forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			5359 lines
		
	
	
		
			183 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5359 lines
		
	
	
		
			183 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Implements C++ name mangling according to the Itanium C++ ABI,
 | 
						|
// which is used in GCC 3.2 and newer (and many compilers that are
 | 
						|
// ABI-compatible with GCC):
 | 
						|
//
 | 
						|
//   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/Mangle.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclOpenMP.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprConcepts.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/Basic/ABI.h"
 | 
						|
#include "clang/Basic/Module.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Retrieve the declaration context that should be used when mangling the given
 | 
						|
/// declaration.
 | 
						|
static const DeclContext *getEffectiveDeclContext(const Decl *D) {
 | 
						|
  // The ABI assumes that lambda closure types that occur within
 | 
						|
  // default arguments live in the context of the function. However, due to
 | 
						|
  // the way in which Clang parses and creates function declarations, this is
 | 
						|
  // not the case: the lambda closure type ends up living in the context
 | 
						|
  // where the function itself resides, because the function declaration itself
 | 
						|
  // had not yet been created. Fix the context here.
 | 
						|
  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
 | 
						|
    if (RD->isLambda())
 | 
						|
      if (ParmVarDecl *ContextParam
 | 
						|
            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
 | 
						|
        return ContextParam->getDeclContext();
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform the same check for block literals.
 | 
						|
  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
 | 
						|
    if (ParmVarDecl *ContextParam
 | 
						|
          = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
 | 
						|
      return ContextParam->getDeclContext();
 | 
						|
  }
 | 
						|
 | 
						|
  const DeclContext *DC = D->getDeclContext();
 | 
						|
  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
 | 
						|
      isa<OMPDeclareMapperDecl>(DC)) {
 | 
						|
    return getEffectiveDeclContext(cast<Decl>(DC));
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *VD = dyn_cast<VarDecl>(D))
 | 
						|
    if (VD->isExternC())
 | 
						|
      return VD->getASTContext().getTranslationUnitDecl();
 | 
						|
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    if (FD->isExternC())
 | 
						|
      return FD->getASTContext().getTranslationUnitDecl();
 | 
						|
 | 
						|
  return DC->getRedeclContext();
 | 
						|
}
 | 
						|
 | 
						|
static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
 | 
						|
  return getEffectiveDeclContext(cast<Decl>(DC));
 | 
						|
}
 | 
						|
 | 
						|
static bool isLocalContainerContext(const DeclContext *DC) {
 | 
						|
  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
 | 
						|
}
 | 
						|
 | 
						|
static const RecordDecl *GetLocalClassDecl(const Decl *D) {
 | 
						|
  const DeclContext *DC = getEffectiveDeclContext(D);
 | 
						|
  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
 | 
						|
    if (isLocalContainerContext(DC))
 | 
						|
      return dyn_cast<RecordDecl>(D);
 | 
						|
    D = cast<Decl>(DC);
 | 
						|
    DC = getEffectiveDeclContext(D);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static const FunctionDecl *getStructor(const FunctionDecl *fn) {
 | 
						|
  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
 | 
						|
    return ftd->getTemplatedDecl();
 | 
						|
 | 
						|
  return fn;
 | 
						|
}
 | 
						|
 | 
						|
static const NamedDecl *getStructor(const NamedDecl *decl) {
 | 
						|
  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
 | 
						|
  return (fn ? getStructor(fn) : decl);
 | 
						|
}
 | 
						|
 | 
						|
static bool isLambda(const NamedDecl *ND) {
 | 
						|
  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
 | 
						|
  if (!Record)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Record->isLambda();
 | 
						|
}
 | 
						|
 | 
						|
static const unsigned UnknownArity = ~0U;
 | 
						|
 | 
						|
class ItaniumMangleContextImpl : public ItaniumMangleContext {
 | 
						|
  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
 | 
						|
  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
 | 
						|
  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit ItaniumMangleContextImpl(ASTContext &Context,
 | 
						|
                                    DiagnosticsEngine &Diags,
 | 
						|
                                    bool IsUniqueNameMangler)
 | 
						|
      : ItaniumMangleContext(Context, Diags, IsUniqueNameMangler) {}
 | 
						|
 | 
						|
  /// @name Mangler Entry Points
 | 
						|
  /// @{
 | 
						|
 | 
						|
  bool shouldMangleCXXName(const NamedDecl *D) override;
 | 
						|
  bool shouldMangleStringLiteral(const StringLiteral *) override {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
 | 
						|
  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
 | 
						|
                   raw_ostream &) override;
 | 
						|
  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
 | 
						|
                          const ThisAdjustment &ThisAdjustment,
 | 
						|
                          raw_ostream &) override;
 | 
						|
  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
 | 
						|
                                raw_ostream &) override;
 | 
						|
  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
 | 
						|
  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
 | 
						|
  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
 | 
						|
                           const CXXRecordDecl *Type, raw_ostream &) override;
 | 
						|
  void mangleCXXRTTI(QualType T, raw_ostream &) override;
 | 
						|
  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
 | 
						|
  void mangleTypeName(QualType T, raw_ostream &) override;
 | 
						|
 | 
						|
  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
 | 
						|
  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
 | 
						|
  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
 | 
						|
  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
 | 
						|
  void mangleDynamicAtExitDestructor(const VarDecl *D,
 | 
						|
                                     raw_ostream &Out) override;
 | 
						|
  void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
 | 
						|
  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
 | 
						|
                                 raw_ostream &Out) override;
 | 
						|
  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
 | 
						|
                             raw_ostream &Out) override;
 | 
						|
  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
 | 
						|
  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
 | 
						|
                                       raw_ostream &) override;
 | 
						|
 | 
						|
  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
 | 
						|
 | 
						|
  void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
 | 
						|
 | 
						|
  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
 | 
						|
    // Lambda closure types are already numbered.
 | 
						|
    if (isLambda(ND))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Anonymous tags are already numbered.
 | 
						|
    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
 | 
						|
      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Use the canonical number for externally visible decls.
 | 
						|
    if (ND->isExternallyVisible()) {
 | 
						|
      unsigned discriminator = getASTContext().getManglingNumber(ND);
 | 
						|
      if (discriminator == 1)
 | 
						|
        return false;
 | 
						|
      disc = discriminator - 2;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Make up a reasonable number for internal decls.
 | 
						|
    unsigned &discriminator = Uniquifier[ND];
 | 
						|
    if (!discriminator) {
 | 
						|
      const DeclContext *DC = getEffectiveDeclContext(ND);
 | 
						|
      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
 | 
						|
    }
 | 
						|
    if (discriminator == 1)
 | 
						|
      return false;
 | 
						|
    disc = discriminator-2;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  /// @}
 | 
						|
};
 | 
						|
 | 
						|
/// Manage the mangling of a single name.
 | 
						|
class CXXNameMangler {
 | 
						|
  ItaniumMangleContextImpl &Context;
 | 
						|
  raw_ostream &Out;
 | 
						|
  bool NullOut = false;
 | 
						|
  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
 | 
						|
  /// This mode is used when mangler creates another mangler recursively to
 | 
						|
  /// calculate ABI tags for the function return value or the variable type.
 | 
						|
  /// Also it is required to avoid infinite recursion in some cases.
 | 
						|
  bool DisableDerivedAbiTags = false;
 | 
						|
 | 
						|
  /// The "structor" is the top-level declaration being mangled, if
 | 
						|
  /// that's not a template specialization; otherwise it's the pattern
 | 
						|
  /// for that specialization.
 | 
						|
  const NamedDecl *Structor;
 | 
						|
  unsigned StructorType;
 | 
						|
 | 
						|
  /// The next substitution sequence number.
 | 
						|
  unsigned SeqID;
 | 
						|
 | 
						|
  class FunctionTypeDepthState {
 | 
						|
    unsigned Bits;
 | 
						|
 | 
						|
    enum { InResultTypeMask = 1 };
 | 
						|
 | 
						|
  public:
 | 
						|
    FunctionTypeDepthState() : Bits(0) {}
 | 
						|
 | 
						|
    /// The number of function types we're inside.
 | 
						|
    unsigned getDepth() const {
 | 
						|
      return Bits >> 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /// True if we're in the return type of the innermost function type.
 | 
						|
    bool isInResultType() const {
 | 
						|
      return Bits & InResultTypeMask;
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionTypeDepthState push() {
 | 
						|
      FunctionTypeDepthState tmp = *this;
 | 
						|
      Bits = (Bits & ~InResultTypeMask) + 2;
 | 
						|
      return tmp;
 | 
						|
    }
 | 
						|
 | 
						|
    void enterResultType() {
 | 
						|
      Bits |= InResultTypeMask;
 | 
						|
    }
 | 
						|
 | 
						|
    void leaveResultType() {
 | 
						|
      Bits &= ~InResultTypeMask;
 | 
						|
    }
 | 
						|
 | 
						|
    void pop(FunctionTypeDepthState saved) {
 | 
						|
      assert(getDepth() == saved.getDepth() + 1);
 | 
						|
      Bits = saved.Bits;
 | 
						|
    }
 | 
						|
 | 
						|
  } FunctionTypeDepth;
 | 
						|
 | 
						|
  // abi_tag is a gcc attribute, taking one or more strings called "tags".
 | 
						|
  // The goal is to annotate against which version of a library an object was
 | 
						|
  // built and to be able to provide backwards compatibility ("dual abi").
 | 
						|
  // For more information see docs/ItaniumMangleAbiTags.rst.
 | 
						|
  typedef SmallVector<StringRef, 4> AbiTagList;
 | 
						|
 | 
						|
  // State to gather all implicit and explicit tags used in a mangled name.
 | 
						|
  // Must always have an instance of this while emitting any name to keep
 | 
						|
  // track.
 | 
						|
  class AbiTagState final {
 | 
						|
  public:
 | 
						|
    explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
 | 
						|
      Parent = LinkHead;
 | 
						|
      LinkHead = this;
 | 
						|
    }
 | 
						|
 | 
						|
    // No copy, no move.
 | 
						|
    AbiTagState(const AbiTagState &) = delete;
 | 
						|
    AbiTagState &operator=(const AbiTagState &) = delete;
 | 
						|
 | 
						|
    ~AbiTagState() { pop(); }
 | 
						|
 | 
						|
    void write(raw_ostream &Out, const NamedDecl *ND,
 | 
						|
               const AbiTagList *AdditionalAbiTags) {
 | 
						|
      ND = cast<NamedDecl>(ND->getCanonicalDecl());
 | 
						|
      if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
 | 
						|
        assert(
 | 
						|
            !AdditionalAbiTags &&
 | 
						|
            "only function and variables need a list of additional abi tags");
 | 
						|
        if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
 | 
						|
          if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
 | 
						|
            UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
 | 
						|
                               AbiTag->tags().end());
 | 
						|
          }
 | 
						|
          // Don't emit abi tags for namespaces.
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      AbiTagList TagList;
 | 
						|
      if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
 | 
						|
        UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
 | 
						|
                           AbiTag->tags().end());
 | 
						|
        TagList.insert(TagList.end(), AbiTag->tags().begin(),
 | 
						|
                       AbiTag->tags().end());
 | 
						|
      }
 | 
						|
 | 
						|
      if (AdditionalAbiTags) {
 | 
						|
        UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
 | 
						|
                           AdditionalAbiTags->end());
 | 
						|
        TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
 | 
						|
                       AdditionalAbiTags->end());
 | 
						|
      }
 | 
						|
 | 
						|
      llvm::sort(TagList);
 | 
						|
      TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
 | 
						|
 | 
						|
      writeSortedUniqueAbiTags(Out, TagList);
 | 
						|
    }
 | 
						|
 | 
						|
    const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
 | 
						|
    void setUsedAbiTags(const AbiTagList &AbiTags) {
 | 
						|
      UsedAbiTags = AbiTags;
 | 
						|
    }
 | 
						|
 | 
						|
    const AbiTagList &getEmittedAbiTags() const {
 | 
						|
      return EmittedAbiTags;
 | 
						|
    }
 | 
						|
 | 
						|
    const AbiTagList &getSortedUniqueUsedAbiTags() {
 | 
						|
      llvm::sort(UsedAbiTags);
 | 
						|
      UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
 | 
						|
                        UsedAbiTags.end());
 | 
						|
      return UsedAbiTags;
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    //! All abi tags used implicitly or explicitly.
 | 
						|
    AbiTagList UsedAbiTags;
 | 
						|
    //! All explicit abi tags (i.e. not from namespace).
 | 
						|
    AbiTagList EmittedAbiTags;
 | 
						|
 | 
						|
    AbiTagState *&LinkHead;
 | 
						|
    AbiTagState *Parent = nullptr;
 | 
						|
 | 
						|
    void pop() {
 | 
						|
      assert(LinkHead == this &&
 | 
						|
             "abi tag link head must point to us on destruction");
 | 
						|
      if (Parent) {
 | 
						|
        Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
 | 
						|
                                   UsedAbiTags.begin(), UsedAbiTags.end());
 | 
						|
        Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
 | 
						|
                                      EmittedAbiTags.begin(),
 | 
						|
                                      EmittedAbiTags.end());
 | 
						|
      }
 | 
						|
      LinkHead = Parent;
 | 
						|
    }
 | 
						|
 | 
						|
    void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
 | 
						|
      for (const auto &Tag : AbiTags) {
 | 
						|
        EmittedAbiTags.push_back(Tag);
 | 
						|
        Out << "B";
 | 
						|
        Out << Tag.size();
 | 
						|
        Out << Tag;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  AbiTagState *AbiTags = nullptr;
 | 
						|
  AbiTagState AbiTagsRoot;
 | 
						|
 | 
						|
  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
 | 
						|
  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
 | 
						|
 | 
						|
  ASTContext &getASTContext() const { return Context.getASTContext(); }
 | 
						|
 | 
						|
public:
 | 
						|
  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
 | 
						|
                 const NamedDecl *D = nullptr, bool NullOut_ = false)
 | 
						|
    : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
 | 
						|
      StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
 | 
						|
    // These can't be mangled without a ctor type or dtor type.
 | 
						|
    assert(!D || (!isa<CXXDestructorDecl>(D) &&
 | 
						|
                  !isa<CXXConstructorDecl>(D)));
 | 
						|
  }
 | 
						|
  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
 | 
						|
                 const CXXConstructorDecl *D, CXXCtorType Type)
 | 
						|
    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
 | 
						|
      SeqID(0), AbiTagsRoot(AbiTags) { }
 | 
						|
  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
 | 
						|
                 const CXXDestructorDecl *D, CXXDtorType Type)
 | 
						|
    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
 | 
						|
      SeqID(0), AbiTagsRoot(AbiTags) { }
 | 
						|
 | 
						|
  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
 | 
						|
      : Context(Outer.Context), Out(Out_), NullOut(false),
 | 
						|
        Structor(Outer.Structor), StructorType(Outer.StructorType),
 | 
						|
        SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
 | 
						|
        AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
 | 
						|
 | 
						|
  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
 | 
						|
      : Context(Outer.Context), Out(Out_), NullOut(true),
 | 
						|
        Structor(Outer.Structor), StructorType(Outer.StructorType),
 | 
						|
        SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
 | 
						|
        AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
 | 
						|
 | 
						|
  raw_ostream &getStream() { return Out; }
 | 
						|
 | 
						|
  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
 | 
						|
  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
 | 
						|
 | 
						|
  void mangle(GlobalDecl GD);
 | 
						|
  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
 | 
						|
  void mangleNumber(const llvm::APSInt &I);
 | 
						|
  void mangleNumber(int64_t Number);
 | 
						|
  void mangleFloat(const llvm::APFloat &F);
 | 
						|
  void mangleFunctionEncoding(GlobalDecl GD);
 | 
						|
  void mangleSeqID(unsigned SeqID);
 | 
						|
  void mangleName(GlobalDecl GD);
 | 
						|
  void mangleType(QualType T);
 | 
						|
  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
 | 
						|
  void mangleLambdaSig(const CXXRecordDecl *Lambda);
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
  bool mangleSubstitution(const NamedDecl *ND);
 | 
						|
  bool mangleSubstitution(QualType T);
 | 
						|
  bool mangleSubstitution(TemplateName Template);
 | 
						|
  bool mangleSubstitution(uintptr_t Ptr);
 | 
						|
 | 
						|
  void mangleExistingSubstitution(TemplateName name);
 | 
						|
 | 
						|
  bool mangleStandardSubstitution(const NamedDecl *ND);
 | 
						|
 | 
						|
  void addSubstitution(const NamedDecl *ND) {
 | 
						|
    ND = cast<NamedDecl>(ND->getCanonicalDecl());
 | 
						|
 | 
						|
    addSubstitution(reinterpret_cast<uintptr_t>(ND));
 | 
						|
  }
 | 
						|
  void addSubstitution(QualType T);
 | 
						|
  void addSubstitution(TemplateName Template);
 | 
						|
  void addSubstitution(uintptr_t Ptr);
 | 
						|
  // Destructive copy substitutions from other mangler.
 | 
						|
  void extendSubstitutions(CXXNameMangler* Other);
 | 
						|
 | 
						|
  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
 | 
						|
                              bool recursive = false);
 | 
						|
  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
 | 
						|
                            DeclarationName name,
 | 
						|
                            const TemplateArgumentLoc *TemplateArgs,
 | 
						|
                            unsigned NumTemplateArgs,
 | 
						|
                            unsigned KnownArity = UnknownArity);
 | 
						|
 | 
						|
  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
 | 
						|
 | 
						|
  void mangleNameWithAbiTags(GlobalDecl GD,
 | 
						|
                             const AbiTagList *AdditionalAbiTags);
 | 
						|
  void mangleModuleName(const Module *M);
 | 
						|
  void mangleModuleNamePrefix(StringRef Name);
 | 
						|
  void mangleTemplateName(const TemplateDecl *TD,
 | 
						|
                          const TemplateArgument *TemplateArgs,
 | 
						|
                          unsigned NumTemplateArgs);
 | 
						|
  void mangleUnqualifiedName(GlobalDecl GD,
 | 
						|
                             const AbiTagList *AdditionalAbiTags) {
 | 
						|
    mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
 | 
						|
                          AdditionalAbiTags);
 | 
						|
  }
 | 
						|
  void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
 | 
						|
                             unsigned KnownArity,
 | 
						|
                             const AbiTagList *AdditionalAbiTags);
 | 
						|
  void mangleUnscopedName(GlobalDecl GD,
 | 
						|
                          const AbiTagList *AdditionalAbiTags);
 | 
						|
  void mangleUnscopedTemplateName(GlobalDecl GD,
 | 
						|
                                  const AbiTagList *AdditionalAbiTags);
 | 
						|
  void mangleUnscopedTemplateName(TemplateName,
 | 
						|
                                  const AbiTagList *AdditionalAbiTags);
 | 
						|
  void mangleSourceName(const IdentifierInfo *II);
 | 
						|
  void mangleRegCallName(const IdentifierInfo *II);
 | 
						|
  void mangleDeviceStubName(const IdentifierInfo *II);
 | 
						|
  void mangleSourceNameWithAbiTags(
 | 
						|
      const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
 | 
						|
  void mangleLocalName(GlobalDecl GD,
 | 
						|
                       const AbiTagList *AdditionalAbiTags);
 | 
						|
  void mangleBlockForPrefix(const BlockDecl *Block);
 | 
						|
  void mangleUnqualifiedBlock(const BlockDecl *Block);
 | 
						|
  void mangleTemplateParamDecl(const NamedDecl *Decl);
 | 
						|
  void mangleLambda(const CXXRecordDecl *Lambda);
 | 
						|
  void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
 | 
						|
                        const AbiTagList *AdditionalAbiTags,
 | 
						|
                        bool NoFunction=false);
 | 
						|
  void mangleNestedName(const TemplateDecl *TD,
 | 
						|
                        const TemplateArgument *TemplateArgs,
 | 
						|
                        unsigned NumTemplateArgs);
 | 
						|
  void manglePrefix(NestedNameSpecifier *qualifier);
 | 
						|
  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
 | 
						|
  void manglePrefix(QualType type);
 | 
						|
  void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
 | 
						|
  void mangleTemplatePrefix(TemplateName Template);
 | 
						|
  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
 | 
						|
                                      StringRef Prefix = "");
 | 
						|
  void mangleOperatorName(DeclarationName Name, unsigned Arity);
 | 
						|
  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
 | 
						|
  void mangleVendorQualifier(StringRef qualifier);
 | 
						|
  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
 | 
						|
  void mangleRefQualifier(RefQualifierKind RefQualifier);
 | 
						|
 | 
						|
  void mangleObjCMethodName(const ObjCMethodDecl *MD);
 | 
						|
 | 
						|
  // Declare manglers for every type class.
 | 
						|
#define ABSTRACT_TYPE(CLASS, PARENT)
 | 
						|
#define NON_CANONICAL_TYPE(CLASS, PARENT)
 | 
						|
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
 | 
						|
#include "clang/AST/TypeNodes.inc"
 | 
						|
 | 
						|
  void mangleType(const TagType*);
 | 
						|
  void mangleType(TemplateName);
 | 
						|
  static StringRef getCallingConvQualifierName(CallingConv CC);
 | 
						|
  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
 | 
						|
  void mangleExtFunctionInfo(const FunctionType *T);
 | 
						|
  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
 | 
						|
                              const FunctionDecl *FD = nullptr);
 | 
						|
  void mangleNeonVectorType(const VectorType *T);
 | 
						|
  void mangleNeonVectorType(const DependentVectorType *T);
 | 
						|
  void mangleAArch64NeonVectorType(const VectorType *T);
 | 
						|
  void mangleAArch64NeonVectorType(const DependentVectorType *T);
 | 
						|
 | 
						|
  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
 | 
						|
  void mangleMemberExprBase(const Expr *base, bool isArrow);
 | 
						|
  void mangleMemberExpr(const Expr *base, bool isArrow,
 | 
						|
                        NestedNameSpecifier *qualifier,
 | 
						|
                        NamedDecl *firstQualifierLookup,
 | 
						|
                        DeclarationName name,
 | 
						|
                        const TemplateArgumentLoc *TemplateArgs,
 | 
						|
                        unsigned NumTemplateArgs,
 | 
						|
                        unsigned knownArity);
 | 
						|
  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
 | 
						|
  void mangleInitListElements(const InitListExpr *InitList);
 | 
						|
  void mangleDeclRefExpr(const NamedDecl *D);
 | 
						|
  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
 | 
						|
  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
 | 
						|
  void mangleCXXDtorType(CXXDtorType T);
 | 
						|
 | 
						|
  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
 | 
						|
                          unsigned NumTemplateArgs);
 | 
						|
  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
 | 
						|
                          unsigned NumTemplateArgs);
 | 
						|
  void mangleTemplateArgs(const TemplateArgumentList &AL);
 | 
						|
  void mangleTemplateArg(TemplateArgument A);
 | 
						|
 | 
						|
  void mangleTemplateParameter(unsigned Depth, unsigned Index);
 | 
						|
 | 
						|
  void mangleFunctionParam(const ParmVarDecl *parm);
 | 
						|
 | 
						|
  void writeAbiTags(const NamedDecl *ND,
 | 
						|
                    const AbiTagList *AdditionalAbiTags);
 | 
						|
 | 
						|
  // Returns sorted unique list of ABI tags.
 | 
						|
  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
 | 
						|
  // Returns sorted unique list of ABI tags.
 | 
						|
  AbiTagList makeVariableTypeTags(const VarDecl *VD);
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
 | 
						|
  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
 | 
						|
  if (FD) {
 | 
						|
    LanguageLinkage L = FD->getLanguageLinkage();
 | 
						|
    // Overloadable functions need mangling.
 | 
						|
    if (FD->hasAttr<OverloadableAttr>())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // "main" is not mangled.
 | 
						|
    if (FD->isMain())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // The Windows ABI expects that we would never mangle "typical"
 | 
						|
    // user-defined entry points regardless of visibility or freestanding-ness.
 | 
						|
    //
 | 
						|
    // N.B. This is distinct from asking about "main".  "main" has a lot of
 | 
						|
    // special rules associated with it in the standard while these
 | 
						|
    // user-defined entry points are outside of the purview of the standard.
 | 
						|
    // For example, there can be only one definition for "main" in a standards
 | 
						|
    // compliant program; however nothing forbids the existence of wmain and
 | 
						|
    // WinMain in the same translation unit.
 | 
						|
    if (FD->isMSVCRTEntryPoint())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // C++ functions and those whose names are not a simple identifier need
 | 
						|
    // mangling.
 | 
						|
    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // C functions are not mangled.
 | 
						|
    if (L == CLanguageLinkage)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, no mangling is done outside C++ mode.
 | 
						|
  if (!getASTContext().getLangOpts().CPlusPlus)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const VarDecl *VD = dyn_cast<VarDecl>(D);
 | 
						|
  if (VD && !isa<DecompositionDecl>(D)) {
 | 
						|
    // C variables are not mangled.
 | 
						|
    if (VD->isExternC())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Variables at global scope with non-internal linkage are not mangled
 | 
						|
    const DeclContext *DC = getEffectiveDeclContext(D);
 | 
						|
    // Check for extern variable declared locally.
 | 
						|
    if (DC->isFunctionOrMethod() && D->hasLinkage())
 | 
						|
      while (!DC->isNamespace() && !DC->isTranslationUnit())
 | 
						|
        DC = getEffectiveParentContext(DC);
 | 
						|
    if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
 | 
						|
        !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
 | 
						|
        !isa<VarTemplateSpecializationDecl>(D))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
 | 
						|
                                  const AbiTagList *AdditionalAbiTags) {
 | 
						|
  assert(AbiTags && "require AbiTagState");
 | 
						|
  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleSourceNameWithAbiTags(
 | 
						|
    const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
 | 
						|
  mangleSourceName(ND->getIdentifier());
 | 
						|
  writeAbiTags(ND, AdditionalAbiTags);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangle(GlobalDecl GD) {
 | 
						|
  // <mangled-name> ::= _Z <encoding>
 | 
						|
  //            ::= <data name>
 | 
						|
  //            ::= <special-name>
 | 
						|
  Out << "_Z";
 | 
						|
  if (isa<FunctionDecl>(GD.getDecl()))
 | 
						|
    mangleFunctionEncoding(GD);
 | 
						|
  else if (const VarDecl *VD = dyn_cast<VarDecl>(GD.getDecl()))
 | 
						|
    mangleName(VD);
 | 
						|
  else if (const IndirectFieldDecl *IFD =
 | 
						|
               dyn_cast<IndirectFieldDecl>(GD.getDecl()))
 | 
						|
    mangleName(IFD->getAnonField());
 | 
						|
  else if (const FieldDecl *FD = dyn_cast<FieldDecl>(GD.getDecl()))
 | 
						|
    mangleName(FD);
 | 
						|
  else if (const MSGuidDecl *GuidD = dyn_cast<MSGuidDecl>(GD.getDecl()))
 | 
						|
    mangleName(GuidD);
 | 
						|
  else
 | 
						|
    llvm_unreachable("unexpected kind of global decl");
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
 | 
						|
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | 
						|
  // <encoding> ::= <function name> <bare-function-type>
 | 
						|
 | 
						|
  // Don't mangle in the type if this isn't a decl we should typically mangle.
