forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			136 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			136 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is dual licensed under the MIT and the University of Illinois Open
 | |
| // Source Licenses. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a fairly generic conversion from a wider to a narrower
 | |
| // IEEE-754 floating-point type in the default (round to nearest, ties to even)
 | |
| // rounding mode.  The constants and types defined following the includes below
 | |
| // parameterize the conversion.
 | |
| //
 | |
| // This routine can be trivially adapted to support conversions to
 | |
| // half-precision or from quad-precision. It does not support types that don't
 | |
| // use the usual IEEE-754 interchange formats; specifically, some work would be
 | |
| // needed to adapt it to (for example) the Intel 80-bit format or PowerPC
 | |
| // double-double format.
 | |
| //
 | |
| // Note please, however, that this implementation is only intended to support
 | |
| // *narrowing* operations; if you need to convert to a *wider* floating-point
 | |
| // type (e.g. float -> double), then this routine will not do what you want it
 | |
| // to.
 | |
| //
 | |
| // It also requires that integer types at least as large as both formats
 | |
| // are available on the target platform; this may pose a problem when trying
 | |
| // to add support for quad on some 32-bit systems, for example.
 | |
| //
 | |
| // Finally, the following assumptions are made:
 | |
| //
 | |
| // 1. floating-point types and integer types have the same endianness on the
 | |
| //    target platform
 | |
| //
 | |
| // 2. quiet NaNs, if supported, are indicated by the leading bit of the
 | |
| //    significand field being set
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "fp_trunc.h"
 | |
| 
 | |
| static __inline dst_t __truncXfYf2__(src_t a) {
 | |
|     // Various constants whose values follow from the type parameters.
 | |
|     // Any reasonable optimizer will fold and propagate all of these.
 | |
|     const int srcBits = sizeof(src_t)*CHAR_BIT;
 | |
|     const int srcExpBits = srcBits - srcSigBits - 1;
 | |
|     const int srcInfExp = (1 << srcExpBits) - 1;
 | |
|     const int srcExpBias = srcInfExp >> 1;
 | |
| 
 | |
|     const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
 | |
|     const src_rep_t srcSignificandMask = srcMinNormal - 1;
 | |
|     const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
 | |
|     const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
 | |
|     const src_rep_t srcAbsMask = srcSignMask - 1;
 | |
|     const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
 | |
|     const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
 | |
|     const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
 | |
|     const src_rep_t srcNaNCode = srcQNaN - 1;
 | |
| 
 | |
|     const int dstBits = sizeof(dst_t)*CHAR_BIT;
 | |
|     const int dstExpBits = dstBits - dstSigBits - 1;
 | |
|     const int dstInfExp = (1 << dstExpBits) - 1;
 | |
|     const int dstExpBias = dstInfExp >> 1;
 | |
| 
 | |
|     const int underflowExponent = srcExpBias + 1 - dstExpBias;
 | |
|     const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
 | |
|     const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
 | |
|     const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
 | |
| 
 | |
|     const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
 | |
|     const dst_rep_t dstNaNCode = dstQNaN - 1;
 | |
| 
 | |
|     // Break a into a sign and representation of the absolute value
 | |
|     const src_rep_t aRep = srcToRep(a);
 | |
|     const src_rep_t aAbs = aRep & srcAbsMask;
 | |
|     const src_rep_t sign = aRep & srcSignMask;
 | |
|     dst_rep_t absResult;
 | |
| 
 | |
|     if (aAbs - underflow < aAbs - overflow) {
 | |
|         // The exponent of a is within the range of normal numbers in the
 | |
|         // destination format.  We can convert by simply right-shifting with
 | |
|         // rounding and adjusting the exponent.
 | |
|         absResult = aAbs >> (srcSigBits - dstSigBits);
 | |
|         absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
 | |
| 
 | |
|         const src_rep_t roundBits = aAbs & roundMask;
 | |
|         // Round to nearest
 | |
|         if (roundBits > halfway)
 | |
|             absResult++;
 | |
|         // Ties to even
 | |
|         else if (roundBits == halfway)
 | |
|             absResult += absResult & 1;
 | |
|     }
 | |
|     else if (aAbs > srcInfinity) {
 | |
|         // a is NaN.
 | |
|         // Conjure the result by beginning with infinity, setting the qNaN
 | |
|         // bit and inserting the (truncated) trailing NaN field.
 | |
|         absResult = (dst_rep_t)dstInfExp << dstSigBits;
 | |
|         absResult |= dstQNaN;
 | |
|         absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode;
 | |
|     }
 | |
|     else if (aAbs >= overflow) {
 | |
|         // a overflows to infinity.
 | |
|         absResult = (dst_rep_t)dstInfExp << dstSigBits;
 | |
|     }
 | |
|     else {
 | |
|         // a underflows on conversion to the destination type or is an exact
 | |
|         // zero.  The result may be a denormal or zero.  Extract the exponent
 | |
|         // to get the shift amount for the denormalization.
 | |
|         const int aExp = aAbs >> srcSigBits;
 | |
|         const int shift = srcExpBias - dstExpBias - aExp + 1;
 | |
| 
 | |
|         const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal;
 | |
| 
 | |
|         // Right shift by the denormalization amount with sticky.
 | |
|         if (shift > srcSigBits) {
 | |
|             absResult = 0;
 | |
|         } else {
 | |
|             const bool sticky = significand << (srcBits - shift);
 | |
|             src_rep_t denormalizedSignificand = significand >> shift | sticky;
 | |
|             absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
 | |
|             const src_rep_t roundBits = denormalizedSignificand & roundMask;
 | |
|             // Round to nearest
 | |
|             if (roundBits > halfway)
 | |
|                 absResult++;
 | |
|             // Ties to even
 | |
|             else if (roundBits == halfway)
 | |
|                 absResult += absResult & 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Apply the signbit to (dst_t)abs(a).
 | |
|     const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
 | |
|     return dstFromRep(result);
 | |
| }
 |