forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			722 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			722 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ExprClassification.cpp - Expression AST Node Implementation --------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements Expr::classify.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
using Cl = Expr::Classification;
 | 
						|
 | 
						|
static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E);
 | 
						|
static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D);
 | 
						|
static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T);
 | 
						|
static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E);
 | 
						|
static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E);
 | 
						|
static Cl::Kinds ClassifyConditional(ASTContext &Ctx,
 | 
						|
                                     const Expr *trueExpr,
 | 
						|
                                     const Expr *falseExpr);
 | 
						|
static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
 | 
						|
                                       Cl::Kinds Kind, SourceLocation &Loc);
 | 
						|
 | 
						|
Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const {
 | 
						|
  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
 | 
						|
 | 
						|
  Cl::Kinds kind = ClassifyInternal(Ctx, this);
 | 
						|
  // C99 6.3.2.1: An lvalue is an expression with an object type or an
 | 
						|
  //   incomplete type other than void.
 | 
						|
  if (!Ctx.getLangOpts().CPlusPlus) {
 | 
						|
    // Thus, no functions.
 | 
						|
    if (TR->isFunctionType() || TR == Ctx.OverloadTy)
 | 
						|
      kind = Cl::CL_Function;
 | 
						|
    // No void either, but qualified void is OK because it is "other than void".
 | 
						|
    // Void "lvalues" are classified as addressable void values, which are void
 | 
						|
    // expressions whose address can be taken.
 | 
						|
    else if (TR->isVoidType() && !TR.hasQualifiers())
 | 
						|
      kind = (kind == Cl::CL_LValue ? Cl::CL_AddressableVoid : Cl::CL_Void);
 | 
						|
  }
 | 
						|
 | 
						|
  // Enable this assertion for testing.
 | 
						|
  switch (kind) {
 | 
						|
  case Cl::CL_LValue: assert(getValueKind() == VK_LValue); break;
 | 
						|
  case Cl::CL_XValue: assert(getValueKind() == VK_XValue); break;
 | 
						|
  case Cl::CL_Function:
 | 
						|
  case Cl::CL_Void:
 | 
						|
  case Cl::CL_AddressableVoid:
 | 
						|
  case Cl::CL_DuplicateVectorComponents:
 | 
						|
  case Cl::CL_MemberFunction:
 | 
						|
  case Cl::CL_SubObjCPropertySetting:
 | 
						|
  case Cl::CL_ClassTemporary:
 | 
						|
  case Cl::CL_ArrayTemporary:
 | 
						|
  case Cl::CL_ObjCMessageRValue:
 | 
						|
  case Cl::CL_PRValue: assert(getValueKind() == VK_RValue); break;
 | 
						|
  }
 | 
						|
 | 
						|
  Cl::ModifiableType modifiable = Cl::CM_Untested;
 | 
						|
  if (Loc)
 | 
						|
    modifiable = IsModifiable(Ctx, this, kind, *Loc);
 | 
						|
  return Classification(kind, modifiable);
 | 
						|
}
 | 
						|
 | 
						|
/// Classify an expression which creates a temporary, based on its type.
 | 
						|
static Cl::Kinds ClassifyTemporary(QualType T) {
 | 
						|
  if (T->isRecordType())
 | 
						|
    return Cl::CL_ClassTemporary;
 | 
						|
  if (T->isArrayType())
 | 
						|
    return Cl::CL_ArrayTemporary;
 | 
						|
 | 
						|
  // No special classification: these don't behave differently from normal
 | 
						|
  // prvalues.
 | 
						|
  return Cl::CL_PRValue;
 | 
						|
}
 | 
						|
 | 
						|
static Cl::Kinds ClassifyExprValueKind(const LangOptions &Lang,
 | 
						|
                                       const Expr *E,
 | 
						|
                                       ExprValueKind Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  case VK_RValue:
 | 
						|
    return Lang.CPlusPlus ? ClassifyTemporary(E->getType()) : Cl::CL_PRValue;
 | 
						|
  case VK_LValue:
 | 
						|
    return Cl::CL_LValue;
 | 
						|
  case VK_XValue:
 | 
						|
    return Cl::CL_XValue;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid value category of implicit cast.");
 | 
						|
}
 | 
						|
 | 
						|
static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) {
 | 
						|
  // This function takes the first stab at classifying expressions.
 | 
						|
  const LangOptions &Lang = Ctx.getLangOpts();
 | 
						|
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
  case Stmt::NoStmtClass:
 | 
						|
#define ABSTRACT_STMT(Kind)
 | 
						|
#define STMT(Kind, Base) case Expr::Kind##Class:
 | 
						|
#define EXPR(Kind, Base)
 | 
						|
#include "clang/AST/StmtNodes.inc"
 | 
						|
    llvm_unreachable("cannot classify a statement");
 | 
						|
 | 
						|
    // First come the expressions that are always lvalues, unconditionally.
 | 
						|
  case Expr::ObjCIsaExprClass:
 | 
						|
    // C++ [expr.prim.general]p1: A string literal is an lvalue.
 | 
						|
  case Expr::StringLiteralClass:
 | 
						|
    // @encode is equivalent to its string
 | 
						|
  case Expr::ObjCEncodeExprClass:
 | 
						|
    // __func__ and friends are too.
