forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			254 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			254 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- safestack.cc ------------------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the runtime support for the safe stack protection
 | |
| // mechanism. The runtime manages allocation/deallocation of the unsafe stack
 | |
| // for the main thread, as well as all pthreads that are created/destroyed
 | |
| // during program execution.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include <limits.h>
 | |
| #include <pthread.h>
 | |
| #include <stddef.h>
 | |
| #include <stdint.h>
 | |
| #include <unistd.h>
 | |
| #include <sys/resource.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/user.h>
 | |
| 
 | |
| #include "interception/interception.h"
 | |
| #include "sanitizer_common/sanitizer_common.h"
 | |
| 
 | |
| // TODO: The runtime library does not currently protect the safe stack beyond
 | |
| // relying on the system-enforced ASLR. The protection of the (safe) stack can
 | |
| // be provided by three alternative features:
 | |
| //
 | |
| // 1) Protection via hardware segmentation on x86-32 and some x86-64
 | |
| // architectures: the (safe) stack segment (implicitly accessed via the %ss
 | |
| // segment register) can be separated from the data segment (implicitly
 | |
| // accessed via the %ds segment register). Dereferencing a pointer to the safe
 | |
| // segment would result in a segmentation fault.
 | |
| //
 | |
| // 2) Protection via software fault isolation: memory writes that are not meant
 | |
| // to access the safe stack can be prevented from doing so through runtime
 | |
| // instrumentation. One way to do it is to allocate the safe stack(s) in the
 | |
| // upper half of the userspace and bitmask the corresponding upper bit of the
 | |
| // memory addresses of memory writes that are not meant to access the safe
 | |
| // stack.
 | |
| //
 | |
| // 3) Protection via information hiding on 64 bit architectures: the location
 | |
| // of the safe stack(s) can be randomized through secure mechanisms, and the
 | |
| // leakage of the stack pointer can be prevented. Currently, libc can leak the
 | |
| // stack pointer in several ways (e.g. in longjmp, signal handling, user-level
 | |
| // context switching related functions, etc.). These can be fixed in libc and
 | |
| // in other low-level libraries, by either eliminating the escaping/dumping of
 | |
| // the stack pointer (i.e., %rsp) when that's possible, or by using
 | |
| // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret
 | |
| // we control and protect better, as is already done for setjmp in glibc.)
 | |
| // Furthermore, a static machine code level verifier can be ran after code
 | |
| // generation to make sure that the stack pointer is never written to memory,
 | |
| // or if it is, its written on the safe stack.
 | |
| //
 | |
| // Finally, while the Unsafe Stack pointer is currently stored in a thread
 | |
| // local variable, with libc support it could be stored in the TCB (thread
 | |
| // control block) as well, eliminating another level of indirection and making
 | |
| // such accesses faster. Alternatively, dedicating a separate register for
 | |
| // storing it would also be possible.
 | |
| 
 | |
| /// Minimum stack alignment for the unsafe stack.
 | |
| const unsigned kStackAlign = 16;
 | |
| 
 | |
| /// Default size of the unsafe stack. This value is only used if the stack
 | |
| /// size rlimit is set to infinity.
 | |
| const unsigned kDefaultUnsafeStackSize = 0x2800000;
 | |
| 
 | |
| /// Runtime page size obtained through sysconf
 | |
| static unsigned pageSize;
 | |
| 
 | |
| // TODO: To make accessing the unsafe stack pointer faster, we plan to
 | |
| // eventually store it directly in the thread control block data structure on
 | |
| // platforms where this structure is pointed to by %fs or %gs. This is exactly
 | |
| // the same mechanism as currently being used by the traditional stack
 | |
| // protector pass to store the stack guard (see getStackCookieLocation()
 | |
| // function above). Doing so requires changing the tcbhead_t struct in glibc
 | |
| // on Linux and tcb struct in libc on FreeBSD.
 | |
| //
 | |
| // For now, store it in a thread-local variable.
