forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			333 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ThreadSafetyTIL.cpp ------------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
 | 
						|
#include "clang/Basic/LLVM.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace threadSafety;
 | 
						|
using namespace til;
 | 
						|
 | 
						|
StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) {
 | 
						|
  switch (Op) {
 | 
						|
    case UOP_Minus:    return "-";
 | 
						|
    case UOP_BitNot:   return "~";
 | 
						|
    case UOP_LogicNot: return "!";
 | 
						|
  }
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) {
 | 
						|
  switch (Op) {
 | 
						|
    case BOP_Mul:      return "*";
 | 
						|
    case BOP_Div:      return "/";
 | 
						|
    case BOP_Rem:      return "%";
 | 
						|
    case BOP_Add:      return "+";
 | 
						|
    case BOP_Sub:      return "-";
 | 
						|
    case BOP_Shl:      return "<<";
 | 
						|
    case BOP_Shr:      return ">>";
 | 
						|
    case BOP_BitAnd:   return "&";
 | 
						|
    case BOP_BitXor:   return "^";
 | 
						|
    case BOP_BitOr:    return "|";
 | 
						|
    case BOP_Eq:       return "==";
 | 
						|
    case BOP_Neq:      return "!=";
 | 
						|
    case BOP_Lt:       return "<";
 | 
						|
    case BOP_Leq:      return "<=";
 | 
						|
    case BOP_Cmp:      return "<=>";
 | 
						|
    case BOP_LogicAnd: return "&&";
 | 
						|
    case BOP_LogicOr:  return "||";
 | 
						|
  }
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
SExpr* Future::force() {
 | 
						|
  Status = FS_evaluating;
 | 
						|
  Result = compute();
 | 
						|
  Status = FS_done;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
unsigned BasicBlock::addPredecessor(BasicBlock *Pred) {
 | 
						|
  unsigned Idx = Predecessors.size();
 | 
						|
  Predecessors.reserveCheck(1, Arena);
 | 
						|
  Predecessors.push_back(Pred);
 | 
						|
  for (auto *E : Args) {
 | 
						|
    if (auto *Ph = dyn_cast<Phi>(E)) {
 | 
						|
      Ph->values().reserveCheck(1, Arena);
 | 
						|
      Ph->values().push_back(nullptr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Idx;
 | 
						|
}
 | 
						|
 | 
						|
void BasicBlock::reservePredecessors(unsigned NumPreds) {
 | 
						|
  Predecessors.reserve(NumPreds, Arena);
 | 
						|
  for (auto *E : Args) {
 | 
						|
    if (auto *Ph = dyn_cast<Phi>(E)) {
 | 
						|
      Ph->values().reserve(NumPreds, Arena);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// If E is a variable, then trace back through any aliases or redundant
 | 
						|
// Phi nodes to find the canonical definition.
 | 
						|
const SExpr *til::getCanonicalVal(const SExpr *E) {
 | 
						|
  while (true) {
 | 
						|
    if (const auto *V = dyn_cast<Variable>(E)) {
 | 
						|
      if (V->kind() == Variable::VK_Let) {
 | 
						|
        E = V->definition();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (const auto *Ph = dyn_cast<Phi>(E)) {
 | 
						|
      if (Ph->status() == Phi::PH_SingleVal) {
 | 
						|
        E = Ph->values()[0];
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
// If E is a variable, then trace back through any aliases or redundant
 | 
						|
// Phi nodes to find the canonical definition.
 | 
						|
// The non-const version will simplify incomplete Phi nodes.
 | 
						|
SExpr *til::simplifyToCanonicalVal(SExpr *E) {
 | 
						|
  while (true) {
 | 
						|
    if (auto *V = dyn_cast<Variable>(E)) {
 | 
						|
      if (V->kind() != Variable::VK_Let)
 | 
						|
        return V;
 | 
						|
      // Eliminate redundant variables, e.g. x = y, or x = 5,
 | 
						|
      // but keep anything more complicated.
 | 
						|
      if (til::ThreadSafetyTIL::isTrivial(V->definition())) {
 | 
						|
        E = V->definition();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    if (auto *Ph = dyn_cast<Phi>(E)) {
 | 
						|
      if (Ph->status() == Phi::PH_Incomplete)
 | 
						|
        simplifyIncompleteArg(Ph);
 | 
						|
      // Eliminate redundant Phi nodes.
 | 
						|
      if (Ph->status() == Phi::PH_SingleVal) {
 | 
						|
        E = Ph->values()[0];
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return E;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Trace the arguments of an incomplete Phi node to see if they have the same
 | 
						|
// canonical definition.  If so, mark the Phi node as redundant.
 | 
						|
// getCanonicalVal() will recursively call simplifyIncompletePhi().
 | 
						|
void til::simplifyIncompleteArg(til::Phi *Ph) {
 | 
						|
  assert(Ph && Ph->status() == Phi::PH_Incomplete);
 | 
						|
 | 
						|
  // eliminate infinite recursion -- assume that this node is not redundant.
 | 
						|
  Ph->setStatus(Phi::PH_MultiVal);
 | 
						|
 | 
						|
  SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);
 | 
						|
  for (unsigned i = 1, n = Ph->values().size(); i < n; ++i) {
 | 
						|
    SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);
 | 
						|
    if (Ei == Ph)
 | 
						|
      continue;  // Recursive reference to itself.  Don't count.
 | 
						|
    if (Ei != E0) {
 | 
						|
      return;    // Status is already set to MultiVal.
