forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1014 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1014 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- interception_linux.cc -----------------------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of AddressSanitizer, an address sanity checker.
 | |
| //
 | |
| // Windows-specific interception methods.
 | |
| //
 | |
| // This file is implementing several hooking techniques to intercept calls
 | |
| // to functions. The hooks are dynamically installed by modifying the assembly
 | |
| // code.
 | |
| //
 | |
| // The hooking techniques are making assumptions on the way the code is
 | |
| // generated and are safe under these assumptions.
 | |
| //
 | |
| // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
 | |
| // arbitrary branching on the whole memory space, the notion of trampoline
 | |
| // region is used. A trampoline region is a memory space withing 2G boundary
 | |
| // where it is safe to add custom assembly code to build 64-bit jumps.
 | |
| //
 | |
| // Hooking techniques
 | |
| // ==================
 | |
| //
 | |
| // 1) Detour
 | |
| //
 | |
| //    The Detour hooking technique is assuming the presence of an header with
 | |
| //    padding and an overridable 2-bytes nop instruction (mov edi, edi). The
 | |
| //    nop instruction can safely be replaced by a 2-bytes jump without any need
 | |
| //    to save the instruction. A jump to the target is encoded in the function
 | |
| //    header and the nop instruction is replaced by a short jump to the header.
 | |
| //
 | |
| //        head:  5 x nop                 head:  jmp <hook>
 | |
| //        func:  mov edi, edi    -->     func:  jmp short <head>
 | |
| //               [...]                   real:  [...]
 | |
| //
 | |
| //    This technique is only implemented on 32-bit architecture.
 | |
| //    Most of the time, Windows API are hookable with the detour technique.
 | |
| //
 | |
| // 2) Redirect Jump
 | |
| //
 | |
| //    The redirect jump is applicable when the first instruction is a direct
 | |
| //    jump. The instruction is replaced by jump to the hook.
 | |
| //
 | |
| //        func:  jmp <label>     -->     func:  jmp <hook>
 | |
| //
 | |
| //    On an 64-bit architecture, a trampoline is inserted.
 | |
| //
 | |
| //        func:  jmp <label>     -->     func:  jmp <tramp>
 | |
| //                                              [...]
 | |
| //
 | |
| //                                   [trampoline]
 | |
| //                                      tramp:  jmp QWORD [addr]
 | |
| //                                       addr:  .bytes <hook>
 | |
| //
 | |
| //    Note: <real> is equilavent to <label>.
 | |
| //
 | |
| // 3) HotPatch
 | |
| //
 | |
| //    The HotPatch hooking is assuming the presence of an header with padding
 | |
| //    and a first instruction with at least 2-bytes.
 | |
| //
 | |
| //    The reason to enforce the 2-bytes limitation is to provide the minimal
 | |
| //    space to encode a short jump. HotPatch technique is only rewriting one
 | |
| //    instruction to avoid breaking a sequence of instructions containing a
 | |
| //    branching target.
 | |
| //
 | |
| //    Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
 | |
| //      see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
 | |
| //    Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
 | |
| //
 | |
| //        head:   5 x nop                head:  jmp <hook>
 | |
| //        func:   <instr>        -->     func:  jmp short <head>
 | |
| //                [...]                  body:  [...]
 | |
| //
 | |
| //                                   [trampoline]
 | |
| //                                       real:  <instr>
 | |
| //                                              jmp <body>
 | |
| //
 | |
| //    On an 64-bit architecture:
 | |
| //
 | |
| //        head:   6 x nop                head:  jmp QWORD [addr1]
 | |
| //        func:   <instr>        -->     func:  jmp short <head>
 | |
| //                [...]                  body:  [...]
 | |
| //
 | |
| //                                   [trampoline]
 | |
| //                                      addr1:  .bytes <hook>
 | |
| //                                       real:  <instr>
 | |
| //                                              jmp QWORD [addr2]
 | |
| //                                      addr2:  .bytes <body>
 | |
| //
 | |
| // 4) Trampoline
 | |
| //
 | |
| //    The Trampoline hooking technique is the most aggressive one. It is
 | |
| //    assuming that there is a sequence of instructions that can be safely
 | |
| //    replaced by a jump (enough room and no incoming branches).
 | |
| //
 | |
| //    Unfortunately, these assumptions can't be safely presumed and code may
 | |
| //    be broken after hooking.
 | |
| //
 | |
| //        func:   <instr>        -->     func:  jmp <hook>
 | |
| //                <instr>
 | |
| //                [...]                  body:  [...]
 | |
| //
 | |
| //                                   [trampoline]
 | |
| //                                       real:  <instr>
 | |
| //                                              <instr>
 | |
| //                                              jmp <body>
 | |
| //
 | |
| //    On an 64-bit architecture:
 | |
| //
 | |
| //        func:   <instr>        -->     func:  jmp QWORD [addr1]
 | |
| //                <instr>
 | |
| //                [...]                  body:  [...]