 | 
						|
  case Expr::PredefinedExprClass:
 | 
						|
    // Property references are lvalues
 | 
						|
  case Expr::ObjCSubscriptRefExprClass:
 | 
						|
  case Expr::ObjCPropertyRefExprClass:
 | 
						|
    // C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of...
 | 
						|
  case Expr::CXXTypeidExprClass:
 | 
						|
  case Expr::CXXUuidofExprClass:
 | 
						|
    // Unresolved lookups and uncorrected typos get classified as lvalues.
 | 
						|
    // FIXME: Is this wise? Should they get their own kind?
 | 
						|
  case Expr::UnresolvedLookupExprClass:
 | 
						|
  case Expr::UnresolvedMemberExprClass:
 | 
						|
  case Expr::TypoExprClass:
 | 
						|
  case Expr::DependentCoawaitExprClass:
 | 
						|
  case Expr::CXXDependentScopeMemberExprClass:
 | 
						|
  case Expr::DependentScopeDeclRefExprClass:
 | 
						|
    // ObjC instance variables are lvalues
 | 
						|
    // FIXME: ObjC++0x might have different rules
 | 
						|
  case Expr::ObjCIvarRefExprClass:
 | 
						|
  case Expr::FunctionParmPackExprClass:
 | 
						|
  case Expr::MSPropertyRefExprClass:
 | 
						|
  case Expr::MSPropertySubscriptExprClass:
 | 
						|
  case Expr::OMPArraySectionExprClass:
 | 
						|
  case Expr::OMPArrayShapingExprClass:
 | 
						|
  case Expr::OMPIteratorExprClass:
 | 
						|
    return Cl::CL_LValue;
 | 
						|
 | 
						|
    // C99 6.5.2.5p5 says that compound literals are lvalues.
 | 
						|
    // In C++, they're prvalue temporaries, except for file-scope arrays.
 | 
						|
  case Expr::CompoundLiteralExprClass:
 | 
						|
    return !E->isLValue() ? ClassifyTemporary(E->getType()) : Cl::CL_LValue;
 | 
						|
 | 
						|
    // Expressions that are prvalues.
 | 
						|
  case Expr::CXXBoolLiteralExprClass:
 | 
						|
  case Expr::CXXPseudoDestructorExprClass:
 | 
						|
  case Expr::UnaryExprOrTypeTraitExprClass:
 | 
						|
  case Expr::CXXNewExprClass:
 | 
						|
  case Expr::CXXThisExprClass:
 | 
						|
  case Expr::CXXNullPtrLiteralExprClass:
 | 
						|
  case Expr::ImaginaryLiteralClass:
 | 
						|
  case Expr::GNUNullExprClass:
 | 
						|
  case Expr::OffsetOfExprClass:
 | 
						|
  case Expr::CXXThrowExprClass:
 | 
						|
  case Expr::ShuffleVectorExprClass:
 | 
						|
  case Expr::ConvertVectorExprClass:
 | 
						|
  case Expr::IntegerLiteralClass:
 | 
						|
  case Expr::FixedPointLiteralClass:
 | 
						|
  case Expr::CharacterLiteralClass:
 | 
						|
  case Expr::AddrLabelExprClass:
 | 
						|
  case Expr::CXXDeleteExprClass:
 | 
						|
  case Expr::ImplicitValueInitExprClass:
 | 
						|
  case Expr::BlockExprClass:
 | 
						|
  case Expr::FloatingLiteralClass:
 | 
						|
  case Expr::CXXNoexceptExprClass:
 | 
						|
  case Expr::CXXScalarValueInitExprClass:
 | 
						|
  case Expr::TypeTraitExprClass:
 | 
						|
  case Expr::ArrayTypeTraitExprClass:
 | 
						|
  case Expr::ExpressionTraitExprClass:
 | 
						|
  case Expr::ObjCSelectorExprClass:
 | 
						|
  case Expr::ObjCProtocolExprClass:
 | 
						|
  case Expr::ObjCStringLiteralClass:
 | 
						|
  case Expr::ObjCBoxedExprClass:
 | 
						|
  case Expr::ObjCArrayLiteralClass:
 | 
						|
  case Expr::ObjCDictionaryLiteralClass:
 | 
						|
  case Expr::ObjCBoolLiteralExprClass:
 | 
						|
  case Expr::ObjCAvailabilityCheckExprClass:
 | 
						|
  case Expr::ParenListExprClass:
 | 
						|
  case Expr::SizeOfPackExprClass:
 | 
						|
  case Expr::SubstNonTypeTemplateParmPackExprClass:
 | 
						|
  case Expr::AsTypeExprClass:
 | 
						|
  case Expr::ObjCIndirectCopyRestoreExprClass:
 | 
						|
  case Expr::AtomicExprClass:
 | 
						|
  case Expr::CXXFoldExprClass:
 | 
						|
  case Expr::ArrayInitLoopExprClass:
 | 
						|
  case Expr::ArrayInitIndexExprClass:
 | 
						|
  case Expr::NoInitExprClass:
 | 
						|
  case Expr::DesignatedInitUpdateExprClass:
 | 
						|
  case Expr::SourceLocExprClass:
 | 
						|
  case Expr::ConceptSpecializationExprClass:
 | 
						|
  case Expr::RequiresExprClass:
 | 
						|
    return Cl::CL_PRValue;
 | 
						|
 | 
						|
  case Expr::ConstantExprClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<ConstantExpr>(E)->getSubExpr());
 | 
						|
 | 
						|
    // Next come the complicated cases.