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Ph->setStatus(Phi::PH_SingleVal);
 | 
						|
}
 | 
						|
 | 
						|
// Renumbers the arguments and instructions to have unique, sequential IDs.
 | 
						|
unsigned BasicBlock::renumberInstrs(unsigned ID) {
 | 
						|
  for (auto *Arg : Args)
 | 
						|
    Arg->setID(this, ID++);
 | 
						|
  for (auto *Instr : Instrs)
 | 
						|
    Instr->setID(this, ID++);
 | 
						|
  TermInstr->setID(this, ID++);
 | 
						|
  return ID;
 | 
						|
}
 | 
						|
 | 
						|
// Sorts the CFGs blocks using a reverse post-order depth-first traversal.
 | 
						|
// Each block will be written into the Blocks array in order, and its BlockID
 | 
						|
// will be set to the index in the array.  Sorting should start from the entry
 | 
						|
// block, and ID should be the total number of blocks.
 | 
						|
unsigned BasicBlock::topologicalSort(SimpleArray<BasicBlock *> &Blocks,
 | 
						|
                                     unsigned ID) {
 | 
						|
  if (Visited) return ID;
 | 
						|
  Visited = true;
 | 
						|
  for (auto *Block : successors())
 | 
						|
    ID = Block->topologicalSort(Blocks, ID);
 | 
						|
  // set ID and update block array in place.
 | 
						|
  // We may lose pointers to unreachable blocks.
 | 
						|
  assert(ID > 0);
 | 
						|
  BlockID = --ID;
 | 
						|
  Blocks[BlockID] = this;
 | 
						|
  return ID;
 | 
						|
}
 | 
						|
 | 
						|
// Performs a reverse topological traversal, starting from the exit block and
 | 
						|
// following back-edges.  The dominator is serialized before any predecessors,
 | 
						|
// which guarantees that all blocks are serialized after their dominator and
 | 
						|
// before their post-dominator (because it's a reverse topological traversal).
 | 
						|
// ID should be initially set to 0.
 | 
						|
//
 | 
						|
// This sort assumes that (1) dominators have been computed, (2) there are no
 | 
						|
// critical edges, and (3) the entry block is reachable from the exit block
 | 
						|
// and no blocks are accessible via traversal of back-edges from the exit that
 | 
						|
// weren't accessible via forward edges from the entry.
 | 
						|
unsigned BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks,
 | 
						|
                                          unsigned ID) {
 | 
						|
  // Visited is assumed to have been set by the topologicalSort.  This pass
 | 
						|
  // assumes !Visited means that we've visited this node before.
 | 
						|
  if (!Visited) return ID;
 | 
						|
  Visited = false;
 | 
						|
  if (DominatorNode.Parent)
 | 
						|
    ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID);
 | 
						|
  for (auto *Pred : Predecessors)
 | 
						|
    ID = Pred->topologicalFinalSort(Blocks, ID);
 | 
						|
  assert(static_cast<size_t>(ID) < Blocks.size());
 | 
						|
  BlockID = ID++;
 | 
						|
  Blocks[BlockID] = this;
 | 
						|
  return ID;
 | 
						|
}
 | 
						|
 | 
						|
// Computes the immediate dominator of the current block.  Assumes that all of
 | 
						|
// its predecessors have already computed their dominators.  This is achieved
 | 
						|
// by visiting the nodes in topological order.
 | 
						|
void BasicBlock::computeDominator() {
 | 
						|
  BasicBlock *Candidate = nullptr;
 | 
						|
  // Walk backwards from each predecessor to find the common dominator node.
 | 
						|
  for (auto *Pred : Predecessors) {
 | 
						|
    // Skip back-edges
 | 
						|
    if (Pred->BlockID >= BlockID) continue;
 | 
						|
    // If we don't yet have a candidate for dominator yet, take this one.
 | 
						|
    if (Candidate == nullptr) {
 | 
						|
      Candidate = Pred;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Walk the alternate and current candidate back to find a common ancestor.
 | 
						|
    auto *Alternate = Pred;
 | 
						|
    while (Alternate != Candidate) {
 | 
						|
      if (Candidate->BlockID > Alternate->BlockID)
 | 
						|
        Candidate = Candidate->DominatorNode.Parent;
 | 
						|
      else
 | 
						|
        Alternate = Alternate->DominatorNode.Parent;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DominatorNode.Parent = Candidate;
 | 
						|
  DominatorNode.SizeOfSubTree = 1;
 | 
						|
}
 | 
						|
 | 
						|
// Computes the immediate post-dominator of the current block.  Assumes that all
 | 
						|
// of its successors have already computed their post-dominators.  This is
 | 
						|
// achieved visiting the nodes in reverse topological order.
