forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			109 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
	
| //=-lib/fp_extend_impl.inc - low precision -> high precision conversion -*-- -//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is dual licensed under the MIT and the University of Illinois Open
 | |
| // Source Licenses. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a fairly generic conversion from a narrower to a wider
 | |
| // IEEE-754 floating-point type.  The constants and types defined following the
 | |
| // includes below parameterize the conversion.
 | |
| //
 | |
| // It does not support types that don't use the usual IEEE-754 interchange
 | |
| // formats; specifically, some work would be needed to adapt it to
 | |
| // (for example) the Intel 80-bit format or PowerPC double-double format.
 | |
| //
 | |
| // Note please, however, that this implementation is only intended to support
 | |
| // *widening* operations; if you need to convert to a *narrower* floating-point
 | |
| // type (e.g. double -> float), then this routine will not do what you want it
 | |
| // to.
 | |
| //
 | |
| // It also requires that integer types at least as large as both formats
 | |
| // are available on the target platform; this may pose a problem when trying
 | |
| // to add support for quad on some 32-bit systems, for example.  You also may
 | |
| // run into trouble finding an appropriate CLZ function for wide source types;
 | |
| // you will likely need to roll your own on some platforms.
 | |
| //
 | |
| // Finally, the following assumptions are made:
 | |
| //
 | |
| // 1. floating-point types and integer types have the same endianness on the
 | |
| //    target platform
 | |
| //
 | |
| // 2. quiet NaNs, if supported, are indicated by the leading bit of the
 | |
| //    significand field being set
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "fp_extend.h"
 | |
| 
 | |
| static __inline dst_t __extendXfYf2__(src_t a) {
 | |
|     // Various constants whose values follow from the type parameters.
 | |
|     // Any reasonable optimizer will fold and propagate all of these.
 | |
|     const int srcBits = sizeof(src_t)*CHAR_BIT;
 | |
|     const int srcExpBits = srcBits - srcSigBits - 1;
 | |
|     const int srcInfExp = (1 << srcExpBits) - 1;
 | |
|     const int srcExpBias = srcInfExp >> 1;
 | |
| 
 | |
|     const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
 | |
|     const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
 | |
|     const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
 | |
|     const src_rep_t srcAbsMask = srcSignMask - 1;
 | |
|     const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
 | |
|     const src_rep_t srcNaNCode = srcQNaN - 1;
 | |
| 
 | |
|     const int dstBits = sizeof(dst_t)*CHAR_BIT;
 | |
|     const int dstExpBits = dstBits - dstSigBits - 1;
 | |
|     const int dstInfExp = (1 << dstExpBits) - 1;
 | |
|     const int dstExpBias = dstInfExp >> 1;
 | |
| 
 | |
|     const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
 | |
| 
 | |
|     // Break a into a sign and representation of the absolute value
 | |
|     const src_rep_t aRep = srcToRep(a);
 | |
|     const src_rep_t aAbs = aRep & srcAbsMask;
 | |
|     const src_rep_t sign = aRep & srcSignMask;
 | |
|     dst_rep_t absResult;
 | |
| 
 | |
|     // If sizeof(src_rep_t) < sizeof(int), the subtraction result is promoted
 | |
|     // to (signed) int.  To avoid that, explicitly cast to src_rep_t.
 | |
|     if ((src_rep_t)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) {
 | |
|         // a is a normal number.
 | |
|         // Extend to the destination type by shifting the significand and
 | |
|         // exponent into the proper position and rebiasing the exponent.
 | |
|         absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
 | |
|         absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
 | |
|     }
 | |
| 
 | |
|     else if (aAbs >= srcInfinity) {
 | |
|         // a is NaN or infinity.
 | |
|         // Conjure the result by beginning with infinity, then setting the qNaN
 | |
|         // bit (if needed) and right-aligning the rest of the trailing NaN
 | |
|         // payload field.
 | |
|         absResult = (dst_rep_t)dstInfExp << dstSigBits;
 | |
|         absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
 | |
|         absResult |= (dst_rep_t)(aAbs & srcNaNCode) << (dstSigBits - srcSigBits);
 | |
|     }
 | |
| 
 | |
|     else if (aAbs) {
 | |
|         // a is denormal.
 | |
|         // renormalize the significand and clear the leading bit, then insert
 | |
|         // the correct adjusted exponent in the destination type.
 | |
|         const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
 | |
|         absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
 | |
|         absResult ^= dstMinNormal;
 | |
|         const int resultExponent = dstExpBias - srcExpBias - scale + 1;
 | |
|         absResult |= (dst_rep_t)resultExponent << dstSigBits;
 | |
|     }
 | |
| 
 | |
|     else {
 | |
|         // a is zero.
 | |
|         absResult = 0;
 | |
|     }
 | |
| 
 | |
|     // Apply the signbit to (dst_t)abs(a).
 | |
|     const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
 | |
|     return dstFromRep(result);
 | |
| }
 |