 | |
| //
 | |
| //                                   [trampoline]
 | |
| //                                      addr1:  .bytes <hook>
 | |
| //                                       real:  <instr>
 | |
| //                                              <instr>
 | |
| //                                              jmp QWORD [addr2]
 | |
| //                                      addr2:  .bytes <body>
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifdef _WIN32
 | |
| 
 | |
| #include "interception.h"
 | |
| #include "sanitizer_common/sanitizer_platform.h"
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #include <windows.h>
 | |
| 
 | |
| namespace __interception {
 | |
| 
 | |
| static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
 | |
| static const int kJumpInstructionLength = 5;
 | |
| static const int kShortJumpInstructionLength = 2;
 | |
| static const int kIndirectJumpInstructionLength = 6;
 | |
| static const int kBranchLength =
 | |
|     FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
 | |
| static const int kDirectBranchLength = kBranchLength + kAddressLength;
 | |
| 
 | |
| static void InterceptionFailed() {
 | |
|   // Do we have a good way to abort with an error message here?
 | |
|   __debugbreak();
 | |
| }
 | |
| 
 | |
| static bool DistanceIsWithin2Gig(uptr from, uptr target) {
 | |
| #if SANITIZER_WINDOWS64
 | |
|   if (from < target)
 | |
|     return target - from <= (uptr)0x7FFFFFFFU;
 | |
|   else
 | |
|     return from - target <= (uptr)0x80000000U;
 | |
| #else
 | |
|   // In a 32-bit address space, the address calculation will wrap, so this check
 | |
|   // is unnecessary.
 | |
|   return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static uptr GetMmapGranularity() {
 | |
|   SYSTEM_INFO si;
 | |
|   GetSystemInfo(&si);
 | |
|   return si.dwAllocationGranularity;
 | |
| }
 | |
| 
 | |
| static uptr RoundUpTo(uptr size, uptr boundary) {
 | |
|   return (size + boundary - 1) & ~(boundary - 1);
 | |
| }
 | |
| 
 | |
| // FIXME: internal_str* and internal_mem* functions should be moved from the
 | |
| // ASan sources into interception/.
 | |
| 
 | |
| static size_t _strlen(const char *str) {
 | |
|   const char* p = str;
 | |
|   while (*p != '\0') ++p;
 | |
|   return p - str;
 | |
| }
 | |
| 
 | |
| static char* _strchr(char* str, char c) {
 | |
|   while (*str) {
 | |
|     if (*str == c)
 | |
|       return str;
 | |
|     ++str;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static void _memset(void *p, int value, size_t sz) {
 | |
|   for (size_t i = 0; i < sz; ++i)
 | |
|     ((char*)p)[i] = (char)value;
 | |
| }
 | |
| 
 | |
| static void _memcpy(void *dst, void *src, size_t sz) {
 | |
|   char *dst_c = (char*)dst,
 | |
|        *src_c = (char*)src;
 | |
|   for (size_t i = 0; i < sz; ++i)
 | |
|     dst_c[i] = src_c[i];
 | |
| }
 | |
| 
 | |
| static bool ChangeMemoryProtection(
 | |
|     uptr address, uptr size, DWORD *old_protection) {
 | |
|   return ::VirtualProtect((void*)address, size,
 | |
|                           PAGE_EXECUTE_READWRITE,
 | |
|                           old_protection) != FALSE;
 | |
| }
 | |
| 
 | |
| static bool RestoreMemoryProtection(
 | |
|     uptr address, uptr size, DWORD old_protection) {
 | |
|   DWORD unused;
 | |
|   return ::VirtualProtect((void*)address, size,
 | |
|                           old_protection,
 | |
|                           &unused) != FALSE;
 | |
| }
 | |
| 
 | |
| static bool IsMemoryPadding(uptr address, uptr size) {
 | |
|   u8* function = (u8*)address;
 | |
|   for (size_t i = 0; i < size; ++i)
 | |
|     if (function[i] != 0x90 && function[i] != 0xCC)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static const u8 kHintNop10Bytes[] = {
 | |
|   0x66, 0x66, 0x0F, 0x1F, 0x84,
 | |
|   0x00, 0x00, 0x00, 0x00, 0x00
 | |
| };
 | |
| 
 | |
| template<class T>
 | |
| static bool FunctionHasPrefix(uptr address, const T &pattern) {
 | |
|   u8* function = (u8*)address - sizeof(pattern);
 | |
|   for (size_t i = 0; i < sizeof(pattern); ++i)
 | |
|     if (function[i] != pattern[i])
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool FunctionHasPadding(uptr address, uptr size) {
 | |
|   if (IsMemoryPadding(address - size, size))
 | |
|     return true;
 | |
|   if (size <= sizeof(kHintNop10Bytes) &&
 | |
|       FunctionHasPrefix(address, kHintNop10Bytes))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void WritePadding(uptr from, uptr size) {
 | |
|   _memset((void*)from, 0xCC, (size_t)size);
 | |
| }
 | |
| 
 | |
| static void WriteJumpInstruction(uptr from, uptr target) {
 | |
|   if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target))
 | |
|     InterceptionFailed();
 | |
|   ptrdiff_t offset = target - from - kJumpInstructionLength;
 | |
|   *(u8*)from = 0xE9;
 | |
|   *(u32*)(from + 1) = offset;
 | |
| }
 | |
| 
 | |
| static void WriteShortJumpInstruction(uptr from, uptr target) {
 | |
|   sptr offset = target - from - kShortJumpInstructionLength;
 | |
|   if (offset < -128 || offset > 127)
 | |
|     InterceptionFailed();
 | |
|   *(u8*)from = 0xEB;
 | |
|   *(u8*)(from + 1) = (u8)offset;
 | |
| }
 | |
| 
 | |
| #if SANITIZER_WINDOWS64
 | |
| static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
 | |
|   // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
 | |
|   // offset.