 | 
						|
  case Expr::SubstNonTypeTemplateParmExprClass:
 | 
						|
    return ClassifyInternal(Ctx,
 | 
						|
                 cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
 | 
						|
 | 
						|
    // C, C++98 [expr.sub]p1: The result is an lvalue of type "T".
 | 
						|
    // C++11 (DR1213): in the case of an array operand, the result is an lvalue
 | 
						|
    //                 if that operand is an lvalue and an xvalue otherwise.
 | 
						|
    // Subscripting vector types is more like member access.
 | 
						|
  case Expr::ArraySubscriptExprClass:
 | 
						|
    if (cast<ArraySubscriptExpr>(E)->getBase()->getType()->isVectorType())
 | 
						|
      return ClassifyInternal(Ctx, cast<ArraySubscriptExpr>(E)->getBase());
 | 
						|
    if (Lang.CPlusPlus11) {
 | 
						|
      // Step over the array-to-pointer decay if present, but not over the
 | 
						|
      // temporary materialization.
 | 
						|
      auto *Base = cast<ArraySubscriptExpr>(E)->getBase()->IgnoreImpCasts();
 | 
						|
      if (Base->getType()->isArrayType())
 | 
						|
        return ClassifyInternal(Ctx, Base);
 | 
						|
    }
 | 
						|
    return Cl::CL_LValue;
 | 
						|
 | 
						|
  // Subscripting matrix types behaves like member accesses.
 | 
						|
  case Expr::MatrixSubscriptExprClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<MatrixSubscriptExpr>(E)->getBase());
 | 
						|
 | 
						|
    // C++ [expr.prim.general]p3: The result is an lvalue if the entity is a
 | 
						|
    //   function or variable and a prvalue otherwise.
 | 
						|
  case Expr::DeclRefExprClass:
 | 
						|
    if (E->getType() == Ctx.UnknownAnyTy)
 | 
						|
      return isa<FunctionDecl>(cast<DeclRefExpr>(E)->getDecl())
 | 
						|
               ? Cl::CL_PRValue : Cl::CL_LValue;
 | 
						|
    return ClassifyDecl(Ctx, cast<DeclRefExpr>(E)->getDecl());
 | 
						|
 | 
						|
    // Member access is complex.
 | 
						|
  case Expr::MemberExprClass:
 | 
						|
    return ClassifyMemberExpr(Ctx, cast<MemberExpr>(E));
 | 
						|
 | 
						|
  case Expr::UnaryOperatorClass:
 | 
						|
    switch (cast<UnaryOperator>(E)->getOpcode()) {
 | 
						|
      // C++ [expr.unary.op]p1: The unary * operator performs indirection:
 | 
						|
      //   [...] the result is an lvalue referring to the object or function
 | 
						|
      //   to which the expression points.
 | 
						|
    case UO_Deref:
 | 
						|
      return Cl::CL_LValue;
 | 
						|
 | 
						|
      // GNU extensions, simply look through them.
 | 
						|
    case UO_Extension:
 | 
						|
      return ClassifyInternal(Ctx, cast<UnaryOperator>(E)->getSubExpr());
 | 
						|
 | 
						|
    // Treat _Real and _Imag basically as if they were member
 | 
						|
    // expressions:  l-value only if the operand is a true l-value.
 | 
						|
    case UO_Real:
 | 
						|
    case UO_Imag: {
 | 
						|
      const Expr *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
 | 
						|
      Cl::Kinds K = ClassifyInternal(Ctx, Op);
 | 
						|
      if (K != Cl::CL_LValue) return K;
 | 
						|
 | 
						|
      if (isa<ObjCPropertyRefExpr>(Op))
 | 
						|
        return Cl::CL_SubObjCPropertySetting;
 | 
						|
      return Cl::CL_LValue;
 | 
						|
    }
 | 
						|
 | 
						|
      // C++ [expr.pre.incr]p1: The result is the updated operand; it is an
 | 
						|
      //   lvalue, [...]
 | 
						|
      // Not so in C.
 | 
						|
    case UO_PreInc:
 | 
						|
    case UO_PreDec:
 | 
						|
      return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue;
 | 
						|
 | 
						|
    default:
 | 
						|
      return Cl::CL_PRValue;
 | 
						|
    }
 | 
						|
 | 
						|
  case Expr::RecoveryExprClass:
 | 
						|
  case Expr::OpaqueValueExprClass:
 | 
						|
    return ClassifyExprValueKind(Lang, E, E->getValueKind());
 | 
						|
 | 
						|
    // Pseudo-object expressions can produce l-values with reference magic.
 | 
						|
  case Expr::PseudoObjectExprClass:
 | 
						|
    return ClassifyExprValueKind(Lang, E,
 | 
						|
                                 cast<PseudoObjectExpr>(E)->getValueKind());
 | 
						|
 | 
						|
    // Implicit casts are lvalues if they're lvalue casts. Other than that, we
 | 
						|
    // only specifically record class temporaries.