 | 
						|
  if (!Context.shouldMangleDeclName(FD)) {
 | 
						|
    mangleName(GD);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
 | 
						|
  if (ReturnTypeAbiTags.empty()) {
 | 
						|
    // There are no tags for return type, the simplest case.
 | 
						|
    mangleName(GD);
 | 
						|
    mangleFunctionEncodingBareType(FD);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Mangle function name and encoding to temporary buffer.
 | 
						|
  // We have to output name and encoding to the same mangler to get the same
 | 
						|
  // substitution as it will be in final mangling.
 | 
						|
  SmallString<256> FunctionEncodingBuf;
 | 
						|
  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
 | 
						|
  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
 | 
						|
  // Output name of the function.
 | 
						|
  FunctionEncodingMangler.disableDerivedAbiTags();
 | 
						|
  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
 | 
						|
 | 
						|
  // Remember length of the function name in the buffer.
 | 
						|
  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
 | 
						|
  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
 | 
						|
 | 
						|
  // Get tags from return type that are not present in function name or
 | 
						|
  // encoding.
 | 
						|
  const AbiTagList &UsedAbiTags =
 | 
						|
      FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
 | 
						|
  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
 | 
						|
  AdditionalAbiTags.erase(
 | 
						|
      std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
 | 
						|
                          UsedAbiTags.begin(), UsedAbiTags.end(),
 | 
						|
                          AdditionalAbiTags.begin()),
 | 
						|
      AdditionalAbiTags.end());
 | 
						|
 | 
						|
  // Output name with implicit tags and function encoding from temporary buffer.
 | 
						|
  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
 | 
						|
  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
 | 
						|
 | 
						|
  // Function encoding could create new substitutions so we have to add
 | 
						|
  // temp mangled substitutions to main mangler.
 | 
						|
  extendSubstitutions(&FunctionEncodingMangler);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
 | 
						|
  if (FD->hasAttr<EnableIfAttr>()) {
 | 
						|
    FunctionTypeDepthState Saved = FunctionTypeDepth.push();
 | 
						|
    Out << "Ua9enable_ifI";
 | 
						|
    for (AttrVec::const_iterator I = FD->getAttrs().begin(),
 | 
						|
                                 E = FD->getAttrs().end();
 | 
						|
         I != E; ++I) {
 | 
						|
      EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
 | 
						|
      if (!EIA)
 | 
						|
        continue;
 | 
						|
      Out << 'X';
 | 
						|
      mangleExpression(EIA->getCond());
 | 
						|
      Out << 'E';
 | 
						|
    }
 | 
						|
    Out << 'E';
 | 
						|
    FunctionTypeDepth.pop(Saved);
 | 
						|
  }
 | 
						|
 | 
						|
  // When mangling an inheriting constructor, the bare function type used is
 | 
						|
  // that of the inherited constructor.
 | 
						|
  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
 | 
						|
    if (auto Inherited = CD->getInheritedConstructor())
 | 
						|
      FD = Inherited.getConstructor();
 | 
						|
 | 
						|
  // Whether the mangling of a function type includes the return type depends on
 | 
						|
  // the context and the nature of the function. The rules for deciding whether
 | 
						|
  // the return type is included are:
 | 
						|
  //
 | 
						|
  //   1. Template functions (names or types) have return types encoded, with
 | 
						|
  //   the exceptions listed below.
 | 
						|
  //   2. Function types not appearing as part of a function name mangling,
 | 
						|
  //   e.g. parameters, pointer types, etc., have return type encoded, with the
 | 
						|
  //   exceptions listed below.
 | 
						|
  //   3. Non-template function names do not have return types encoded.
 | 
						|
  //
 | 
						|
  // The exceptions mentioned in (1) and (2) above, for which the return type is
 | 
						|
  // never included, are
 | 
						|
  //   1. Constructors.
 | 
						|
  //   2. Destructors.
 | 
						|
  //   3. Conversion operator functions, e.g. operator int.
 | 
						|
  bool MangleReturnType = false;
 | 
						|
  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
 | 
						|
    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
 | 
						|
          isa<CXXConversionDecl>(FD)))
 | 
						|
      MangleReturnType = true;
 | 
						|
 | 
						|
    // Mangle the type of the primary template.
 | 
						|
    FD = PrimaryTemplate->getTemplatedDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
 | 
						|
                         MangleReturnType, FD);
 | 
						|
}
 | 
						|
 | 
						|
static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
 | 
						|
  while (isa<LinkageSpecDecl>(DC)) {
 | 
						|
    DC = getEffectiveParentContext(DC);
 | 
						|
  }
 | 
						|
 | 
						|
  return DC;
 | 
						|
}
 | 
						|
 | 
						|
/// Return whether a given namespace is the 'std' namespace.
 | 
						|
static bool isStd(const NamespaceDecl *NS) {
 | 
						|
  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
 | 
						|
                                ->isTranslationUnit())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
 | 
						|
  return II && II->isStr("std");
 | 
						|
}
 | 
						|
 | 
						|
// isStdNamespace - Return whether a given decl context is a toplevel 'std'
 | 
						|
// namespace.
 | 
						|
static bool isStdNamespace(const DeclContext *DC) {
 | 
						|
  if (!DC->isNamespace())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return isStd(cast<NamespaceDecl>(DC));
 | 
						|
}
 | 
						|
 | 
						|
static const GlobalDecl
 | 
						|
isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
 | 
						|
  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | 
						|
  // Check if we have a function template.
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
 | 
						|
    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
 | 
						|
      TemplateArgs = FD->getTemplateSpecializationArgs();
 | 
						|
      return GD.getWithDecl(TD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we have a class template.
 | 
						|
  if (const ClassTemplateSpecializationDecl *Spec =
 | 
						|
        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
 | 
						|
    TemplateArgs = &Spec->getTemplateArgs();
 | 
						|
    return GD.getWithDecl(Spec->getSpecializedTemplate());
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we have a variable template.
 | 
						|
  if (const VarTemplateSpecializationDecl *Spec =
 | 
						|
          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
 | 
						|
    TemplateArgs = &Spec->getTemplateArgs();
 | 
						|
    return GD.getWithDecl(Spec->getSpecializedTemplate());
 | 
						|
  }
 | 
						|
 | 
						|
  return GlobalDecl();
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleName(GlobalDecl GD) {
 | 
						|
  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
 | 
						|
    // Variables should have implicit tags from its type.
 | 
						|
    AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
 | 
						|
    if (VariableTypeAbiTags.empty()) {
 | 
						|
      // Simple case no variable type tags.
 | 
						|
      mangleNameWithAbiTags(VD, nullptr);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Mangle variable name to null stream to collect tags.
 | 
						|
    llvm::raw_null_ostream NullOutStream;
 | 
						|
    CXXNameMangler VariableNameMangler(*this, NullOutStream);
 | 
						|
    VariableNameMangler.disableDerivedAbiTags();
 | 
						|
    VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
 | 
						|
 | 
						|
    // Get tags from variable type that are not present in its name.
 | 
						|
    const AbiTagList &UsedAbiTags =
 | 
						|
        VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
 | 
						|
    AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
 | 
						|
    AdditionalAbiTags.erase(
 | 
						|
        std::set_difference(VariableTypeAbiTags.begin(),
 | 
						|
                            VariableTypeAbiTags.end(), UsedAbiTags.begin(),
 | 
						|
                            UsedAbiTags.end(), AdditionalAbiTags.begin()),
 | 
						|
        AdditionalAbiTags.end());
 | 
						|
 | 
						|
    // Output name with implicit tags.
 | 
						|
    mangleNameWithAbiTags(VD, &AdditionalAbiTags);
 | 
						|
  } else {
 | 
						|
    mangleNameWithAbiTags(GD, nullptr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
 | 
						|
                                           const AbiTagList *AdditionalAbiTags) {
 | 
						|
  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | 
						|
  //  <name> ::= [<module-name>] <nested-name>
 | 
						|
  //         ::= [<module-name>] <unscoped-name>
 | 
						|
  //         ::= [<module-name>] <unscoped-template-name> <template-args>
 | 
						|
  //         ::= <local-name>
 | 
						|
  //
 | 
						|
  const DeclContext *DC = getEffectiveDeclContext(ND);
 | 
						|
 | 
						|
  // If this is an extern variable declared locally, the relevant DeclContext
 | 
						|
  // is that of the containing namespace, or the translation unit.
 | 
						|
  // FIXME: This is a hack; extern variables declared locally should have
 | 
						|
  // a proper semantic declaration context!
 | 
						|
  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
 | 
						|
    while (!DC->isNamespace() && !DC->isTranslationUnit())
 | 
						|
      DC = getEffectiveParentContext(DC);
 | 
						|
  else if (GetLocalClassDecl(ND)) {
 | 
						|
    mangleLocalName(GD, AdditionalAbiTags);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DC = IgnoreLinkageSpecDecls(DC);
 | 
						|
 | 
						|
  if (isLocalContainerContext(DC)) {
 | 
						|
    mangleLocalName(GD, AdditionalAbiTags);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not mangle the owning module for an external linkage declaration.
 | 
						|
  // This enables backwards-compatibility with non-modular code, and is
 | 
						|
  // a valid choice since conflicts are not permitted by C++ Modules TS
 | 
						|
  // [basic.def.odr]/6.2.
 | 
						|
  if (!ND->hasExternalFormalLinkage())
 | 
						|
    if (Module *M = ND->getOwningModuleForLinkage())
 | 
						|
      mangleModuleName(M);
 | 
						|
 | 
						|
  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
 | 
						|
    // Check if we have a template.
 | 
						|
    const TemplateArgumentList *TemplateArgs = nullptr;
 | 
						|
    if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
 | 
						|
      mangleUnscopedTemplateName(TD, AdditionalAbiTags);
 | 
						|
      mangleTemplateArgs(*TemplateArgs);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    mangleUnscopedName(GD, AdditionalAbiTags);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  mangleNestedName(GD, DC, AdditionalAbiTags);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleModuleName(const Module *M) {
 | 
						|
  // Implement the C++ Modules TS name mangling proposal; see
 | 
						|
  //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
 | 
						|
  //
 | 
						|
  //   <module-name> ::= W <unscoped-name>+ E
 | 
						|
  //                 ::= W <module-subst> <unscoped-name>* E
 | 
						|
  Out << 'W';
 | 
						|
  mangleModuleNamePrefix(M->Name);
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
 | 
						|
  //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
 | 
						|
  //                 ::= W <seq-id - 10> _   # otherwise
 | 
						|
  auto It = ModuleSubstitutions.find(Name);
 | 
						|
  if (It != ModuleSubstitutions.end()) {
 | 
						|
    if (It->second < 10)
 | 
						|
      Out << '_' << static_cast<char>('0' + It->second);
 | 
						|
    else
 | 
						|
      Out << 'W' << (It->second - 10) << '_';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Preserve hierarchy in module names rather than flattening
 | 
						|
  // them to strings; use Module*s as substitution keys.
 | 
						|
  auto Parts = Name.rsplit('.');
 | 
						|
  if (Parts.second.empty())
 | 
						|
    Parts.second = Parts.first;
 | 
						|
  else
 | 
						|
    mangleModuleNamePrefix(Parts.first);
 | 
						|
 | 
						|
  Out << Parts.second.size() << Parts.second;
 | 
						|
  ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
 | 
						|
                                        const TemplateArgument *TemplateArgs,
 | 
						|
                                        unsigned NumTemplateArgs) {
 | 
						|
  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
 | 
						|
 | 
						|
  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
 | 
						|
    mangleUnscopedTemplateName(TD, nullptr);
 | 
						|
    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
 | 
						|
  } else {
 | 
						|
    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
 | 
						|
                                        const AbiTagList *AdditionalAbiTags) {
 | 
						|
  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | 
						|
  //  <unscoped-name> ::= <unqualified-name>
 | 
						|
  //                  ::= St <unqualified-name>   # ::std::
 | 
						|
 | 
						|
  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
 | 
						|
    Out << "St";
 | 
						|
 | 
						|
  mangleUnqualifiedName(GD, AdditionalAbiTags);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnscopedTemplateName(
 | 
						|
    GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
 | 
						|
  const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
 | 
						|
  //     <unscoped-template-name> ::= <unscoped-name>
 | 
						|
  //                              ::= <substitution>
 | 
						|
  if (mangleSubstitution(ND))
 | 
						|
    return;
 | 
						|
 | 
						|
  // <template-template-param> ::= <template-param>
 | 
						|
  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
 | 
						|
    assert(!AdditionalAbiTags &&
 | 
						|
           "template template param cannot have abi tags");
 | 
						|
    mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
 | 
						|
  } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
 | 
						|
    mangleUnscopedName(GD, AdditionalAbiTags);
 | 
						|
  } else {
 | 
						|
    mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
 | 
						|
  }
 | 
						|
 | 
						|
  addSubstitution(ND);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnscopedTemplateName(
 | 
						|
    TemplateName Template, const AbiTagList *AdditionalAbiTags) {
 | 
						|
  //     <unscoped-template-name> ::= <unscoped-name>
 | 
						|
  //                              ::= <substitution>
 | 
						|
  if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | 
						|
    return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
 | 
						|
 | 
						|
  if (mangleSubstitution(Template))
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(!AdditionalAbiTags &&
 | 
						|
         "dependent template name cannot have abi tags");
 | 
						|
 | 
						|
  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
 | 
						|
  assert(Dependent && "Not a dependent template name?");
 | 
						|
  if (const IdentifierInfo *Id = Dependent->getIdentifier())
 | 
						|
    mangleSourceName(Id);
 | 
						|
  else
 | 
						|
    mangleOperatorName(Dependent->getOperator(), UnknownArity);
 | 
						|
 | 
						|
  addSubstitution(Template);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
 | 
						|
  // ABI:
 | 
						|
  //   Floating-point literals are encoded using a fixed-length
 | 
						|
  //   lowercase hexadecimal string corresponding to the internal
 | 
						|
  //   representation (IEEE on Itanium), high-order bytes first,
 | 
						|
  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
 | 
						|
  //   on Itanium.
 | 
						|
  // The 'without leading zeroes' thing seems to be an editorial
 | 
						|
  // mistake; see the discussion on cxx-abi-dev beginning on
 | 
						|
  // 2012-01-16.
 | 
						|
 | 
						|
  // Our requirements here are just barely weird enough to justify
 | 
						|
  // using a custom algorithm instead of post-processing APInt::toString().
 | 
						|
 | 
						|
  llvm::APInt valueBits = f.bitcastToAPInt();
 | 
						|
  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
 | 
						|
  assert(numCharacters != 0);
 | 
						|
 | 
						|
  // Allocate a buffer of the right number of characters.
 | 
						|
  SmallVector<char, 20> buffer(numCharacters);
 | 
						|
 | 
						|
  // Fill the buffer left-to-right.
 | 
						|
  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
 | 
						|
    // The bit-index of the next hex digit.
 | 
						|
    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
 | 
						|
 | 
						|
    // Project out 4 bits starting at 'digitIndex'.
 | 
						|
    uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
 | 
						|
    hexDigit >>= (digitBitIndex % 64);
 | 
						|
    hexDigit &= 0xF;
 | 
						|
 | 
						|
    // Map that over to a lowercase hex digit.
 | 
						|
    static const char charForHex[16] = {
 | 
						|
      '0', '1', '2', '3', '4', '5', '6', '7',
 | 
						|
      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
 | 
						|
    };
 | 
						|
    buffer[stringIndex] = charForHex[hexDigit];
 | 
						|
  }
 | 
						|
 | 
						|
  Out.write(buffer.data(), numCharacters);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
 | 
						|
  if (Value.isSigned() && Value.isNegative()) {
 | 
						|
    Out << 'n';
 | 
						|
    Value.abs().print(Out, /*signed*/ false);
 | 
						|
  } else {
 | 
						|
    Value.print(Out, /*signed*/ false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleNumber(int64_t Number) {
 | 
						|
  //  <number> ::= [n] <non-negative decimal integer>
 | 
						|
  if (Number < 0) {
 | 
						|
    Out << 'n';
 | 
						|
    Number = -Number;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << Number;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
 | 
						|
  //  <call-offset>  ::= h <nv-offset> _
 | 
						|
  //                 ::= v <v-offset> _
 | 
						|
  //  <nv-offset>    ::= <offset number>        # non-virtual base override
 | 
						|
  //  <v-offset>     ::= <offset number> _ <virtual offset number>
 | 
						|
  //                      # virtual base override, with vcall offset
 | 
						|
  if (!Virtual) {
 | 
						|
    Out << 'h';
 | 
						|
    mangleNumber(NonVirtual);
 | 
						|
    Out << '_';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << 'v';
 | 
						|
  mangleNumber(NonVirtual);
 | 
						|
  Out << '_';
 | 
						|
  mangleNumber(Virtual);
 | 
						|
  Out << '_';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::manglePrefix(QualType type) {
 | 
						|
  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
 | 
						|
    if (!mangleSubstitution(QualType(TST, 0))) {
 | 
						|
      mangleTemplatePrefix(TST->getTemplateName());
 | 
						|
 | 
						|
      // FIXME: GCC does not appear to mangle the template arguments when
 | 
						|
      // the template in question is a dependent template name. Should we
 | 
						|
      // emulate that badness?
 | 
						|
      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
 | 
						|
      addSubstitution(QualType(TST, 0));
 | 
						|
    }
 | 
						|
  } else if (const auto *DTST =
 | 
						|
                 type->getAs<DependentTemplateSpecializationType>()) {
 | 
						|
    if (!mangleSubstitution(QualType(DTST, 0))) {
 | 
						|
      TemplateName Template = getASTContext().getDependentTemplateName(
 | 
						|
          DTST->getQualifier(), DTST->getIdentifier());
 | 
						|
      mangleTemplatePrefix(Template);
 | 
						|
 | 
						|
      // FIXME: GCC does not appear to mangle the template arguments when
 | 
						|
      // the template in question is a dependent template name. Should we
 | 
						|
      // emulate that badness?
 | 
						|
      mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
 | 
						|
      addSubstitution(QualType(DTST, 0));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // We use the QualType mangle type variant here because it handles
 | 
						|
    // substitutions.
 | 
						|
    mangleType(type);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
 | 
						|
///
 | 
						|
/// \param recursive - true if this is being called recursively,
 | 
						|
///   i.e. if there is more prefix "to the right".
 | 
						|
void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
 | 
						|
                                            bool recursive) {
 | 
						|
 | 
						|
  // x, ::x
 | 
						|
  // <unresolved-name> ::= [gs] <base-unresolved-name>
 | 
						|
 | 
						|
  // T::x / decltype(p)::x
 | 
						|
  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
 | 
						|
 | 
						|
  // T::N::x /decltype(p)::N::x
 | 
						|
  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
 | 
						|
  //                       <base-unresolved-name>
 | 
						|
 | 
						|
  // A::x, N::y, A<T>::z; "gs" means leading "::"
 | 
						|
  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
 | 
						|
  //                       <base-unresolved-name>
 | 
						|
 | 
						|
  switch (qualifier->getKind()) {
 | 
						|
  case NestedNameSpecifier::Global:
 | 
						|
    Out << "gs";
 | 
						|
 | 
						|
    // We want an 'sr' unless this is the entire NNS.
 | 
						|
    if (recursive)
 | 
						|
      Out << "sr";
 | 
						|
 | 
						|
    // We never want an 'E' here.
 | 
						|
    return;
 | 
						|
 | 
						|
  case NestedNameSpecifier::Super:
 | 
						|
    llvm_unreachable("Can't mangle __super specifier");
 | 
						|
 | 
						|
  case NestedNameSpecifier::Namespace:
 | 
						|
    if (qualifier->getPrefix())
 | 
						|
      mangleUnresolvedPrefix(qualifier->getPrefix(),
 | 
						|
                             /*recursive*/ true);
 | 
						|
    else
 | 
						|
      Out << "sr";
 | 
						|
    mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
 | 
						|
    break;
 | 
						|
  case NestedNameSpecifier::NamespaceAlias:
 | 
						|
    if (qualifier->getPrefix())
 | 
						|
      mangleUnresolvedPrefix(qualifier->getPrefix(),
 | 
						|
                             /*recursive*/ true);
 | 
						|
    else
 | 
						|
      Out << "sr";
 | 
						|
    mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
 | 
						|
    break;
 | 
						|
 | 
						|
  case NestedNameSpecifier::TypeSpec:
 | 
						|
  case NestedNameSpecifier::TypeSpecWithTemplate: {
 | 
						|
    const Type *type = qualifier->getAsType();
 | 
						|
 | 
						|
    // We only want to use an unresolved-type encoding if this is one of:
 | 
						|
    //   - a decltype
 | 
						|
    //   - a template type parameter
 | 
						|
    //   - a template template parameter with arguments
 | 
						|
    // In all of these cases, we should have no prefix.
 | 
						|
    if (qualifier->getPrefix()) {
 | 
						|
      mangleUnresolvedPrefix(qualifier->getPrefix(),
 | 
						|
                             /*recursive*/ true);
 | 
						|
    } else {
 | 
						|
      // Otherwise, all the cases want this.
 | 
						|
      Out << "sr";
 | 
						|
    }
 | 
						|
 | 
						|
    if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
 | 
						|
      return;
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case NestedNameSpecifier::Identifier:
 | 
						|
    // Member expressions can have these without prefixes.
 | 
						|
    if (qualifier->getPrefix())
 | 
						|
      mangleUnresolvedPrefix(qualifier->getPrefix(),
 | 
						|
                             /*recursive*/ true);
 | 
						|
    else
 | 
						|
      Out << "sr";
 | 
						|
 | 
						|
    mangleSourceName(qualifier->getAsIdentifier());
 | 
						|
    // An Identifier has no type information, so we can't emit abi tags for it.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this was the innermost part of the NNS, and we fell out to
 | 
						|
  // here, append an 'E'.
 | 
						|
  if (!recursive)
 | 
						|
    Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
/// Mangle an unresolved-name, which is generally used for names which
 | 
						|
/// weren't resolved to specific entities.
 | 
						|
void CXXNameMangler::mangleUnresolvedName(
 | 
						|
    NestedNameSpecifier *qualifier, DeclarationName name,
 | 
						|
    const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
 | 
						|
    unsigned knownArity) {
 | 
						|
  if (qualifier) mangleUnresolvedPrefix(qualifier);
 | 
						|
  switch (name.getNameKind()) {
 | 
						|
    // <base-unresolved-name> ::= <simple-id>
 | 
						|
    case DeclarationName::Identifier:
 | 
						|
      mangleSourceName(name.getAsIdentifierInfo());
 | 
						|
      break;
 | 
						|
    // <base-unresolved-name> ::= dn <destructor-name>
 | 
						|
    case DeclarationName::CXXDestructorName:
 | 
						|
      Out << "dn";
 | 
						|
      mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
 | 
						|
      break;
 | 
						|
    // <base-unresolved-name> ::= on <operator-name>
 | 
						|
    case DeclarationName::CXXConversionFunctionName:
 | 
						|
    case DeclarationName::CXXLiteralOperatorName:
 | 
						|
    case DeclarationName::CXXOperatorName:
 | 
						|
      Out << "on";
 | 
						|
      mangleOperatorName(name, knownArity);
 | 
						|
      break;
 | 
						|
    case DeclarationName::CXXConstructorName:
 | 
						|
      llvm_unreachable("Can't mangle a constructor name!");
 | 
						|
    case DeclarationName::CXXUsingDirective:
 | 
						|
      llvm_unreachable("Can't mangle a using directive name!");
 | 
						|
    case DeclarationName::CXXDeductionGuideName:
 | 
						|
      llvm_unreachable("Can't mangle a deduction guide name!");
 | 
						|
    case DeclarationName::ObjCMultiArgSelector:
 | 
						|
    case DeclarationName::ObjCOneArgSelector:
 | 
						|
    case DeclarationName::ObjCZeroArgSelector:
 | 
						|
      llvm_unreachable("Can't mangle Objective-C selector names here!");
 | 
						|
  }
 | 
						|
 | 
						|
  // The <simple-id> and on <operator-name> productions end in an optional
 | 
						|
  // <template-args>.
 | 
						|
  if (TemplateArgs)
 | 
						|
    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
 | 
						|
                                           DeclarationName Name,
 | 
						|
                                           unsigned KnownArity,
 | 
						|
                                           const AbiTagList *AdditionalAbiTags) {
 | 
						|
  const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
 | 
						|
  unsigned Arity = KnownArity;
 | 
						|
  //  <unqualified-name> ::= <operator-name>
 | 
						|
  //                     ::= <ctor-dtor-name>
 | 
						|
  //                     ::= <source-name>
 | 
						|
  switch (Name.getNameKind()) {
 | 
						|
  case DeclarationName::Identifier: {
 | 
						|
    const IdentifierInfo *II = Name.getAsIdentifierInfo();
 | 
						|
 | 
						|
    // We mangle decomposition declarations as the names of their bindings.
 | 
						|
    if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
 | 
						|
      // FIXME: Non-standard mangling for decomposition declarations:
 | 
						|
      //
 | 
						|
      //  <unqualified-name> ::= DC <source-name>* E
 | 
						|
      //
 | 
						|
      // These can never be referenced across translation units, so we do
 | 
						|
      // not need a cross-vendor mangling for anything other than demanglers.
 | 
						|
      // Proposed on cxx-abi-dev on 2016-08-12
 | 
						|
      Out << "DC";
 | 
						|
      for (auto *BD : DD->bindings())
 | 
						|
        mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
 | 
						|
      Out << 'E';
 | 
						|
      writeAbiTags(ND, AdditionalAbiTags);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
 | 
						|
      // We follow MSVC in mangling GUID declarations as if they were variables
 | 
						|
      // with a particular reserved name. Continue the pretense here.