 | |
|   // The offset is the distance from then end of the jump instruction to the
 | |
|   // memory location containing the targeted address. The displacement is still
 | |
|   // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
 | |
|   int offset = indirect_target - from - kIndirectJumpInstructionLength;
 | |
|   if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
 | |
|                             indirect_target)) {
 | |
|     InterceptionFailed();
 | |
|   }
 | |
|   *(u16*)from = 0x25FF;
 | |
|   *(u32*)(from + 2) = offset;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void WriteBranch(
 | |
|     uptr from, uptr indirect_target, uptr target) {
 | |
| #if SANITIZER_WINDOWS64
 | |
|   WriteIndirectJumpInstruction(from, indirect_target);
 | |
|   *(u64*)indirect_target = target;
 | |
| #else
 | |
|   (void)indirect_target;
 | |
|   WriteJumpInstruction(from, target);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void WriteDirectBranch(uptr from, uptr target) {
 | |
| #if SANITIZER_WINDOWS64
 | |
|   // Emit an indirect jump through immediately following bytes:
 | |
|   //   jmp [rip + kBranchLength]
 | |
|   //   .quad <target>
 | |
|   WriteBranch(from, from + kBranchLength, target);
 | |
| #else
 | |
|   WriteJumpInstruction(from, target);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| struct TrampolineMemoryRegion {
 | |
|   uptr content;
 | |
|   uptr allocated_size;
 | |
|   uptr max_size;
 | |
| };
 | |
| 
 | |
| static const uptr kTrampolineScanLimitRange = 1 << 31;  // 2 gig
 | |
| static const int kMaxTrampolineRegion = 1024;
 | |
| static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
 | |
| 
 | |
| static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
 | |
| #if SANITIZER_WINDOWS64
 | |
|   uptr address = image_address;
 | |
|   uptr scanned = 0;
 | |
|   while (scanned < kTrampolineScanLimitRange) {
 | |
|     MEMORY_BASIC_INFORMATION info;
 | |
|     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
 | |
|       return nullptr;
 | |
| 
 | |
|     // Check whether a region can be allocated at |address|.
 | |
|     if (info.State == MEM_FREE && info.RegionSize >= granularity) {
 | |
|       void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
 | |
|                                   granularity,
 | |
|                                   MEM_RESERVE | MEM_COMMIT,
 | |
|                                   PAGE_EXECUTE_READWRITE);
 | |
|       return page;
 | |
|     }
 | |
| 
 | |
|     // Move to the next region.
 | |
|     address = (uptr)info.BaseAddress + info.RegionSize;
 | |
|     scanned += info.RegionSize;
 | |
|   }
 | |
|   return nullptr;
 | |
| #else
 | |
|   return ::VirtualAlloc(nullptr,
 | |
|                         granularity,
 | |
|                         MEM_RESERVE | MEM_COMMIT,
 | |
|                         PAGE_EXECUTE_READWRITE);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Used by unittests to release mapped memory space.
 | |
| void TestOnlyReleaseTrampolineRegions() {
 | |
|   for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
 | |
|     TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
 | |
|     if (current->content == 0)
 | |
|       return;
 | |
|     ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
 | |
|     current->content = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
 | |
|   // Find a region within 2G with enough space to allocate |size| bytes.
 | |
|   TrampolineMemoryRegion *region = nullptr;
 | |
|   for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
 | |
|     TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
 | |
|     if (current->content == 0) {
 | |
|       // No valid region found, allocate a new region.
 | |
|       size_t bucket_size = GetMmapGranularity();
 | |
|       void *content = AllocateTrampolineRegion(image_address, bucket_size);
 | |
|       if (content == nullptr)
 | |
|         return 0U;
 | |
| 
 | |
|       current->content = (uptr)content;
 | |
|       current->allocated_size = 0;
 | |
|       current->max_size = bucket_size;
 | |
|       region = current;
 | |
|       break;
 | |
|     } else if (current->max_size - current->allocated_size > size) {
 | |
| #if SANITIZER_WINDOWS64
 | |
|         // In 64-bits, the memory space must be allocated within 2G boundary.
 | |
|         uptr next_address = current->content + current->allocated_size;
 | |
|         if (next_address < image_address ||
 | |
|             next_address - image_address >= 0x7FFF0000)
 | |
|           continue;
 | |
| #endif
 | |
|       // The space can be allocated in the current region.
 | |
|       region = current;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Failed to find a region.
 | |
|   if (region == nullptr)
 | |
|     return 0U;
 | |
| 
 | |
|   // Allocate the space in the current region.