 | 
						|
  case Expr::ImplicitCastExprClass:
 | 
						|
    return ClassifyExprValueKind(Lang, E, E->getValueKind());
 | 
						|
 | 
						|
    // C++ [expr.prim.general]p4: The presence of parentheses does not affect
 | 
						|
    //   whether the expression is an lvalue.
 | 
						|
  case Expr::ParenExprClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<ParenExpr>(E)->getSubExpr());
 | 
						|
 | 
						|
    // C11 6.5.1.1p4: [A generic selection] is an lvalue, a function designator,
 | 
						|
    // or a void expression if its result expression is, respectively, an
 | 
						|
    // lvalue, a function designator, or a void expression.
 | 
						|
  case Expr::GenericSelectionExprClass:
 | 
						|
    if (cast<GenericSelectionExpr>(E)->isResultDependent())
 | 
						|
      return Cl::CL_PRValue;
 | 
						|
    return ClassifyInternal(Ctx,cast<GenericSelectionExpr>(E)->getResultExpr());
 | 
						|
 | 
						|
  case Expr::BinaryOperatorClass:
 | 
						|
  case Expr::CompoundAssignOperatorClass:
 | 
						|
    // C doesn't have any binary expressions that are lvalues.
 | 
						|
    if (Lang.CPlusPlus)
 | 
						|
      return ClassifyBinaryOp(Ctx, cast<BinaryOperator>(E));
 | 
						|
    return Cl::CL_PRValue;
 | 
						|
 | 
						|
  case Expr::CallExprClass:
 | 
						|
  case Expr::CXXOperatorCallExprClass:
 | 
						|
  case Expr::CXXMemberCallExprClass:
 | 
						|
  case Expr::UserDefinedLiteralClass:
 | 
						|
  case Expr::CUDAKernelCallExprClass:
 | 
						|
    return ClassifyUnnamed(Ctx, cast<CallExpr>(E)->getCallReturnType(Ctx));
 | 
						|
 | 
						|
  case Expr::CXXRewrittenBinaryOperatorClass:
 | 
						|
    return ClassifyInternal(
 | 
						|
        Ctx, cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
 | 
						|
 | 
						|
    // __builtin_choose_expr is equivalent to the chosen expression.
 | 
						|
  case Expr::ChooseExprClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<ChooseExpr>(E)->getChosenSubExpr());
 | 
						|
 | 
						|
    // Extended vector element access is an lvalue unless there are duplicates
 | 
						|
    // in the shuffle expression.
 | 
						|
  case Expr::ExtVectorElementExprClass:
 | 
						|
    if (cast<ExtVectorElementExpr>(E)->containsDuplicateElements())
 | 
						|
      return Cl::CL_DuplicateVectorComponents;
 | 
						|
    if (cast<ExtVectorElementExpr>(E)->isArrow())
 | 
						|
      return Cl::CL_LValue;
 | 
						|
    return ClassifyInternal(Ctx, cast<ExtVectorElementExpr>(E)->getBase());
 | 
						|
 | 
						|
    // Simply look at the actual default argument.
 | 
						|
  case Expr::CXXDefaultArgExprClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<CXXDefaultArgExpr>(E)->getExpr());
 | 
						|
 | 
						|
    // Same idea for default initializers.
 | 
						|
  case Expr::CXXDefaultInitExprClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<CXXDefaultInitExpr>(E)->getExpr());
 | 
						|
 | 
						|
    // Same idea for temporary binding.
 | 
						|
  case Expr::CXXBindTemporaryExprClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<CXXBindTemporaryExpr>(E)->getSubExpr());
 | 
						|
 | 
						|
    // And the cleanups guard.
 | 
						|
  case Expr::ExprWithCleanupsClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<ExprWithCleanups>(E)->getSubExpr());
 | 
						|
 | 
						|
    // Casts depend completely on the target type. All casts work the same.
 | 
						|
  case Expr::CStyleCastExprClass:
 | 
						|
  case Expr::CXXFunctionalCastExprClass:
 | 
						|
  case Expr::CXXStaticCastExprClass:
 | 
						|
  case Expr::CXXDynamicCastExprClass:
 | 
						|
  case Expr::CXXReinterpretCastExprClass:
 | 
						|
  case Expr::CXXConstCastExprClass:
 | 
						|
  case Expr::CXXAddrspaceCastExprClass:
 | 
						|
  case Expr::ObjCBridgedCastExprClass:
 | 
						|
  case Expr::BuiltinBitCastExprClass:
 | 
						|
    // Only in C++ can casts be interesting at all.
 | 
						|
    if (!Lang.CPlusPlus) return Cl::CL_PRValue;
 | 
						|
    return ClassifyUnnamed(Ctx, cast<ExplicitCastExpr>(E)->getTypeAsWritten());
 | 
						|
 | 
						|
  case Expr::CXXUnresolvedConstructExprClass:
 | 
						|
    return ClassifyUnnamed(Ctx,
 | 
						|
                      cast<CXXUnresolvedConstructExpr>(E)->getTypeAsWritten());
 | 
						|
 | 
						|
  case Expr::BinaryConditionalOperatorClass: {
 | 
						|
    if (!Lang.CPlusPlus) return Cl::CL_PRValue;
 | 
						|
    const auto *co = cast<BinaryConditionalOperator>(E);
 | 
						|
    return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ConditionalOperatorClass: {
 | 
						|
    // Once again, only C++ is interesting.