 | |
| extern "C" {
 | |
| __attribute__((visibility(
 | |
|     "default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr;
 | |
| }
 | |
| 
 | |
| // Per-thread unsafe stack information. It's not frequently accessed, so there
 | |
| // it can be kept out of the tcb in normal thread-local variables.
 | |
| static __thread void *unsafe_stack_start = nullptr;
 | |
| static __thread size_t unsafe_stack_size = 0;
 | |
| static __thread size_t unsafe_stack_guard = 0;
 | |
| 
 | |
| using namespace __sanitizer;
 | |
| 
 | |
| static inline void *unsafe_stack_alloc(size_t size, size_t guard) {
 | |
|   CHECK_GE(size + guard, size);
 | |
|   void *addr = MmapOrDie(size + guard, "unsafe_stack_alloc");
 | |
|   MprotectNoAccess((uptr)addr, (uptr)guard);
 | |
|   return (char *)addr + guard;
 | |
| }
 | |
| 
 | |
| static inline void unsafe_stack_setup(void *start, size_t size, size_t guard) {
 | |
|   CHECK_GE((char *)start + size, (char *)start);
 | |
|   CHECK_GE((char *)start + guard, (char *)start);
 | |
|   void *stack_ptr = (char *)start + size;
 | |
|   CHECK_EQ((((size_t)stack_ptr) & (kStackAlign - 1)), 0);
 | |
| 
 | |
|   __safestack_unsafe_stack_ptr = stack_ptr;
 | |
|   unsafe_stack_start = start;
 | |
|   unsafe_stack_size = size;
 | |
|   unsafe_stack_guard = guard;
 | |
| }
 | |
| 
 | |
| static void unsafe_stack_free() {
 | |
|   if (unsafe_stack_start) {
 | |
|     UnmapOrDie((char *)unsafe_stack_start - unsafe_stack_guard,
 | |
|                unsafe_stack_size + unsafe_stack_guard);
 | |
|   }
 | |
|   unsafe_stack_start = nullptr;
 | |
| }
 | |
| 
 | |
| /// Thread data for the cleanup handler
 | |
| static pthread_key_t thread_cleanup_key;
 | |
| 
 | |
| /// Safe stack per-thread information passed to the thread_start function
 | |
| struct tinfo {
 | |
|   void *(*start_routine)(void *);
 | |
|   void *start_routine_arg;
 | |
| 
 | |
|   void *unsafe_stack_start;
 | |
|   size_t unsafe_stack_size;
 | |
|   size_t unsafe_stack_guard;
 | |
| };
 | |
| 
 | |
| /// Wrap the thread function in order to deallocate the unsafe stack when the
 | |
| /// thread terminates by returning from its main function.
 | |
| static void *thread_start(void *arg) {
 | |
|   struct tinfo *tinfo = (struct tinfo *)arg;
 | |
| 
 | |
|   void *(*start_routine)(void *) = tinfo->start_routine;
 | |
|   void *start_routine_arg = tinfo->start_routine_arg;
 | |
| 
 | |
|   // Setup the unsafe stack; this will destroy tinfo content
 | |
|   unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size,
 | |
|                      tinfo->unsafe_stack_guard);
 | |
| 
 | |
|   // Make sure out thread-specific destructor will be called
 | |
|   // FIXME: we can do this only any other specific key is set by
 | |
|   // intercepting the pthread_setspecific function itself
 | |
|   pthread_setspecific(thread_cleanup_key, (void *)1);
 | |
| 
 | |
|   return start_routine(start_routine_arg);
 | |
| }
 | |
| 
 | |
| /// Thread-specific data destructor
 | |
| static void thread_cleanup_handler(void *_iter) {
 | |
|   // We want to free the unsafe stack only after all other destructors
 | |
|   // have already run. We force this function to be called multiple times.
 | |
|   // User destructors that might run more then PTHREAD_DESTRUCTOR_ITERATIONS-1
 | |
|   // times might still end up executing after the unsafe stack is deallocated.