 | |
|   uptr allocated_space = region->content + region->allocated_size;
 | |
|   region->allocated_size += size;
 | |
|   WritePadding(allocated_space, size);
 | |
| 
 | |
|   return allocated_space;
 | |
| }
 | |
| 
 | |
| // Returns 0 on error.
 | |
| static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
 | |
|   switch (*(u64*)address) {
 | |
|     case 0x90909090909006EB:  // stub: jmp over 6 x nop.
 | |
|       return 8;
 | |
|   }
 | |
| 
 | |
|   switch (*(u8*)address) {
 | |
|     case 0x90:  // 90 : nop
 | |
|       return 1;
 | |
| 
 | |
|     case 0x50:  // push eax / rax
 | |
|     case 0x51:  // push ecx / rcx
 | |
|     case 0x52:  // push edx / rdx
 | |
|     case 0x53:  // push ebx / rbx
 | |
|     case 0x54:  // push esp / rsp
 | |
|     case 0x55:  // push ebp / rbp
 | |
|     case 0x56:  // push esi / rsi
 | |
|     case 0x57:  // push edi / rdi
 | |
|     case 0x5D:  // pop ebp / rbp
 | |
|       return 1;
 | |
| 
 | |
|     case 0x6A:  // 6A XX = push XX
 | |
|       return 2;
 | |
| 
 | |
|     case 0xb8:  // b8 XX XX XX XX : mov eax, XX XX XX XX
 | |
|     case 0xB9:  // b9 XX XX XX XX : mov ecx, XX XX XX XX
 | |
|       return 5;
 | |
| 
 | |
|     // Cannot overwrite control-instruction. Return 0 to indicate failure.
 | |
|     case 0xE9:  // E9 XX XX XX XX : jmp <label>
 | |
|     case 0xE8:  // E8 XX XX XX XX : call <func>
 | |
|     case 0xC3:  // C3 : ret
 | |
|     case 0xEB:  // EB XX : jmp XX (short jump)
 | |
|     case 0x70:  // 7Y YY : jy XX (short conditional jump)
 | |
|     case 0x71:
 | |
|     case 0x72:
 | |
|     case 0x73:
 | |
|     case 0x74:
 | |
|     case 0x75:
 | |
|     case 0x76:
 | |
|     case 0x77:
 | |
|     case 0x78:
 | |
|     case 0x79:
 | |
|     case 0x7A:
 | |
|     case 0x7B:
 | |
|     case 0x7C:
 | |
|     case 0x7D:
 | |
|     case 0x7E:
 | |
|     case 0x7F:
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   switch (*(u16*)(address)) {
 | |
|     case 0xFF8B:  // 8B FF : mov edi, edi
 | |
|     case 0xEC8B:  // 8B EC : mov ebp, esp
 | |
|     case 0xc889:  // 89 C8 : mov eax, ecx
 | |
|     case 0xC18B:  // 8B C1 : mov eax, ecx
 | |
|     case 0xC033:  // 33 C0 : xor eax, eax
 | |
|     case 0xC933:  // 33 C9 : xor ecx, ecx
 | |
|     case 0xD233:  // 33 D2 : xor edx, edx
 | |
|       return 2;
 | |
| 
 | |
|     // Cannot overwrite control-instruction. Return 0 to indicate failure.
 | |
|     case 0x25FF:  // FF 25 XX XX XX XX : jmp [XXXXXXXX]
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   switch (0x00FFFFFF & *(u32*)address) {
 | |
|     case 0x24A48D:  // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
 | |
|       return 7;
 | |
|   }
 | |
| 
 | |
| #if SANITIZER_WINDOWS64
 | |
|   switch (*(u8*)address) {
 | |
|     case 0xA1:  // A1 XX XX XX XX XX XX XX XX :
 | |
|                 //   movabs eax, dword ptr ds:[XXXXXXXX]
 | |
|       return 9;
 | |
|   }
 | |
| 
 | |
|   switch (*(u16*)address) {
 | |
|     case 0x5040:  // push rax
 | |
|     case 0x5140:  // push rcx
 | |
|     case 0x5240:  // push rdx
 | |
|     case 0x5340:  // push rbx
 | |
|     case 0x5440:  // push rsp
 | |
|     case 0x5540:  // push rbp
 | |
|     case 0x5640:  // push rsi
 | |
|     case 0x5740:  // push rdi
 | |
|     case 0x5441:  // push r12
 | |
|     case 0x5541:  // push r13
 | |
|     case 0x5641:  // push r14
 | |
|     case 0x5741:  // push r15
 | |
|     case 0x9066:  // Two-byte NOP
 | |
|       return 2;
 | |
| 
 | |
|     case 0x058B:  // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
 | |
|       if (rel_offset)
 | |
|         *rel_offset = 2;
 | |
|       return 6;
 | |
|   }
 | |
| 
 | |
|   switch (0x00FFFFFF & *(u32*)address) {
 | |
|     case 0xe58948:    // 48 8b c4 : mov rbp, rsp
 | |
|     case 0xc18b48:    // 48 8b c1 : mov rax, rcx
 | |
|     case 0xc48b48:    // 48 8b c4 : mov rax, rsp
 | |
|     case 0xd9f748:    // 48 f7 d9 : neg rcx
 | |
|     case 0xd12b48:    // 48 2b d1 : sub rdx, rcx
 | |
|     case 0x07c1f6:    // f6 c1 07 : test cl, 0x7
 | |
|     case 0xc98548:    // 48 85 C9 : test rcx, rcx
 | |
|     case 0xc0854d:    // 4d 85 c0 : test r8, r8
 | |
|     case 0xc2b60f:    // 0f b6 c2 : movzx eax, dl
 | |
|     case 0xc03345:    // 45 33 c0 : xor r8d, r8d