 | 
						|
      SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
 | 
						|
      llvm::raw_svector_ostream GUIDOS(GUID);
 | 
						|
      Context.mangleMSGuidDecl(GD, GUIDOS);
 | 
						|
      Out << GUID.size() << GUID;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (II) {
 | 
						|
      // Match GCC's naming convention for internal linkage symbols, for
 | 
						|
      // symbols that are not actually visible outside of this TU. GCC
 | 
						|
      // distinguishes between internal and external linkage symbols in
 | 
						|
      // its mangling, to support cases like this that were valid C++ prior
 | 
						|
      // to DR426:
 | 
						|
      //
 | 
						|
      //   void test() { extern void foo(); }
 | 
						|
      //   static void foo();
 | 
						|
      //
 | 
						|
      // Don't bother with the L marker for names in anonymous namespaces; the
 | 
						|
      // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
 | 
						|
      // matches GCC anyway, because GCC does not treat anonymous namespaces as
 | 
						|
      // implying internal linkage.
 | 
						|
      if (ND && ND->getFormalLinkage() == InternalLinkage &&
 | 
						|
          !ND->isExternallyVisible() &&
 | 
						|
          getEffectiveDeclContext(ND)->isFileContext() &&
 | 
						|
          !ND->isInAnonymousNamespace())
 | 
						|
        Out << 'L';
 | 
						|
 | 
						|
      auto *FD = dyn_cast<FunctionDecl>(ND);
 | 
						|
      bool IsRegCall = FD &&
 | 
						|
                       FD->getType()->castAs<FunctionType>()->getCallConv() ==
 | 
						|
                           clang::CC_X86RegCall;
 | 
						|
      bool IsDeviceStub =
 | 
						|
          FD && FD->hasAttr<CUDAGlobalAttr>() &&
 | 
						|
          GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
 | 
						|
      if (IsDeviceStub)
 | 
						|
        mangleDeviceStubName(II);
 | 
						|
      else if (IsRegCall)
 | 
						|
        mangleRegCallName(II);
 | 
						|
      else
 | 
						|
        mangleSourceName(II);
 | 
						|
 | 
						|
      writeAbiTags(ND, AdditionalAbiTags);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, an anonymous entity.  We must have a declaration.
 | 
						|
    assert(ND && "mangling empty name without declaration");
 | 
						|
 | 
						|
    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
 | 
						|
      if (NS->isAnonymousNamespace()) {
 | 
						|
        // This is how gcc mangles these names.
 | 
						|
        Out << "12_GLOBAL__N_1";
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
 | 
						|
      // We must have an anonymous union or struct declaration.
 | 
						|
      const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
 | 
						|
 | 
						|
      // Itanium C++ ABI 5.1.2:
 | 
						|
      //
 | 
						|
      //   For the purposes of mangling, the name of an anonymous union is
 | 
						|
      //   considered to be the name of the first named data member found by a
 | 
						|
      //   pre-order, depth-first, declaration-order walk of the data members of
 | 
						|
      //   the anonymous union. If there is no such data member (i.e., if all of
 | 
						|
      //   the data members in the union are unnamed), then there is no way for
 | 
						|
      //   a program to refer to the anonymous union, and there is therefore no
 | 
						|
      //   need to mangle its name.
 | 
						|
      assert(RD->isAnonymousStructOrUnion()
 | 
						|
             && "Expected anonymous struct or union!");
 | 
						|
      const FieldDecl *FD = RD->findFirstNamedDataMember();
 | 
						|
 | 
						|
      // It's actually possible for various reasons for us to get here
 | 
						|
      // with an empty anonymous struct / union.  Fortunately, it
 | 
						|
      // doesn't really matter what name we generate.
 | 
						|
      if (!FD) break;
 | 
						|
      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
 | 
						|
 | 
						|
      mangleSourceName(FD->getIdentifier());
 | 
						|
      // Not emitting abi tags: internal name anyway.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Class extensions have no name as a category, and it's possible
 | 
						|
    // for them to be the semantic parent of certain declarations
 | 
						|
    // (primarily, tag decls defined within declarations).  Such
 | 
						|
    // declarations will always have internal linkage, so the name
 | 
						|
    // doesn't really matter, but we shouldn't crash on them.  For
 | 
						|
    // safety, just handle all ObjC containers here.
 | 
						|
    if (isa<ObjCContainerDecl>(ND))
 | 
						|
      break;
 | 
						|
 | 
						|
    // We must have an anonymous struct.
 | 
						|
    const TagDecl *TD = cast<TagDecl>(ND);
 | 
						|
    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
 | 
						|
      assert(TD->getDeclContext() == D->getDeclContext() &&
 | 
						|
             "Typedef should not be in another decl context!");
 | 
						|
      assert(D->getDeclName().getAsIdentifierInfo() &&
 | 
						|
             "Typedef was not named!");
 | 
						|
      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
 | 
						|
      assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
 | 
						|
      // Explicit abi tags are still possible; take from underlying type, not
 | 
						|
      // from typedef.
 | 
						|
      writeAbiTags(TD, nullptr);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // <unnamed-type-name> ::= <closure-type-name>
 | 
						|
    //
 | 
						|
    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
 | 
						|
    // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
 | 
						|
    //     # Parameter types or 'v' for 'void'.
 | 
						|
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
 | 
						|
      if (Record->isLambda() && (Record->getLambdaManglingNumber() ||
 | 
						|
                                 Context.isUniqueNameMangler())) {
 | 
						|
        assert(!AdditionalAbiTags &&
 | 
						|
               "Lambda type cannot have additional abi tags");
 | 
						|
        mangleLambda(Record);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (TD->isExternallyVisible()) {
 | 
						|
      unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
 | 
						|
      Out << "Ut";
 | 
						|
      if (UnnamedMangle > 1)
 | 
						|
        Out << UnnamedMangle - 2;
 | 
						|
      Out << '_';
 | 
						|
      writeAbiTags(TD, AdditionalAbiTags);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Get a unique id for the anonymous struct. If it is not a real output
 | 
						|
    // ID doesn't matter so use fake one.
 | 
						|
    unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
 | 
						|
 | 
						|
    // Mangle it as a source name in the form
 | 
						|
    // [n] $_<id>
 | 
						|
    // where n is the length of the string.
 | 
						|
    SmallString<8> Str;
 | 
						|
    Str += "$_";
 | 
						|
    Str += llvm::utostr(AnonStructId);
 | 
						|
 | 
						|
    Out << Str.size();
 | 
						|
    Out << Str;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case DeclarationName::ObjCZeroArgSelector:
 | 
						|
  case DeclarationName::ObjCOneArgSelector:
 | 
						|
  case DeclarationName::ObjCMultiArgSelector:
 | 
						|
    llvm_unreachable("Can't mangle Objective-C selector names here!");
 | 
						|
 | 
						|
  case DeclarationName::CXXConstructorName: {
 | 
						|
    const CXXRecordDecl *InheritedFrom = nullptr;
 | 
						|
    const TemplateArgumentList *InheritedTemplateArgs = nullptr;
 | 
						|
    if (auto Inherited =
 | 
						|
            cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
 | 
						|
      InheritedFrom = Inherited.getConstructor()->getParent();
 | 
						|
      InheritedTemplateArgs =
 | 
						|
          Inherited.getConstructor()->getTemplateSpecializationArgs();
 | 
						|
    }
 | 
						|
 | 
						|
    if (ND == Structor)
 | 
						|
      // If the named decl is the C++ constructor we're mangling, use the type
 | 
						|
      // we were given.
 | 
						|
      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
 | 
						|
    else
 | 
						|
      // Otherwise, use the complete constructor name. This is relevant if a
 | 
						|
      // class with a constructor is declared within a constructor.
 | 
						|
      mangleCXXCtorType(Ctor_Complete, InheritedFrom);
 | 
						|
 | 
						|
    // FIXME: The template arguments are part of the enclosing prefix or
 | 
						|
    // nested-name, but it's more convenient to mangle them here.
 | 
						|
    if (InheritedTemplateArgs)
 | 
						|
      mangleTemplateArgs(*InheritedTemplateArgs);
 | 
						|
 | 
						|
    writeAbiTags(ND, AdditionalAbiTags);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case DeclarationName::CXXDestructorName:
 | 
						|
    if (ND == Structor)
 | 
						|
      // If the named decl is the C++ destructor we're mangling, use the type we
 | 
						|
      // were given.
 | 
						|
      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
 | 
						|
    else
 | 
						|
      // Otherwise, use the complete destructor name. This is relevant if a
 | 
						|
      // class with a destructor is declared within a destructor.
 | 
						|
      mangleCXXDtorType(Dtor_Complete);
 | 
						|
    writeAbiTags(ND, AdditionalAbiTags);
 | 
						|
    break;
 | 
						|
 | 
						|
  case DeclarationName::CXXOperatorName:
 | 
						|
    if (ND && Arity == UnknownArity) {
 | 
						|
      Arity = cast<FunctionDecl>(ND)->getNumParams();
 | 
						|
 | 
						|
      // If we have a member function, we need to include the 'this' pointer.
 | 
						|
      if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
 | 
						|
        if (!MD->isStatic())
 | 
						|
          Arity++;
 | 
						|
    }
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case DeclarationName::CXXConversionFunctionName:
 | 
						|
  case DeclarationName::CXXLiteralOperatorName:
 | 
						|
    mangleOperatorName(Name, Arity);
 | 
						|
    writeAbiTags(ND, AdditionalAbiTags);
 | 
						|
    break;
 | 
						|
 | 
						|
  case DeclarationName::CXXDeductionGuideName:
 | 
						|
    llvm_unreachable("Can't mangle a deduction guide name!");
 | 
						|
 | 
						|
  case DeclarationName::CXXUsingDirective:
 | 
						|
    llvm_unreachable("Can't mangle a using directive name!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
 | 
						|
  // <source-name> ::= <positive length number> __regcall3__ <identifier>
 | 
						|
  // <number> ::= [n] <non-negative decimal integer>
 | 
						|
  // <identifier> ::= <unqualified source code identifier>
 | 
						|
  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
 | 
						|
      << II->getName();
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
 | 
						|
  // <source-name> ::= <positive length number> __device_stub__ <identifier>
 | 
						|
  // <number> ::= [n] <non-negative decimal integer>
 | 
						|
  // <identifier> ::= <unqualified source code identifier>
 | 
						|
  Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
 | 
						|
      << II->getName();
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
 | 
						|
  // <source-name> ::= <positive length number> <identifier>
 | 
						|
  // <number> ::= [n] <non-negative decimal integer>
 | 
						|
  // <identifier> ::= <unqualified source code identifier>
 | 
						|
  Out << II->getLength() << II->getName();
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleNestedName(GlobalDecl GD,
 | 
						|
                                      const DeclContext *DC,
 | 
						|
                                      const AbiTagList *AdditionalAbiTags,
 | 
						|
                                      bool NoFunction) {
 | 
						|
  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | 
						|
  // <nested-name>
 | 
						|
  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
 | 
						|
  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
 | 
						|
  //       <template-args> E
 | 
						|
 | 
						|
  Out << 'N';
 | 
						|
  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
 | 
						|
    Qualifiers MethodQuals = Method->getMethodQualifiers();
 | 
						|
    // We do not consider restrict a distinguishing attribute for overloading
 | 
						|
    // purposes so we must not mangle it.
 | 
						|
    MethodQuals.removeRestrict();
 | 
						|
    mangleQualifiers(MethodQuals);
 | 
						|
    mangleRefQualifier(Method->getRefQualifier());
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we have a template.
 | 
						|
  const TemplateArgumentList *TemplateArgs = nullptr;
 | 
						|
  if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
 | 
						|
    mangleTemplatePrefix(TD, NoFunction);
 | 
						|
    mangleTemplateArgs(*TemplateArgs);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    manglePrefix(DC, NoFunction);
 | 
						|
    mangleUnqualifiedName(GD, AdditionalAbiTags);
 | 
						|
  }
 | 
						|
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
 | 
						|
                                      const TemplateArgument *TemplateArgs,
 | 
						|
                                      unsigned NumTemplateArgs) {
 | 
						|
  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
 | 
						|
 | 
						|
  Out << 'N';
 | 
						|
 | 
						|
  mangleTemplatePrefix(TD);
 | 
						|
  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
 | 
						|
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
 | 
						|
  GlobalDecl GD;
 | 
						|
  // The Itanium spec says:
 | 
						|
  // For entities in constructors and destructors, the mangling of the
 | 
						|
  // complete object constructor or destructor is used as the base function
 | 
						|
  // name, i.e. the C1 or D1 version.
 | 
						|
  if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
 | 
						|
    GD = GlobalDecl(CD, Ctor_Complete);
 | 
						|
  else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
 | 
						|
    GD = GlobalDecl(DD, Dtor_Complete);
 | 
						|
  else
 | 
						|
    GD = GlobalDecl(cast<FunctionDecl>(DC));
 | 
						|
  return GD;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleLocalName(GlobalDecl GD,
 | 
						|
                                     const AbiTagList *AdditionalAbiTags) {
 | 
						|
  const Decl *D = GD.getDecl();
 | 
						|
  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
 | 
						|
  //              := Z <function encoding> E s [<discriminator>]
 | 
						|
  // <local-name> := Z <function encoding> E d [ <parameter number> ]
 | 
						|
  //                 _ <entity name>
 | 
						|
  // <discriminator> := _ <non-negative number>
 | 
						|
  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
 | 
						|
  const RecordDecl *RD = GetLocalClassDecl(D);
 | 
						|
  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
 | 
						|
 | 
						|
  Out << 'Z';
 | 
						|
 | 
						|
  {
 | 
						|
    AbiTagState LocalAbiTags(AbiTags);
 | 
						|
 | 
						|
    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
 | 
						|
      mangleObjCMethodName(MD);
 | 
						|
    else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
 | 
						|
      mangleBlockForPrefix(BD);
 | 
						|
    else
 | 
						|
      mangleFunctionEncoding(getParentOfLocalEntity(DC));
 | 
						|
 | 
						|
    // Implicit ABI tags (from namespace) are not available in the following
 | 
						|
    // entity; reset to actually emitted tags, which are available.
 | 
						|
    LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
 | 
						|
  }
 | 
						|
 | 
						|
  Out << 'E';
 | 
						|
 | 
						|
  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
 | 
						|
  // be a bug that is fixed in trunk.
 | 
						|
 | 
						|
  if (RD) {
 | 
						|
    // The parameter number is omitted for the last parameter, 0 for the
 | 
						|
    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
 | 
						|
    // <entity name> will of course contain a <closure-type-name>: Its
 | 
						|
    // numbering will be local to the particular argument in which it appears
 | 
						|
    // -- other default arguments do not affect its encoding.
 | 
						|
    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
 | 
						|
    if (CXXRD && CXXRD->isLambda()) {
 | 
						|
      if (const ParmVarDecl *Parm
 | 
						|
              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
 | 
						|
        if (const FunctionDecl *Func
 | 
						|
              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
 | 
						|
          Out << 'd';
 | 
						|
          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
 | 
						|
          if (Num > 1)
 | 
						|
            mangleNumber(Num - 2);
 | 
						|
          Out << '_';
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Mangle the name relative to the closest enclosing function.
 | 
						|
    // equality ok because RD derived from ND above
 | 
						|
    if (D == RD)  {
 | 
						|
      mangleUnqualifiedName(RD, AdditionalAbiTags);
 | 
						|
    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
 | 
						|
      manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
 | 
						|
      assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
 | 
						|
      mangleUnqualifiedBlock(BD);
 | 
						|
    } else {
 | 
						|
      const NamedDecl *ND = cast<NamedDecl>(D);
 | 
						|
      mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
 | 
						|
                       true /*NoFunction*/);
 | 
						|
    }
 | 
						|
  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
 | 
						|
    // Mangle a block in a default parameter; see above explanation for
 | 
						|
    // lambdas.
 | 
						|
    if (const ParmVarDecl *Parm
 | 
						|
            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
 | 
						|
      if (const FunctionDecl *Func
 | 
						|
            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
 | 
						|
        Out << 'd';
 | 
						|
        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
 | 
						|
        if (Num > 1)
 | 
						|
          mangleNumber(Num - 2);
 | 
						|
        Out << '_';
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
 | 
						|
    mangleUnqualifiedBlock(BD);
 | 
						|
  } else {
 | 
						|
    mangleUnqualifiedName(GD, AdditionalAbiTags);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
 | 
						|
    unsigned disc;
 | 
						|
    if (Context.getNextDiscriminator(ND, disc)) {
 | 
						|
      if (disc < 10)
 | 
						|
        Out << '_' << disc;
 | 
						|
      else
 | 
						|
        Out << "__" << disc << '_';
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
 | 
						|
  if (GetLocalClassDecl(Block)) {
 | 
						|
    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  const DeclContext *DC = getEffectiveDeclContext(Block);
 | 
						|
  if (isLocalContainerContext(DC)) {
 | 
						|
    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  manglePrefix(getEffectiveDeclContext(Block));
 | 
						|
  mangleUnqualifiedBlock(Block);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
 | 
						|
  if (Decl *Context = Block->getBlockManglingContextDecl()) {
 | 
						|
    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
 | 
						|
        Context->getDeclContext()->isRecord()) {
 | 
						|
      const auto *ND = cast<NamedDecl>(Context);
 | 
						|
      if (ND->getIdentifier()) {
 | 
						|
        mangleSourceNameWithAbiTags(ND);
 | 
						|
        Out << 'M';
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a block mangling number, use it.
 | 
						|
  unsigned Number = Block->getBlockManglingNumber();
 | 
						|
  // Otherwise, just make up a number. It doesn't matter what it is because
 | 
						|
  // the symbol in question isn't externally visible.
 | 
						|
  if (!Number)
 | 
						|
    Number = Context.getBlockId(Block, false);
 | 
						|
  else {
 | 
						|
    // Stored mangling numbers are 1-based.
 | 
						|
    --Number;
 | 
						|
  }
 | 
						|
  Out << "Ub";
 | 
						|
  if (Number > 0)
 | 
						|
    Out << Number - 1;
 | 
						|
  Out << '_';
 | 
						|
}
 | 
						|
 | 
						|
// <template-param-decl>
 | 
						|
//   ::= Ty                              # template type parameter
 | 
						|
//   ::= Tn <type>                       # template non-type parameter
 | 
						|
//   ::= Tt <template-param-decl>* E     # template template parameter
 | 
						|
//   ::= Tp <template-param-decl>        # template parameter pack
 | 
						|
void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
 | 
						|
  if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
 | 
						|
    if (Ty->isParameterPack())
 | 
						|
      Out << "Tp";
 | 
						|
    Out << "Ty";
 | 
						|
  } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
 | 
						|
    if (Tn->isExpandedParameterPack()) {
 | 
						|
      for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
 | 
						|
        Out << "Tn";
 | 
						|
        mangleType(Tn->getExpansionType(I));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      QualType T = Tn->getType();
 | 
						|
      if (Tn->isParameterPack()) {
 | 
						|
        Out << "Tp";
 | 
						|
        if (auto *PackExpansion = T->getAs<PackExpansionType>())
 | 
						|
          T = PackExpansion->getPattern();
 | 
						|
      }
 | 
						|
      Out << "Tn";
 | 
						|
      mangleType(T);
 | 
						|
    }
 | 
						|
  } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
 | 
						|
    if (Tt->isExpandedParameterPack()) {
 | 
						|
      for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
 | 
						|
           ++I) {
 | 
						|
        Out << "Tt";
 | 
						|
        for (auto *Param : *Tt->getExpansionTemplateParameters(I))
 | 
						|
          mangleTemplateParamDecl(Param);
 | 
						|
        Out << "E";
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (Tt->isParameterPack())
 | 
						|
        Out << "Tp";
 | 
						|
      Out << "Tt";
 | 
						|
      for (auto *Param : *Tt->getTemplateParameters())
 | 
						|
        mangleTemplateParamDecl(Param);
 | 
						|
      Out << "E";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Handles the __builtin_unique_stable_name feature for lambdas.  Instead of the
 | 
						|
// ordinal of the lambda in its mangling, this does line/column to uniquely and
 | 
						|
// reliably identify the lambda.  Additionally, macro expansions are expressed
 | 
						|
// as well to prevent macros causing duplicates.
 | 
						|
static void mangleUniqueNameLambda(CXXNameMangler &Mangler, SourceManager &SM,
 | 
						|
                                   raw_ostream &Out,
 | 
						|
                                   const CXXRecordDecl *Lambda) {
 | 
						|
  SourceLocation Loc = Lambda->getLocation();
 | 
						|
 | 
						|
  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
 | 
						|
  Mangler.mangleNumber(PLoc.getLine());
 | 
						|
  Out << "_";
 | 
						|
  Mangler.mangleNumber(PLoc.getColumn());
 | 
						|
 | 
						|
  while(Loc.isMacroID()) {
 | 
						|
    SourceLocation SLToPrint = Loc;
 | 
						|
    if (SM.isMacroArgExpansion(Loc))
 | 
						|
      SLToPrint = SM.getImmediateExpansionRange(Loc).getBegin();
 | 
						|
 | 
						|
    PLoc = SM.getPresumedLoc(SM.getSpellingLoc(SLToPrint));
 | 
						|
    Out << "m";
 | 
						|
    Mangler.mangleNumber(PLoc.getLine());
 | 
						|
    Out << "_";
 | 
						|
    Mangler.mangleNumber(PLoc.getColumn());
 | 
						|
 | 
						|
    Loc = SM.getImmediateMacroCallerLoc(Loc);
 | 
						|
    if (Loc.isFileID())
 | 
						|
      Loc = SM.getImmediateMacroCallerLoc(SLToPrint);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
 | 
						|
  // If the context of a closure type is an initializer for a class member
 | 
						|
  // (static or nonstatic), it is encoded in a qualified name with a final
 | 
						|
  // <prefix> of the form:
 | 
						|
  //
 | 
						|
  //   <data-member-prefix> := <member source-name> M
 | 
						|
  //
 | 
						|
  // Technically, the data-member-prefix is part of the <prefix>. However,
 | 
						|
  // since a closure type will always be mangled with a prefix, it's easier
 | 
						|
  // to emit that last part of the prefix here.
 | 
						|
  if (Decl *Context = Lambda->getLambdaContextDecl()) {
 | 
						|
    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
 | 
						|
        !isa<ParmVarDecl>(Context)) {
 | 
						|
      // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
 | 
						|
      // reasonable mangling here.
 | 
						|
      if (const IdentifierInfo *Name
 | 
						|
            = cast<NamedDecl>(Context)->getIdentifier()) {
 | 
						|
        mangleSourceName(Name);
 | 
						|
        const TemplateArgumentList *TemplateArgs = nullptr;
 | 
						|
        if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
 | 
						|
          mangleTemplateArgs(*TemplateArgs);
 | 
						|
        Out << 'M';
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "Ul";
 | 
						|
  mangleLambdaSig(Lambda);
 | 
						|
  Out << "E";
 | 
						|
 | 
						|
  if (Context.isUniqueNameMangler()) {
 | 
						|
    mangleUniqueNameLambda(
 | 
						|
        *this, Context.getASTContext().getSourceManager(), Out, Lambda);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The number is omitted for the first closure type with a given
 | 
						|
  // <lambda-sig> in a given context; it is n-2 for the nth closure type
 | 
						|
  // (in lexical order) with that same <lambda-sig> and context.
 | 
						|
  //
 | 
						|
  // The AST keeps track of the number for us.
 | 
						|
  unsigned Number = Lambda->getLambdaManglingNumber();
 | 
						|
  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
 | 
						|
  if (Number > 1)
 | 
						|
    mangleNumber(Number - 2);
 | 
						|
  Out << '_';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
 | 
						|
  for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
 | 
						|
    mangleTemplateParamDecl(D);
 | 
						|
  auto *Proto =
 | 
						|
      Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
 | 
						|
  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
 | 
						|
                         Lambda->getLambdaStaticInvoker());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
 | 
						|
  switch (qualifier->getKind()) {
 | 
						|
  case NestedNameSpecifier::Global:
 | 
						|
    // nothing
 | 
						|
    return;
 | 
						|
 | 
						|
  case NestedNameSpecifier::Super:
 | 
						|
    llvm_unreachable("Can't mangle __super specifier");
 | 
						|
 | 
						|
  case NestedNameSpecifier::Namespace:
 | 
						|
    mangleName(qualifier->getAsNamespace());
 | 
						|
    return;
 | 
						|
 | 
						|
  case NestedNameSpecifier::NamespaceAlias:
 | 
						|
    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
 | 
						|
    return;
 | 
						|
 | 
						|
  case NestedNameSpecifier::TypeSpec:
 | 
						|
  case NestedNameSpecifier::TypeSpecWithTemplate:
 | 
						|
    manglePrefix(QualType(qualifier->getAsType(), 0));
 | 
						|
    return;
 | 
						|
 | 
						|
  case NestedNameSpecifier::Identifier:
 | 
						|
    // Member expressions can have these without prefixes, but that
 | 
						|
    // should end up in mangleUnresolvedPrefix instead.
 | 
						|
    assert(qualifier->getPrefix());
 | 
						|
    manglePrefix(qualifier->getPrefix());
 | 
						|
 | 
						|
    mangleSourceName(qualifier->getAsIdentifier());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unexpected nested name specifier");
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
 | 
						|
  //  <prefix> ::= <prefix> <unqualified-name>
 | 
						|
  //           ::= <template-prefix> <template-args>
 | 
						|
  //           ::= <template-param>
 | 
						|
  //           ::= # empty
 | 
						|
  //           ::= <substitution>
 | 
						|
 | 
						|
  DC = IgnoreLinkageSpecDecls(DC);
 | 
						|
 | 
						|
  if (DC->isTranslationUnit())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (NoFunction && isLocalContainerContext(DC))
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(!isLocalContainerContext(DC));
 | 
						|
 | 
						|
  const NamedDecl *ND = cast<NamedDecl>(DC);
 | 
						|
  if (mangleSubstitution(ND))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if we have a template.
 | 
						|
  const TemplateArgumentList *TemplateArgs = nullptr;
 | 
						|
  if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
 | 
						|
    mangleTemplatePrefix(TD);
 | 
						|
    mangleTemplateArgs(*TemplateArgs);
 | 
						|
  } else {
 | 
						|
    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
 | 
						|
    mangleUnqualifiedName(ND, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  addSubstitution(ND);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
 | 
						|
  // <template-prefix> ::= <prefix> <template unqualified-name>
 | 
						|
  //                   ::= <template-param>
 | 
						|
  //                   ::= <substitution>
 | 
						|
  if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | 
						|
    return mangleTemplatePrefix(TD);
 | 
						|
 | 
						|
  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
 | 
						|
    manglePrefix(Qualified->getQualifier());
 | 
						|
 | 
						|
  if (OverloadedTemplateStorage *Overloaded
 | 
						|
                                      = Template.getAsOverloadedTemplate()) {
 | 
						|
    mangleUnqualifiedName(GlobalDecl(), (*Overloaded->begin())->getDeclName(),
 | 
						|
                          UnknownArity, nullptr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
 | 
						|
  assert(Dependent && "Unknown template name kind?");
 | 
						|
  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
 | 
						|
    manglePrefix(Qualifier);
 | 
						|
  mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
 | 
						|
                                          bool NoFunction) {
 | 
						|
  const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
 | 
						|
  // <template-prefix> ::= <prefix> <template unqualified-name>
 | 
						|
  //                   ::= <template-param>
 | 
						|
  //                   ::= <substitution>
 | 
						|
  // <template-template-param> ::= <template-param>
 | 
						|
  //                               <substitution>
 | 
						|
 | 
						|
  if (mangleSubstitution(ND))
 | 
						|
    return;
 | 
						|
 | 
						|
  // <template-template-param> ::= <template-param>
 | 
						|
  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
 | 
						|
    mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
 | 
						|
  } else {
 | 
						|
    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
 | 
						|
    if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
 | 
						|
      mangleUnqualifiedName(GD, nullptr);
 | 
						|
    else
 | 
						|
      mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  addSubstitution(ND);
 | 
						|
}
 | 
						|
 | 
						|
/// Mangles a template name under the production <type>.  Required for
 | 
						|
/// template template arguments.