 | 
						|
void BasicBlock::computePostDominator() {
 | 
						|
  BasicBlock *Candidate = nullptr;
 | 
						|
  // Walk back from each predecessor to find the common post-dominator node.
 | 
						|
  for (auto *Succ : successors()) {
 | 
						|
    // Skip back-edges
 | 
						|
    if (Succ->BlockID <= BlockID) continue;
 | 
						|
    // If we don't yet have a candidate for post-dominator yet, take this one.
 | 
						|
    if (Candidate == nullptr) {
 | 
						|
      Candidate = Succ;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Walk the alternate and current candidate back to find a common ancestor.
 | 
						|
    auto *Alternate = Succ;
 | 
						|
    while (Alternate != Candidate) {
 | 
						|
      if (Candidate->BlockID < Alternate->BlockID)
 | 
						|
        Candidate = Candidate->PostDominatorNode.Parent;
 | 
						|
      else
 | 
						|
        Alternate = Alternate->PostDominatorNode.Parent;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  PostDominatorNode.Parent = Candidate;
 | 
						|
  PostDominatorNode.SizeOfSubTree = 1;
 | 
						|
}
 | 
						|
 | 
						|
// Renumber instructions in all blocks
 | 
						|
void SCFG::renumberInstrs() {
 | 
						|
  unsigned InstrID = 0;
 | 
						|
  for (auto *Block : Blocks)
 | 
						|
    InstrID = Block->renumberInstrs(InstrID);
 | 
						|
}
 | 
						|
 | 
						|
static inline void computeNodeSize(BasicBlock *B,
 | 
						|
                                   BasicBlock::TopologyNode BasicBlock::*TN) {
 | 
						|
  BasicBlock::TopologyNode *N = &(B->*TN);
 | 
						|
  if (N->Parent) {
 | 
						|
    BasicBlock::TopologyNode *P = &(N->Parent->*TN);
 | 
						|
    // Initially set ID relative to the (as yet uncomputed) parent ID
 | 
						|
    N->NodeID = P->SizeOfSubTree;
 | 
						|
    P->SizeOfSubTree += N->SizeOfSubTree;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static inline void computeNodeID(BasicBlock *B,
 | 
						|
                                 BasicBlock::TopologyNode BasicBlock::*TN) {
 | 
						|
  BasicBlock::TopologyNode *N = &(B->*TN);
 | 
						|
  if (N->Parent) {
 | 
						|
    BasicBlock::TopologyNode *P = &(N->Parent->*TN);
 | 
						|
    N->NodeID += P->NodeID;    // Fix NodeIDs relative to starting node.
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Normalizes a CFG.  Normalization has a few major components:
 | 
						|
// 1) Removing unreachable blocks.
 | 
						|
// 2) Computing dominators and post-dominators
 | 
						|
// 3) Topologically sorting the blocks into the "Blocks" array.
 | 
						|
void SCFG::computeNormalForm() {
 | 
						|
  // Topologically sort the blocks starting from the entry block.
 | 
						|
  unsigned NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size());
 | 
						|
  if (NumUnreachableBlocks > 0) {
 | 
						|
    // If there were unreachable blocks shift everything down, and delete them.
 | 
						|
    for (unsigned I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) {
 | 
						|
      unsigned NI = I - NumUnreachableBlocks;
 | 
						|
      Blocks[NI] = Blocks[I];
 | 
						|
      Blocks[NI]->BlockID = NI;
 | 
						|
      // FIXME: clean up predecessor pointers to unreachable blocks?
 | 
						|
    }
 | 
						|
    Blocks.drop(NumUnreachableBlocks);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute dominators.
 | 
						|
  for (auto *Block : Blocks)
 | 
						|
    Block->computeDominator();
 | 
						|
 | 
						|
  // Once dominators have been computed, the final sort may be performed.
 | 
						|
  unsigned NumBlocks = Exit->topologicalFinalSort(Blocks, 0);
 | 
						|
  assert(static_cast<size_t>(NumBlocks) == Blocks.size());
 | 
						|
  (void) NumBlocks;
 | 
						|
 | 
						|
  // Renumber the instructions now that we have a final sort.
 | 
						|
  renumberInstrs();
 | 
						|
 | 
						|
  // Compute post-dominators and compute the sizes of each node in the
 | 
						|
  // dominator tree.
 | 
						|
  for (auto *Block : Blocks.reverse()) {
 | 
						|
    Block->computePostDominator();
 | 
						|
    computeNodeSize(Block, &BasicBlock::DominatorNode);
 | 
						|
  }
 | 
						|
  // Compute the sizes of each node in the post-dominator tree and assign IDs in
 | 
						|
  // the dominator tree.
 | 
						|
  for (auto *Block : Blocks) {
 | 
						|
    computeNodeID(Block, &BasicBlock::DominatorNode);
 | 
						|
    computeNodeSize(Block, &BasicBlock::PostDominatorNode);
 | 
						|
  }
 | 
						|
  // Assign IDs in the post-dominator tree.
 | 
						|
  for (auto *Block : Blocks.reverse()) {
 | 
						|
    computeNodeID(Block, &BasicBlock::PostDominatorNode);
 | 
						|
  }
 | 
						|
}
 |