 | |
|     case 0xdb3345:    // 45 33 DB : xor r11d, r11d
 | |
|     case 0xd98b4c:    // 4c 8b d9 : mov r11, rcx
 | |
|     case 0xd28b4c:    // 4c 8b d2 : mov r10, rdx
 | |
|     case 0xc98b4c:    // 4C 8B C9 : mov r9, rcx
 | |
|     case 0xd2b60f:    // 0f b6 d2 : movzx edx, dl
 | |
|     case 0xca2b48:    // 48 2b ca : sub rcx, rdx
 | |
|     case 0x10b70f:    // 0f b7 10 : movzx edx, WORD PTR [rax]
 | |
|     case 0xc00b4d:    // 3d 0b c0 : or r8, r8
 | |
|     case 0xd18b48:    // 48 8b d1 : mov rdx, rcx
 | |
|     case 0xdc8b4c:    // 4c 8b dc : mov r11, rsp
 | |
|     case 0xd18b4c:    // 4c 8b d1 : mov r10, rcx
 | |
|       return 3;
 | |
| 
 | |
|     case 0xec8348:    // 48 83 ec XX : sub rsp, XX
 | |
|     case 0xf88349:    // 49 83 f8 XX : cmp r8, XX
 | |
|     case 0x588948:    // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
 | |
|       return 4;
 | |
| 
 | |
|     case 0xec8148:    // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
 | |
|       return 7;
 | |
| 
 | |
|     case 0x058b48:    // 48 8b 05 XX XX XX XX :
 | |
|                       //   mov rax, QWORD PTR [rip + XXXXXXXX]
 | |
|     case 0x25ff48:    // 48 ff 25 XX XX XX XX :
 | |
|                       //   rex.W jmp QWORD PTR [rip + XXXXXXXX]
 | |
| 
 | |
|       // Instructions having offset relative to 'rip' need offset adjustment.
 | |
|       if (rel_offset)
 | |
|         *rel_offset = 3;
 | |
|       return 7;
 | |
| 
 | |
|     case 0x2444c7:    // C7 44 24 XX YY YY YY YY
 | |
|                       //   mov dword ptr [rsp + XX], YYYYYYYY
 | |
|       return 8;
 | |
|   }
 | |
| 
 | |
|   switch (*(u32*)(address)) {
 | |
|     case 0x24448b48:  // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
 | |
|     case 0x246c8948:  // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
 | |
|     case 0x245c8948:  // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
 | |
|     case 0x24748948:  // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
 | |
|       return 5;
 | |
|   }
 | |
| 
 | |
| #else
 | |
| 
 | |
|   switch (*(u8*)address) {
 | |
|     case 0xA1:  // A1 XX XX XX XX :  mov eax, dword ptr ds:[XXXXXXXX]
 | |
|       return 5;
 | |
|   }
 | |
|   switch (*(u16*)address) {
 | |
|     case 0x458B:  // 8B 45 XX : mov eax, dword ptr [ebp + XX]
 | |
|     case 0x5D8B:  // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
 | |
|     case 0x7D8B:  // 8B 7D XX : mov edi, dword ptr [ebp + XX]
 | |
|     case 0xEC83:  // 83 EC XX : sub esp, XX
 | |
|     case 0x75FF:  // FF 75 XX : push dword ptr [ebp + XX]
 | |
|       return 3;
 | |
|     case 0xC1F7:  // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
 | |
|     case 0x25FF:  // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
 | |
|       return 6;
 | |
|     case 0x3D83:  // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
 | |
|       return 7;
 | |
|     case 0x7D83:  // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
 | |
|       return 4;
 | |
|   }
 | |
| 
 | |
|   switch (0x00FFFFFF & *(u32*)address) {
 | |
|     case 0x24448A:  // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
 | |
|     case 0x24448B:  // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
 | |
|     case 0x244C8B:  // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
 | |
|     case 0x24548B:  // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
 | |
|     case 0x24748B:  // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
 | |
|     case 0x247C8B:  // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
 | |
|       return 4;
 | |
|   }
 | |
| 
 | |
|   switch (*(u32*)address) {
 | |
|     case 0x2444B60F:  // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
 | |
|       return 5;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Unknown instruction!
 | |
|   // FIXME: Unknown instruction failures might happen when we add a new
 | |
|   // interceptor or a new compiler version. In either case, they should result
 | |
|   // in visible and readable error messages. However, merely calling abort()
 | |
|   // leads to an infinite recursion in CheckFailed.
 | |
|   InterceptionFailed();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Returns 0 on error.