 | 
						|
///   <type> ::= <class-enum-type>
 | 
						|
///          ::= <template-param>
 | 
						|
///          ::= <substitution>
 | 
						|
void CXXNameMangler::mangleType(TemplateName TN) {
 | 
						|
  if (mangleSubstitution(TN))
 | 
						|
    return;
 | 
						|
 | 
						|
  TemplateDecl *TD = nullptr;
 | 
						|
 | 
						|
  switch (TN.getKind()) {
 | 
						|
  case TemplateName::QualifiedTemplate:
 | 
						|
    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
 | 
						|
    goto HaveDecl;
 | 
						|
 | 
						|
  case TemplateName::Template:
 | 
						|
    TD = TN.getAsTemplateDecl();
 | 
						|
    goto HaveDecl;
 | 
						|
 | 
						|
  HaveDecl:
 | 
						|
    if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
 | 
						|
      mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
 | 
						|
    else
 | 
						|
      mangleName(TD);
 | 
						|
    break;
 | 
						|
 | 
						|
  case TemplateName::OverloadedTemplate:
 | 
						|
  case TemplateName::AssumedTemplate:
 | 
						|
    llvm_unreachable("can't mangle an overloaded template name as a <type>");
 | 
						|
 | 
						|
  case TemplateName::DependentTemplate: {
 | 
						|
    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
 | 
						|
    assert(Dependent->isIdentifier());
 | 
						|
 | 
						|
    // <class-enum-type> ::= <name>
 | 
						|
    // <name> ::= <nested-name>
 | 
						|
    mangleUnresolvedPrefix(Dependent->getQualifier());
 | 
						|
    mangleSourceName(Dependent->getIdentifier());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case TemplateName::SubstTemplateTemplateParm: {
 | 
						|
    // Substituted template parameters are mangled as the substituted
 | 
						|
    // template.  This will check for the substitution twice, which is
 | 
						|
    // fine, but we have to return early so that we don't try to *add*
 | 
						|
    // the substitution twice.
 | 
						|
    SubstTemplateTemplateParmStorage *subst
 | 
						|
      = TN.getAsSubstTemplateTemplateParm();
 | 
						|
    mangleType(subst->getReplacement());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case TemplateName::SubstTemplateTemplateParmPack: {
 | 
						|
    // FIXME: not clear how to mangle this!
 | 
						|
    // template <template <class> class T...> class A {
 | 
						|
    //   template <template <class> class U...> void foo(B<T,U> x...);
 | 
						|
    // };
 | 
						|
    Out << "_SUBSTPACK_";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  addSubstitution(TN);
 | 
						|
}
 | 
						|
 | 
						|
bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
 | 
						|
                                                    StringRef Prefix) {
 | 
						|
  // Only certain other types are valid as prefixes;  enumerate them.
 | 
						|
  switch (Ty->getTypeClass()) {
 | 
						|
  case Type::Builtin:
 | 
						|
  case Type::Complex:
 | 
						|
  case Type::Adjusted:
 | 
						|
  case Type::Decayed:
 | 
						|
  case Type::Pointer:
 | 
						|
  case Type::BlockPointer:
 | 
						|
  case Type::LValueReference:
 | 
						|
  case Type::RValueReference:
 | 
						|
  case Type::MemberPointer:
 | 
						|
  case Type::ConstantArray:
 | 
						|
  case Type::IncompleteArray:
 | 
						|
  case Type::VariableArray:
 | 
						|
  case Type::DependentSizedArray:
 | 
						|
  case Type::DependentAddressSpace:
 | 
						|
  case Type::DependentVector:
 | 
						|
  case Type::DependentSizedExtVector:
 | 
						|
  case Type::Vector:
 | 
						|
  case Type::ExtVector:
 | 
						|
  case Type::ConstantMatrix:
 | 
						|
  case Type::DependentSizedMatrix:
 | 
						|
  case Type::FunctionProto:
 | 
						|
  case Type::FunctionNoProto:
 | 
						|
  case Type::Paren:
 | 
						|
  case Type::Attributed:
 | 
						|
  case Type::Auto:
 | 
						|
  case Type::DeducedTemplateSpecialization:
 | 
						|
  case Type::PackExpansion:
 | 
						|
  case Type::ObjCObject:
 | 
						|
  case Type::ObjCInterface:
 | 
						|
  case Type::ObjCObjectPointer:
 | 
						|
  case Type::ObjCTypeParam:
 | 
						|
  case Type::Atomic:
 | 
						|
  case Type::Pipe:
 | 
						|
  case Type::MacroQualified:
 | 
						|
  case Type::ExtInt:
 | 
						|
  case Type::DependentExtInt:
 | 
						|
    llvm_unreachable("type is illegal as a nested name specifier");
 | 
						|
 | 
						|
  case Type::SubstTemplateTypeParmPack:
 | 
						|
    // FIXME: not clear how to mangle this!
 | 
						|
    // template <class T...> class A {
 | 
						|
    //   template <class U...> void foo(decltype(T::foo(U())) x...);
 | 
						|
    // };
 | 
						|
    Out << "_SUBSTPACK_";
 | 
						|
    break;
 | 
						|
 | 
						|
  // <unresolved-type> ::= <template-param>
 | 
						|
  //                   ::= <decltype>
 | 
						|
  //                   ::= <template-template-param> <template-args>
 | 
						|
  // (this last is not official yet)
 | 
						|
  case Type::TypeOfExpr:
 | 
						|
  case Type::TypeOf:
 | 
						|
  case Type::Decltype:
 | 
						|
  case Type::TemplateTypeParm:
 | 
						|
  case Type::UnaryTransform:
 | 
						|
  case Type::SubstTemplateTypeParm:
 | 
						|
  unresolvedType:
 | 
						|
    // Some callers want a prefix before the mangled type.
 | 
						|
    Out << Prefix;
 | 
						|
 | 
						|
    // This seems to do everything we want.  It's not really
 | 
						|
    // sanctioned for a substituted template parameter, though.
 | 
						|
    mangleType(Ty);
 | 
						|
 | 
						|
    // We never want to print 'E' directly after an unresolved-type,
 | 
						|
    // so we return directly.
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Type::Typedef:
 | 
						|
    mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::UnresolvedUsing:
 | 
						|
    mangleSourceNameWithAbiTags(
 | 
						|
        cast<UnresolvedUsingType>(Ty)->getDecl());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Enum:
 | 
						|
  case Type::Record:
 | 
						|
    mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::TemplateSpecialization: {
 | 
						|
    const TemplateSpecializationType *TST =
 | 
						|
        cast<TemplateSpecializationType>(Ty);
 | 
						|
    TemplateName TN = TST->getTemplateName();
 | 
						|
    switch (TN.getKind()) {
 | 
						|
    case TemplateName::Template:
 | 
						|
    case TemplateName::QualifiedTemplate: {
 | 
						|
      TemplateDecl *TD = TN.getAsTemplateDecl();
 | 
						|
 | 
						|
      // If the base is a template template parameter, this is an
 | 
						|
      // unresolved type.
 | 
						|
      assert(TD && "no template for template specialization type");
 | 
						|
      if (isa<TemplateTemplateParmDecl>(TD))
 | 
						|
        goto unresolvedType;
 | 
						|
 | 
						|
      mangleSourceNameWithAbiTags(TD);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case TemplateName::OverloadedTemplate:
 | 
						|
    case TemplateName::AssumedTemplate:
 | 
						|
    case TemplateName::DependentTemplate:
 | 
						|
      llvm_unreachable("invalid base for a template specialization type");
 | 
						|
 | 
						|
    case TemplateName::SubstTemplateTemplateParm: {
 | 
						|
      SubstTemplateTemplateParmStorage *subst =
 | 
						|
          TN.getAsSubstTemplateTemplateParm();
 | 
						|
      mangleExistingSubstitution(subst->getReplacement());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case TemplateName::SubstTemplateTemplateParmPack: {
 | 
						|
      // FIXME: not clear how to mangle this!
 | 
						|
      // template <template <class U> class T...> class A {
 | 
						|
      //   template <class U...> void foo(decltype(T<U>::foo) x...);
 | 
						|
      // };
 | 
						|
      Out << "_SUBSTPACK_";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::InjectedClassName:
 | 
						|
    mangleSourceNameWithAbiTags(
 | 
						|
        cast<InjectedClassNameType>(Ty)->getDecl());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::DependentName:
 | 
						|
    mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::DependentTemplateSpecialization: {
 | 
						|
    const DependentTemplateSpecializationType *DTST =
 | 
						|
        cast<DependentTemplateSpecializationType>(Ty);
 | 
						|
    mangleSourceName(DTST->getIdentifier());
 | 
						|
    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::Elaborated:
 | 
						|
    return mangleUnresolvedTypeOrSimpleId(
 | 
						|
        cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
 | 
						|
  switch (Name.getNameKind()) {
 | 
						|
  case DeclarationName::CXXConstructorName:
 | 
						|
  case DeclarationName::CXXDestructorName:
 | 
						|
  case DeclarationName::CXXDeductionGuideName:
 | 
						|
  case DeclarationName::CXXUsingDirective:
 | 
						|
  case DeclarationName::Identifier:
 | 
						|
  case DeclarationName::ObjCMultiArgSelector:
 | 
						|
  case DeclarationName::ObjCOneArgSelector:
 | 
						|
  case DeclarationName::ObjCZeroArgSelector:
 | 
						|
    llvm_unreachable("Not an operator name");
 | 
						|
 | 
						|
  case DeclarationName::CXXConversionFunctionName:
 | 
						|
    // <operator-name> ::= cv <type>    # (cast)
 | 
						|
    Out << "cv";
 | 
						|
    mangleType(Name.getCXXNameType());
 | 
						|
    break;
 | 
						|
 | 
						|
  case DeclarationName::CXXLiteralOperatorName:
 | 
						|
    Out << "li";
 | 
						|
    mangleSourceName(Name.getCXXLiteralIdentifier());
 | 
						|
    return;
 | 
						|
 | 
						|
  case DeclarationName::CXXOperatorName:
 | 
						|
    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
 | 
						|
  switch (OO) {
 | 
						|
  // <operator-name> ::= nw     # new
 | 
						|
  case OO_New: Out << "nw"; break;
 | 
						|
  //              ::= na        # new[]
 | 
						|
  case OO_Array_New: Out << "na"; break;
 | 
						|
  //              ::= dl        # delete
 | 
						|
  case OO_Delete: Out << "dl"; break;
 | 
						|
  //              ::= da        # delete[]
 | 
						|
  case OO_Array_Delete: Out << "da"; break;
 | 
						|
  //              ::= ps        # + (unary)
 | 
						|
  //              ::= pl        # + (binary or unknown)
 | 
						|
  case OO_Plus:
 | 
						|
    Out << (Arity == 1? "ps" : "pl"); break;
 | 
						|
  //              ::= ng        # - (unary)
 | 
						|
  //              ::= mi        # - (binary or unknown)
 | 
						|
  case OO_Minus:
 | 
						|
    Out << (Arity == 1? "ng" : "mi"); break;
 | 
						|
  //              ::= ad        # & (unary)
 | 
						|
  //              ::= an        # & (binary or unknown)
 | 
						|
  case OO_Amp:
 | 
						|
    Out << (Arity == 1? "ad" : "an"); break;
 | 
						|
  //              ::= de        # * (unary)
 | 
						|
  //              ::= ml        # * (binary or unknown)
 | 
						|
  case OO_Star:
 | 
						|
    // Use binary when unknown.
 | 
						|
    Out << (Arity == 1? "de" : "ml"); break;
 | 
						|
  //              ::= co        # ~
 | 
						|
  case OO_Tilde: Out << "co"; break;
 | 
						|
  //              ::= dv        # /
 | 
						|
  case OO_Slash: Out << "dv"; break;
 | 
						|
  //              ::= rm        # %
 | 
						|
  case OO_Percent: Out << "rm"; break;
 | 
						|
  //              ::= or        # |
 | 
						|
  case OO_Pipe: Out << "or"; break;
 | 
						|
  //              ::= eo        # ^
 | 
						|
  case OO_Caret: Out << "eo"; break;
 | 
						|
  //              ::= aS        # =
 | 
						|
  case OO_Equal: Out << "aS"; break;
 | 
						|
  //              ::= pL        # +=
 | 
						|
  case OO_PlusEqual: Out << "pL"; break;
 | 
						|
  //              ::= mI        # -=
 | 
						|
  case OO_MinusEqual: Out << "mI"; break;
 | 
						|
  //              ::= mL        # *=
 | 
						|
  case OO_StarEqual: Out << "mL"; break;
 | 
						|
  //              ::= dV        # /=
 | 
						|
  case OO_SlashEqual: Out << "dV"; break;
 | 
						|
  //              ::= rM        # %=
 | 
						|
  case OO_PercentEqual: Out << "rM"; break;
 | 
						|
  //              ::= aN        # &=
 | 
						|
  case OO_AmpEqual: Out << "aN"; break;
 | 
						|
  //              ::= oR        # |=
 | 
						|
  case OO_PipeEqual: Out << "oR"; break;
 | 
						|
  //              ::= eO        # ^=
 | 
						|
  case OO_CaretEqual: Out << "eO"; break;
 | 
						|
  //              ::= ls        # <<
 | 
						|
  case OO_LessLess: Out << "ls"; break;
 | 
						|
  //              ::= rs        # >>
 | 
						|
  case OO_GreaterGreater: Out << "rs"; break;
 | 
						|
  //              ::= lS        # <<=
 | 
						|
  case OO_LessLessEqual: Out << "lS"; break;
 | 
						|
  //              ::= rS        # >>=
 | 
						|
  case OO_GreaterGreaterEqual: Out << "rS"; break;
 | 
						|
  //              ::= eq        # ==
 | 
						|
  case OO_EqualEqual: Out << "eq"; break;
 | 
						|
  //              ::= ne        # !=
 | 
						|
  case OO_ExclaimEqual: Out << "ne"; break;
 | 
						|
  //              ::= lt        # <
 | 
						|
  case OO_Less: Out << "lt"; break;
 | 
						|
  //              ::= gt        # >
 | 
						|
  case OO_Greater: Out << "gt"; break;
 | 
						|
  //              ::= le        # <=
 | 
						|
  case OO_LessEqual: Out << "le"; break;
 | 
						|
  //              ::= ge        # >=
 | 
						|
  case OO_GreaterEqual: Out << "ge"; break;
 | 
						|
  //              ::= nt        # !
 | 
						|
  case OO_Exclaim: Out << "nt"; break;
 | 
						|
  //              ::= aa        # &&
 | 
						|
  case OO_AmpAmp: Out << "aa"; break;
 | 
						|
  //              ::= oo        # ||
 | 
						|
  case OO_PipePipe: Out << "oo"; break;
 | 
						|
  //              ::= pp        # ++
 | 
						|
  case OO_PlusPlus: Out << "pp"; break;
 | 
						|
  //              ::= mm        # --
 | 
						|
  case OO_MinusMinus: Out << "mm"; break;
 | 
						|
  //              ::= cm        # ,
 | 
						|
  case OO_Comma: Out << "cm"; break;
 | 
						|
  //              ::= pm        # ->*
 | 
						|
  case OO_ArrowStar: Out << "pm"; break;
 | 
						|
  //              ::= pt        # ->
 | 
						|
  case OO_Arrow: Out << "pt"; break;
 | 
						|
  //              ::= cl        # ()
 | 
						|
  case OO_Call: Out << "cl"; break;
 | 
						|
  //              ::= ix        # []
 | 
						|
  case OO_Subscript: Out << "ix"; break;
 | 
						|
 | 
						|
  //              ::= qu        # ?
 | 
						|
  // The conditional operator can't be overloaded, but we still handle it when
 | 
						|
  // mangling expressions.
 | 
						|
  case OO_Conditional: Out << "qu"; break;
 | 
						|
  // Proposal on cxx-abi-dev, 2015-10-21.
 | 
						|
  //              ::= aw        # co_await
 | 
						|
  case OO_Coawait: Out << "aw"; break;
 | 
						|
  // Proposed in cxx-abi github issue 43.
 | 
						|
  //              ::= ss        # <=>
 | 
						|
  case OO_Spaceship: Out << "ss"; break;
 | 
						|
 | 
						|
  case OO_None:
 | 
						|
  case NUM_OVERLOADED_OPERATORS:
 | 
						|
    llvm_unreachable("Not an overloaded operator");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
 | 
						|
  // Vendor qualifiers come first and if they are order-insensitive they must
 | 
						|
  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
 | 
						|
 | 
						|
  // <type> ::= U <addrspace-expr>
 | 
						|
  if (DAST) {
 | 
						|
    Out << "U2ASI";
 | 
						|
    mangleExpression(DAST->getAddrSpaceExpr());
 | 
						|
    Out << "E";
 | 
						|
  }
 | 
						|
 | 
						|
  // Address space qualifiers start with an ordinary letter.
 | 
						|
  if (Quals.hasAddressSpace()) {
 | 
						|
    // Address space extension:
 | 
						|
    //
 | 
						|
    //   <type> ::= U <target-addrspace>
 | 
						|
    //   <type> ::= U <OpenCL-addrspace>
 | 
						|
    //   <type> ::= U <CUDA-addrspace>
 | 
						|
 | 
						|
    SmallString<64> ASString;
 | 
						|
    LangAS AS = Quals.getAddressSpace();
 | 
						|
 | 
						|
    if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
 | 
						|
      //  <target-addrspace> ::= "AS" <address-space-number>
 | 
						|
      unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
 | 
						|
      if (TargetAS != 0)
 | 
						|
        ASString = "AS" + llvm::utostr(TargetAS);
 | 
						|
    } else {
 | 
						|
      switch (AS) {
 | 
						|
      default: llvm_unreachable("Not a language specific address space");
 | 
						|
      //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
 | 
						|
      //                                "private"| "generic" ]
 | 
						|
      case LangAS::opencl_global:   ASString = "CLglobal";   break;
 | 
						|
      case LangAS::opencl_local:    ASString = "CLlocal";    break;
 | 
						|
      case LangAS::opencl_constant: ASString = "CLconstant"; break;
 | 
						|
      case LangAS::opencl_private:  ASString = "CLprivate";  break;
 | 
						|
      case LangAS::opencl_generic:  ASString = "CLgeneric";  break;
 | 
						|
      //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
 | 
						|
      case LangAS::cuda_device:     ASString = "CUdevice";   break;
 | 
						|
      case LangAS::cuda_constant:   ASString = "CUconstant"; break;
 | 
						|
      case LangAS::cuda_shared:     ASString = "CUshared";   break;
 | 
						|
      //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
 | 
						|
      case LangAS::ptr32_sptr:
 | 
						|
        ASString = "ptr32_sptr";
 | 
						|
        break;
 | 
						|
      case LangAS::ptr32_uptr:
 | 
						|
        ASString = "ptr32_uptr";
 | 
						|
        break;
 | 
						|
      case LangAS::ptr64:
 | 
						|
        ASString = "ptr64";
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!ASString.empty())
 | 
						|
      mangleVendorQualifier(ASString);
 | 
						|
  }
 | 
						|
 | 
						|
  // The ARC ownership qualifiers start with underscores.
 | 
						|
  // Objective-C ARC Extension:
 | 
						|
  //
 | 
						|
  //   <type> ::= U "__strong"
 | 
						|
  //   <type> ::= U "__weak"
 | 
						|
  //   <type> ::= U "__autoreleasing"
 | 
						|
  //
 | 
						|
  // Note: we emit __weak first to preserve the order as
 | 
						|
  // required by the Itanium ABI.
 | 
						|
  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
 | 
						|
    mangleVendorQualifier("__weak");
 | 
						|
 | 
						|
  // __unaligned (from -fms-extensions)
 | 
						|
  if (Quals.hasUnaligned())
 | 
						|
    mangleVendorQualifier("__unaligned");
 | 
						|
 | 
						|
  // Remaining ARC ownership qualifiers.
 | 
						|
  switch (Quals.getObjCLifetime()) {
 | 
						|
  case Qualifiers::OCL_None:
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_Weak:
 | 
						|
    // Do nothing as we already handled this case above.
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_Strong:
 | 
						|
    mangleVendorQualifier("__strong");
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_Autoreleasing:
 | 
						|
    mangleVendorQualifier("__autoreleasing");
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_ExplicitNone:
 | 
						|
    // The __unsafe_unretained qualifier is *not* mangled, so that
 | 
						|
    // __unsafe_unretained types in ARC produce the same manglings as the
 | 
						|
    // equivalent (but, naturally, unqualified) types in non-ARC, providing
 | 
						|
    // better ABI compatibility.
 | 
						|
    //
 | 
						|
    // It's safe to do this because unqualified 'id' won't show up
 | 
						|
    // in any type signatures that need to be mangled.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
 | 
						|
  if (Quals.hasRestrict())
 | 
						|
    Out << 'r';
 | 
						|
  if (Quals.hasVolatile())
 | 
						|
    Out << 'V';
 | 
						|
  if (Quals.hasConst())
 | 
						|
    Out << 'K';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleVendorQualifier(StringRef name) {
 | 
						|
  Out << 'U' << name.size() << name;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
 | 
						|
  // <ref-qualifier> ::= R                # lvalue reference
 | 
						|
  //                 ::= O                # rvalue-reference
 | 
						|
  switch (RefQualifier) {
 | 
						|
  case RQ_None:
 | 
						|
    break;
 | 
						|
 | 
						|
  case RQ_LValue:
 | 
						|
    Out << 'R';
 | 
						|
    break;
 | 
						|
 | 
						|
  case RQ_RValue:
 | 
						|
    Out << 'O';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
 | 
						|
  Context.mangleObjCMethodName(MD, Out);
 | 
						|
}
 | 
						|
 | 
						|
static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
 | 
						|
                                ASTContext &Ctx) {
 | 
						|
  if (Quals)
 | 
						|
    return true;
 | 
						|
  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
 | 
						|
    return true;
 | 
						|
  if (Ty->isOpenCLSpecificType())
 | 
						|
    return true;
 | 
						|
  if (Ty->isBuiltinType())
 | 
						|
    return false;
 | 
						|
  // Through to Clang 6.0, we accidentally treated undeduced auto types as
 | 
						|
  // substitution candidates.
 | 
						|
  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
 | 
						|
      isa<AutoType>(Ty))
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(QualType T) {
 | 
						|
  // If our type is instantiation-dependent but not dependent, we mangle
 | 
						|
  // it as it was written in the source, removing any top-level sugar.
 | 
						|
  // Otherwise, use the canonical type.
 | 
						|
  //
 | 
						|
  // FIXME: This is an approximation of the instantiation-dependent name
 | 
						|
  // mangling rules, since we should really be using the type as written and
 | 
						|
  // augmented via semantic analysis (i.e., with implicit conversions and
 | 
						|
  // default template arguments) for any instantiation-dependent type.
 | 
						|
  // Unfortunately, that requires several changes to our AST:
 | 
						|
  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
 | 
						|
  //     uniqued, so that we can handle substitutions properly
 | 
						|
  //   - Default template arguments will need to be represented in the
 | 
						|
  //     TemplateSpecializationType, since they need to be mangled even though
 | 
						|
  //     they aren't written.
 | 
						|
  //   - Conversions on non-type template arguments need to be expressed, since
 | 
						|
  //     they can affect the mangling of sizeof/alignof.
 | 
						|
  //
 | 
						|
  // FIXME: This is wrong when mapping to the canonical type for a dependent
 | 
						|
  // type discards instantiation-dependent portions of the type, such as for:
 | 
						|
  //
 | 
						|
  //   template<typename T, int N> void f(T (&)[sizeof(N)]);
 | 
						|
  //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
 | 
						|
  //
 | 
						|
  // It's also wrong in the opposite direction when instantiation-dependent,
 | 
						|
  // canonically-equivalent types differ in some irrelevant portion of inner
 | 
						|
  // type sugar. In such cases, we fail to form correct substitutions, eg:
 | 
						|
  //
 | 
						|
  //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
 | 
						|
  //
 | 
						|
  // We should instead canonicalize the non-instantiation-dependent parts,
 | 
						|
  // regardless of whether the type as a whole is dependent or instantiation
 | 
						|
  // dependent.
 | 
						|
  if (!T->isInstantiationDependentType() || T->isDependentType())
 | 
						|
    T = T.getCanonicalType();
 | 
						|
  else {
 | 
						|
    // Desugar any types that are purely sugar.
 | 
						|
    do {
 | 
						|
      // Don't desugar through template specialization types that aren't
 | 
						|
      // type aliases. We need to mangle the template arguments as written.
 | 
						|
      if (const TemplateSpecializationType *TST
 | 
						|
                                      = dyn_cast<TemplateSpecializationType>(T))
 | 
						|
        if (!TST->isTypeAlias())
 | 
						|
          break;
 | 
						|
 | 
						|
      QualType Desugared
 | 
						|
        = T.getSingleStepDesugaredType(Context.getASTContext());
 | 
						|
      if (Desugared == T)
 | 
						|
        break;
 | 
						|
 | 
						|
      T = Desugared;
 | 
						|
    } while (true);
 | 
						|
  }
 | 
						|
  SplitQualType split = T.split();
 | 
						|
  Qualifiers quals = split.Quals;
 | 
						|
  const Type *ty = split.Ty;
 | 
						|
 | 
						|
  bool isSubstitutable =
 | 
						|
    isTypeSubstitutable(quals, ty, Context.getASTContext());
 | 
						|
  if (isSubstitutable && mangleSubstitution(T))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we're mangling a qualified array type, push the qualifiers to
 | 
						|
  // the element type.
