurate to about 3.5 binary digits.
 | |
|     const uint32_t q31b = bSignificand >> 21;
 | |
|     uint32_t recip32 = UINT32_C(0x7504f333) - q31b;
 | |
|     
 | |
|     // Now refine the reciprocal estimate using a Newton-Raphson iteration:
 | |
|     //
 | |
|     //     x1 = x0 * (2 - x0 * b)
 | |
|     //
 | |
|     // This doubles the number of correct binary digits in the approximation
 | |
|     // with each iteration, so after three iterations, we have about 28 binary
 | |
|     // digits of accuracy.
 | |
|     uint32_t correction32;
 | |
|     correction32 = -((uint64_t)recip32 * q31b >> 32);
 | |
|     recip32 = (uint64_t)recip32 * correction32 >> 31;
 | |
|     correction32 = -((uint64_t)recip32 * q31b >> 32);
 | |
|     recip32 = (uint64_t)recip32 * correction32 >> 31;
 | |
|     correction32 = -((uint64_t)recip32 * q31b >> 32);
 | |
|     recip32 = (uint64_t)recip32 * correction32 >> 31;
 | |
|     
 | |
|     // recip32 might have overflowed to exactly zero in the preceding
 | |
|     // computation if the high word of b is exactly 1.0.  This would sabotage
 | |
|     // the full-width final stage of the computation that follows, so we adjust
 | |
|     // recip32 downward by one bit.
 | |
|     recip32--;
 | |
|     
 | |
|     // We need to perform one more iteration to get us to 56 binary digits;
 | |
|     // The last iteration needs to happen with extra precision.
 | |
|     const uint32_t q63blo = bSignificand << 11;
 | |
|     uint64_t correction, reciprocal;
 | |
|     correction = -((uint64_t)recip32*q31b + ((uint64_t)recip32*q63blo >> 32));
 | |
|     uint32_t cHi = correction >> 32;
 | |
|     uint32_t cLo = correction;
 | |
|     reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32);
 | |
|     
 | |
|     // We already adjusted the 32-bit estimate, now we need to adjust the final
 | |
|     // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
 | |
|     // than the infinitely precise exact reciprocal.  Because the computation
 | |
|     // of the Newton-Raphson step is truncating at every step, this adjustment
 | |
|     // is small; most of the work is already done.
 | |
|     reciprocal -= 2;
 | |
|     
 | |
|     // The numerical reciprocal is accurate to within 2^-56, lies in the
 | |
|     // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
 | |
|     // of b.  Multiplying a by this reciprocal thus gives a numerical q = a/b
 | |
|     // in Q53 with the following properties:
 | |
|     //
 | |
|     //    1. q < a/b
 | |
|     //    2. q is in the interval [0.5, 2.0)
 | |
|     //    3. the error in q is bounded away from 2^-53 (actually, we have a
 | |
|     //       couple of bits to spare, but this is all we need).
 | |
|     
 | |
|     // We need a 64 x 64 multiply high to compute q, which isn't a basic
 | |
|     // operation in C, so we need to be a little bit fussy.
 | |
|     rep_t quotient, quotientLo;
 | |
|     wideMultiply(aSignificand << 2, reciprocal, "ient, "ientLo);
 | |
|     
 | |
|     // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
 | |
|     // In either case, we are going to compute a residual of the form
 | |
|     //
 | |
|     //     r = a - q*b
 | |
|     //
 | |
|     // We know from the construction of q that r satisfies:
 | |
|     //
 | |
|     //     0 <= r < ulp(q)*b
 | |
|     // 
 | |
|     // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
 | |
|     // already have the correct result.  The exact halfway case cannot occur.
 | |
|     // We also take this time to right shift quotient if it falls in the [1,2)
 | |
|     // range and adjust the exponent accordingly.
 | |
|     rep_t residual;
 | |
|     if (quotient < (implicitBit << 1)) {
 | |
|         residual = (aSignificand << 53) - quotient * bSignificand;
 | |
|         quotientExponent--;
 | |
|     } else {
 | |
|         quotient >>= 1;
 | |
|         residual = (aSignificand << 52) - quotient * bSignificand;
 | |
|     }
 | |
|     
 | |
|     const int writtenExponent = quotientExponent + exponentBias;
 | |
|     
 | |
|     if (writtenExponent >= maxExponent) {
 | |
|         // If we have overflowed the exponent, return infinity.
 | |
|         return fromRep(infRep | quotientSign);
 | |
|     }
 | |
|     
 | |
|     else if (writtenExponent < 1) {
 | |
|         // Flush denormals to zero.  In the future, it would be nice to add
 | |
|         // code to round them correctly.
 | |
|         return fromRep(quotientSign);
 | |
|     }
 | |
|     
 | |
|     else {
 | |
|         const bool round = (residual << 1) > bSignificand;
 | |
|         // Clear the implicit bit
 | |
|         rep_t absResult = quotient & significandMask;
 | |
|         // Insert the exponent
 | |
|         absResult |= (rep_t)writtenExponent << significandBits;
 | |
|         // Round
 | |
|         absResult += round;
 | |
|         // Insert the sign and return
 | |
|         const double result = fromRep(absResult | quotientSign);
 | |
|         return result;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(__ARM_EABI__)
 | |
| AEABI_RTABI fp_t __aeabi_ddiv(fp_t a, fp_t b) {
 | |
|   return __divdf3(a, b);
 | |
| }
 | |
| #endif
 | |
| 
 |