 | |
| static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
 | |
|   size_t cursor = 0;
 | |
|   while (cursor < size) {
 | |
|     size_t instruction_size = GetInstructionSize(address + cursor);
 | |
|     if (!instruction_size)
 | |
|       return 0;
 | |
|     cursor += instruction_size;
 | |
|   }
 | |
|   return cursor;
 | |
| }
 | |
| 
 | |
| static bool CopyInstructions(uptr to, uptr from, size_t size) {
 | |
|   size_t cursor = 0;
 | |
|   while (cursor != size) {
 | |
|     size_t rel_offset = 0;
 | |
|     size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
 | |
|     _memcpy((void*)(to + cursor), (void*)(from + cursor),
 | |
|             (size_t)instruction_size);
 | |
|     if (rel_offset) {
 | |
|       uptr delta = to - from;
 | |
|       uptr relocated_offset = *(u32*)(to + cursor + rel_offset) - delta;
 | |
| #if SANITIZER_WINDOWS64
 | |
|       if (relocated_offset + 0x80000000U >= 0xFFFFFFFFU)
 | |
|         return false;
 | |
| #endif
 | |
|       *(u32*)(to + cursor + rel_offset) = relocated_offset;
 | |
|     }
 | |
|     cursor += instruction_size;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if !SANITIZER_WINDOWS64
 | |
| bool OverrideFunctionWithDetour(
 | |
|     uptr old_func, uptr new_func, uptr *orig_old_func) {
 | |
|   const int kDetourHeaderLen = 5;
 | |
|   const u16 kDetourInstruction = 0xFF8B;
 | |
| 
 | |
|   uptr header = (uptr)old_func - kDetourHeaderLen;
 | |
|   uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
 | |
| 
 | |
|   // Validate that the function is hookable.
 | |
|   if (*(u16*)old_func != kDetourInstruction ||
 | |
|       !IsMemoryPadding(header, kDetourHeaderLen))
 | |
|     return false;
 | |
| 
 | |
|   // Change memory protection to writable.
 | |
|   DWORD protection = 0;
 | |
|   if (!ChangeMemoryProtection(header, patch_length, &protection))
 | |
|     return false;
 | |
| 
 | |
|   // Write a relative jump to the redirected function.
 | |
|   WriteJumpInstruction(header, new_func);
 | |
| 
 | |
|   // Write the short jump to the function prefix.
 | |
|   WriteShortJumpInstruction(old_func, header);
 | |
| 
 | |
|   // Restore previous memory protection.
 | |
|   if (!RestoreMemoryProtection(header, patch_length, protection))
 | |
|     return false;
 | |
| 
 | |
|   if (orig_old_func)
 | |
|     *orig_old_func = old_func + kShortJumpInstructionLength;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool OverrideFunctionWithRedirectJump(
 | |
|     uptr old_func, uptr new_func, uptr *orig_old_func) {
 | |
|   // Check whether the first instruction is a relative jump.
 | |
|   if (*(u8*)old_func != 0xE9)
 | |
|     return false;
 | |
| 
 | |
|   if (orig_old_func) {
 | |
|     uptr relative_offset = *(u32*)(old_func + 1);
 | |
|     uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
 | |
|     *orig_old_func = absolute_target;
 | |
|   }
 | |
| 
 | |
| #if SANITIZER_WINDOWS64
 | |
|   // If needed, get memory space for a trampoline jump.
 | |
|   uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
 | |
|   if (!trampoline)
 | |
|     return false;
 | |
|   WriteDirectBranch(trampoline, new_func);
 | |
| #endif
 | |
| 
 | |
|   // Change memory protection to writable.
 | |
|   DWORD protection = 0;
 | |
|   if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
 | |
|     return false;
 | |
| 
 | |
|   // Write a relative jump to the redirected function.
 | |
|   WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
 | |
| 
 | |
|   // Restore previous memory protection.
 | |
|   if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool OverrideFunctionWithHotPatch(
 | |
|     uptr old_func, uptr new_func, uptr *orig_old_func) {
 | |
|   const int kHotPatchHeaderLen = kBranchLength;
 | |
| 
 | |
|   uptr header = (uptr)old_func - kHotPatchHeaderLen;
 | |
|   uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
 | |
| 
 | |
|   // Validate that the function is hot patchable.
 | |
|   size_t instruction_size = GetInstructionSize(old_func);
 | |
|   if (instruction_size < kShortJumpInstructionLength ||
 | |
|       !FunctionHasPadding(old_func, kHotPatchHeaderLen))
 | |
|     return false;
 | |
| 
 | |
|   if (orig_old_func) {
 | |
|     // Put the needed instructions into the trampoline bytes.
 | |
|     uptr trampoline_length = instruction_size + kDirectBranchLength;
 | |
|     uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
 | |
|     if (!trampoline)
 | |
|       return false;
 | |
|     if (!CopyInstructions(trampoline, old_func, instruction_size))
 | |
|       return false;
 | |
|     WriteDirectBranch(trampoline + instruction_size,
 | |
|                       old_func + instruction_size);
 | |
|     *orig_old_func = trampoline;
 | |
|   }
 | |
| 
 | |
|   // If needed, get memory space for indirect address.