 | 
						|
  if (quals && isa<ArrayType>(T)) {
 | 
						|
    ty = Context.getASTContext().getAsArrayType(T);
 | 
						|
    quals = Qualifiers();
 | 
						|
 | 
						|
    // Note that we don't update T: we want to add the
 | 
						|
    // substitution at the original type.
 | 
						|
  }
 | 
						|
 | 
						|
  if (quals || ty->isDependentAddressSpaceType()) {
 | 
						|
    if (const DependentAddressSpaceType *DAST =
 | 
						|
        dyn_cast<DependentAddressSpaceType>(ty)) {
 | 
						|
      SplitQualType splitDAST = DAST->getPointeeType().split();
 | 
						|
      mangleQualifiers(splitDAST.Quals, DAST);
 | 
						|
      mangleType(QualType(splitDAST.Ty, 0));
 | 
						|
    } else {
 | 
						|
      mangleQualifiers(quals);
 | 
						|
 | 
						|
      // Recurse:  even if the qualified type isn't yet substitutable,
 | 
						|
      // the unqualified type might be.
 | 
						|
      mangleType(QualType(ty, 0));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    switch (ty->getTypeClass()) {
 | 
						|
#define ABSTRACT_TYPE(CLASS, PARENT)
 | 
						|
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
 | 
						|
    case Type::CLASS: \
 | 
						|
      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
 | 
						|
      return;
 | 
						|
#define TYPE(CLASS, PARENT) \
 | 
						|
    case Type::CLASS: \
 | 
						|
      mangleType(static_cast<const CLASS##Type*>(ty)); \
 | 
						|
      break;
 | 
						|
#include "clang/AST/TypeNodes.inc"
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the substitution.
 | 
						|
  if (isSubstitutable)
 | 
						|
    addSubstitution(T);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
 | 
						|
  if (!mangleStandardSubstitution(ND))
 | 
						|
    mangleName(ND);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const BuiltinType *T) {
 | 
						|
  //  <type>         ::= <builtin-type>
 | 
						|
  //  <builtin-type> ::= v  # void
 | 
						|
  //                 ::= w  # wchar_t
 | 
						|
  //                 ::= b  # bool
 | 
						|
  //                 ::= c  # char
 | 
						|
  //                 ::= a  # signed char
 | 
						|
  //                 ::= h  # unsigned char
 | 
						|
  //                 ::= s  # short
 | 
						|
  //                 ::= t  # unsigned short
 | 
						|
  //                 ::= i  # int
 | 
						|
  //                 ::= j  # unsigned int
 | 
						|
  //                 ::= l  # long
 | 
						|
  //                 ::= m  # unsigned long
 | 
						|
  //                 ::= x  # long long, __int64
 | 
						|
  //                 ::= y  # unsigned long long, __int64
 | 
						|
  //                 ::= n  # __int128
 | 
						|
  //                 ::= o  # unsigned __int128
 | 
						|
  //                 ::= f  # float
 | 
						|
  //                 ::= d  # double
 | 
						|
  //                 ::= e  # long double, __float80
 | 
						|
  //                 ::= g  # __float128
 | 
						|
  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
 | 
						|
  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
 | 
						|
  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
 | 
						|
  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
 | 
						|
  //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
 | 
						|
  //                 ::= Di # char32_t
 | 
						|
  //                 ::= Ds # char16_t
 | 
						|
  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
 | 
						|
  //                 ::= u <source-name>    # vendor extended type
 | 
						|
  std::string type_name;
 | 
						|
  switch (T->getKind()) {
 | 
						|
  case BuiltinType::Void:
 | 
						|
    Out << 'v';
 | 
						|
    break;
 | 
						|
  case BuiltinType::Bool:
 | 
						|
    Out << 'b';
 | 
						|
    break;
 | 
						|
  case BuiltinType::Char_U:
 | 
						|
  case BuiltinType::Char_S:
 | 
						|
    Out << 'c';
 | 
						|
    break;
 | 
						|
  case BuiltinType::UChar:
 | 
						|
    Out << 'h';
 | 
						|
    break;
 | 
						|
  case BuiltinType::UShort:
 | 
						|
    Out << 't';
 | 
						|
    break;
 | 
						|
  case BuiltinType::UInt:
 | 
						|
    Out << 'j';
 | 
						|
    break;
 | 
						|
  case BuiltinType::ULong:
 | 
						|
    Out << 'm';
 | 
						|
    break;
 | 
						|
  case BuiltinType::ULongLong:
 | 
						|
    Out << 'y';
 | 
						|
    break;
 | 
						|
  case BuiltinType::UInt128:
 | 
						|
    Out << 'o';
 | 
						|
    break;
 | 
						|
  case BuiltinType::SChar:
 | 
						|
    Out << 'a';
 | 
						|
    break;
 | 
						|
  case BuiltinType::WChar_S:
 | 
						|
  case BuiltinType::WChar_U:
 | 
						|
    Out << 'w';
 | 
						|
    break;
 | 
						|
  case BuiltinType::Char8:
 | 
						|
    Out << "Du";
 | 
						|
    break;
 | 
						|
  case BuiltinType::Char16:
 | 
						|
    Out << "Ds";
 | 
						|
    break;
 | 
						|
  case BuiltinType::Char32:
 | 
						|
    Out << "Di";
 | 
						|
    break;
 | 
						|
  case BuiltinType::Short:
 | 
						|
    Out << 's';
 | 
						|
    break;
 | 
						|
  case BuiltinType::Int:
 | 
						|
    Out << 'i';
 | 
						|
    break;
 | 
						|
  case BuiltinType::Long:
 | 
						|
    Out << 'l';
 | 
						|
    break;
 | 
						|
  case BuiltinType::LongLong:
 | 
						|
    Out << 'x';
 | 
						|
    break;
 | 
						|
  case BuiltinType::Int128:
 | 
						|
    Out << 'n';
 | 
						|
    break;
 | 
						|
  case BuiltinType::Float16:
 | 
						|
    Out << "DF16_";
 | 
						|
    break;
 | 
						|
  case BuiltinType::ShortAccum:
 | 
						|
  case BuiltinType::Accum:
 | 
						|
  case BuiltinType::LongAccum:
 | 
						|
  case BuiltinType::UShortAccum:
 | 
						|
  case BuiltinType::UAccum:
 | 
						|
  case BuiltinType::ULongAccum:
 | 
						|
  case BuiltinType::ShortFract:
 | 
						|
  case BuiltinType::Fract:
 | 
						|
  case BuiltinType::LongFract:
 | 
						|
  case BuiltinType::UShortFract:
 | 
						|
  case BuiltinType::UFract:
 | 
						|
  case BuiltinType::ULongFract:
 | 
						|
  case BuiltinType::SatShortAccum:
 | 
						|
  case BuiltinType::SatAccum:
 | 
						|
  case BuiltinType::SatLongAccum:
 | 
						|
  case BuiltinType::SatUShortAccum:
 | 
						|
  case BuiltinType::SatUAccum:
 | 
						|
  case BuiltinType::SatULongAccum:
 | 
						|
  case BuiltinType::SatShortFract:
 | 
						|
  case BuiltinType::SatFract:
 | 
						|
  case BuiltinType::SatLongFract:
 | 
						|
  case BuiltinType::SatUShortFract:
 | 
						|
  case BuiltinType::SatUFract:
 | 
						|
  case BuiltinType::SatULongFract:
 | 
						|
    llvm_unreachable("Fixed point types are disabled for c++");
 | 
						|
  case BuiltinType::Half:
 | 
						|
    Out << "Dh";
 | 
						|
    break;
 | 
						|
  case BuiltinType::Float:
 | 
						|
    Out << 'f';
 | 
						|
    break;
 | 
						|
  case BuiltinType::Double:
 | 
						|
    Out << 'd';
 | 
						|
    break;
 | 
						|
  case BuiltinType::LongDouble: {
 | 
						|
    const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
 | 
						|
                                   getASTContext().getLangOpts().OpenMPIsDevice
 | 
						|
                               ? getASTContext().getAuxTargetInfo()
 | 
						|
                               : &getASTContext().getTargetInfo();
 | 
						|
    Out << TI->getLongDoubleMangling();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case BuiltinType::Float128: {
 | 
						|
    const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
 | 
						|
                                   getASTContext().getLangOpts().OpenMPIsDevice
 | 
						|
                               ? getASTContext().getAuxTargetInfo()
 | 
						|
                               : &getASTContext().getTargetInfo();
 | 
						|
    Out << TI->getFloat128Mangling();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case BuiltinType::BFloat16: {
 | 
						|
    const TargetInfo *TI = &getASTContext().getTargetInfo();
 | 
						|
    Out << TI->getBFloat16Mangling();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case BuiltinType::NullPtr:
 | 
						|
    Out << "Dn";
 | 
						|
    break;
 | 
						|
 | 
						|
#define BUILTIN_TYPE(Id, SingletonId)
 | 
						|
#define PLACEHOLDER_TYPE(Id, SingletonId) \
 | 
						|
  case BuiltinType::Id:
 | 
						|
#include "clang/AST/BuiltinTypes.def"
 | 
						|
  case BuiltinType::Dependent:
 | 
						|
    if (!NullOut)
 | 
						|
      llvm_unreachable("mangling a placeholder type");
 | 
						|
    break;
 | 
						|
  case BuiltinType::ObjCId:
 | 
						|
    Out << "11objc_object";
 | 
						|
    break;
 | 
						|
  case BuiltinType::ObjCClass:
 | 
						|
    Out << "10objc_class";
 | 
						|
    break;
 | 
						|
  case BuiltinType::ObjCSel:
 | 
						|
    Out << "13objc_selector";
 | 
						|
    break;
 | 
						|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
 | 
						|
  case BuiltinType::Id: \
 | 
						|
    type_name = "ocl_" #ImgType "_" #Suffix; \
 | 
						|
    Out << type_name.size() << type_name; \
 | 
						|
    break;
 | 
						|
#include "clang/Basic/OpenCLImageTypes.def"
 | 
						|
  case BuiltinType::OCLSampler:
 | 
						|
    Out << "11ocl_sampler";
 | 
						|
    break;
 | 
						|
  case BuiltinType::OCLEvent:
 | 
						|
    Out << "9ocl_event";
 | 
						|
    break;
 | 
						|
  case BuiltinType::OCLClkEvent:
 | 
						|
    Out << "12ocl_clkevent";
 | 
						|
    break;
 | 
						|
  case BuiltinType::OCLQueue:
 | 
						|
    Out << "9ocl_queue";
 | 
						|
    break;
 | 
						|
  case BuiltinType::OCLReserveID:
 | 
						|
    Out << "13ocl_reserveid";
 | 
						|
    break;
 | 
						|
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
 | 
						|
  case BuiltinType::Id: \
 | 
						|
    type_name = "ocl_" #ExtType; \
 | 
						|
    Out << type_name.size() << type_name; \
 | 
						|
    break;
 | 
						|
#include "clang/Basic/OpenCLExtensionTypes.def"
 | 
						|
  // The SVE types are effectively target-specific.  The mangling scheme
 | 
						|
  // is defined in the appendices to the Procedure Call Standard for the
 | 
						|
  // Arm Architecture.
 | 
						|
#define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
 | 
						|
                        ElBits, IsSigned, IsFP, IsBF)                          \
 | 
						|
  case BuiltinType::Id:                                                        \
 | 
						|
    type_name = MangledName;                                                   \
 | 
						|
    Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
 | 
						|
        << type_name;                                                          \
 | 
						|
    break;
 | 
						|
#define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
 | 
						|
  case BuiltinType::Id:                                                        \
 | 
						|
    type_name = MangledName;                                                   \
 | 
						|
    Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
 | 
						|
        << type_name;                                                          \
 | 
						|
    break;
 | 
						|
#include "clang/Basic/AArch64SVEACLETypes.def"
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
 | 
						|
  switch (CC) {
 | 
						|
  case CC_C:
 | 
						|
    return "";
 | 
						|
 | 
						|
  case CC_X86VectorCall:
 | 
						|
  case CC_X86Pascal:
 | 
						|
  case CC_X86RegCall:
 | 
						|
  case CC_AAPCS:
 | 
						|
  case CC_AAPCS_VFP:
 | 
						|
  case CC_AArch64VectorCall:
 | 
						|
  case CC_IntelOclBicc:
 | 
						|
  case CC_SpirFunction:
 | 
						|
  case CC_OpenCLKernel:
 | 
						|
  case CC_PreserveMost:
 | 
						|
  case CC_PreserveAll:
 | 
						|
    // FIXME: we should be mangling all of the above.
 | 
						|
    return "";
 | 
						|
 | 
						|
  case CC_X86ThisCall:
 | 
						|
    // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
 | 
						|
    // used explicitly. At this point, we don't have that much information in
 | 
						|
    // the AST, since clang tends to bake the convention into the canonical
 | 
						|
    // function type. thiscall only rarely used explicitly, so don't mangle it
 | 
						|
    // for now.
 | 
						|
    return "";
 | 
						|
 | 
						|
  case CC_X86StdCall:
 | 
						|
    return "stdcall";
 | 
						|
  case CC_X86FastCall:
 | 
						|
    return "fastcall";
 | 
						|
  case CC_X86_64SysV:
 | 
						|
    return "sysv_abi";
 | 
						|
  case CC_Win64:
 | 
						|
    return "ms_abi";
 | 
						|
  case CC_Swift:
 | 
						|
    return "swiftcall";
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad calling convention");
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
 | 
						|
  // Fast path.
 | 
						|
  if (T->getExtInfo() == FunctionType::ExtInfo())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
 | 
						|
  // This will get more complicated in the future if we mangle other
 | 
						|
  // things here; but for now, since we mangle ns_returns_retained as
 | 
						|
  // a qualifier on the result type, we can get away with this:
 | 
						|
  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
 | 
						|
  if (!CCQualifier.empty())
 | 
						|
    mangleVendorQualifier(CCQualifier);
 | 
						|
 | 
						|
  // FIXME: regparm
 | 
						|
  // FIXME: noreturn
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
 | 
						|
  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
 | 
						|
 | 
						|
  // Note that these are *not* substitution candidates.  Demanglers might
 | 
						|
  // have trouble with this if the parameter type is fully substituted.
 | 
						|
 | 
						|
  switch (PI.getABI()) {
 | 
						|
  case ParameterABI::Ordinary:
 | 
						|
    break;
 | 
						|
 | 
						|
  // All of these start with "swift", so they come before "ns_consumed".
 | 
						|
  case ParameterABI::SwiftContext:
 | 
						|
  case ParameterABI::SwiftErrorResult:
 | 
						|
  case ParameterABI::SwiftIndirectResult:
 | 
						|
    mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (PI.isConsumed())
 | 
						|
    mangleVendorQualifier("ns_consumed");
 | 
						|
 | 
						|
  if (PI.isNoEscape())
 | 
						|
    mangleVendorQualifier("noescape");
 | 
						|
}
 | 
						|
 | 
						|
// <type>          ::= <function-type>
 | 
						|
// <function-type> ::= [<CV-qualifiers>] F [Y]
 | 
						|
//                      <bare-function-type> [<ref-qualifier>] E
 | 
						|
void CXXNameMangler::mangleType(const FunctionProtoType *T) {
 | 
						|
  mangleExtFunctionInfo(T);
 | 
						|
 | 
						|
  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
 | 
						|
  // e.g. "const" in "int (A::*)() const".
 | 
						|
  mangleQualifiers(T->getMethodQuals());
 | 
						|
 | 
						|
  // Mangle instantiation-dependent exception-specification, if present,
 | 
						|
  // per cxx-abi-dev proposal on 2016-10-11.
 | 
						|
  if (T->hasInstantiationDependentExceptionSpec()) {
 | 
						|
    if (isComputedNoexcept(T->getExceptionSpecType())) {
 | 
						|
      Out << "DO";
 | 
						|
      mangleExpression(T->getNoexceptExpr());
 | 
						|
      Out << "E";
 | 
						|
    } else {
 | 
						|
      assert(T->getExceptionSpecType() == EST_Dynamic);
 | 
						|
      Out << "Dw";
 | 
						|
      for (auto ExceptTy : T->exceptions())
 | 
						|
        mangleType(ExceptTy);
 | 
						|
      Out << "E";
 | 
						|
    }
 | 
						|
  } else if (T->isNothrow()) {
 | 
						|
    Out << "Do";
 | 
						|
  }
 | 
						|
 | 
						|
  Out << 'F';
 | 
						|
 | 
						|
  // FIXME: We don't have enough information in the AST to produce the 'Y'
 | 
						|
  // encoding for extern "C" function types.
 | 
						|
  mangleBareFunctionType(T, /*MangleReturnType=*/true);
 | 
						|
 | 
						|
  // Mangle the ref-qualifier, if present.
 | 
						|
  mangleRefQualifier(T->getRefQualifier());
 | 
						|
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
 | 
						|
  // Function types without prototypes can arise when mangling a function type
 | 
						|
  // within an overloadable function in C. We mangle these as the absence of any
 | 
						|
  // parameter types (not even an empty parameter list).
 | 
						|
  Out << 'F';
 | 
						|
 | 
						|
  FunctionTypeDepthState saved = FunctionTypeDepth.push();
 | 
						|
 | 
						|
  FunctionTypeDepth.enterResultType();
 | 
						|
  mangleType(T->getReturnType());
 | 
						|
  FunctionTypeDepth.leaveResultType();
 | 
						|
 | 
						|
  FunctionTypeDepth.pop(saved);
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
 | 
						|
                                            bool MangleReturnType,
 | 
						|
                                            const FunctionDecl *FD) {
 | 
						|
  // Record that we're in a function type.  See mangleFunctionParam
 | 
						|
  // for details on what we're trying to achieve here.
 | 
						|
  FunctionTypeDepthState saved = FunctionTypeDepth.push();
 | 
						|
 | 
						|
  // <bare-function-type> ::= <signature type>+
 | 
						|
  if (MangleReturnType) {
 | 
						|
    FunctionTypeDepth.enterResultType();
 | 
						|
 | 
						|
    // Mangle ns_returns_retained as an order-sensitive qualifier here.
 | 
						|
    if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
 | 
						|
      mangleVendorQualifier("ns_returns_retained");
 | 
						|
 | 
						|
    // Mangle the return type without any direct ARC ownership qualifiers.
 | 
						|
    QualType ReturnTy = Proto->getReturnType();
 | 
						|
    if (ReturnTy.getObjCLifetime()) {
 | 
						|
      auto SplitReturnTy = ReturnTy.split();
 | 
						|
      SplitReturnTy.Quals.removeObjCLifetime();
 | 
						|
      ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
 | 
						|
    }
 | 
						|
    mangleType(ReturnTy);
 | 
						|
 | 
						|
    FunctionTypeDepth.leaveResultType();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
 | 
						|
    //   <builtin-type> ::= v   # void
 | 
						|
    Out << 'v';
 | 
						|
 | 
						|
    FunctionTypeDepth.pop(saved);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!FD || FD->getNumParams() == Proto->getNumParams());
 | 
						|
  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
 | 
						|
    // Mangle extended parameter info as order-sensitive qualifiers here.
 | 
						|
    if (Proto->hasExtParameterInfos() && FD == nullptr) {
 | 
						|
      mangleExtParameterInfo(Proto->getExtParameterInfo(I));
 | 
						|
    }
 | 
						|
 | 
						|
    // Mangle the type.
 | 
						|
    QualType ParamTy = Proto->getParamType(I);
 | 
						|
    mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
 | 
						|
 | 
						|
    if (FD) {
 | 
						|
      if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
 | 
						|
        // Attr can only take 1 character, so we can hardcode the length below.
 | 
						|
        assert(Attr->getType() <= 9 && Attr->getType() >= 0);
 | 
						|
        if (Attr->isDynamic())
 | 
						|
          Out << "U25pass_dynamic_object_size" << Attr->getType();
 | 
						|
        else
 | 
						|
          Out << "U17pass_object_size" << Attr->getType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionTypeDepth.pop(saved);
 | 
						|
 | 
						|
  // <builtin-type>      ::= z  # ellipsis
 | 
						|
  if (Proto->isVariadic())
 | 
						|
    Out << 'z';
 | 
						|
}
 | 
						|
 | 
						|
// <type>            ::= <class-enum-type>
 | 
						|
// <class-enum-type> ::= <name>
 | 
						|
void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
 | 
						|
  mangleName(T->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
// <type>            ::= <class-enum-type>
 | 
						|
// <class-enum-type> ::= <name>
 | 
						|
void CXXNameMangler::mangleType(const EnumType *T) {
 | 
						|
  mangleType(static_cast<const TagType*>(T));
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const RecordType *T) {
 | 
						|
  mangleType(static_cast<const TagType*>(T));
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const TagType *T) {
 | 
						|
  mangleName(T->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
// <type>       ::= <array-type>
 | 
						|
// <array-type> ::= A <positive dimension number> _ <element type>
 | 
						|
//              ::= A [<dimension expression>] _ <element type>
 | 
						|
void CXXNameMangler::mangleType(const ConstantArrayType *T) {
 | 
						|
  Out << 'A' << T->getSize() << '_';
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const VariableArrayType *T) {
 | 
						|
  Out << 'A';
 | 
						|
  // decayed vla types (size 0) will just be skipped.
 | 
						|
  if (T->getSizeExpr())
 | 
						|
    mangleExpression(T->getSizeExpr());
 | 
						|
  Out << '_';
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
 | 
						|
  Out << 'A';
 | 
						|
  mangleExpression(T->getSizeExpr());
 | 
						|
  Out << '_';
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
 | 
						|
  Out << "A_";
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
// <type>                   ::= <pointer-to-member-type>
 | 
						|
// <pointer-to-member-type> ::= M <class type> <member type>
 | 
						|
void CXXNameMangler::mangleType(const MemberPointerType *T) {
 | 
						|
  Out << 'M';
 | 
						|
  mangleType(QualType(T->getClass(), 0));
 | 
						|
  QualType PointeeType = T->getPointeeType();
 | 
						|
  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
 | 
						|
    mangleType(FPT);
 | 
						|
 | 
						|
    // Itanium C++ ABI 5.1.8:
 | 
						|
    //
 | 
						|
    //   The type of a non-static member function is considered to be different,
 | 
						|
    //   for the purposes of substitution, from the type of a namespace-scope or
 | 
						|
    //   static member function whose type appears similar. The types of two
 | 
						|
    //   non-static member functions are considered to be different, for the
 | 
						|
    //   purposes of substitution, if the functions are members of different
 | 
						|
    //   classes. In other words, for the purposes of substitution, the class of
 | 
						|
    //   which the function is a member is considered part of the type of
 | 
						|
    //   function.
 | 
						|
 | 
						|
    // Given that we already substitute member function pointers as a
 | 
						|
    // whole, the net effect of this rule is just to unconditionally
 | 
						|
    // suppress substitution on the function type in a member pointer.
 | 
						|
    // We increment the SeqID here to emulate adding an entry to the
 | 
						|
    // substitution table.
 | 
						|
    ++SeqID;
 | 
						|
  } else
 | 
						|
    mangleType(PointeeType);
 | 
						|
}
 | 
						|
 | 
						|
// <type>           ::= <template-param>
 | 
						|
void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
 | 
						|
  mangleTemplateParameter(T->getDepth(), T->getIndex());
 | 
						|
}
 | 
						|
 | 
						|
// <type>           ::= <template-param>
 | 
						|
void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
 | 
						|
  // FIXME: not clear how to mangle this!
 | 
						|
  // template <class T...> class A {
 | 
						|
  //   template <class U...> void foo(T(*)(U) x...);
 | 
						|
  // };
 | 
						|
  Out << "_SUBSTPACK_";
 | 
						|
}
 | 
						|
 | 
						|
// <type> ::= P <type>   # pointer-to
 | 
						|
void CXXNameMangler::mangleType(const PointerType *T) {
 | 
						|
  Out << 'P';
 | 
						|
  mangleType(T->getPointeeType());
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
 | 
						|
  Out << 'P';
 | 
						|
  mangleType(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
// <type> ::= R <type>   # reference-to
 | 
						|
void CXXNameMangler::mangleType(const LValueReferenceType *T) {
 | 
						|
  Out << 'R';
 | 
						|
  mangleType(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
// <type> ::= O <type>   # rvalue reference-to (C++0x)
 | 
						|
void CXXNameMangler::mangleType(const RValueReferenceType *T) {
 | 
						|
  Out << 'O';
 | 
						|
  mangleType(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
// <type> ::= C <type>   # complex pair (C 2000)
 | 
						|
void CXXNameMangler::mangleType(const ComplexType *T) {
 | 
						|
  Out << 'C';
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
// ARM's ABI for Neon vector types specifies that they should be mangled as
 | 
						|
// if they are structs (to match ARM's initial implementation).  The
 | 
						|
// vector type must be one of the special types predefined by ARM.