 | 
						|
    if (!Lang.CPlusPlus) return Cl::CL_PRValue;
 | 
						|
    const auto *co = cast<ConditionalOperator>(E);
 | 
						|
    return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr());
 | 
						|
  }
 | 
						|
 | 
						|
    // ObjC message sends are effectively function calls, if the target function
 | 
						|
    // is known.
 | 
						|
  case Expr::ObjCMessageExprClass:
 | 
						|
    if (const ObjCMethodDecl *Method =
 | 
						|
          cast<ObjCMessageExpr>(E)->getMethodDecl()) {
 | 
						|
      Cl::Kinds kind = ClassifyUnnamed(Ctx, Method->getReturnType());
 | 
						|
      return (kind == Cl::CL_PRValue) ? Cl::CL_ObjCMessageRValue : kind;
 | 
						|
    }
 | 
						|
    return Cl::CL_PRValue;
 | 
						|
 | 
						|
    // Some C++ expressions are always class temporaries.
 | 
						|
  case Expr::CXXConstructExprClass:
 | 
						|
  case Expr::CXXInheritedCtorInitExprClass:
 | 
						|
  case Expr::CXXTemporaryObjectExprClass:
 | 
						|
  case Expr::LambdaExprClass:
 | 
						|
  case Expr::CXXStdInitializerListExprClass:
 | 
						|
    return Cl::CL_ClassTemporary;
 | 
						|
 | 
						|
  case Expr::VAArgExprClass:
 | 
						|
    return ClassifyUnnamed(Ctx, E->getType());
 | 
						|
 | 
						|
  case Expr::DesignatedInitExprClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<DesignatedInitExpr>(E)->getInit());
 | 
						|
 | 
						|
  case Expr::StmtExprClass: {
 | 
						|
    const CompoundStmt *S = cast<StmtExpr>(E)->getSubStmt();
 | 
						|
    if (const auto *LastExpr = dyn_cast_or_null<Expr>(S->body_back()))
 | 
						|
      return ClassifyUnnamed(Ctx, LastExpr->getType());
 | 
						|
    return Cl::CL_PRValue;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::PackExpansionExprClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<PackExpansionExpr>(E)->getPattern());
 | 
						|
 | 
						|
  case Expr::MaterializeTemporaryExprClass:
 | 
						|
    return cast<MaterializeTemporaryExpr>(E)->isBoundToLvalueReference()
 | 
						|
              ? Cl::CL_LValue
 | 
						|
              : Cl::CL_XValue;
 | 
						|
 | 
						|
  case Expr::InitListExprClass:
 | 
						|
    // An init list can be an lvalue if it is bound to a reference and
 | 
						|
    // contains only one element. In that case, we look at that element
 | 
						|
    // for an exact classification. Init list creation takes care of the
 | 
						|
    // value kind for us, so we only need to fine-tune.
 | 
						|
    if (E->isRValue())
 | 
						|
      return ClassifyExprValueKind(Lang, E, E->getValueKind());
 | 
						|
    assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
 | 
						|
           "Only 1-element init lists can be glvalues.");
 | 
						|
    return ClassifyInternal(Ctx, cast<InitListExpr>(E)->getInit(0));
 | 
						|
 | 
						|
  case Expr::CoawaitExprClass:
 | 
						|
  case Expr::CoyieldExprClass:
 | 
						|
    return ClassifyInternal(Ctx, cast<CoroutineSuspendExpr>(E)->getResumeExpr());
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unhandled expression kind in classification");
 | 
						|
}
 | 
						|
 | 
						|
/// ClassifyDecl - Return the classification of an expression referencing the
 | 
						|
/// given declaration.
 | 
						|
static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) {
 | 
						|
  // C++ [expr.prim.general]p6: The result is an lvalue if the entity is a
 | 
						|
  //   function, variable, or data member and a prvalue otherwise.
 | 
						|
  // In C, functions are not lvalues.
 | 
						|
  // In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an
 | 
						|
  // lvalue unless it's a reference type (C++ [temp.param]p6), so we need to
 | 
						|
  // special-case this.
 | 
						|
 | 
						|
  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
 | 
						|
    return Cl::CL_MemberFunction;
 | 
						|
 | 
						|
  bool islvalue;
 | 
						|
  if (const auto *NTTParm = dyn_cast<NonTypeTemplateParmDecl>(D))
 | 
						|
    islvalue = NTTParm->getType()->isReferenceType();
 | 
						|
  else
 | 
						|
    islvalue = isa<VarDecl>(D) || isa<FieldDecl>(D) ||
 | 
						|
               isa<IndirectFieldDecl>(D) ||
 | 
						|
               isa<BindingDecl>(D) ||
 | 
						|
               isa<MSGuidDecl>(D) ||
 | 
						|
               (Ctx.getLangOpts().CPlusPlus &&
 | 
						|
                (isa<FunctionDecl>(D) || isa<MSPropertyDecl>(D) ||
 | 
						|
                 isa<FunctionTemplateDecl>(D)));
 | 
						|
 | 
						|
  return islvalue ? Cl::CL_LValue : Cl::CL_PRValue;
 | 
						|
}
 | 
						|
 | 
						|
/// ClassifyUnnamed - Return the classification of an expression yielding an
 | 
						|
/// unnamed value of the given type. This applies in particular to function
 | 
						|
/// calls and casts.