 | |
|   uptr indirect_address = 0;
 | |
| #if SANITIZER_WINDOWS64
 | |
|   indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
 | |
|   if (!indirect_address)
 | |
|     return false;
 | |
| #endif
 | |
| 
 | |
|   // Change memory protection to writable.
 | |
|   DWORD protection = 0;
 | |
|   if (!ChangeMemoryProtection(header, patch_length, &protection))
 | |
|     return false;
 | |
| 
 | |
|   // Write jumps to the redirected function.
 | |
|   WriteBranch(header, indirect_address, new_func);
 | |
|   WriteShortJumpInstruction(old_func, header);
 | |
| 
 | |
|   // Restore previous memory protection.
 | |
|   if (!RestoreMemoryProtection(header, patch_length, protection))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool OverrideFunctionWithTrampoline(
 | |
|     uptr old_func, uptr new_func, uptr *orig_old_func) {
 | |
| 
 | |
|   size_t instructions_length = kBranchLength;
 | |
|   size_t padding_length = 0;
 | |
|   uptr indirect_address = 0;
 | |
| 
 | |
|   if (orig_old_func) {
 | |
|     // Find out the number of bytes of the instructions we need to copy
 | |
|     // to the trampoline.
 | |
|     instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
 | |
|     if (!instructions_length)
 | |
|       return false;
 | |
| 
 | |
|     // Put the needed instructions into the trampoline bytes.
 | |
|     uptr trampoline_length = instructions_length + kDirectBranchLength;
 | |
|     uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
 | |
|     if (!trampoline)
 | |
|       return false;
 | |
|     if (!CopyInstructions(trampoline, old_func, instructions_length))
 | |
|       return false;
 | |
|     WriteDirectBranch(trampoline + instructions_length,
 | |
|                       old_func + instructions_length);
 | |
|     *orig_old_func = trampoline;
 | |
|   }
 | |
| 
 | |
| #if SANITIZER_WINDOWS64
 | |
|   // Check if the targeted address can be encoded in the function padding.
 | |
|   // Otherwise, allocate it in the trampoline region.
 | |
|   if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
 | |
|     indirect_address = old_func - kAddressLength;
 | |
|     padding_length = kAddressLength;
 | |
|   } else {
 | |
|     indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
 | |
|     if (!indirect_address)
 | |
|       return false;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Change memory protection to writable.
 | |
|   uptr patch_address = old_func - padding_length;
 | |
|   uptr patch_length = instructions_length + padding_length;
 | |
|   DWORD protection = 0;
 | |
|   if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
 | |
|     return false;
 | |
| 
 | |
|   // Patch the original function.
 | |
|   WriteBranch(old_func, indirect_address, new_func);
 | |
| 
 | |
|   // Restore previous memory protection.
 | |
|   if (!RestoreMemoryProtection(patch_address, patch_length, protection))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool OverrideFunction(
 | |
|     uptr old_func, uptr new_func, uptr *orig_old_func) {
 | |
| #if !SANITIZER_WINDOWS64
 | |
|   if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
 | |
|     return true;
 | |
| #endif
 | |
|   if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
 | |
|     return true;
 | |
|   if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
 | |
|     return true;
 | |
|   if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void **InterestingDLLsAvailable() {
 | |
|   static const char *InterestingDLLs[] = {
 | |
|       "kernel32.dll",
 | |
|       "msvcr110.dll",      // VS2012
 | |
|       "msvcr120.dll",      // VS2013
 | |
|       "vcruntime140.dll",  // VS2015
 | |
|       "ucrtbase.dll",      // Universal CRT
 | |
|       // NTDLL should go last as it exports some functions that we should
 | |
|       // override in the CRT [presumably only used internally].
 | |
|       "ntdll.dll", NULL};
 | |
|   static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
 | |
|   if (!result[0]) {
 | |
|     for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
 | |
|       if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
 | |
|         result[j++] = (void *)h;
 | |
|     }
 | |
|   }
 | |
|   return &result[0];
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Utility for reading loaded PE images.
 | |
| template <typename T> class RVAPtr {
 | |
|  public:
 | |
|   RVAPtr(void *module, uptr rva)
 | |
|       : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
 | |
|   operator T *() { return ptr_; }
 | |
|   T *operator->() { return ptr_; }
 | |
|   T *operator++() { return ++ptr_; }
 | |
| 
 | |
|  private:
 | |
|   T *ptr_;
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| // Internal implementation of GetProcAddress. At least since Windows 8,
 | |
| // GetProcAddress appears to initialize DLLs before returning function pointers
 | |
| // into them. This is problematic for the sanitizers, because they typically
 | |
| // want to intercept malloc *before* MSVCRT initializes. Our internal
 | |
| // implementation walks the export list manually without doing initialization.
 | |
| uptr InternalGetProcAddress(void *module, const char *func_name) {
 | |
|   // Check that the module header is full and present.