 | 
						|
void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
 | 
						|
  QualType EltType = T->getElementType();
 | 
						|
  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
 | 
						|
  const char *EltName = nullptr;
 | 
						|
  if (T->getVectorKind() == VectorType::NeonPolyVector) {
 | 
						|
    switch (cast<BuiltinType>(EltType)->getKind()) {
 | 
						|
    case BuiltinType::SChar:
 | 
						|
    case BuiltinType::UChar:
 | 
						|
      EltName = "poly8_t";
 | 
						|
      break;
 | 
						|
    case BuiltinType::Short:
 | 
						|
    case BuiltinType::UShort:
 | 
						|
      EltName = "poly16_t";
 | 
						|
      break;
 | 
						|
    case BuiltinType::LongLong:
 | 
						|
    case BuiltinType::ULongLong:
 | 
						|
      EltName = "poly64_t";
 | 
						|
      break;
 | 
						|
    default: llvm_unreachable("unexpected Neon polynomial vector element type");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    switch (cast<BuiltinType>(EltType)->getKind()) {
 | 
						|
    case BuiltinType::SChar:     EltName = "int8_t"; break;
 | 
						|
    case BuiltinType::UChar:     EltName = "uint8_t"; break;
 | 
						|
    case BuiltinType::Short:     EltName = "int16_t"; break;
 | 
						|
    case BuiltinType::UShort:    EltName = "uint16_t"; break;
 | 
						|
    case BuiltinType::Int:       EltName = "int32_t"; break;
 | 
						|
    case BuiltinType::UInt:      EltName = "uint32_t"; break;
 | 
						|
    case BuiltinType::LongLong:  EltName = "int64_t"; break;
 | 
						|
    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
 | 
						|
    case BuiltinType::Double:    EltName = "float64_t"; break;
 | 
						|
    case BuiltinType::Float:     EltName = "float32_t"; break;
 | 
						|
    case BuiltinType::Half:      EltName = "float16_t"; break;
 | 
						|
    case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("unexpected Neon vector element type");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  const char *BaseName = nullptr;
 | 
						|
  unsigned BitSize = (T->getNumElements() *
 | 
						|
                      getASTContext().getTypeSize(EltType));
 | 
						|
  if (BitSize == 64)
 | 
						|
    BaseName = "__simd64_";
 | 
						|
  else {
 | 
						|
    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
 | 
						|
    BaseName = "__simd128_";
 | 
						|
  }
 | 
						|
  Out << strlen(BaseName) + strlen(EltName);
 | 
						|
  Out << BaseName << EltName;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
 | 
						|
  DiagnosticsEngine &Diags = Context.getDiags();
 | 
						|
  unsigned DiagID = Diags.getCustomDiagID(
 | 
						|
      DiagnosticsEngine::Error,
 | 
						|
      "cannot mangle this dependent neon vector type yet");
 | 
						|
  Diags.Report(T->getAttributeLoc(), DiagID);
 | 
						|
}
 | 
						|
 | 
						|
static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
 | 
						|
  switch (EltType->getKind()) {
 | 
						|
  case BuiltinType::SChar:
 | 
						|
    return "Int8";
 | 
						|
  case BuiltinType::Short:
 | 
						|
    return "Int16";
 | 
						|
  case BuiltinType::Int:
 | 
						|
    return "Int32";
 | 
						|
  case BuiltinType::Long:
 | 
						|
  case BuiltinType::LongLong:
 | 
						|
    return "Int64";
 | 
						|
  case BuiltinType::UChar:
 | 
						|
    return "Uint8";
 | 
						|
  case BuiltinType::UShort:
 | 
						|
    return "Uint16";
 | 
						|
  case BuiltinType::UInt:
 | 
						|
    return "Uint32";
 | 
						|
  case BuiltinType::ULong:
 | 
						|
  case BuiltinType::ULongLong:
 | 
						|
    return "Uint64";
 | 
						|
  case BuiltinType::Half:
 | 
						|
    return "Float16";
 | 
						|
  case BuiltinType::Float:
 | 
						|
    return "Float32";
 | 
						|
  case BuiltinType::Double:
 | 
						|
    return "Float64";
 | 
						|
  case BuiltinType::BFloat16:
 | 
						|
    return "BFloat16";
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected vector element base type");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// AArch64's ABI for Neon vector types specifies that they should be mangled as
 | 
						|
// the equivalent internal name. The vector type must be one of the special
 | 
						|
// types predefined by ARM.
 | 
						|
void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
 | 
						|
  QualType EltType = T->getElementType();
 | 
						|
  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
 | 
						|
  unsigned BitSize =
 | 
						|
      (T->getNumElements() * getASTContext().getTypeSize(EltType));
 | 
						|
  (void)BitSize; // Silence warning.
 | 
						|
 | 
						|
  assert((BitSize == 64 || BitSize == 128) &&
 | 
						|
         "Neon vector type not 64 or 128 bits");
 | 
						|
 | 
						|
  StringRef EltName;
 | 
						|
  if (T->getVectorKind() == VectorType::NeonPolyVector) {
 | 
						|
    switch (cast<BuiltinType>(EltType)->getKind()) {
 | 
						|
    case BuiltinType::UChar:
 | 
						|
      EltName = "Poly8";
 | 
						|
      break;
 | 
						|
    case BuiltinType::UShort:
 | 
						|
      EltName = "Poly16";
 | 
						|
      break;
 | 
						|
    case BuiltinType::ULong:
 | 
						|
    case BuiltinType::ULongLong:
 | 
						|
      EltName = "Poly64";
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("unexpected Neon polynomial vector element type");
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
 | 
						|
 | 
						|
  std::string TypeName =
 | 
						|
      ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
 | 
						|
  Out << TypeName.length() << TypeName;
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
 | 
						|
  DiagnosticsEngine &Diags = Context.getDiags();
 | 
						|
  unsigned DiagID = Diags.getCustomDiagID(
 | 
						|
      DiagnosticsEngine::Error,
 | 
						|
      "cannot mangle this dependent neon vector type yet");
 | 
						|
  Diags.Report(T->getAttributeLoc(), DiagID);
 | 
						|
}
 | 
						|
 | 
						|
// GNU extension: vector types
 | 
						|
// <type>                  ::= <vector-type>
 | 
						|
// <vector-type>           ::= Dv <positive dimension number> _
 | 
						|
//                                    <extended element type>
 | 
						|
//                         ::= Dv [<dimension expression>] _ <element type>
 | 
						|
// <extended element type> ::= <element type>
 | 
						|
//                         ::= p # AltiVec vector pixel
 | 
						|
//                         ::= b # Altivec vector bool
 | 
						|
void CXXNameMangler::mangleType(const VectorType *T) {
 | 
						|
  if ((T->getVectorKind() == VectorType::NeonVector ||
 | 
						|
       T->getVectorKind() == VectorType::NeonPolyVector)) {
 | 
						|
    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
 | 
						|
    llvm::Triple::ArchType Arch =
 | 
						|
        getASTContext().getTargetInfo().getTriple().getArch();
 | 
						|
    if ((Arch == llvm::Triple::aarch64 ||
 | 
						|
         Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
 | 
						|
      mangleAArch64NeonVectorType(T);
 | 
						|
    else
 | 
						|
      mangleNeonVectorType(T);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  Out << "Dv" << T->getNumElements() << '_';
 | 
						|
  if (T->getVectorKind() == VectorType::AltiVecPixel)
 | 
						|
    Out << 'p';
 | 
						|
  else if (T->getVectorKind() == VectorType::AltiVecBool)
 | 
						|
    Out << 'b';
 | 
						|
  else
 | 
						|
    mangleType(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DependentVectorType *T) {
 | 
						|
  if ((T->getVectorKind() == VectorType::NeonVector ||
 | 
						|
       T->getVectorKind() == VectorType::NeonPolyVector)) {
 | 
						|
    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
 | 
						|
    llvm::Triple::ArchType Arch =
 | 
						|
        getASTContext().getTargetInfo().getTriple().getArch();
 | 
						|
    if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
 | 
						|
        !Target.isOSDarwin())
 | 
						|
      mangleAArch64NeonVectorType(T);
 | 
						|
    else
 | 
						|
      mangleNeonVectorType(T);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "Dv";
 | 
						|
  mangleExpression(T->getSizeExpr());
 | 
						|
  Out << '_';
 | 
						|
  if (T->getVectorKind() == VectorType::AltiVecPixel)
 | 
						|
    Out << 'p';
 | 
						|
  else if (T->getVectorKind() == VectorType::AltiVecBool)
 | 
						|
    Out << 'b';
 | 
						|
  else
 | 
						|
    mangleType(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const ExtVectorType *T) {
 | 
						|
  mangleType(static_cast<const VectorType*>(T));
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
 | 
						|
  Out << "Dv";
 | 
						|
  mangleExpression(T->getSizeExpr());
 | 
						|
  Out << '_';
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
 | 
						|
  // Mangle matrix types using a vendor extended type qualifier:
 | 
						|
  // U<Len>matrix_type<Rows><Columns><element type>
 | 
						|
  StringRef VendorQualifier = "matrix_type";
 | 
						|
  Out << "U" << VendorQualifier.size() << VendorQualifier;
 | 
						|
  auto &ASTCtx = getASTContext();
 | 
						|
  unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
 | 
						|
  llvm::APSInt Rows(BitWidth);
 | 
						|
  Rows = T->getNumRows();
 | 
						|
  mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
 | 
						|
  llvm::APSInt Columns(BitWidth);
 | 
						|
  Columns = T->getNumColumns();
 | 
						|
  mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
 | 
						|
  // U<Len>matrix_type<row expr><column expr><element type>
 | 
						|
  StringRef VendorQualifier = "matrix_type";
 | 
						|
  Out << "U" << VendorQualifier.size() << VendorQualifier;
 | 
						|
  mangleTemplateArg(T->getRowExpr());
 | 
						|
  mangleTemplateArg(T->getColumnExpr());
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
 | 
						|
  SplitQualType split = T->getPointeeType().split();
 | 
						|
  mangleQualifiers(split.Quals, T);
 | 
						|
  mangleType(QualType(split.Ty, 0));
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const PackExpansionType *T) {
 | 
						|
  // <type>  ::= Dp <type>          # pack expansion (C++0x)
 | 
						|
  Out << "Dp";
 | 
						|
  mangleType(T->getPattern());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
 | 
						|
  mangleSourceName(T->getDecl()->getIdentifier());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const ObjCObjectType *T) {
 | 
						|
  // Treat __kindof as a vendor extended type qualifier.
 | 
						|
  if (T->isKindOfType())
 | 
						|
    Out << "U8__kindof";
 | 
						|
 | 
						|
  if (!T->qual_empty()) {
 | 
						|
    // Mangle protocol qualifiers.
 | 
						|
    SmallString<64> QualStr;
 | 
						|
    llvm::raw_svector_ostream QualOS(QualStr);
 | 
						|
    QualOS << "objcproto";
 | 
						|
    for (const auto *I : T->quals()) {
 | 
						|
      StringRef name = I->getName();
 | 
						|
      QualOS << name.size() << name;
 | 
						|
    }
 | 
						|
    Out << 'U' << QualStr.size() << QualStr;
 | 
						|
  }
 | 
						|
 | 
						|
  mangleType(T->getBaseType());
 | 
						|
 | 
						|
  if (T->isSpecialized()) {
 | 
						|
    // Mangle type arguments as I <type>+ E
 | 
						|
    Out << 'I';
 | 
						|
    for (auto typeArg : T->getTypeArgs())
 | 
						|
      mangleType(typeArg);
 | 
						|
    Out << 'E';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const BlockPointerType *T) {
 | 
						|
  Out << "U13block_pointer";
 | 
						|
  mangleType(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
 | 
						|
  // Mangle injected class name types as if the user had written the
 | 
						|
  // specialization out fully.  It may not actually be possible to see
 | 
						|
  // this mangling, though.
 | 
						|
  mangleType(T->getInjectedSpecializationType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
 | 
						|
  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
 | 
						|
    mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
 | 
						|
  } else {
 | 
						|
    if (mangleSubstitution(QualType(T, 0)))
 | 
						|
      return;
 | 
						|
 | 
						|
    mangleTemplatePrefix(T->getTemplateName());
 | 
						|
 | 
						|
    // FIXME: GCC does not appear to mangle the template arguments when
 | 
						|
    // the template in question is a dependent template name. Should we
 | 
						|
    // emulate that badness?
 | 
						|
    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
 | 
						|
    addSubstitution(QualType(T, 0));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DependentNameType *T) {
 | 
						|
  // Proposal by cxx-abi-dev, 2014-03-26
 | 
						|
  // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
 | 
						|
  //                                 # dependent elaborated type specifier using
 | 
						|
  //                                 # 'typename'
 | 
						|
  //                   ::= Ts <name> # dependent elaborated type specifier using
 | 
						|
  //                                 # 'struct' or 'class'
 | 
						|
  //                   ::= Tu <name> # dependent elaborated type specifier using
 | 
						|
  //                                 # 'union'
 | 
						|
  //                   ::= Te <name> # dependent elaborated type specifier using
 | 
						|
  //                                 # 'enum'
 | 
						|
  switch (T->getKeyword()) {
 | 
						|
    case ETK_None:
 | 
						|
    case ETK_Typename:
 | 
						|
      break;
 | 
						|
    case ETK_Struct:
 | 
						|
    case ETK_Class:
 | 
						|
    case ETK_Interface:
 | 
						|
      Out << "Ts";
 | 
						|
      break;
 | 
						|
    case ETK_Union:
 | 
						|
      Out << "Tu";
 | 
						|
      break;
 | 
						|
    case ETK_Enum:
 | 
						|
      Out << "Te";
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  // Typename types are always nested
 | 
						|
  Out << 'N';
 | 
						|
  manglePrefix(T->getQualifier());
 | 
						|
  mangleSourceName(T->getIdentifier());
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
 | 
						|
  // Dependently-scoped template types are nested if they have a prefix.
 | 
						|
  Out << 'N';
 | 
						|
 | 
						|
  // TODO: avoid making this TemplateName.
 | 
						|
  TemplateName Prefix =
 | 
						|
    getASTContext().getDependentTemplateName(T->getQualifier(),
 | 
						|
                                             T->getIdentifier());
 | 
						|
  mangleTemplatePrefix(Prefix);
 | 
						|
 | 
						|
  // FIXME: GCC does not appear to mangle the template arguments when
 | 
						|
  // the template in question is a dependent template name. Should we
 | 
						|
  // emulate that badness?
 | 
						|
  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const TypeOfType *T) {
 | 
						|
  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
 | 
						|
  // "extension with parameters" mangling.
 | 
						|
  Out << "u6typeof";
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const TypeOfExprType *T) {
 | 
						|
  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
 | 
						|
  // "extension with parameters" mangling.
 | 
						|
  Out << "u6typeof";
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DecltypeType *T) {
 | 
						|
  Expr *E = T->getUnderlyingExpr();
 | 
						|
 | 
						|
  // type ::= Dt <expression> E  # decltype of an id-expression
 | 
						|
  //                             #   or class member access
 | 
						|
  //      ::= DT <expression> E  # decltype of an expression
 | 
						|
 | 
						|
  // This purports to be an exhaustive list of id-expressions and
 | 
						|
  // class member accesses.  Note that we do not ignore parentheses;
 | 
						|
  // parentheses change the semantics of decltype for these
 | 
						|
  // expressions (and cause the mangler to use the other form).
 | 
						|
  if (isa<DeclRefExpr>(E) ||
 | 
						|
      isa<MemberExpr>(E) ||
 | 
						|
      isa<UnresolvedLookupExpr>(E) ||
 | 
						|
      isa<DependentScopeDeclRefExpr>(E) ||
 | 
						|
      isa<CXXDependentScopeMemberExpr>(E) ||
 | 
						|
      isa<UnresolvedMemberExpr>(E))
 | 
						|
    Out << "Dt";
 | 
						|
  else
 | 
						|
    Out << "DT";
 | 
						|
  mangleExpression(E);
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const UnaryTransformType *T) {
 | 
						|
  // If this is dependent, we need to record that. If not, we simply
 | 
						|
  // mangle it as the underlying type since they are equivalent.
 | 
						|
  if (T->isDependentType()) {
 | 
						|
    Out << 'U';
 | 
						|
 | 
						|
    switch (T->getUTTKind()) {
 | 
						|
      case UnaryTransformType::EnumUnderlyingType:
 | 
						|
        Out << "3eut";
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  mangleType(T->getBaseType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const AutoType *T) {
 | 
						|
  assert(T->getDeducedType().isNull() &&
 | 
						|
         "Deduced AutoType shouldn't be handled here!");
 | 
						|
  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
 | 
						|
         "shouldn't need to mangle __auto_type!");
 | 
						|
  // <builtin-type> ::= Da # auto
 | 
						|
  //                ::= Dc # decltype(auto)
 | 
						|
  Out << (T->isDecltypeAuto() ? "Dc" : "Da");
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
 | 
						|
  // FIXME: This is not the right mangling. We also need to include a scope
 | 
						|
  // here in some cases.
 | 
						|
  QualType D = T->getDeducedType();
 | 
						|
  if (D.isNull())
 | 
						|
    mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
 | 
						|
  else
 | 
						|
    mangleType(D);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const AtomicType *T) {
 | 
						|
  // <type> ::= U <source-name> <type>  # vendor extended type qualifier
 | 
						|
  // (Until there's a standardized mangling...)
 | 
						|
  Out << "U7_Atomic";
 | 
						|
  mangleType(T->getValueType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const PipeType *T) {
 | 
						|
  // Pipe type mangling rules are described in SPIR 2.0 specification
 | 
						|
  // A.1 Data types and A.3 Summary of changes
 | 
						|
  // <type> ::= 8ocl_pipe
 | 
						|
  Out << "8ocl_pipe";
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const ExtIntType *T) {
 | 
						|
  Out << "U7_ExtInt";
 | 
						|
  llvm::APSInt BW(32, true);
 | 
						|
  BW = T->getNumBits();
 | 
						|
  TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
 | 
						|
  mangleTemplateArgs(&TA, 1);
 | 
						|
  if (T->isUnsigned())
 | 
						|
    Out << "j";
 | 
						|
  else
 | 
						|
    Out << "i";
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DependentExtIntType *T) {
 | 
						|
  Out << "U7_ExtInt";
 | 
						|
  TemplateArgument TA(T->getNumBitsExpr());
 | 
						|
  mangleTemplateArgs(&TA, 1);
 | 
						|
  if (T->isUnsigned())
 | 
						|
    Out << "j";
 | 
						|
  else
 | 
						|
    Out << "i";
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleIntegerLiteral(QualType T,
 | 
						|
                                          const llvm::APSInt &Value) {
 | 
						|
  //  <expr-primary> ::= L <type> <value number> E # integer literal
 | 
						|
  Out << 'L';
 | 
						|
 | 
						|
  mangleType(T);
 | 
						|
  if (T->isBooleanType()) {
 | 
						|
    // Boolean values are encoded as 0/1.
 | 
						|
    Out << (Value.getBoolValue() ? '1' : '0');
 | 
						|
  } else {
 | 
						|
    mangleNumber(Value);
 | 
						|
  }
 | 
						|
  Out << 'E';
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
 | 
						|
  // Ignore member expressions involving anonymous unions.
 | 
						|
  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
 | 
						|
    if (!RT->getDecl()->isAnonymousStructOrUnion())
 | 
						|
      break;
 | 
						|
    const auto *ME = dyn_cast<MemberExpr>(Base);
 | 
						|
    if (!ME)
 | 
						|
      break;
 | 
						|
    Base = ME->getBase();
 | 
						|
    IsArrow = ME->isArrow();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Base->isImplicitCXXThis()) {
 | 
						|
    // Note: GCC mangles member expressions to the implicit 'this' as
 | 
						|
    // *this., whereas we represent them as this->. The Itanium C++ ABI
 | 
						|
    // does not specify anything here, so we follow GCC.
 | 
						|
    Out << "dtdefpT";
 | 
						|
  } else {
 | 
						|
    Out << (IsArrow ? "pt" : "dt");
 | 
						|
    mangleExpression(Base);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Mangles a member expression.
 | 
						|
void CXXNameMangler::mangleMemberExpr(const Expr *base,
 | 
						|
                                      bool isArrow,
 | 
						|
                                      NestedNameSpecifier *qualifier,
 | 
						|
                                      NamedDecl *firstQualifierLookup,
 | 
						|
                                      DeclarationName member,
 | 
						|
                                      const TemplateArgumentLoc *TemplateArgs,
 | 
						|
                                      unsigned NumTemplateArgs,
 | 
						|
                                      unsigned arity) {
 | 
						|
  // <expression> ::= dt <expression> <unresolved-name>
 | 
						|
  //              ::= pt <expression> <unresolved-name>
 | 
						|
  if (base)
 | 
						|
    mangleMemberExprBase(base, isArrow);
 | 
						|
  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
 | 
						|
}
 | 
						|
 | 
						|
/// Look at the callee of the given call expression and determine if
 | 
						|
/// it's a parenthesized id-expression which would have triggered ADL
 | 
						|
/// otherwise.
 | 
						|
static bool isParenthesizedADLCallee(const CallExpr *call) {
 | 
						|
  const Expr *callee = call->getCallee();
 | 
						|
  const Expr *fn = callee->IgnoreParens();
 | 
						|
 | 
						|
  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
 | 
						|
  // too, but for those to appear in the callee, it would have to be
 | 
						|
  // parenthesized.
 | 
						|
  if (callee == fn) return false;
 | 
						|
 | 
						|
  // Must be an unresolved lookup.
 | 
						|
  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
 | 
						|
  if (!lookup) return false;
 | 
						|
 | 
						|
  assert(!lookup->requiresADL());
 | 
						|
 | 
						|
  // Must be an unqualified lookup.
 | 
						|
  if (lookup->getQualifier()) return false;
 | 
						|
 | 
						|
  // Must not have found a class member.  Note that if one is a class
 | 
						|
  // member, they're all class members.
 | 
						|
  if (lookup->getNumDecls() > 0 &&
 | 
						|
      (*lookup->decls_begin())->isCXXClassMember())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, ADL would have been triggered.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
 | 
						|
  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
 | 
						|
  Out << CastEncoding;
 | 
						|
  mangleType(ECE->getType());
 | 
						|
  mangleExpression(ECE->getSubExpr());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
 | 
						|
  if (auto *Syntactic = InitList->getSyntacticForm())
 | 
						|
    InitList = Syntactic;
 | 
						|
  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
 | 
						|
    mangleExpression(InitList->getInit(i));
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) {
 | 
						|
  switch (D->getKind()) {
 | 
						|
  default:
 | 
						|
    //  <expr-primary> ::= L <mangled-name> E # external name
 | 
						|
    Out << 'L';
 | 
						|
    mangle(D);
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::ParmVar:
 | 
						|
    mangleFunctionParam(cast<ParmVarDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::EnumConstant: {
 | 
						|
    const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
 | 
						|
    mangleIntegerLiteral(ED->getType(), ED->getInitVal());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Decl::NonTypeTemplateParm:
 | 
						|
    const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
 | 
						|
    mangleTemplateParameter(PD->getDepth(), PD->getIndex());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
 | 
						|
  // <expression> ::= <unary operator-name> <expression>
 | 
						|
  //              ::= <binary operator-name> <expression> <expression>
 | 
						|
  //              ::= <trinary operator-name> <expression> <expression> <expression>
 | 
						|
  //              ::= cv <type> expression           # conversion with one argument
 | 
						|
  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
 | 
						|
  //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
 | 
						|
  //              ::= sc <type> <expression>         # static_cast<type> (expression)
 | 
						|
  //              ::= cc <type> <expression>         # const_cast<type> (expression)
 | 
						|
  //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
 | 
						|
  //              ::= st <type>                      # sizeof (a type)
 | 
						|
  //              ::= at <type>                      # alignof (a type)
 | 
						|
  //              ::= <template-param>
 | 
						|
  //              ::= <function-param>
 | 
						|
  //              ::= sr <type> <unqualified-name>                   # dependent name
 | 
						|
  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
 | 
						|
  //              ::= ds <expression> <expression>                   # expr.*expr
 | 
						|
  //              ::= sZ <template-param>                            # size of a parameter pack
 | 
						|
  //              ::= sZ <function-param>    # size of a function parameter pack
 | 
						|
  //              ::= <expr-primary>
 | 
						|
  // <expr-primary> ::= L <type> <value number> E    # integer literal
 | 
						|
  //                ::= L <type <value float> E      # floating literal
 | 
						|
  //                ::= L <mangled-name> E           # external name
 | 
						|
  //                ::= fpT                          # 'this' expression
 | 
						|
  QualType ImplicitlyConvertedToType;
 | 
						|
 | 
						|
recurse:
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
  case Expr::NoStmtClass:
 | 
						|
#define ABSTRACT_STMT(Type)
 | 
						|
#define EXPR(Type, Base)
 | 
						|
#define STMT(Type, Base) \
 | 
						|
  case Expr::Type##Class:
 | 
						|
#include "clang/AST/StmtNodes.inc"
 | 
						|
    // fallthrough
 | 
						|
 | 
						|
  // These all can only appear in local or variable-initialization
 | 
						|
  // contexts and so should never appear in a mangling.
 | 
						|
  case Expr::AddrLabelExprClass:
 | 
						|
  case Expr::DesignatedInitUpdateExprClass:
 | 
						|
  case Expr::ImplicitValueInitExprClass:
 | 
						|
  case Expr::ArrayInitLoopExprClass:
 | 
						|
  case Expr::ArrayInitIndexExprClass:
 | 
						|
  case Expr::NoInitExprClass:
 | 
						|
  case Expr::ParenListExprClass:
 | 
						|
  case Expr::LambdaExprClass:
 | 
						|
  case Expr::MSPropertyRefExprClass:
 | 
						|
  case Expr::MSPropertySubscriptExprClass:
 | 
						|
  case Expr::TypoExprClass: // This should no longer exist in the AST by now.
 | 
						|
  case Expr::RecoveryExprClass:
 | 
						|
  case Expr::OMPArraySectionExprClass:
 | 
						|
  case Expr::OMPArrayShapingExprClass:
 | 
						|
  case Expr::OMPIteratorExprClass:
 | 
						|
  case Expr::CXXInheritedCtorInitExprClass:
 | 
						|
    llvm_unreachable("unexpected statement kind");
 | 
						|
 | 
						|
  case Expr::ConstantExprClass:
 | 
						|
    E = cast<ConstantExpr>(E)->getSubExpr();
 | 
						|
    goto recurse;
 | 
						|
 | 
						|
  // FIXME: invent manglings for all these.
 | 
						|
  case Expr::BlockExprClass:
 | 
						|
  case Expr::ChooseExprClass:
 | 
						|
  case Expr::CompoundLiteralExprClass:
 | 
						|
  case Expr::ExtVectorElementExprClass:
 | 
						|
  case Expr::GenericSelectionExprClass:
 | 
						|
  case Expr::ObjCEncodeExprClass:
 | 
						|
  case Expr::ObjCIsaExprClass:
 | 
						|
  case Expr::ObjCIvarRefExprClass:
 | 
						|
  case Expr::ObjCMessageExprClass:
 | 
						|
  case Expr::ObjCPropertyRefExprClass:
 | 
						|
  case Expr::ObjCProtocolExprClass:
 | 
						|
  case Expr::ObjCSelectorExprClass:
 | 
						|
  case Expr::ObjCStringLiteralClass:
 | 
						|
  case Expr::ObjCBoxedExprClass:
 | 
						|
  case Expr::ObjCArrayLiteralClass:
 | 
						|
  case Expr::ObjCDictionaryLiteralClass:
 | 
						|
  case Expr::ObjCSubscriptRefExprClass:
 | 
						|
  case Expr::ObjCIndirectCopyRestoreExprClass:
 | 
						|
  case Expr::ObjCAvailabilityCheckExprClass:
 | 
						|
  case Expr::OffsetOfExprClass:
 | 
						|
  case Expr::PredefinedExprClass:
 | 
						|
  case Expr::ShuffleVectorExprClass:
 | 
						|
  case Expr::ConvertVectorExprClass:
 | 
						|
  case Expr::StmtExprClass:
 | 
						|
  case Expr::TypeTraitExprClass:
 | 
						|
  case Expr::RequiresExprClass:
 | 
						|
  case Expr::ArrayTypeTraitExprClass:
 | 
						|
  case Expr::ExpressionTraitExprClass:
 | 
						|
  case Expr::VAArgExprClass:
 | 
						|
  case Expr::CUDAKernelCallExprClass:
 | 
						|
  case Expr::AsTypeExprClass:
 | 
						|
  case Expr::PseudoObjectExprClass:
 | 
						|
  case Expr::AtomicExprClass:
 | 
						|
  case Expr::SourceLocExprClass:
 | 
						|
  case Expr::FixedPointLiteralClass:
 | 
						|
  case Expr::BuiltinBitCastExprClass:
 | 
						|
  {
 | 
						|
    if (!NullOut) {
 | 
						|
      // As bad as this diagnostic is, it's better than crashing.