 | 
						|
static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) {
 | 
						|
  // In C, function calls are always rvalues.
 | 
						|
  if (!Ctx.getLangOpts().CPlusPlus) return Cl::CL_PRValue;
 | 
						|
 | 
						|
  // C++ [expr.call]p10: A function call is an lvalue if the result type is an
 | 
						|
  //   lvalue reference type or an rvalue reference to function type, an xvalue
 | 
						|
  //   if the result type is an rvalue reference to object type, and a prvalue
 | 
						|
  //   otherwise.
 | 
						|
  if (T->isLValueReferenceType())
 | 
						|
    return Cl::CL_LValue;
 | 
						|
  const auto *RV = T->getAs<RValueReferenceType>();
 | 
						|
  if (!RV) // Could still be a class temporary, though.
 | 
						|
    return ClassifyTemporary(T);
 | 
						|
 | 
						|
  return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue;
 | 
						|
}
 | 
						|
 | 
						|
static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) {
 | 
						|
  if (E->getType() == Ctx.UnknownAnyTy)
 | 
						|
    return (isa<FunctionDecl>(E->getMemberDecl())
 | 
						|
              ? Cl::CL_PRValue : Cl::CL_LValue);
 | 
						|
 | 
						|
  // Handle C first, it's easier.
 | 
						|
  if (!Ctx.getLangOpts().CPlusPlus) {
 | 
						|
    // C99 6.5.2.3p3
 | 
						|
    // For dot access, the expression is an lvalue if the first part is. For
 | 
						|
    // arrow access, it always is an lvalue.
 | 
						|
    if (E->isArrow())
 | 
						|
      return Cl::CL_LValue;
 | 
						|
    // ObjC property accesses are not lvalues, but get special treatment.
 | 
						|
    Expr *Base = E->getBase()->IgnoreParens();
 | 
						|
    if (isa<ObjCPropertyRefExpr>(Base))
 | 
						|
      return Cl::CL_SubObjCPropertySetting;
 | 
						|
    return ClassifyInternal(Ctx, Base);
 | 
						|
  }
 | 
						|
 | 
						|
  NamedDecl *Member = E->getMemberDecl();
 | 
						|
  // C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2.
 | 
						|
  // C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then
 | 
						|
  //   E1.E2 is an lvalue.
 | 
						|
  if (const auto *Value = dyn_cast<ValueDecl>(Member))
 | 
						|
    if (Value->getType()->isReferenceType())
 | 
						|
      return Cl::CL_LValue;
 | 
						|
 | 
						|
  //   Otherwise, one of the following rules applies.
 | 
						|
  //   -- If E2 is a static member [...] then E1.E2 is an lvalue.
 | 
						|
  if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
 | 
						|
    return Cl::CL_LValue;
 | 
						|
 | 
						|
  //   -- If E2 is a non-static data member [...]. If E1 is an lvalue, then
 | 
						|
  //      E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue;
 | 
						|
  //      otherwise, it is a prvalue.
 | 
						|
  if (isa<FieldDecl>(Member)) {
 | 
						|
    // *E1 is an lvalue
 | 
						|
    if (E->isArrow())
 | 
						|
      return Cl::CL_LValue;
 | 
						|
    Expr *Base = E->getBase()->IgnoreParenImpCasts();
 | 
						|
    if (isa<ObjCPropertyRefExpr>(Base))
 | 
						|
      return Cl::CL_SubObjCPropertySetting;
 | 
						|
    return ClassifyInternal(Ctx, E->getBase());
 | 
						|
  }
 | 
						|
 | 
						|
  //   -- If E2 is a [...] member function, [...]
 | 
						|
  //      -- If it refers to a static member function [...], then E1.E2 is an
 | 
						|
  //         lvalue; [...]
 | 
						|
  //      -- Otherwise [...] E1.E2 is a prvalue.
 | 
						|
  if (const auto *Method = dyn_cast<CXXMethodDecl>(Member))
 | 
						|
    return Method->isStatic() ? Cl::CL_LValue : Cl::CL_MemberFunction;
 | 
						|
 | 
						|
  //   -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue.
 | 
						|
  // So is everything else we haven't handled yet.
 | 
						|
  return Cl::CL_PRValue;
 | 
						|
}
 | 
						|
 | 
						|
static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) {
 | 
						|
  assert(Ctx.getLangOpts().CPlusPlus &&
 | 
						|
         "This is only relevant for C++.");
 | 
						|
  // C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand.
 | 
						|
  // Except we override this for writes to ObjC properties.