 | |
|   size_t iter = (size_t)_iter;
 | |
|   if (iter < PTHREAD_DESTRUCTOR_ITERATIONS) {
 | |
|     pthread_setspecific(thread_cleanup_key, (void *)(iter + 1));
 | |
|   } else {
 | |
|     // This is the last iteration
 | |
|     unsafe_stack_free();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Intercept thread creation operation to allocate and setup the unsafe stack
 | |
| INTERCEPTOR(int, pthread_create, pthread_t *thread,
 | |
|             const pthread_attr_t *attr,
 | |
|             void *(*start_routine)(void*), void *arg) {
 | |
| 
 | |
|   size_t size = 0;
 | |
|   size_t guard = 0;
 | |
| 
 | |
|   if (attr) {
 | |
|     pthread_attr_getstacksize(attr, &size);
 | |
|     pthread_attr_getguardsize(attr, &guard);
 | |
|   } else {
 | |
|     // get pthread default stack size
 | |
|     pthread_attr_t tmpattr;
 | |
|     pthread_attr_init(&tmpattr);
 | |
|     pthread_attr_getstacksize(&tmpattr, &size);
 | |
|     pthread_attr_getguardsize(&tmpattr, &guard);
 | |
|     pthread_attr_destroy(&tmpattr);
 | |
|   }
 | |
| 
 | |
|   CHECK_NE(size, 0);
 | |
|   CHECK_EQ((size & (kStackAlign - 1)), 0);
 | |
|   CHECK_EQ((guard & (pageSize - 1)), 0);
 | |
| 
 | |
|   void *addr = unsafe_stack_alloc(size, guard);
 | |
|   struct tinfo *tinfo =
 | |
|       (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo));
 | |
|   tinfo->start_routine = start_routine;
 | |
|   tinfo->start_routine_arg = arg;
 | |
|   tinfo->unsafe_stack_start = addr;
 | |
|   tinfo->unsafe_stack_size = size;
 | |
|   tinfo->unsafe_stack_guard = guard;
 | |
| 
 | |
|   return REAL(pthread_create)(thread, attr, thread_start, tinfo);
 | |
| }
 | |
| 
 | |
| extern "C" __attribute__((visibility("default")))
 | |
| #if !SANITIZER_CAN_USE_PREINIT_ARRAY
 | |
| // On ELF platforms, the constructor is invoked using .preinit_array (see below)
 | |
| __attribute__((constructor(0)))
 | |
| #endif
 | |
| void __safestack_init() {
 | |
|   // Determine the stack size for the main thread.
 | |
|   size_t size = kDefaultUnsafeStackSize;
 | |
|   size_t guard = 4096;
 | |
| 
 | |
|   struct rlimit limit;
 | |
|   if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY)
 | |
|     size = limit.rlim_cur;
 | |
| 
 | |
|   // Allocate unsafe stack for main thread
 | |
|   void *addr = unsafe_stack_alloc(size, guard);
 | |
| 
 | |
|   unsafe_stack_setup(addr, size, guard);
 | |
|   pageSize = sysconf(_SC_PAGESIZE);
 | |
| 
 | |
|   // Initialize pthread interceptors for thread allocation
 | |
|   INTERCEPT_FUNCTION(pthread_create);
 | |
| 
 | |
|   // Setup the cleanup handler
 | |
|   pthread_key_create(&thread_cleanup_key, thread_cleanup_handler);
 | |
| }
 | |
| 
 | |
| #if SANITIZER_CAN_USE_PREINIT_ARRAY
 | |
| // On ELF platforms, run safestack initialization before any other constructors.
 | |
| // On other platforms we use the constructor attribute to arrange to run our
 | |
| // initialization early.
 | |
| extern "C" {
 | |
| __attribute__((section(".preinit_array"),
 | |
|                used)) void (*__safestack_preinit)(void) = __safestack_init;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern "C"
 | |
|     __attribute__((visibility("default"))) void *__get_unsafe_stack_start() {
 | |
|   return unsafe_stack_start;
 | |
| }
 | |
| 
 | |
| extern "C"
 | |
|     __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() {
 | |
|   return __safestack_unsafe_stack_ptr;
 | |
| }
 |