 | 
						|
      DiagnosticsEngine &Diags = Context.getDiags();
 | 
						|
      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
 | 
						|
                                       "cannot yet mangle expression type %0");
 | 
						|
      Diags.Report(E->getExprLoc(), DiagID)
 | 
						|
        << E->getStmtClassName() << E->getSourceRange();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXUuidofExprClass: {
 | 
						|
    const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
 | 
						|
    if (UE->isTypeOperand()) {
 | 
						|
      QualType UuidT = UE->getTypeOperand(Context.getASTContext());
 | 
						|
      Out << "u8__uuidoft";
 | 
						|
      mangleType(UuidT);
 | 
						|
    } else {
 | 
						|
      Expr *UuidExp = UE->getExprOperand();
 | 
						|
      Out << "u8__uuidofz";
 | 
						|
      mangleExpression(UuidExp, Arity);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Even gcc-4.5 doesn't mangle this.
 | 
						|
  case Expr::BinaryConditionalOperatorClass: {
 | 
						|
    DiagnosticsEngine &Diags = Context.getDiags();
 | 
						|
    unsigned DiagID =
 | 
						|
      Diags.getCustomDiagID(DiagnosticsEngine::Error,
 | 
						|
                "?: operator with omitted middle operand cannot be mangled");
 | 
						|
    Diags.Report(E->getExprLoc(), DiagID)
 | 
						|
      << E->getStmtClassName() << E->getSourceRange();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // These are used for internal purposes and cannot be meaningfully mangled.
 | 
						|
  case Expr::OpaqueValueExprClass:
 | 
						|
    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
 | 
						|
 | 
						|
  case Expr::InitListExprClass: {
 | 
						|
    Out << "il";
 | 
						|
    mangleInitListElements(cast<InitListExpr>(E));
 | 
						|
    Out << "E";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::DesignatedInitExprClass: {
 | 
						|
    auto *DIE = cast<DesignatedInitExpr>(E);
 | 
						|
    for (const auto &Designator : DIE->designators()) {
 | 
						|
      if (Designator.isFieldDesignator()) {
 | 
						|
        Out << "di";
 | 
						|
        mangleSourceName(Designator.getFieldName());
 | 
						|
      } else if (Designator.isArrayDesignator()) {
 | 
						|
        Out << "dx";
 | 
						|
        mangleExpression(DIE->getArrayIndex(Designator));
 | 
						|
      } else {
 | 
						|
        assert(Designator.isArrayRangeDesignator() &&
 | 
						|
               "unknown designator kind");
 | 
						|
        Out << "dX";
 | 
						|
        mangleExpression(DIE->getArrayRangeStart(Designator));
 | 
						|
        mangleExpression(DIE->getArrayRangeEnd(Designator));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    mangleExpression(DIE->getInit());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXDefaultArgExprClass:
 | 
						|
    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CXXDefaultInitExprClass:
 | 
						|
    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CXXStdInitializerListExprClass:
 | 
						|
    mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::SubstNonTypeTemplateParmExprClass:
 | 
						|
    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
 | 
						|
                     Arity);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::UserDefinedLiteralClass:
 | 
						|
    // We follow g++'s approach of mangling a UDL as a call to the literal
 | 
						|
    // operator.
 | 
						|
  case Expr::CXXMemberCallExprClass: // fallthrough
 | 
						|
  case Expr::CallExprClass: {
 | 
						|
    const CallExpr *CE = cast<CallExpr>(E);
 | 
						|
 | 
						|
    // <expression> ::= cp <simple-id> <expression>* E
 | 
						|
    // We use this mangling only when the call would use ADL except
 | 
						|
    // for being parenthesized.  Per discussion with David
 | 
						|
    // Vandervoorde, 2011.04.25.
 | 
						|
    if (isParenthesizedADLCallee(CE)) {
 | 
						|
      Out << "cp";
 | 
						|
      // The callee here is a parenthesized UnresolvedLookupExpr with
 | 
						|
      // no qualifier and should always get mangled as a <simple-id>
 | 
						|
      // anyway.
 | 
						|
 | 
						|
    // <expression> ::= cl <expression>* E
 | 
						|
    } else {
 | 
						|
      Out << "cl";
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned CallArity = CE->getNumArgs();
 | 
						|
    for (const Expr *Arg : CE->arguments())
 | 
						|
      if (isa<PackExpansionExpr>(Arg))
 | 
						|
        CallArity = UnknownArity;
 | 
						|
 | 
						|
    mangleExpression(CE->getCallee(), CallArity);
 | 
						|
    for (const Expr *Arg : CE->arguments())
 | 
						|
      mangleExpression(Arg);
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXNewExprClass: {
 | 
						|
    const CXXNewExpr *New = cast<CXXNewExpr>(E);
 | 
						|
    if (New->isGlobalNew()) Out << "gs";
 | 
						|
    Out << (New->isArray() ? "na" : "nw");
 | 
						|
    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
 | 
						|
           E = New->placement_arg_end(); I != E; ++I)
 | 
						|
      mangleExpression(*I);
 | 
						|
    Out << '_';
 | 
						|
    mangleType(New->getAllocatedType());
 | 
						|
    if (New->hasInitializer()) {
 | 
						|
      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
 | 
						|
        Out << "il";
 | 
						|
      else
 | 
						|
        Out << "pi";
 | 
						|
      const Expr *Init = New->getInitializer();
 | 
						|
      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
 | 
						|
        // Directly inline the initializers.
 | 
						|
        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
 | 
						|
                                                  E = CCE->arg_end();
 | 
						|
             I != E; ++I)
 | 
						|
          mangleExpression(*I);
 | 
						|
      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
 | 
						|
        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
 | 
						|
          mangleExpression(PLE->getExpr(i));
 | 
						|
      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
 | 
						|
                 isa<InitListExpr>(Init)) {
 | 
						|
        // Only take InitListExprs apart for list-initialization.
 | 
						|
        mangleInitListElements(cast<InitListExpr>(Init));
 | 
						|
      } else
 | 
						|
        mangleExpression(Init);
 | 
						|
    }
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXPseudoDestructorExprClass: {
 | 
						|
    const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
 | 
						|
    if (const Expr *Base = PDE->getBase())
 | 
						|
      mangleMemberExprBase(Base, PDE->isArrow());
 | 
						|
    NestedNameSpecifier *Qualifier = PDE->getQualifier();
 | 
						|
    if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
 | 
						|
      if (Qualifier) {
 | 
						|
        mangleUnresolvedPrefix(Qualifier,
 | 
						|
                               /*recursive=*/true);
 | 
						|
        mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
 | 
						|
        Out << 'E';
 | 
						|
      } else {
 | 
						|
        Out << "sr";
 | 
						|
        if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
 | 
						|
          Out << 'E';
 | 
						|
      }
 | 
						|
    } else if (Qualifier) {
 | 
						|
      mangleUnresolvedPrefix(Qualifier);
 | 
						|
    }
 | 
						|
    // <base-unresolved-name> ::= dn <destructor-name>
 | 
						|
    Out << "dn";
 | 
						|
    QualType DestroyedType = PDE->getDestroyedType();
 | 
						|
    mangleUnresolvedTypeOrSimpleId(DestroyedType);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::MemberExprClass: {
 | 
						|
    const MemberExpr *ME = cast<MemberExpr>(E);
 | 
						|
    mangleMemberExpr(ME->getBase(), ME->isArrow(),
 | 
						|
                     ME->getQualifier(), nullptr,
 | 
						|
                     ME->getMemberDecl()->getDeclName(),
 | 
						|
                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
 | 
						|
                     Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::UnresolvedMemberExprClass: {
 | 
						|
    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
 | 
						|
    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
 | 
						|
                     ME->isArrow(), ME->getQualifier(), nullptr,
 | 
						|
                     ME->getMemberName(),
 | 
						|
                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
 | 
						|
                     Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXDependentScopeMemberExprClass: {
 | 
						|
    const CXXDependentScopeMemberExpr *ME
 | 
						|
      = cast<CXXDependentScopeMemberExpr>(E);
 | 
						|
    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
 | 
						|
                     ME->isArrow(), ME->getQualifier(),
 | 
						|
                     ME->getFirstQualifierFoundInScope(),
 | 
						|
                     ME->getMember(),
 | 
						|
                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
 | 
						|
                     Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::UnresolvedLookupExprClass: {
 | 
						|
    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
 | 
						|
    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
 | 
						|
                         ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
 | 
						|
                         Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXUnresolvedConstructExprClass: {
 | 
						|
    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
 | 
						|
    unsigned N = CE->arg_size();
 | 
						|
 | 
						|
    if (CE->isListInitialization()) {
 | 
						|
      assert(N == 1 && "unexpected form for list initialization");
 | 
						|
      auto *IL = cast<InitListExpr>(CE->getArg(0));
 | 
						|
      Out << "tl";
 | 
						|
      mangleType(CE->getType());
 | 
						|
      mangleInitListElements(IL);
 | 
						|
      Out << "E";
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Out << "cv";
 | 
						|
    mangleType(CE->getType());
 | 
						|
    if (N != 1) Out << '_';
 | 
						|
    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
 | 
						|
    if (N != 1) Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXConstructExprClass: {
 | 
						|
    const auto *CE = cast<CXXConstructExpr>(E);
 | 
						|
    if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
 | 
						|
      assert(
 | 
						|
          CE->getNumArgs() >= 1 &&
 | 
						|
          (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
 | 
						|
          "implicit CXXConstructExpr must have one argument");
 | 
						|
      return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
 | 
						|
    }
 | 
						|
    Out << "il";
 | 
						|
    for (auto *E : CE->arguments())
 | 
						|
      mangleExpression(E);
 | 
						|
    Out << "E";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXTemporaryObjectExprClass: {
 | 
						|
    const auto *CE = cast<CXXTemporaryObjectExpr>(E);
 | 
						|
    unsigned N = CE->getNumArgs();
 | 
						|
    bool List = CE->isListInitialization();
 | 
						|
 | 
						|
    if (List)
 | 
						|
      Out << "tl";
 | 
						|
    else
 | 
						|
      Out << "cv";
 | 
						|
    mangleType(CE->getType());
 | 
						|
    if (!List && N != 1)
 | 
						|
      Out << '_';
 | 
						|
    if (CE->isStdInitListInitialization()) {
 | 
						|
      // We implicitly created a std::initializer_list<T> for the first argument
 | 
						|
      // of a constructor of type U in an expression of the form U{a, b, c}.
 | 
						|
      // Strip all the semantic gunk off the initializer list.
 | 
						|
      auto *SILE =
 | 
						|
          cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
 | 
						|
      auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
 | 
						|
      mangleInitListElements(ILE);
 | 
						|
    } else {
 | 
						|
      for (auto *E : CE->arguments())
 | 
						|
        mangleExpression(E);
 | 
						|
    }
 | 
						|
    if (List || N != 1)
 | 
						|
      Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXScalarValueInitExprClass:
 | 
						|
    Out << "cv";
 | 
						|
    mangleType(E->getType());
 | 
						|
    Out << "_E";
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CXXNoexceptExprClass:
 | 
						|
    Out << "nx";
 | 
						|
    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::UnaryExprOrTypeTraitExprClass: {
 | 
						|
    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
 | 
						|
 | 
						|
    if (!SAE->isInstantiationDependent()) {
 | 
						|
      // Itanium C++ ABI:
 | 
						|
      //   If the operand of a sizeof or alignof operator is not
 | 
						|
      //   instantiation-dependent it is encoded as an integer literal
 | 
						|
      //   reflecting the result of the operator.
 | 
						|
      //
 | 
						|
      //   If the result of the operator is implicitly converted to a known
 | 
						|
      //   integer type, that type is used for the literal; otherwise, the type
 | 
						|
      //   of std::size_t or std::ptrdiff_t is used.
 | 
						|
      QualType T = (ImplicitlyConvertedToType.isNull() ||
 | 
						|
                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
 | 
						|
                                                    : ImplicitlyConvertedToType;
 | 
						|
      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
 | 
						|
      mangleIntegerLiteral(T, V);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    switch(SAE->getKind()) {
 | 
						|
    case UETT_SizeOf:
 | 
						|
      Out << 's';
 | 
						|
      break;
 | 
						|
    case UETT_PreferredAlignOf:
 | 
						|
    case UETT_AlignOf:
 | 
						|
      Out << 'a';
 | 
						|
      break;
 | 
						|
    case UETT_VecStep: {
 | 
						|
      DiagnosticsEngine &Diags = Context.getDiags();
 | 
						|
      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
 | 
						|
                                     "cannot yet mangle vec_step expression");
 | 
						|
      Diags.Report(DiagID);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case UETT_OpenMPRequiredSimdAlign: {
 | 
						|
      DiagnosticsEngine &Diags = Context.getDiags();
 | 
						|
      unsigned DiagID = Diags.getCustomDiagID(
 | 
						|
          DiagnosticsEngine::Error,
 | 
						|
          "cannot yet mangle __builtin_omp_required_simd_align expression");
 | 
						|
      Diags.Report(DiagID);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    if (SAE->isArgumentType()) {
 | 
						|
      Out << 't';
 | 
						|
      mangleType(SAE->getArgumentType());
 | 
						|
    } else {
 | 
						|
      Out << 'z';
 | 
						|
      mangleExpression(SAE->getArgumentExpr());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXThrowExprClass: {
 | 
						|
    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
 | 
						|
    //  <expression> ::= tw <expression>  # throw expression
 | 
						|
    //               ::= tr               # rethrow
 | 
						|
    if (TE->getSubExpr()) {
 | 
						|
      Out << "tw";
 | 
						|
      mangleExpression(TE->getSubExpr());
 | 
						|
    } else {
 | 
						|
      Out << "tr";
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXTypeidExprClass: {
 | 
						|
    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
 | 
						|
    //  <expression> ::= ti <type>        # typeid (type)
 | 
						|
    //               ::= te <expression>  # typeid (expression)
 | 
						|
    if (TIE->isTypeOperand()) {
 | 
						|
      Out << "ti";
 | 
						|
      mangleType(TIE->getTypeOperand(Context.getASTContext()));
 | 
						|
    } else {
 | 
						|
      Out << "te";
 | 
						|
      mangleExpression(TIE->getExprOperand());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXDeleteExprClass: {
 | 
						|
    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
 | 
						|
    //  <expression> ::= [gs] dl <expression>  # [::] delete expr
 | 
						|
    //               ::= [gs] da <expression>  # [::] delete [] expr
 | 
						|
    if (DE->isGlobalDelete()) Out << "gs";
 | 
						|
    Out << (DE->isArrayForm() ? "da" : "dl");
 | 
						|
    mangleExpression(DE->getArgument());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::UnaryOperatorClass: {
 | 
						|
    const UnaryOperator *UO = cast<UnaryOperator>(E);
 | 
						|
    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
 | 
						|
                       /*Arity=*/1);
 | 
						|
    mangleExpression(UO->getSubExpr());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ArraySubscriptExprClass: {
 | 
						|
    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
 | 
						|
 | 
						|
    // Array subscript is treated as a syntactically weird form of
 | 
						|
    // binary operator.
 | 
						|
    Out << "ix";
 | 
						|
    mangleExpression(AE->getLHS());
 | 
						|
    mangleExpression(AE->getRHS());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::MatrixSubscriptExprClass: {
 | 
						|
    const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
 | 
						|
    Out << "ixix";
 | 
						|
    mangleExpression(ME->getBase());
 | 
						|
    mangleExpression(ME->getRowIdx());
 | 
						|
    mangleExpression(ME->getColumnIdx());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CompoundAssignOperatorClass: // fallthrough
 | 
						|
  case Expr::BinaryOperatorClass: {
 | 
						|
    const BinaryOperator *BO = cast<BinaryOperator>(E);
 | 
						|
    if (BO->getOpcode() == BO_PtrMemD)
 | 
						|
      Out << "ds";
 | 
						|
    else
 | 
						|
      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
 | 
						|
                         /*Arity=*/2);
 | 
						|
    mangleExpression(BO->getLHS());
 | 
						|
    mangleExpression(BO->getRHS());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXRewrittenBinaryOperatorClass: {
 | 
						|
    // The mangled form represents the original syntax.
 | 
						|
    CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
 | 
						|
        cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
 | 
						|
    mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
 | 
						|
                       /*Arity=*/2);
 | 
						|
    mangleExpression(Decomposed.LHS);
 | 
						|
    mangleExpression(Decomposed.RHS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ConditionalOperatorClass: {
 | 
						|
    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
 | 
						|
    mangleOperatorName(OO_Conditional, /*Arity=*/3);
 | 
						|
    mangleExpression(CO->getCond());
 | 
						|
    mangleExpression(CO->getLHS(), Arity);
 | 
						|
    mangleExpression(CO->getRHS(), Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ImplicitCastExprClass: {
 | 
						|
    ImplicitlyConvertedToType = E->getType();
 | 
						|
    E = cast<ImplicitCastExpr>(E)->getSubExpr();
 | 
						|
    goto recurse;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ObjCBridgedCastExprClass: {
 | 
						|
    // Mangle ownership casts as a vendor extended operator __bridge,
 | 
						|
    // __bridge_transfer, or __bridge_retain.
 | 
						|
    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
 | 
						|
    Out << "v1U" << Kind.size() << Kind;
 | 
						|
  }
 | 
						|
  // Fall through to mangle the cast itself.
 | 
						|
  LLVM_FALLTHROUGH;
 | 
						|
 | 
						|
  case Expr::CStyleCastExprClass:
 | 
						|
    mangleCastExpression(E, "cv");
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CXXFunctionalCastExprClass: {
 | 
						|
    auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
 | 
						|
    // FIXME: Add isImplicit to CXXConstructExpr.
 | 
						|
    if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
 | 
						|
      if (CCE->getParenOrBraceRange().isInvalid())
 | 
						|
        Sub = CCE->getArg(0)->IgnoreImplicit();
 | 
						|
    if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
 | 
						|
      Sub = StdInitList->getSubExpr()->IgnoreImplicit();
 | 
						|
    if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
 | 
						|
      Out << "tl";
 | 
						|
      mangleType(E->getType());
 | 
						|
      mangleInitListElements(IL);
 | 
						|
      Out << "E";
 | 
						|
    } else {
 | 
						|
      mangleCastExpression(E, "cv");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXStaticCastExprClass:
 | 
						|
    mangleCastExpression(E, "sc");
 | 
						|
    break;
 | 
						|
  case Expr::CXXDynamicCastExprClass:
 | 
						|
    mangleCastExpression(E, "dc");
 | 
						|
    break;
 | 
						|
  case Expr::CXXReinterpretCastExprClass:
 | 
						|
    mangleCastExpression(E, "rc");
 | 
						|
    break;
 | 
						|
  case Expr::CXXConstCastExprClass:
 | 
						|
    mangleCastExpression(E, "cc");
 | 
						|
    break;
 | 
						|
  case Expr::CXXAddrspaceCastExprClass:
 | 
						|
    mangleCastExpression(E, "ac");
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CXXOperatorCallExprClass: {
 | 
						|
    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
 | 
						|
    unsigned NumArgs = CE->getNumArgs();
 | 
						|
    // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
 | 
						|
    // (the enclosing MemberExpr covers the syntactic portion).
 | 
						|
    if (CE->getOperator() != OO_Arrow)
 | 
						|
      mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
 | 
						|
    // Mangle the arguments.
 | 
						|
    for (unsigned i = 0; i != NumArgs; ++i)
 | 
						|
      mangleExpression(CE->getArg(i));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ParenExprClass:
 | 
						|
    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
 | 
						|
    break;
 | 
						|
 | 
						|
 | 
						|
  case Expr::ConceptSpecializationExprClass: {
 | 
						|
    //  <expr-primary> ::= L <mangled-name> E # external name
 | 
						|
    Out << "L_Z";
 | 
						|
    auto *CSE = cast<ConceptSpecializationExpr>(E);
 | 
						|
    mangleTemplateName(CSE->getNamedConcept(),
 | 
						|
                       CSE->getTemplateArguments().data(),
 | 
						|
                       CSE->getTemplateArguments().size());
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::DeclRefExprClass:
 | 
						|
    mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::SubstNonTypeTemplateParmPackExprClass:
 | 
						|
    // FIXME: not clear how to mangle this!
 | 
						|
    // template <unsigned N...> class A {
 | 
						|
    //   template <class U...> void foo(U (&x)[N]...);
 | 
						|
    // };
 | 
						|
    Out << "_SUBSTPACK_";
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::FunctionParmPackExprClass: {
 | 
						|
    // FIXME: not clear how to mangle this!
 | 
						|
    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
 | 
						|
    Out << "v110_SUBSTPACK";
 | 
						|
    mangleDeclRefExpr(FPPE->getParameterPack());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::DependentScopeDeclRefExprClass: {
 | 
						|
    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
 | 
						|
    mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
 | 
						|
                         DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
 | 
						|
                         Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXBindTemporaryExprClass:
 | 
						|
    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::ExprWithCleanupsClass:
 | 
						|
    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::FloatingLiteralClass: {
 | 
						|
    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
 | 
						|
    Out << 'L';
 | 
						|
    mangleType(FL->getType());
 | 
						|
    mangleFloat(FL->getValue());
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CharacterLiteralClass:
 | 
						|
    Out << 'L';
 | 
						|
    mangleType(E->getType());
 | 
						|
    Out << cast<CharacterLiteral>(E)->getValue();
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
 | 
						|
  // FIXME. __objc_yes/__objc_no are mangled same as true/false
 | 
						|
  case Expr::ObjCBoolLiteralExprClass:
 | 
						|
    Out << "Lb";
 | 
						|
    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CXXBoolLiteralExprClass:
 | 
						|
    Out << "Lb";
 | 
						|
    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::IntegerLiteralClass: {
 | 
						|
    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
 | 
						|
    if (E->getType()->isSignedIntegerType())
 | 
						|
      Value.setIsSigned(true);
 | 
						|
    mangleIntegerLiteral(E->getType(), Value);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ImaginaryLiteralClass: {
 | 
						|
    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
 | 
						|
    // Mangle as if a complex literal.
 | 
						|
    // Proposal from David Vandevoorde, 2010.06.30.
 | 
						|
    Out << 'L';
 | 
						|
    mangleType(E->getType());
 | 
						|
    if (const FloatingLiteral *Imag =
 | 
						|
          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
 | 
						|
      // Mangle a floating-point zero of the appropriate type.
 | 
						|
      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
 | 
						|
      Out << '_';
 | 
						|
      mangleFloat(Imag->getValue());
 | 
						|
    } else {
 | 
						|
      Out << "0_";
 | 
						|
      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
 | 
						|
      if (IE->getSubExpr()->getType()->isSignedIntegerType())
 | 
						|
        Value.setIsSigned(true);
 | 
						|
      mangleNumber(Value);
 | 
						|
    }
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::StringLiteralClass: {
 | 
						|
    // Revised proposal from David Vandervoorde, 2010.07.15.
 | 
						|
    Out << 'L';
 | 
						|
    assert(isa<ConstantArrayType>(E->getType()));
 | 
						|
    mangleType(E->getType());
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::GNUNullExprClass:
 | 
						|
    // Mangle as if an integer literal 0.
 | 
						|
    Out << 'L';
 | 
						|
    mangleType(E->getType());
 | 
						|
    Out << "0E";
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CXXNullPtrLiteralExprClass: {
 | 
						|
    Out << "LDnE";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::PackExpansionExprClass:
 | 
						|
    Out << "sp";
 | 
						|
    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::SizeOfPackExprClass: {
 | 
						|
    auto *SPE = cast<SizeOfPackExpr>(E);
 | 
						|
    if (SPE->isPartiallySubstituted()) {
 | 
						|
      Out << "sP";
 | 
						|
      for (const auto &A : SPE->getPartialArguments())
 | 
						|
        mangleTemplateArg(A);
 | 
						|
      Out << "E";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Out << "sZ";
 | 
						|
    const NamedDecl *Pack = SPE->getPack();
 | 
						|
    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
 | 
						|
      mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
 | 
						|
    else if (const NonTypeTemplateParmDecl *NTTP
 | 
						|
                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
 | 
						|
      mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
 | 
						|
    else if (const TemplateTemplateParmDecl *TempTP
 | 
						|
                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
 | 
						|
      mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
 | 
						|
    else
 | 
						|
      mangleFunctionParam(cast<ParmVarDecl>(Pack));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::MaterializeTemporaryExprClass: {
 | 
						|
    mangleExpression(cast<MaterializeTemporaryExpr>(E)->getSubExpr());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXFoldExprClass: {
 | 
						|
    auto *FE = cast<CXXFoldExpr>(E);
 | 
						|
    if (FE->isLeftFold())
 | 
						|
      Out << (FE->getInit() ? "fL" : "fl");
 | 
						|
    else
 | 
						|
      Out << (FE->getInit() ? "fR" : "fr");
 | 
						|
 | 
						|
    if (FE->getOperator() == BO_PtrMemD)
 | 
						|
      Out << "ds";
 | 
						|
    else
 | 
						|
      mangleOperatorName(
 | 
						|
          BinaryOperator::getOverloadedOperator(FE->getOperator()),
 | 
						|
          /*Arity=*/2);
 | 
						|
 | 
						|
    if (FE->getLHS())
 | 
						|
      mangleExpression(FE->getLHS());
 | 
						|
    if (FE->getRHS())
 | 
						|
      mangleExpression(FE->getRHS());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXThisExprClass:
 | 
						|
    Out << "fpT";
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CoawaitExprClass:
 | 
						|
    // FIXME: Propose a non-vendor mangling.
 | 
						|
    Out << "v18co_await";
 | 
						|
    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::DependentCoawaitExprClass:
 | 
						|
    // FIXME: Propose a non-vendor mangling.
 | 
						|
    Out << "v18co_await";
 | 
						|
    mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CoyieldExprClass:
 | 
						|
    // FIXME: Propose a non-vendor mangling.
 | 
						|
    Out << "v18co_yield";
 | 
						|
    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Mangle an expression which refers to a parameter variable.
