forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			117 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C
		
	
	
	
| //===---- lib/fp_mul_impl.inc - floating point multiplication -----*- C -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is dual licensed under the MIT and the University of Illinois Open
 | |
| // Source Licenses. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements soft-float multiplication with the IEEE-754 default
 | |
| // rounding (to nearest, ties to even).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "fp_lib.h"
 | |
| 
 | |
| static __inline fp_t __mulXf3__(fp_t a, fp_t b) {
 | |
|     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
 | |
|     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
 | |
|     const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit;
 | |
| 
 | |
|     rep_t aSignificand = toRep(a) & significandMask;
 | |
|     rep_t bSignificand = toRep(b) & significandMask;
 | |
|     int scale = 0;
 | |
| 
 | |
|     // Detect if a or b is zero, denormal, infinity, or NaN.
 | |
|     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
 | |
| 
 | |
|         const rep_t aAbs = toRep(a) & absMask;
 | |
|         const rep_t bAbs = toRep(b) & absMask;
 | |
| 
 | |
|         // NaN * anything = qNaN
 | |
|         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
 | |
|         // anything * NaN = qNaN
 | |
|         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
 | |
| 
 | |
|         if (aAbs == infRep) {
 | |
|             // infinity * non-zero = +/- infinity
 | |
|             if (bAbs) return fromRep(aAbs | productSign);
 | |
|             // infinity * zero = NaN
 | |
|             else return fromRep(qnanRep);
 | |
|         }
 | |
| 
 | |
|         if (bAbs == infRep) {
 | |
|             //? non-zero * infinity = +/- infinity
 | |
|             if (aAbs) return fromRep(bAbs | productSign);
 | |
|             // zero * infinity = NaN
 | |
|             else return fromRep(qnanRep);
 | |
|         }
 | |
| 
 | |
|         // zero * anything = +/- zero
 | |
|         if (!aAbs) return fromRep(productSign);
 | |
|         // anything * zero = +/- zero
 | |
|         if (!bAbs) return fromRep(productSign);
 | |
| 
 | |
|         // one or both of a or b is denormal, the other (if applicable) is a
 | |
|         // normal number.  Renormalize one or both of a and b, and set scale to
 | |
|         // include the necessary exponent adjustment.
 | |
|         if (aAbs < implicitBit) scale += normalize(&aSignificand);
 | |
|         if (bAbs < implicitBit) scale += normalize(&bSignificand);
 | |
|     }
 | |
| 
 | |
|     // Or in the implicit significand bit.  (If we fell through from the
 | |
|     // denormal path it was already set by normalize( ), but setting it twice
 | |
|     // won't hurt anything.)
 | |
|     aSignificand |= implicitBit;
 | |
|     bSignificand |= implicitBit;
 | |
| 
 | |
|     // Get the significand of a*b.  Before multiplying the significands, shift
 | |
|     // one of them left to left-align it in the field.  Thus, the product will
 | |
|     // have (exponentBits + 2) integral digits, all but two of which must be
 | |
|     // zero.  Normalizing this result is just a conditional left-shift by one
 | |
|     // and bumping the exponent accordingly.
 | |
|     rep_t productHi, productLo;
 | |
|     wideMultiply(aSignificand, bSignificand << exponentBits,
 | |
|                  &productHi, &productLo);
 | |
| 
 | |
|     int productExponent = aExponent + bExponent - exponentBias + scale;
 | |
| 
 | |
|     // Normalize the significand, adjust exponent if needed.
 | |
|     if (productHi & implicitBit) productExponent++;
 | |
|     else wideLeftShift(&productHi, &productLo, 1);
 | |
| 
 | |
|     // If we have overflowed the type, return +/- infinity.
 | |
|     if (productExponent >= maxExponent) return fromRep(infRep | productSign);
 | |
| 
 | |
|     if (productExponent <= 0) {
 | |
|         // Result is denormal before rounding
 | |
|         //
 | |
|         // If the result is so small that it just underflows to zero, return
 | |
|         // a zero of the appropriate sign.  Mathematically there is no need to
 | |
|         // handle this case separately, but we make it a special case to
 | |
|         // simplify the shift logic.
 | |
|         const unsigned int shift = REP_C(1) - (unsigned int)productExponent;
 | |
|         if (shift >= typeWidth) return fromRep(productSign);
 | |
| 
 | |
|         // Otherwise, shift the significand of the result so that the round
 | |
|         // bit is the high bit of productLo.
 | |
|         wideRightShiftWithSticky(&productHi, &productLo, shift);
 | |
|     }
 | |
|     else {
 | |
|         // Result is normal before rounding; insert the exponent.
 | |
|         productHi &= significandMask;
 | |
|         productHi |= (rep_t)productExponent << significandBits;
 | |
|     }
 | |
| 
 | |
|     // Insert the sign of the result:
 | |
|     productHi |= productSign;
 | |
| 
 | |
|     // Final rounding.  The final result may overflow to infinity, or underflow
 | |
|     // to zero, but those are the correct results in those cases.  We use the
 | |
|     // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
 | |
|     if (productLo > signBit) productHi++;
 | |
|     if (productLo == signBit) productHi += productHi & 1;
 | |
|     return fromRep(productHi);
 | |
| }
 |