 | 
						|
  if (E->isAssignmentOp())
 | 
						|
    return (E->getLHS()->getObjectKind() == OK_ObjCProperty
 | 
						|
              ? Cl::CL_PRValue : Cl::CL_LValue);
 | 
						|
 | 
						|
  // C++ [expr.comma]p1: the result is of the same value category as its right
 | 
						|
  //   operand, [...].
 | 
						|
  if (E->getOpcode() == BO_Comma)
 | 
						|
    return ClassifyInternal(Ctx, E->getRHS());
 | 
						|
 | 
						|
  // C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand
 | 
						|
  //   is a pointer to a data member is of the same value category as its first
 | 
						|
  //   operand.
 | 
						|
  if (E->getOpcode() == BO_PtrMemD)
 | 
						|
    return (E->getType()->isFunctionType() ||
 | 
						|
            E->hasPlaceholderType(BuiltinType::BoundMember))
 | 
						|
             ? Cl::CL_MemberFunction
 | 
						|
             : ClassifyInternal(Ctx, E->getLHS());
 | 
						|
 | 
						|
  // C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its
 | 
						|
  //   second operand is a pointer to data member and a prvalue otherwise.
 | 
						|
  if (E->getOpcode() == BO_PtrMemI)
 | 
						|
    return (E->getType()->isFunctionType() ||
 | 
						|
            E->hasPlaceholderType(BuiltinType::BoundMember))
 | 
						|
             ? Cl::CL_MemberFunction
 | 
						|
             : Cl::CL_LValue;
 | 
						|
 | 
						|
  // All other binary operations are prvalues.
 | 
						|
  return Cl::CL_PRValue;
 | 
						|
}
 | 
						|
 | 
						|
static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const Expr *True,
 | 
						|
                                     const Expr *False) {
 | 
						|
  assert(Ctx.getLangOpts().CPlusPlus &&
 | 
						|
         "This is only relevant for C++.");
 | 
						|
 | 
						|
  // C++ [expr.cond]p2
 | 
						|
  //   If either the second or the third operand has type (cv) void,
 | 
						|
  //   one of the following shall hold:
 | 
						|
  if (True->getType()->isVoidType() || False->getType()->isVoidType()) {
 | 
						|
    // The second or the third operand (but not both) is a (possibly
 | 
						|
    // parenthesized) throw-expression; the result is of the [...] value
 | 
						|
    // category of the other.
 | 
						|
    bool TrueIsThrow = isa<CXXThrowExpr>(True->IgnoreParenImpCasts());
 | 
						|
    bool FalseIsThrow = isa<CXXThrowExpr>(False->IgnoreParenImpCasts());
 | 
						|
    if (const Expr *NonThrow = TrueIsThrow ? (FalseIsThrow ? nullptr : False)
 | 
						|
                                           : (FalseIsThrow ? True : nullptr))
 | 
						|
      return ClassifyInternal(Ctx, NonThrow);
 | 
						|
 | 
						|
    //   [Otherwise] the result [...] is a prvalue.
 | 
						|
    return Cl::CL_PRValue;
 | 
						|
  }
 | 
						|
 | 
						|
  // Note that at this point, we have already performed all conversions
 | 
						|
  // according to [expr.cond]p3.
 | 
						|
  // C++ [expr.cond]p4: If the second and third operands are glvalues of the
 | 
						|
  //   same value category [...], the result is of that [...] value category.
 | 
						|
  // C++ [expr.cond]p5: Otherwise, the result is a prvalue.
 | 
						|
  Cl::Kinds LCl = ClassifyInternal(Ctx, True),
 | 
						|
            RCl = ClassifyInternal(Ctx, False);
 | 
						|
  return LCl == RCl ? LCl : Cl::CL_PRValue;
 | 
						|
}
 | 
						|
 | 
						|
static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E,
 | 
						|
                                       Cl::Kinds Kind, SourceLocation &Loc) {
 | 
						|
  // As a general rule, we only care about lvalues. But there are some rvalues
 | 
						|
  // for which we want to generate special results.
 | 
						|
  if (Kind == Cl::CL_PRValue) {
 | 
						|
    // For the sake of better diagnostics, we want to specifically recognize
 | 
						|
    // use of the GCC cast-as-lvalue extension.
 | 
						|
    if (const auto *CE = dyn_cast<ExplicitCastExpr>(E->IgnoreParens())) {
 | 
						|
      if (CE->getSubExpr()->IgnoreParenImpCasts()->isLValue()) {
 | 
						|
        Loc = CE->getExprLoc();
 | 
						|
        return Cl::CM_LValueCast;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Kind != Cl::CL_LValue)
 | 
						|
    return Cl::CM_RValue;
 | 
						|
 | 
						|
  // This is the lvalue case.
 | 
						|
  // Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6)
 | 
						|
  if (Ctx.getLangOpts().CPlusPlus && E->getType()->isFunctionType())
 | 
						|
    return Cl::CM_Function;
 | 
						|
 | 
						|
  // Assignment to a property in ObjC is an implicit setter access. But a
 | 
						|
  // setter might not exist.