 | 
						|
///
 | 
						|
/// <expression>     ::= <function-param>
 | 
						|
/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
 | 
						|
/// <function-param> ::= fp <top-level CV-qualifiers>
 | 
						|
///                      <parameter-2 non-negative number> _ # L == 0, I > 0
 | 
						|
/// <function-param> ::= fL <L-1 non-negative number>
 | 
						|
///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
 | 
						|
/// <function-param> ::= fL <L-1 non-negative number>
 | 
						|
///                      p <top-level CV-qualifiers>
 | 
						|
///                      <I-1 non-negative number> _         # L > 0, I > 0
 | 
						|
///
 | 
						|
/// L is the nesting depth of the parameter, defined as 1 if the
 | 
						|
/// parameter comes from the innermost function prototype scope
 | 
						|
/// enclosing the current context, 2 if from the next enclosing
 | 
						|
/// function prototype scope, and so on, with one special case: if
 | 
						|
/// we've processed the full parameter clause for the innermost
 | 
						|
/// function type, then L is one less.  This definition conveniently
 | 
						|
/// makes it irrelevant whether a function's result type was written
 | 
						|
/// trailing or leading, but is otherwise overly complicated; the
 | 
						|
/// numbering was first designed without considering references to
 | 
						|
/// parameter in locations other than return types, and then the
 | 
						|
/// mangling had to be generalized without changing the existing
 | 
						|
/// manglings.
 | 
						|
///
 | 
						|
/// I is the zero-based index of the parameter within its parameter
 | 
						|
/// declaration clause.  Note that the original ABI document describes
 | 
						|
/// this using 1-based ordinals.
 | 
						|
void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
 | 
						|
  unsigned parmDepth = parm->getFunctionScopeDepth();
 | 
						|
  unsigned parmIndex = parm->getFunctionScopeIndex();
 | 
						|
 | 
						|
  // Compute 'L'.
 | 
						|
  // parmDepth does not include the declaring function prototype.
 | 
						|
  // FunctionTypeDepth does account for that.
 | 
						|
  assert(parmDepth < FunctionTypeDepth.getDepth());
 | 
						|
  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
 | 
						|
  if (FunctionTypeDepth.isInResultType())
 | 
						|
    nestingDepth--;
 | 
						|
 | 
						|
  if (nestingDepth == 0) {
 | 
						|
    Out << "fp";
 | 
						|
  } else {
 | 
						|
    Out << "fL" << (nestingDepth - 1) << 'p';
 | 
						|
  }
 | 
						|
 | 
						|
  // Top-level qualifiers.  We don't have to worry about arrays here,
 | 
						|
  // because parameters declared as arrays should already have been
 | 
						|
  // transformed to have pointer type. FIXME: apparently these don't
 | 
						|
  // get mangled if used as an rvalue of a known non-class type?
 | 
						|
  assert(!parm->getType()->isArrayType()
 | 
						|
         && "parameter's type is still an array type?");
 | 
						|
 | 
						|
  if (const DependentAddressSpaceType *DAST =
 | 
						|
      dyn_cast<DependentAddressSpaceType>(parm->getType())) {
 | 
						|
    mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
 | 
						|
  } else {
 | 
						|
    mangleQualifiers(parm->getType().getQualifiers());
 | 
						|
  }
 | 
						|
 | 
						|
  // Parameter index.
 | 
						|
  if (parmIndex != 0) {
 | 
						|
    Out << (parmIndex - 1);
 | 
						|
  }
 | 
						|
  Out << '_';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
 | 
						|
                                       const CXXRecordDecl *InheritedFrom) {
 | 
						|
  // <ctor-dtor-name> ::= C1  # complete object constructor
 | 
						|
  //                  ::= C2  # base object constructor
 | 
						|
  //                  ::= CI1 <type> # complete inheriting constructor
 | 
						|
  //                  ::= CI2 <type> # base inheriting constructor
 | 
						|
  //
 | 
						|
  // In addition, C5 is a comdat name with C1 and C2 in it.
 | 
						|
  Out << 'C';
 | 
						|
  if (InheritedFrom)
 | 
						|
    Out << 'I';
 | 
						|
  switch (T) {
 | 
						|
  case Ctor_Complete:
 | 
						|
    Out << '1';
 | 
						|
    break;
 | 
						|
  case Ctor_Base:
 | 
						|
    Out << '2';
 | 
						|
    break;
 | 
						|
  case Ctor_Comdat:
 | 
						|
    Out << '5';
 | 
						|
    break;
 | 
						|
  case Ctor_DefaultClosure:
 | 
						|
  case Ctor_CopyingClosure:
 | 
						|
    llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
 | 
						|
  }
 | 
						|
  if (InheritedFrom)
 | 
						|
    mangleName(InheritedFrom);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
 | 
						|
  // <ctor-dtor-name> ::= D0  # deleting destructor
 | 
						|
  //                  ::= D1  # complete object destructor
 | 
						|
  //                  ::= D2  # base object destructor
 | 
						|
  //
 | 
						|
  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
 | 
						|
  switch (T) {
 | 
						|
  case Dtor_Deleting:
 | 
						|
    Out << "D0";
 | 
						|
    break;
 | 
						|
  case Dtor_Complete:
 | 
						|
    Out << "D1";
 | 
						|
    break;
 | 
						|
  case Dtor_Base:
 | 
						|
    Out << "D2";
 | 
						|
    break;
 | 
						|
  case Dtor_Comdat:
 | 
						|
    Out << "D5";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
 | 
						|
                                        unsigned NumTemplateArgs) {
 | 
						|
  // <template-args> ::= I <template-arg>+ E
 | 
						|
  Out << 'I';
 | 
						|
  for (unsigned i = 0; i != NumTemplateArgs; ++i)
 | 
						|
    mangleTemplateArg(TemplateArgs[i].getArgument());
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
 | 
						|
  // <template-args> ::= I <template-arg>+ E
 | 
						|
  Out << 'I';
 | 
						|
  for (unsigned i = 0, e = AL.size(); i != e; ++i)
 | 
						|
    mangleTemplateArg(AL[i]);
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
 | 
						|
                                        unsigned NumTemplateArgs) {
 | 
						|
  // <template-args> ::= I <template-arg>+ E
 | 
						|
  Out << 'I';
 | 
						|
  for (unsigned i = 0; i != NumTemplateArgs; ++i)
 | 
						|
    mangleTemplateArg(TemplateArgs[i]);
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
 | 
						|
  // <template-arg> ::= <type>              # type or template
 | 
						|
  //                ::= X <expression> E    # expression
 | 
						|
  //                ::= <expr-primary>      # simple expressions
 | 
						|
  //                ::= J <template-arg>* E # argument pack
 | 
						|
  if (!A.isInstantiationDependent() || A.isDependent())
 | 
						|
    A = Context.getASTContext().getCanonicalTemplateArgument(A);
 | 
						|
 | 
						|
  switch (A.getKind()) {
 | 
						|
  case TemplateArgument::Null:
 | 
						|
    llvm_unreachable("Cannot mangle NULL template argument");
 | 
						|
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    mangleType(A.getAsType());
 | 
						|
    break;
 | 
						|
  case TemplateArgument::Template:
 | 
						|
    // This is mangled as <type>.
 | 
						|
    mangleType(A.getAsTemplate());
 | 
						|
    break;
 | 
						|
  case TemplateArgument::TemplateExpansion:
 | 
						|
    // <type>  ::= Dp <type>          # pack expansion (C++0x)
 | 
						|
    Out << "Dp";
 | 
						|
    mangleType(A.getAsTemplateOrTemplatePattern());
 | 
						|
    break;
 | 
						|
  case TemplateArgument::Expression: {
 | 
						|
    // It's possible to end up with a DeclRefExpr here in certain
 | 
						|
    // dependent cases, in which case we should mangle as a
 | 
						|
    // declaration.
 | 
						|
    const Expr *E = A.getAsExpr()->IgnoreParenImpCasts();
 | 
						|
    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
 | 
						|
      const ValueDecl *D = DRE->getDecl();
 | 
						|
      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
 | 
						|
        Out << 'L';
 | 
						|
        mangle(D);
 | 
						|
        Out << 'E';
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Out << 'X';
 | 
						|
    mangleExpression(E);
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TemplateArgument::Integral:
 | 
						|
    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
 | 
						|
    break;
 | 
						|
  case TemplateArgument::Declaration: {
 | 
						|
    //  <expr-primary> ::= L <mangled-name> E # external name
 | 
						|
    // Clang produces AST's where pointer-to-member-function expressions
 | 
						|
    // and pointer-to-function expressions are represented as a declaration not
 | 
						|
    // an expression. We compensate for it here to produce the correct mangling.
 | 
						|
    ValueDecl *D = A.getAsDecl();
 | 
						|
    bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
 | 
						|
    if (compensateMangling) {
 | 
						|
      Out << 'X';
 | 
						|
      mangleOperatorName(OO_Amp, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << 'L';
 | 
						|
    // References to external entities use the mangled name; if the name would
 | 
						|
    // not normally be mangled then mangle it as unqualified.
 | 
						|
    mangle(D);
 | 
						|
    Out << 'E';
 | 
						|
 | 
						|
    if (compensateMangling)
 | 
						|
      Out << 'E';
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TemplateArgument::NullPtr: {
 | 
						|
    //  <expr-primary> ::= L <type> 0 E
 | 
						|
    Out << 'L';
 | 
						|
    mangleType(A.getNullPtrType());
 | 
						|
    Out << "0E";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TemplateArgument::Pack: {
 | 
						|
    //  <template-arg> ::= J <template-arg>* E
 | 
						|
    Out << 'J';
 | 
						|
    for (const auto &P : A.pack_elements())
 | 
						|
      mangleTemplateArg(P);
 | 
						|
    Out << 'E';
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
 | 
						|
  // <template-param> ::= T_    # first template parameter
 | 
						|
  //                  ::= T <parameter-2 non-negative number> _
 | 
						|
  //                  ::= TL <L-1 non-negative number> __
 | 
						|
  //                  ::= TL <L-1 non-negative number> _
 | 
						|
  //                         <parameter-2 non-negative number> _
 | 
						|
  //
 | 
						|
  // The latter two manglings are from a proposal here:
 | 
						|
  // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
 | 
						|
  Out << 'T';
 | 
						|
  if (Depth != 0)
 | 
						|
    Out << 'L' << (Depth - 1) << '_';
 | 
						|
  if (Index != 0)
 | 
						|
    Out << (Index - 1);
 | 
						|
  Out << '_';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleSeqID(unsigned SeqID) {
 | 
						|
  if (SeqID == 1)
 | 
						|
    Out << '0';
 | 
						|
  else if (SeqID > 1) {
 | 
						|
    SeqID--;
 | 
						|
 | 
						|
    // <seq-id> is encoded in base-36, using digits and upper case letters.
 | 
						|
    char Buffer[7]; // log(2**32) / log(36) ~= 7
 | 
						|
    MutableArrayRef<char> BufferRef(Buffer);
 | 
						|
    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
 | 
						|
 | 
						|
    for (; SeqID != 0; SeqID /= 36) {
 | 
						|
      unsigned C = SeqID % 36;
 | 
						|
      *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
 | 
						|
    }
 | 
						|
 | 
						|
    Out.write(I.base(), I - BufferRef.rbegin());
 | 
						|
  }
 | 
						|
  Out << '_';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
 | 
						|
  bool result = mangleSubstitution(tname);
 | 
						|
  assert(result && "no existing substitution for template name");
 | 
						|
  (void) result;
 | 
						|
}
 | 
						|
 | 
						|
// <substitution> ::= S <seq-id> _
 | 
						|
//                ::= S_
 | 
						|
bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
 | 
						|
  // Try one of the standard substitutions first.
 | 
						|
  if (mangleStandardSubstitution(ND))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ND = cast<NamedDecl>(ND->getCanonicalDecl());
 | 
						|
  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the given type has any qualifiers that are relevant for
 | 
						|
/// substitutions.
 | 
						|
static bool hasMangledSubstitutionQualifiers(QualType T) {
 | 
						|
  Qualifiers Qs = T.getQualifiers();
 | 
						|
  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
 | 
						|
}
 | 
						|
 | 
						|
bool CXXNameMangler::mangleSubstitution(QualType T) {
 | 
						|
  if (!hasMangledSubstitutionQualifiers(T)) {
 | 
						|
    if (const RecordType *RT = T->getAs<RecordType>())
 | 
						|
      return mangleSubstitution(RT->getDecl());
 | 
						|
  }
 | 
						|
 | 
						|
  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
 | 
						|
 | 
						|
  return mangleSubstitution(TypePtr);
 | 
						|
}
 | 
						|
 | 
						|
bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
 | 
						|
  if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | 
						|
    return mangleSubstitution(TD);
 | 
						|
 | 
						|
  Template = Context.getASTContext().getCanonicalTemplateName(Template);
 | 
						|
  return mangleSubstitution(
 | 
						|
                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
 | 
						|
}
 | 
						|
 | 
						|
bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
 | 
						|
  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
 | 
						|
  if (I == Substitutions.end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned SeqID = I->second;
 | 
						|
  Out << 'S';
 | 
						|
  mangleSeqID(SeqID);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isCharType(QualType T) {
 | 
						|
  if (T.isNull())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
 | 
						|
    T->isSpecificBuiltinType(BuiltinType::Char_U);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns whether a given type is a template specialization of a given name
 | 
						|
/// with a single argument of type char.
 | 
						|
static bool isCharSpecialization(QualType T, const char *Name) {
 | 
						|
  if (T.isNull())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const RecordType *RT = T->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const ClassTemplateSpecializationDecl *SD =
 | 
						|
    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
 | 
						|
  if (!SD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isStdNamespace(getEffectiveDeclContext(SD)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
 | 
						|
  if (TemplateArgs.size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isCharType(TemplateArgs[0].getAsType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return SD->getIdentifier()->getName() == Name;
 | 
						|
}
 | 
						|
 | 
						|
template <std::size_t StrLen>
 | 
						|
static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
 | 
						|
                                       const char (&Str)[StrLen]) {
 | 
						|
  if (!SD->getIdentifier()->isStr(Str))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
 | 
						|
  if (TemplateArgs.size() != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isCharType(TemplateArgs[0].getAsType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
 | 
						|
  // <substitution> ::= St # ::std::
 | 
						|
  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
 | 
						|
    if (isStd(NS)) {
 | 
						|
      Out << "St";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
 | 
						|
    if (!isStdNamespace(getEffectiveDeclContext(TD)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // <substitution> ::= Sa # ::std::allocator
 | 
						|
    if (TD->getIdentifier()->isStr("allocator")) {
 | 
						|
      Out << "Sa";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // <<substitution> ::= Sb # ::std::basic_string
 | 
						|
    if (TD->getIdentifier()->isStr("basic_string")) {
 | 
						|
      Out << "Sb";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ClassTemplateSpecializationDecl *SD =
 | 
						|
        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
 | 
						|
    if (!isStdNamespace(getEffectiveDeclContext(SD)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    //    <substitution> ::= Ss # ::std::basic_string<char,
 | 
						|
    //                            ::std::char_traits<char>,
 | 
						|
    //                            ::std::allocator<char> >
 | 
						|
    if (SD->getIdentifier()->isStr("basic_string")) {
 | 
						|
      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
 | 
						|
 | 
						|
      if (TemplateArgs.size() != 3)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!isCharType(TemplateArgs[0].getAsType()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
 | 
						|
        return false;
 | 
						|
 | 
						|
      Out << "Ss";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    //    <substitution> ::= Si # ::std::basic_istream<char,
 | 
						|
    //                            ::std::char_traits<char> >
 | 
						|
    if (isStreamCharSpecialization(SD, "basic_istream")) {
 | 
						|
      Out << "Si";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    //    <substitution> ::= So # ::std::basic_ostream<char,
 | 
						|
    //                            ::std::char_traits<char> >
 | 
						|
    if (isStreamCharSpecialization(SD, "basic_ostream")) {
 | 
						|
      Out << "So";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    //    <substitution> ::= Sd # ::std::basic_iostream<char,
 | 
						|
    //                            ::std::char_traits<char> >
 | 
						|
    if (isStreamCharSpecialization(SD, "basic_iostream")) {
 | 
						|
      Out << "Sd";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::addSubstitution(QualType T) {
 | 
						|
  if (!hasMangledSubstitutionQualifiers(T)) {
 | 
						|
    if (const RecordType *RT = T->getAs<RecordType>()) {
 | 
						|
      addSubstitution(RT->getDecl());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
 | 
						|
  addSubstitution(TypePtr);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::addSubstitution(TemplateName Template) {
 | 
						|
  if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | 
						|
    return addSubstitution(TD);
 | 
						|
 | 
						|
  Template = Context.getASTContext().getCanonicalTemplateName(Template);
 | 
						|
  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
 | 
						|
  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
 | 
						|
  Substitutions[Ptr] = SeqID++;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
 | 
						|
  assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
 | 
						|
  if (Other->SeqID > SeqID) {
 | 
						|
    Substitutions.swap(Other->Substitutions);
 | 
						|
    SeqID = Other->SeqID;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CXXNameMangler::AbiTagList
 | 
						|
CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
 | 
						|
  // When derived abi tags are disabled there is no need to make any list.
 | 
						|
  if (DisableDerivedAbiTags)
 | 
						|
    return AbiTagList();
 | 
						|
 | 
						|
  llvm::raw_null_ostream NullOutStream;
 | 
						|
  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
 | 
						|
  TrackReturnTypeTags.disableDerivedAbiTags();
 | 
						|
 | 
						|
  const FunctionProtoType *Proto =
 | 
						|
      cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
 | 
						|
  FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
 | 
						|
  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
 | 
						|
  TrackReturnTypeTags.mangleType(Proto->getReturnType());
 | 
						|
  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
 | 
						|
  TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
 | 
						|
 | 
						|
  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
 | 
						|
}
 | 
						|
 | 
						|
CXXNameMangler::AbiTagList
 | 
						|
CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
 | 
						|
  // When derived abi tags are disabled there is no need to make any list.
 | 
						|
  if (DisableDerivedAbiTags)
 | 
						|
    return AbiTagList();
 | 
						|
 | 
						|
  llvm::raw_null_ostream NullOutStream;
 | 
						|
  CXXNameMangler TrackVariableType(*this, NullOutStream);
 | 
						|
  TrackVariableType.disableDerivedAbiTags();
 | 
						|
 | 
						|
  TrackVariableType.mangleType(VD->getType());
 | 
						|
 | 
						|
  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
 | 
						|
}
 | 
						|
 | 
						|
bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
 | 
						|
                                       const VarDecl *VD) {
 | 
						|
  llvm::raw_null_ostream NullOutStream;
 | 
						|
  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
 | 
						|
  TrackAbiTags.mangle(VD);
 | 
						|
  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
 | 
						|
/// Mangles the name of the declaration D and emits that name to the given
 | 
						|
/// output stream.
 | 
						|
///
 | 
						|
/// If the declaration D requires a mangled name, this routine will emit that
 | 
						|
/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
 | 
						|
/// and this routine will return false. In this case, the caller should just
 | 
						|
/// emit the identifier of the declaration (\c D->getIdentifier()) as its
 | 
						|
/// name.
 | 
						|
void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
 | 
						|
                                             raw_ostream &Out) {
 | 
						|
  const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
 | 
						|
  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
 | 
						|
          "Invalid mangleName() call, argument is not a variable or function!");
 | 
						|
 | 
						|
  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
 | 
						|
                                 getASTContext().getSourceManager(),
 | 
						|
                                 "Mangling declaration");
 | 
						|
 | 
						|
  if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
 | 
						|
    auto Type = GD.getCtorType();
 | 
						|
    CXXNameMangler Mangler(*this, Out, CD, Type);
 | 
						|
    return Mangler.mangle(GlobalDecl(CD, Type));
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
 | 
						|
    auto Type = GD.getDtorType();
 | 
						|
    CXXNameMangler Mangler(*this, Out, DD, Type);
 | 
						|
    return Mangler.mangle(GlobalDecl(DD, Type));
 | 
						|
  }
 | 
						|
 | 
						|
  CXXNameMangler Mangler(*this, Out, D);
 | 
						|
  Mangler.mangle(GD);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
 | 
						|
                                                   raw_ostream &Out) {
 | 
						|
  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
 | 
						|
  Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
 | 
						|
                                                   raw_ostream &Out) {
 | 
						|
  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
 | 
						|
  Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
 | 
						|
                                           const ThunkInfo &Thunk,
 | 
						|
                                           raw_ostream &Out) {
 | 
						|
  //  <special-name> ::= T <call-offset> <base encoding>
 | 
						|
  //                      # base is the nominal target function of thunk
 | 
						|
  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
 | 
						|
  //                      # base is the nominal target function of thunk
 | 
						|
  //                      # first call-offset is 'this' adjustment
 | 
						|
  //                      # second call-offset is result adjustment
 | 
						|
 | 
						|
  assert(!isa<CXXDestructorDecl>(MD) &&
 | 
						|
         "Use mangleCXXDtor for destructor decls!");
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZT";
 | 
						|
  if (!Thunk.Return.isEmpty())
 | 
						|
    Mangler.getStream() << 'c';
 | 
						|
 | 
						|
  // Mangle the 'this' pointer adjustment.
 | 
						|
  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
 | 
						|
                           Thunk.This.Virtual.Itanium.VCallOffsetOffset);
 | 
						|
 | 
						|
  // Mangle the return pointer adjustment if there is one.
 | 
						|
  if (!Thunk.Return.isEmpty())
 | 
						|
    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
 | 
						|
                             Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
 | 
						|
 | 
						|
  Mangler.mangleFunctionEncoding(MD);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleCXXDtorThunk(
 | 
						|
    const CXXDestructorDecl *DD, CXXDtorType Type,
 | 
						|
    const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
 | 
						|
  //  <special-name> ::= T <call-offset> <base encoding>
 | 
						|
  //                      # base is the nominal target function of thunk
 | 
						|
  CXXNameMangler Mangler(*this, Out, DD, Type);
 | 
						|
  Mangler.getStream() << "_ZT";
 | 
						|
 | 
						|
  // Mangle the 'this' pointer adjustment.
 | 
						|
  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
 | 
						|
                           ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
 | 
						|
 | 
						|
  Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the mangled name for a guard variable for the passed in VarDecl.
 | 
						|
void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
 | 
						|
                                                         raw_ostream &Out) {
 | 
						|
  //  <special-name> ::= GV <object name>       # Guard variable for one-time
 | 
						|
  //                                            # initialization
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
 | 
						|
  // be a bug that is fixed in trunk.
 | 
						|
  Mangler.getStream() << "_ZGV";
 | 
						|
  Mangler.mangleName(D);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
 | 
						|
                                                        raw_ostream &Out) {
 | 
						|
  // These symbols are internal in the Itanium ABI, so the names don't matter.
 | 
						|
  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
 | 
						|
  // avoid duplicate symbols.
 | 
						|
  Out << "__cxx_global_var_init";
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
 | 
						|
                                                             raw_ostream &Out) {
 | 
						|
  // Prefix the mangling of D with __dtor_.
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "__dtor_";
 | 
						|
  if (shouldMangleDeclName(D))
 | 
						|
    Mangler.mangle(D);
 | 
						|
  else
 | 
						|
    Mangler.getStream() << D->getName();
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
 | 
						|
                                                           raw_ostream &Out) {
 | 
						|
  // Clang generates these internal-linkage functions as part of its
 | 
						|
  // implementation of the XL ABI.
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "__finalize_";
 | 
						|
  if (shouldMangleDeclName(D))
 | 
						|
    Mangler.mangle(D);
 | 
						|
  else
 | 
						|
    Mangler.getStream() << D->getName();
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleSEHFilterExpression(
 | 
						|
    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "__filt_";
 | 
						|
  if (shouldMangleDeclName(EnclosingDecl))
 | 
						|
    Mangler.mangle(EnclosingDecl);
 | 
						|
  else
 | 
						|
    Mangler.getStream() << EnclosingDecl->getName();
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
 | 
						|
    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "__fin_";
 | 
						|
  if (shouldMangleDeclName(EnclosingDecl))
 | 
						|
    Mangler.mangle(EnclosingDecl);
 | 
						|
  else
 | 
						|
    Mangler.getStream() << EnclosingDecl->getName();
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
 | 
						|
                                                            raw_ostream &Out) {
 | 
						|
  //  <special-name> ::= TH <object name>
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTH";
 | 
						|
  Mangler.mangleName(D);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
 | 
						|
                                                          raw_ostream &Out) {
 | 
						|
  //  <special-name> ::= TW <object name>
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTW";
 | 
						|
  Mangler.mangleName(D);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
 | 
						|
                                                        unsigned ManglingNumber,
 | 
						|
                                                        raw_ostream &Out) {
 | 
						|
  // We match the GCC mangling here.
 | 
						|
  //  <special-name> ::= GR <object name>
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZGR";
 | 
						|
  Mangler.mangleName(D);
 | 
						|
  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
 | 
						|
  Mangler.mangleSeqID(ManglingNumber - 1);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
 | 
						|
                                               raw_ostream &Out) {
 | 
						|
  // <special-name> ::= TV <type>  # virtual table
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTV";
 | 
						|
  Mangler.mangleNameOrStandardSubstitution(RD);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
 | 
						|
                                            raw_ostream &Out) {
 | 
						|
  // <special-name> ::= TT <type>  # VTT structure
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTT";
 | 
						|
  Mangler.mangleNameOrStandardSubstitution(RD);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
 | 
						|
                                                   int64_t Offset,
 | 
						|
                                                   const CXXRecordDecl *Type,
 | 
						|
                                                   raw_ostream &Out) {
 | 
						|
  // <special-name> ::= TC <type> <offset number> _ <base type>
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTC";
 | 
						|
  Mangler.mangleNameOrStandardSubstitution(RD);
 | 
						|
  Mangler.getStream() << Offset;
 | 
						|
  Mangler.getStream() << '_';
 | 
						|
  Mangler.mangleNameOrStandardSubstitution(Type);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
 | 
						|
  // <special-name> ::= TI <type>  # typeinfo structure
 | 
						|
  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTI";
 | 
						|
  Mangler.mangleType(Ty);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
 | 
						|
                                                 raw_ostream &Out) {
 | 
						|
  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTS";
 | 
						|
  Mangler.mangleType(Ty);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
 | 
						|
  mangleCXXRTTIName(Ty, Out);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
 | 
						|
  llvm_unreachable("Can't mangle string literals");
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
 | 
						|
                                               raw_ostream &Out) {
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.mangleLambdaSig(Lambda);
 | 
						|
}
 | 
						|
 | 
						|
ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context,
 | 
						|
                                                   DiagnosticsEngine &Diags,
 | 
						|
                                                   bool IsUniqueNameMangler) {
 | 
						|
  return new ItaniumMangleContextImpl(Context, Diags, IsUniqueNameMangler);
 | 
						|
}
 |