 | |
|   RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
 | |
|   RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
 | |
|   if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
 | |
|       headers->Signature != IMAGE_NT_SIGNATURE ||           // "PE\0\0"
 | |
|       headers->FileHeader.SizeOfOptionalHeader <
 | |
|           sizeof(IMAGE_OPTIONAL_HEADER)) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   IMAGE_DATA_DIRECTORY *export_directory =
 | |
|       &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
 | |
|   if (export_directory->Size == 0)
 | |
|     return 0;
 | |
|   RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
 | |
|                                          export_directory->VirtualAddress);
 | |
|   RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
 | |
|   RVAPtr<DWORD> names(module, exports->AddressOfNames);
 | |
|   RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
 | |
| 
 | |
|   for (DWORD i = 0; i < exports->NumberOfNames; i++) {
 | |
|     RVAPtr<char> name(module, names[i]);
 | |
|     if (!strcmp(func_name, name)) {
 | |
|       DWORD index = ordinals[i];
 | |
|       RVAPtr<char> func(module, functions[index]);
 | |
| 
 | |
|       // Handle forwarded functions.
 | |
|       DWORD offset = functions[index];
 | |
|       if (offset >= export_directory->VirtualAddress &&
 | |
|           offset < export_directory->VirtualAddress + export_directory->Size) {
 | |
|         // An entry for a forwarded function is a string with the following
 | |
|         // format: "<module> . <function_name>" that is stored into the
 | |
|         // exported directory.
 | |
|         char function_name[256];
 | |
|         size_t funtion_name_length = _strlen(func);
 | |
|         if (funtion_name_length >= sizeof(function_name) - 1)
 | |
|           InterceptionFailed();
 | |
| 
 | |
|         _memcpy(function_name, func, funtion_name_length);
 | |
|         function_name[funtion_name_length] = '\0';
 | |
|         char* separator = _strchr(function_name, '.');
 | |
|         if (!separator)
 | |
|           InterceptionFailed();
 | |
|         *separator = '\0';
 | |
| 
 | |
|         void* redirected_module = GetModuleHandleA(function_name);
 | |
|         if (!redirected_module)
 | |
|           InterceptionFailed();
 | |
|         return InternalGetProcAddress(redirected_module, separator + 1);
 | |
|       }
 | |
| 
 | |
|       return (uptr)(char *)func;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool OverrideFunction(
 | |
|     const char *func_name, uptr new_func, uptr *orig_old_func) {
 | |
|   bool hooked = false;
 | |
|   void **DLLs = InterestingDLLsAvailable();
 | |
|   for (size_t i = 0; DLLs[i]; ++i) {
 | |
|     uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
 | |
|     if (func_addr &&
 | |
|         OverrideFunction(func_addr, new_func, orig_old_func)) {
 | |
|       hooked = true;
 | |
|     }
 | |
|   }
 | |
|   return hooked;
 | |
| }
 | |
| 
 | |
| bool OverrideImportedFunction(const char *module_to_patch,
 | |
|                               const char *imported_module,
 | |
|                               const char *function_name, uptr new_function,
 | |
|                               uptr *orig_old_func) {
 | |
|   HMODULE module = GetModuleHandleA(module_to_patch);
 | |
|   if (!module)
 | |
|     return false;
 | |
| 
 | |
|   // Check that the module header is full and present.
 | |
|   RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
 | |
|   RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
 | |
|   if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
 | |
|       headers->Signature != IMAGE_NT_SIGNATURE ||            // "PE\0\0"
 | |
|       headers->FileHeader.SizeOfOptionalHeader <
 | |
|           sizeof(IMAGE_OPTIONAL_HEADER)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   IMAGE_DATA_DIRECTORY *import_directory =
 | |
|       &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
 | |
| 
 | |
|   // Iterate the list of imported DLLs. FirstThunk will be null for the last
 | |
|   // entry.
 | |
|   RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
 | |
|                                           import_directory->VirtualAddress);
 | |
|   for (; imports->FirstThunk != 0; ++imports) {
 | |
|     RVAPtr<const char> modname(module, imports->Name);
 | |
|     if (_stricmp(&*modname, imported_module) == 0)
 | |
|       break;
 | |
|   }
 | |
|   if (imports->FirstThunk == 0)
 | |
|     return false;
 | |
| 
 | |
|   // We have two parallel arrays: the import address table (IAT) and the table
 | |
|   // of names. They start out containing the same data, but the loader rewrites
 | |
|   // the IAT to hold imported addresses and leaves the name table in
 | |
|   // OriginalFirstThunk alone.
 | |
|   RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
 | |
|   RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
 | |
|   for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
 | |
|     if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
 | |
|       RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
 | |
|           module, name_table->u1.ForwarderString);
 | |
|       const char *funcname = &import_by_name->Name[0];
 | |
|       if (strcmp(funcname, function_name) == 0)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   if (name_table->u1.Ordinal == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Now we have the correct IAT entry. Do the swap. We have to make the page
 | |
|   // read/write first.
 | |
|   if (orig_old_func)
 | |
|     *orig_old_func = iat->u1.AddressOfData;
 | |
|   DWORD old_prot, unused_prot;
 | |
|   if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
 | |
|                       &old_prot))
 | |
|     return false;
 | |
|   iat->u1.AddressOfData = new_function;
 | |
|   if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
 | |
|     return false;  // Not clear if this failure bothers us.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace __interception
 | |
| 
 | |
| #endif  // _WIN32
 |