 | 
						|
  if (const auto *Expr = dyn_cast<ObjCPropertyRefExpr>(E)) {
 | 
						|
    if (Expr->isImplicitProperty() &&
 | 
						|
        Expr->getImplicitPropertySetter() == nullptr)
 | 
						|
      return Cl::CM_NoSetterProperty;
 | 
						|
  }
 | 
						|
 | 
						|
  CanQualType CT = Ctx.getCanonicalType(E->getType());
 | 
						|
  // Const stuff is obviously not modifiable.
 | 
						|
  if (CT.isConstQualified())
 | 
						|
    return Cl::CM_ConstQualified;
 | 
						|
  if (Ctx.getLangOpts().OpenCL &&
 | 
						|
      CT.getQualifiers().getAddressSpace() == LangAS::opencl_constant)
 | 
						|
    return Cl::CM_ConstAddrSpace;
 | 
						|
 | 
						|
  // Arrays are not modifiable, only their elements are.
 | 
						|
  if (CT->isArrayType())
 | 
						|
    return Cl::CM_ArrayType;
 | 
						|
  // Incomplete types are not modifiable.
 | 
						|
  if (CT->isIncompleteType())
 | 
						|
    return Cl::CM_IncompleteType;
 | 
						|
 | 
						|
  // Records with any const fields (recursively) are not modifiable.
 | 
						|
  if (const RecordType *R = CT->getAs<RecordType>())
 | 
						|
    if (R->hasConstFields())
 | 
						|
      return Cl::CM_ConstQualifiedField;
 | 
						|
 | 
						|
  return Cl::CM_Modifiable;
 | 
						|
}
 | 
						|
 | 
						|
Expr::LValueClassification Expr::ClassifyLValue(ASTContext &Ctx) const {
 | 
						|
  Classification VC = Classify(Ctx);
 | 
						|
  switch (VC.getKind()) {
 | 
						|
  case Cl::CL_LValue: return LV_Valid;
 | 
						|
  case Cl::CL_XValue: return LV_InvalidExpression;
 | 
						|
  case Cl::CL_Function: return LV_NotObjectType;
 | 
						|
  case Cl::CL_Void: return LV_InvalidExpression;
 | 
						|
  case Cl::CL_AddressableVoid: return LV_IncompleteVoidType;
 | 
						|
  case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents;
 | 
						|
  case Cl::CL_MemberFunction: return LV_MemberFunction;
 | 
						|
  case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting;
 | 
						|
  case Cl::CL_ClassTemporary: return LV_ClassTemporary;
 | 
						|
  case Cl::CL_ArrayTemporary: return LV_ArrayTemporary;
 | 
						|
  case Cl::CL_ObjCMessageRValue: return LV_InvalidMessageExpression;
 | 
						|
  case Cl::CL_PRValue: return LV_InvalidExpression;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unhandled kind");
 | 
						|
}
 | 
						|
 | 
						|
Expr::isModifiableLvalueResult
 | 
						|
Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
 | 
						|
  SourceLocation dummy;
 | 
						|
  Classification VC = ClassifyModifiable(Ctx, Loc ? *Loc : dummy);
 | 
						|
  switch (VC.getKind()) {
 | 
						|
  case Cl::CL_LValue: break;
 | 
						|
  case Cl::CL_XValue: return MLV_InvalidExpression;
 | 
						|
  case Cl::CL_Function: return MLV_NotObjectType;
 | 
						|
  case Cl::CL_Void: return MLV_InvalidExpression;
 | 
						|
  case Cl::CL_AddressableVoid: return MLV_IncompleteVoidType;
 | 
						|
  case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
 | 
						|
  case Cl::CL_MemberFunction: return MLV_MemberFunction;
 | 
						|
  case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
 | 
						|
  case Cl::CL_ClassTemporary: return MLV_ClassTemporary;
 | 
						|
  case Cl::CL_ArrayTemporary: return MLV_ArrayTemporary;
 | 
						|
  case Cl::CL_ObjCMessageRValue: return MLV_InvalidMessageExpression;
 | 
						|
  case Cl::CL_PRValue:
 | 
						|
    return VC.getModifiable() == Cl::CM_LValueCast ?
 | 
						|
      MLV_LValueCast : MLV_InvalidExpression;
 | 
						|
  }
 | 
						|
  assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind");
 | 
						|
  switch (VC.getModifiable()) {
 | 
						|
  case Cl::CM_Untested: llvm_unreachable("Did not test modifiability");
 | 
						|
  case Cl::CM_Modifiable: return MLV_Valid;
 | 
						|
  case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match");
 | 
						|
  case Cl::CM_Function: return MLV_NotObjectType;
 | 
						|
  case Cl::CM_LValueCast:
 | 
						|
    llvm_unreachable("CM_LValueCast and CL_LValue don't match");
 | 
						|
  case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty;
 | 
						|
  case Cl::CM_ConstQualified: return MLV_ConstQualified;
 | 
						|
  case Cl::CM_ConstQualifiedField: return MLV_ConstQualifiedField;
 | 
						|
  case Cl::CM_ConstAddrSpace: return MLV_ConstAddrSpace;
 | 
						|
  case Cl::CM_ArrayType: return MLV_ArrayType;
 | 
						|
  case Cl::CM_IncompleteType: return MLV_IncompleteType;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unhandled modifiable type");
 | 
						|
}
 |